
The Relation Between
Documentation and Internal Quality of
Software

HUMBERTO LINERO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

The Relation Between Documentation and
Internal Quality of Software

HUMBERTO LINERO

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

The Relation Between Documentation and Internal Quality of Software
HUMBERTO LINERO

© Humberto Linero, 2018.

Supervisors: Michel R.V. Chaudron, Truong Ho Quang
Examiner: Robert Feldt

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iv

The Relation Between Documentation and Internal Quality of Software
HUMBERTO LINERO
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Regardless of the software development process used, there are many factors that
take place during such process. Those factors may affect positively or negative the
internal quality of the resulting software product. In the context of open source
software, the success of a project depends on having a community in which people
can contribute to expand and improve the project. How modular and easy-to-modify
a system is, is one of many factors that developers take into consideration before
contributing to a project. Therefore, creators of open source projects need to ensure
that their system has certain level of internal quality and modularity in order to
make it easier for contributors around the world to modify and extends the system.
Therefore, understanding the factors that affect the quality of software product is
the first step towards developing software of higher internal quality.

This study investigates the effect that factors such as documentation quality, size
of a system, and documentation size have on a specific internal quality metric:
Coupling Between Objects or CBO. Open Source Software projects were selected for
this study. Their internal quality over time was studied as well as the quality and
content of their documentation. Finally, a Spearman’s correlation analysis revealed
the correlation between documentation quality, size of a system, and documentation
size with the metric CBO.

Our results suggest a strong positive correlation between the CBO metric and factors
such as lines of code, number of modules, and documentation size. Such results
indicate that as the size of the system increases (size expressed as lines of code or
number of modules), the CBO of the system increases as well. The same is true
for amount of documentation files. As it increases, so does the CBO of the system.
This study further explains such results and discusses the possible causes of the
correlations.

Keywords: Unified Modeling Language, internal software quality, software doc-
umentation, Chidamber & Kemerer metrics, object-oriented metrics, Spearman’s
correlation

v

Acknowledgements

My profound gratitude to my supervisors Michel R.V. Chaudron and Truong Ho
Quang for providing me with unfailing support, guidance, and feedback through
the process of researching and writing this thesis. Additional thanks to professors
Richard Torkar and Lucas Gren for guidance and feedback in the analysis of the
data.

Humberto Linero
Gothenburg, June 2018

vii

Contents

1 Introduction 1
1.1 Software Documentation . 1

1.1.1 Unified Modeling Language 2
1.2 Software Quality . 2

1.2.1 Measuring Quality . 2
1.3 Problem Statement . 3
1.4 Thesis Structure . 3

2 Literature Review 5
2.1 Software Documentation . 5

2.1.1 UML Diagrams . 6
2.2 Internal Quality of Open Source Software 8
2.3 Thesis Contribution . 9

3 Methods 11
3.1 Hypothesis, Research Questions, & Objectives 11
3.2 Collecting the Data . 12

3.2.1 Selection Criteria . 12
3.2.2 Downloaded Meta-Data . 13
3.2.3 Data Collection Method . 13

3.2.3.1 Collecting Meta-Data of Selected Projects 13
3.2.3.2 Identifying Documentation Files 14

3.3 Analyzing the Data . 15
3.3.1 Source Code Analysis . 15

3.3.1.1 Internal Quality Metrics 15
3.3.1.2 Calculating Internal Quality Over time 16

3.3.2 Documentation Analysis . 17
3.3.2.1 Quantity of Documentation and Update Frequency . 17
3.3.2.2 Documentation Content and Quality 17

3.4 Answer Questions & Test Hypothesis 17
3.4.1 Selecting Type of Correlation Analysis 18

4 Results 19
4.1 RQ 1: Internal Quality of Software Over Time 19
4.2 RQ 2: Frequency of Documentation Update 23

ix

Contents

4.3 RQ 3: Documentation Quality . 25
4.4 RQ 4: Documentation Content . 27
4.5 Main RQ: Correlation Analysis . 31

4.5.1 Correlation Analysis Results 32
4.6 Results of Hypothesis Testing . 35

5 Discussions 37
5.1 Internal Quality of Software Over time 37
5.2 Documentation Updates and Content 38
5.3 Documentation Quality . 39
5.4 Correlation Analysis . 39

6 Limitations 41
6.1 Tool Limitations . 41
6.2 Sample Limitations . 42
6.3 Method Limitations . 42
6.4 Documentation Analysis . 43

7 Conclusion 45
7.0.1 Future Work . 46

A Types of File Extensions I

B Guidelines for Measuring Documentation Quality III
B.1 Measuring Quality of Textual Documentation III
B.2 Measuring Quality of UML Models III
B.3 Calculating Total Quality . IV

C Change in CK Metrics for Each Project V

D CBO Based Analysis for Each Project XI

E Documentation Distribution XXI

F Classification of Graphical Documentation XXXIII

G Classification of Textual Documentation XLVII

H Documentation Quality LIX

I Input for Correlation Analysis LXXI

J Normality Plot and Box Plot LXXIII

K Correlation Graphs LXXIX

L Project Description XCI

M Correlation Strength XCV

x

1
Introduction

The advances in computational technology have enabled the creation of highly com-
plex software systems. These software systems may contain thousands, even mil-
lions, of lines of code. For example, the Windows Vista operating system has ap-
proximately 50 million lines of code; the Mac OSX Tiger operating system has nearly
85 million lines of code, and the software system of a modern car has approximately
100 million lines of code1.

Maintaining and evolving software system as complex and large as the ones
mentioned above is not an easy task. Therefore, it is imperative for software archi-
tects to design systems that have an acceptable level of internal quality so that their
testing and maintenance do not become a costly and time-consuming task.

As part of the process for designing the architecture of a system, designers
typically use modeling languages and modeling tools to represent and communi-
cate better the details of the architectural design. The Unified Modeling Language
(UML) is an example of a general-purpose modeling language that software archi-
tects use for visualizing the architectural design of a system [28]. These models not
only serve as a way of communicating the structure of the system but also as a way
of documenting it. Although UML diagrams are widely used in the industry, it is not
the only form of documentation developers use for understanding and maintaining
a software system.

This section will provide the reader with general, background information about
the concepts of internal quality and software documentation; specifically, UML dia-
grams.

1.1 Software Documentation
Artifacts that are considered to be documentation varies from project to project.
For example, software documentation could be defined as an artifact whose purpose
is to communicate information about a system to the project stakeholders. Those
stakeholders may include managers, project leaders, developers, or customers. Some
examples of documentation include source code, inline comments, or specification
documents. [10].

An Architectural model is an example of documentation used for communicat-
ing the architecture of a system and the relationship between software components.
Such models are commonly created using a modeling language such as the Unified
Modeling Language or UML. Due to the special attention this thesis gives to UML

1 https://informationisbeautiful.net/visualizations/million-lines-of-code/

1

https://informationisbeautiful.net/visualizations/million-lines-of-code/

1. Introduction

diagram, the next section provides an background information about such modeling
tool.

1.1.1 Unified Modeling Language
Modeling is an activity architects use to create an abstraction of a system. In the
context of software development, models allow architects to understand and commu-
nicate better the complexity of an architecture. This is accomplished by modeling
the various artifacts that make up the system. The role of models has become more
relevant as a result of the appearance of methodologies such as model-driven design
and model-driven architecture. As a consequence, the Unified Modeling Language
or UML has become a central tool in model-based engineering [28].

The Unified Modeling Language or UML is a general-purpose modeling lan-
guage introduced in 1997, which has now become the de facto standard for modeling
systems. Its usage has reached domains beyond software. Some of those domains
include business and hardware design [28].

Various empirical studies have demonstrated the benefits of using UML dia-
grams in the software development process. Some of those benefits are associated
with the reduction of efforts required during the maintenance phase [19].

1.2 Software Quality

It is necessary to define what software quality is in order to comprehend its im-
portance and how it is measured. There are many philosophies that define quality.
Crosby’s, Deming’s, and Ishikawa’s are some examples. Although they have their
own view, in general, quality can be defined in terms of [11]:

1. Conformance to specification: In this view, the degree of quality of a prod-
uct depends on the extent that it conforms to the requirements specifications
of the product.

2. Satisfying customer needs: In this view, the degree of quality of a product
depends on the extent that it satisfies customer’s needs.

As shown in the previous two views, quality is not a binary value, i.e., either
the product has quality or not. Instead, it is a degree, i.e., a product can have a
higher degree of quality than another product.

1.2.1 Measuring Quality
It is necessary to measure quality in order to improve it. With the purpose of un-
derstanding and measuring quality, researchers have created models illustrating how
quality characteristics are related. The McCall’s Quality Model is among the earli-
est models of this type. In his model, McCall defines software quality as a function

2

1. Introduction

of various factors, criteria, and metrics. For example, in McCall’s model the main-
tainability of a software depends on factors such as modularity, self-descriptiveness,
simplicity, and conciseness. [5].

The ISO 9126 is another model used for defining quality. Such model indicates
that the quality of the process influences the internal quality of the product. At the
same time, the internal quality of the product influences the external quality of the
product, which in turn influences quality in use. Researchers have developed various
metrics to measure the internal quality of software. Cyclomatic complexity, fan-in,
fan-out, total lines of code, and CK-Metrics are some examples of metrics used
for measuring the internal quality of software. To gather these and more metrics,
software engineers typically use static code analysis tools. Analizo, Source Monitor,
Sonarqube are some tools used for calculating internal quality metrics of software.

1.3 Problem Statement
So far the reader has been introduced to the concept of software documentation,
UML as a tool for modeling the architecture of a system, and the concept of software
quality along with metrics for measuring it. But how is software documentation
related to software quality? What effect does quality and size of documentation
have on the internal quality of software? What other factors affect internal quality
of software and by how much? This study will explore the effect that various factors
have on the internal quality of software.

1.4 Thesis Structure
This section provided general information about the concepts of software docu-
mentation and internal quality. In section II, the reader will be presented with a
literature review analysis discussing the current state of knowledge in the topics
of internal software quality and software documentation. Section III presents the
research questions, the methods, and steps taken to accomplish the purpose of this
study. Section IV and V present the results and their implication; respectively.
Finally, section VI presents the limitations and threats of the study.

3

1. Introduction

4

2
Literature Review

2.1 Software Documentation

Just like source code and tests, documentation is an artifact that has a role in the
software development process. Depending on the development method used (i.e.,
Agile, Waterfall, etc.), the importance of documentation may vary. However, in
order to comprehend the role that documentation plays in software development it
is important to understand how software engineers use such artifact.

Lethbridge et al. [13] conducted a study to more accurately comprehend and
model the use of documentation, its usefulness, and maintenance. The results of
the study confirm the widely held belief that documentation is not completely up-
to-date nor updated in a timely manner. However, their results also suggest that
out-of-date documentation could remain useful in certain circumstances. The same
study also reveals some general attitudes software engineers have about documen-
tation. Some of those include the following:

1. Inline comments are good enough for assisting the maintenance work.
2. Systems often have too much documentation and such documentation is often

poorly written.
3. Creating documentation could be time-consuming tasks that outweigh the

benefits.
4. Trying to find useful content in documentation may be a challenging task.
5. A considerable portion of the documentation is not trustworthy.

Forward et al.[10] did a similar study in which they not only study the per-
ceived relevance of documentation but also the relevance of the tools and technolo-
gies for creating, maintaining, and verifying documentation. Their results indicate
that software developers value technologies and tools that automate documentation
maintenance. Their results also indicate that participants consider that test code
contains a lot of useful data that should be automatically extracted to generate
documentation. Their results also support the idea that software systems have a
large amount of documentation, which is hardly organized, understandable, and
maintainable. An important conclusion obtained from the research suggests that
documentation is a tool for communication. Therefore, technologies that automati-
cally generate documentation should be efficient at communicating ideas instead of
providing rules for validating and verifying facts.

As suggested by the research studies previously mentioned, developers consider

5

2. Literature Review

that creating and maintaining documentation is a time-consuming task. This typi-
cally results in documentation being missing or out-of-date. As a result, in a study
by DeSouza et al. [17] the authors tried to investigate how much documentation is
enough and the types of documentation that are most useful during maintenance
efforts. Their results indicate that source code, inline comments, data models, and
requirements are considered to be the important type of documentation for main-
taining a system; with source code and inline comments being the most important.
Interestingly, architectural models are not considered to be very important. The au-
thors argue that this could be the case because architectural documentation is used
once for getting a global understanding of the system and not consulted afterward;
however, this does not take away its importance. But what role does documentation
play in the internal quality of software? Does the quality of documentation affect
internal quality of software?

Although all types of documentation are considered in this study, special at-
tention is given to UML diagrams. As a result, the following section will provide
the current state of knowledge regarding the usage and role of UML diagrams in
software development.

2.1.1 UML Diagrams
Before the introduction of methodologies such as model-driven engineering, model-
driven design, and model-driven architecture, source code was considered the pri-
mary artifact in software development, while models were secondary artifacts used
for supporting the communication and understanding of the source code. However,
practitioners of a model-driven engineering approach consider models to be the pri-
mary artifact in the development process. The Unified Modeling Language or UML
is the de facto tool used for creating models [26]. With its increased usage in the
industry, it is no surprise that researchers in the field of software engineering have
tried to better understand and explore how UML diagrams are used, its impact on
the development process, and the expectations developers have as a result of its
usage.

Tilley et al. [15] performed a qualitative study to asses the efficiency of UML
diagrams as a documentation tool for aiding program understanding. The prelimi-
nary results suggest that UML diagrams can help engineers understand large system.
The same study also indicated that the efficacy of the diagram is affected by factors
such as syntax, semantics, and layout of the diagram, and by how much domain
knowledge of the system the developer had. In the context of maintainability, an
experiment perform by Arishholm et al. [19] focused on determining if UML mod-
els helped developers make changes quicker and better to existing systems. Their
results indicated that UML diagrams does help developers making changes to code
faster. However, the time saved is lost whenever modification of the diagram is re-
quired. Additionally, functional correctness of changes as well as quality of design is
positively impacted whenever UML diagrams are available. Nevertheless, this only
applies for tasks that were considered to be complex.

Since the cost and effort required to modify software systems increases as the
project progresses, engineers are interested in applying techniques that allow them

6

2. Literature Review

to predict the quality of a system early in the development process. With that
motivation, researchers have explored the usage of UML diagrams as a tool for
predicting the quality of systems. One technique used for early assessment of quality
requirements is to transform software models into a mathematical notation that
is suitable for validation [8]. Other techniques have been explored as well. For
example, Cortellessa et al.[8] analyzed UML diagrams and used Bayesian analysis
for making predictions regarding reliability of the system. In their study, UML
diagrams are annotated with attributes associated to reliability of component and
connector failure rates. Those attributes are then used for making predictions of
the reliability of the system.

Using UML diagrams assets as tool for predicting source code quality in early
stages of development is important. However, determining the quality of the UML
diagrams is also an important area of research. Genero et al.[12] proposed a set
of metrics that served as class diagram maintainability indicators. Those metrics
include: understandability time, modifiability correctness, andmodifiability complete-
ness. In there study they concluded that those measures are affected by the struc-
tural complexity of the class diagram.

As the size of a software system increases, usually its complexity increases as
well. Therefore, it is important for engineers to find effective ways of communicating
such complexity in an abstract and understandable manner. Cherubini et al.[25]
studied how and why software developers used diagrams. The results indicated that
diagrams are mainly used for supporting face-to-face communication. Additionally,
the study also suggested that current tools were not effective at aiding developers
externalize their mental models of the code.

It is important to also understand developer’s perceived impact of UML us-
age in productivity and internal quality of software. Nugroho et al. [28] made a
study to understand the impact that UML modeling styles had on both produc-
tivity and quality. The results suggest that developers perceive that using UML is
most influential in improving software quality attributes such as understandability
and modularity. In the context of productivity, the study indicated that UML is
perceived to be most helpful at the stages of design, analysis, and implementation.

Most of the studies associated to UML usage are within the context of the
industry. Nevertheless, Hebig et al. [31] studied how UML diagrams were used in
open source software. They studied a total of 1.24 million projects from GitHub in
order to understand how UML diagrams were used. Their results suggest that 26%
of the projects investigated updated UML files at least ones. It also suggest that
most projects introduce UML diagrams at the beginning stages of development and
it is at such stages where engineers work with the UML diagrams.

In essence, models are an important asset in model-driven activities. As a
result, UML diagrams have become the de facto standard for building such models.
Due to the importance of those assets, it is necessary to understand how such models
are used and their impact on the development process. Although research suggests
that UML diagrams have a positive impact on external quality attributes such as
maintainability and understandability, does using UML diagrams influence internal
quality of software? If so, what internal quality attributes does it influence?

7

2. Literature Review

2.2 Internal Quality of Open Source Software

The role of open source software, in both the industry and economy, has increased
over the years. The success of many open source systems is surprising given that
such systems are developed by volunteer programmers that are dispersed through
the globe and communicate in an informal or loose manner [20]. Although users
are allowed to freely access and modify the source code of an open source soft-
ware, the impact this type of software has in both the economy and industry is
high. For example, in the year 2006 the European Commission’s Directorate Gen-
eral for Enterprise and Industry financed a study to identify the economic impact
of open source software in the information and communication technology sector in
the European Union [22]. The study suggested that open source software can be
found in markets such as web and email servers, operating systems, web browsers,
and other Information and Communication Technology infrastructure systems. The
same study also reveled that the volunteer work of the programmers represents 800
million Euros each year.

Some examples of successful open source systems include the Linux operating
system, which represents 38% share of the operating systems market, the Apache
web server, which accounts for 70% market share, and the FireFox web browser,
which has been able to obtain 5% market share from Microsoft’s Internet Explorer
web browser [20]. Given the important role that open source software is having in
the economy and mission-critical application, it is important to ensure that such
system attain certain level of quality and security. Therefore, extensive research has
been done to understand better the quality of open source systems. This section
explores selected research on the area of software quality in the context of open
source systems.

The benefit of open source projects is that researchers have the opportunity to
access freely a large set of software development data. Such data could then be used
to study, among other things, quality of open source projects. Nevertheless, as Yu
et al. [18] demonstrate in their study, having a large set of open source maintenance
data freely accessible does not guarantee that it would be useful for measuring
maintainability of open source software. In such study, the authors studied various
maintenance data such as defects from defect-tracking systems, change logs, source
codes, average lag time to fix a defect, and more. They concluded that the reason
why such data sets were not necessarily useful for measuring maintainability is that
either, they were incomplete, out-of-date, inaccurate, lacked information regarding
the origin of a defect, and lacked construct validity.

Although Yu et al.[18] mentions that source code is impractical for measuring
maintainability, Bakar et al. [30] used the Chidamber and Kemerer (CK) object-
oriented metrics to analyze the source code of two open source software and thus
determine their internal quality. In such study, they wanted to investigate which
quality factors had the biggest influence on class size as well as understand the
correlation between various quality factors with class size. Their results indicate
that coupling and complexity influences class size. Additionally, their correlation
analysis results indicate that class size, expressed as lines of code, is significant in
predicting coupling and complexity.

8

2. Literature Review

There are many factors that contribute to the success of an open source soft-
ware. Aberdour [24] suggests in his study that having a large community of con-
tributors was one of the most important factors that determined success. The study
also suggests that software with high code modularity is a factor that motivates
programmers to contribute to a project. Given that contributors are usually dis-
persed around the globe, been able to contribute to a system without knowing the
architecture of the entire system is a benefit. But how can the core team of an open
source system ensure their project obtains a certain degree of modularity? What
role, if any, does UML diagrams play when creating architectures of open source sys-
tems? Yu et al.[18] tried measuring maintainability using data from defect-tracking
systems, change logs, average lag time, etc. but what about measuring the internal
quality metrics of the software as a method to understand maintainability? Bakar
et al. [30] studied the relation between various metrics, but how are those metrics
influenced whenever developers use modeling techniques in the development process
of software?

2.3 Thesis Contribution
In order to create a software system, developers engage in a software development
process. In such process, there are various factors that affect the quality of the
final product; i.e., the internal quality of software. As shown in Figure 2.1, some
of those factors include the software documentation used, project complexity, the
skills of programmers and their experience, and the number of people involved in
the project. The main contribution of this thesis is to study the relation that usage,
quality, and size of documentation, and system size have on the internal quality of
software.

Figure 2.1: Factors that influence the development process and affect the internal
quality of software.

The end goal of software development is to create system that are capable of
satisfying the needs of a given market. In order to keep a software system relevant, it
is essential to evolve it and maintain it. The cost and time involved in maintenance
efforts depends on how good the internal quality of the software is. Therefore,

9

2. Literature Review

identifying the factors that influence the internal quality of software is an important
step towards the creation of systems that are easily maintainable.

In the context of open-source software, being able to understand better how
various factors influence the internal quality of open source software will allow the
developers of the open source communities to develop software with higher internal
quality and thus attract more volunteers to their community. Future sections will
discuss in more details the research questions, hypothesis, and methods used for this
thesis.

10

3
Methods

Recall that the purpose of this thesis is to study the relation that usage, quality, and
size of documentation and system size have on the internal quality of software. Fig-
ure 3.1 illustrates a high-level overview of the steps that were taken to accomplish
such purpose.

Figure 3.1

This chapter will provide a description of each step presented in Figure 3.1
as well as a detailed explanation of how each step was be executed.

3.1 Hypothesis, Research Questions, & Objectives
The main research question of this study is the following:

• What is the correlation between quality of documentation and the internal
quality of software?

Additional research questions of the study include the following:
RQ 1. What is the change of the software internal quality over time of the investigated

projects?
RQ 2. How frequent is the documentation of open source software updated?
RQ 3. What is the quality of design-related documentation of the investigated projects?
RQ 4. What is the content of the documentation of the investigated projects?

As shown in Figure 3.2 the answer to RQ 1 and RQ 2 serve as input for
answering the main RQ. The reason for such relationship is because, in order to
answer the main research question, it is necessary to first understand the quality of
documentation and the quality of software internal quality of the selected projects
separately. In this study software internal quality over time is studied in order to
obtain a broader knowledge of how systems evolved over time and thus a better
understanding of the projects analyzed. Although RQ 3 and RQ 4 do not serve as
input for answering the main RQ, they are important for better understanding of
the documentation.

11

3. Methods

Figure 3.2: Relationship between proposed research questions.

Since the main research question of this study is investigate the correlation
between documentation quality and internal quality of software. The hypothesis of
this study are the following:

• H0: ρ = 0 → There is no correlation between documentation quality and
internal quality of open source software.

• H1: ρ 6= 0 → There is a correlation between documentation quality and inter-
nal quality of open source software.

The significance level used in the hypothesis testing is 0.05

3.2 Collecting the Data
The second step shown in Figure 3.1 is to download meta-data of selected project.
Therefore, the purpose of this section is the following:

1. Describe the criteria used for selecting projects.
2. Describe the meta-data collected for each project.
3. Describe the method used for collecting the meta-data.

3.2.1 Selection Criteria
The GitHub platform was the source for downloading the projects to be studied.
Projects could be part of this study as long as they satisfied the following require-
ments:

1. The project shall have more than one release 1

2. The project shall be written in Java, C, or C++ 2

3. The project shall contain UML diagrams

Millions of open source projects are available in the GitHub platform, but not
all of those projects contain UML models and, most importantly, not all of those

1 The reason for this requirement is explained in the Analyzing the Data section.
2 The reason for this requirement is explained in the Limitations section.

12

3. Methods

projects have a size and complexity similar to projects commonly used in the market.
For that reason, this research studies a subset of the projects studied by Hebig et al.
[31]. In their study, Hebig et al. created a semi-automated approach for collecting
UML models from projects in GitHub. Among their contributions is a list of 3,295
GitHub projects that include UML diagrams. The reason for using projects from
such data set is because it facilitated the process of selecting projects that met the
requirements of this study.

In order to compare how the internal quality of software that uses UML as
part of their documentation differs from the internal quality of software that does
not use UML diagrams as part of their documentation, this study includes a certain
number of projects that do not use UML diagrams as part of their documentation.

3.2.2 Downloaded Meta-Data
For each selected project, the following meta-data was collected:

1. Complete file directory for each release: By downloading the complete
directory for each release, we had access to the source code and documentation
files used at each release. Having the source code of each release, allowed us
to study the internal quality of each project over time. Having access to
documentation file allowed us to study, its quality and patterns in usage. It is
important to mention that the internal quality over time of documentation is
not studied in this project. Instead, the study focused on analyzing internal
quality for the latest release of documentation files.

2. All the commits messages of the project: The content of each commit
messages were analyzed in order identify what files from the project directory
was documentation.

3. The date each release was published: This information served as an index
for organizing releases by date.

Additional meta-data collected includes number of contributors, a link for
downloading source codes, the date each commit was submitted, and the default
branch for each project. Although this information is considered secondary because
it did not have a direct impact on the main purpose of this study; it helped provide
different perspectives when analyzing the data.

3.2.3 Data Collection Method
So far the reader has been presented with the criteria used for selecting projects and
the meta-data downloaded for each project. Now the reader will be presented with
the methods used for collecting such meta-data.

3.2.3.1 Collecting Meta-Data of Selected Projects

The complete directory of each GitHub projects was automatically collected with
the use of Python scripts that queried GitHub using the GitHub API 3. For each

3 To view the scripts used for data collection visit https://bitbucket.org/hlthesis/

13

https://bitbucket.org/hlthesis/

3. Methods

project, the scripts downloaded all the meta-data mentioned previously. Although
automation facilitated the collection of data, only 17 projects were part of this study.
The reason for the inability to analyze more project was due to the limitations of the
tools used for analyzing the internal quality of software 4. From those 17 projects,
14 projects contained UML diagrams as part of its documentation, while 3 projects
did not. Appendix L contains the name and description of the projects used in
this study.

3.2.3.2 Identifying Documentation Files

In this study the term documentation refers to any file whose purpose is to explain
or describe the architecture of the system or how the system works. As mentioned
previously, commit messages were used for identifying what files in the directory
were documentation. Identifying documentation files was accomplished as follows:

• A Python script searched for specific keywords that are associated to docu-
mentation in the message of each commit. The keywords used included the
following:
1. documentation
2. uml
3. diagram
4. manual
5. sad

Regular expressions were used to identify any combination in which such
keywords could appear in the commit message. If the script identified a commit
message contained any of those keywords, then the commit was classified as
a documentation commit. Each documentation commit was then linked to a
project release by analyzing the date such commit was published. Additionally,
all of the files associated with the documentation commit were downloaded
using a python script and GitHub API.

After downloading all the documentation files for each commit, all unique
files were identified. Finally, the number of times each unique file was mod-
ified was calculated. After identifying all the unique files, the extension was
analyzed in order to categorize the file as either:

1. Text Documentation File: A file that contains information about the
architecture of the system, how the system works, or how it is configured.
Such information is provided in textual format.

2. Graphical Documentation File: Just as textual documentation, it
provides information about the architecture of the system, how the sys-
tem works, or how it is configured but such information is provided in a
graphical format using UML models or non-UML models.

Appendix A contains the extensions that belong to each category.
4 Details about the limitation will be presented in the Limitations section

14

3. Methods

3.3 Analyzing the Data
The third step in Figure 3.1 is to analyze the meta-data. Figure 3.3 shows the
analysis that was made to the source code and documentation files of each project.

Figure 3.3: Strategy for analyzing data of the projects.

3.3.1 Source Code Analysis
As shown in Figure 3.3 the source code of each release was analyzed in order study
the internal quality over time for each project. In this subsection the following
concepts will be discussed:

1. Describe what internal quality metrics are.
2. Describe the method used for calculating internal quality over time.

3.3.1.1 Internal Quality Metrics

For many years researchers have introduced many object-oriented metrics for mea-
suring internal quality of software [2], [4], [6], [7], [16]. Nevertheless, many of those
metrics have not been validated theoretically or empirically. Additionally, it is also
common that such metrics are insufficiently generalized, too dependent on technol-
ogy, or too computationally expensive to collect [2]. In this study, the Chidamber
and Kemerer (CK) metrics were used for calculating the internal quality of open

15

3. Methods

source software [2]. The reason for using them is because there is research indi-
cating their validity and usefulness for measuring internal quality of object-oriented
software [1], [3], [9], [14].

In this study, all CK metrics 5 were calculated. Those metrics include:
• Weighted Methods per Class (WMC)
• Depth of Inheritance Tree (DIT)
• Number of Children (NOC)
• Coupling Between Objects (CBO)
• Response for a Class (RFC)
• Lack of Cohesion in Method (LCOM)

Besides the CK metrics, other metrics that were calculated include total lines
of code, the total number of modules, and structural complexity.

3.3.1.2 Calculating Internal Quality Over time

The open source software Analizo 6 was used for calculating the metrics mentioned
previously. Analizo is the result of a study done by Terceiro et al. [29] and its
purpose is to calculate an extensive set of metrics from source code written in Java,
C, or C++. Analizo was selected for this project because it satisfies all the following
requirements 7:

1. The software shall be open source.
2. The software shall belong to an active community.
3. The software shall have a consistent history of releases.
4. The software shall support automation.
5. The software shall not require source code to be compiled in order to generate

the metrics.

Other tools were also explored [27]; nevertheless, those tools did not satisfy
one or more of the requirements mentioned above. The rationale behind the above
requirements is that the researchers of this study had the objective to embrace
automation for data collection at the lowest monetary cost possible and in the most
reliable way. Finding a tool that satisfied the requirements above was essential for
accomplishing the goal of this study.

As mentioned previously, 17 projects were analyzed and each of those projects
had a certain number of releases. Analizo was used to calculate the CK metrics
of each release for each project. For example, if project X had 33 releases, then
Analizo calculated the CK metric for each of the 33 releases. This approach enabled
the understanding of how each project evolved over time; specifically, how each CK
metrics changed from one release to another.

5 The study by Chidamber et al.[2] provides a full description of each metric.
6 www.analizo.org
7 The rationale for these requirements is provided in the Limitations section.

16

www.analizo.org

3. Methods

3.3.2 Documentation Analysis
Unlike source code, the evolution of documentation overtime was not analyzed.
Instead, only the latest release of the documentation files was analyzed. The purpose
of this subsection is to describe how each documentation analysis, shown in Figure
3.3, was accomplished.

3.3.2.1 Quantity of Documentation and Update Frequency

As explained previously, documentation files were categorized as either source code,
textual documentation, or graphical documentation. Therefore, counting how many
documentation files in each project were textual and graphical was a trivial task of
counting how many non-repeated files were in each category.

Additionally, since it was already known how many times each documentation
file was modified, calculating the update frequency or the average number of times
each file type was modified was a trivial task of calculating a mean. This study does
not analyze how much information changed in a document after each update. It
only focuses on determining how frequently documentation files are changed without
taking into account the amount or type of changes made.

3.3.2.2 Documentation Content and Quality

Documentation was manually analyzed and it involved the tasks of reading each file
and determining what aspects of the system they described. After understanding
the content of each file, a set of guidelines were followed in order to grade the quality
of documentation. Appendix B contains the set of guidelines used for measuring
quality of documentation.

Recall that in this study two types of documentation are studied: Graphical
and Textual 8. In the case of Graphical documentation, the quality of only UML
diagrams was analyzed. In the case of Textual documentation, the quality of only
the files whose content described UML models or architecture of the system was
analyzed.

It is common for developers to consider source code comments as a form of
documentation. In many cases, source code comments are used to describe the
purpose of modules, methods, and possibly, the way algorithms are implemented.
Nevertheless, in this study source code comments are not analyzed. The reason was
because of time constraints and the inability to find a tool capable of automatically
parsing and filtering comments that could be considered documentation from those
that were not documentation.

3.4 Answer Questions & Test Hypothesis
The fourth and final step shown in Figure 3.1 is to answer the research ques-
tions and test the hypothesis. Research questions 1, 2, 3, and 4 were answered by

8 Section Identifying Documentation Files explains the difference between the types of docu-
mentation.

17

3. Methods

interpreting the meaning of the results obtained in the third step.
To answer the main research question and test the hypothesis, a correlation

analysis was performed. The result of the correlation analysis provided information
regarding magnitude and direction of the correlation between selected factors and
internal quality of software.

3.4.1 Selecting Type of Correlation Analysis
Pearson’s and Spearman’s correlation are two types of analysis used for calculat-
ing the correlation between variables. To determine if Pearson’s correlation was
an appropriate analysis, our data was tested to determine if it complied will all of
Pearson’s requirements. Those requirements include the following 9:

1. Variables must be measurements of type ratio o intervals.
2. The data of the variable should be normally distributed.
3. There should be a linear relationship between the variables.
4. The data should have little to no outliers.
5. There is homoscedasticity in the data.

In order to determine if our data complied with such requirements, the follow-
ing tests were done:

1. Shapiro-Wilk Test: Used for testing normality of the data.
2. Levene’s Test: Testing homoscedasticity
3. Boxplot: To determine if the data had outliers.
4. Normality Plot: To visualize how normal the data is.

The results of these tests are presented in the Results section.

9https://statistics.laerd.com/statistical-guides/pearson-correlation-
coefficient-statistical-guide.php

18

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php

4
Results

Recall from Figure 3.2 that the answers to research questions 1, 2, and 3 served as
input for the answer to the main research question. Therefore, this section begins
by answering research questions 1, 2, 3, and 4, followed by the answers to the main
research question.

4.1 RQ 1: Internal Quality of Software Over Time
RQ 1 asked What is the change of the software internal quality over time of the
investigated projects? As mentioned previously, a total of 17 open source software
projects were part of this study and for each project, the internal quality of each
release was analyzed. Figure 4.1 illustrates the change in each CK metric for the
project with ID 9c699c33.

Figure 4.1: Change in CK Metrics for project with ID 9c699c33

19

4. Results

Since RQ 1 is focused on understanding change of software internal quality over
time, the delta value or change from release X to release X+1 of each CK metric was
calculated. To illustrate how the delta value is calculated let’s imagine that Project
X has a CBO for release 1 of 20 and a CBO for release 2 of 15. Then the change
from release 1 to release 2 is -5. The benefit of using the delta value is that such
value indicates the magnitude and direction of change for a given internal quality
metric. In the given example there is a decrease in CBO of 5 units.

Results for RQ 1 - Part 1
The direction of change for each metric is similar to the direction of change of LOC.
In other words, both the change in LOC and the change in any CK Metric have the
tendency to move in the same direction from one release to another. For example,
the change in LOC from release 1 to release 2 was positive and so was the change
in the CK metrics. More interestingly, this behavior is also present in the other
projects.

In order to better visualize the results obtained, Figure 4.2 illustrates the
behavior of all CK metrics in a single graph.

Figure 4.2: The change in each CK Metrics for project with ID 9c699c33

Results for RQ 1 - Part 2
The change in all CK Metrics tend to move in the same direction from one release
to another. More interestingly, the same behavior is present in the other projects.

Appendix C contains the same set of graphs as shown in Figure 4.1 and
Figure 4.2 but for all projects.

The data shown so far regarding CK metrics is associated to the change of
each metric from one release to another. Additionally, results indicate that there
is a tendency for all CK metrics to follow a similar direction of change from one
release to another. Therefore, in order to better explore the internal quality of each

20

4. Results

project, the CBO and LOC for each release of each project was explored. Figure
4.3 illustrates the CBO and LOC for all releases of selected projects (Note that the
CBO and LOC is graphed and not the change in CBO neither the change in LOC,
as done previously).

Figure 4.3: CBO and LOC of the releases of selected projects

As observed in Figure 4.3, both CBO and LOC tend to follow the same
magnitude from one release to another. This behavior is also present on the other
projects studied. Additionally, it may be observed that CBO and LOC tend to
follow one of the following behaviors:

Behaviors Description

Increasing Behavior The CBO and LOC tend to increase after
each release but not necessarily at the same
rate.

Plateau Behavior The CBO and LOC plateaus at a certain
point and either does not change or the
change is small.

Decreasing Behavior The CBO and LOC tend to decrease after
each release but not necessarily at the same
rate.

21

4. Results

From the 17 projects studied, 12 had an increasing behavior, 2 had a plateau
behavior, and 3 a decreasing behavior.

Results for RQ 1 - Part 3
Both LOC and CBO tend to follow the same direction at each release. Additionally,
it is common for such metrics to increase after each new release. Additionally, since
all the metrics are closely related in behavior, it is likely that other CK metrics also
increase with each new release.

Part of understanding the internal quality of software involves measuring the
quality of source code structure. In order to calculate such measure, the magnitude
of CBO at release X is divided by the number of lines of code at release X. The
quality of the source code structure is inversely proportional to the result of the
division. Therefore, the lower the result of the division, the higher the quality.
Figure 4.4 illustrates the various behaviors of the source code structure quality
encountered in the study.

Figure 4.4: CBO of the releases of selected projects

Similarly to the behavior of CBO and LOC, the quality of the source code
structure also present the increasing, plateau, or decreasing behavior previously
explained. In the case of quality of source code structure, eight projects presented an
increasing behavior; i.e., the quality of source code structure tended to deteriorate.
Seven projects presented a decreasing behavior; i.e., the quality of the source code

22

4. Results

structure tended to improved, and two projects had a plateau behavior; the quality
of the source code structure tended to stay approximately the same.

Results for RQ 1 - Part 4
Approximate the same amount of projects presented an increasing and decreasing
source code structure quality. For those projects that presented a decreasing be-
havior, the rate at which the size of the project increased was higher than the rate
at which the CBO increased. The opposite occurred for projects with an increasing
behavior.

Appendix D contains the same set of graphs as shown in Figure 4.3 and
Figure 4.4 but for all projects.

4.2 RQ 2: Frequency of Documentation Update
RQ 2 asked How frequent is the documentation of open source software updated? As
mentioned previously, all the commit messages of each project were analyzed and
filtered in order to identify documentation files from source code files. As explained
in theMethodology section, in this study, documentation is classified as either Textual
or Graphical. Figure 4.5 illustrates the five distributions of documentation types
encountered in the projects studied.

Figure 4.5: Documentation Distribution

23

4. Results

Based on the projects studied, documentation of was distributed as follows:

Documentation
Distribution

Description

No Text
Documentation

One project presented this behavior.

No Graphical
Documentation

Two projects presented this behavior.

More Text than
Graphical

Nine projects presented this behavior.

More Graphical than
Text

Four projects presented this behavior.

Same Amount of Text
and Graphical

One projects presented this behavior.

Results for RQ 2 - Part 1
It is common for projects to provide documentation; however, such documentation
is mainly presented as textual rather than graphical. Projects contained an average
of 24 files associated to textual documentation; while an average of 12 files were
associated to graphical documentation.

Through the lifetime of a project, besides changes to the source code of the
system, changes to its documentation are also made. However, not all documenta-
tion of a project is updated with the same frequency. Figure 4.6 illustrates the
possible behaviors regarding documentation update based on selected projects.

Figure 4.6: Cases for Documentation Update Frequency

Based on the projects studied, the update frequency of documentation could
follow one of the following behaviors:

24

4. Results

Documentation Update
Behaviors

Description

Text documentation
updated more
frequently

Nine projects presented this behavior.

Graphical
documentation updated

more frequently

Seven projects presented this behavior.

No documentation
update

One projects presented this behavior.

Moreover, in 14 projects, the documentation type that was most frequently
updated was the one most available in the project. Except in 3 projects in which
the opposite occurred.

Results for RQ 2 - Part 2
Since textual documentation was the prominent type of documentation present, it
was the type of documentation most frequently updated, however, but not by a
large difference. On average, textual documentation was modified 2.49 times; while,
graphical documentation was modified 2.33 times.

Appendix E contains the same graphs as in Figure 4.5 and Figure 4.6 but
for all projects.

4.3 RQ 3: Documentation Quality

RQ 3 asked What is the quality of design-related documentation of the investigated
projects? As explained previously, in order to answer such question, the quality of
both UML diagrams and SAD files was analyzed. Figure 4.7 illustrates the quality
of the UML documentation for selected projects.

Figure 4.7: Result of UML documentation quality for selected projects.

25

4. Results

From a total of seventeen projects, only fourteen contained UML diagrams as
part of their graphical documentation. Based on those fourteen projects, the average
for each quality attribute was the following:

Quality Attribute Average Score

Level of Detail 2.25 out of 3.0
Understandability 2.41 out of 3.0
Layout Quality 2.91 out of 3.0
Usage of Reverse
Engineering tool

0.16 out of 1

Results for RQ 3 - Part 1
Projects that contained UML diagrams have the tendency to have high scores for
all the quality attributes; with Layout Quality having the highest average score.
Results also indicate that models are, generally, constructed manually. Finally, the
average total quality of UML documentation was 7.75 out of 10 or 77.5 out of 100.

After studying the quality of UML documentation, the quality of SAD docu-
mentation was studied as well. Figure 4.8 illustrates the quality of SAD documen-
tation for selected projects.

Figure 4.8: Result of SAD documentation quality for selected projects.

26

4. Results

From a total of seventeen projects, only four contained SAD files as part of
their textual documentation. Based on those four projects, the average score for
each quality attribute was the following:

Quality Attribute Average Score

Level of Detail 2.0 out of 3.0
Correspondence to

model
1.5 out of 3.0

Understandability 2.75 out of 3.0

Results for RQ 3 - Part 2
Projects that contained SAD files have the tendency to have high scores for attributes
such as level of detail and understandability. Finally, the average total quality of
SAD files was 6.25 out of 9 or 69.4 out of 100.

Appendix H contains the same graphs as in Figure 4.7 and Figure 4.8 but
for all projects.

In order to calculate the overall documentation quality of the documentation
of each project, the quality result of UML documentation and SAD files were added
together. Since a large number of projects lacked SAD documentation, the average
score of overall documentation quality was low.

Results for RQ 3 - Part 3
The average score for overall documentation quality was 8.57 out of 19 or 45 out
of 100. This low score is a result of a significant number of projects not containing
SAD documentation.

4.4 RQ 4: Documentation Content

RQ 4 asked What is the content of the documentation of the investigated projects?
As expected, the content of the documentation varied from project to project and
depends on the type of documentation as well. Nevertheless, there was a common
pattern regarding the content of documentation. In the case of projects that had
Graphical documentation, the content could be either mainly UML diagrams or
mainly non-UML diagram. Figure 4.9 illustrates how Graphical documentation
was distributed in selected projects.

27

4. Results

Figure 4.9: Graphical Documentation Content

Based on the projects who contained Graphical documentation, its content
could contain:

Content Type Description

Mainly UML diagrams Twelve projects presented this behavior.
Mainly Non-UML

Diagrams
Two projects presented this behavior.

Equal amount of UML
and Non-UML

One project presented this behavior.

In general, for projects that used UML diagrams, the diagram most used was
class diagrams; followed by sequence diagrams. On the other hand, Non-UML dia-
grams were either screenshot of a software or boxes and arrows connections that do
not follow the UML standard.

UML diagrams may be automatically created or manually created. However,
Regardless of the method used for creating them, a UML diagram file may con-
tain an image of the diagram (UML as Image) or XML (UML as Text), which is
then compiled in order to generate the diagram. In the case of projects who had
UML diagrams, projects used a combination of text or image to express their UML
diagrams. Figure 4.10 illustrate how UML diagrams were expressed.

28

4. Results

Results for RQ 4 - Part 1
For project that contain graphical documentation, it is common for such documen-
tation to be presented as UML diagrams. Projects had an average of 12 graphical
documentation files. From those 12 files, an average of 10 files were UML diagrams
and 2 files were non-uml diagrams. Additionally, class diagram was the most com-
mon type of UML diagram used, followed by sequence diagram.

Figure 4.10: Ways of Expressing UML Diagrams

Based on the projects that contained UML diagrams, such diagrams were ex-
pressed in one of the following forms:

UML Format Description

UML as Text Five projects expressed most, if not all, of
their UML diagrams as text; i.e., the file con-
tained XML code that needed to be compiled
in order to create the diagram.

UML as Image Eight projects expressed most, if not all, of
their UML diagrams as an image; i.e., the file
is an image format and not XML format.

Additionally, one project presented all of its diagrams in both text and image
format. Appendix F contains the same graphs as in Figure 4.9 and Figure 4.10
but for all projects.

29

4. Results

Results for RQ 4 - Part 2
The UML diagrams are expressed in text format files with extension such as .xmi,
.uml, and .puml. However, it is more frequent that diagrams are expressed as image
files such as .png, .svg, and .jpg. From all the UML diagrams provided, on average 7
of those diagrams were presented as images, while 3 of those diagrams were presented
as text format.

So far, the results for RQ 4 have provided information regarding the content
of graphical documentation. However, textual documentation can also be classified
based on its content. In this study, files that are considered textual documentation
can be classified as either Software Architecture Documentation (SAD) or Non-
SAD. Figure 4.11 illustrates how textual documentation is categorized for selected
projects.

Figure 4.11: Textual Documentation Content

After analyzing the textual documentation of all projects, it was concluded that
the analyzed projects followed one of the following behaviors:

Behavior Description

Little to no SAD Files This means the project contained little to no
SAD documentation. Only four projects had
SAD documentation.

No SAD Files This means that projects contained no SAD
files at all. A total of twelve projects pre-
sented this behavior.

No Documentation Only one file presented this pattern.

Appendix G contains the same graphs as in Figure 4.11 but for all projects.

30

4. Results

Results for RQ 4 - Part 3
Projects do not commonly contain SAD files. However, when they do, such files
contain explanations about the models and architecture of the system. On the
other hand, non-SAD files contain non-architectural information such as building
instructions, how to execute tests, how to use certain modules, contribution guide-
lines, and release history. Projects had an average of 24 textual documentation
files. From those 24, an average of 23 was non-SAD documentation and 1 was SAD
documentation.

4.5 Main RQ: Correlation Analysis

Recall that the main research question asked: What is the correlation between qual-
ity of documentation and the internal quality of software? Although, a significant
amount of project meta-data was collected not all of such data was part of the
correlation analysis. The variables that were taken into account for the correlation
analysis were the following:

• Documentation Files to Source Code Files commit ratio
• Number of Documentation Files
• Number of Source code files
• Total Documentation Quality
• Total number of LOC
• Total number of Modules
• CBO Average

Appendix I contains the complete dataset used in the correlation analysis.
All 17 were part of the correlation analysis.

Notice that CBO is the only CK metric that is part of the analysis. The
reason for excluding the other CK metrics and other metadata was in order to
keep the number of variables to a minimum and thus, simplify the analysis. This
simplification was achieved by selecting the most relevant variables that would allow
answering the main research question. The reason for choosing CBO as part of
the analysis and not another CK metric is because of the researcher’s interest in
exploring the aspect of architecture-design quality of systems. Moreover, previous
results demonstrate the high positive correlation between the CK metrics; therefore,
it is expected that results would have been very similar regardless of the CK metric
chosen.

It is important to mention that CBO Average is not a metric provided by
Analizo. Instead, it is a metric that resulted from dividing CBO Sum (the value
provided by Analizo) by the total number of modules. The reason for performing
such division is because CBO Sum was a sum of the CBO value of each module in
a project. Therefore, to obtain a value that provided a better representation of the
overall design of the system, the CBO Sum was normalized by dividing it by the
number of modules in the system [23].

31

4. Results

4.5.1 Correlation Analysis Results

Recall that to determine if Pearson’s correlation was the appropriate correlation
analysis method to use with our data, it was necessary to ensure that such data
complied with various conditions.

Figure 4.12 illustrates the normality Plot for selected variables. As shown in
the image, many variables do not follow a normal distribution. The Shapiro - Wilk
Test confirmed that multiple variables did not have a normal distribution. To be
more specific, 5 out of 7 variables did not have a normal distribution.

Figure 4.12: Normality Plot for selected variables

Another condition that must be met for using Pearson’s correlation is that
there should be no outliers in the dataset. Figure 4.13 shows the box plot for se-
lected variables. As shown in the image, there are various variables that do contain
outliers. The results indicate that 2 out of 7 variables contain outliers.

32

4. Results

Figure 4.13: Box Plot for selected variables

33

4. Results

Figure 4.14: Correlation graphs between CBO Average and other variables

Finally, to observe the homoscedasticity or equality of variance of the data, a
correlation plot between CBO Average and all other metrics were created. Figure
4.14 illustrates the results of the correlation graphs. As shown in the image, the
data tends to not have equality of variance. The results from the Levene’s test
confirms that all graphs lack homoscedasticity.

Appendix J contains normality plot and box plot for all variables and Ap-
pendix K contains the correlation graphs.

Results for Main RQ - Part 1
Because variables from the input data of the correlation analysis has outliers, is not
normally distributed, and lacks homoscedasticity, a Pearson’s correlation is not an
appropriate correlation method. Instead, Spearman’s correlation was the analysis
method used.

After determining that Spearman’s correlation was the appropriate analysis
method to use, a correlation matrix was generated with the use of SPSS software.
Figure 4.15 shows the resulting correlation matrix.

34

4. Results

Figure 4.15: Correlation matrix

Results for Main RQ - Part 2
The main insights obtained from the significant results of the correlation matrix are
the following:

1. There is an indication of a strong positive correlation between CBO Average
and size of the system. However, the correlation between CBO Average and
LOC is stronger than the correlation between CBO Average and the number
of modules.

2. There is an indication of a strong positive correlation between CBO Average
and documentation size.

3. There is an indication of a strong positive correlation between CBO Average
and documentation quality.

4. From all the variables in presented in Figure 4.15, the two with highest
correlation with CBO Average are number of documentation files and total_loc.

Appendix M contains information regarding categorizing the value of corre-
lation coefficients into a given strength scale.

4.6 Results of Hypothesis Testing
The correlation matrix in Figure 4.15 shows various correlation values that are
significant; however, recall that the hypothesis of the study are the following:

• H0: ρ = 0 → There is no correlation between documentation quality and
internal quality of open source software.

• H1: ρ 6= 0 → There is a correlation between documentation quality and inter-
nal quality of open source software.

35

4. Results

Therefore, in order to determine if the null hypothesis is rejected or failed to
be rejected, it is necessary to examine the correlation coefficient for the correlation
between documentation quality and CBO Average and its significance.

Results of Hypothesis Testing
The correlation coefficient between documentation quality and CBO Average is 0.552
with a p-value of 0.022. Therefore, this results indicate that the null hypothesis can
be reject. Rejecting the null hypothesis indicates that there is evidence to suggest
there is a correlation between documentation quality and CBO Average. Since the
correlation coefficient is 0.552 such correlation is positive.

36

5
Discussions

The data presented in the Results section answered questions associated to internal
quality of software over time, the relation between the CK metrics, the frequency
that documentation is updated, documentation content, and documentation quality.
Recall that the purpose of this research is to study the relation between documen-
tation quality and internal quality of software. However, before identifying this
relation, if any, it is essential to study the factors of software internal quality and
documentation quality separately. Therefore, the purpose of this section is to dis-
cuss the results of studying internal software quality, documentation content, and
documentation quality.

5.1 Internal Quality of Software Over time

The results presented in RQ 1 - Part 3 suggested that software tends to have an
increasing behavior of LOC over time. That is, for each new release, software tends
to increase in size (measured in LOC). Additionally, the results for RQ 1 - Part
1, 2, 3 suggest that there is a strong positive correlation between the CK metrics
and LOC. Both results are important because they suggest that it is natural for CK
metrics to increase as the size of the system increases. Since more classes and rela-
tions are introduced as software increases, it is expected that coupling, complexity,
and other metrics will increase as well. But by how much? In other words, if the
software increases by 1000 LOC by how much does each CK metrics increases? The
answer to such question depends on other factors such as the quality of architecture
design. For example, introducing 1000 new LOC containing a bad architectural
design may produce a much higher value of CK metrics than introducing 1000 new
LOC containing a good architectural design. Therefore, although the strong positive
correlation between LOC and CK metrics exists, the analysis does not explain how
much of the LOC effect plays a role in the internal quality of software.

Besides suggesting a correlation between CK metrics and LOC, the results
obtained also demonstrate a correlation between the metrics. In other words, the
magnitude and direction of change in each metric from one release to another were
similar. However, the idea of a correlation between LOC and CBO is not new. Bakar
et al.[30] presented results also suggesting a strong positive correlation between those
two factors.

37

5. Discussions

5.2 Documentation Updates and Content

As expressed by De Souza et al. [17] documentation is an artifact that plays an im-
portant role in development and maintenance of software. However, it is an artifact
that is often either missing or out-of-date. As mentioned before, from all projects
analyzed, only one lacked documentation. Most documentation was expressed as
textual rather than graphical and they were not updated frequently. Moreover, most
of the textual documentation was not architecture related. Instead, it was related
to installation or configuration of the system. Since the evolution of documentation
was not explored in this study, it is no possible to make any conclusions regarding
how up-to-date was the documentation with respect to each release. Based on ex-
isting knowledge and the frequency that documentation was updated, it would not
be surprising if at certain stages of development the documentation was outdated
with respect to the source code.

Most of the graphical documentation was expressed as UML diagrams. Such
diagrams were presented mostly as .xmi, .uml, or .png formats. This result is consis-
tent with the results obtained by Hebig et al.[31] in which they reported that from
all the UML diagrams they explored, 44.9% were expressed as .uml, 29.9% as .png,
and 3.4% as .xmi. Keeping documentation up-to-date is not an easy task and it
can become more tedious and time consuming if not done appropriately. Providing
a UML diagram as image file without providing the source used for generating it,
creates difficulties at the moment of modification. Instead of having to modify an
existing diagram, developers would have to create a new one for each modification.
For models generated manually, projects should not only contain the model as an
image but also the source file used for generating such image. Providing the source
file used for generating UML diagrams accelerates the modification process and
makes the task less time consuming and tedious. Additionally, developers should in-
tegrate tools that automatically generate documentation so that the documentation
is updated with the updates in the source code.

Our results indicated that the most commonly used type of diagrams were
class diagrams followed by sequence diagrams. These results are consistent with
the finding of Dobing at al.[21] which also mentioned that class diagrams and se-
quence diagrams are among the top three types of diagrams developers use. Not all
class diagrams contained detailed information but all sequence diagrams did contain
detailed information.

Regarding textual documentation, it was surprising that a large number of
projects did not contain SAD documentation. For the project who did have SAD
documentation, the process of understanding models and the overall architecture
of the system was faster. The success of an open source software project depends
on how large the community of contributors is [24]. There are many factors that
affect how attractive an open source software is and the ability to easily modify
the system is one of those. The lack of SAD documentation may create difficulties
for new contributors to understand the parts of the system and thus successfully
contribute to the project.

38

5. Discussions

5.3 Documentation Quality
As specified in the Results section, the average quality of UML documentation was
77.5 out of 100, which could be considered high. Moreover, the average quality
of SAD documentation was 69.4 out of 100, which can also be considered high.
However, when exploring the average quality of overall documentation, the results
was 45 out of 100, which is low; how is it possible? The reason is that when
calculating the average quality of UML documentation, only the projects with UML
were taken into account; i.e., fourteen projects. The same process was taken when
calculating average quality of SAD documentation; i.e., four projects. However,
when calculating the average quality of overall documentation, both scores were
added and every single project was taken into account. As a result of a high number
of projects lacking SAD documentation, the overall documentation quality of each
project resulted in a low value.

When analyzing models for attributes such as Level of Detail, Understandabil-
ity, and Layout Quality, the scoring scale was from 1 to 3. On the other hand, the
scoring scale for Reverse Engineering was 0 to 1 and projects who used automation
for generating UML diagrams received a value of 1. The reason for rewarding au-
tomatically generated models is based on the research by Forward et al.[10]. The
results obtained in such study indicate that software professional value technologies
that enable automation of documentation because it aids in documentation mainte-
nance. However, on average, UML diagrams were generated manually. One reason
for the lack-of-use of tools that automate documentation creation and update could
be the lack of reliable tools for automating such process. If it is the case that there
is a lack of tools that automate the creation and maintenance of documentation,
then it means that there is an area for developers and researchers to explore. That
is, the creation of tools that automate documentation creation and maintenance.

5.4 Correlation Analysis

Recall that Figure 2.1, shown above, displays the various factors that affect the
development process and have an influence on the internal quality of the resulting

39

5. Discussions

software. Since CBO is the only CK metrics taken into account in the correlation
analysis, the results of such analysis suggest that from all the factors shown in Fig-
ure 2.1, documentation size and system size have the strongest positive correlation
with the average CBO of the system.

A strong positive correlation between documentation size and average CBO
indicates that as one variable increases, so does the other one. Although the cor-
relation analysis does not provide any indication of causation, there are possible
explanations for this pattern. One explanation is that as the size and complexity
increases, so does the coupling; therefore, developers increase the amount of doc-
umentation with the expectation that it would help them during the maintenance
phase or training newcomers. Small and non-complex systems may not require as
much documentation as a system with more complexity and larger size. Another
way of interpreting such results is that increasing the documentation of a system
produces an increase in average CBO. However, it is unlikely that just adding more
documentation files increases average CBO because the quality of the documentation
and its content do play a role in the resulting value of average CBO.

The role of documentation quality in influencing average CBO is supported by
the results indicating a strong positive correlation between documentation quality
and average CBO. Just as before, this result can be interpreted that as the aver-
age CBO of a system increases, developers tend to create documentation of higher
quality. A reason for this phenomenon is that the complexity of a system can be
better expressed and understood if high-quality and well-written documentation is
available. The opposite scenario is unlikely because just increasing the quality of a
documentation file, without changing the overall architecture, does not lead to an
effect on internal quality of a system.

It is natural that as the size of a system increases, more modules are created,
and thus, more dependencies tend to emerge between the modules. Therefore, it
was no surprise to observe results indicating a strong positive correlation between
system size and average CBO. Additionally, such correlation emerged regardless if
system size was expressed in terms of LOC or number of modules. Bakar et al. [30]
obtained similar results indicating a correlation between system size and coupling.
One way of interpreting such results is that as the size of the system increases, so
does the average CBO of the system. As mentioned before, this is a likely scenario
due to the natural tendency of an increase in coupling as the system size increases.

This result is a call-to-action to motivate developers to create architectures
that better handle dependencies between modules. Well-architectured systems are
imperative in order to avoid a rapid increase in average CBO as the size increases.

40

6
Limitations

The success of this study depends not only the method, process, and techniques used
to solve the research questions but only depends on being aware of the limitation
of such methods, processes, and techniques used. The purpose of this section is to
present the limitations encountered in this study, the effect they could have on the
study, and the approach taken to address them.

6.1 Tool Limitations
Although Analizo is a powerful and useful tool for calculating internal quality metrics
of software, such tool has certain limitations that constrained the study. Those
limitations, and the way each influenced the study are the following:

1. Only source code written in C, C++, or Java could be analyzed: As
a result of this limitation, the population of projects that could be analyzed
was reduced.

2. Analysis time could last many hours: In the worst case scenario, Analizo
could take up to ten hours to finish calculating the metrics for a single project.
Some factors that affected calculation time include the number of releases that
needed to be analyzed and the size of each release. The latter having the most
impact. As a result of this limitation as well as the time constraint for finalizing
this study, it was not possible to analyze more projects.

3. Analizo was unable to analyze every C, C++, or Java project: In
many occasions, Analizo would abruptly stop calculating metrics as a result
of faults in its source code. In the best case scenario, the abrupt stop would
occur early in the calculation process. In the worst case scenario, it would
stop calculating after many hours of analysis. Both cases, and especially the
latter, resulted in wasted time. As a result of this limitation, a significant
amount of time was wasted during the stage of calculating the internal quality
metrics; thus, affecting the total number of projects analyzed in the study.
Whenever Analizo was unable to analyze a given project then such project
was disregarded from the analysis and another was taken.

4. Tool Reliability: Since the results of the study are based on the metrics
Analizo generated, it means the validity of the results presented in this study
depend to some extent on Analizo’s reliability.

As a result of the limitations from Analizo, in many cases, projects to be
analyzed were conveniently selected. That is, in many cases, a given project was not

41

6. Limitations

necessarily randomly selected; instead, it was selected because it worked for Analizo.
The result of conveniently selecting projects may have introduced selection bias into
the study.

6.2 Sample Limitations

As mentioned in the Methods section, the set of projects analyzed in this study
is a subset of the set of projects generated by Hebig et al. in their study [31].
Although this approach facilitated the process of selecting projects for this study, it
also limited the randomness of the sample. The reasons for the lack of randomness
are the following:

1. The set of projects by Hebig et al. only considered open source software from
GitHub platform; nevertheless, GitHub is not the only platform with open
source software.

2. The set of projects by Hebig at al. was the result of studying a percentage of
all GitHub projects. However, it is not clear how randomly selected were the
projects in the percentage they analyzed.

Finally, the sample size of the study is small compared to the population size.
Therefore, it is not clear how generalizable are the results of this study.

6.3 Method Limitations

Recall that the method used for identifying documentation files was based on ana-
lyzing the message of commits. Although this method served its purpose, it is not
the most effective way of identifying documentation because it generated many false
positive. That is, the algorithm considered files to be documentation-related when
in fact they were not. Although researchers tried their best to identify and filter out
the false positives, it is possible that a number of them were not identified.

The opposite problem is also true for the method used. That is, if the commit
message did not contain the keywords of interest it is possible that documentation
files were not considered. Correcting this problem is harder since it would involve
manually checking every files associated with every commit.

There is extensive research suggesting metrics for measuring internal quality
of software. However, not all of those metrics have been validated empirically or
theoretically. Given the extensive research supporting the validity of CK metrics [1],
[3], [9], [14], the authors of this study decided that using them was the best available
method for measuring internal quality of software. After analyzing the results, it was
concluded that the CK metrics, specifically CBO, was a good indicator of coupling
level in the system.

If the study would have been designed using other metrics, then it is possible
that other results regarding internal quality would have been obtained.

42

6. Limitations

6.4 Documentation Analysis
When grading overall documentation quality only UML models quality and SAD
documentation quality was taken into consideration. Although this provided a good
understanding of documentation quality, it might not have been enough for grad-
ing documentation quality. The reason being that many projects consider source
code comments as documentation. Therefore, since source code comments were not
analyzed, it is possible that certain project could have had a higher overall docu-
mentation quality score if their source code comments would have been considered
in the analysis.

Recall that a set of attributes were taken into consideration when measuring the
quality of SAD documents and UML models. Although such measures are not bad
for measuring quality, it is not clear or proven that they are sufficient for measuring
the quality of SAD documents and models, respectively. If it is the case that the
selected attributes are not sufficient for measuring quality, then it means that we
are providing a partial representation of documentation quality.

Finally, the process of measuring quality was a subjective process based on
the opinion and experience of the researchers. As a results, other researchers could
generate different quality scores for the same documentation.

43

6. Limitations

44

7
Conclusion

The development and growth of open source software depend on the voluntary con-
tribution of developers. Therefore, it is important to ensure that open source soft-
ware has a certain level of internal quality to attract more contributors. Factors
such as system size, system complexity, documentation size, documentation quality,
programmers skills, and programmer experience affect the development process; and
thus, have an effect on the internal quality of software. Understanding the effect
that those factors have on the development process is the first step towards the
improvement of the internal quality of software.

The purpose of this study is to explore the correlation between documentation
quality and internal quality of software. To accomplish such goal, other aspects of
software development were explored such as: how the internal quality of software
changed over time, how frequently documentation is updated, the type of documen-
tation found in projects, and the quality of documentation.

In this study, the Chidamber & Kemerer (CK) metrics were used to measure
the internal quality of 17 software projects. However, focus was given to the met-
ric Coupling between Objects or CBO. Additionally, Analizo was the tool used for
calculating all the CK metrics. Moreover, to normalize the results obtained from
Analizo, a metric called CBO Average was used. This metric resulted from dividing
CBO Sum by the total number of modules in the system. Finally, a Spearman’s
correlation analysis was performed to find the correlation coefficient between the
variables of interest.

The results of this study suggest there is a positive correlation between docu-
mentation quality and CBO Average. Additionally, documentation size and system
size also have a positive correlation with CBO Average. The results of this study
also indicate that it is not typical for projects to include SAD files as part of their
documentation, UML class diagrams and sequence diagrams are the most common
type of UML diagrams used, all the CK metrics tend to have a similar direction of
change from one release to another, and the UML diagrams provided tend to have
high quality.

For practitioners, the results show the importance of keeping the source code
as slim as possible. In other words, not adding unnecessary modules or duplicated
code. As shown in the results, as the size of the system increases, so does CBO
Average. It also demonstrates to them that writing more and better documentation
is a natural, and in many cases necessary, processes as the size and complexity of the
system increases. On the other hand to researchers, the results open opportunity
for future work. As the results demonstrate, there is no perfect correlation between
the variables, therefore, there are other factors that take place in the correlation

45

7. Conclusion

analysis. Uncovering those factors as well as the influence they play is critical to
further understand what affects internal quality of software and how to improve it.

In summary, as the size and complexity of the project increases so does the
amount of documentation written and its quality. Possible explanations of this
phenomenon is that the increase in size and complexity of the system motivates
developers to write more and better documentation.

In order to ensure the validity of this study, it was essential to identify the
limitations that could negatively affect the results. Some limitations encountered
in this study include the small sample size analyzed, the reliability of Analizo tool,
the accuracy of the algorithm used for detecting documentation files, and high-
subjectivity of the method used for grading documentation quality.

7.0.1 Future Work
Although the research questions of this study were answered, there are other ques-
tions and possible directions that could be explored as a result of this study.

One direction for future work is to collect more data in order to study a larger
sample and investigate if the results obtained in this study remain consistent with
a larger sample. Additionally, the data obtain could be analyzed using a Bayesian
data analysis and investigate if the results obtained from such analysis are consistent
with the results obtained in this study.

An alternative direction is to further explore the results obtain and solve unan-
swered questions such as what is the role that developer’s experience and skills have
on the internal quality of software? What are the reasons for projects not including
as much SAD documentation as other types of documentation? What are the cor-
relation between documentation quality, documentation size, and system size and
the other CK metrics?

Finally, the result of the Spearman’s analysis done in this study provides in-
formation about correlation and not causation. Therefore, in order to better under-
stand the correlations obtained, a future area of work is to study their causation.

46

Bibliography

[1] W. Li and S. Henry, “Object-oriented metrics that predict maintainability”,
Journal of systems and software, vol. 23, no. 2, pp. 111–122, 1993.

[2] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object Oriented
Design”, IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476–
493, 1994, issn: 00985589. doi: 10.1109/32.295895. arXiv: 1011.1669.

[3] V. R. Basili, W. L. Melo, and L. C. Briand, “A validation of object-oriented
design metrics as qualityindicators”, IEEE Transactions on Software Engi-
neering, vol. 22, no. 10, pp. 751–761, 1996, issn: 0098-5589. doi: 10.1109/
32.544352. [Online]. Available: http://ieeexplore.ieee.org/search/
wrapper.jsp?arnumber=544352.

[4] F. Brito e Abreu and W. Melo, “Evaluating the impact of object-oriented de-
sign on software quality”, Proceedings of the 3rd International Software Metrics
Symposium, pp. 90–99, 1996. doi: 10.1109/METRIC.1996.492446. [Online].
Available: http://ieeexplore.ieee.org/document/492446/.

[5] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target [special
issues section]”, IEEE software, vol. 13, no. 1, pp. 12–21, 1996.

[6] P. Nesi and T. Querci, “Effort estimation and prediction of object-oriented
systems”, Journal of Systems and Software, vol. 42, no. 1, pp. 89–102, 1998,
issn: 01641212. doi: 10.1016/S0164-1212(97)10021-8. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0164121297100218.

[7] J. Bansiya and C. Davis, “A Hierarchical Model for Object-Oriented Design
Quality Assessment”, IEEE Transactions on Software Engineering, vol. 28,
no. 1, pp. 4–17, 2002.

[8] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment of UML
based software models”, Proceedings of the third international workshop on
Software and performance - WOSP ’02, p. 302, 2002. doi: 10.1145/584369.
584415. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
584369.584415.

[9] K. El-Emam, “Object-oriented metrics: A review of theory and practice”, in
Advances in software engineering, Springer, 2002, pp. 23–50.

[10] A. Forward and T. C. Lethbridge, “The relevance of software documentation,
tools and technologies: a survey”, DocEng 02 Proceedings of the 2002 ACM
symposium on Document engineering, pp. 26–33, 2002. doi: 10.1145/585058.
585065. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
585058.585065.

[11] S. H. Kan,Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc., 2002.

47

https://doi.org/10.1109/32.295895
http://arxiv.org/abs/1011.1669
https://doi.org/10.1109/32.544352
https://doi.org/10.1109/32.544352
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=544352
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=544352
https://doi.org/10.1109/METRIC.1996.492446
http://ieeexplore.ieee.org/document/492446/
https://doi.org/10.1016/S0164-1212(97)10021-8
http://linkinghub.elsevier.com/retrieve/pii/S0164121297100218
https://doi.org/10.1145/584369.584415
https://doi.org/10.1145/584369.584415
http://portal.acm.org/citation.cfm?doid=584369.584415
http://portal.acm.org/citation.cfm?doid=584369.584415
https://doi.org/10.1145/585058.585065
https://doi.org/10.1145/585058.585065
http://portal.acm.org/citation.cfm?doid=585058.585065
http://portal.acm.org/citation.cfm?doid=585058.585065

Bibliography

[12] M. Genero, M. Piattini, E. Manso, G. Cantone, I. C. Society, and S. Ieee
Computer, “Building UML class diagram maintainability prediction models
based on early metrics”, Ninth International Software Metrics Symposium,
Proceedings, pp. 263–275, 2003, issn: 1530-1435. doi: 10.1109/METRIC.2003.
1232473.

[13] T. C. Lethbridge, J. Singer, A. Forward, and D. Consulting, “How Software En-
gineeUse Documentation : The State of the Practice Documentation :” IEEE
Computer Society, pp. 35–39, 2003.

[14] R. Subramanyam and M. S. Krishnan, “Empirical analysis of CK metrics for
object-oriented design complexity: Implications for software defects”, IEEE
Transactions on Software Engineering, vol. 29, no. 4, pp. 297–310, 2003, issn:
00985589. doi: 10.1109/TSE.2003.1191795.

[15] S. Tilley and S. Huang, “A Qualitative Assessment of the Efficacy of UML Dia-
grams as a Form of Graphical Documentation in Aiding Program Understand-
ing”, Proceedings of the 21st annual international conference on Documenta-
tion - SIGDOC ’03, p. 184, 2003. doi: 10.1145/944905.944908. [Online].
Available: http://portal.acm.org/citation.cfm?doid=944868.944908.

[16] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein, D. Utley, P. A. Far-
rington, and G. W. Cox, “A comparison of cohesion metrics for object-oriented
systems”, Information and Software Technology, vol. 46, no. 10, pp. 677–687,
2004, issn: 09505849. doi: 10.1016/j.infsof.2003.12.002.

[17] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the docu-
mentation essential to software maintenance”, Proceedings of the 23rd annual
international conference on Design of communication documenting & design-
ing for pervasive information - SIGDOC ’05, p. 68, 2005. doi: 10 . 1145 /
1085313.1085331. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1085313.1085331.

[18] L. Yu, S. R. Schach, and K. Chen, “Measuring the maintainability of open-
source software”, 2005 International Symposium on Empirical Software Engi-
neering, ISESE 2005, vol. 00, no. c, pp. 297–303, 2005. doi: 10.1109/ISESE.
2005.1541838.

[19] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact of UML
documentation on software maintenance: An experimental evaluation”, IEEE
Transactions on Software Engineering, vol. 32, no. 6, pp. 365–381, 2006, issn:
00985589. doi: 10.1109/TSE.2006.59.

[20] J. Bitzer and P. J. H. Schröder, “The economics of open source software de-
velopment: An introduction”, The Economics of Open Source Software Devel-
opment, pp. 1–13, 2006. doi: 10.1016/B978-044452769-1/50001-9.

[21] B. Dobing and J. Parsons, “How UML Is used”, vol. 49, no. 5, pp. 109–114,
2006.

[22] R. A. Ghosh, “Study on the Economic impact of open source software on
innovation and the competitiveness of the Information and Communication
Technologies (ICT) sector in the EU Draft final report Subcontractors : Draft
final report”, p. 4, 2006. [Online]. Available: http://stuermer.ch/blog/
documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/

48

https://doi.org/10.1109/METRIC.2003.1232473
https://doi.org/10.1109/METRIC.2003.1232473
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1145/944905.944908
http://portal.acm.org/citation.cfm?doid=944868.944908
https://doi.org/10.1016/j.infsof.2003.12.002
https://doi.org/10.1145/1085313.1085331
https://doi.org/10.1145/1085313.1085331
http://portal.acm.org/citation.cfm?doid=1085313.1085331
http://portal.acm.org/citation.cfm?doid=1085313.1085331
https://doi.org/10.1109/ISESE.2005.1541838
https://doi.org/10.1109/ISESE.2005.1541838
https://doi.org/10.1109/TSE.2006.59
https://doi.org/10.1016/B978-044452769-1/50001-9
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector

Bibliography

digital-single-market/en/news/call-tender-economic-impact-open-
source-software-innovation-and-competitiveness-ict-sector.

[23] A. MacCormack, J. Rusnak, and C. Baldwin, “Exploring the Structure of
Complex Software Designs: An Empirical Study of Open Source and Pro-
prietary Code”, Management Science, vol. 52, no. 7, pp. 1015–1030, 2006,
issn: 0025-1909. doi: 10.1287/mnsc.1060.0552. [Online]. Available: http:
//dx.doi.org/10.1287/mnsc.1060.0552.

[24] M. Aberdour, “Achieving quality in open source software”, IEEE software,
no. September, pp. 58–64, 2007, issn: 18727727. doi: 10.1016/j.ejrad.
2010.05.004. [Online]. Available: http://www.computer.org/portal/web/
csdl/doi/10.1109/MS.2007.2.

[25] M. Cherubini, G. Venolia, R. Deline, and A. J. Ko, “Let ’ s Go to the White-
board: How and Why Software Developers Use Drawings”, CHI 2007 Proceed-
ings, pp. 557–566, 2007, issn: 10629432. doi: 10.1145/1240624.1240714.

[26] C. Lange, Assessing and Improving the Quality of Modeling: a Series of Em-
pirical Studies about the {UML}. 2007, isbn: 9789038611075. doi: 10.6100/
IR629604.

[27] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software metrics tools”,
Proceedings of the 2008 international symposium on Software testing and anal-
ysis - ISSTA ’08, p. 131, 2008. doi: 10.1145/1390630.1390648. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1390630.1390648.

[28] A. Nugroho and M. R. Chaudron, “A survey into the rigor of UML use and
its perceived impact on quality and productivity”, Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering and
measurement - ESEM ’08, p. 90, 2008. doi: 10.1145/1414004.1414020.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1414004.
1414020.

[29] A. Terceiro, J. Costa, and J. Miranda, “Analizo: an extensible multi-language
source code analysis and visualization toolkit”, Brazilian Conference on Soft-
ware: Theory and Practice (CBSoft)–Tools, pp. 1–6, 2010. [Online]. Avail-
able: http://www.researchgate.net/publication/228414689%7B%5C_
%7DAnalizo % 7B % 5C _ %7Dan % 7B % 5C _ %7DExtensible % 7B % 5C _ %7DMulti -
Language % 7B % 5C _ %7DSource % 7B % 5C _ %7DCode % 7B % 5C _ %7DAnalysis %
7B % 5C _ %7Dand % 7B % 5C _ %7DVisualization % 7B % 5C _ %7DToolkit / file /
72e7e52569416d51d8.pdf.

[30] N. S. A. A. Bakar and N. Arsat, “Investigating the factors that influence the
quality of open source systems”, Information and Communication Technology
for The Muslim World (ICT4M), 2014 The 5th International Conference on,
pp. 1–6, 2014. doi: 10.1109/ICT4M.2014.7020589.

[31] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A. Fer-
nandez, “The quest for open source projects that use UML”, Proceedings of
the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems - MODELS ’16, pp. 173–183, 2016. doi: 10.1145/
2976767.2976778. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2976767.2976778.

49

http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
http://stuermer.ch/blog/documents/FLOSSImpactOnEU.pdf%7B%5C%%7D5Cnhttps://ec.europa.eu/digital-single-market/en/news/call-tender-economic-impact-open-source-software-innovation-and-competitiveness-ict-sector
https://doi.org/10.1287/mnsc.1060.0552
http://dx.doi.org/10.1287/mnsc.1060.0552
http://dx.doi.org/10.1287/mnsc.1060.0552
https://doi.org/10.1016/j.ejrad.2010.05.004
https://doi.org/10.1016/j.ejrad.2010.05.004
http://www.computer.org/portal/web/csdl/doi/10.1109/MS.2007.2
http://www.computer.org/portal/web/csdl/doi/10.1109/MS.2007.2
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.6100/IR629604
https://doi.org/10.6100/IR629604
https://doi.org/10.1145/1390630.1390648
http://portal.acm.org/citation.cfm?doid=1390630.1390648
https://doi.org/10.1145/1414004.1414020
http://portal.acm.org/citation.cfm?doid=1414004.1414020
http://portal.acm.org/citation.cfm?doid=1414004.1414020
http://www.researchgate.net/publication/228414689%7B%5C_%7DAnalizo%7B%5C_%7Dan%7B%5C_%7DExtensible%7B%5C_%7DMulti-Language%7B%5C_%7DSource%7B%5C_%7DCode%7B%5C_%7DAnalysis%7B%5C_%7Dand%7B%5C_%7DVisualization%7B%5C_%7DToolkit/file/72e7e52569416d51d8.pdf
http://www.researchgate.net/publication/228414689%7B%5C_%7DAnalizo%7B%5C_%7Dan%7B%5C_%7DExtensible%7B%5C_%7DMulti-Language%7B%5C_%7DSource%7B%5C_%7DCode%7B%5C_%7DAnalysis%7B%5C_%7Dand%7B%5C_%7DVisualization%7B%5C_%7DToolkit/file/72e7e52569416d51d8.pdf
http://www.researchgate.net/publication/228414689%7B%5C_%7DAnalizo%7B%5C_%7Dan%7B%5C_%7DExtensible%7B%5C_%7DMulti-Language%7B%5C_%7DSource%7B%5C_%7DCode%7B%5C_%7DAnalysis%7B%5C_%7Dand%7B%5C_%7DVisualization%7B%5C_%7DToolkit/file/72e7e52569416d51d8.pdf
http://www.researchgate.net/publication/228414689%7B%5C_%7DAnalizo%7B%5C_%7Dan%7B%5C_%7DExtensible%7B%5C_%7DMulti-Language%7B%5C_%7DSource%7B%5C_%7DCode%7B%5C_%7DAnalysis%7B%5C_%7Dand%7B%5C_%7DVisualization%7B%5C_%7DToolkit/file/72e7e52569416d51d8.pdf
http://www.researchgate.net/publication/228414689%7B%5C_%7DAnalizo%7B%5C_%7Dan%7B%5C_%7DExtensible%7B%5C_%7DMulti-Language%7B%5C_%7DSource%7B%5C_%7DCode%7B%5C_%7DAnalysis%7B%5C_%7Dand%7B%5C_%7DVisualization%7B%5C_%7DToolkit/file/72e7e52569416d51d8.pdf
https://doi.org/10.1109/ICT4M.2014.7020589
https://doi.org/10.1145/2976767.2976778
https://doi.org/10.1145/2976767.2976778
http://dl.acm.org/citation.cfm?doid=2976767.2976778
http://dl.acm.org/citation.cfm?doid=2976767.2976778

Bibliography

50

A
Types of File Extensions

The following table provides a list of file extensions and the category such files belong
to. It is important to mention that this is not an exhaustive list of possible exten-
sions. Additionally, it is possible that certain extensions fall into multiple categories.

Source Code Text Documentation Graphical Documentation
.java .rst .puml
.c .md .png
.cpp .me .uml
.h .txt .svg
.sql .doc .umlcd
.html .docx .eps
.xml .odt .uxf
.dist .docbook .jpg
.service .zargo
.css .xmi
.sh .nomnoml
.xhtml .pdf

I

A. Types of File Extensions

II

B
Guidelines for Measuring
Documentation Quality

The purpose of this appendix is to describe the guidelines for measuring quality of
graphical and textual documentation. The guidelines are based on experience of
the researchers of this study. It is not a standard way of measuring documentation
quality.

B.1 Measuring Quality of Textual Documentation

Attributes Scoring System Description
Understandability High(3), Medium(2), Low(1) A measure of how easy it is to under-

stand the content of the documenta-
tion.

Correspondence
to models

High(3), Medium(2), Low(1) A measure of the degree to which the
explanation and model provided relate
to each other.1

Level of Detail High(3), Medium(2), Low(1) A measure of how much information
the document provides.

B.2 Measuring Quality of UML Models

Attributes Scoring System Description
Level of Detail High(3), Medium(2), Low(1) A measure of how much information a

diagram provides.
Understandability High(3), Medium(2), Low(1) A measure of how easy it is to under-

stand the content of the diagram.
Layout High(3), Medium(2), Low(1) A measure of how well organized the

parts of the diagram are.
Reversed Engineered Yes(1), No(0) Was the diagram built manually or gen-

erated automatically?

1In all projects it was possible to trace textual to graphical documentation.

III

B. Guidelines for Measuring Documentation Quality

B.3 Calculating Total Quality
The scoring system shown above is based on points. Therefore, a score of High
represents 3 points, Medium represents 2 points, and Low 1 point. In the case of
the Reverse Engineered attribute, a value of yes represents 1 point and 0 otherwise.
It was decided to use this three-point scale system because it makes it easier to
evaluate. A scale with greater granularity (a scale from 1 to 10, for example) would
have made the grading more complicated.

To calculate the total quality of textual documentation, the score for each at-
tribute was added up. Therefore, the maximum quality score textual documentation
could obtain was 9, while 3 is the lowest value. The same approach was taken to
calculate the total quality score of graphical documentation. However, the maxi-
mum score that graphical documentation could obtain was 10, while 3 is the lowest
value. Finally, to calculate the total quality score of documentation, the overall
quality score of textual and graphical documentation were added. Therefore, the
maximum quality score the documentation of a project could obtain was 19, while
6 is the smallest value.

Since the quality scale for textual and graphical documentation differ, to com-
pare quality between them, the following normalization was done:

• If the total score for textual documentation of a project was 5 out of 9 then
5 was divided by 9 and multiplied by 100% giving a result of 56%. The same
procedure was done with the quality score of graphical documentation. The
result is that both are on the same scale based on 100 and it was possible to
make comparisons as needed.

IV

C
Change in CK Metrics for Each

Project

V

CK Metric for each Project
Legend

Each of the graphs below illustrates how the value of a given CK metric changes from one release to another. To put the CK metrics into perspective, each graph also contains the change in LOC from one release to another.

a958861e

Average Δ CBO = 5.5 Average Δ DIT = 2.0 Average Δ RFC = 93.75 Average Δ LCOM4 = 39.5 Average Δ SC = 12.75 All CK Metric of the project plotted in a single graph.

9c699c33

Average Δ CBO = 106.64 Average Δ DIT = 25.36 Average Δ RFC = 1172.44 Average Δ LCOM4 = 233.76 Average Δ SC = 2099.52 All CK Metric of the project plotted in a single graph.

1fa7e454

Average Δ CBO = 4.27 Average Δ DIT = 4.7 Average Δ RFC = 56.82 Average Δ LCOM4 = 10.57 Average Δ SC = 9.43 All CK Metric of the project plotted in a single graph.

b50b5a5f

Average Δ CBO = 69.08 Average Δ DIT = 24.85 Average Δ RFC = 1044.51 Average Δ LCOM4 = 45.49 Average Δ SC = 241.1 All CK Metric of the project plotted in a single graph.

b8419a88

C. Change in CK Metrics for Each Project

VI

Average Δ CBO = 30.27 Average Δ DIT = 5.73 Average Δ RFC = 338.27 Average Δ LCOM4 = 17.27 Average Δ SC = 42.18 All CK Metric of the project plotted in a single graph.

9cd7e19b

Average Δ CBO = 10.91 Average Δ DIT = 4.91 Average Δ RFC = 127.45 Average Δ LCOM4 = 37.0 Average Δ SC = 15.91 All CK Metric of the project plotted in a single graph.

7f90d484

Average Δ CBO = 165.0 Average Δ DIT = 41.53 Average Δ RFC = 1589.79 Average Δ LCOM4 = 146.63 Average Δ SC = 635.63 All CK Metric of the project plotted in a single graph.

6a43bae4

Average Δ CBO = 9.42 Average Δ DIT = 4.19 Average Δ RFC = 90.58 Average Δ LCOM4 = 27.54 Average Δ SC = 38.04 All CK Metric of the project plotted in a single graph.

000199d7

C. Change in CK Metrics for Each Project

VII

Average Δ CBO = 143.92 Average Δ DIT = 14.67 Average Δ RFC = 1764.83 Average Δ LCOM4 = 243.33 Average Δ SC = 1062.08 All CK Metric of the project plotted in a single graph.

3cb5f97e

Average Δ CBO = 9.0 Average Δ DIT = 5.17 Average Δ RFC = 118.06 Average Δ LCOM4 = 24.56 Average Δ SC = 48.56 All CK Metric of the project plotted in a single graph.

31ce9276

Average Δ CBO = 25.78 Average Δ DIT = 27.89 Average Δ RFC = 377.33 Average Δ LCOM4 = 56.0 Average Δ SC = 62.56 All CK Metric of the project plotted in a single graph.

300ef577

Average Δ CBO = 61.75 Average Δ DIT = 45.08 Average Δ RFC = 825.58 Average Δ LCOM4 = 184.17 Average Δ SC = 317.83 All CK Metric of the project plotted in a single graph.

4f582a30

C. Change in CK Metrics for Each Project

VIII

Average Δ CBO = 57.0 Average Δ DIT = 9.12 Average Δ RFC = 552.5 Average Δ LCOM4 = 58.29 Average Δ SC = 236.08 All CK Metric of the project plotted in a single graph.

41c9999f

Average Δ CBO = 8.48 Average Δ DIT = 2.56 Average Δ RFC = 111.52 Average Δ LCOM4 = 16.2 Average Δ SC = 21.96 All CK Metric of the project plotted in a single graph.

02e83ccb

Average Δ CBO = 47.07 Average Δ DIT = 21.64 Average Δ RFC = 553.21 Average Δ LCOM4 = 83.18 Average Δ SC = 284.89 All CK Metric of the project plotted in a single graph.

7753c60f

Average Δ CBO = 16.16 Average Δ DIT = 6.23 Average Δ RFC = 296.87 Average Δ LCOM4 = 37.26 Average Δ SC = 63.35 All CK Metric of the project plotted in a single graph.

24dd418f

C. Change in CK Metrics for Each Project

IX

Average Δ CBO = 11.0 Average Δ DIT = 6.12 Average Δ RFC = 193.0 Average Δ LCOM4 = 21.5 Average Δ SC = 22.12 All CK Metric of the project plotted in a single graph.

C. Change in CK Metrics for Each Project

X

D
CBO Based Analysis for Each

Project

XI

CBO Based Analysis

Legend

Graph A

Illustrates the CBO value for each release.

Graph B

Illustrates the LOC value for each release.

Graph C

Illustrates the CBO and LOC value for each release.

Graph D

Illustrates the CBO/LOC value for each release.

a958861e

Graph A Graph B Graph C Graph D

9c699c33

Graph A Graph B Graph C Graph D

1fa7e454 Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XII

b50b5a5f

Graph A Graph B Graph C Graph D

b8419a88 Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XIII

9cd7e19b

Graph A Graph B Graph C Graph D

7f90d484 Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XIV

6a43bae4

Graph A Graph B Graph C Graph D

000199d7 Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XV

3cb5f97e

Graph A Graph B Graph C Graph D

31ce9276 Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XVI

300ef577

Graph A Graph B Graph C Graph D

4f582a30 Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XVII

41c9999f

Graph A Graph B Graph C Graph D

02e83ccb Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XVIII

7753c60f

Graph A Graph B Graph C Graph D

24dd418f Graph A Graph B Graph C Graph D

D. CBO Based Analysis for Each Project

XIX

D. CBO Based Analysis for Each Project

XX

E
Documentation Distribution

XXI

File Analysis
Legend

Graph A

Illustrates the total number of documentation commits in the given project and the total number of unique files associated to those commits.

Graph B

Illustrates the distributions of the unique files in each category. For example, if Graph A indicated there are 10 unique files, then Graph B illustrates how many of those 10 files are of type Source Code, Text Documentation,
and Graphical Documentation.

Graph C

Illustrates the average frequency that each documentation file type is updated.

a958861e

Graph A Graph B Graph C

9c699c33 Graph A Graph B Graph C

E. Documentation Distribution

XXII

1fa7e454

Graph A Graph B Graph C

b50b5a5f Graph A Graph B Graph C

E. Documentation Distribution

XXIII

b8419a88

Graph A Graph B Graph C

9cd7e19b Graph A Graph B Graph C

E. Documentation Distribution

XXIV

7f90d484

Graph A Graph B Graph C

6a43bae4 Graph A Graph B Graph C

E. Documentation Distribution

XXV

000199d7

Graph A Graph B Graph C

3cb5f97e Graph A Graph B Graph C

E. Documentation Distribution

XXVI

31ce9276

Graph A Graph B Graph C

300ef577 Graph A Graph B Graph C

E. Documentation Distribution

XXVII

4f582a30

Graph A Graph B Graph C

41c9999f Graph A Graph B Graph C

E. Documentation Distribution

XXVIII

02e83ccb

Graph A Graph B Graph C

7753c60f Graph A Graph B Graph C

E. Documentation Distribution

XXIX

24dd418f

Graph A Graph B Graph C

E. Documentation Distribution

XXX

Project ID Total Doc
Commits

Total
Files

Total Model
Doc Files

Total SC
Files

Total Text
Doc Files

Avg Model
File

Modification

Avg Text
File

Modification
a958861e 4 20 0 17 3 0.000 2.000
9c699c33 172 557 29 416 112 2.483 3.188
1fa7e454 70 45 4 40 1 25.500 1.000
b50b5a5f 244 561 50 370 141 1.200 2.191
b8419a88 51 95 55 36 4 1.800 1.250
9cd7e19b 6 17 4 12 1 1.250 1.000
7f90d484 26 58 5 39 14 1.000 1.429
27847def 16 253 16 218 19 1.688 2.158
6a43bae4 74 242 4 232 6 8.250 8.667
000199d7 169 712 13 661 38 1.000 1.632
3cb5f97e 21 64 1 55 8 6.000 2.750
31ce9276 27 35 4 24 7 2.750 3.286
300ef577 35 211 10 211 0 0.000 0.000
4f582a30 16 253 16 218 19 1.688 2.158
41c9999f 24 54 6 45 3 2.833 2.333
02e83ccb 49 101 4 93 4 2.250 9.250
7753c60f 7 66 0 55 11 0.000 1.000
24dd418f 46 54 11 4 39 4.182 1.872

E. Documentation Distribution

XXXI

E. Documentation Distribution

XXXII

F
Classification of Graphical

Documentation

XXXIII

Distribution of Models
Legend

Graph A

The column Total Graphs illustrates the total number of graphs available in the given project. From the total number of graphs available, the columns Graphs as UML and Graphs as Non-
UML indicate how many are UML and non-UML, respectively.

Graph B

UML diagrams can be provided in a graphical file such as png or jpg or as source code such as .uml. Therefore, from the total number of graphs that were UML, the column Total UML as
Text and Total UML as Image indicate how many of those UML models were provided as text or image file, respectively.

1fa7e454

Graph A Graph B

b50b5a5f Graph A Graph B

F. Classification of Graphical Documentation

XXXIV

7753c60f Graph A Graph B

F. Classification of Graphical Documentation

XXXV

02e83ccb

Graph A Graph B

6a43bae4 Graph A Graph B

F. Classification of Graphical Documentation

XXXVI

9c699c33 Graph A Graph B

F. Classification of Graphical Documentation

XXXVII

41c9999f

Graph A Graph B

4f582a30 Graph A Graph B

F. Classification of Graphical Documentation

XXXVIII

7f90d484 Graph A Graph B

F. Classification of Graphical Documentation

XXXIX

3cb5f97e

Graph A Graph B

000199d7 Graph A Graph B

F. Classification of Graphical Documentation

XL

300ef577 Graph A Graph B

F. Classification of Graphical Documentation

XLI

b8419a88

Graph A Graph B

9cd7e19b Graph A Graph B

F. Classification of Graphical Documentation

XLII

31ce9276 Graph A Graph B

F. Classification of Graphical Documentation

XLIII

24dd418f

Graph A Graph B

a958861e Graph A Graph B

F. Classification of Graphical Documentation

XLIV

F. Classification of Graphical Documentation

XLV

F. Classification of Graphical Documentation

XLVI

G
Classification of Textual

Documentation

XLVII

Classification of Textual Documentation
Legend

Each project has a certain number of documentation files, whose content contains is mainly in textual format. In many cases, such documentation could be associated to the architecture or
design of the system. In our study, any file whose purpose is to explain the architecture or design of a system is called a SAD file. Therefore, from the total number of textual documentation
files available in each project, the graph below illustrates how many are SAD file and how many are not.

1fa7e454

b50b5a5f

G. Classification of Textual Documentation

XLVIII

7753c60f

G. Classification of Textual Documentation

XLIX

02e83ccb

6a43bae4

G. Classification of Textual Documentation

L

9c699c33

41c9999f

G. Classification of Textual Documentation

LI

4f582a30

7f90d484

G. Classification of Textual Documentation

LII

3cb5f97e

000199d7

G. Classification of Textual Documentation

LIII

300ef577

b8419a88

G. Classification of Textual Documentation

LIV

9cd7e19b

31ce9276

G. Classification of Textual Documentation

LV

24dd418f

a958861e

G. Classification of Textual Documentation

LVI

G. Classification of Textual Documentation

LVII

G. Classification of Textual Documentation

LVIII

H
Documentation Quality

LIX

Documentation Quality
Legend

For each parameter a maximum score of 3 and a minimum of 0 can be obtained. A score of zero indicates that no UML model or documentation was provided. Note that the maximum score for the parameter Reverse Engineered is 1.

Quality of UML Documentation

This graph demonstrate the score for each parameter taken into account when grading model documentation.

Quality of SAD Documentation

This graph demonstrate the score for each parameter taken into account when grading SAD documentation.

Overall Documentation Quality

The overall documentation quality is a sum for the total score obtained for UML documentation quality and SAD documentation quality.

1fa7e454

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

7 of 19

b50b5a5f Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

14 of 19

H. Documentation Quality

LX

7753c60f

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

0 of 19

02e83ccb Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXI

7 of 19

6a43bae4

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

9 of 19

9c699c33 Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXII

16 of 19

41c9999f

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

7 of 19

4f582a30 Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXIII

10 of 19

7f90d484

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

8 of 19

3cb5f97e Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXIV

5 of 19

000199d7

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

0 of 19

300ef577 Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXV

7 of 19

b8419a88

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

9 of 19

9cd7e19b Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXVI

1 of 19

31ce9276

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

5 of 19

24dd418f Quality of UML Documentation Quality of SAD Documentation Overall Documentation Quality

H. Documentation Quality

LXVII

15 of 19

a958861e

Quality of UML Documentation Quality of SAD Documentation

Overall Documentation Quality

0 of 19

H. Documentation Quality

LXVIII

Documentation Quality

Total UML
Models

Level of
Details Understandability Layout

Quality
Reversed

Engineered Total Total SAD
Files

Level of
Detail

Correspondance
to models Understandability Total

1fa7e454 4 3 1 2 1 7 0 0 0 0 0 7
b50b5a5f 38 2 2 3 0 7 16 2 2 3 7 14
7753c60f 0 0 0 0 0 0 0 0 0 0 0 0
02e83ccb 4 1 3 3 0 7 0 0 0 0 0 7
6a43bae4 4 3 3 3 0 9 0 0 0 0 0 9
9c699c33 28 3 3 3 0 9 2 3 1 3 7 16
41c9999f 6 3 1 3 0 7 0 0 0 0 0 7
4f582a30 6 3 3 3 1 10 0 0 0 0 0 10
7f90d484 4 2 3 3 0 8 0 0 0 0 0 8
3cb5f97e 1 -1 -1 -1 -1 1 1 1 1 2 4 5
000199d7 0 0 0 0 0 0 0 0 0 0 0 0
300ef577 10 1 3 3 0 7 0 0 0 0 0 7
b8419a88 55 3 3 3 0 9 0 0 0 0 0 9
9cd7e19b 2 -1 -1 -1 -1 1 0 0 0 0 0 1
31ce9276 3 1 1 3 0 5 0 0 0 0 0 5
24dd418f 10 2 3 3 0 8 2 2 2 3 7 15
a958861e 0 0 0 0 0 0 0 0 0 0 0 0

Full Total Score
Models Quality SAD Quality

Project ID

Note: Value of -1 means that it was not possible to open the files associated to the models. The
project was assigned a score of 1 for at least containing model documentation.

H. Documentation Quality

LXIX

H. Documentation Quality

LXX

I
Input for Correlation Analysis

LXXI

Doc to SC
Commit

ratio

Num of Doc
Files

Num of
Source

Code Files

Total Doc
Quality cbo_new total_loc total_modules

0.014 3 271 0 0.367 4695 60
0.016 141 1584 16 2.930 119418 910
0.041 5 527 7 0.862 6461 218
0.035 191 1467 14 4.677 157798 576
0.043 59 132 9 2.707 6050 123
0.054 5 145 1 1.250 4708 96
0.009 19 1120 8 4.577 77478 685
0.060 10 192 9 1.801 7586 136
0.026 51 1242 0 2.324 111924 743
0.035 9 247 5 0.964 9613 168
0.021 11 229 5 1.311 7633 177
0.016 10 2406 7 1.007 49509 736
0.063 35 376 10 2.677 40912 511
0.041 9 328 7 1.309 8440 162
0.023 8 505 7 2.056 70926 641
0.005 11 1650 0 1.869 26074 268
0.017 50 81 15 1.333 3974 66

I. Input for Correlation Analysis

LXXII

J
Normality Plot and Box Plot

LXXIII

Visual Statistics - Part 1
Legend

Box Plot

The purpose of this plot is to visualize determine if the data contains outliers.

QQ Plot

The purpose of this plot is to determine if the data is normally distributed.

Doc to SC Commit ratio

Box Plot
QQ Plot

Shapiro-Wilk Test Result:

p value = 0.36070355772972107

Num of Doc Files Box Plot QQ Plot

J. Normality Plot and Box Plot

LXXIV

Shapiro-Wilk Test Result:

p value = 3.733437552000396e-05

Num of Source Code Files

Box Plot
QQ Plot

Shapiro-Wilk Test Result:

p value = 0.005176657810807228

Total Doc Quality Box Plot QQ Plot

J. Normality Plot and Box Plot

LXXV

Shapiro-Wilk Test Result:

p value = 0.19283972680568695

cbo_new

Box Plot
QQ Plot

Shapiro-Wilk Test Result:

p value = 0.045170482248067856

total_loc Box Plot QQ Plot

J. Normality Plot and Box Plot

LXXVI

Shapiro-Wilk Test Result:

p value = 0.0013221652479842305

total_modules

Box Plot
QQ Plot

Shapiro-Wilk Test Result:

p value = 0.013696896843612194

J. Normality Plot and Box Plot

LXXVII

J. Normality Plot and Box Plot

LXXVIII

K
Correlation Graphs

LXXIX

Visual Statistics - Part 2
Legend

Correlation Graph

This graphs demonstrate the correlation between the specified items.

Doc to SC Commit ratio VS Num of Doc Files

Correlation Graph

Levene's Test Result:

p value = 0.023076464440033712

Doc to SC Commit ratio VS Num of Source Code Files Correlation Graph

Levene's Test Result:

p value = 0.0007855210352787814

K. Correlation Graphs

LXXX

Doc to SC Commit ratio VS Total Doc Quality

Correlation Graph

Levene's Test Result:

p value = 5.092157165761991e-05

Doc to SC Commit ratio VS cbo new

Correlation Graph

Levene's Test Result:

p value = 7.421011362270388e-05

Doc to SC Commit ratio VS total loc Correlation Graph

K. Correlation Graphs

LXXXI

Levene's Test Result:

p value = 0.0033832325657260605

Doc to SC Commit ratio VS total modules

Correlation Graph

Levene's Test Result:

p value = 6.395780245332088e-05

Num of Doc Files VS Num of Source Code Files Correlation Graph

K. Correlation Graphs

LXXXII

Levene's Test Result:

p value = 0.0014366826039991139

Num of Doc Files VS Total Doc Quality

Correlation Graph

Levene's Test Result:

p value = 0.045461287322201976

Num of Doc Files VS cbo new Correlation Graph

K. Correlation Graphs

LXXXIII

Levene's Test Result:

p value = 0.027256471333664337

Num of Doc Files VS total loc

Correlation Graph

Levene's Test Result:

p value = 0.0034063334328217646

Num of Doc Files VS total modules Correlation Graph

K. Correlation Graphs

LXXXIV

Levene's Test Result:

p value = 0.000427337989557598

Num of Source Code Files VS Total Doc Quality

Correlation Graph

Levene's Test Result:

p value = 0.0008444297804990731

Num of Source Code Files VS cbo new Correlation Graph

K. Correlation Graphs

LXXXV

Levene's Test Result:

p value = 0.0007993573228403206

Num of Source Code Files VS total loc

Correlation Graph

Levene's Test Result:

p value = 0.003820541750951273

Num of Source Code Files VS total modules Correlation Graph

K. Correlation Graphs

LXXXVI

Levene's Test Result:

p value = 0.06944789898886793

Total Doc Quality VS cbo new

Correlation Graph

Levene's Test Result:

p value = 0.0016336538928209414

Total Doc Quality VS total loc Correlation Graph

K. Correlation Graphs

LXXXVII

Levene's Test Result:

p value = 0.0033861345167250177

Total Doc Quality VS total modules

Correlation Graph

Levene's Test Result:

p value = 7.851129349475941e-05

cbo new VS total loc Correlation Graph

K. Correlation Graphs

LXXXVIII

Levene's Test Result:

p value = 0.0033839336258097057

cbo new VS total modules

Correlation Graph

Levene's Test Result:

p value = 6.719115216211891e-05

total loc VS total modules Correlation Graph

K. Correlation Graphs

LXXXIX

Levene's Test Result:

p value = 0.003577334088154543

K. Correlation Graphs

XC

L
Project Description

The following table provides the name and description of each Github project used
in this study.

Project ID Project Name Description
1fa7e454 Qabel/qabel-core Qabel is a free, published-source

cryptography platform.
b50b5a5f gammalib/gammalib The GammaLib is a versatile

toolbox for the high-level analysis
of astronomical gamma-ray data.

7753c60f aegif/NemakiWare NemakiWare is an open source
Enterprise Content Management
system.

02e83ccb adiknoth/ffado The FFADO project aims to pro-
vide a free driver implemenation
for FireWire (IEEE1394, iLink)
based audio interfaces.

6a43bae4 FamilySearch/gedcomx An open data model and an open
serialization format for exchang-
ing the genealogical data essential
to the genealogical research pro-
cess.

9c699c33 IQSS/dataverse Dataverse is an open source web
application for sharing, citing, an-
alyzing, and preserving research
data developed by the Data Sci-
ence and Products team at the
Institute for Quantitative Social
Science and the Dataverse com-
munity.

41c9999f AMOSTeam3/amos-ss15-proj3 This product maps changes to
source code files with require-
ments.

XCI

L. Project Description

4f582a30 animatedb/oovaide An object oriented analysis and
integrated development platform
that automatically generates
build, class, sequence, zone, por-
tion, and component diagrams
for C++, Objective C, and Java
languages.

7f90d484 GluuFederation/oxAuth OxAuth is an open source
OpenID Connect Provider (OP)
and UMA Authorization Server
(AS).

3cb5f97e KDE/wacomtablet Wacomtablet implements a GUI
for the Wacom Linux Drivers and
extends it with profile support to
handle different button / pen lay-
outs per profile.

000199d7 fspindle/visp Visp is a cross-platform library
(Linux, Windows, Mac) that al-
lows prototyping and developing
applications using visual tracking
and visual servoing technics at
the heart of the researches done
by Inria Lagadic team.

300ef577 apache/clerezza Apache Clerezza is a set of Java li-
braries for management of seman-
tically linked data.

b8419a88 Hjdskes/2048 Class project for course Software
Engineering Methods.

9cd7e19b joherma1/sia SIA is an open Agricultural Infor-
mation System.

31ce9276 apache/commons-rdf Commons RDF aims to provide
a common library for RDF 1.1
with implementations for com-
mon Java RDF frameworks like
RDF4J, Apache Jena as well
as for other libraries such as
OWLAPI, Clerezza and other
JVM languages.

24dd418f abjugard/DAT255-EpiClock Group09’s project repository for
course DAT255 at Chalmers In-
stitute of Technology, faculty of
Information Technology.

XCII

L. Project Description

a958861e jpmorganchase/perspective A streaming data visualization
engine for Javascript, Perspective
makes it simple to build real-time
and user configurable analytics
entirely in the browser.

XCIII

L. Project Description

XCIV

M
Correlation Strength

The result of a correlation analysis between variables X and Y is a correlation
coefficient that indicates the magnitude and direction of the correlation between
X and Y. The magnitude of a correlation coefficient ranges from -1 to 1, which
represent the largest strength of correlation. In this study, the following scale was
used for interpreting the strength of the correlation coefficients 1.

Strength of Association Positive Negative
Small 0.1 to 0.3 -0.1 to -0.3
Medium 0.3 to 0.5 -0.3 to -0.5
Large 0.5 to 1.0 -0.5 to -1.0

Table M.1: Strength Scale

It is important to mention Table M.1 is one of many possible scales that could
be used for interpreting the strength of a correlation coefficient magnitude. There
is no special reason for using this scale other than is a scale commonly proposed.

1https://statistics.laerd.com/statistical-guides/pearson-correlation-
coefficient-statistical-guide.php

XCV

 https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
 https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php

	Introduction
	Software Documentation
	Unified Modeling Language

	Software Quality
	Measuring Quality

	Problem Statement
	Thesis Structure

	Literature Review
	Software Documentation
	UML Diagrams

	Internal Quality of Open Source Software
	Thesis Contribution

	Methods
	Hypothesis, Research Questions, & Objectives
	Collecting the Data
	Selection Criteria
	Downloaded Meta-Data
	Data Collection Method
	Collecting Meta-Data of Selected Projects
	Identifying Documentation Files

	Analyzing the Data
	Source Code Analysis
	Internal Quality Metrics
	Calculating Internal Quality Over time

	Documentation Analysis
	Quantity of Documentation and Update Frequency
	Documentation Content and Quality

	Answer Questions & Test Hypothesis
	Selecting Type of Correlation Analysis

	Results
	RQ 1: Internal Quality of Software Over Time
	RQ 2: Frequency of Documentation Update
	RQ 3: Documentation Quality
	RQ 4: Documentation Content
	Main RQ: Correlation Analysis
	Correlation Analysis Results

	Results of Hypothesis Testing

	Discussions
	Internal Quality of Software Over time
	Documentation Updates and Content
	Documentation Quality
	Correlation Analysis

	Limitations
	Tool Limitations
	Sample Limitations
	Method Limitations
	Documentation Analysis

	Conclusion
	Future Work

	Types of File Extensions
	Guidelines for Measuring Documentation Quality
	Measuring Quality of Textual Documentation
	Measuring Quality of UML Models
	Calculating Total Quality

	Change in CK Metrics for Each Project
	CBO Based Analysis for Each Project
	Documentation Distribution
	Classification of Graphical Documentation
	Classification of Textual Documentation
	Documentation Quality
	Input for Correlation Analysis
	Normality Plot and Box Plot
	Correlation Graphs
	Project Description
	Correlation Strength

