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Abstract—Continuous Large Scale Software Systems (LS3)
development depends on Regression Testing Selection (RTS)
to uphold quality of the software in a cost-effective manner.
Prioritization-, minimization- and selection techniques are exam-
ples of this. We explore an existing technique and then classify it
as a selection technique. We design and develop a new artefact,
with the purpose of comparing the two Regression Testing
Selection Techniques (RTST) with a select number of metrics.
We compare the RTSTs using 500 commits with a one-tailed
t-test which shows non-significant results. The artefact shows
lower standard deviation for all metrics compared to the existing
technique. The artefact identified, and removed 151 false positives
that the existing technique would perform dependency analysis
on. We conclude that the artefact shows improvements over the
existing technique, while the random technique performed the
worst.

Index Terms—software testing

I. INTRODUCTION

Software testing is significant in assuring software qual-
ity [1]. Regression Testing (RT) is a form of qualitative
software testing that gives confidence and validates modified
software, and compares it with the previously established code
base [2].

Rerunning all tests provides test coverage which is all
encompassing and has high reliability [2]. On the other hand,
executing all test cases is often expensive [3], as the cost
scales with the size of the test suite [4].

Regression Testing Selection (RTS) finds a subset of tests
from the entire test suite, when testing modified software [5].
RTS often comes at the expense of time, resources and test
coverage [5]. The goal of RTS is that it should be cost-effective
to perform, meaning the resulting costs must be lower than
rerunning the entire test suite [5].

Hypotheses and implementations regarding RTS have
coined the term Regression Testing Selection Techniques
(RTST) [2], [6]. Prior research to examine and find the most
efficient RTST has been done [1], [2], [5]. RTSTs focus on
different qualities, often test coverage is the trade-off, as RTST
are either safe or not [2]. Graves et al. defines a Safe RTST as
a technique that guarantee that the subset will always reveal
introduced software faults [2].

For continuous Large Scale Software Systems (LS3) de-
velopment, developers frequently introduce new code to the

main code-base [7]. Frequently introducing changes requires
Continuous Integration (CI) to uphold quality [8]. CI performs
activities to detect software faults (including RT), and becomes
an essential part of maintaining the system. LS3 often contains
larger test suites than smaller software systems. In order to
reliably and continuously modify the LS3, code changes must
be thoroughly tested. As the LS3 grows, fewer tests of the
whole suite are executed. Segmenting the system into small
components to isolate the test suites reduces the testing scope
for the overall suite, and lower the cost of RT [9].

This study is conducted with Ericsson, one of the world’s
largest telecommunication companies. Ericsson develop LS3.

With this study, we aim to extend the current knowledge
of RTST for LS3. This is done by comparing two imple-
mentations of two different RTST, as well as compare to an
implementation of a random technique. For researchers, this
study may provide additional data on applying RTSTs on LS3.

We pose the following research questions:

RQ 1: What are the RTST’s performance and limitations?
RQ 2: How do the results differ when comparing different

RTST on LS3 development?

Following the Design Science Research Methodology
(DSRM) [10], we conduct an exploratory investigation into
a RTS for a LS3. We use the findings from the investigation
to create a new artefact, which aims to improve the existing
implementation. The two implementations are compared on
the LS3. Lastly, we apply statistical analysis to conclude the
improvement.

We present the artefact to the stakeholder in an evaluation
interview, showing non-significant results between the existing
solution and the produced artefact, but we point towards a
reduced total dependencies in favor of the produced artefact.

For practitioners, this study will show the potential benefits
of implementing a RTST for dependency analysis.

This paper is structured as follows: Section II outlines
related background literature. Section III describes the research
methodology. Section IV presents the results and the artefact.
Section V discusses all findings. Section VI summarizes the
study.



II. BACKGROUND/RELATED WORK

For this specific product, we chose to focus on a single
programming language, C/C++. Previous research show that
file types are important when attempting to detect faults in
code, and the authors identify that .hpp files produced 80% of
test failures for their context [8].

This study has similarities to the RTS research field. How-
ever, we will not be doing an analysis on the test suites or
test cases, but rather apply the RTS background to dependency
analysis. Because of that, it is important to note that test suites
are excluded by default.

To limit the scope of this study, we only account for Soft-
ware Component (SC)s that specify their build dependencies,
and not larger modules which encapsulate many SCs.

A. Regression Testing Selection Techniques

Technique-specific trade-offs are explored in a survey on
159 papers [4], where classes of techniques from the area of
regression test optimization are presented, as well as a de-
tailed analysis on them. Following are summaries of common
techniques.

The definition of a safe technique varies slightly. Skoglund
and Runeson propose a safe technique called firewall, which
selects only modified and affected units of a System Under
Test (SUT) that needs to be re-tested [11]. Orso et al. defines
safe as a technique which will select tests that shows incon-
sistencies in the SUT [5]. Graves et al. however, defines safe
as a technique that has complete fault detection [2].

In the empirical study by Graves et al., it was found that in
some cases the safe technique could not reduce the number of
test cases and selected all [2]. In this study, we perceive a safe
technique as one that will find any potential faults introduced
by the commit.

Graves et al.’s study provide examples on implementation
of the different RTSTs. The experiment also provided some
insight into potential results of using the different RTSTs.
However, due to their artefact representativeness not reflecting
common systems found in industry, the results are not gener-
alizable to other systems [2].

Minimization techniques aim to remove redundant test cases
from the suite. In an empirical study on RTSTs, minimization
was described as a test selection method that covers every
segment that is reachable by the modified segment [2].

Contradictory conclusions were found with previously pub-
lished results, regarding the effects on fault-detection capabil-
ities when reducing a test suite. According to the study by
Yoo and Harman, some of the studies they examined showed
that removal of test cases had no drawbacks on fault-detection
effectiveness. However, on SUTs where test cases had low
block coverage, some studies pointed to that a reduced test
suite will provide less effective fault-detection [4].

Yoo and Harman suggests that these contradictory results
can be due to different contexts of the SUT. These context
factors are, for example, size and structure of the SUT. It is
also suggested that these contradictory results are evidence that
its difficult to generalize an answer on test suite minimization

for any SUT. In Graves et al.’s study, it was found that
minimization was the least effective. Random selection had
the same fault detection coverage, with less cost, although
only half of the time.

According to Yoo and Harman, a selection technique adds
tests to the suite, based on modifications to the software [4].
This description matches a technique that Graves et al. refers
to as a dataflow technique. We found that different literature
uses different terms to refers to similar techniques.

In Graves et al.’s empirical study, safe and dataflow had
similar fault detection coverage, but dataflow was less cost-
effective due to the need of additional analysis [2].

There are a number of different subsets of selection tech-
niques, many of them are identified in the study by Yoo and
Harman [4]. One of them is the modification-based technique,
where tests are selected by source code analysis, identifying
the changes done to a system and targeting affected units.

The prioritization technique will arrange tests in the test
suite for early fault detection [4]. The purpose of this is not
necessarily to reduce the test suite, but to prioritize the test
cases to increase the possibility of early fault-detection. A
possible drawback of this method is that the prioritization
requires input from a user, making it biased [4].

B. Software Context Matters

A case study was done on regression test technology adop-
tion [12], where it is suggested that the RTST should be chosen
with the context of the SUT in mind. The authors argue that
a systematic approach should be taken when introducing a
new RTST. The approach stems from the concept of evidence-
based software engineering, and by providing practical exam-
ples, Engström et al. makes this concept more accessible for
a wider audience. The purpose of Engström et al.’s study was
to give advice regarding a systematic approach to evidence-
based regression testing. Engström et al. discusses the aspects
of increased automation in RTS, but also provides a foundation
for choosing a RTST.

C. Continuous Integration

In order to uphold quality in a cost-effective manner,
reliance on CI becomes more important for a growing system
[8]. Applying RTS to CI with test suite data sets have
seen improved cost-effectiveness [7], [8]. Many solutions are
tailored prioritization techniques applied to improve cost-
effective CI, to provide early fault detection, by informing
developers quicker for introduced software faults.

D. Large Scale Software Systems

The system chosen for this study is a LS3. These types of
systems are complex to maintain and evolve, because of the
many dependencies larger systems tend to have [11]. We have
the type of system in mind when conducting this study, as we
have learned that the context of the SUT is important when
selecting a RTST. Orso et al.’s experimental study provides
an example of a tool, specifically scaled for LS3 [5], and
implements a safe RTST.



Orso et al.’s RTST consists of: Partitioning–the tool identi-
fies sections of the code that needs further analysis. Selection–
an in-depth analysis is done in order to select appropriate test
cases to run.

RTSTs all have distinct trade-offs, often between saving
time or accuracy of the selection. The aim of creating a subset
of test suites is the prospect of being more efficient. Or as Orso
et al. states it [5]:

In general, for an RTS technique to be cost-effective,
the cost of performing the selection plus the cost of
rerunning the selected subset of test cases must be
less than the overall cost of rerunning the complete
test suite

Re-running the entire test suite comes with high costs for
a LS3, but comes with encompassing test coverage and high
reliability [2]. Arguably it is not the most efficient way of
conducting RT, as it does not leave out tests that have not
been affected by the new modification to the system.

There is plenty of prior research which examines and aims
to find the most effective RTST [1], [2], [5]. Similarly, most
research on this topic has performed RTS on smaller software
systems.

RT studies in the 1990’s reveal advantages using small
components to isolate the test suites into segments to reduce
the testing scope for the overall suite, and lower the cost of
RT [9].

The behavior is retrieved from domain experts working
with the LS3. Afterwards, the most appropriate RTST will
be evaluated and compared.

The current implementation of the RTS is in the form of an
algorithm. The algorithm generates a Dependency List (DL)
based on the information from commits to the SUT. The DL
contains files on what sections of the SUT has been modified,
and needs to be tested.

This type of RTST has room for improvements in time-
efficiency and reduction of false positives in the DL. In this
study, the term false positive refers to dependencies that are
included in the DL, but should not be, as it does not contribute
to fault detection. The existence of false positives is an issue,
as it would require more resources than necessary to perform
RT.

This will be investigated using different RTSTs, comparing
their efficiency and precision through metrics applied on a
LS3. To compare the RTST, we need to create a second RTST,
resulting in an artefact.

Introducing a commit will prompt the system to generate a
list of affected SCs. By using build files which are located in
each SC, they can specify their build dependencies [8]. The
build files are recursively used to produce a DL. SCs can use
this build feature, those that do not, are always included in the
DL.

Parallel RTS is an important factor in achieving high speeds
for a LS3. Also, prioritization techniques become less fruitful
the more things you are able to execute in parallel.

III. RESEARCH METHODOLOGY

The first stage of this study is to conduct an investigation of
an RTST. This artefact is a DL generation algorithm, referred
to as Algorithm–Existing (AE). The purpose of this investi-
gation is to further our understanding of this implementation
and to classify it.

The following step is to develop three algorithms for RTS:
Algorithm–Minimization (AM ), Algorithm–Filter (AF ), and
Algorithm–Random (AR). The new artefact will consist of
the application of AF , AE and AM in sequence, depicted in
Fig. 3, and refereed to as Algorithm–Artefact (AA). AA will
be developed for a LS3.

Lastly, we will conduct an empirical study to compare the
results of AE , AR, and AA. As well as make a statement
as to which solution is best suited for the LS3, taking cost
effectiveness and RT coverage into account. See table I for
RT coverage metrics.

TABLE I
RT COVERAGE METRICS

Metric Description
True positives Number of files in the DL that indeed needs to be analyzed
False positives Number of files that do not need dependency analysis
False negatives Number of files missing in the DL

Additionally, Results also include the metric of time to
generate the DL.

Due to the fact that we will design an artefact in iterations
in this study, we decided to align our process with a design
science research approach [13]. See Fig. 1 for our process.

The new artefact, AA, should create a DL, that includes all
files that needs to be tested, and reduce the inclusion of false
positives.

We keep the commit sample constant when testing the
algorithms, in order to ensure comparable results.

These assumptions led to the formulation of the following
null hypotheses, which we are aiming to reject. Each hypoth-
esis is formulated in a way so that the results from the data
analysis will either allow us to reject them, or fail to reject
them. The alternative to each hypothesis is that there instead
is no difference between the result, and that they are equal.

H0 1 Time(AA) > Time(AE)
Using AA to generate the DL, will take more time than

using AE .

H0 2 FalsePositive(L1) < FalsePositive(L2)
False positives in the DL generated by AE , will be fewer

than those in the DL generated by AA.

H0 3 RTCoverage(L1) > RTCoverage(L2)
The AE technique is better at including more files in the

DL that are supposed to be included (true positives).

By performing interviews with the stakeholders, we will
investigate the current RTST.

Peffers et al. [13] state a method of obtaining information
through interviews:



Fig. 1. DSRM process, activities and artefacts.

”Details about the company’s development environ-
ment [...] specifics about the component design, and
the classification of certain code stubs, were obtained
through structured interviews.” [13]

Structured interviews can provide details about component
design and classifications of code [13]. While interviews that
are exploratory and semi-structured assist with understanding
the context of the system [12].

The structured context checklist was proposed by Petersen
and Wohlin [10], and used by Engström et al. [12]. The
checklist can assist with learning about the context, purpose,
and constraints [12]. A subset of the checklist is adopted for
our study, and we aim to learn about the following: How
long the system has been released, driving quality aspects,
and measurement of system size or complexity.

In combination to this initial interview, a code investigation
is performed on the RTS implementation, AE , that generates
the DL. The purpose of the investigation is to further our
understanding, and to classify it under any of the RTSTs

described in section II. Additionally, we will be able to answer
RQ 1.

A classification demonstration is performed with a domain
expert. The purpose of the demonstration serves to provide the
classification to them, and identify if our understanding of AE

is accurate.
The RTST used when implementing AA will be selected

based on it’s strengths against the limitations we will find
during the code investigation phase. A solution fulfills the
objective in a sufficient manner, and should be based on prior
knowledge, derived from related literature and the problem
statement [13]. Because the design of AA will be done in
iterations, the basis for the design choices are derived from
AE , previous literature, and feedback on design plans for AA

from stakeholders during an initial evaluation interview.
As stated previously, the artefact is developed in iterations.

The second iteration results in the AM prototype, and the third
iterations results in the AF prototype.

The three algorithms, AE , AM and AF are combined to
create the artefact AA, see 3.

Additionally, a framework for our study is developed along-
side AA and AR. The framework records and stores measure-
ments from the algorithms it is run on.

The artefact, AA, is evaluated by examining the resulting
quality metrics. These metrics are collected by testing AE , AA

and AR on a sample of commits and the SUT. By performing
these tests, it allows us to discover aspects of AA that could
be improved.

The artefact AA is evaluated by performing an artifact
validation interview with stakeholders. They are asked to fill
out a form with Likert scale questions.

We present the stakeholders with the artefact AA, it’s design
and evaluation, and the comparison between AE and AA.

A. Data Collection

TABLE II
DATA POINTS

Data point Description
Dependencies Number of files in the DL
Total files Number of files that all DL’s SC depends on
Generation time Time in seconds to perform dependency analysis
Committed files Number of files we perform dependency analysis on

Table II outlines the data we collect, and how we describe
the data points in the paper.

The data is normalized by ignoring dependencies which are
not affected by the commit, and by any RTST implementation.
We perform this normalization in order to interpret that zero
dependencies, would mean that an individual commit would
produce no dependencies.

Commits can modify a large variety of file types. Many that
can be difficult to perform deeper analysis on, given that, we
choose C/C++ source code. And select a set of recent commits
that modify that type of file. Thus resulting in our population.

The sample size is based on two assumptions: The time to
generate the DL will not vary depending on the commit. And,



the RT coverage for a commit will be consistent, given the
same algorithm.

The generation time to run the algorithms limits the sample
size possible. Using a confidence level of 90% for our one-
tailed t-test, we interview the stakeholder and make an estima-
tion for the sample size. We decide on a sample size of 500
commits to reflect the population. In order to reflect the current
affects of the RTST, the commits are recently sampled from
the population. The population size is undetermined, because
it is ever growing. The sample will be kept consistent for AE ,
AR and AA.

We choose to divide the population of commits into one
homogeneous subgroup based on coding language, thus nar-
rowing our scope to include only the sub-group of commits
that include C/C++ code. From this subgroup, the sampling
was then randomly conducted.

B. Data Analysis

The initial plan for the data analysis was to compare the
results for each RTST implementation to a baseline. However,
this was deemed not possible, as we found that we can not
determine what is a true positive. This is because we do not
mean to actually run the test suites that the DL generate.

The resulting analysis will provide the following metrics
for each RTST: dependencies, total files, generation time, and
committed files.

We perform statistical analysis using the data from running
AE , AA and AR. The results from the analysis are used to
do hypothesis testing, to reject or fail to reject the hypotheses.
For this, we compare numerical values between two sets of
data, and we want to determine if each data point from AA is
statistically different from AE , and we only want to know if
AA is better, so we choose a one-tailed t-test.

We also use descriptive statistics to outline a summary of
the entire data set, comparing the benefits or drawbacks of
each technique.

IV. RESULTS

A. AE Limitations Interview

By performing this interview, we aim to understand it’s
applied software context, as well as discover improvement
areas for AE , and use the findings to construct the AA artefact.

1) Identified Limitations: The interview yields three im-
provement suggestions to mitigate limitations of AE : It takes
a significant amount of time to generate the DL, but it will
in most cases, not miss dependencies. It is proven that AE

can miss tests that would reveal software faults, but the test
coverage is satisfactory as it does not occur often, while it
can not guarantee to be safe. The outcome from sub par test
coverage is expensive, so it is better to test more than to test
less.

For trivial changes, i.e., code comments, AE would produce
a component level test suite with all its dependencies. As AE

does not look at the change set, and only the files which were
changed.

B. AE Investigation

During the investigation, we inspected the code implemen-
tation together with the domain expert.

Algorithm 1: AE

foreach SC in SUT do
generate dependencies;
foreach changed file do

if changed file in dependencies then
include SC in DL;

Fig. 2. AE ’s implementation

Based on the interview, we conclude that the analysis is
somewhat static: if a non-functional statement, like a comment
in the code is modified, the DL will include all dependencies
to that file and run tests on them.

Performing early fault detection after a selection technique
is common for test case prioritization [4]. Additionally, test
suite prioritization has been performed on a similar case to
ours [7]. But it was confirmed by the domain experts as being
a less fruitful approach for the applied context, where they use
large amounts of parallelization.

The time complexity to generate the DL for AE was found
to be mostly static on different commits. The largest effect
on time for AE is the number of SCs it needs to identify
dependencies for.

Even though the algorithmic complexity is O(SC ∗
changedfile), checking each changed file is significantly
faster than checking each SC.

AE generates a DL for all SC, in our tests, when performed
linearly, the bottlenecks become more prominent as AE is
designed to parallel each DL generation for every SC.

AE is designed to handle a large set of programming
languages and configurations. These are important factors, but
can also increase the time of generation as all the cases needs
to be checked.

C. AE Classification

The results from the investigation leads us to conclude that
the current implementation, AE , is a selection technique, more
specifically, a modification-based technique.

D. Designing AA

Unlike AE , that conducts one single activity to perform
RTS, the new approach, AA, composites three techniques that
are split into different stages to reduce the overall test time.
See Fig. 3.

The first step is to re-use AE , to perform partitioning on
the test suite, and select a broad number of files, and generate
a DL that includes false positives.



Fig. 3. Diagram of AA

1) Minimization: Secondly, we perform a fine-grain mini-
mization over the partitioned results, removing false positives
from the DL using the commit change set. This algorithm is
called AM .

We extend AE by applying a method on the commit which
removes changes that do not impact the resulting compiled
code, such as white spaces, comments and print statements
[14]. The extension will minimize the existing DL, but increase
the generation time of performing the RTS. The goal being to
reducing the overall RT time.
AM is implemented in Python, and described using pseudo

code in Fig. 4. A motivation example then follows, outlining
a case where the changes would be ignored (see Fig. 5).

Algorithm 2: Minimization, ignores cosmetic changes

foreach line do
Normalize line;
if modified comment or logging then

continue;
if start of multiline comment then

in multiline comment block;
continue;

if in multiline comment then
if end multiline comment then

out of multiline comment block;
continue;

include change;

Fig. 4. AM ’s implementation

AM will exclude tests and dependencies for commits that
only include changes to comments and white space. The
algorithm will also omit cosmetic changes.

2) Filter: A filter, AF , is implemented in the beginning
of the test flow, to filter out dependencies that are in the test
directory.

A secondary approach, AF , is developed using a cost-
reducing filter. The filter approach is performed before AEs
dependency analysis, with the aim to reduce the time and cost
of RTS. If the committed files modify test code, the files do
not need to be analyzed by AE , and only include the SC in
the DL. The filter is implemented in bash, and described using
pseudo code in Fig. 6.

+ /*
+ * Comment
+ */
if (a) {

+ TRACE(0, "...");
- return 1;
+ return 1; // Comment
} else {

return 2;
+ // Comment
}

Fig. 5. Minimal example of a file which would be minimized, and not
including in the DL using AM . Additions are marked with a plus sign, and
deletions with a minus sign.

Algorithm 3: AF , Differentiate changes in test files, to
other changes.

foreach changed file do
if not in test directory then

continue;

if not find build file for the changed file then
continue;

Remove file from C1;
Add build file as a dependency;

Fig. 6. AF ’s implementation

The goal of this filter is to reduce the number of files we
need to look up in the dependency analysis, further, reducing
the time it would take to generate. And it if filters out all
the files, no dependency analysis is performed. Fig. 7. is a
motivation example over the inputs and outputs of AF .

3) Random: In order to examine the potential cost effi-
ciency of performing dependency analysis in AE , as well
as the new implementation AA, a random solution was de-
veloped, AR. Fig. 8 provides the pseudo code for the bash
implementation.

The random technique, AR, will select a random depen-
dency, a random amount of times, and add to a DL. Finally,
AR will remove duplicate dependencies from the DL.

E. Initial Evaluation

An initial evaluation is performed with the domain expert.
We explain our findings for AE so far, as well as the basis for

AF input files:
./SC/test/file1.cc
./SC/test/file2.cc
./SC/test/file3.h
./SC/src/file4.cc

AF output:
Files: ./SC/src/file4.cc
DL: ./SC

Fig. 7. Overview AF ’s filtering approach, which replaces the test files with
the build file and does not perform a dependency analysis on.



Algorithm 4: AR

foreach random number of times do
include random dependency in dependency list;

remove duplicate dependencies;

Fig. 8. AR’s implementation

the design choices for AM .
One suggestion was an initial check, to verify if the commit

required testing at all. Along with a check to verify if
the change set would be valid in the affected programming
language. This has the limitation of only being effective if the
check was quicker than AE , and if it reduced the the total
time spent performing RT.

We also discussed the potential use of early fault detection.
However, this idea was scrapped, as the importance of the
overall RTS time is more valuable and measurable.

During the evaluation, we also found additional limitations:
AE needs to be maintained to include new file extensions/
types every time new file types are occur in the dependencies.
If the algorithm is not edited, files of these types will be not
included in the DL.

They approved the idea of smart selection, which would be
the extension of AE .

F. Prototype Evaluation

An evaluation of the AM prototype is performed with the
domain expert. They validate the behavior of AM . The domain
experts provide additional ideas for the next iteration for
improving the AM algorithm.

In the SUT there are commits that only make changes in
test code, and does not require a dependency analysis, and
should only test that SC. Since testing only the affected file
is enough to validate the behavior.

G. Data Collection

The sample size is decided to be 500 commits. We created
a subgroup from the population, in order to get a sample that
is mainly C/C++ code, but still random.

The sample–data is collected for all three techniques: AE ,
AA and AR.

For the sum of the entire sample–data, AA produced 14.7%
less dependencies. AA also reduced the committed files by
151, and we determine these to be false positives. In the
sample–data, the number of commits with no dependencies,
rose from 57 in AE to 65 in AA.
AA reduced the dependencies in 80 commits. AA also

increased the dependencies in 18 commits. In most cases, with
a single additional dependency.

If we only look at the commits that differed between AE

and AA, the mean difference was one dependency.

H. Data Analysis

Here we describe the results from performing statistical
analysis, and descriptive statistics on the sample–data.

The collected data is checked for normality, and does show
a normal distribution, see Table III.

TABLE III
TEST OF NORMALITY (SHAPIRO-WILK)

W p

AE dependencies - AA dependencies 0.389 < .001
AE committed files - AA committed files 0.444 < .001
AE generation time - AA generation time 0.433 < .001
AE total files - AA total files 0.408 < .001

Afterwards we perform a statistical hypothesis test, com-
paring the collected data described in Table II.

The results of the t-test are shown in Table IV. The t-test
indicate that there was no significant difference between AA

and AE . Thus we fail to reject all three null hypotheses.
We do not perform a t-test on AR because it is only used

as a benchmark.

TABLE IV
PAIRED SAMPLES T-TEST

t p

AE dependencies - AA dependencies 6.009 < .001
AE committed files - AA committed files 10.976 < .001
AE generation time - AA generation time 5.323 < .001
AE total files - AA total files 6.372 < .001

Table V describes the descriptive statistics, including mean
and standard deviation for all three techniques. We analyzed
how AR compared to AE and AA. AR’s dependencies had
a median of 71.424, while AE and AA had a median of
3.776 and 3.292, respectively. The amount of dependencies
are significantly higher when a DL is generated by AR, but
the generation time had a median of 100.600 seconds, which is
less then that of AA’s at 195.165 seconds and AE’s at 179.912
seconds.

Table V shows that the standard deviation is lower for AA

for every data point, meaning that AA is closer to the average,
and less spread out compared to AE .

TABLE V
DESCRIPTIVE STATISTICS

Mean SD

AE dependencies 3.776 7.220
AA dependencies 3.292 7.118
AR dependencies 71.424 34.823
AE committed files 8.924 21.787
AA committed files 6.560 17.685
AR committed files 8.922 21.788
AE generation time 195.164 75.173
AA generation time 179.912 75.316
AR generation time 100.600 60.690
AE total files 1032.460 2037.672
AA total files 827.524 1952.751
AR total files 100022.262 5087.445

Looking at Fig. 9, we can see that the number of dependen-
cies varies slightly between AE and AA. The histogram also
shows that AA produced less dependencies more frequently.



Fig. 9. Histogram over AE and AA’s Dependencies

I. Validation With Stakeholder

An interview is held with the stakeholders, in order to
validate the behavior of the artefact and present the results.
We also tell them about the behavior of AA, and show them
the results from the data analysis. Based on this knowledge,
the stakeholder is able to answer the survey, see Table VI.

TABLE VI
STAKEHOLDER SURVEY AND ANSWERS

The subset of commits reflect the norm. Agree
The new solution will be used in the future. Neutral
The new solution meets the company’s needs. Neutral
The new solution is maintainable/easy to maintain. Agree
I am happy with these results. Neutral

The satisfaction level was mostly positive, but mixed. The
stakeholder expressed that they would have been more happy
with an artefact that was ready to be implemented for the SUT.

The stakeholders express that they might be interested in
using parts of AA, AF , since AF is easier to maintain,
implement and extend.

What constitutes as a cosmetic change, depends on the
programming language. The implementation of AM is therefor
programming language dependent, and thus is less generaliz-
able for a larger array of programming languages. In most
cases, to be efficient with the implementation, it requires
domain knowledge of the source code.

AF is designed to match the specific directory structure of
the SUT, thus making AF easy to generalize, and apply on
to other SUTs. It also does not have the same limitations as
AM , and does not depend on the programming language.

V. DISCUSSION

In this study we connect RTS research with dependency
analysis research. This connection lead to complications in
applying RTSTs similarly to that of literature.

We acknowledge that no RTST solves every use case.
The developed approaches are lightweight, and shows im-

provements for an existing RTST. The investigation, and
subsequent interviews provided valuable insight not found
in documentation, we highlight this as a critical step in the
resulting artefact and study.

A. Related Work

The design choices for AA were inspired by related liter-
ature, as well as limited by the existing solution, AE . We
deemed it more resource-effective to re-use the AE solution.
We decided to partially follow Orso et al.’s Partitioning
and Selection technique, as it is scaled for an LS3. This
technique combines two RTST in order to get the benefits
from both [5]. As AE is a modification-based selection
technique, and already has the benefits and drawbacks from
that type of RTST, we decided that the second step would
be a minimization technique, removing from the DL, those
dependencies that were selected and included by AE [4].

We partially extend Vokolos et al.’s conclusion with
lightweight minimization [14]. They highlight efficiency for
their RTST, which uses canonical form, and claim that it does
not increase time for RT. Similarly, these observations can be
made with AA.

The prioritization technique described by Yoo and Harman
was also considered. However, after deliberating with the
stakeholders, we decided not to try out such a technique. Upon
describing the benefits and drawbacks of such a technique, the
stakeholders deemed it not beneficial for their context [4]. We
also agree that the risk of adding selection bias to their test
routines, would pose a bigger drawback, than any possible
benefits would add.

B. RQ1

To answer RQ 1 we conducted three interviews, and a code
analysis. The following are improvement areas we did not
improve upon using AA.

Presented by the stakeholders were other optimization, or
improvements to AE . These improvement were highly de-
pendent on the SUT. We declined some suggestions, which
relate to the domain of the SUT, and/or programming language
applied, due to the specificity and small generalize-ability. The
resulting artefact adopts two suggestions from the stakeholders
to design AM and AF .

We extended on to AE to create AA. Doing so, we can
only reduce the existing DL using the two approaches (AM ,
and AF ). We argue the limiting factor for the number of false
negatives in the findings, do not change, due to still using
AE . No improvements have been made to expand the DL,
thus false negatives have not been reduced.

C. RQ2

With RQ 2, we set out to investigate the differences between
two RTSTs. In order to answer RQ 2, we intended to look at
a few metrics.



We set a few guidelines as to what qualifies as a false
positive (see Section III). According to these, AE included
151 false positives.

With the collected data, there is no way of checking if the
results from AA included any false positives. Because of this,
we assume that AA can be improved.

Investigating false negatives was not feasible during this
study, therefor we acknowledge this as a limitation in our
study.

Similarly, true positives are also difficult to analyze, as we
do not have the means to analyze to see if the resulting DL
completely covers all necessary dependencies.

The hypothesis testing showed no significant results, and
we were not able to reject any of the three null hypotheses.

Additionally, we compared the standard deviation for all
RTSTs in Table V. We can not say whether a higher or lower
standard deviation is better for generation time, as AA could
produce a very fast dependency analysis given a commit of
only test changes appropriate for AF , thus giving us a larger
standard deviation.

We also implemented a random technique, AR. The purpose
of this was to have a worst-case benchmark, to compare
against our findings. This implementation had a lower gen-
eration time. However, this was at the cost of test coverage
accuracy, according to the metrics we looked at. See Fig. 8
for the pseudo code algorithm.

The three different RTST have both drawbacks as well as
benefits. The effectiveness of a RTST is dependant on the
system context, in which it is implemented on [12]. This
resonates with statements made in related work in the field.

D. Validity Threats

1) Classification of AE: The investigation relies on the
interpretation of AE . AE can consist of several techniques,
and possibly not fall under a single definition as defined in
literature.

2) Variations: Software in general is prone to intermittent
variations, we see this in the variations on the generation time
for the DL when conducing the study. As we can not reliably
ensure that nothing will vary the results on the same hardware,
variations are mitigated by running the tests on the least active
development hours.

3) Generalizability: The result from the data analysis can
only be applied for the context of this study, we only draw con-
clusions and make claims about the specific SUT. However,
the RTST and the investigation thereof, can be generalized and
be applied globally.

4) Analytic Bias: There is also risk for bias in the ques-
tionnaire with the stakeholders. As the questions followed a
Likert scale format, there is a risk for a central tendency bias,
where the stakeholder might avoid extreme answers, as well as
try to align their answers with what they think the researchers
want to hear [15].

5) Sample Bias: In the data collected for AE , 57 commits
were found to produce no DL. Two theories for this would be

that some commits did not modify any dependent files, or if
false negatives exist in AE , which we did look for.

In addition, the commits sample might not reflect the
population, as commits can vary along several dimensions, i.e.,
if randomly sampled from a population, it might give results
that provides little benefit from an analysis point of view. In
this case, we tried to mitigate this issue by focusing only on
the part of the population that has C/C++ code.

VI. CONCLUSION

Regression Testing (RT) becomes more important with
Large Scale Software Systems (LS3). The larger the test suite
is, selecting what to test becomes more important, as testing
everything is no longer cost-effective. In literature we can see
that many authors have proposed Regression Testing Selection
Techniques (RTST).

In this study, we explored an existing RTST, Algorithm–
Existing (AE), and classified it as a modification-based selec-
tion technique. We extended the existing Regression Testing
Selection (RTS) with two additional approaches: Removal of
cosmetic changes introduced in the commit by minimizing
the selection, and filtering out files based on file names and
separate changes in test files from other changes.

Our statistical analysis, however, did not find any significant
results. Nevertheless, the analysis points towards a total 14.7%
reduction in the sum of all Dependency List (DL), when
comparing AE with Algorithm–Artefact (AA).

The interviewed domain experts described limitations with
the current implementation. They outlined maintainability as
important, and describe cases that leads to missed dependen-
cies.

A new solution, AA, was developed, and tested on a
LS3, minimizing commits that only included changes to
comments, and filtering out dependencies that are tests. With
this approach, we were able to somewhat reduce the DL,
although not finding any statistically significant improvements.
However, we did see a reduction in the standard deviation
between the two implementations, which could be beneficial
if implementing this in current systems.

In this study, we have presented potential benefits - as well
as limitations - of two RTST, as well as a random technique.
Additionally, we added to the existing research on applying
RTST to LS3.

We want to highlight potential future work on connecting
RTST research with dependency analysis research. According
to us, this is an area that would benefit from further investiga-
tion. One possible area would be on how to apply more fine
grained analysis on dependency analysis.

GLOSSARY

AA Algorithm–Artefact. 3–9
AE Algorithm–Existing. 3–9
AF Algorithm–Filter. 3, 4, 6, 8, 9
AM Algorithm–Minimization. 3, 4, 6–8
AR Algorithm–Random. 3–7, 9

CI Continuous Integration. 1, 2



DL Dependency List. 3–9
DSRMDesign Science Research Methodology. 1, 4

LS3 Large Scale Software Systems. 1–3, 8, 9

RT Regression Testing. 1, 3, 5–9
RTS Regression Testing Selection. 1–9
RTST Regression Testing Selection Techniques. 1–5, 8, 9

SC Software Component. 2–7
SUT System Under Test. 2–5, 7–9
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