

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The effect of test case design in software
testing bots

Bachelor of Science Thesis in Software Engineering and Management

Martin Chukaleski
Samer Daknache

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Test case design for software testing bots

Outlining some of the current test design challenges associated with system testing bots and discussing

possible mitigation strategies

© Martin Chukaleksi, June 2019.

© Samer Daknache, June 2019.

Supervisors: FRANCISCO GOMES DE OLIVEIRA NETO and LINDA ERLENHOV

Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

The effect of test case design in software testing
bots

Martin Chukaleski
Department of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
guschuma@student.gu.se

Samer Daknache
Department of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
samer@daknache.se

Abstract—Traditional approaches of testing in software devel-
opment include running the test cases on a software component,
referred to as unit testing, which usually only tests a specific
part of a component, as opposed to testing the whole flow of the
system (end-to-end testing). Test bots are software automation
tools that help improve the system testing via automation, which
is beneficial for development teams as the test bots help decrease
the amount of time spent on testing. As development projects
become larger, it is important to focus on improving the test
bot’s effectiveness. The test bots run a set of test cases that check
whether the system under test meets the requirements set forth by
the customer. This thesis uses a case study approach to investigate
how test case designs can affect the test bots, and by using the
findings gathered from the study, we aim to create a guide for
test design schema for such bots. Furthermore, this study aims
to find how the software testing practices in an IT company can
differ from what the literature presents. We identify the main
challenges when using test bots in the automotive industry and
a guideline is composed of seven steps to aid stakeholders in
designing tests where test bots are part of the testing cycles.

Index Terms—test bots, software testing, system testing, end-
to-end testing, test results, test case design, automotive industry.

I. INTRODUCTION

Testing is amongst the most popular techniques used to
perform quality assurance on software systems. Even though
there are many types of testing techniques, in practice, one
of the most expensive and time-consuming techniques is
functional testing [1]. Functionality of a system can be stated
as the external behavior that satisfies all user requirements.
There are multiple types of functional testing methods which
could be performed at different levels of testing, such as: unit
testing, integration testing and system testing. Functional black
box testing, which can also be stated as behavioral testing, is a
software testing method in which the internal structure, design
and implementation of the system is being tested [2]. A test
case takes a set of input (also referred to as test data), which is
used to perform some specific computations resulting in some
data output. The output is compared to the expected result,
thus stating whether the test passes (if both match) or fails.
End-to-end (E2E) testing is a type of testing used to evaluate
if the flow of an application is behaving as designed from
beginning to the end.

The current literature provides us with knowledge regarding
the test case creation process [3], how to create end-to-end or
system tests [1] and how to avoid test design smells (poorly
designed tests) [2]. End-to-end testing can be automated by
making use of software automation tools, referred to as test
bots, which help decrease the time development teams spend
on software testing. Test bots are part of a wider range of soft-
ware bots, particularly DevBots [4], which can be described
as software applications that have a degree of autonomy that
can execute automated tasks in a repetitive schedule [5]. Test
bots differ from software bots as these types of testing bots
are different than the chat bots, voice bots or gaming bots as
they do not mimic the human social interaction. Test bots fall
in the group of productivity bots, because they improve the
development team’s productivity by automating the execution
of testing tasks [5].

Current literature however lacks studies focusing on how to
design system tests which are carried out by software bots.
The goals of this study are therefore to:

• Discover current industry practices when it comes to end-
to-end system test case design with the help of software
bots, which in a way act as the executor of the tests.
Our expected contribution for this goal is to depict the
challenges associated with the design of system tests for
test bots.

• Identify the difference between good and bad test case
design for system test and describe the underlying factors.
Our expected contribution are guidelines on how to
design system test for test bots.

A case study was performed in a company within the
software engineering industry using an investigative approach
where practitioners were interviewed and software artefacts
related to test bots were analyzed. The data collected from this
study along with the analysis, was cross-evaluated and gave us
information that guided us into creating a test design schema
for test bots. The motivation behind why this research was
performed is due to almost 50 to 70% of effort from the total
software development is spent on testing and approximately
50 to 70% of it lies in the group of functionality testing [1].
Establishing a good test design schema for the automated test

bots can potentially help provide better test coverage, which
in turn can help increase test effectiveness [6]. The usage of
the term test effectiveness implies that the test case should be
simple, faster when executing and lastly less complex (e.g.,
in terms of cyclomatic complexity and lines of code). It is
important to mention that this study does not aim to pursue
defect detection rate.

A. Statement of the problem

Though there are industry standards for test design tech-
niques [7], such standards are not completely adopted by
development teams. This can lead to teams incorporating
different testing designs thus the test case design affects the
test bots’ performance differently. In other words, teams do
not adopt a standard when designing tests and therefore our
hypothesis is that such differences can affect the effectiveness
of the test bot. Without a set of guidelines, developers may end
up creating test bots that are less time efficient and potentially
more complex than needed. Researchers interested in testing
automation have the potential to benefit from this study as
it covers test bots’ role of automating test execution and
reporting back the test results.

B. Research questions

These are the research questions (RQ’s) that we answer with
our case study:

1) RQ1: What are some of the challenges and practices
when designing and executing system tests on software
bots?

2) RQ2: To what extent does the test design affect the
effectiveness of the test bot?

3) RQ2.1: What are the differences between good and bad
test case design for system testing when using test bots?

4) RQ2.2: How to design good test cases for system test
executed on a test bot?

C. Structure of the thesis

Section II of this paper outlines the literature collected from
the problem domain and how it is related to our research.
Section III details our methodology, including data collection
and evaluation methods, as well as the scope of our thesis.
The limitations that arise in this research are also outlined
in this section. Section IV contains the results from this
study, depicting the functionality of the system, including the
software build pipeline, testing process, test bot description
and test case design. The answers to our research questions
are discussed in Section V. Finally in Section VI we discuss
the conclusions of this research and its relevance to future
studies.

II. RELATED WORK

A. E2E system testing and test case design

Tsai et al. [1] gives an overview of how to design E2E tests,
and depicts the creation of test scenario specification, test case
generation and tool support. The focus is specifically on the
test scenarios and test case generation. As defined in this study

the aforementioned scenarios represent a single functionality
from the perspective of the user’s point of view. The authors
also analyze the relationship between different functionality
tests, the conditions used and the consistency between them
and they also reveal some ratios which illustrate the effort or
time spent when creating tests for the system and the portion
which is taken by the integration tests.

Elssamadisy and Whitmore [2] state the current functional
testing formats, which are derived from a combination of
the author’s experiences with functional testing in several
agile development projects. In the study it is mentioned that
functional testing can become more costly than its benefits if
it is not implemented correctly. These problems can be found
in the test implementation practices or in the architecture of
the system under test.

Based on Hooda and Chhillar [3] we can gain deeper
knowledge on the various phases that a test needs to go through
to be designed, and those are: test analysis, test planning, test
case data preparation, test execution, bug logging and tracking
and closure. The authors also describe how developers can
ensure the quality of various types of software applications by
performing certain types of testing techniques and optimized
software testing processes.

Mockus et al. [6] investigate how test coverage affects
test effectiveness and the relationship between test effort and
the level of test coverage. The common theme between our
research and the aforementioned study is the examination of
test effectiveness along with test coverage.

Oladimeji et al. [8] outlines in their paper the different levels
of testing. One of the levels of testing that the authors cover
is system testing, which is a common theme shared with this
paper.

Laventhal et al. [9] discuss in their paper the relevance
of negative and positive tests and how testers are exhibiting
positive test bias, which can affect the quality of testing, which
is relevant within our study of test case design.

B. DevBots

Erlenhov et al.’s [4] study proposes a face-based taxonomy
of existing DevBots while also providing definition and vision
of future DevBots. This is relevant within our study of
DevBots at it helps gain a better insight of how different bots
are classified.

According to Lebeuf et al. [5] software bots can help
improve the efficiency of every phase of the software devel-
opment life cycle, including test coding. The paper outlines
the different types of bots and how they can respectively help
improve software development. While the paper is beneficial
for outlining the difference between bots, it does not dive
deeper into the different bots, but rather provides an overview
of how these bots can be beneficial. One common theme that
the paper covers, which our study includes, is the test bots
and how they can be used to the developer’s advantage. The
authors also described how software bots are currently used in
the software engineering industry and the bots are classified in

TABLE I
CASE STUDY PLANNING ACCORDING TO GUIDELINES BY RUNESON ET AL.

[10]

Objective Exploration
The context Black box, end-to-end system testing
The cases One project from the automotive software industry
Theory Test case design, DevBots
Research questions RQ1, RQ2, RQ2.1 & RQ2.2
Methods Direct and independent data collection methods
Selection strategy Project using test bots for system testing
Unit of analysis 1 Qualitative assessment of interviews
Unit of analysis 2 Quantitative assessment of software artefacts

different categories based on the tasks they are used to solve
or fulfil.

III. RESEARCH METHODOLOGY

This case study investigates some of the challenges as-
sociated with test bots when performing system testing and
also proposes guidelines on how to design adequate test cases
by performing interviews with practitioners and analyzing
software artefacts. The summary of our case study planning is
depicted in Table I. The different elements of the case study
will be detailed in the upcoming subsections.

A. Case study company description

The company that we chose to perform the case study at
is a relatively mature company, located in three offices in
three different countries. The company provides Services as a
Product (SaaP) for the automotive industry. There are multiple
programs in the organization which work for different car
manufacturing companies. Our research is going to be per-
formed only within the scope of one of those programs, which
is responsible for developing scalable software solutions for
a specific car manufacturer. Four interviews were performed
within the organization with developers of different expertise:
one software architect, two senior and one junior developer.

B. Environments

The case study company uses Amazon Web Services (AWS)
and Microsoft Azure as their cloud service providers. A cloud
provider is a company that delivers cloud computing based
services by providing rented and provider-managed virtual
hardware, software, infrastructure and other related services
used to store data and host server applications. A software
deployment environment or tier can be described as computer
system or a multitude of those systems in which a software
component is deployed and executed. A virtual private cloud
(VPC) is a logical division of a service provider’s public cloud
multi-tenant architecture to support private cloud computing.
With this model, companies can achieve the benefits of private
cloud, such as a granular control over virtual networks and an
isolated environment for sensitive workloads. Workloads can
be stated as sensitive, when handling data which is customer
private and should not be exposed publicly.

It is worthy to mention that different programs within the
organizations have deployed their environments within differ-
ent VPCs, which elevates the level of service isolation. The

Fig. 1. Environment isolation

service isolation is important because it segregates services
that are Customer specific within the organization, for example
different programs which have different car manufacturer
companies as customers have unique VPCs, which allow them
to communicate within their scope and prohibit them from
leaking delicate information to other systems.

The environments which are currently used in the program
are: integration (int), pre-production (pre-prod) and pro-
duction (prod). All of the previously mentioned environments
are placed in the same virtual private cloud however, they
are isolated and can not share data or communicate between
each other. Int is used by the developers to continuously
deploy and test new features which are created during the
time span of one sprint since the team uses SCRUM, with
one sprint usually lasting two weeks. However, sometimes
sprint duration can be accustomed towards the customer needs.
Pre-prod is used to deploy only pre-tested versions of
features from the int environment which do not contain any
faults or bugs as acknowledged by the test suite. In the
pre-prod environment there is a new code deploy after
every sprint has ended, and it is mostly used by the customers
to manually test out the functionality and approve its ac-
ceptability. Prod is used by businesses or private individuals
around the world, accepted code from pre-prod is deployed
to prod only when the customer demands an upgrade. It is
worthy to note that the same test suites are always used in all
three environments. Figure 1 depicts the isolation between the
different environments which are hosted under one VPC on
the Amazon cloud service.

C. Data collection

We performed initially a semi-structured interview with
developers which were familiar with the overall scope of
software test bots and have worked on their development. The
interview method was chosen because it allowed us to engage
with participants directly and obtain contextual, nuanced and
authentic answers [11]. During the interview, questions can
always be additionally clarified and re-formulated, thus elim-
inating duality and inconsistency [12]. However, interviews

also have their disadvantages, as they can sometimes be poten-
tially intrusive for the participant, time-consuming, leading to
incomplete answers, and they also can be prone to bias [12]. In
order to mitigate some of these disadvantages, it was decided
that the interview would be time boxed to approximately
one hour and the participants would be informed of their
anonymity. Moreover, the interviews were recorded only if the
participants agreed. The predefined questions were identical
for all interviewees in order to collect consistent data. Because
the interviews were semi-structured, deviations were expected,
thus new sub-questions were formulated during some of the
interviews.

The interviewees were selected based on having previous
experience with the test bots. It is important to mention that the
authors were employees in the case company working in one
of their projects as developers and that the participants were
their colleagues. Moreover, the test research was orthogonal to
the work activities performed by the researchers. Additionally,
we also collected data from software artefacts which included
test bot code, test case code, functional requirements (only
within the context of end-to-end testing).

To get a better understanding of the testing process, an
observation was done within the program team during the
development of the test cases together with the test bot code.
During the observation, the authors witnessed the processes
used when designing the test cases and also the information
which were analyzed by the developers. According to Smith
[13] observations can be good sources for providing additional
information about a particular group. They can be used to gen-
erate qualitative data and quantitative data: frequency counts,
mean length of interactions, and instructional time. One of
the biggest advantages of conducting observations is that it
allowed us to observe what people actually do or say, rather
than what they say they would do. Observations can be made
in real situations, thus giving us access to the context and
meaning surrounding what people say and do. Since all of
the data was within the ownership of the organization, the
information related was anonymized.

D. Data analysis

After the data was collected, the analysis was performed
in several phases. The first stage was transcribing every voice
recording which was made during the interviews. The second
stage was organizing our data in a way that it would be easier
to read and understand or map between the different partici-
pants. This was done by grouping different questions or sub-
questions from the interviews into categories that actually were
a part of the same context, consequently all of the answers to
those questions were grouped accordingly. The third phase
was coding our data, this can be described as compressing the
information into easily understandable concepts for a more
efficient analysis process. Codes can be derived from theories
or relevant research findings or from the research objectives.

The data analysis method used was thematic analysis, which
falls within the group of qualitative analysis methods, which is
used to find patterns in the raw data and uses those similarities

as the base for the coding [14]. With the help of this type of
analysis, we generated categories which summarized the data
gathered and expressed key themes and processes.

The categories which were created from our coding con-
tained three key features: category label, category description
and text [15]. The most influential approach that we could find
to perform the thematic analysis was by following Braun and
Clarke’s [16] six step framework. The steps were executed
in a linear path, one after another. However when dealing
with more complex data they can be re-iterated forward and
backward many times, until the required codes and themes are
generated.

1. Become familiar with the data: In the first step we
reviewed and read all the interview transcripts multiple times,
to get familiar with the whole body of the data.

2. Generate initial codes: In the second phase we organized
and coded our data in a systematic way, thus reducing the
data in small meaningful pieces. Since we focused on specific
research questions, we chose to select the theoretical thematic
analysis rather than an inductive one. Every segment of the
collected data that was found significant or that captured
something interesting about our research question was coded.
We did not code every single line or word from the transcripts.
We used open coding, meaning that we did not adopt any pre-
defined codes, rather the codes were generated and modified
during the coding process.

3. Search for themes: In the third step we examined the
newly generated codes and grouped them according to their
shared context into various themes, where the codes were
organized into broader themes that have unique connotations
about the research questions.

4. Review themes: During the fourth step, the review phase,
the themes were analyzed if they were coherent, when es-
tablished otherwise, modifications to the themes were made.
After their creation, the data that fell within the context of a
theme was grouped accordingly.

5. Define themes: In the fifth stage, the final refinement of
the themes was achieved. The goal here was to discover what
were the themes stating, were there any sub themes, if there
were some, how do they relate to each other and the main
theme.

6. Write-up: In the final step the outcome was the actual
written report, together with the presentation of themes, codes
and associations found within the data set. The tool of choice
used for the data analysis was Microsoft Excel.

Lastly, our findings which were created from the data that
was transcribed, organized and coded, were additionally vali-
dated by the participants of the interview. This was performed
so that we could diminish any misunderstanding from our side
towards the program in the organization. The software artefacts
(test bot and test case code) which were collected were used
to get a better understanding of the design of the test bots and
their test cases, which was also used to generate insights and
inspiration for the optimal test design that we were created.
For the two research questions different data sources were
analyzed and used to generate their respective answers. Only

Fig. 2. Microservices

interview data was used for RQ1, on the other hand for RQ2
a variety of data sources were utilized: software artefacts (test
bot and test suite code), functional requirements and the testing
process (from interview data).

IV. RESULTS

A. System under test

This section contains the data collected regarding the rele-
vant elements in using test bots in the case company, including
how the test bots are instrumented, and how they are used.

System overview: The system under test (SUT) exercised
by the test bot can be described as a microservice based
application, where multiple services communicate with each
other with the help of Representational State Transfer (REST)
endpoints and/or Data streams. A REST-full web service is
represented by a Universal Resource Locator (URL) which
when invoked can be used to retrieve, create, update or remove
a specific resource or a collection of resources in the system
which it interacts with. Data streaming is the process of
sending bytes of data continuously rather than in batches, It
is most often used for sending or receiving small sized data
in a continuous flow as the data is created.
System functionality: The system under test can have multiple
functionalities which are required by the customer. If we take
for example a service which has the responsibility to create a
new user, that singular function can be composed of several
microservice based components, which in turn describes that
for one request to be fulfilled we have to use three components
A, B and C. Application A is the actual website which has
placeholders for the user details, once it retrieves them it
sends the data to application B, than the data is first verified
if it is valid and afterwards stored in a relational database.
Finally this chain is completed by application C, which is in
charge of sending a confirmation email to the designated user
email address. From this, we can conclude that when testing
a specific functionality of the system, multiple request will
be made to different components which are expected to be
available and ready to serve the demanding entity with the
correct data output, see Figure 2.

It is also important to note that the system usually in-
teracts with 3rd party car Original Equipment Manufacturer
(OEM) back-end systems, which are necessary when gathering
data from the vehicles such as fuel level, GPS position and
lock/unlocked states.

B. Build pipeline system

The organization has its own in house developed system
which is responsible for building the software artefacts that
are constantly updated by the developers. It has support for
multiple languages like Java, Python, GO, Rust, etc. Once a
microservice is updated, an incremental version number is
assigned along with the state of the build, where a build state
will result in a red or green label being displayed, depending
on if the build fails or succeeds, respectively. The component
or application can be setup so that when the building process
is successful (all test have passed), it can be auto deployed to
a predefined environment like int, or manually deployed to
a specific environment specified by the developers. When a
build has failed, the system also displays the error logs, which
come in handy for the developers as they outline the fault.
The stored code version is very helpful in cases when there
is a new build which has faults which are not detected by the
test suite, as in those circumstances the development team
can roll-back or use an older and more stable version. The
build pipeline system has the ability to manage dependencies
for the software applications, for example if Application A
is dependant on Application B, by stating the explicit build
version number of B inside the configuration file of A, which
allows the system to fetch the correct artifact from its storage
and use it when generating the build for A.

C. Test bot

A test bot has the role of executing a pre-designed test suite,
where the test suite can contain test cases that fall within the
context of load testing, integration testing, system testing, etc.
For the scope of this study we are going to focus only on test
bots that are performing system testing. The responsibility of
the test bots within the case study company is only to execute
the test cases, hence they are not responsible for creating
mocked or simulated environments before running the tests,
rather the bot is deployed within the environment that it needs
to test. Figure 3 depicts the architecture of a test bot and the
systems it interacts with. The test bots used in the program
have the task of performing end-to-end tests with a specific
rate on different functionalities of the system. Depending on
the tested functionality, the rate can vary from bot to bot,
resulting in a timed schedule for test execution. Usually within
the organization higher rates are considered from five to thirty
minutes and lower rates fall within the range of one to five
hours. Depending on the testing context, whether the system
that needs to be tested is back-end or front-end oriented,
different programming languages will be used to write the
test cases and the test bot. For front-end services developers
use JavaScript, while on the other hand for back-end services
Java, Python and Scala are used.
Test bot work-flow: One test bot can contain multiple test cases
which test different services. Next we illustrate the workflow
of the test bot for one functionality. If the test bot needs to
evaluate the creation of a new user in the system, several steps
need to be performed. The user will be created using soft test

Fig. 3. Test-bot architecture

data, which needs to be used later to verify that a user exists
in the database. The term soft test data is used for mocked
information, i.e., information that is not real and used only
for testing purposes. The scenario for this test case is:

• Create a new user using soft data via the corresponding
endpoint

• Send a confirmation email to the email address from the
data

• Check if there is new email from the system for the
specific user email address

• Check the database if there is a user that exists with the
corresponding data

After the execution of this test in a specific isolated envi-
ronment like (pre-prod), depending on the outcome if the
user existed or not, the bot will flag the test as a pass or a
failure. The second step for the bot is to store the test results
together with the time stamps of their execution as a JavaScript
Object Notation (JSON) object inside a database. JSON is a
lightweight data-interchange format, which can be read and
parsed by computer systems faster than other data formats. If
the test result is a fail than the error logs will also be a part
of the stored object, which can help developers to isolate and
discover the faults in the system. Once the logs are stored, the
data is published on a virtual dashboard which is used by the
whole team to view the state of the system. During the event
that the test case fails, a slack-bot notifies the corresponding
team about the test suite execution status using the dedicated
slack communication channel.

D. Testing process

The testing process depicted in Figure 4 outlines how the
program customer requirements are passed on to the product
owner who creates user stories, which are short sentences that

Fig. 4. The testing process

outline the requirements of the system in natural language.
These user stories are then developed, usually in a team of
seven to ten developers and are then submitted to the internal
Git version control system, which then deploys the test bot
in the specified environment using the CI/CD (Continuous
Integration / Continuous Deployment) build pipeline system.

To design the test cases, the developer is required to
have knowledge of the previously mentioned programming
languages that are used depending on the system under test
(front-end or back-end). When designing the test cases for
the test bot, the developer also needs to have an overview
of the architecture of the component, in order to be able to
understand the flow between the different microservices (see
Figure 2). Developers also need to review the source code
and user documentation to understand what are the states of
the system when the functionality has completed successfully
or has failed. If we take the aforementioned example in
the test bot work-flow section, the successful state would
be established when the user details are validated and the
confirmation email has been sent, otherwise this functionality
has failed.

V. TEST BOT CHALLENGES

Table II shows the themes and labels which were generated
from the thematic analysis of the interviews. In this section
every label will be interpreted and described accordingly. It is
important to mention that the challenges presented can only
be found within the domain of system tests executed by a test
bot, the reason for this are the specific factors which derive
from the nature of the test bot and the environment, such
as: i) bot automation, ii) bot execution rate (time interval)
and iii) actual system’s environment. By the actual system’s
environment we mean an environment which contains a
system that is used both by customers and for the system
testing.

C1. Designing context aware test cases: Tests can have
dependencies to other tests meaning that a particular test
(tc) can only start executing once test (tb) has finished
successfully. Performing this specific chaining on test cases
can become quite complex and timely to achieve using
traditional Java testing frameworks like JUnit. Issues can

TABLE II
THEMATIC ANALYSIS OF INTERVIEW DATA ACCORDING TO BRAUN AND CLARKE [16]

Challenges Frameworks Test data Test design
Designing context aware test cases JUnit High level requirements Positive flow testing
Changes in the state of the system AssertJ User documentation Negative flow testing
System clean up Asynchronous programming In-house built test runner framework
False positives Synchronous programming Modular and easy to read

Server-less functions Test reports

arise in the event that a test case fails, thus the following
dependent tests will be affected by the previous success
rate. There are two possible scenarios in this case; the first
scenario is to proceed with the rest of the test executions
where the subsequent tests which are dependant upon the
previous test will fail while independent tests will pass. In
this case even though the developers will get the results
from all the tests, it is hard to determine whether the
test failed because of some dependency or because that
functionality was erroneous. The other scenario on the other
hand, is to stop the flow of the subsequent test executions
and mark the whole result of the test suite as a failure.
The second case will lead to a lack of results, consequently
making it challenging for the team to further debug the issues.

C2. Changes in the state of the system: Issues can occur
when a test suite has executed partially thus affecting the state
of the system or in other words leaving corrupt data within
the system. In the context of system testing, corrupt data
refers to data which has not been processed or transmitted as
expected, thus leading to incomplete data models which can
later cause system errors such as null pointer exceptions. For
instance, consider the end-to-end test scenario where a new
customer needs to confirm an email to get access to their
created account; if we assume that the test has failed half-way
through the confirmation (e.g., problem in connection or
availability), there is the risk of introducing partially created
faulty users to the system1. To mitigate this problem, the test
bot needs to perform roll back techniques in order to remove
the invalid data that has been generated by the test suite.

C3. System clean up: In scenarios when all of the test
cases have completed successfully, the test bot needs to cover
the case of cleaning up after themselves, like previously
mentioned. That is clearly one severe risk when using test
bots, since they are running on an actual system, where in
the event that corrupt data is left behind, the system can
potentially be placed in an erroneous state. This clean up
would be the equivalent of a tear-down of a test where the
system state is restored after executing the test suite. Another
risk is the introduction of traceability issues due to low
activity in the system. In this case the test bot activity could
get mixed up with the customer activity, hence bringing
confusion to the developers while viewing the application
logs to debug a problem. Another risk posed when using

1Note that the tests are done in the environment which users will access.

automated test bots that run constantly in a system where the
actual number of users (user activity) within the system is
low, traceability issues can present themselves. This is caused
by the large amount of application logs generated by the test
bot activity together with a small number of user associated
logs, hence making it challenging for the developers when
searching the respective application log outcome or recreating
the specific problem in the system. For instance, consider
a scenario where the test bot is sending 100 requests per
second and flooding the system with the test associated logs,
thus making it difficult to find other issues that could be user
related in the logs.

C4. Flaky tests: Flaky tests or false positives can occur
when a test case fails, but in reality there is no fault in
the system and the functionality is working correctly. This
type of test result can consume a lot of a tester’s energy
and time when it comes to discovering the issues [17]. In
the case study company the test bot is used to evaluate a
system which has real time connections with different vehicles,
and it requires the vehicles’ status to perform the different
functionalities. Since the bot’s test suite has scenarios where
it communicates with a vehicle, in the project a raspberry pi2

has been used to mimic the functionalities of a car and it has
been integrated within the actual system environment. In that
particular case, one of the problems is that sometimes this can
produce flaky test results (e.g., the raspberry pi can lose the
wireless connection or suddenly shutdown), this leads to the
test reporting a failed state where test cases are dependant on
the vehicle status data, when the system is actually working
as expected. The conclusion from this challenge is that when
performing automated system testing, the stability of third
party incorporated systems within the environment have to be
taken into consideration since they can affect the test results.
One way to mitigate this problem is to mock the vehicle
behaviour on a separate cloud server instance which have
99.9% uptime3. However, depending on the scenarios this can
be costly and time-consuming to develop.

A. Test case design

In this sub-section we will explain the labels which fall
within the themes of test case design.

Positive and negative flow testing: Positive testing is the type
of testing that can be performed on the system by providing

2https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
3https://aws.amazon.com/ec2/faqs/

valid data as input. This type of test checks if the system
behaves as expected with normal inputs, which are done to
validate that the application does what it is supposed to do.
On the other hand, negative testing is a variant of testing that
can be performed on the system by providing invalid data as
input. This type of testing checks whether a system behaves as
expected with the negative inputs, the motivation for creating
these tests is to ensure that the application does not do anything
out of the ordinary. As stated by the participants a good test
suite design needs to cover positive and negative paths in the
application workflow, by skipping the negative paths many
issues may not be discovered in the system.

According to Leventhal et al. [9] positive test bias can be
described as a behavioral anomaly in which software testers
tend to test a part of the software with data which confirms
the goal of the functionality (often referred in industry as
“happy paths”). However in software testing, such scenarios
are counter-productive since it is more effective to test with
data designed to disprove the hypothesis. Positive test bias
is a critical concern in software testing and it has a large
negative effect on the quality of testing. This bias is mostly
influenced by the expertise level of the software testers and
the completeness of the software specification [9].

Test assertion: HTTP response status codes indicate whether
a specific HTTP request has been successfully completed. For
the system test cases, two assertions are always used. The first
assertion evaluates the availability of the system by checking
the HTTP status returned (i.e., status OK or status code 200).
The second assertion is the comparison between the expected
output and the actual output which tests whether the system
behaves as intended. For every test case within the test suite
the test results are stored inside an object called test report.

Test report: The test report contains the results for every test
case which is executed in the test suite. There are two types of
failures: first type is a consequence of the environment or the
testing itself (e.g., if a REST API endpoint is not available),
whereas the second type is a consequence of a false assertion
(i.e., the output does not match the expected value). Upon a
fail, the test report will also store valuable information (e.g.,
response headers from the REST endpoint), this combination
of information can aid developers in resolving issues associ-
ated with system functionality.

Modular and readable test: Test cases that are big in
size and do multiple assertions on different test results or
test multiple functionalities of the system are perceived as
complicated. As stated by one of the interviewees, tests that
are too complicated are costly due to the need of refactoring
when changing the functionality of the system. In those cases
developers can find it difficult to change the existing test or
even create new test that would follow the same interface,
because it is difficult to understand the existing setup, thus this
would lead to more time and effort being spent on developing
new test cases. Another issue with large test cases is that it
takes quite some time for them to finish executing. There are
two bottlenecks in the previous case, one of them is that it
takes more time to get the test results and the other is the

increased cost that the test suite would generate because of
higher execution time. As stated by Nguyen et al. [18], almost
40% of time is spent on test planning, analysis and design,
hence the fact that following a more complicated setup to
create new test will lead to a huge amount of effort spent
by testers and developers, this co-aligns with the statement of
one participant where they mentioned “too complicated test
cases can scare developers as they require a lot of effort and
analysis of the existing design”.

High level requirements and user documentation: The de-
velopment team uses high level requirements gathered by the
product owner to generate the test data which is used as input
and expected output. System testing is dependant on the high-
level design specification in the development process, as any
problems that arise during the translation of the requirements
and design specification would lead to drastic problems as they
propagate downwards to the lower levels of the system testing
[19]. In other words, problems with the design documentation
could lead to the developers creating inappropriate test data
which would then create invalid results from the system testing
attempts. User documentation is also used to create test data as
mentioned by our interviewee “we design the system from the
provided customer/user documentation which informs them
on how to use the system, and we can use that kind of
information ourselves to construct the tests together with the
high level requirements”. This also co-aligns with what the
current literature presents [20].

Future test bot improvements: The participants also stated
what kind of future improvements they would like to add to
the test bot functionality, one thing they would like to add to
the test result report is the time that was needed for the system
to perform each functionality in the test suite. Later, this
information can be combined with the history of test results,
and patterns can be found which would describe how the user
interaction spikes affect the execution speed of the system.
This data is valuable and can be used to extensively configure
the application for faster performance. Performance testing
determines if a system works as fast as a pre-determined rate
under specific workloads [19] [20].

B. Bad and good test case design comparison

We used two artefacts in our analysis: the test bot source
code and the test cases being executed. From the aforemen-
tioned artefacts, we were able to discover two different test
bots which depicted the differences between good and bad test
case design. However, since the two bots tested out different
system functionalities, we decided to create a new version of
the test bot in coordination with the colleagues which was
following the bad test case design. This newly developed bot
contained test cases which tested out the same functionality
as the original one. The second version (bad design) was
benchmarked locally on one development machine instead of
on the actual system’s environment. To ensure that we get
valid results which are not dependant on the response time
from the system endpoints, each functionality was timed from
the actual system’s environment and later the duration’s were

TABLE III
DIFFERENCES BETWEEN TEST BOT VERSION ONE AND TEST BOT VERSION

TWO

Test bot Framework Programming method
Version 1 JUnit Synchronous
Version 2 In-house developed test runner Asynchronous

added as timeouts in the test cases in the bad test bot. We
used a library called WireMock to mock the responses from
the system, the test cases developed were validated to make
sure the design was bad by iterating with practitioners working
in the projects. Even though the different versions tested the
identical functionalities of the system, there were factors which
made it clear which one of those test design approaches was
more beneficial. The underlying factors were: i) execution
time, ii) false positive results and iii) complexity of the test
cases. To better understand how these factors influenced the
whole system testing we will describe how they affect the
system test results and other important variables.

In terms of test execution time, the shorter the time the
better, thus results will be displayed faster while the cost
will be lower, as these automated test bots are usually hosted
on server-less applications which have their own pay per
use model, which takes the milliseconds needed to run the
application as a baseline for the cost.

In one of the test bot versions more false positives or flaky
test occurred due to problems with the test dependencies, these
issue were generated because of the difference in the test
design, which in that case was using different programming
methods and frameworks to execute the test cases. Cyclomatic
complexity is a software metric which depicts the complexity
of a program, it is a quantitative measure of the number of
linearly independent paths through a program’s source code.
There were also differences when it comes to the cyclomatic
complexity of the test cases in combination with the lines of
code. In table III the specific test bot versions are compared
and the underlying differences which affect the previously
mentioned factors are depicted and described in the following
subsections.

C. Synchronous vs asynchronous programming

Test bot version 1 uses synchronous programming methods
to call the REST endpoints while version 2 uses asynchronous
methods for the same purpose. In programming, synchronous
operations block instructions until the task is completed, while
asynchronous operations can execute without blocking other
operations. Asynchronous operations are generally completed
by executing an event or by calling a provided callback func-
tion. In the context of system testing when using synchronous
methods in each test case the first test will block the second
one from executing and that linear dependency will continue
until the last test, this will affect the execution time of the test
bot since it will gradually increase as it goes from test to test.
On the other hand when using asynchronous request the test
case number one can invoke the endpoint that it needs to test
out, but also in the same time the other test will be invoked

within their own separate thread, which will utilize the power
of modern day central processing units (CPUs) that contain
multiple cores. A thread can be described as the smallest
sequence of programmed instructions that can be managed
independently by the operating system’s scheduler. This is
especially important when the test suite contains test that take
a long time to execute. Asynchronous programming allows
the test bot to initiate multiple tests in parallel and it handles
the result later when the response payload has been delivered
by the micro-service. This type of programming increases the
efficiency of the test bot by a big margin when it comes to the
time that it needs to execute the whole test suite. There are
multiple frameworks that exist for asynchronous programming
in this project the development team has been using the built
in Java library CompletableFuture, which contains a large
number of functions that allow them to tailor the test suite
to be as efficient as possible.

To get a better understanding of the CPU power utilization
when using asynchronous programming, we will describe an
ordinary scenario of using a two core processor. For example
if the test suite contains four test and it uses asynchronous
methods to handle the request towards the system, the first
two test when initiated will live within their own unique thread
and those threads can be specified to run in parallel on the two
CPU cores. With this approach if hypothetically speaking each
test takes two seconds to execute the total time of execution
for the two test will be two seconds, unlike the synchronous
approach where the total time of execution would be four
seconds, because the test would be executed one after another
using the resources of only one thread [21].

The second version of the test bot which used the asyn-
chronous request handling method was found to be more
efficient based on the previous explanation, to prove this we
compared the test execution times between the two separate
test suite versions. It is worthy to mention that the test suite
tested the identical functionalities of the system with the same
order, the only differences was the programming method used.
To perform this benchmark we used the start time or the time
when the testing has been initiated and the time-stamp from
the test report which reflected the time when the testing has
been finished. There was a large difference between the two
test suites where it was observed that version two (”good test
bot design”) took 12 seconds to finish executing as compared
to version one (”bad test bot design”) which took 20 seconds.
Therefore, according to the results it can be stated that version
two performed (40%) faster than version one, as was expected.

D. JUnit vs in-house built test runner

The second big difference between the two test bot versions
is the usage of different testing frameworks. In version one
the test suite is executed using JUnit and in version two
the test suite is being executed by an in house built test
runner. JUnit can be used as a test runner for any kind of
test: system and integration tests; tests which are interacting
with a deployed application. However the reason for using
a homemade test runner is because it gives more flexibility

and it can be designed as wanted, instead of following the
principles and methods that another framework provides. One
huge benefit of using a built in test runner is the rules that can
be set by asynchronous programming. For example if the test
suite contains test which have dependencies to other test, but
also has test that can be executed without any dependencies,
with the asynchronous framework, rules can be enforced that
would immensely influence the execution time, as explained
in the previous section.

On the other hand, when using JUnit to achieve these
modifications it can be quite hard or even impossible, and
that is mostly because the test in JUnit are not aware of the
execution process of other threads which would be the case
when using asynchronous request to invoke an endpoint in the
same test case. To put it simply, if we take a case where we
would have test B which depends on test A to finish, and
also take into consideration that we would use specific JUnit
annotations where we state the order of the test executed, in
that scenario test case A would finish executing before the
request to the endpoint has been completed, and in that time
period when test B is executed it will give a failed result,
which can be classified as a false positive, because the test
failed from an incomplete test dependency.

Two mitigation strategies can be used when combining
JUnit with asynchronous programming to avoid the aforemen-
tioned issues, one is to actually block the asynchronous call
which is executed in test A, and this defies the purpose of using
the specific programming method since it will behave like a
synchronous call. The second fix that can be applied is to use
a timeout annotation which is provided by JUnit to make test
case B idle for the specified amount, this strategy will also
affect the execution time negatively and in the worst case even
more than when using synchronous calls. Another comparison
can be made in the design of the test cases from the two
versions is that to fulfill the dependencies, test in version one
use synchronous calls to the endpoints one after another, this is
to ensure that problems like the one explained previously with
false positives do not occur. Even though this approach works,
it blocks all the other test cases from executing which do not
contain any dependencies and in this case the test case size and
complexity increases marginally, which does not follow the
approach of modular and understandable test cases, as stated
by the participants. To discover the difference between the
complexity of the two unique test, we performed an analysis
on the software artefact when it comes to the lines of code in
a combination with the cyclomatic complexity.

The test cases in version one of the test bot contained on
average 71 lines of code per test case, while version two
contained 51 lines of code, meaning that the average lines of
code was (28%) higher in the badly designed test bot. In terms
of the average cyclomatic complexity per test case, version
one was measured to be (33%) higher than version two. The
average cyclomatic complexity per test case was found to be
9 and 6 in version one and two respectively.

VI. DISCUSSION

A. Guidelines

Using the data collected and outlined in the previous section
Test bot challenges, we created a table IV that outlines the
guidelines that we believe will help mitigate these challenges.
The table consists of 7 guidelines for creating good system
case design, each labeled with an ID, the reason behind the
guidelines along with the suggestion on how to implement it.
The purpose of the guideline is to make it easier for developers
designing test cases to make their test bot more efficient.

B. Answers to research questions

RQ1: What are some of the challenges and practices when
designing and executing system tests on software bots?

During the interviews, participants discussed the issues that
can appear with the design and execution of the test cases,
from this data together with a cross evaluation with existing
literature we were able to answer our first research question.
Some challenges that can be associated with the system test
cases are: i) designing context aware test, ii) changes in the
state of the system, iii) system rollbacks and iv) false positive
or flaky results. For all of the aforementioned points we have
a thorough description within the test bot challenges section.

RQ2: To what extent does the test design affect the
effectiveness of a test bot?

Our second research question was related to the effects of
the test case design on the effectiveness of the test bot, we
can state that the design of the test cases severely influences
the results that are produced from the test bot, this claim
can be supported by the answers from our two sub research
questions. The main factors that changes when having different
design approaches of the test cases are: i) test bot execution
time, ii) complexity of the test cases, and iii) the number
of false positive test results. How these factors influence the
effectiveness of the test bot has been described in the previous
section.

Our first sub research question focuses on the differences
between good and bad test case design, the answer to this
question was derived from a comparison between the two
test bot versions that tested the identical functionalities of
the system. We have discovered that using asynchronous
programming methods lead to a better test case design by
decreasing the execution time and solving some complex
test dependencies scenarios. When using the aforementioned
programming method there can be issues when trying to incor-
porate it within existing testing frameworks, so a prominent
adoption that we have discovered in this scenario is to create a
simple test runner class which would handle all the test cases,
together with the creation of the test reports.

The second sub research question was related to the guide-
lines on how to create good test design, and this was answered
by analyzing the test suite version which followed the good
test design which in turn gave us better benchmarking results
when it came to execution time and test case complexity

TABLE IV
GUIDELINES FOR CREATING GOOD SYSTEM TEST CASE DESIGN

ID Description Reason behind guideline Suggestion on how to implement it
G1 Ensure completeness of system

specifications and or documen-
tation.

Testing a functionality of a system might result in positive
results, in accordance to the function’s purpose, however
it might not take into consideration the system specifica-
tion, and thus developers might miss an important testing
aspect.

Include trace links between test cases and user
documentation (e.g., include a Jira item ID into
the test case).

G2 Use asynchronous programming
methods to invoke system end-
points.

According to the data analyzed, asynchronous program-
ming methods allows the tests to continue testing inde-
pendent functions simultaneously and can thus reduce
execution time.

With the Java framework CompletableFuture
test can be executed with the method.
supplyAsync(), in this case the framework
will run the task asynchronously and return the
result from the test without blocking the execution
of other test.

G3 Cover test dependencies by
chaining dependant test via the
specific callback asynchronous
functions.

For dependant tests, tests which require the completion
status of previous tests, this would allow the system to
wait before executing the next tests, while for independent
tests, these can be unchained thus allowing all the non
dependant test to run within their order.

With the Java framework CompletableFuture
test A can be executed with the method
supplyAsync(), and test B needs to be
chained to the first future using the function
thenComposeAsync(), this way test B will
execute once A has finished without blocking other
test executions in the test suite.

G4 Create test that are small, mod-
ular and readable.

By creating smaller and more readable tests, developers
can ensure that future alterations to the tests are easier to
implement, as well as less time will be needed to analyze
the existing setup and develop the new test.

Create test cases that test a specific functionality
of the system rather than multiple flows.

G5 Start clean-up process after the
execution of tests.

In order to avoid adding corrupt or unnecessary test data
to real environments, developers should include a clean-
up process after the execution of tests within the test bot.

Use existing (or implement) functionality to re-
move data which was stored in the system by
the test suite (e.g., after testing the user creation
functionality, use the delete user service to remove
the test data).

G6 Make use of proper logging
techniques which differentiate
the test data from real data.

In order to make it easier to distinguish the test activity
logs from the actual user activity logs.

Use different prefix for test data attributes, thus
making it easier for developers to distinguish test
data from real data in real environments (e.g.,
username starts with “TEST”).

G7 Implement both positive and
negative flow testing techniques.

According to Laventhal et al. [9], software testing theory
suggests that tests should test inside and outside speci-
fication (expected versus unexpected values) in order to
test thoroughly.

Use both invalid and valid test data as input.

(lines of code and cyclomatic complexity). We have outlined
the guidelines (see table IV) which we believe should help
developers create a good test case design, which were as
follows;

1) Ensure completeness of system specifications and or
documentation.

2) Use asynchronous programming methods to invoke sys-
tem endpoints.

3) Cover test dependencies by chaining dependant test via
the specific callback asynchronous functions.

4) Create test that are small, modular and readable.
5) Start clean-up process after the execution of tests.
6) Make use of proper logging techniques which differen-

tiate the test data from real data.
7) Implement both positive and negative flow testing tech-

niques.

C. Contrasting results with other study

In the findings from the Canadian study by Garousi and Zhi
[22], they point out a couple of factors which can be contrasted
with our research, however worthy to note is that since the
survey questions were mostly different, we can only compare
a small portion of the findings. According to the research in
the Canadian study, maintainability of large or complex test

suites was mentioned to be a challenge by the respondents.
This correlates with our findings where one of the interviewees
mentioned that tests are too complicated due to their need to
be refactored, thus making it harder to maintain the test.

D. Threats to validity

According to Wohlin et al. [23] there are four main types
of validity threats: conclusion, internal, construct and external.
Of these four validity threats, we outlined three of them that
we believed were mostly relevant to our study.
Internal validity: As the interview questions were used as
a base line, any deviations resulting from rephrased ques-
tions could have resulted in different understandings by the
interviewees and therefore it was important to make sure
that the questions placed were consistent across all the other
interviews. To mitigate this internal validity threat, we had to
therefore state the original question along with the rephrased
version during the interview for all participants. Another
internal validity threat that was identified was the “poorly
designed” test bot version which was developed by the authors.
It could be argued that this could lead to research bias, which
is a process where the researchers influence the results in
order to portray a certain outcome. However, to mitigate this
threat the previously mentioned test bot version was developed

in coordination with the practitioners that were part of the
development team. The test bot which was developed by us
was following a test case design from a bot used in a different
inactive project. This design was deemed as unsuitable from
the practitioners due to the many issues it created during the
testing process in the past. There are two factors why this
test bot was developed by the researchers, the first and more
important one is that due to the lack of time we were not
able to interview developers from other projects within the
company. If we had more time we could have been able to
discover a version of a test bot which has been evolving and
where many design issues have been fixed over a specific time
period in order to make the test bot more efficient. The second
reason is that the chosen project was relatively new when
compared to other more mature ones in the organization, hence
the fact that a lack of evolving test bot versions were found.
The team brought their experience from previous projects to
fine-tune the design of the test bot by avoiding past design
issues which led to the lack of test bot version iterations that
could have been used in this study for the comparison. This
project was chosen by convenience, mainly because it was the
only project where the developers accepted any interviews that
actually coaligned with our schedule. This type of selection
could lead to inclusive bias, where the participants are selected
for convenience, however we have mitigated this threat by
stating in our report that the results can not be extrapolated
to fit the entire software engineering industry, moreover it is
worth mentioning that more research needs to be performed
on this topic outside of the automotive IT industry.
Construct validity: One threat that can be stated within the
construct validity is whether the questions from the interview
instrument were good enough to capture the correct informa-
tion from the practitioners. To diminish this threat we initially
used two methods, face validity and a small pilot study.
Face validity can be described as a lightweight review by an
investigator outside the study to give initial feedback [24],
which in our case, the reviewers were our thesis supervisors,
and the feedback that we got helped to us to modify and adapt
some of the questions. The pilot study was performed with
the help of two colleagues from the university, who had some
previous experience with test bots and test case design. Some
of the questions used for this survey were based on Garousi
and Zhi study which analyzed software testing practices in
Canada [22].
External validity: As this study was performed within an
organization, the data collected and analyzed was relative
to the way of working of the organization and as such it
was therefore hard to generalize in order to make the results
viable for other organizations. Furthermore, as the researchers
were currently working at the organization, this could have
caused researcher bias, which was mitigated by having close
coordination with our supervisors who were external to the
organization and thus not employed or affected by the bias.

VII. CONCLUSION

In this thesis we have outlined the current challenges in
designing test cases for system tests executed by a test bot
and the issues that can occur when using these tests on
a system which is simultaneously used by customers. This
paper also provides information on how the test design affects
the effectiveness of the test bot and also depicts differences
between a good and bad test case design. Finally, we propose
guidelines on how to create test cases for system tests that are
executed on a test bot. The guidelines proposed are based on
industrial data gathered from different sources: i) interview
with industry practitioners, ii) analysis of software artefacts
(test bot code and corresponding test cases), iii) analysis of a
single test execution and system documentation.

The case study company works in the field of automotive
cloud and develops services for car manufactures around
the world. Four interviews have been performed within the
organization with developers of different expertise.

Most of the guidelines proposed in this study can only
be used when developing system tests that are executed on
an actual system environment (i.e., a system being accessed
by the end-users while test is ongoing). For instance, system
testing can also be executed on a system test machine and in
a specially configured environment that simulates the end user
environment as realistically as possible [19]. In this scenario
some of the guidelines can not be used since they are limited
to the scope of system testing where the actual system that
is used by customers is tested. Due to the time constraints
we were not able to analyze different test bots which were a
part of projects that are were developed in different programs
for other customers. Since customer specification vary from
project to project, we could have generated more findings on
the challenges, mitigation strategies and guidelines associated
with system testing using bots.

Future work can be done on the study of test design by
exploring fields outside of the automotive branch. Possible
future work could include the study of the correlation between
IT fields and practices of testing to help create a more
generalized guideline which can be applied across different
IT industries.

REFERENCES

[1] W.-T. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-to-
end integration testing design,” in 25th Annual International Computer
Software and Applications Conference. COMPSAC 2001. IEEE, 2001,
pp. 166–171.

[2] A. Elssamadisy and J. Whitmore, “Functional testing,” Proceedings of
the 2006 conference on Pattern languages of programs - PLoP 06, 2006.

[3] I. Hooda and R. S. Chhillar, “Software test process, testing types and
techniques,” International Journal of Computer Applications, vol. 111,
no. 13, p. 1014, 2015.

[4] L. Erlenhov, F. G. de Oliveira Neto, R. Scandariato, and P. Leitner,
“Current and future bots in software development,” in First Workshop
on Bots in Software Engineering, (BotSE ICSE), 2019.

[5] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” IEEE
Software, vol. 35, no. 1, p. 1823, 2018.

[6] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage and
post-verification defects: A multiple case study,” 2009 3rd International
Symposium on Empirical Software Engineering and Measurement, 2009.

[7] S. Matalonga, F. Rodrigues, and G. H. Travassos, “Matching context
aware software testing design techniques to ISO/IEC/IEEE 29119,”
in International Conference on Software Process Improvement and
Capability Determination. Springer, 2015, pp. 33–44.

[8] P. Oladimeji, M. Roggenbach, and H. Schlingloff, Levels of testing.
Advance Topics in Computer Science, 2007.

[9] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses of factors
related to positive test bias in software testing,” International Journal
of Human-Computer Studies, vol. 41, no. 5, pp. 717–749, 1994.

[10] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[11] U. Schultze and M. Avital, “Designing interviews to generate rich
data for information systems research,” Information and organization,
vol. 21, no. 1, pp. 1–16, 2011.

[12] O. Doody and M. Noonan, “Preparing and conducting interviews to
collect data,” Nurse Researcher, vol. 20, no. 5, p. 2832, 2013.

[13] M. K. Smith, “Chris argyris: theories of action, double-loop learning
and organizational learning,” Nov 2013.

[14] M. Maguire and B. Delahunt, “Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars.” AISHE-J: The All
Ireland Journal of Teaching and Learning in Higher Education, vol. 9,
no. 3, 2017.

[15] D. R. Thomas, “A general inductive approach for analyzing qualitative
evaluation data,” American journal of evaluation, vol. 27, no. 2, pp.
237–246, 2006.

[16] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, p. 77101, 2006.

[17] D. Firesmith, “Common testing problems: Pitfalls to prevent and miti-
gate,” in A1AA Case Conference, 2013.

[18] V. Nguyen, V. Pham, and V. Lam, “Test case point analysis: An approach
to estimating software testing size.”

[19] P. Oladimeji, “Levels of testing,” 2007.
[20] L. Briand and Y. Labiche, “A uml-based approach to system testing,”

Software and Systems Modeling, vol. 1, no. 1, pp. 10–42, 2002.
[21] J. Manson, W. Pugh, and S. V. Adve, The Java memory model. ACM,

2005, vol. 40, no. 1.
[22] V. Garousi and J. Zhi, “A survey of software testing practices in canada,”

Journal of Systems and Software, vol. 86, no. 5, p. 13541376, 2013.
[23] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and

A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[24] J. Linker, S. Sulaman, M. Host, and R. de Mello, “Guidelines for
conducting surveys in software engineering,” 05 2015.

APPENDIX

A. Interview Questions

1) What is your primary work position (job title)?
2) What are your main responsibilities as a (#jobtitle)?
3) How many years of work experience do you have in IT

and in software development industries?
4) How many years of work experience do you have in

software testing?
5) Which programming languages are used when writing

your test cases?
6) What kind of testing framework are you currently using?
7) In your current or most recent project, what are the steps

you follow when designing test cases?
8) What information do you use to design the tests?
9) Where do you get this information?

10) How do you write the assertions of the tests (ie, deter-
mining that a test passes/fails)?

11) Do you currently use any test bots ? (If yes on previous
question) What kind of testing do you perform (ie,
unit, integration, load, system testing) when using the
test bots ?

12) How would you describe the role of the test bot (the job
it has to fulfill, purpose)?

13) What do you have to take into consideration when
developing test cases that are executed by test bots?

14) Do you have any standard practices when designing test
cases?

15) What is considered a good test case design?
16) What is considered a bad test case design ?
17) What impediments have you or your team experienced

when designing test cases for the test bot?
18) How do you currently record the test results? What is

the current practice used to gather test bot results and
display it for developers?

19) Do you think that the test results are meaningful in
providing feedback? (Yes/No) (In both cases) Why?

20) Would you be open to trying out different techniques
for relaying test bot results to developers? If Yes: What
types of techniques, or information, you would like to
present to developers?

B. Re-Used Interview Questions

The following interview questions have been re-used [22]:
1) What is (are) your current position(s)?
2) How many years of work experience do you have in IT

and software development industries?
3) How many years of work experience do you have in

software testing, in specific?
4) Which programming languages do you use in your

company?
5) Which test automated tools/ frameworks do you use in

your company?
6) Please provide a list of top 3 testing challenges that you

have been seeing in your projects and you would like the
software testing research community to work on. (For
example, you might say: the current record/ playback
GUI testing techniques/ tools are not very stable and
need to be improved).

	Introduction
	Statement of the problem
	Research questions
	Structure of the thesis

	Related work
	E2E system testing and test case design
	DevBots

	Research methodology
	Case study company description
	Environments
	Data collection
	Data analysis

	Results
	System under test
	Build pipeline system
	Test bot
	Testing process

	Test bot challenges
	Test case design
	Bad and good test case design comparison
	Synchronous vs asynchronous programming
	JUnit vs in-house built test runner

	Discussion
	Guidelines
	Answers to research questions
	Contrasting results with other study
	Threats to validity

	Conclusion
	References
	Interview Questions
	Re-Used Interview Questions

