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Abstract 

Inner Source is a rather new concept and introducing it to companies involves some challenges. In this 

thesis, we investigate the challenges and obstacles of adopting Inner Source in a large IT company.  

The results are then analyzed and summarized. 

In addition, the company owns many products and needs to decide which products are suitable for 

inner sourcing purpose.  The criteria for selection of the products are investigated and the results are 

compared to the results of the previous studies. 

In the final stage, we investigate a framework for adoption of Inner Source tailored to the needs of the 

company and compared the results to other available frameworks.  
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1. Introduction 

Open-source software (OSS) is software with its source code which is available with a license that 

allows everyone to download, use and change the software [4]. The source code is not hidden from 

users and they are considered as beta testers. Today there are many successful examples of OSS 

available such as Linux, Apache server, Mozilla, etc. It is reported that adopting open source software 

resulted in saving of 60 billion dollars per year [27]. Besides, adopting OSS has many benefits including 

low cost, increased quality, involvement of skilled developers from all around the world which means 

more people are monitoring the project, learning from the community, etc. On the other hand, it 

involves many challenges such as documentation, support and maintenance, integration, migration, 

etc. [28].  

Applying Open Source Software development practices and tools within a company is called Inner 

Source [18]. The resulting product in Inner Source is proprietary unlike open source which comes with 

open source license [38]. 

Inner sourcing is becoming more and more popular. Gaughan et al. [42] explains that the motivations 

for adopting this approach is the possibility to get support from distributed developers and increase of 

software reuse and quality as a result of increased software availability and transparency. In addition, 

everyone in the organization is invited to participate either as developer or contributor which could 

lead to innovation and increased awareness plus increased speed of development. However, like open 

source software development, it is not a straightforward approach. It has many effects on the 

organization. It affects the way projects are sourced and managed. In addition, the adoption model 

must match the organization goals and scope. It also affects the operational aspects such as how 

developers across the company can access and modify the source code [42]. Therefore, companies 

need to study it carefully before deciding to go for it.  

 Statement of the problem 

The study is conducted in a large company working with software development and also a large IT 

service provider. The company benefits from several open source software available and as inner-

sourcing is becoming more and more popular, the company would like to investigate the possibility of 

adopting inner-sourcing within the company. There are many motivations behind this. One is that 

many software products are developed in different organizations but due to the large size of the 

company, it is impossible to know whether a required tool or library has ever been created by another 

team or not and therefore there is a high chance that different departments reinvent the wheel many 

times which is in fact very costly for the company. Another problem is that sometimes projects are 

being paused or delayed due to lack of resources or knowledge within a department. Outsourcing is 

not the preferred option as it is costly. Having the possibility to involve developers and experts from 

other teams will eliminate this problem. Furthermore, several other benefits mentioned in the studies 

on companies which use Inner Source motivated the company to investigate the Inner Source adoption 

possibility. 

However, unlike Scrum which is a methodology with certain guidelines and roles, inner-sourcing is not 

a methodology and is a set of practices that needs to be customized to the needs of each organization 

[17]. It must suit the context and structure of the organization. There are lots of questions that need 

to be answered. First, we need to understand the state of the art in inner sourcing and how Inner 
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Source could be implemented and what are the problems and challenges that lies ahead in order to 

address them properly. The purpose of this study is to find the answers to these questions.  

From the research perspective, little study has been done on how organizations should implement 

Inner Source or assess their possibility of adopting Inner Source and each of those studies are limited 

in one or more ways. Furthermore, several successful Inner Source implementations have been 

reported but little investigation has been done on the obstacles and challenges practitioners encounter 

for ISS adoption [17].  

 Research Questions 

• RQ1:  What are the obstacles and challenges of adopting Inner Source? 

Open source development practices are different from traditional software development practices 

used by companies. In addition, inner-sourcing involves engagement of different people from different 

teams [16]. This new way of working might introduce new challenges. We are going to investigate the 

challenges for adopting Inner Source by the company. 

• RQ2:  Which software components/products are best candidate for inner-sourcing? 

Not all packages are a good choice for inner-sourcing. We need to identify which ones are more 

suitable for inner-sourcing through identifying the criteria that helps companies pick the right 

candidate. The findings of this section help practitioners specify the requirements for the Inner Source 

product. 

• RQ3:  How can the company adopt Inner Source? 

The company uses traditional software development methods, but inner-sourcing is a new philosophy 

and requires a different approach. New ways of working, tools and practices, quality assurance, 

management of the product, communication and collaboration with the community are subjects to 

think about when opting to go for Inner Source. Furthermore, the models of adoption of Inner Source 

vary from organization to organization and needs to be tailored to suit the needs of each organization 

[16]. We investigate the practices and methods suggested by the professionals in the company and 

compare the results to the available frameworks proposed by other studies. In addition, we would like 

to see whether it is possible to address the challenges found in RQ1 using the framework.  

 Aims and objectives 

The main purpose of this master thesis is to investigate the possibility of adopting inner-source within 

the company. This, thus, implies:    

• Understanding state of the art of Inner Source.  

• Identifying the main challenges and obstacles for adopting Inner Source 

• Reviewing and studying products and the processes being used inside the company in order to 

identify the best candidates for inner sourcing. 

• Suggesting a guideline to implement Inner Source at the company 

 Scope 

The scope of this study are major software development divisions in the company.  Software 

development is carried out in different locations including Bangalore-India, Wroclaw-Poland and 
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Gothenburg-Sweden. Major development tracks are Java, .Net, JavaScript and mobile application (IOS 

and Android). The interviewees were selected from the above-mentioned development teams.  

The focus of this study is Inner Source and Open source is not covered. In addition, the focus is only on 

internal products and customer products are excluded since different regulations and procedures are 

applicable to them. 

 Definitions, acronyms and abbreviations 

• OSS: Open source software 

• OSSL: Open source software license 

• OSI: Open source initiative 

• ISS: Inner Source software 

• POS: Progressive open source 

 Main contributions 

Most of the existing literatures on Inner Source are case studies which discuss the benefits Inner Source 

has brought to organizations. Little work has been done on investigating the related challenges in the 

actual use context. In addition, there are few studies which provide a general framework for Inner 

Source implementation and validate their findings. 

The main contributions of this thesis to identify the challenges companies face for adopting Inner 

Source and introduce a framework which helps organizations overcome the challenges. Identifying the 

criteria for selecting the inners source product is another contribution of this thesis. Areas that require 

further research are also identified. 

 Structure of the thesis 

➢ Section 1: Introduction to the subject. Problem statement and research questions are 

presented here. 

➢ Section 2:   Background and related work. Previous studies related to our research questions 

are investigated. Our purpose is to find out if previous work done in this field can be used for 

current study and if we could benefit from successful experiments and help us find answer to 

our questions. 

➢ Section 3:   Research methodology and data collection methods are described.  

➢ Section 4:  Study results. We focus on the case study results and the process followed in the 

company.  

➢ Section 5:   Discussion and analysis of the results of the theoretical and empirical research.  

➢ Results of the theoretical and empirical research are compared  

➢ Section 6:  Conclusion is used to discuss the most important results and evaluation of the 

method and process used in this study. It also provides implications for further research.  

➢ Section 7:   References 

➢ Section 8:   Appendixes 
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2. Background and related work 

 Open Source 

 As software systems grew in complexity, traditional development methods became inefficient. As a 

result, lots of efforts have been put into developing new methods and techniques to design and 

implement software systems and numerous methods were proposed: from the traditional waterfall 

technique, Iteration model, V-shaped model, Spiral model, Extreme model to recently developed and 

highly popular agile methods [2].  

These methods aim to provide a structured and systematic approach to develop software and lower 

the costs by making the development processes lighter weight, faster, nimbler and more reliable [3]. 

While there have been lots of debates as which process is the best and lots of research have been 

carried out to compare these techniques and bring to light their different aspects, the emergence of a 

phenomenon called “Open Source Software Development” and its achievements and successes has 

been astonishing. 

“Open Source Software (OSS) is software distributed with a license allowing access to its source code, 

free redistribution, the creation of derived works and unrestricted use.” [4] This means there is no 

limitation and restriction in using the software or its source code as long as the criteria listed in the 

license are met. One might only use the software like other closed source software while another might 

review the code out of curiosity or to fix a bug. A developer or an organization might further develop 

the source code to meet their needs, etc. Open source software licenses “OSSL”, vary from one to 

another but they all have some criteria in common which are the fundamentals of OSSL. “The source 

must be available for redistribution without restriction and without charge, and the license must 

permit the creation of modifications and derivative works and must allow those derivatives to be 

redistributed under the same terms as the original work [7]. The most important purpose of licensing 

in this type of software is to deny anyone the right to exclusively exploit them which is exactly the 

opposite of what it is in other types of software [5].  

Today, OSS development method is receiving more and more attentions and poses a very genuine 

challenge to commercial software business and the organizations producing them [6]. Many 

companies have switched from traditional development methods trying to win back market share, 

increase product growth and improve market penetration [8]. There are also lots of successful and 

well-known projects and products being produced using OSS development method such as Linux, 

UBUNTU, BSD, MySQL, Apache, Firefox, WordPress, BIND, Perl, SendMail, etc. (For more detailed 

information about these products, see Appendix 1).  

2.1.1. Benefits of OSS development  

It has been claimed that OSS development creates opportunities for a system to be developed much 

more quickly [6][8][10]. There are usually many developers all around the world who are willing to 

collaborate on open source projects which enables the products to be developed much faster than the 

products produced using other methods. 

Creativity is another success factor that plays a very important role in OSS development. It has been 

reported that open source projects boost the creativity and most likely will result in chart topping 

products that increases the market share and business revenue [6][7][10].  
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It is also claimed that open source products are recognized for their high level of quality including 

reliability, efficiency and robustness [12]. Fewer number of defects compared to other products as a 

result of the peer reviews by a large number of talented developers which leads to the defects to be 

detected and fixed more rapidly [6] [12] [13].  

  Inner Source  

The astonishing success of OSS projects has been an inspiration to companies to benefit from open 

source development principles internally [16]. The process of adopting OSS development inside a 

company is called Inner Source [17]. Stol et al. defines Inner Source as follows: “The leveraging of Open 

Source Software development practices within the confines of a corporate environment”. As such, it 

refers to the process of developing software at an organization that has adopted OSS development 

practices.” The main difference between these two practices is that in Inner Source, the source code 

is only accessible inside the organizations boundaries as opposed to OSS development which provides 

access to the source code globally [18].  

2.2.1. Benefits of Inner Source 

Since inheriting most of the characteristics from OSS development, the benefits of adopting Inner 

Source inside a company are quite similar to those of OSS projects. The reasons for adopting Inner 

Source might vary from one company to another. However, some of the most important motivations 

behind inner sourcing are discussed in this section. 

• Improve in code reuse: having all the projects shared in an internal repository gives everyone 

inside the organization the opportunity to reuse the work done by others and prevent 

unnecessary rework which is obviously a waste of time and resources [19].  

• Improved quality: having the contributions being peer reviewed by a bigger community of 

developers results in the defects to be detected and fixed more efficiently. This might also 

result in contributors to write good codes due to the contributor’s reputation being under 

scrutiny at organizations level [16] [20].  

• Quick developer redeployment: since developers are familiar with the projects shared on the 

Inner Source repository as well as infrastructures and common tools inside the organization, 

they can more easily and quickly be reassigned to other projects which subsequently result in 

time to market and project start up time to be reduced significantly [16] [21].  

• Increased awareness: an open environment inside an organization increase awareness 

between different departments involved in the projects from development, to maintenance, 

support and management which improves the efficiency end prevents duplicate works [16] 

[22] [23].  

• Larger developers pool: open collaboration inside a company results in a larger number of 

developers which broadens innovation and increases the overall expertise level [16] [20] [23] 

[25].  

• Increased development speed: collaboration between development teams might result in an 

increase in overall efficiency and development speed as a single team may not have enough 

capacity to implement all the requirements in time [16] [21] [25].  
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 Inner Source challenges 

Previous case studies reported several challenges faced by practitioners. In this section, we point out 

some of them: 

Morgan et al. identified a list of challenges associated with inner sourcing networks as shown in Table 

1. [24] 

 

Table 1- Inner Source challenges (Morgan et al. [24]) 

Stol et al. [52] identified thirteen challenges of adopting Inner Source and compared them to the 

challenges of open source adoption. The challenges were divided to four categories: 

➢ Documentation 

➢ Community support and maintenance 

➢ Integration and architecture 

➢ Migration and usage [52] 

 

The complete list is displayed in Table 2.  

 

Table 2-Inner Source challenges by Stol et al. [52] 
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Dinkelacker et al. investigated the organizational and infrastructure challenges of implementing 

Progressive Open Source (POS) at HP. [21] 

Gurbani et al. briefly points out some challenges of inner sourcing. He mentions tool compatibility 

issues and conflicts in building strategies of groups as the challenges they faced at Alcatel Lucent. [49] 

Malin et al. [48] found similar organizational challenges in their study on building networks of software 

communities in large corporations which investigates POS at HP. According to the above studies, 

organization challenges include:  

• Virtual Organization 

Most companies have a hierarchical organization structure. Virtual organizations are people who work 

beyond constraints and organizational boundaries and it is a challenge to incorporate that into time 

critical business market which each division and manager has their own roadmaps. 

• Leadership 

In Inner Source, leader is the main owner of the shared asset which many other products are 

dependent on it. The company faces a big challenge if the leader decides to leave the company and no 

proper replacement is found. 

• Task assignment 

In open source people pick up tasks voluntarily and according to their skillset and the resources are 

huge number of developers who are willing to participate from around the world. This is not the case 

for companies as resources are limited to its employees. In addition, manager of one department 

cannot assign tasks to employees of other departments [21] [48].  

 Inner Source product 

Identifying the suitable product for inner sourcing is a very important part of the process.  To achieve 

this, first the criteria for product needs to be specified and then based on those criteria appropriate 

products can be selected. 

Not many studies have focused on this topic, but a few share their learned lessons from the case 

studies carried out in different companies. One of them is Stol et al. reported the results of three case 

studies done in three large organizations including Philips Healthcare, Neopost and Rolls-Royce. They 

suggest that the start point should be a seed product that has a significant business value to the 

company.  The product should be an existing one which is runnable. The reason is that starting an Inner 

Source project from scratch and expecting to find contributors is quite difficult [50]. Raymond states 

that one cannot code from scratch in bazaar style. It is possible to debug, test and enhance the code 

but originating a project from scratch and expecting to attract developers is quite hard since 

developers need to have something to play with [11]. Wesselius claims that the seed product must 

have clear specifications so that it can be outsourced to other development teams [25]. Senyard and 

Michlmayr claim that the initial phase known as “Cathedral” phase must be implemented by a small 

group. This could act as a base for further development in the Bazar Style [1]. 

On the other hand, Gurbani et al. hypothesis was that lacking a seed product, research or technology 

is a very good start point [49] [17].  
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In addition, Stol et al. suggest the product should have a modular architecture. Basically, modularity is 

a desired aspect for software but it of high importance when it comes to Inner Source because it 

enables developers to work on different modules simultaneously [17].  

 Inner Source implementation 

Inner Source is derived from open source which is based on the principle of meritocracy [53]. 

Meritocracy is a general term for the following more specific principles of open source:  

• Egalitarian:  

Projects are open on the internet for anyone who would like to contribute.   

• Meritocratic: 

Contributions are not evaluated by people’s experience or roles in the organization but by how good 

they are. Decisions are discussed publicly and can be looked up for reference.  

• Self-organizing: 

Community is self-organizing and there is no imposed process which determines how people should 

work in a project. 

 

These principles contrast with how most companies manage their software development processes as 

stated below: 

• Assigned jobs: 

Tasks are assigned from higher managers and they decide who should work on what project and 

software. Volunteer contribution is uncommon.  

• Status rather than merit: 

The status of people in the organization hierarchy determines who has the final word in making final 

design and implementation decisions.  

• Imposed processes: 

The processes and tools to be used in software development is pre-defined and it must be followed by 

all projects [54]. 

2.5.1. Adoption models 

According to Feller and Fitzgerald there is no single Open Source software development process, and 

just many open source projects which keep reoccurring [39]. Although OSS projects follow different 

practices, all share a common philosophy [40]. This raise the question what adopting OSS means for a 

company when there is no commonly accepted definition of Inner Source [18].  

Gaughan et al. studied seven cases of Inner Source adoption and found that each case was a ‘unique’ 

implementation of Inner Source [18][42].   

However, Stol et al. conducted a literature review and identified a few common practices in Inner 

Source such as distributed development [43], open development practices such as peer-review [25] 



9 
 

[42], availability of the source code and the possibility of contribution by anyone inside the company 

[21][18].  

Two implementation models of Inner Source are suggested by Gurbani et al. [44]:  

➢ Infrastructure-based Inner Source model 

➢ Project-based Inner Source model  

 Infrastructure based Inner Source model 

In this model, the company provides the required infrastructure such as tools, mailing lists and code 

repositories and developers use them to host their software development projects [18][44]. This 

model was applied by SAP [45] and also at Nokia as ‘‘iSource’’ initiative [46]. It was also applied at HP 

in the Progressive Open source initiative [21].  

Sharing of software is increased using this model but reuse remains ad-hoc. Furthermore, support is 

optional and very much dependent on the individual project [17].  

 Project-based Inner Source model 

In this model a division which is called core team takes care of the common code known as shared 

assets and handles the inner sourcing activities such as making the code available to other units and 

handling the support and maintenance of it. This model was applied at Alcatel Lucent [44] and Philips 

healthcare [25]. Reuse in this model is the main goal and is planned. Support of the shared asset is the 

responsibility of the core team. 

 Differences between Infrastructure based and Project-based Inner Source model 

A summary of the main differences between the two models are displayed in Table 3. 

 

Table 3-Differences between Infrastructure based and Project-based Inner Source [18][52] 

2.5.2. Available frameworks for Inner Source  

Many researchers published guidelines and lessons learnt from adoption of OSS practices in different 

companies [17][21][49][50]. In this section, the proposed frameworks are briefly described. 
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 Sharma et al.  

Sharma et al. proposed a framework for creating hybrid-OSS communities in the companies as shown 

in Figure 1. The framework consists of three major elements:  community building, community 

governance and community infrastructure. [55] 

 

Figure 1-Sharma et. al framework [55] 

  



11 
 

Each category is divided into subcategories which are described briefly in Table 4. 

 

Table 4- Sharma et. al framework sub categories [55] 

 Torkar et al. 

The following recommendations are made by Torkar et al. [56] as Inner Source adoption opportunities: 

• Reduce technical debt 

• Define an entry path for newcomers 

• Increase information availability and visibility 

• Embrace asynchronous tools for communication and decision making  

• Let developers influence ways of working 

• Allow task selection   [56] 
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 Stol et al.  

Stol et al. performed a comprehensive literature review of the available frameworks for inner sourcing. 

They claimed that other frameworks focus on few aspects of Inner Source adoption therefore they 

proposed a new framework according to Table 5 which comprised of 19 factors divided to 4 main 

categories to assess the organization compatibility for inner sourcing [52].   

 

Table 5- Stol et al. framework [52] 

In a later study Stol et al. [17] updated the framework. They identified 9 key factors for adopting Inner 

Source and divided them into three categories as shown in Figure 2. 
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➢ Software product   

➢ Practices and tool   

➢ Organization and community 

 

Figure 2- Key factors for adopting Inner Source [17] 
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3. Research methodology  

Generally, there are two types of research; Quantitative and Qualitative. Lichtman describes 

quantitative researches as gathering numerical data in order to examine and test hypothesis [29].  

While gathering statistical data and examining trends are very useful, they don’t tell the whole story. 

Questions such as what caused such improvements or deteriorations, how did they happen or why 

they happened remain unanswered. These types of questions can only be answered by data obtained 

during careful observations [29]. This results in a type of studies called qualitative research which is 

gathering qualitative data such as open-ended responses, interviews, participant observations, field 

notes or points of views in order to understand and interpret social interactions [30] [31]. 

The major differences between these two approaches are as follows: 

• Qualitative research uses open-ended questions which are more flexible and gives the 

participants the freedom to elaborate their responses compared to fixed and non-flexible 

questions of quantitative method that usually uses a structured and fixed set of questions and 

predefined choices like “yes” or “no” or something similar [32].  

• Qualitative research collects textual data that is obtained from video or audio tapes or 

personal notes while quantitative research collects numerical data that is obtained by 

assigning numerical values to the responses [32].  

• the objective of qualitative research is to obtain detailed understanding of reasons and 

motivations to find answers to questions such as “what”, “why”, “how” and also the underlying 

information about the processes compared to quantitative research where the objective is to 

quantify a research problem by answering questions such as “how much” and “how often” and 

then to generalize it to a larger population [33].  

• Quantitative research needs large number of respondents to achieve valid findings and the 

ability for generalization while qualitative research only investigates a small number of 

participants [33].  

• Qualitative and quantitative methods use different data collection techniques and analyze 

them differently. Quantitative research usually uses surveys or questionnaires and the results 

will be presented in form of statistical trends and patterns while qualitative research uses 

interviews or focus group discussion to understand the behaviors and the processes by 

interpreting the views and experiences of the participants [33].  

Due to the nature of the problem under study, a qualitative research methodology was selected 

because as described in section 1.1 and 1.2, the purpose of this study is to extract the facts about the 

current state of the Inner Source inside the company and obtain understanding about its underlying 

reasons, opinions and motivations. The aim is to gain insight into the problem and develop ideas, 

suggestions and solutions. This led the study to be conducted using a qualitative research approach 

which perfectly suited the needs of this work.  

Having examined different qualitative research techniques, the case study was found to be the best 

choice and could efficiently meet the needs of the study. According to Runeson and Höst [34], the case 

study methodology is well suited for software engineering researches where the objects of study are 

contemporary phenomena, which are hard to study in isolation. Schell describes the case study as “The 

most flexible of all research designs, allowing the researcher to retain the holistic characteristics of 

real-life events while investigating empirical events” [35]. A case study is an empirical enquiry that 
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investigates a contemporary phenomenon within its real-life context especially when the boundaries 

between phenomenon and the context are not clearly evident and the data must be obtained from 

multiple sources [35] as was the case in this study. 

According to Runeson and Höst, a case study comprises five major steps including design and planning, 

preparation for data collection, collecting evidence, Analysis and Report which are described in the 

following sections [34]. 

 Design and planning 

Like any other task, a case study needs to be designed and planned well ahead of the study begins. To 

do this a list of the subtasks that needed to be carried out during the project was created. According 

to Neale et al. [36] the most important questions that need to be answered are as follows: 

• What are the objectives of the study? 

• Who are the stakeholders involved in the study? 

• How are they going to contribute? 

• What is the necessary information that needs to be extracted? 

• What are their potential sources? 

A list of the tasks was created and planned accordingly. 

 Preparation for data collection 

In this step, data collection techniques were selected and the overall instruction on how to collect data 

was specified as below: 

• Interviews:  

Interview questions were prepared, and invitation was sent to interviewees. A guideline was created 

for interviewees to get an overview of the topic prior to meeting. Interview questions were reviewed 

by my supervisor to ensure they cover the topic and fulfill the requirements of the thesis. Recording 

method was selected and finally meeting invitation was sent to respondents. 

• Literature review:   

Academic libraries to be searched were identified and keywords for search were specified. 

• Workshop:  

Neale et al. describes that a brainstorming is critical in this stage to bring into light different aspects of 

the study [36]. Workshops were scheduled with different teams to discuss the findings on research 

question 2 regarding product criteria for inner sourcing and based on that the teams identified 

software products candidates for inner sourcing. 

 Collecting evidence 

Data collection was performed using literature reviews, interviews and workshops. 

3.3.1. Literature review 

A semi-structured literature review was carried out in the study. The purpose was to find relevant 

articles on Inner Source to understand the concept and its application and practices. 
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First, the term “Inner Source” was used to search the article titles in Google Scholar which led to 

identification of 10 records out of which only 2 were relevant. Having scammed some articles, it turned 

out that “Corporate open source” and “Progressive open source” and “Internal open source” are used 

interchangeably. We combined those terms and the keyword (("Corporate open source") OR ("Inner 

Source") OR ("Internal open source") OR ("Progressive open source")) was formed. This keyword was 

then used to search in Meta data for articles in digital libraries including IEEE Xplore, ACM digital 

library, Science Direct and Springer. We limited our search to papers in computer science and software 

engineering domain with no limit on publishes date. This led to identification of 36 papers. 

Literature review was carried out later to search for the challenges and obstacles that software 

engineers face in inner sourcing. An “in title” and “in abstract” search was carried out in the 

aforementioned libraries. First the term “Inner Source challenges” was used.  Then a search for articles 

on “Inner Source product” was carried to compare our study results with other case studies. Finally, 

we used the term “Inner Source framework” and “Inner Source adoption model” to find out if there 

are any frameworks proposed for inner sourcing by other studies.  25 relevant articles were found 

based on the above key words.  

3.3.2. Interviews 

Interviews were used to collect qualitative data. The first step was identifying the teams who either 

have experience with Inner Source or work with software development and the products which have 

the potential to be Inner Sourced implying that they can be used as shared assets in the company.  

After extensive search five main development teams were identified. 16 people were selected with 

different roles to cover different aspects of the software development process and to get a broad view 

of the subject. The interviewees’ roles are listed in Table 6. 

 

Role Number 

Project Manager  4 

Software Architect 6 

System/business Analyst 2 

Developer 4 

Table 6- Interviewees roles 

The interview focused on different aspects of Inner-sourcing. Since Inner Sourcing is very similar to 

Open Source (OS) prior understanding of it is helpful. Interviewees prior experience in open source is 

displayed in the Figure 3. As can be seen everyone had a prior knowledge of OS concept. Only two 

people had experience contributing to open source development and others had a basic knowledge of 

OS.  
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Figure 3- Interviewees familiarity with OS 

The company has previous experience with inner sourcing and the interviews are selected both from 

department with inner sourcing experience as well as departments which have not tried it but are 

willing to adopt Inner Source. The distribution of the interviewees is as Figure 4. 

 

Figure 4- Interviewees familiarity with Inner Source 

Meeting request was sent to interviewees explaining the purpose and goals of the thesis and the 

interview. A brief introduction text was sent to the interviewees prior to the meeting so they can 

prepare and get familiar with the topic in case they were not already. 

Meetings were carried out in the forms of online meetings and face-to-face meetings depending on 

the geographical location of the interviewees.  The sessions were around one hour, and the interviews 

occurred during a two-month period.   

An open-ended questionnaire with 20 questions under three main categories was used to conduct the 

semi-structured interviews. Further questions were asked followed by the predefined questions if 

needed. An interview guideline was used during the interview which helped me ensure all my 

questions were covered in the interview and it worked as a memory aid too. The interviews were 

recorded and then transcribed. Notes were also taken during interviews.  

3.3.3. Workshops 

Three workshops were set up with main teams as a means of brainstorming to identify the products 

which are suitable for inner sourcing based on the criteria identified during interviews. In addition, 

2
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Experieneced /contributing to open source
development

 familiar with the OS concept/Users of open
source products
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6
Had experience with inner source
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adoption models were discussed during the workshops and the results of the interviews were 

discussed and confirmed by participants. 

3.3.4. Ethical concerns 

The study purpose and data collection method were discussed in advance with participants and the 

related managers. The participation was voluntary, and interviews were recorded with the permission 

from the interviewees and then transcribed. The interviewee identities were kept anonymous while 

transcribing. The outcome was sent to interviewees for confirmation in order to preventing 

misunderstandings. The results of the analysis were also sent to participants for reviewing. 

 Analysis 

Recordings, notes and transcriptions from the interviews were collected and used to summarize the 

results. The interviewee answers are presented in a table using keywords. After simplifying and 

summarizing, we will be able to find out the common opinions and use it to perform a root cause 

analysis. Graphs are used to present the analysis results. 

Later the results of the literature review and the previous studies in this field are compared to the 

results of this case study to find out whether our study confirms the previous research results or not. 

 Reporting 

The last step was reporting the findings. A draft was prepared and sent to the interviewees for 

approval. It was also sent to my university supervisor for feedbacks and after that the final version of 

the report was created.  
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4. Results 

The focus of this study is on inner sourcing software products and we investigated the challenges, 

possibilities and potentials for inner sourcing at the company. The development work is carried out in 

different locations including Bangalore-India, Wroclaw-Poland, and Gothenburg-Sweden.  Interviews 

were used to collect data in this case study and the interviewees were selected from the above-

mentioned sites. Main development department teams which develop and operate Java, .Net, 

JavaScript, mobile applications and telematics platform solutions were interviewed.  

The results of the analysis were then labelled and categorized for better readability. They were also 

sent to participants for reviewing. Later they were compared to the literature. 

 Challenges 

In this section we answer the RQ1 which is “What are the obstacles and challenges of adopting Inner 

Source?” 

The first part of our interview focused on the challenges and obstacles of Inner Sourcing in the 

company. Major development teams including Java, .Net, JavaScript, mobile apps and platform 

delivery were investigated.  

Main problem according to all interviewed teams is the lack of contributions. Departments which tried 

Inner Source barely got any contributions and if there was any, it was in the form of bug reports or 

suggestions.   

In this section, the challenges are investigated and categorized in five groups: organizational, people, 

product, infrastructure and process challenges.  

4.1.1. Organizational Challenges 

• Managing and coordinating people  

One of the main challenges that most teams referred to, was coordination with people from other 

teams. In traditional projects, managers assign tasks to their team members but in Inner sourcing 

participants might belong to other department which the manager has no control over. This could 

affect the project speed and performance as sometimes there is a need for making quick changes but 

developers from other teams are not available.   

• Code ownership 

Today all software developed in-house is the property of the company unless specified otherwise in 

the contract with customers.  Code ownership implies which team owns the code and has the authority 

to access, modify and distribute the source code. Interviewees think that code ownership becomes 

complex when multiple teams collaborate on a project. The code owner needs to be specified and it 

could be an issue if multiple teams had the same amount of contribution.  

• Maintenance responsibilities 

In open source projects many developers voluntarily contribute to the project. The contribution might 

vary from a single commit to the code repository to thousand lines of code. The person might leave 

the project and take no further responsibility. All interviewees agree that pure volunteer work does 

not work for critical projects in a company. There needs to be defined responsibilities both for 

development and operation of the services.  
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As can be seen in Figure 5, 82% of the current projects in the company are in maintenance phase. This 

could vary from small bug fixes to pure maintenance. The maintenance responsibility should be 

defined clearly for business-critical projects even if the code is shared. Furthermore, another big 

challenge is to define who should pay for the maintenance costs. 

 

Figure 5-Current products status 

• Support from managers 

Our interviewees think Inner Sourcing must be supported by managers and without managers support 

it is not possible. Top and middle managers must be convinced that this is beneficial for the company 

and brings value. If they are not convinced, the resources and infrastructure for implementing Inner 

Source will not be provided.   

• Constant reorganizations 

Some interviewees mentioned constant reorganizations that occurred in the company during the past 

couple of years as a huge obstacle. Many people who were contributors or sometimes initiator of a 

project left the company and the Inner Source project left incomplete. 

4.1.2. People and Individuals’ challenges 

• Lack of motivation for contribution 

One of the teams had experience with inner sourcing and the main challenge they faced was the lack 

of contribution from developers of other teams. This was also mentioned by other interviewees as the 

main challenge. The reasons mentioned for lack of motivation are as following: 

➢ Daily work pressure 

Majority of interviewees believe that the main reason behind lack of motivation of developers 

for contribution is that they are busy running their assigned projects and they find no free time 

to dedicate to other projects.  

➢ People mindset  

Some people are not willing to share the code they developed and prefer to keep it to 

themselves.  

➢ Finding no benefit in contributions 

Some interviewees think they don’t gain any benefit by putting extra effort to other projects.  
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➢ Demotivated by others 

Interviewees mentioned that they lost their motivation after being left alone in the project 

and didn’t receive any contributions. 

• Lack of domain knowledge 

Some areas in the company require specific domain knowledge which other teams may lack. This is a 

big obstacle for developers who are willing to participate. 

4.1.3. Product challenges 

• Existing products architecture  

There are many applications at the company that don’t follow the architecture guidelines and are not 

built for being shared or distributed. Some have a huge code base and modifying them is cumbersome 

as making a change in one section of the code may require change in many other parts. This could be 

a big challenge for inner sourcing as the product needs to be open to constant changes.  

• Risk of having poor quality code  

If code is not monitored carefully, there is a risk of having code with poor quality or inconsistent with 

different styles due to the fact that the code is written by multiple developers and each developer used 

his/her own style of coding.   

• Lack of documentation 

Many of the products at the company are not well documented.  This is a big obstacle for Inner Source 

as developers may find it hard to only rely on code and have no documentation on the product. 

• Risk of formation of fork versions 

The changes to be made needs to be investigated carefully and the products that get affected by the 

change should be identified. This could be a challenge if the source code is open and people used it in 

other projects and different forks are formed which is derived from the main branch.  

This could cause issues later for example in one case a team needed to modify the shared code and 

make some changes to it, but the changes could not be applied to the main branch due to the effect 

on other products. Over time the main branch changed and there have been several bug fixes while 

the fork branch remained unchanged and still has many bugs. After few years they faced a lot of 

problems and couldn’t use the fork code anymore. 

4.1.4. Infrastructure challenges  

• Different tools used by different teams 

Although the company has defined the assigned tools and software to be used but still old versions of 

the assigned tools are used by different teams across the company. Sometimes due to their demands, 

completely different tools are used. This could be an issue as inner sourcing requires different groups 

to use the same set of tools or compatible ones. 

• Security issues 

Some interviewees referred to maintain the security of the company data in Inner Source as a big 

challenge. In most cases access to specific data is limited to specific teams and projects have to ensure 
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this data is secured. Having the source code open threatens the security and solutions needs to be 

developed to ensure security of data is maintained. Furthermore, an interviewee shared his concern 

as if for example an employee from another organization has access to the source code but is not in 

any way involved or responsible in the project finds a security bug in the code and misuses this 

information against the company; it could have very bad consequences.  

• Access issues 

Some interviewees concern that technical issues might be encountered due to being on different 

network domains and it might not be possible to work on the same project due to networks and 

resources not being accessible to everyone. 

4.1.5. Process challenges 

• Project planning  

One of the challenges of inner sourcing for project managers is that they need to plan the time and 

budget ahead. Planning is done based on the project size, team structure and number of people 

involved and their skills. However, this is totally different in Inner Source where individuals from all 

over the company could join the development team at any time and contribute. Cost estimation is very 

difficult and cost sharing with other teams is more complex. Currently, it is not possible for everyone 

to use any WBS (Work Breakdown Structure) to report their work. Modifying the system to support 

Inner Source could be a challenge. 

• Nature of commercial projects 

Many interviewees refer to the nature of business projects as the main obstacle. In Open Source, the 

focus is not on the commercial aspect of the product but in a business environment, the financial value 

of the product plays an important role. Therefore, there is constant pressure to meet the budget goals 

and scheduling requirements. Deadlines are important for business and customers can’t wait for 

volunteer resources to be provided from Inner Source community to provide a feature or fix a bug.  

• Communication and coordination 

Many interviewees find the need for communication and coordination with other participants from 

other departments quite challenging. As the team scale grows coordination could become overkill 

since all changes need to be discussed and agreed upon publicly.  People find it cumbersome to 

coordinate with others when they only need to commit a few lines of code. Communication might 

become slower as sometimes there is a need for having meeting and live discussions and it is difficult 

to find available slots for meeting with people from other teams especially if they are located in 

different geographical locations. Furthermore, managing different and sometimes conflicting ideas 

become harder as the number of people involved increases.   

• Lack of visibility of the existing projects 

One reason that many referred to was that they are not aware of the current projects inside the 

company. Lack of information and transparency of the ongoing projects is a challenge for developers. 

These projects must be announced and visible to other teams inside the company who would like to 

join and contribute. 
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 Product 

In this section, we focus on RQ2 which is: “Which software components/products are best candidate 

for inner-sourcing?”  

The second part of the interview is focused on finding criteria which are important to interviewees in 

identifying suitable products for inner sourcing.   

4.2.1. Usability 

The company we studied owns several applications. According to the statistics, 87% of the software is 

developed internally as displayed in Figure 6. In such environment, reuse possibility is very high. Many 

components can be shared among different applications.  

 

Figure 6-Company software 

➢ Usage:  

All interviewees agree that usability of the product is the most important factor to consider as 

high usability of the product motivates users to participate and improve the product.  

Products with a larger variety of stakeholders have a higher chance of attracting contributors. 

However, products that are specific to a domain or unit have less chance of attracting others. 

Furthermore, according to interviewees there have been several cases when the code owner 

team didn’t have time or resources to fix the program for users while other users had 

knowledge and resources to fix the problem but due to code ownership issues they could not 

modify the code.  

 

➢ Re-use: 

Moreover, according to interviewees reuse possibility is very important. Several duplicate 

programs and functions are created in different organizations over years but due to not being 

visible other teams are constantly reinventing the wheel. This is both time consuming and 

costly for the company. Inner sourcing the products with high reuse possibility helps resolving 

this problem.  

 

Usability & Re-use possibility Not reusable 

100% 0% 

87%

4%
7%2%

SOLUTION TYPES

Developed  internally

Developed  externally

Customized COTS
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4.2.2. Nature of the product 

➢ 87% of the interviewees think that a good candidate product must be “company specific” and 

a unique product that does not exist outside the company. They think that since the company 

main business is producing vehicles and not IT solutions and its business is to serve the needs 

of the parent company, the focus must be on using the products available in the open source 

or on the market and are cost efficient to buy instead of developing inside the company. One 

team had an experience of developing DLF UI components, but the project became so big that 

it needed to be handled by a separate company and they found out that there are similar 

solutions on the market which are more cost effective to buy rather than developing internally.  

➢ 12.5% of the interviewees believe that products which are not company specific and are aimed 

at more general purposes are good candidates as long as they have value compared to what 

already exists on the market or if such product does not exist outside on the market, it might 

be logical to develop it in-house. Such products can even straighten the path towards open 

source. 

 

Company specific General use software 

87.5% 12.5% 

4.2.3. Criticality 

➢ All interviewees think that a business-critical product can be Inner Sourced as long as there is 

a core team dedicated to it and have a formal maintenance setup. For such products, pure 

volunteer work does not work. They don’t see any problem in inner sourcing a critical product 

only if it is operated and supported by a dedicated team as the availability of resources is vital 

for such products.  

➢ For other non-critical products such as supplementary tools, inner sourcing is possible without 

the need to have a dedicated support team.  

Note: Security measures should be considered when inner sourcing products specially the 

critical ones.   

Note: Security measures must be taken to protect the data when the code is shared among 

different departments 

 

4.2.4. Architecture 

All the interviewees agreed that a modular architecture is the best solution for a product that is going 

to be Inner Sourced. Modular architecture makes the product easy to modify. Each module can be 

tested separately, and it is more readable than a big chunk of code. Beginners who want to participate 

in product development don’t need to study the whole code and they can have a faster startup by 

focusing on specific modules instead of the whole program as the program becomes easier to 

understand. Furthermore, the program divided in different modules enables developers to work on 

modules independently. Product architecture is of great importance when it comes to Inner Source 

candidate selection among the existing products. If the plan is to Inner Source an existing product, 

change the existing architecture might be far-fetched.   
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One of the recently introduced architectural patterns called “Microservice Architecture” was proposed 

by interviewees as the preferred architecture style for Inner Source products which implies designing 

software as suites of independently deployable services [57]. According to Fowler, “The Microservice 

architectural style is an approach to developing a single application as a suite of small services, each 

running in its own process and communicating with lightweight mechanisms, often an HTTP resource 

API. These services are built around business capabilities and independently deployable by fully 

automated deployment machinery.” [58]  

Oppositely, in monolithic software different parts are bind together and a change made to a small part, 

impacts the whole application and requires the entire application to be rebuilt and deployed. 

Maintenance of monoliths is quite hard and over time it’s not possible to make changes to a single part 

without impacting other parts in solution. The same goes for scaling as it requires the entire application 

which implies the need for more resources [57].  

Using micro services, it is possible to deploy the software more frequently. Interviewees think using 

micro services, the program does not have to use one technology stack and a service can be developed 

using another programming language [57]. This is a big advantage for Inner Source as it facilitates 

involvement of programmers with different skills. On the contrary, as the monolithic code base gets 

larger and larger, it becomes almost impossible to change the technology stack of the whole program. 

Using micro services, the changes could be made gradually and independently without affecting other 

modules.  

According to interviewees, a monolithic program is hard to understand and change. Furthermore, the 

whole program must be redeployed after each change whilst using micro services each service can be 

build and deployed independently. Program is easier to maintain as a fix in one service doesn’t affect 

other services. In addition, it enables developers to be able deploy frequently which improves delivery 

time. 

Loosely coupled components can serve the purpose best as they are less dependent on other 

components. They could integrate with other components. Their maintainability increases as they can 

be replaced by other implementations.  In addition, services must be security persistent. 

Components which have clear input and well defined have a clear interface for further development. 

VGT common platform API is made using microservice architecture which makes it a perfect candidate 

for inner sourcing.  

The architecture of shared product must support collaborative working. Microservices architecture 

seem to be a good fit for Inner Source as each team or individual can work on a single service and each 

service has only one single responsibility which makes it easy to modify and maintain. The services are 

loosely coupled so they can be built and deployed independently. Furthermore, each service can be 

developed using a different technology depending on the skills available [57]. In addition, modularity 

increases the reuse possibility which is one of the main goals at the company. According to the 

interviewees the experience from previous Inner Source projects indicated that it was a successful 

design and worked very well for small self-organizing development teams. 
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4.2.5. Maturity 

93.7% of the interviewees think it is better if the product is in its initial phases of development for 

example close to version 1.0. The reason for this is that it is easier to understand the program in earlier 

stages before it gets too complicated. In this stage, the main requirements and features are collected 

but there is still room for adding new requirements. As the project progress it becomes more 

complicated and difficult to understand especially for new comers. 

Interviewees argue that if it is just a pure idea, it is still vague and announcing it in such a huge company 

is not possible but if it is in its initial phases for example close to version 1.0 is ideal specially if there is 

a demo or prototype for it, it is easier to introduce to others and attract developers and stakeholders.  

However, 6.25% think that a mature product which is stable and well documented has success chance 

since many are already familiar with it. Therefore, the chance of contribution for improvement and 

bug fixes is higher. The precondition is that it should have the possibility to grow, improve or extend. 

Not started Initial phases Mature 

0% 93.75% 6.25% 

4.2.6. Technology 

81.25% of the interviewees think that the technology being used by an Inner Source must be one that 

is used commonly inside the company by developers because if it is a technology that is only used by 

few developers then the Inner Source project may not get the attention it requires and fail.  Some even 

think that it should be popular outside the company too as it gives developers the opportunity to learn 

from developers outside the company and also be able to use the knowledge they gained from the 

project later on in their future careers. Java, .Net and JavaScript were named as technologies which 

are commonly practiced inside the company and outside as well.  

One of the interviewees mentioned that they have more than hundred java applications in their 

department while there are only three COBOL applications which denotes the popularity of Java in the 

department and decreases the probability of facing “No contribution” issue which many have referred 

to as the main challenge for Inner Source.  

18.75% believe that it doesn’t make any difference if the technology is widely used or not. They believe 

that even though some technologies might not be used as common as others but still some critical 

applications are made based on them. Mainframe is a good example. Although it is not based on a 

recent technology and the number of experts is not many, but it is still highly used at the company and 

could attract experts.  

Commonly practiced Technologies Other technologies 

81.25% 18.75% 

 

4.2.7. Size 

Size of the product is determined by many factors and everyone might have a different interpretation 

of what is a big project. No of Lines of code by itself does not determine size of a product. Moreover, 

a program with 1000 lines of code could be much more complex than a product with 10000 lines of 
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code. Interviewees suggested considering all the following factors to determine the size of the 

candidate product for Inner Sourcing. 

• No of requirements and features 

• Code complexity 

•  No of lines of code  

All interviewees agree that as long as the product has enough prospective features and functionalities 

and has the possibility to grow, then the size is not an issue. Obviously, it should not be too small 

because then there is no point in inner sourcing and seeking assistance for development. Moreover, if 

the product is created based on modular architecture, then the size of the code should not matter 

because each developer can pick up a module and work on it. 

4.2.8. Other criteria for product 

Since inner sourcing might require extra efforts and resources, not all products worth it so other 

criteria including costs and overheads must be considered before deciding to go for Inner Source. 

Participants mentioned other criteria for the Inner Source product including: 

• Well-documented 

• Polished code 

• Fun to work with 

According to the above criteria some of the company products where suggested as good candidates 

for inner sourcing during workshops with teams. 

 Adopting Inner Source by the company 

RQ3 is addressed in this section which is: “How can the company adopt Inner Source?”. 

Inner sourcing is a new approach for the company and needs to be adapted to the needs of the 

company. In this section, the interviewees were questioned regarding the implications of inner 

sourcing for the company. The pre-conditions, processes and infrastructure that need to be established 

for Inner Source and the challenges they address were discussed. The focus was on the main processes 

and tools that are more specific to Inner Source. Please note wherever tool names are mentioned, it 

is not the tool itself that is interesting but rather its functionality. 

4.3.1. Tools and infrastructure 

• Common set of tools 

Challenges to be addressed 

 Different tools used by different departments 

 

One of the challenges interviewees mentioned was the use of different tools or versions of the same 

tool in different departments.  This could create chaos by having to deal with incompatible tools.  

Therefore, a common set of tools needs to be agreed upon to be used by everyone who is going to 

participate in the Inner Source project.  Each project might require different tools depending on the 

needs. One way to achieve this is to share the tools on software forge. Tools could vary among projects 

but within the same project the same tools must be used to avoid incompatibility issues. 
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• Software Forge 

Challenges to be addressed 

 Developers not aware of the ongoing projects (Lack 
of visibility of the existing software products) 

 

Interviewees mentioned that they are not aware of the ongoing projects in the company and the 

reusable assets developed in other departments are not visible to them. Due to this problem lots of 

re-work is being done at the company which imposes extra costs.  The solution to this issue is to use a 

web-based dashboard where everyone in the company can see the ongoing or finished projects with 

information about them. A central search function is required to index the products. The dashboard 

could be used to publish news and other information and host discussion forums and other shared 

contents. Software forge provides services to facilitate collaborative software development. The 

services include project portfolio such as bug tracking system, version control system, mailing list and 

wikis [20] [41]. Currently such platform is missing. 

Visualization of the information helps better understanding the status. Stakeholders need to know 

about the product status as well as developers do so the outcome and roadmap could be shared with 

stakeholders. If possible a demo of the product could be made to visualize the product. The progress 

of the project could be shared by stakeholders, so they can get an overview of the progress which 

makes real-time planning easier.  

• Version control system with code review and QA capabilities  

Challenges to be addressed 

 Risk of having code with poor quality  

 

One of the most important tools required is a common repository. Developers need to have a common 

work space to share and sync the code. Such a tool exists at the company but for Inner Source it is 

important that the tool has QA (Quality Assurance) capability that automatically reviews the code. This 

is required to block the bad commits to the master branch. Needless to say, that security over code 

distribution and usage is of high importance. Only authorized users may commit to the common 

repository. This is the area that Inner Source differs from OSS and needs to be tailored to fit the 

commercial context. 

A good example of a tool with QA capability is Gerrit 1 which is an extension to GitHub repository.  

Submitted code goes to a pending location until it is reviewed and approved before it is finally checked 

in to the master repository. Figure 7 shows how Gerrit works. 

                                                           

1 Gerrit code review:  https://www.gerritcodereview.com/ 
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            Figure 7 - How Gerrit works [47] 

• Automation Tools 

Interviewees agree that automated tools for code review, testing and builds are crucial.  It removes 

the urge to perform the repeated tedious tasks manually and prevents human mistakes.  

In addition, there are many other tools to benefit from for communication purposes, information 

sharing, archiving and storage, code review, bug tracking, build automation, etc.  

• Accessible work space 

Challenges to be addressed 

 Access issues  
 Security of data 

 

Most participants think working and accessing resources on the company network is not optimal for 

shared projects due to firewalls and access limits. Lots of coordination with other teams such as 

firewall, database, web sockets, security team and etc. is required if multiple teams need to share 

resources which can discourage developers. 

It must be ensured that the infrastructure such as computer network proxies or policies do not prevent 

developers from working on a common work space. If developers find working on other projects too 

cumbersome, they will easily get demotivated. To avoid this issue, using Cloud services such as Amazon 

or Azure cloud was proposed as an alternative to host the applications.  Obviously, still access controls 

must be in place and developers may only access specific development environments. In addition, 

security measures should be taken to avoid leakage of sensitive data as a result of visibility. 
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• Documentation 

Challenges to be addressed 

 Lack of documentation on products which makes joining other 
developers hard 

 Lack of domain knowledge  

 

➢ Product documentation 

Lack of documentation or not enough documentation on products hinders participation of 

enthusiastic developers and newcomers. Interviewees believe documents make it easier to 

follow up on a project if one joins the team later in the development phase.  Therefore, there 

is a need for having documentations which everyone can see and contribute to. It could be 

shared on the forge or anywhere on the intranet.  A wiki was suggested and also the electronic 

discussions/decisions related to products could be archived in a forum to serve as product 

documentation for further reference. 

 

➢ “How-to” documentation 

Since Inner Source is a new way working for employees, participants believe there is a need 

for guidelines which helps newcomers to understand how to work in an Inner Source project.  

4.3.2. Adoption model 

First, the two adoption models, Project-based and Infrastructure-based explained in section 2.5.1 were 

discussed. Interviewees claimed that the adoption model selection depends on the product. Critical 

products require dedicated teams to support the customers and manage the asset considering the big 

picture. In this case, providing support is mandatory.   The critical software needs to have a clear owner 

that is responsible for maintenance of the product and takes care of the other related tasks around it 

such as planning, documentation, test, release, etc. and shares it to all other stakeholders. The reuse 

possibility and the needs of other user groups must always be considered in design decisions 

On the other hand, there are many other software products that are not business-critical, but they are 

required by many projects and sharing them prevents redundant work and re-inventing the wheel. 

Interviewees think that sharing software facilitates the reuse. For these utility tools and common 

libraries, support is optional and management overhead is kept at minimal level. Individual developers 

can share their code using the provided infrastructure by the company to host their project and let 

other projects benefit from it.  

Therefore, the adoption model must be a mixture of both infrastructure and project-based models and 

the organizations selects the appropriate one depending on the criticality of their products. 

Defining the right accesses for users and developers is very important. Project-based components have 

limited access while Infrastructure-based projects are open to other users/developers. 

Note: Code ownership must always be considered and discussed as sharing/reusing the code which is 

owned by customer might not be permitted. 
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4.3.3. Processes 

 Development processes 

Open source requires an agile and collaborative way of working which is referred to as Bazar style by 

researchers [11].  In Open source there is no single development process to follow and each open 

source project has its unique process and way of working [16]. Interviewees claim that Inner Source 

follows the same approach as OS and those heavily controlled traditional development processes do 

not work here. However, different organizations within the company need to align their processes to 

be able to cooperate efficiently. In addition, for a company to be able to satisfy the customers and 

meet the deadlines, different organizations within the company must follow a mutual working process.  

Today Scrum which is an agile methodology is dominantly used by development teams in the company. 

It guides their way of working and task division among team members. Scrum roles consist of product 

owner, scrum master and development teams that are maximum 8 people and are self-organizing 

meaning that each team plans their own backlog. It works well for concentrated teams. However, in 

Inner Source team members might be distributed in different geographical locations and it is not 

possible to follow all scrum practices such as daily stand up meetings due to time zone differences or 

simply because Inner Source developers belong to other organizations and have other meetings/tasks 

to attend to. They believe they can still benefit from many of the Scrum practices such as backlog 

concept and sprint reviews while they might need to adjust some of them to suit their Inner Source 

project. In addition, since face to face meetings and daily standups are eliminated, the need for having 

transparent communication is obvious. Therefore, documentation is highly required.  

Self-organizing in Inner Source is not the same as open source and needs to be tailored to company 

context since projects are tied to deadlines and budget constraints. Therefore, it is fair to say 

developers should organize their backlog within the project deadline and budget. The choice to keep 

the roles must be made within the team.  

• Release management 

Interviewees mentioned the Linus Torvalds style of development. He created Linux kernel and one of 

his famous quotes was “Release early, release often”. This approach was also taken during UNIX 

development [11]. It allows users and prefer developers to be able to provide feedback earlier in the 

lifecycle as opposed to the traditional approach were users could provide their feedback earliest during 

beta releases. This could prevent a lot of bugs in early stages and save a lot of time and cost. This 

approach is divided to three phases: 

➢ Continuous integration 

According to Fowler, “Continuous Integration is a software development practice where 

members of a team integrate their work frequently, usually each person integrates at least 

daily - leading to multiple integrations per day. Each integration is verified by an automated 

build (including test) to detect integration errors as quickly as possible. Many teams find that 

this approach leads to significantly reduced integration problems and allows a team to develop 

cohesive software more rapidly.” [60] This way the code all developers use is always synced 

with the main codebase. This implies using a version control system and verifying the changes 

by performing automated tests constantly.  

 



32 
 

➢ Continuous delivery 

According to Fowler, “Continuous Delivery is the natural extension of Continuous Integration: 

an approach in which teams ensure that every change to the system is releasable, and that we 

can release any version at the push of a button.” [60] The term was first used in agile manifest 

and is one of the agile main goals [61]. It involves delivering code to an environment close to 

user’s which could be QA or Prod. However, deploy to production environment is not done 

automatically and it’s up to team to decide whether to do it or not [37].  

➢ Continuous deployment 

Continuous deployment implies deploying software more frequently which means it is 

available to users as soon as the code is developed. It is an extension to continuous delivery as 

the code will be deployed to production automatically after it passes the tests [26]. It has many 

advantages and the most important one is that users can provide their feedback continuously 

while the program is being developed which prevents bugs being detected in the very last 

minute. In addition, the less time there is between deploys it is easier to find what has been 

changed since the last successful build. Time to deliver a feature to market decreases and the 

business risks minimize due to having shorter time to market. The code is built, tested and 

deployed automatically after each change. 

There are many automated build tools to benefit from. One of them is Jenkins 2, which is an 

open source tool that is used to automate all sorts of tasks such as building, testing, and 

deploying software. It runs the tests and if all tests are passed, the code will be checked in. 

• Maintenance 

Challenges to be addressed 

 Maintenance responsibility 

 

➢ DevOps 

Developers follow a project model with the aim of delivering a software. After completion the 

software is handed over to maintenance team and the development team job finishes there.  

Microservice proponents tend to avoid this model, suggesting that a team should own a 

product over its lifetime which implies the development team takes full responsibility for the 

software in production. This brings developers into daily contact with users and they can see 

how their software behaves in real time production environment and they must take over at 

least some of the support responsibility [57]. DevOps goal is to close the gap between 

Development and IT Operations to enhance the deliveries. It is a set of practices and 

establishing a culture of working together in the organization.  

In short DevOps implies that the one in charge of development must make sure that the 

software works in production environment as well. Currently in the company the responsibility 

for delivery including development and operation is carried by separate teams but if 

development team can participate in operation it would be more suitable for them since they 

have a better understanding of the program and they can change it based on the needs and 

ensure if it still works. According to interviewees this works best in Inner Source as if a team 

needs to change the code for their own demand, then operation cannot take the responsibility 

                                                           

2 Jenkins continuous delivery https://jenkins.io/ 

https://jenkins.io/


33 
 

of it but if it the team itself is responsible for the operation of their code then there is no 

problem. 

 Governance processes 

• Quality control 

Challenges to be addressed 

 Poor code quality 
 Formation of diverging code forks 

 

Quality control is an important step in any software project. Interviewees agree that the code must be 

polished before submission as it must be readable for others who are going to use or modify the code 

later. The following approaches were suggested for maintaining code quality: 

➢ Code standards 

Coding standards needs to be established and followed by developers. This helps to maintain 

the code consistency and increase the code quality. 

➢ Code review 

One of the activities to enhance code qualities is code review. Participants suggest having a 

team responsible for control and reviewing the code. Code review is very common in open 

source community and industry [59]. It can be done using many approaches including manual 

approached such as pair programming or automated ones using code review tools. Automated 

tools enable the possibility for asynchronous working. There are many automated tools to 

benefit from and one is SonarQube3, which is the open source platform to inspect code quality 

of the programs. It enables developers to detect bugs and vulnerabilities as well as to decrease 

code smells, in more than 20 different languages. Statistic code analysis is also considered as 

a part of code review and its purpose is to find the security vulnerabilities early in the code. 

This feature is also embedded in the tool. Furthermore, having metrics on the code helps other 

team members to get a better overview of the status of code. 

➢ Bug tracking 

There is a need for a bug tracking mechanism so that developers, testers and users can register 

defects and later track the status of the defects. Using this system, the bug can be assigned to 

a developer to fix. Bug tracking is sometimes integrated into test management tools, but it 

could also be a separate system.  Currently Jira 4 is the assigned bug tracking tool at the 

company  

➢ Automated tests 

Testing is an important activity in software development. Automated tests can be extremely 

helpful in an Inner Source project to replace the repetitive and time-consuming manual tests. 

Interviewees suggest having as many automated tests as possible as they are more efficient 

especially in scenarios where code changes frequently. These tests should include backward 

compatibility test as well as integration tests to validate that components interfaces work as 

                                                           

3 https://github.com/integrations/sonarqube  
 

4 https://www.atlassian.com/software/jira 

https://github.com/integrations/sonarqube
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before. In addition, automated tests are a precondition for continuous deployment which we 

will discuss in the next section. 

Using Test-driven development (TDD) approach is also recommended which implies having 

tests in place before coding. 

• Change Management 

Challenges to be addressed 

 Formation of diverging code forks 

 

Changes can lead to improvements in the software if handled properly but they might also create 

inconsistency or instability issues in the associated components or products. Therefore, it is vital to 

have an efficient change management processes in place covering both pre and post change 

procedures such as request, review and publish change procedures. All changes must be coordinated 

and controlled with related teams.  The process should address the roles. This is especially of great 

importance in Inner Source projects due to its nature. Furthermore, formation of independent code 

forks must be prevented as much as possible. 

• Project management 

Challenges to be addressed 

 Project planning issues 
 Managing and coordinating people  

 

Interviewees agree that traditional project management approaches do not work in today IT world 

where requirements are constantly changing, and we need to seek agile ways of project management. 

Project management in agile is different from the traditional model as not all the tasks and milestones 

are planned upfront. However, there is a need for project management in every project even in the 

open source projects but there is no unified method or practice that works for all projects rather it 

depends on the organization setup and processes. Cost management methods needs to be specified 

and time and budget allocation strategies must be established to support the distributed development. 

According to interviewees the following project management approaches must be considered in Inner 

Source: 

➢ Project planning  

✓ Activity planning: 

ISS products have a long-term vision and it must be ensured that features do not 

deviate from the initial vision. It is mainly the responsibility of the core team to 

consider the long-term plan. All activities and backlogs must be created considering 

the overall direction. When other departments request new features and components, 

the core team must review the request and approve the feature having the vision in 

mind. 

Furthermore, it is important that individuals’ projects and activities are prioritized so 

they don’t interfere with each other.  
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✓ Resource allocation: 

In Inner Source resources will not be assigned to tasks but rather they select tasks 

themselves. Implementation of the requirements requested by the other units, can be 

done mutually by business units in collaboration with the core team.  

 

➢ Project control  

✓ Cost control: 

Currently cost management system does not support registering contributors from all 

departments which needs to be changed since there is a need for a WBS (Work 

Breakdown Structure) that could be used commonly by all the people who work on the 

same project.  

 

4.3.4. Organization and communication 

• Communication and Information sharing 

Challenges to be addressed 

 Communication and coordination issues 
 Lack of documentation on products which makes joining other 

developers hard 
 Lack of domain knowledge  

 

One of the most important factors in the success of Inner Source project is contribution of the 

developers from all around the company. It is vital that the project is visible to as many people as 

possible and the latest information and updates are shared. A Wiki page or a dashboard for the project 

to display the project information such as latest status, updates, bug fixes, people involved, point of 

contacts, etc. is very useful. Currently, Confluence 5is used which is a team collaboration software used 

for keeping the team work in one place. It has many features including notifying users when a 

document change.  

Use of internal forums and channels is recommended as discussion can take place virtually and it 

replaces face to face meetings and daily discussions to some extent. People can read on the topics 

shared in the forum which they are interested in whenever they have time. Besides, communications 

are stored electronically for further reference which is a positive point. Currently Slack 6is used by VGT 

organization. It is a developer centric tool and using the tool it is possible to open a new channel and 

invite people. Besides, one can subscribe to channels of interest.  Mail lists could also be used as a way 

of asynchronous communication. Participants think that when collaboration is distributed, there is a 

need of overhearing what is happening, and others can see what is going on.   

• Responsibility Sharing 

Challenges to be addressed 

 Managing and coordinating people 

                                                           

5 Confluence software,  https://www.atlassian.com/software/confluence 
6 Slacks collaboration tool https://slack.com/intl/en-se/?eu_nc=1 

https://www.atlassian.com/software/confluence
https://slack.com/intl/en-se/?eu_nc=1
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Currently agile and specifically Scrum is the methodology used by development teams at the company 

which guides their way of working and task division among team members. The roles are Scrum roles 

consisting of product owner, scrum master and development teams that are maximum 8 people and 

are self-organizing meaning that each team plans their own backlog. Self-organizing in Inner Source is 

not the same as open source and needs to be tailored to company context since projects are tied to 

deadlines and budget constraints. Therefore, it is fair to say developers organize their backlog within 

the project deadline and budget. 

In Telematics organization, DevOps is used which implies that the team who developed a component 

or service is also responsible for its operation in production. If this approach must be applied in Inner 

Source, then the developers are responsible for operation which is not exactly in line with volunteer 

contribution idea initiated by Open Source concept where tasks are selected voluntarily by developers. 

Furthermore, maintenance responsibility needs to be defined in advance or it is not possible to accept 

high Service Level Agreements (SLA)/Operation Level agreement (OLA). It needs to be adjusted to 

match the capabilities of the team handling the project. The level of supports provided depends on the 

selected Inner Source model whether it is Infrastructure-based or project-based. In addition, 

clarification of role expectations upfront results in better performance outcome.  

In OSS decision-makers are not defined based on their hierarchical position in the organization but 

rather based on their merits and contributions to the community. This approach needs to be 

considered in Inner Source as well. The degree of acceptance depends on the current culture of the 

organization. Some teams seem to be more open while others are not, but the interviewees think that 

this shift does not happen over a night and takes time to adapt it. A more democratic way of decision 

making must be chosen for example one participant mentioned using voting for new features. 

Interviewees believe that volunteer task pickup might not be fully applicable to a business 

environment with tight deadlines and customers. In open source the number of developers is usually 

large, but it is not the case in a company where resources are limited. However, volunteer task 

selection could be applied to a degree as it is done in Scrum today using a common backlog and more 

coordination.  

➢ Roles 

Interviewees suggest having the following roles in the Inner Source environment in addition to the 

current ones. Other roles may appear after more experience with inner sourcing is gained 

depending on the needs.  

o Product owner and governance organization  

Interviewees suggest having a governance committee that monitors the project and directs 

the project towards the planned goal. The product owner could be the individual or team in 

charge of the product who defines the goals and the backlog accordingly.  

o Coordinators  

In a distributed environment, coordination between teams is crucial. The coordinator must 

align the work between the core team and stakeholders.  

o Mentors 

Mentorship is required to teach others about the product. Interviewees believe that if 

newcomers find the product too complicated and are not able to keep up with the pace there 

is a good chance that they get demotivated and leave the project. Mentoring could also help 

interested developers to address the problem “lack of domain knowledge” as one of the 

challenges mentioned by interviewees. 
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• Culture 

Our interviewees agree that Inner Source requires a cultural shift in the organization. It requires 

transparency as well as willingness to share knowledge. This is different in the traditional way of 

working where only team members are aware of the code and status of the project. In Inner Source, 

similar to open source communities all necessary information is available to other participants. 

Openness to change and critics is of great importance since during peer reviews the code might be 

subject to many changes. 

• Management support 

Challenges to be addressed 

 Lack of support from management 
 Lack of motivation for contribution 

 

Obviously starting an Inner Source project or engaging in projects in other departments requires 

management consent. If developers have no free time to join the project or their managers do not 

agree with working on another department project, then Inner Source will fail. Project budget and 

resources needs to be approved by top managers. In addition, managers play a great role in promoting 

the culture and motivating people to join the project. The management board must convey this 

message that they appreciate this innovative way of collaboration and support it.  

• Motivation 

Challenges to be addressed 

 Lack of motivation for contribution 

 

Many interviewees mentioned the lack of motivation for contribution as the main challenge. Some 

people say that they get motivated when their contribution is valued, and their implemented ideas 

result in improving functions which they can also benefit from. Business units could be motivated to 

contribute to development if they find their suggestions are appreciated and their ideas are reflected 

in the output. 

Some participants find working with other departments interesting and think it can help them learn 

from other colleagues and enhance their network of contacts. In addition, getting known could lead to 

better job opportunities in the company.  

Basically, a mechanism for attracting professionals and required competences is required. A reward 

system based on individual’s contribution was also proposed by some interviewees. 
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5. Discussion 

In this section, the results of our findings which provides answers to the research questions are 

discussed. 

 Challenges 

• RQ1: What are the obstacles and challenges of adopting Inner Source? 

In this study we have identified several challenges associated with adopting Inner Source. They are 

classified into different categories. The main challenge mentioned by all teams was lack of contribution 

and we decided to investigate it more thoroughly to understand what the reasons behind this obstacle 

are.  

The results of our analysis are demonstrated in the Figure 8 which is a cause and effect diagram known 

as fishbone diagram. The challenges were divided into five main categories: process, product, 

organization, people and technical challenges.   

 

Figure 8- Summary of Inner Source Challenges at the company 

Some of the challenges found in this study were also identified by studies mentioned in Section 2.3 

which were conducted in other companies. The context of those studies is not discussed in detail in 

the reports. Various factors might impact the challenges people face in each case and each company 

is unique. Therefore, comparing the challenges without knowing the exact context is not right. 

The company must consider the above-mentioned challenges and plan to remove the obstacles to 

increase the contribution of employees and facilitate the adoption process.  
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 Product 

A major step to be taken by the company in Inner Source adoption is identifying the suitable product. 

I interviewed professionals in the company who had experience with Inner Source or are willing to 

adopt Inner Source in order to find the criteria for product selection. Then I compared the outcome to 

the literature. However, there were only few studies available with the focus on this topic. 

In our study, we found that products with high usability are the best candidates for inner sourcing. 

Gurbani et al. [49] also claims that the product must be needed by many stakeholders in order to 

attract contributions from users, teams and other dependent projects. Furthermore, they can benefit 

from other teams’ knowledge and expertise. Having multiple stakeholders, means there is a lot of 

interests in the product and it is a good way of pooling the resources [17] [49].  

In addition, most interviewees think it should be a “company specific” product rather than common 

tools or utilities which also justifies the in-house development of the product.  Stol et al. found that 

the product type could vary widely as in Philips it was a large shared platform while in Rolls Royce it 

was a tool for designers [50].  

Business criticality of the product was another criterion for Inner Source product selection and all 

interviewees agree that a business-critical product can be Inner Sourced if it is managed and supported 

by a core team under the condition that security measures are considered.  Non-critical products such 

as tools may be Inner Sourced without those preconditions. Stol et al. reported the results of three 

case studies done in three large organizations including Philips Healthcare, Neopost and Rolls-Royce. 

They suggest that the start point should be a seed product that has a significant business value to the 

company [50].  

Another criterion was architecture. According to interviewees modular architecture and use of loosely 

coupled components was the preferred architecture. Specifically, micro service architecture was 

suggested which is a new pattern that extends the benefits of modularity. This is in line with the results 

of a study by Stol et al. which suggest the product should have a modular architecture [17].  

Maturity was the next criterion. All interviewees agree that there must be a base product available to 

maneuver on. When it is just in the requirement or “Idea” phase it is harder to attract developers than 

when an initial implementation is produced.  This confirms the results of the study by to Stol et. al. 

which suggest that the product should be an existing one which is runnable. The reason is that starting 

an Inner Source project from scratch is quite difficult [50]. Raymond states that one cannot code from 

scratch in bazaar style. It is possible to debug, test and enhance the code but originating a project from 

scratch and expecting to attract developers is quite hard since developers need to have something to 

play with [11]. Wesselius claims that the seed product must have clear specifications so that it can be 

outsourced to other development teams [25]. 

On the other hand, Gurbani et al. hypothesis was that lacking a seed product, research or technology 

is a very good start point [49] [17]. Our study results do not confirm this hypothesis. 

Majority of interviewees preferred products developed using common technologies because they 

believe the number of available experts in the area has direct impact on the level of contribution. On 

the other hand, three people argued that even technologies that are not as common but still used at 

the company can be a candidate for inner sourcing too.  

According to interviewees, size of the product does not matter as long as it has a modular architecture 

and has the potential to grow. The results are summarized in Table 7. 
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Reusability High 100% Research Results:  

Gurbani et al. [49]  :confirms Not reusable 0% 

 

Product type “Company specific” 87.5% Research Results:  

-- General use software 12.5% 

 

Criticality  Business-critical: if support is 
guaranteed 

100% 

 

Research Results:  

Stol et al. [50] Product type varies a 
lot  

Non-critical: if inner sourcing 
adds value 

100% 

 

Architecture Modular 100% Research Results:  

Confirms: Stol et al. [17] Non- modular 0% 

  

Maturity Initial phases 93.75% 
Confirms: Stol et. al. [50] , Wesselius 
[25] 

Not confirmed: Gurbani et al. [49] 
lack of seed product is a good start 
point 

Mature 6,25% 

 

Technology Commonly used Technologies 81.25% Research Results:  

-- Other technologies 18.75% 

 

Size Does not matter if architecture is modular 
and there is possibility to grow.  

Research Results:  

-- 

Table 7- Product criteria according to our study vs. other studies 

 Adoption model  

5.3.1. Project based vs. infrastructure based 

According to the results of this study, selecting between project-based model and infrastructure-based 

model is dependent on the product.  If a product is business critical, having a core team and support 

team is mandatory therefore, it is categorized under project-based model. On the other hand, products 

such as utilities, scripts and libraries which are not known as business-critical fall into infrastructure-

based group where support is optional and there is no core team.  



41 
 

We identified a need to combine the two available models based on the product type to address 

different needs of the company according to Figure 9.  

  

Figure 9- Adoption model at the company 
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5.3.2. Inner Source adoption by the company 

According to the results of this study we summarized our findings on the adoption framework to four 

categories, Product Identification, Infrastructure and Tools, organization and people, development 

processes and governance processes. A set of practices and approaches were identified to implement 

the Inner Source within the borders of the company considering the challenges mentioned before and 

the company requirements.  

 

 

 

 

Figure 10- Adoption framework by the company 

Most of the available frameworks or guidelines for ISS focus only on some aspects of Inner Source for 

example the framework proposed by Sharma et al. is mainly concerned about the community in Inner 

Source [55]. The areas of focus include community building, community governance and community 

infrastructure. There is no discussion on product characteristics. Community infrastructure guidelines 

F8 to F11 Table 4 are in accordance with the results of our study. In addition, electronic 

communication(F4) and having a reward system (F7) was also recommended by participants in this 

study. 

Product Identification 

• P1-Usability 

• P2-Product type 

• P3-Criticality 

• P4-Maturity 

• P5-Architecture 

• P6-Technology 

• P7-Size 

 

Infrastructure and 
Tools 

• T1-Common set of tools 

• T2-Software forge 

• T3-Version control with 

QA capability 

• T4-Accessible workspace 

• T5-Documentation 

 

Development processes 

• D1-Alignment of processes 

• D2-Release management 

• D3-Maintenance 

 

 

Governance processes 

• G1-Quality control 

• G2-Change management 

• G3-Project management  

 

Organization and 
people 

•O1-Communication 

•O2-Responsibility sharing 

•O3-Culture 

•O4-Motivation 

•O5-Management support 
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Torkar et al. study focuses on developers and the community as well and how to facilitate the 

developers’ collaboration in FLOSS project. The purpose is to introduce guidelines and adoption 

opportunities rather than a comprehensive framework [56]. We found some common parts between 

our studies: 

Torkar et al. study [56] Correspondent points in our study 

Reduce technical debt G1: Quality control activities and tools 

Define an entry path for newcomers O2: Mentor role-T5: Documentation 

Increase information availability and visibility T2: Forge-Dashboard 

Embrace asynchronous tools for 
communication and decision making 

O1: Communication and information sharing 

Let developers influence ways of working D1: Process alignment, O2: responsibility 
sharing based on merit 

Allow task selection O2: Processes: Self task selection  

Table 8- Comparison between our study and Torkar et al. [56] 

Stol et. al is perhaps the closest study to ours as it considers different aspects of software development 

and provides guidelines in different areas [50].  

Below we provide a comparison of the findings in our studies. 

Stol et al study [18] Our study 

Software 
Product 

SP1- Runnable software 
product 

There should be an Initial set 
of components or product 
that is runnable and usable 

P5-Maturity 

SP2- Needed by several 
stake holders 

Needed by several 
stakeholders 

P1- Usability 

 

SP3- Maturity State Requirement and features 
not fully known at the outset. 
Need to evolve continuously 

P5-Maturity 

SP4- Utility vs. simplicity Balance between a 
component functionality and 
simplicity 

- 

SP5- Modularity of 
software product 

Should be highly modular to 
enable parallel development 
of the code 

P6-Architecture 

 

Development 
practices 

DP1- Requirements 
elicitation 

Requirements are asserted 
after facts 

- 

DP2-Implementation and 
quality control 

Truly independent peer 
review 

D1- Alignment of 
processes 

G1-Quality control 

DP3-Release management Release early release often D2-Release management 

DP4- Maintenance Maintenance vs reinvention D3- Maintenance 
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Stol et al study [18] Our study 

Tools and 
Infrastructure 

TL1- Development tools Common tools T1- Common set of tools 

 

Tl2 -Infrastructure for 
open access 

Infrastructure to facilitate 
open access to everyone in 
the organization 

T4- Accessible workspace 

 

Organization 
and 
community 

OC1-work coordination Task selection vs. assignment O2-Responsibility sharing 

OC2- Communication Electronic and asynchronous 
communication 

O1-Communication 

T5- Documentation 

OC3-Leadership & 
decision making 

Core team reputation and 
meritocracy 

O2-Responsibility sharing 

OC4-Motivation and 
incentives 

Start small, demonstrate 
value, facilitate change 

O4-Motivation 

OC5- Open development 
culture 

Promote an open 
development culture 

O3-Culture 

 

OC6- Organizational 
support 

Need to have backing from 
management 

O5-Management support 

Table 9-comparison between my study and Stol et al. [18] study 

As can be seen in the table above a lot of common items are found. However, in our study interviewees 

did not mention any difference in requirement elicitation in Inner Source. In addition, in Stol et al’s 

product selection criteria, functionality-simplicity balance was a criterion but in our study criteria such 

as product nature, size and technology were identified. Overall no contradiction with Stol et al. report 

was found. 
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5.3.3. Relation between the proposed framework and reported challenges 

One of the goals of this study was to propose a framework to address the challenges pointed out by 

employees. We tried to map the identified challenges to the relevant practices and approaches which 

were suggested by interviewees. The below table shows the challenges and recommended practices: 

Challenges Recommended Approach 

Technical Issues  

 

Tools Use appointed set of tools from the beginning of 
project 

Architecture of the existing 
products 

Not suitable for Inner Source. Modular design such 
as Microservices 

Lack of documentation on many 
products 

Wiki, core team ensures documentation is done in 
parallel with development 

Access issues Accessible workspace, use of software forge to 
centralize work items 

Formation of fork versions Change management 

Poor quality code subversion with QA capability, forming QA teams to 
review code, using automated tests, code review 
tools and extensions ,Use of bug tracking tools helps 
keeping track of changes 

Security Security persistent solutions 

Organizational 
Challenges 
 

Managing and coordinating 
people  

core team, incentive system, responsibility sharing 

Code ownership Ownership by core team for project based and by 
individual project in infrastructure based 

Maintenance responsibilities Devops 

Lack of support from managers Cultural shift, Support from managers 

Project planning Alignment of processes, common WBS system for 
cost control  

Constant reorganizations 

 

Increase motivation, incentive system, transparent 
and nonhierarchical decision making, self-task 
selection 

People and 
Individuals’ 
Challenges 
 

Lack of motivation for 
contribution  

Management support promote motivation factors 
ex reward system 

Communication and 
coordination issues 

core team, use of transparent electronic 
communication 

Lack of awareness of the existing 
project 

Forge dashboard 

Lack of domain knowledge Documentation, mentor role 

Table 10- Relation between the proposed framework and reported challenges 
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6. Conclusions 

This research aimed to address three research questions about Inner Source. A qualitative research 

performed as case study in a large company with several development tracks. Three main research 

questions have been discussed. First one is “What are the obstacles and challenges of adopting Inner 

Source?”. Semi structured interview was selected as data collection method. The challenges have been 

summarized and categorized in five groups: Organizational, People, Product, Infrastructure and 

Process challenges. Identification of the challenges contribute to selection of the practices and 

processes. The challenges might not be limited to the above ones, but the main ones are stated and 

could help organizations in taking them into consideration if they choose to opt Inner Source. 

The second research question is “Which software components/products are best candidate for inner-

sourcing?”. The method selected to identify the criteria was interview which was a good choice. Then, 

participants voted on the criteria found to reach a consensus.  The identified criteria were usability, 

product nature, criticality, maturity, architecture, technology. The results were then compared to the 

existing studies to see if they confirm the previous work. Some of the criteria found were mentioned 

in other studies while few such as technology or product nature were identified in this research. 

Finally, to identify the products/components which meet the criteria, workshops were setup with the 

team members to find the best suitable candidates. 

The third research question is “How can the company adopt Inner Source?” In-depth interviews were 

carried out with representatives and participants from several teams to explore their view on 

implementing Inner Source. The findings were summarized and presented in section 4.3. Two models 

for Inner Source adoption was suggested in Section 5.3.1 depending on the product. In Section 5.3.3. 

strategies and practices to implement Inner Source in an efficient way to overcome the challenges 

mentioned before were presented. It is very important to emphasize that the adoption model is suited 

to the needs of the organization and challenges and obstacles mentioned by employees are considered 

in the suggested adoption model. 

As can be seen from the results, not many technical shifts are required for implementing the Inner 

Source though and most of the changes are aimed at processes, organization and people. None of the 

techniques or practices are new nor specific to Inner Source rather most are already being used in the 

software industry. However, some are new to the company. Therefor training and education is needed 

to establish those practices in the company.  

The adoption of Inner Source requires many changes such as cultural and mindset change of 

employees and managers. Therefore, we suggest starting it in smaller scale and after gaining 

experience and evaluating the results, use the lessons learnt to extend it to other departments.  

 Threats to validity 

6.1.1. Construct validity 

Too broad definition of constructs is a threat to validity in this study. RQ3 is “how to adopt Inner Source 

at the company?” It is very broad and some of the processes referred in this thesis needs more 

elaboration for example development processes or project management approaches were discussed 

briefly by interviewees, but each of them is a broad area and unfortunately elaborating them 

separately was not possible in this study due to time constraints. 
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6.1.2. Internal Validity 

Selection bias is a threat to internal validity. We selected totally 16 people from different teams with 

different roles which were familiar with Open Source. Some of them had Inner Source experience and 

some were totally new to the concept. Selection of participants in the case study could be a threat to 

internal validity. 

Extraneous variable is another threat to internal validity. We identified list of challenges which lead to 

lack of contribution. This causal relationship could have been affected by other hidden factors that 

were unknown to the researcher. 

6.1.3. External validity 

Setting bias is a threat to external validity. The study was carried out in a large IT company with well-

defined processes and tools. The results could vary if the study is carried out in a different context for 

example a small company which uses different processes with different maturity level.  It must e 

considered that the purpose of case study is not to generalize the results but to study a case in a 

specific setting. 

6.1.4. Reliability 

We believe that the data and analysis done is not dependent on the researcher. Processes for data 

collection and analysis were clearly defined. Results are documented, and recordings are available. 

Future studies in the same setting should produce consistent results. 

 Implications for research 

RQ3 covers a broad area and some of the process such as development processes and project 

management in Inner Source were touched upon in this study, but they require deeper examination 

and worth a study on their own. The suggested adoption framework leaves a lot of room for 

investigation for researchers. In addition, criteria for product identification was identified which 

requires to be validated through more empirical data. 

Evaluation of the implementation of Inner Source in the company was out of the scope of this research 

but it would be of interest to perform a post-implementation study to evaluate the findings.  

Whether the results of this study could be generalized to other companies could also be an interesting 

topic to explore. 

 Implications for practitioners  

This study has contributed to the existing body of knowledge by providing a comprehensive list of 

challenges in Inner Source from different aspects and suggesting approaches to overcome the 

challenges.  

We identified product selection criteria and an adoption model for inner sourcing was also proposed.  

This study could be used as guideline by other companies and practitioners who are considering 

adopting Inner Source. 
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8. Appendixes 

 Appendix 1: Successful Open source projects 

Source: Open Source Initiative: (http://royal.pingdom.com/2009/05/29/the-8-most-successful-open-

source-products-ever/) 

 

Open source in itself is a success story. From being a niche concept, it has become a mainstream 

movement (well, more or less) and has received the attention of both individuals and businesses 

worldwide. There are thousands of open source projects and products out there, but which ones are 

the most successful? By successful we mean widely used and widely known. While there are many 

successful open source products, a few stand head and shoulders above the rest. We have listed them 

here below. 

 

LINUX 

Why it is a success: Linux, hand in hand with GNU software as GNU/Linux, has come a long 

way since Linus Torvalds announced that he was creating an OS kernel based on Minix back in 1991. 

These days, a majority of web servers run Linux, and with Ubuntu (see below) it is also (finally) starting 

to make inroads into the desktop market, and maybe it will soon also be strong player in the mobile 

market with Android (which uses the Linux kernel). 

 

UBUNTU 

Why it is a success: Launched in 2004, Ubuntu is by far the most popular Linux 

distribution today, especially on the desktop side. Considering the massive success of Ubuntu in recent 

years, we thought it was worth its own mention here even though we already mentioned Linux. 

 

BSD 

Why it is a success: FreeBSD, OpenBSD and NetBSD have been well-respected server 

OS alternatives for a long time. Derived from Berkeley Unix in the 1990s, we chose to put them into 

one group here. As an interesting aside, the core for Apple’s Mac OS X is derived from FreeBSD. 

 

MYSQL 

http://royal.pingdom.com/2009/05/29/the-8-most-successful-open-source-products-ever/
http://royal.pingdom.com/2009/05/29/the-8-most-successful-open-source-products-ever/
http://en.wikipedia.org/wiki/Linux
http://www.ubuntu.com/
http://www.freebsd.org/
http://www.openbsd.org/
http://www.netbsd.org/
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Why it is a success: MySQL is the most widely used database server in the world, used 

by a huge amount of websites and services (examples include Wikipedia, Facebook and, more 

modestly, our very own Pingdom.com…). It’s the M in the hugely popular LAMP stack (Linux, Apache, 

MySQL, PHP). 

 

APACHE 

Why it is a success: The Apache HTTP Server has been the most popular web server 

software in the world since 1996, which is also the year it got started. Apache still has a strong lead, 

outclassing second runner up IIS in terms of number of deployed websites (according to Netcraft, 

Apache is currently used by 46% of all websites, while IIS is used by 29%). In 2009 it passed a huge 

milestone, becoming the first web server to be used by more than 100 million websites. 

 

FIREFOX 

Why it is a success: Mozilla’s crowning achievement so far, the Firefox web browser 

has become a mega success. Firefox 1.0 was launched in 2004 and the browser has since then taken 

away a huge chunk of the browser market from the previously dominant Internet Explorer, and is 

arguably the reason that Microsoft started to put more effort into updating IE with new versions. 

Although Firefox is still number two overall, it has become the dominant browser among the more 

“techie” crowd (this blog, for example, gets 59% of its visits from Firefox and just 18% from IE). 

 

WORDPRESS 

Why it is a success: Since its launch in 2004 as a fork of the b2 blog 

software, WordPress has become a dominant and hugely popular blog platform. In a survey we made 

back in January, 27% of the top 100 blogs ran on WordPress. If you also counted WordPress.com, 

Automattic’s hosted WordPress service, that number rose to 32%, more than any other blog software. 

Since then there have also been some changes, such as the nine Wired blogs in the top 100 switching 

from Typepad to WordPress.com, so that percentage is likely significantly higher now (all else 

unchanged, it would be 41%). 

 

BIND 

Why it is a success: BIND (The Berkeley Internet Name Domain Server) is the most 

widely used DNS server software on the Internet. The first version of BIND goes all the way back to the 

early 1980s and has been the main DNS server on UNIX systems ever since. It can justly be called the 

world’s de facto standard DNS server. 

http://www.mysql.com/
http://httpd.apache.org/
http://news.netcraft.com/archives/2009/05/27/may_2009_web_server_survey.html
http://www.mozilla.com/firefox/
http://www.wordpress.org/
http://royal.pingdom.com/2009/01/15/the-blog-platforms-of-choice-among-the-top-100-blogs/
http://royal.pingdom.com/2009/01/15/the-blog-platforms-of-choice-among-the-top-100-blogs/
http://ma.tt/2009/04/wired-joins-the-family/
http://ma.tt/2009/04/wired-joins-the-family/
https://www.isc.org/software/bind
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 Appendix 2: Questionnaire (Guideline for interviews) 

Investigate the possibility of adopting 
Inner Source in the company: A case 
study 

1- Background 

Open-source software (OSS) is software with its source code. It is available with a license that allows 

everyone to download, use and change the software. The source code is not hidden from users and 

they are considered as beta testers. Today there are many successful examples of OSS available such 

as Linux, Apache server, Mozilla, etc. It is reported that adopting open source software resulted in saving 

of 60 billion dollars per year. Besides, adopting OSS has many benefits including low cost, increased 

quality, involvement of skilled developers from all around the world which means more people are 

monitoring the project, learning from the community, etc. On the other hand, it involves many challenges 

such as product documentation, support and maintenance, integration, migration, etc.  

Applying Open Source Software development practices and tools within a company is called Inner 

Source. It is becoming more and more popular nowadays. According to Gaughan et al. the motivations 

for adopting this approach is the possibility to get support from distributed developers and increase of 

software reuse and quality as a result of increased software availability and transparency. In addition, 

everyone in the organization is invited to participate either as developer or contributor which could 

lead to innovation and increased awareness plus increased speed of development. 

However, like open source software development, it is not a straight forward approach. It has many 

effects on the organization. It affects the way projects are sourced and managed. In addition, the 

adoption model must match the organization goals and scope. It also affects the operational aspects 

such as how developers across the company can access and modify the source code. Therefore, 

companies need to study it carefully before deciding to go for it.  

 

2- Questions 

❖ expected benefits/ Challenges 

1. Has inner-sourcing ever been discussed/tried? 

2. What benefits do you expect from Inner-sourcing a product?  

3. What are the challenges/obstacles? 

4. What could be the motivations for involvement? 

 

❖ Product 

1. Are there products that are developed mutually/reused by different departments? 

2. What product is a good candidate for Inner Source? What characteristics should it have to 

make it suitable? 

2.1. If it is in early stages of development or if it is quite stable? 

2.2. What size? Why? 

2.3. What Technology? Why? 

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Source_code
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2.4. Usage? Internal/for customer? Why? 

2.5. Architecture/Modularity? Why? 

2.6. Is there any product that you can think of as a good candidate? 

 

❖ Adoption by the company 

1. What development processes do you use today? In which ways Inner Source is different from 

your current way of working? 

2. What infrastructure is required for it? Tools, resources, roles, etc? 

3. Which adoption model suits us better? Project based or infrastructure based? 

4. What strategies should we have for project management, organization structure, costs 

sharing, etc. 

5. How to manage contributions and coordinating developers? 

6. How to ensure quality? 

7. Support/maintenance? 

8. How do these practices/tools address challenges? 
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 Appendix 3: Candidate products for inner sourcing 

The following products were identified by different teams as a good candidate for Inner-sourcing and 

they shared most of the characteristics mentioned by interviewees. Information about each product 

is obtained from the internal documents at the company and their web portal. 

• JVS  

JVS is the framework and reference architecture for Java Enterprise applications at the company.  The 

latest version, JVS4, is the natural evolution of the framework, based on Spring 4 and Java EE 6. 

 JVS4 adds value in several aspects: 

➢ Makes it possible to build applications using the programming model of Java EE 6 with older 

Application Servers including concepts like Dependency Injection and Managed Beans. 

➢ Makes it possible to have a development round-trip for deployment in the range of seconds 

instead of minutes. 

➢ Easy and structured way to handle configuration of different environments like TEST, QA and 

PROD. 

The main theme for JVS4 is to increase both developer- and operational efficiency, taking the total 

lifecycle cost of JVS software solutions into account. 

To support this goal, JVS4 covers the complete end-to-end scope of software development, from 

business idea to working software in production. 

JVS has the following characteristic mentioned by interviewees: 

➢ High usability  

➢ Common Technology Java 

➢ Modular architecture 

➢ Company specific 

➢ Well documented 

 

• NVS 

NVS is the framework and reference architecture for .Net applications at the company. 

As can be seen in the picture below it includes: 

➢ design and develop guidelines  

➢ Common libraries for security, integration, … 

➢ Sample applications 

➢ Quick startup solutions 
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NVS It has the following characteristic mentioned by interviewees: 

➢ High usability  

➢ Common Technology .Net 

➢ Company specific 

➢ Modular architecture 

➢ Well documented 

 

 As can be seen in the below picture both JVS and NVS follow the primary reference architecture at the 

company called AVS and all applications developed at the company must follow its principles. 
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• JSVS  

JVS is the Framework and Reference Architecture for JavaScript applications at the company. 

All the above-mentioned frameworks make it easier for quick startup of the development of 

applications without the need to search for guidelines or tools or libraries. They contain everything 

that architects and developers need without having to worry about conformity to company standards. 

In other words, these products serve as a common base for the solutions developed at the company 

and have a great potential of being Inner Sourced. Even at some point one of the products were tested 

for Inner-sourcing. 

JSVS has the following characteristic which interviewees mentioned: 

➢ High usability  

➢ Common Technology JavaScript 

➢ Company specific 

➢ Modular architecture 

➢ Well documented 

➢ Initial phases  

• Common platform by VGT 

Telematics is an area of technology based on vehicles being wirelessly connected. It enables cars and 

commercial vehicles to do everything from calling for help, connecting fleets, saving fuel, track Stoln 

vehicles to preheating your car. Existing services can be enhanced, and entirely new services can be 

created using this platform.  
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It has the following characteristic mentioned by interviewees: 

➢ Company specific 

➢ High usability  

➢ Common Technology Java 

➢ Modular architecture-Micro Services 

➢ Well documented 

 

 


