
Effects of Video Compression formats on
Neural Network Performance

Bachelor of Science Thesis in Software Engineering and Management

Marko Stanoevich
Jonathan Partain

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019



The Author grants to University of Gothenburg and Chalmers University of 
Technology the non-exclusive right to publish the Work electronically and in a 
non-commercial purpose make it accessible on the Internet. 
The Author warrants that he/she is the author to the Work, and warrants that 
the Work does not contain text, pictures or other material that violates 
copyright law. 

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this 
agreement. If the Author has signed a copyright agreement with a third party 
regarding the Work, the Author warrants hereby that he/she has obtained any 
necessary permission from this third party to let University of Gothenburg and
Chalmers University of Technology store the Work electronically and make it 
accessible on the Internet.

© MARKO STANOEVICH, August 2019.
© JONATHAN PARTAIN, August 2019.

Supervisor: CHRISTIAN BERGER
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019



Effects of Video Compression formats on Neural
Network Performance

Marko Stanoevich
Department of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
gusstanoma@student.gu.se

Jonathan Partain
Department of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
gusparjo@student.gu.se

Abstract—The field of autonomous vehicles and driverless cars
is a field which makes extensive use of machine learning and
artificial intelligence, relying on it to make decisions. These
decisions require a vast amount of data in order to be properly
inferred. This data is often in the form of images from a video
feed and an increase in the amount of data is directly correlated to
more refined decision making. What if you could remove certain
parts of the data by compressing the image input, and how
would that influence the performance of the different machine
learning algorithms? In this report we have two datasets that
we compress in different ways. We then analyze the results
of running a pre-trained neural network model on them, and
compare it’s performance to that of running the same neural
network model on the non-compressed datasets. The results
show that the removal of data via compression is not in a
linear relationship with neural network performance, and that
depending on the compression type, results may be favorable or
unfavorable.

I. INTRODUCTION

A. Background

Whilst the idea of driverless cars is not a new one, the
field of autonomous vehicles is relatively young. The task of
driving a vehicle and being aware of one’s surroundings might
seem trivial to a human. However, there is a vast underlying
complexity to decision making during driving. Therefore, the
task of designing a system which is able to not only get
from point A to point B, but to do so through a complex
and at times chaotic environment in a safe and efficient
manner is anything but trivial. The developments in the field
of Artificial Intelligence and Machine Learning (ML) have
contributed immensely to the development of autonomous
vehicles. Autonomous vehicles operate based on data about
their surroundings which is gathered through cameras and
other sensors such as radar and lidar. In order to process all
of this data, ML is used as the basis for all decision making,
ranging from lane changing and following the rules of traffic
to collision avoidance and saving the lives of people on the
road.

B. Problem Domain & Motivation

Autonomous driving requires a lot of video data to be
analyzed quickly. Streaming and analyzing a large amount
of data requires high and fast bandwidth. For these reasons

using video compression might prove beneficial as it removes
parts of the data from the video deemed as repetitive by the
video codec in use, which decreases the size of said video
and may lead to improved response times. However, as video
compression infers the loss of data, some of the data being
lost might be critical as the ML algorithm may be relying on
said missing data to classify an object. We define critical data
as data which if removed or altered has a causal relationship
with decreased prediction performance of a ML algorithm.
Thus, it is crucial to use a video compression format that
ensures the best trade-off between unnecessary data reduction
and retention of critical data.

C. Research Goal & Research Questions

In this paper we will focus on image data, used as input
to a ML algorithm. How humans see and process video and
images differs completely to how a computer views it. The
perception of colors, shapes and size differences of objects
is affected by the object’s distance, lighting, familiarity as
well as the image’s resolution. The effects of compression
on human perception of digital media can be quantified via
the use of metrics such as the Structural Similarity (SSIM)
[1] index and Peak Signal to Noise Ratio (PSNR). The goal
for this research project is to determine what influence do
lossy video codecs optimised for human vision have on the
performance of a ML algorithm developed and trained for the
purpose of tackling a problem in the domain of autonomous
driving.

RQ1: How do video codec parameters optimised for
SSIM/PSNR influence the performance of a selected machine
learning algorithm?

RQ2: What video codec parameters for lossy encoding
result in the best performance of a selected machine learning
algorithm?

To answer these questions we will be making a comparison
between the performance of a ML algorithm running on
different variants of encoded datasets, using the observed
algorithm’s performance on the original dataset as a baseline



for comparison. The algorithm that we will be using is a
pre-trained model that has been trained using non-compressed
images to detect traffic cones and color of said traffic cones.

D. Contributions

Marko was responsible for comparing the data from each
preset and tune to the original baseline data, and creating plots
and graphs from said data.

Marko worked on the Introduction section, Related Work,
Methodology, Results, Analysis and Discussion, as well as the
Conclusion and Future Work section.

Jonathan was responsible for the automation of the data
collection process, which extracted data from running YOLO
on all images, grouping it by preset and tune.

Jonathan worked on the Introduction section, Related Work,
Methodology, Results, Analysis and Discussion, as well as the
Conclusion and Future Work section.

Marko took the lead on the Related work and Methodology
section, while Jonathan did the same for the Results and
Analysis and Discussion, with both members contributing to
the others sections in various ways, ranging from minor fixes
to several paragraphs.

E. Scope

As already mentioned, this study covers the effects that
video compression optimized for human perception has on
the performance of a neural network trained for the purpose
of addressing an autonomous driving related domain problem.
The neural network model is treated as a black box and is
not re-trained during any point of this study. This study does
not cover the effects of video compression on neural networks
performance, in cases where said network model is trained to
address a problem in a domain outside that of autonomous
driving, nor does it cover the effects of video compression
optimized for any purposes other than human perception.

F. Structure of the Article

This article is divided into six sections:
• In the first section we describe the background to the

problem which we wish to address, state the motivation
for our research, outline our research goal and questions
and define the scope of our research.

• In the second section we elaborate on three studies that
loosely relate to our research.

• In the third section we describe the setup of our experi-
ment, namely the ML algorithm and compression codec
which we are using, how we handle data compression,
data collection and data analysis.

• In the fourth section we present the results from our
experiment in a graphical format via the use of two
dimensional plots and describe our corner cases.

• In the fifth section we analyze how our results relate to
our research questions, discuss potential validity threats
to our experiment and elaborate on the steps we took to
mitigate them.

• In the sixth section summarize our entire study and
discuss potential future work that could be carried out
to add upon the results of our experiment.

II. RELATED WORK

As of the time of writing and extent of our knowledge there
are multiple studies on the affects of image quality on neural
networks. However, none of them directly address the domain
of autonomous driving. Nevertheless, they still examine the
topic of neural network performance on compressed data, thus
we will still examine five such studies as they relate to our
topic.

A. Dodge & Karam

In their study study titled ”Understanding How Image
Quality Affects Deep Neural Networks” [2], Dodge and Karam
evaluate the four different neural network models for image
classification under five different quality distortions - blur,
noise, contrast, JPEG and JPEG2000. Their result shows
that existing neural networks are are in fact susceptible to
image quality distortions, with blur and noise having the most
profound affect.

B. Koziarski & Cyganek

In their study titled ”Impact of Low Resolution on Image
Recognition with Deep Neural Networks: An Experimental
Study” [3], Koziarski and Cyganek evaluate the classification
accuracy of notable neural network architectures as of its
publish date. They also examine the potential application of
super-resolution prior to classification and its effect on classi-
fication accuracy. Their experiment shows that there is merit
to the use of super-resolution in cases where image resolution
is not severely decreased as otherwise classification accuracy
on very low resolution images remains low, concluding that
contemporary neural networks remain significantly affected by
low resolution.

C. Roy, Ghosh, Bhattacharya & Pal

In their study, ”Effects on Degradation on Deep Neural
Networks” [4] the authors evaluate an alternative architecture
for image classification based on grouping neurons into so
called capsules and a new dynamic routing protocol. Though
this new capsule based architecture is showing promising
results when used on existing datasets, their goal is to evaluate
its performance on data containing inherent noise. In order
to do so the authors compare the performance of six widely
used Convolutional Neural networks (CNNs) on two different
datasets under various image quality distortions. The authors
show that high accuracy for classification when a dataset
contains a very large number of classes is not currently
attainable, however the new capsule architecture does in fact
prove robust to certain image degradation. Performance is
most affected in the presence of motion and Gaussian blur
and salt and pepper noise.



The key take away from the mentioned literature on the
subject seems to be that different blur and noise have the most
detrimental affect on neural network prediction confidence.

D. Roy, Dziugaite & Ghahramani

This study, ”A Study of the Effect of JPG Compression
On Adversarial Images”[5], compares how adversarial images,
which are natural images that have been modified in a way
to fool an image classifier, that have been further compressed
compare against normally compressed images, as almost all
image classification data is composed of JPG images. The
results of the study is that JPG compression does reverse the
drop in classification accuracy, meaning that JPG compression
definitively affects the way that a neural network views an
image.

E. Quijas & Fuentes

In their study, ”Removing JPEG Blocking Artefacts Using
Machine Learning”[6], they write about JPEG compression,
what results tbe compression can yield and what issues may
appear in the resulting images. While the study is not directly
related to our topic, it shows the effects that JPEG compression
has on images, as well as how the compression can be tuned
for better compression results. This means that with further
work regarding how the images in our study are compressed,
better results may be possible, as our study only used pre-
existing presets for our compression parameters.

III. METHODOLOGY

In order to answer our research questions we are going to
carry out an experiment. The basic idea is that we are going
to use a pre-trained Machine Learning algorithm and evaluate
its classification accuracy when said algorithm is used on
lossy datasets. The different datasets will be inferred via the
use of compression with different video codec parameters
optimised for SSIM and PSNR.

In the context of our study the independent variables are
the different datasets corresponding to different compression
parameters. Thus we have multiple treatments in our exper-
iment. The dependent variables are the number of detected
cones and the subsequent prediction confidence percentages
for each detected cone.

The computer system which we are using for our experiment
has a Nvidia GeForce GTX 960M GPU, an Intel core i7
4720HQ CPU and 8GB of RAM. Our system is running
Ubuntu 18.04.1 LTS.

A. Machine Learning Algorithm

In our experiment we are using YOLOv3 [7] as our neural
network for object detection. YOLO standing for ”You Only
Look Once” is a neural network developed using the open
source neural network framework - darknet. It functions by
applying a single neural network to a full image, which
divides the image into regions and predicts bounding boxes
and probabilities for each region. Bounding boxes are weighed

by the predicted probabilities. YOLOv3 stands for the latest
version of YOLO, exhibiting the best speed and accuracy.

We are using a pre-trained neural network model developed
at REVERE [8] with the purpose of detecting traffic cones and
their respective colors from the point of view of a vehicle. We
decided to use this model as it is within the confines of the
automotive domain and as it provides two datasets to work
with.

B. Compression

In order to compress our datasets we are employing ffmpeg
[9]. We selected ffmpeg as the tool for compressing our
datasets as it is a leading multimedia open source framework
for encoding, decoding, transcoding, streaming and more, that
exhibits great performance.

The video codec we will be using to compress our dataset
is x264 [10]. We selected x264 as it is a popular open-source
codec that is published under the GNU General Public License
and because it comes with tunes optimized for SSIM and
PSNR. It has 10 default presets: ultrafast, superfast, veryfast,
faster, fast, medium, slow, slower, veryslow and placebo. We
are examining the effects of compressing our data using every
x264 preset with the exception of placebo, tuned for SSIM and
PSNR respectively. We opted for not including the placebo
preset as part of our experiment as its use is discouraged by
the developers of ffmpeg.

The naming of the compression presets comes from how
long it takes to compress an image using said preset. That
means that the slower the compression is, the more the images
that are processed are compressed, and more data is removed.

We have two datasets to compress, the first one is a
smaller in volume annotated dataset used for training the
neural network model, whilst the second one is a bigger in
volume non-annotated dataset. As both datasets comprise of
sequential jpg frames and as ffmpeg can only encode video
files, we first compile each dataset into a mp4 file via the
use of ffmpeg. After we have inferred the video files we then
proceed with encoding them one by one by specifying the
video codec, preset and tune. This results in 18 differently
encoded variants for each dataset which we then convert back
into sequential frames. However as the inferred sequential
frames are in lossless png format and as our neural network
model requires jpg files, we convert the png files back into
jpg via the use of imagemagick [11]. This entire process
is illustrated in Figure 3.1. We also wanted a baseline to
compare everything against, which is a set of non-compressed
images. The images went through the exact same process as
the compressed datasets with the exception of encoding - they
were compiled into a mp4 file, divided into frames and then
converted back to jpg format. This way all of the files have
been handled in the exact same way, with only compression
and tune differentiating them.

To convert images in a directory into a video we use the
command:



Figure 3.2
Example result after running YOLO on an image. Bounding boxes around each detected cone with a label stating the color

of the cone. Taken from one of our completed executions of YOLO

$ ffmpeg −f image2 − i %d . j p g v i d e o .
↪→ mp4

And to split a video into images we use the command:

$ ffmpeg − i v i d e o . mp4 %d . j p g

Between these commands, we encode/compress using the
command:

$ ffmpeg − i v i d e o . mp4 −c : v l i b x 2 6 4 −
↪→ p r e s e t p r e s e t−name −t u n e tune−
↪→ name e n c o d e d v i d e o . mp4

Then, to convert all of the png files in a directory to jpg files,
we run:

$ mogr i fy −f o r m a t j p g −q u a l i t y 100 ∗ .
↪→ png

C. Data Collection

For the purposes of data collection we have created an
automation script [12] which runs our neural network model
on each one of the 18 different variants of our datasets,
placing the results into different directories named after the
respective preset and tune combination. The neural network
uses jpg files as input and produces other jpg files with
labeled bounding boxes drawn around every detected cone as
output as can be seen in Figure 3.2, along with a text file

Figure 3.1
Data preparation sequence.

which includes all detected colors of cones and subsequent
percentages corresponding the the prediction confidence for
said colors. For the purpose of analysis we are basing our
evaluation on the confidence percentage values, which can be
found in the produced text files.

We measured the time it takes for our script to evaluate



all variants of a dataset. Our datasets vary in volume, the
smaller dataset comprises of 318 frames, whilst the bigger
one comprises of 746 frames. Due to this the it takes 18
minutes and 46 seconds to evaluate the original small dataset
and a total of 5 hours and 55 minutes to evaluate all encoded
variants of the small dataset. To evaluate the original big
dataset it takes 42 minutes and 52 seconds whilst to evaluate
all encoded variants of the big dataset it takes a total of 13
hours and 42 minutes. These measurements are inherently
related to our specific system setup and can be affected by
additionally running processes. For this reason evaluation
and time measurement were carried out after a fresh reboot
without starting any additional processes.

D. Data Validity

For the purposes of ensuring data validity, i.e. ensuring that
the algorithm does not detect cones where there are none, we
have carried out a manual sanity check on the results from
each preset and tune combination.

E. Data Analysis

For the purposes of data analysis we have created a number
of python comparison scripts [13].

Each line of the generated text file contains a color, and a
percentage value which represents how confident the algorithm
is that a cone with said color can be found in the image.

As our goal is to compare the difference in performance
of our neural network, and that performance can quantified
via the sum of prediction confidence percentages for each
detected cone, these percentages are all added up to a total
for each dataset. This is the done for all existing frames for
each combination of compression preset and tune. Thus we
are able to compare the total prediction confidence of every
encoded dataset to that of the original dataset as a baseline.

Even though one of our datasets has annotations for cone
positions, we opted for not using said annotations as when
further inspected, not all cones seem to be marked in many of
the frames.

As one of the initial goals with compressing our data is to
reduce file size, we are also taking into account what effect
does each combination of preset and tune have on the total size
of a compressed dataset. We use the total size of the original
datasets as the baseline for comparison.

When comparing the results from the annotated dataset to
those of the non-annotated dataset, thus inferring an average
result it is important to mention that the non-annotated dataset
is larger than the annotated one. This ends up skewing the
average results to closer resemble the results of the non-
annotated data than those of the annotated data. This in itself
is not inherently negative, as the algorithm treats all data the
same, though it is still important to mention as to ensure that
the results are as non-biased as possible.

IV. RESULTS

In the case of the annotated datasets as illustrated on Figure
4.1, superfast PSNR exhibits the best performance of 99.92%

however it also exhibits the second highest file size of 96.22%.
Ultrafast PSNR exhibits the lowest filesize of 87.37%, however
it also exhibits the second worst performance of 97.02%.
Ultrafast SSIM exhibits the worst performance of 96.56% and
an average file size of 92.46%. Superfast SSIM exhibits the
highest file size of 97.82%, however it also exhibits the second
best performance of 98.95%.

In the case of the non-annotated datasets as illustrated on
Figure 4.2, ultrafastSSIM exhibits the best performance of
102.48% whilst also exhibiting the fourth highest file size
of 101.85%. Slower PSNR exhibits the lowest file size of
92.24% and an average performance of 84.11%. Veryfast
PSNR exhibits the worst performance of 78.16% as well as
exhibiting the fifth highest file size of 100.6%. Superfast SSIM
exhibits the highest file size of 112.22%, however it also
exhibits the third best performance of 88.73%.

As illustrated on Figure 4.3, on average ultrafast SSIM
exhibits the best performance of 99.52%, whilst also exhibiting
the fifth highest file size of 97.16%. Ultrafast PSNR exhibits
the lowest file size of 91.69% as well as exhibiting the second
best performance of 98.32%. Veryfast PSNR exhibits the worst
performance of 88.07% and exhibits the sixth highest file size
of 97.06%. Superfast SSIM exhibits the highest file size of
105.02%, however it also exhibits the third best performance
of 93.84%.

V. ANALYSIS AND DISCUSSION

In almost all cases when looking at the average results
from both datasets, almost every encoding preset shows similar
results for both SSIM and PSNR. One noticeable pattern
is that the same encoding preset with SSIM has a slightly
higher average performance percentage, as well as increased
file size when compared to its PSNR counterpart. However,
when looking only at the results from the annotated dataset,
we can observe a pattern of better performance for the same
encoding presets combined with PSNR rather that SSIM, and
a general decrease in file size. Regarding the first research
question about how the performance of the machine learning
algorithm is influenced by the different encoding presets tuned
for SSIM and PSNR, we can see that algorithm performance
is reduced in almost all cases but ultrafast SSIM and a general
decrease in data file size is observed in all but superfast and
veryfast, for both SSIM and PSNR tuning.

When evaluating what combinations of presets and tunes
are applicable for use, all of the preset/tune combination
that exhibit an increase rather than a decrease in file size
in comparison to the baseline, should be discarded. In all
cases but ultrafast SSIM for the non-annotated dataset such
combinations exhibit decreased performance, on top of the
increase in file size, meaning there is no objective value in their
application. Examples of such combinations observed for the
non-annotated datasets are superfast SSIM, superfast PSNR,
veryfast SSIM and veryfast PSNR, whilst in the case of the
combined average results from both datasets examples for such
combinations are superfast SSIM and superfast PSNR.



Figure 4.1
Neural network performance and file size in comparison to the baseline in the context of the annotated variants.

We observed a decrease in neural network performance
in almost all cases for each compression preset and tune
combination. The only time that a higher than the baseline
performance was observed was in the case of the ultrafast
preset with SSIM tuning from the non-annotated dataset. This
dataset did however have a larger total file size than the
baseline.

The dataset with almost the the same performance of
99.63%, and lower file size of 96% is the ultrafast preset
with PSNR taken from the non-annotated dataset, and su-
perfast with PSNR with superfast SSIM close behind from
the annotated dataset. When we calulate the average of both
datasets, nothing was observed for exhibiting higher than the
baseline performance. The closest example is ultrafast SSIM
followed closely by ultrafast PSNR, exhibiting 1% decrease in
perfomance, and with ultrafast PSNR being about 5% smaller
compared to the baseline.

These results show us that the best performing preset overall

is ultrafast, with the PSNR version being the better when it
comes to size vs performance. While the SSIM variant has a
higher average performance, it is almost the same size as the
baseline, and therefore takes about the same bandwidth for a
similar performance. The PSNR variant has a lot smaller size,
with very similar performance, making that combination the
best overall result when taking size into account.

Most of the observed results are not very surprising. When
compressing and removing data from an image, neural network
performance will decrease as this introduces the possibility
that the lost data may critical. What is surprising is how
the non-annotated dataset performed with ultrafast SSIM,
returning a higher performance percentage than the baseline.

Looking at the results from both the annotated and non-
annotated dataset, we can see that a number of preset and
tune combinations stand out more than the rest. These are
the two fastest presets with both tunes - ultrafastSSIM, ul-
trafastPSNR, superfastSSIM and superfastPSNR, which stand



Figure 4.2
Neural network performance and file size in comparison to the baseline in the context of the non-annotated variants.

out from the rest in both performance and size. In order to
determine whether these examples are outliers we employed
the Interquartile range (IQR) method as our statistical test for
the combined average results, which set’s up a ”fence” outside
the first and third quirtiles, where any results that fall beyond
the bounds of this ”fence” are considered outliers. We illustrate
this via the use of two box plots as can be seen in figures 5.1
and 5.2.

We observe that based on the IQR method, ultrafastSSIM
and ultrafastPSNR can be cosnidered as outliers in terms
of neural network performance, whilst superfastSSIM can be
considered an outlier in terms of file size after compression.

One of the reasons that these specific presets are the ones
that stand out, is because they are the closest to the original
data compared to every other preset, as they are compressed
using the fastest presets, meaning they are the least compressed
as well. That being said, two of the presets with the least
performance in the annotated dataset was the ultrafast preset,

as well as being the preset with the smallest size. This result
shows that the compression is not always perfectly reliable,
and results can vary despite using the same presets.

It is also important to understand the difference between the
two datasets. The images in the annotated dataset were taken
with snow on the ground and different lighting conditions
compared to the non-annotated images which were taken with
no snow on the ground, and different lighting. This makes
it so that a direct comparison cannot be made between the
two datasets, which is why we compare the presets against
an execution of non-compressed images, and why the data
between the two presets can vary in many different ways.

Despite us having the annotations for the cone positions
for one dataset, we cannot use them as the base truth for
the annotated dataset. The reason for this is because that
would require a modification of the algorithms output so that
it calculates and notes down the positions of each detected
cone, which is beyond the scope of our capabilities. It is



Figure 4.3
Average neural network performance and file size in comparison to the baseline.

Figure 5.1
Boxplot for neural network performance.

Figure 5.2
Boxplot for file size after compression.



also important to note that not all cones in each image are
annotated, so making a direct comparison to them would yield
incorrect results.

Dodge and Karam[2] delved into the topic of image quality
based on distortion, showing that blur and noise had the largest
effect on image classification neural networks. This can be
identified in our results as well, where the images tuned for
PSNR, which has less noise than SSIM, had overall better
detection relative to their filesize. The amount of data that we
have is however not enough to draw any conclusions from,
but can instead serve as data to validate some of our results.

Koziarski and Cyganek[3] wrote about low resolution im-
ages and the effect they have on a neural network. While we
write about compression, similarities can still be seen between
low resolution images and highly compressed images, at least
from a human point of view [14]. This helps show that higher
compression looks similar to low resolution images in certain
situations, but they are not directly comparable. Compared to
our data, you can see that the higher compression we use,
the worse the results tend to be, which is in line with the
conclusion that Koziarski and Cyganek drew, which proves
that contemporary neural networks are significantly affected by
low resolution, while our data shows that higher compression
yields worse results.

Roy, Ghosh, Bhattacharya and Pal[4] wrote about degraded
images on six widely used Convolutional Neural Networks.
The key takeaway here is similar to what Dodge and Karam
had, which is that blur and noise had the largest effect on the
different neural networks.

In the study made by Roy, Dziugaite and Ghahramani[5],
they tested how compressing adversarial images affected an
image classifier, which is a type of machine learning algorithm
that learns to detect certain types of objects or animals.
Their results were that by compressing the images, the image
classifier had an easier time identifying whatever object was
on the image correctly, even though a human could not tell
the difference of the adversarial effect. This however, was not
always the case, and there were exceptions.

This shows that there is a lot more data that is being
read by the machine learning algorithm that affects, and that
compressing images definitively affects how easy or hard it
can be for a machine learning algorithm to identify items. We
observed a similar effect when identifying cones in images
with the different presets, and the results we were given were
not always as expected. Some of the presets gave a lower
detection percentage compared to their collective size, which
could mean a number of things. What could be done to
improve our knowledge of what affects the compression the
most would be to manually control all of the variables when
compressing images, changing one at a time and seeing the
effects on machine learning algorithm.

Quijas and Fuentes study, ”Removing JPEG Blocking Arte-
facts Using Machine Learning”[6], shows in more detail what
effects JPG compression has on images, and how they used
machine learning to tune the compression for the best results
possible.

A. Threats to Validity
1) Construct Validity:

A threat to construct validity would be if our neural network
is not legitimate. By this we mean that it is not one that
is recognized as having sufficiently good performance as to
be used as the solution to a real world problem. In order to
mitigate this threat we selected YOLO, which is a proven
real-time object detection system. YOLOv3, the third release
of the model is extremely fast and accurate.

2) Internal Validity:
We have a number of events that may threaten the internal
validity of some results, so we have taken steps to prevent
and reduce said risks ensuring that the data is as comparable
as possible.

In order for the data extracted from running the machine
learning algorithm to be as consistent as possible, all evalua-
tion of the datasets with the neural network is carried out on a
single hardware setup, with no additionally running processes.
This ensures as consistent results as possible.

In order to mitigate potential human error when running
the neural network on each variant of the datasets, we have
created the aforementioned automation script which, runs the
neural network on all variants of a dataset one after the other,
and stores the results in different directories.

To avoid errors when comparing data, we created the afore-
mentioned comparison scripts to automate the comparison
process and return the results. This ensured that there would
be no human error as in incorrect results when calculating
differences, or in inconsistent rounding errors.

An issue that we had was running the machine learning
algorithm using lossless png files, as png images could not be
used for our neural network. Instead, we had to convert them
to jpg files. we did so via the use of the command ’mogrify’
which is part of the imagemagick tool available for linux,
with the ’–quality 100’ flag. This flag is used to keep the jpg
compression as unobtrusive as possible, keeping it in line with
the quality of a png file as much as possible. According to the
documentation of imagemagick, this means that the chroma
channels are not downsampled, and is a request for a non-
lossy compression.

3) External Validity:
An external validity threat to our study would be if the neural
network model is not trained for the purpose of performing a
task specific to the domain of autonomous driving, in which
case our result would not be generalizable enough as to apply
to said domain. In order to mitigate this validity threat we
selected a model that is trained for the task of detecting traffic
cones and the colors of said traffic cones. This task is within
the domain of autonomous driving, as an autonomous vehicle
must have the ability to detect traffic cones.

Another external validity threat to our study would be if the
data which we use is not varied enough as to be generalizable
to real world conditions. In order to mitigate this validity
threat we are evaluating the neural network performance
based on two datasets. The two datasets are collected in



different weather conditions, one comprises of scenes taken
during daytime semi-snowy winter conditions, whilst the
other comprises of scenes taken during a clear evening.

VI. CONCLUSION AND FUTURE WORK

In this study we experimentally evaluated what effects
does x264 encoding optimized for human perception have
on neural network performance in the domain of autonomous
vehicles. We did so with the purpose of potentially proving the
applicability of x264 video encoding as a means of minimizing
the amount of data needed for the adequate performance
of machine learning algorithms used for autonomous driving
whilst retaining human perception levels of said data as much
as possible.

We encoded two datasets with one of nine common x264
presets - ultrafast, superfast, veryfast, faster, fast, medium,
slow, slower or veryslow, and one of two tunes optimized
for human perception - SSIM or PSNR. Thus we inferred
eighteen different variants for each dataset corresponding to
every combination of a preset and tune. We selected a pre-
trained neural network model that was trained for the purpose
of detecting traffic cones and colors of said traffic cones. We
then ran our pre-trained neural network on both datasets and
on each of their corresponding eighteen variants. After this we
made two comparisons. First compared the results of the neural
network performance on the encoded variants of the datasets
to that of the original datasets, after which we compared the
total sizes of the encoded variants of the datasets to that of
the original datasets. The main findings of our experiments are
the following:

• Some preset and tune combinations show objectively
unfavorable results, with a neural network performance
reduction of more than 10% whilst with a data size
increase of more than 10% such as in the case of the
superfast preset tuned for both SSIM and PSNR.

• It is possible to retain up to 97% of neural network
performance whilst at the same time reducing data file
size by more than 22% with use of the ultrafast preset
tuned for PSNR. This makes a good case for the potential
applicability of this specific preset and tune combination.

• For more than half of the preset and tune combinations
neural network performance is retained between 90% up
to 92% whilst data file size is reduced between 95% down
to 92%.

Additional future work would be required in order to
solidify the results of this experiment. Such work would
benefit from expanding on the x264 options, namely instead
of evaluating the presets, to further tweak parameters in more
detail and evaluate the resulting encoded data.

Future work on the topic would stand to benefit from includ-
ing even more varied datasets, ones that comprise of additional
weather conditions e.g. rain or a lower light environment, as
well as ones in which cones may be snowed on or have debris
or mud splashed on them, all of which would further represent
different real world conditions.

Future work on the topic would also stand to benefit from
evaluating the performance of a different neural network
model developed and trained for the purposes of addressing a
different task within the domain of autonomous driving.



REFERENCES

[1] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, p. 600612, 2004.

[2] S. Dodge and L. Karam, “Understanding how image quality affects deep
neural networks,” 2016 Eighth International Conference on Quality of
Multimedia Experience (QoMEX), 2016.

[3] M. Koziarski and B. Cyganek, “Impact of low resolution on image
recognition with deep neural networks: An experimental study,” Interna-
tional Journal of Applied Mathematics and Computer Science, vol. 28,
no. 4, p. 735744, 2018.

[4] P. Roy, S. Ghosh, S. Bhattacharya, and U. Pal, “Effects of degradations
on deep neural network architectures,” CoRR, vol. abs/1807.10108,
2018. [Online]. Available: http://arxiv.org/abs/1807.10108

[5] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect
of JPG compression on adversarial images,” CoRR, vol. abs/1608.00853,
2016. [Online]. Available: http://arxiv.org/abs/1608.00853

[6] J. Quijas and O. Fuentes, “Removing jpeg blocking artifacts using
machine learning,” in 2014 Southwest Symposium on Image Analysis
and Interpretation, April 2014, pp. 77–80.

[7] J. Redmon, https://pjreddie.com/darknet/yolo/. [Online]. Available:
https://pjreddie.com/darknet/yolo/

[8] Chalmersfsd, “chalmersfsd/yolo-perception,” Apr 2019. [Online].
Available: https://github.com/chalmersfsd/yolo-perception

[9] “Ffmpeg,” https://ffmpeg.org/. [Online]. Available: https://ffmpeg.org/
[10] VideoLAN, “x264,” https://www.videolan.org/developers/x264.html.

[Online]. Available: https://www.videolan.org/developers/x264.html
[11] I. S. LLC, “Convert, edit, or compose bitmap images,”

https://imagemagick.org/index.php.
[12] J. Partain, “Automation script,” https://github.com/MStanoevich/ThesisProject/tree/master/bash-

scripts, May 2019.
[13] M. Stanoevich, “Comparison scripts,”

https://github.com/MStanoevich/ThesisProject/tree/master/comparison,
Jun 2019.

[14] “Higher resolution or lower compression jpg’s?”
http://users.wfu.edu/matthews/misc/graphics/ResVsComp/JpgResVsComp.html,
accessed: August 2019.


