
High-speed Image Capture and Cone 
Detection Using a Raspberry Pi and 
Camera Module: A Design Science 
Approach
Bachelor of Science Thesis in Software Engineering and Management

JUSTINAS STIRBYS

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019



The Author grants to University of Gothenburg and Chalmers University of 
Technology the non-exclusive right to publish the Work electronically and in a 
non-commercial purpose make it accessible on the Internet. 
The Author warrants that he/she is the author to the Work, and warrants that 
the Work does not contain text, pictures or other material that violates 
copyright law. 

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this 
agreement. If the Author has signed a copyright agreement with a third party 
regarding the Work, the Author warrants hereby that he/she has obtained any 
necessary permission from this third party to let University of Gothenburg and
Chalmers University of Technology store the Work electronically and make it 
accessible on the Internet.

High-speed Image Capture and Cone Detection Using a Raspberry Pi and Camera Module: A Design 
Science Approach

© JUSTINAS STIRBYS, August 2019.

Supervisor: Christian Berger
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019



High-Speed Image Capture and Cone Detection
Using a Raspberry Pi and Camera Module: a

Design Science Approach
Justinas Stirbys

Software Engineering and Management Program
Department of Computer Science and Engineering

University of Gothenburg
Göteborg, Sweden

E-Mail: gusstirju@student.gu.se

Abstract—The purpose of this paper is to provide a high-
speed image capturing and cone detection algorithm using low-
cost devices, such as a Raspberry Pi and Pi NoIR V2 camera
module. Little research focuses on high-speed, low-cost image
processing. Most existing literature aimed at achieving a high
FPS, use expensive tools, such as LiDARs or high-speed cameras.
Thus creating a gap in knowledge. Design science was used
to develop and evaluate our artifact. For evaluation, controlled
experiments were used to gather data. The collected data shows
that our artifact is able to capture and detect cones at 30-35FPS
with varying, 42-83%, cone detection rate and cone detection
accuracy ranging from 9% to 69%. The results show that low-
cost, real-time image capture and processing are achievable. The
study could be used to provide a cost effective solution for cone
detection. Additionally, the solution’s low-cost provides more
opportunities to develop and innovate in this area.

I. INTRODUCTION

A. Background

Image processing needs are increasing in many key areas,
including the automotive industry [1]. The automotive industry
widely utilizes cameras and image processing as sensors. Most
commonly to improve safety by using lane, lane marking or
vehicle detection algorithms. There are a variety of existing
solutions, which have varying frame per second (FPS) image
processing capabilities. With most of the existing work being
aimed at real-time processing. In the context of this paper,
real-time frame rate is considered to be roughly 25FPS, while
high-speed image processing is over 100FPS. 10FPS can
be achieved with a multi-camera setup and a lane detection
algorithm [2]. Solutions focusing on lane and vehicle tracking
can achieve 11FPS [3] or in other cases 20FPS [4]. Other
algorithms analyzing video sequences to detect and track lane
markings are able to achieve a frequency of 30FPS [5]. Image-
based solutions have seen a rise in interest and opportunities,
due to faster and cheaper computer processing [1]. A reduction
in cost can be achieved by using lower cost equipment, such
as a Raspberry Pi. Raspberry Pis in the automotive industry
have been adapted for vehicle detection, counting and tracking
[6].

B. Motivation

The motivation for this research paper is to provide an
affordable solution for image capture and cone detection that
could be adapted to the automotive industry. The motivation
for cone detection, lies in their use to direct traffic and
functions as warning signs. By providing an artifact capable
of cone detection, it is possible to improve safety in vehicles.
For fast traveling vehicles, a high frame rate capture and
image processing are required to keep track of the vehicle’s
surroundings. This is usually solved with LiDARs, high-speed
cameras or other expensive systems. The use of expensive
systems is reflected in existing literature as well. LiDAR and
radar sensors have been used to mask out other cars and
objects [2]. Additionally, processing commonly is done with
dedicated personal computers (PC) and expensive CPU, such
as Intel Core 2 Duo E8400 CPU [7], Pentium IV 2.8GHz [5],
Pentium IV 2.8GHz [3] etc.

Expensive equipment limits the number and type of people
that can work with high-speed image capture and processing.
Studying the use of low-cost devices to analyse a high amount
of frames per second, could make research, in this area,
more accessible to individuals and smaller organizations. Thus,
providing a means for further innovation. However, high-
speed, low-cost image capture and analysis has hardly been
researched. The research found is not applied to the the
automotive industry. Instead, the research focuses on baseball
pitch movements [8] and video capture [9]. Thus, indicating
a gap in knowledge.

The aim of this paper is to fill the gap in literature
by providing a low-cost solution for high-frequency image
capturing and processing using cheap, affordable tools such
as a Raspberry Pi. The solution is meant to detect cones.

C. Research Questions

There are several predominant trends in vehicle production.
Within Europe, awareness of pedestrians and pedestrian safety
are several of the major factors to consider [10]. Additionally,
savings and safety are some of the drivers influencing au-
tonomous vehicle development [11]. Safety concerns require



vehicles not only to make quick decisions, but for the decisions
to be accurate as well. With safety concerns in mind, the
following research questions were made:

• RQ1: What frame rate can be achieved at maximum when
performing cone detection with a low-cost Raspberry Pi
and camera setup?

• RQ2: What performance can be achieved in terms of ac-
curacy, cone detection rate and number of false positives,
and false negatives detected?

To answer these RQs, design science will be used as a
research approach, Dynamic analysis and a controlled experi-
ment will be used as evaluation methods. The evaluation will
use a Raspberry Pi 3 and Pi NoIR V2 camera. Dynamic anal-
ysis will check the time-taken for processing by the artifact’s
different components, seen Figure 3. For the experiment, the
camera module will be placed at different distances in front
of a traffic cone. The experiment will be used to calculate
frame rate and accuracy. Accuracy is a percentage calculated
by the number of frames that correctly detected cones, divided
by the number of total captured frames. For a cone to be
correctly detected the absolute difference between the cones’
real and detected position is less than 5cm. Frame capture
and processing speed is calculated by observing the number
of correctly detected cones.

D. Contributions

The designed artifact provides contributions to researchers,
practitioners and software engineering as a whole. First, re-
searchers may benefit by expanding existing knowledge with
a paper on high-speed frame capture and processing on low-
cost devices that is applied to the automotive industry. As there
is little research on this specific topic, the study will be one of
the first to fill this knowledge gap. Second, practitioners may
benefit by obtaining a solution for a cheaper, more affordable
way of performing cone detection. Thus, reducing the cost
of production, while improving performance of the vehicle.
Additionally, the proposed solution is develop with low-
cost components, open-source libraries and is non-proprietary.
This enables a larger amount of people to work with high-
speed image capture and processing. Thus, providing greater
accessibility and bolstering further innovation for software
engineering as a whole. Software engineers are provided with
the artifact’s design and flow of events, Figures 2 and 3, as a
starting basis for their own innovations using Raspberry Pis.

E. Scope

The developed artifact is an algorithm consisting of two
main parts. The first, is responsible for high-speed frame
capture. This part of the algorithm is realized by integrating
existing open-source libraries with the second part. The second
part uses captured frames for cone detection. A cone detection
algorithm is produced as part of this research project. The
designed artifact is developed specifically for traffic cone
detection. Therefore, recognizing other objects, such as, traffic
signs or cars are outside the thesis scope.

F. Structure

The rest of the report is structured as follows; Section II
details similar research done in this area; Section III describes
the chosen research approach, data collection/analysis and
the study’s design cycles; Section IV describes the results
related to the research questions; Section V discusses research
implications and validity threats; Section VI describes future
work and summarizes the paper.

II. LITERATURE REVIEW

A. Image Capture & Processing in Automotive Industry

The automotive industry incorporates a wide-range of image
sensors. These sensors are often used for lane, lane marking
and vehicle detection. Research on lane marking detection
and lane tracking [2], [5] showed results with varying FPS.
One solution achieved 10FPS using a 4 camera setup and
a 2GHz Pentium with a GeForce 7600GTS graphics card
[2], while 30FPS was achieved with a single camera and a
PC (Pentium IV 2.8GHz and 512M of RAM) for processing
[5]. Additionally, Sivaraman and Trivedi [3], and Wu [4]
performed lane detection and expanded their solutions to
include vehicle detection. Results provide 11FPS with Pentium
i7 2.4GHz PC [3] and on average 20FPS with a Pentium Duo
1.66GHz CPU and 1GB RAM computer setup [4]. Gupta and
Choudhary further expanded their research to perform lane
detection, lane tracking and road surface marking detection.
Using different data sets that included road images under
different conditions and a PC (Intel Core 2 Duo E8400 CPU
with 8GB of RAM) for processing, their solution achieved
between 22 and 46FPS [7].

Although existing research attempts to solve similar prob-
lems, their approaches vastly differ. One paper approached
lane marking detection by using Canny edge detection [3].
Other solutions created and used ground-plane images mapped
to real world coordinates [2], [4]. Lipski et al. used an IMU
and GPS to find the vehicles position and rotation, then created
a single top-down fusion image in HSV [2]. Wu et al. used
a calibrated camera to map 3D points to pixels using the
pinhole model. Then performed linear transformation to map
the image plane projections to a ground-plane images [4].
To identify lane markings and create road models, Wu et
al. used steerable filters [4]. While Lipski et al. examined
the contrast, shape and orientation of pixels [2]. Both papers
then used multiple iterations of a RANSAC algorithm for
lane fitting [2], [4]. Liu et al. [5], Gupta and Choudhary
[7] both defined images Regions of Interest (ROI). ROI is
a part of an image that is being analysed. For analysis, the
aforementioned authors defined ROIs, where the lanes are
most visible. Meaning, the lower half of an image. Analysing a
part of an image, can improve the systems speed and efficiency
[7], because a whole image contains too much data to analyze
in real-time [5]. Both papers use segmentation on grayscale
images. Segmentation makes the continuous lane markings
easier to observe [5]. However, Liu et al. used P-tile method
to determine the segmentation threshold [5], while Gupta



and Choudhary [7] used an adaptive threshold. Furthermore,
Gupta and Choudhary used a Gaussian filter to reduce the
noise in ROIs before segmentation. Liu et al. describe this
as a possibility, but did not perform filtering [5]. The two
solutions further differ with the way lane fitting was done.
Liu et al. used lane markings to construct linear equations
that represent the lane [5]. Gupta and Choudhary approached
lane fitting by forming and analyzing clusters across multiple
frames. The clusters were made of points representing lane or
road markings. The points were used to predict a path for the
vehicle. If the cluster of the succeeding frame did not match
the cluster of preceding frame a new cluster is formed.

However, the existing literature fails to provide a solution
to the studys problem. First, because the existing solutions are
not focused on high-speed frame capture. Second, the solutions
use PCs for processing, which are considerably expensive.
Third, the solutions used an expensive LiDAR and radar
sensors to mask out other cars, walls etc [2].

B. Image Capture & Processing with Raspberry Pis

Raspberry Pis are cheap single-board computers. Raspberry
Pis have been used for varying purposes, from face recognition
[12] to motion detection in surveillance system [13]. Raspberry
Pis are affordable, portable, small, light and have a lower
power consumption [12], which could explain their popularity.
Raspberry Pis popularity extends to the automotive industry as
well, to such areas as traffic monitoring.

Kochláň et. al utilized background subtraction [14]. The
Raspberry Pi was set up on a bridge. The Pi would capture
images of ongoing traffic. Moving objects were detected by
calculating the difference between the captured frame and an
example background frame. After subtraction a threshold is
applied, to achieve a black and white resulting image. Then to
further remove noisy pixels erosion and dilation were applied
[14].

M. Anandhalli and V. P. Baligar have opted to use a
vastly different approach for traffic monitoring. M. Anand-
halli and V. P. Baligar used a camera capturing in RGB,
before converting frames to HSV for a more absolute vehicle
colour segmentation [6]. In contrast to Kochláň et. al who
used grayscale images for processing [14]. To continue, M.
Anandhalli and V. P. Baligar would split the HSV image
into three channels and process the channels separately, then
merge the processing results to blobs representing the detected
vehicles [6]. Another difference between M. Anandhalli and
V. P. Baligar and Kochláň et. al, is the scope of their respective
solutions. M. Anandhalli and V. P. Baligar use Kalman filter
to also track the vehicles [6] and not only detect them, as
is the case with Kochláň et. al. However, despite the vastly
different approaches the resulting accuracy is similar. With M.
Anandhalli and V. P. Baligar having a 96% detection accuracy
[6] and Kochláň et. al having 95.7% and 93.2% detection
accuracy for traffic volume and vehicle detection respectively
[14].

Traffic monitoring implementations using a Raspberry Pi
have also been performed with edge detection algorithms. L.

Ujjainiya and M. K. Chakravarthi created an experiment in
hopes of improving vehicle safety. To improve safety, images
of vehicles were captured and processed using Laplacian,
Sobel and Canny edge detection. The different edge detection
algorithms were the focus of an analytical comparison to
determine the best algorithm for vehicle detection. L. Ujjainiya
and M. K. Chakravarthi concluded that Canny edge detection
provided the most distinguishable objects and best depth
analysis for the image out of the three options [15].

The aforementioned research projects do not provide a
solution for this thesis, as they are focused on detecting
vehicles as opposed to traffic cones. Moreover, the solution
are aimed for real-time detection, roughly 25FPS, as opposed
to high-speed detection, over 100FPS.

C. High-Speed, Low-Cost Cameras

Most existing solutions utilize expensive high-speed cam-
eras to achieve a high FPS. Similarly, minimal research was
found covering high-speed image capture on low-cost devices.
Literature on this area focuses on tracking high-speed move-
ment and is not applied to the automotive industry. Wilburn
et al. used cheap CMOS sensors to simulate a high-speed
camera. For the simulated camera the study used a cluster of
52 Omnivision OV8610 image sensors, each capturing at 30
FPS. Furthermore, Wilburn et al. required 1 PC per 26 cameras
to capture the compressed video [9]. Theobalt et al. used
affordable cameras to track a baseball pitch and the pitchers
hand movements. The study used 4 Olympus Camedia C505
cameras, stroboscopes for lighting and 1 PC to analyze and
3D model the high-speed ball movements [8].

These papers used different camera arrangements to track
high-speed movements. Wilburn et al. created a camera cluster.
The cameras were all closely situated and captured, at least
partly, the same area [9]. Theobalt et al. arranged the 4
cameras along the baseball pitches throwing path [8]. Despite
differences in camera placements both papers had similar
issues with light and exposure time. Exposure time creates a
trade-off. Shorter exposure reduces motion blur, but captures
less light. Longer exposure captures more light, but with more
motion blur [9]. However, using a camera cluster provides
greater flexibility to manipulate exposure time. Additionally,
the camera cluster can be used to greatly supplement image
capture speed, even up to 1560 FPS [9].

Despite that, the found literature does not provide a solution
to the studys problem for a variety of reasons. First, the litera-
ture is not applied to vehicles or used for vehicle related uses.
Second, the research only shows high-speed frame grabbing an
no image processing. It either solely performed videography
[9] or did not do 3D modeling of baseball trajectories in real-
time [8]. Third, research was performed with old cameras [8]
that are no longer sold by retailer. Therefore, the research on
this topic needs an update.

D. Object Detection with CMOS sensors

An alternative to object detection with high-speed, low-cost
cameras is provided by CMOS image sensors. CMOS sensors



are electronic chips used to create images in digital cameras.
An alternative to CMOS chips are CCD chips. However, this
section will focus solely on CMOS, since CMOS sensors
are better equipped for high-speed imaging than CCDs [16].
Additionally, CMOS are more reliable, can be easier integrated
and with a slightly lower production cost than CCD sensors
[17].

Although CMOS are single electronic chips, they have
been successfully used for object detection and tracking.
Therefore, CMOS may be beneficial for our research topic,
as CMOS could be used for cone detection and tracking.
The research papers discussing CMOS use binary images for
image processing to save computation speed. Additionally,
to further reduce computational power all papers incorporate
ROIs. Zhao et. al uses frame subtraction to generate binary
motion events [18]. The same technique, frame subtraction, is
used by Choi et. al to detect motion in images [16]. Moving
objects in images are identified by subtracting the current
frame by an reference frame or the previous frame. In contrast
to the aforementioned solutions, Teman et. al identifies objects
by detecting the brightest targets in the CMOS field of view
[19]. Once the objects are identified, Choi et. al and Zhao et.
al transfer the digitized output image to an external digital
control unit to find a ROI for the image. ROI is then used for
object localization and tracking [16], [18]. Teman et. al first
calculates the centroid of the brightest pixels, before using an
external control unit to calculate the ROI [19].

The solutions differ in the way object tracking is performed.
Zhao et. al forms pixel clusters within ROIs that represent
moving objects. Once a new motion event occurs in a frame,
a new cluster of pixels is created. Zhao et. al finds the clusters’
centroids, then distance between the clusters. The distance
is used to decide whether the different clusters represent the
same object. Meaning that if the distance is small, the clusters
are merged. If the clusters overlap, one of the clusters is
enlarged. If the distance is large, then the clusters represent
different moving objects [18]. Teman et. al and Choi et. al
performed object tracking by checking the distribution of
pixels in the target object. The distribution was checked by an
external control unit. The unit would determine the movement
direction. If movement occurred the ROI area would be moved
accordingly in the detected direction to keep track of the target
[16], [19]. The difference between Teman et. al and Choi et.
al, is that Choi et. al reduces spatial resolution in in ROI to
perform processing at a much higher frequency. Additionally,
Choi combines ROI images and stationary images to create a
multi-resolution images to suppress motion blur [16].

The above literature provide fast solutions for object de-
tection and tracking. Teman et. al and Zhao et. al providing a
frame rate of up to 100FPS [18], [19], and Choi et. al capturing
normal images at under 30FPS, but lower spatial resolution
(ROI) images at 240FPS [16]. However, the solutions do not
provide an answer to our research topic, due to small frame
size, 64x64 [16], [18], [19] making it difficult to monitor
the surroundings of the vehicle. Additionally, the use binary
images and frame subtraction captures all motion in frame.

Meaning that additional filtering out of objects outside the
road boundaries would be required.

III. METHODOLOGY

A. Research Approach
A research approach describes broad steps for data collec-

tion and analysis required to fulfill the research goal. The
goal of this thesis is to produce a new artifact for cone
detection. Meaning, that the goal is to address a real-world
problem. Action Research (AR) and Design Science Research
(DSR) are two seemingly similar methodologies focused on
addressing real-world problems. AR is a framework attempting
to contribute to both practitioners and academia by solving an
immediate problematic situation. DSR focuses on designing,
analysing and measuring an artifact’s performance [20]. DSR
puts artifacts at the core of the discipline [21] and by definition
includes creating new artifacts unlike AR [20]. Therefore, the
goal of this thesis may be be better realized with DSR.

The result of DSR is an artifact created to address an
important organizational problem. Artifacts can be ideas,
practices, technical capabilities and products [22]. The paper
methodology was based on existing literature. Specifically, the
6 activity design science methodology proposed by Peffers
et. al (2007) to better ensure successful artifact creation.
The activities described by Peffers et. al are suggestions and
function as a template. The activity sequence can be changed,
activities can be omitted or replaced by others [23]. For
this project, the activity of defining specific goals for the
solution was omitted. The omission was done, due to the
project short time frame and small size. Performing activities,
such as, a full software requirement specification would have
consumed a large amount of time. Instead, only several simple
requirements were made for each Design Cycle, see following
subsections. These requirements guided development and data
analysis. Additionally, the demonstration activity, used to
showcase the artifact working, has been omitted in favor of the
more formal evaluation activity [23]. The evaluation activity
demonstrates the artifact’s capabilities and provides concrete
measurements. These activities have a significant overlap, so
demonstration as a standalone step was deemed unnecessary.
The activities used in the project are:

• Problem identification and motivation. The purpose of
this activity is to define a specific problem. Then further
justify the need for a solution. This activity involves
studying existing literature. The gathered literature is seen
in Section II.

• Design and development. The purpose of this step is to
design and develop the artifact. The artifact’s designs are
discussed below.

• Evaluation. This step requires observing the artifact and
measuring how well the artifact meets the established
goals. For this project dynamic analysis and a controlled
experiment were selected as evaluation methods. The
evaluation results are described in Section IV.

• Communication. The final step requires to communicate
the findings of DSR to relevant audiences. Meaning, com-



4.
Communication

Text

1. Problem
identification

and motivation

2. Design and
development

3. Evaluation

2 Output: the artifact

3
Output: collected and analysed

data.

1
Output: background and

literature review.

4 Output: publish results.

Fig. 1: Design Science Cycle

municating the problem and its importance, the design,
the artifact and its effectiveness. This is done through by
handing over the report to share the project’s details.

These activities are performed in design cycles and can be
seen in Figure 1.

B. Data Collection

Data was collected in two ways. For the first design cycle,
dynamic evaluation was used to monitor the artifact’s perfor-
mance, while capturing and processing images of the cone.
For dynamic analysis the time taken for Canny edge detection
and Progressive Probabilistic Hough Transform was monitored
for 100 evaluations.

For the second design cycle a controlled experiment was
used. A controlled experiment measures performance of an
artifact under controlled conditions [22]. For an experiment
it is important to specify dependent variables, factors, levels,
control variables and objects. A dependent variable is the
measured outcome of the experiment. A factor is a charac-
teristic that has an effect on a dependent variable. Levels
are an extension of factors, specifically a level refers to a
possible value of a factor. A control variable refers to an
attribute or characteristic that will remain constant throughout
the experiment. Lastly, an experimental object is an object on
which the experiment is applied [24].

For this project, the experiment has 3 dependent variables.

The dependent variables are number of frames grabbed, the
frequency of analysed images i.e. the FPS, and cone detection
accuracy. Cone detection accuracy is measured in percentages,
calculated as the number of correctly detected cones divided
by the number of total frames captured. For cones to be
accurately detected, the difference between the detected cone
position and the real-life position is not greater than 5cm. The
factor in this experiment is the distance of the cone from the
track. This factor’s levels are 1m, 2m and 3m. The constant
control variables are the Raspberry Pi and camera module
(Pi NoIR V2), the frame size (640x240), the surrounding
environment, lighting conditions and the same orange cone.
An orange cone was used, since orange traffic cones are the
standard colour used to direct traffic. Lastly, the experiment’s
object is the produced artifact.

C. Design Cycle 1

For the first design cycle the FPS goal was set to approx-
imately 10FPS, see goals listed below. This FPS goal was
used to see if cone detection running on a Raspberry Pi can
match existing solution that achieved 10FPS [2] or 11FPS
[3]. Picamera library was used for RBG image capture. The
maximum number of frames grabbed by Picamera is 90 (120
if overclocked) per second for the Raspberry Pi V2 camera
module [25]. Cone detection and image processing were
done with OpenCV. This choice was motivated based on an



abundance of available sources on OpenCV. OpenCV was used
to convert images from RGB to grayscale, then to perform
Canny edge detection to extract features. OpenCV provides
two separate implementations of Hough Transform; Standard
Hough Transform and Progressive Probabilistic Hough Trans-
form (PPHT). Computation-wise, PPHT is a less expensive
Hough Transform implementation. It works with finite lines,
as a opposed to General Hough Transfrom. It also takes in
parameters, such as, minimal line length and max gap between
points, to filter out weak line candidates. Thus, reducing the
number of lines detected and saving computation costs. The
artifact implements PPHT to extract possible lines representing
cones from edge images.

The first Design Cycle functioned as a prototype or proof of
concept. The goals were used to set a baseline for measure-
ments that could be used at later stages of the project. The
Design Cycle 1 goals are:

• G0: Use low-cost equipment. Project cost does not ex-
ceed 100 Euros.

• G1.1: Artifact functions at at least 10FPS.
• G1.2: Grayscale conversion does not exceed 5ms.
• G1.3: Canny edge detection does not exceed 45ms.
• G1.4: PPHT does not exceed 50ms.

D. Design Cycle 2

Averaging
grayscaling

Canny edge
detection

Progressive
probabilistic hough

transform

Cone detection

Distance estimation

Image capture

Fig. 2: Artifact Design

The designed artifact during Design Cycle 2 consists of
several steps, pictured in Figure 2. Several changes were made
in contrast to the first design cycle. First, image capture is
done using an open-source library “raspiraw”. For Raspberry
Pi 3 raspiraw can provide image capture up to 750FPS with a
resolution of 640x64 [26]. Replacing Picamera with raspiraw
provides faster image capturing, meaning that if the artifact’s
processing performs well it will not be dependent on image
capturing.

Second major change was removing OpenCV. OpenCV is
a large and robust library. Removing OpenCV library, means
removing some unnecessary components that could slow down

the artifact’s performance. To improve performance an av-
eraging grayscale method was applied to the RAW images
outputted by raspiraw instead of using OpenCV. Grayscale
images are still used for Canny edge detection to extract image
features. For feature extraction the decision to use Canny
edge detection was based on gathered literature. Canny edge
detection provides more distinguishable objects and better
depth analysis than Sobel or Laplacian operators [15]. Under
many evaluation scenarios Canny edge detection performs
better that Sobel, Prewitt and Robert’s operators. However,
this also means Canny is more computationally expensive [27],
[28].

The result of the Canny edge detection algorithm is an
image containing strong edge pixels forming lines. Analysing
these lines, using PPHT, to detect cones is the next step. PPHT
is less costly and is more suited for real-time applications than
standard Hough Transform [29]. The third change from Design
Cycle 1, is addition of linear algebra. Linear algebra is used
on lines fitting PPHT’s parameters to determine if the lines
form a cone. If the lines are deemed to belong to a cone, the
distance to a detected cone is estimated using a ratio between
the cone’s real-world size and the detected size.

The goals for Design Cycle 2 are outlined below. The
first major goal is to achieve real-time image capture and
processing. The artifact was expanded with cone distance
estimation. Several new goals were made for this part of
the artifact. The gathered literature showed that some of the
solutions managed to achieve over 90% accuracy [3], [14]
for vehicle detection. This is the first iteration for distance
estimation. Therefore, the accuracy goal for cone detection
was set at 75% to act as a baseline, for possible future
improvements. Given this accuracy goal and the goal for real-
time processing, the number of frames with faulty detected
cones can be 6FPS without violating the aforementioned goals.
Therefore, the goal for false positives and false negatives was
set to at most three per second. The Design Cycle 2 goals:

• G0: Use low-cost equipment.
• G2.1: Artifact can function at real-time. Image capture

and processing is at least 25FPS.
• G2.2: Number of false negatives for cone detection does

not exceed 3.
• G2.3: Number of false positives for cone detection does

not exceed 3.
• G2.4: Cone detection accuracy is at least 75%.

IV. RESULTS

The developed artifact’s components are shown in a compo-
nent diagram, seen in Figure 3. The artifact uses a blackboard
architectural style. The style consists of several concepts,
specifically the blackboard, knowledge-sources and a con-
troller. The “blackboard” is a central knowledge store, while
the “knowledge-sources” are used to read and write from/to the
blackboard. The artifact’s blackboard is a library referred to as
Multimedia Abstraction Layer (MMAL). The MMAL library
is used by by raspiraw to retrieve information of the captured
frames that are stored on the Raspberry Pi. MMAL provides



easy access to images for the rest of the artifact [30]. Therefore
MMAL’s side of interactions with the rest of the applications
are expressed through provided interfaces. Several knowledge-
source interact with MMAL. Their side of the interactions
are expressed with required interfaces, since they receive
and use data from MMAL. Raspiraw interacts with MMAL
by monitoring the changes made to the stored information.
In this scenario raspiraw functions as a “controller” to the
blackboard (MMAL). As a controller, raspiraw tells which of
the knowledge-sources to execute.

Fig. 3: The Artifact’s Component Diagram

The artifact’s results for Design Cycle 1 can be seen in Ap-
pendix A. These results are used to show the processing time
of 100 evaluations of the artifact developed using OpenCV.
With the OpenCV implementation the total processing time
for detecting a cone ranges from 0.037 to 0.221 milliseconds.
The mean processing time is 0.105 milliseconds, making the
mean FPS roughly 9 frames per second. Meaning, that G1.1
was not reached.

The primary impediment, based on Design Cycle 1 results,
is processing time. To improve processing time, Design Cycle
2 removed OpenCV. OpenCV is a large and robust library
that provides more features than necessary for cone detection.
Removing OpenCV can streamline the artifact. Additionally,
maximum FPS for the Picamera library is 90 or 120 frames, if
overclocked [25]. This could interfere with the artifact’s frame
processing. For instance, in case a sufficient improvement
in processing is made, the artifact may have to remain idle
while new frames are captured. Therefore, for Design Cycle
2 Picamera was replaced with raspiraw.

TABLE I: Experiment’s Frame Rate Results

Distance
(m)

Trial Nr. FPS

1 1 35
1 2 35
1 3 36
1 4 36

1 5 35
2 1 33
2 2 33
2 3 32
2 4 33
2 5 33
3 1 31
3 2 31
3 3 31
3 4 30
3 5 31

The collected data from Design Cycle 2 is in Appendix
B. The RAW image files that were processed can be found
on Google Drive1. The analysed data from the experiment
can be seen in Table I and Table II. The artifact was able
to achieve approximately 35-36FPS at one meter, 32-33FPS
at two meters and 30-31FPS at three meters, with 640x240
image resolution. Raspiraw is able to capture 180 frames per
second on Raspberry Pi 3 [26]. Meaning, G2.1 goal for real-
time image capture and processing was achieved.

One Two Three

Accuracy Breakdown

Distance (m)

A
cc

ur
ac

y 
(%

)

0
20

40
60

80
10

0

1st Trial

2nd Trial

3rd Trial

4th Trial

5th Trial

68.2 62.1 57.1 69.2 63 35 27.8 18.8 21.1 22.2 10.5 14.3 8 13 9.5

Fig. 4: Accuracy During Experiments

TABLE II: Experiment’s Accuracy Results

1RAW images from experiment: https://drive.google.com/drive/folders/
16zybMfmIkhzDwYeIVvn4F0d tDXSvVR6?usp=sharing

https://drive.google.com/drive/folders/16zybMfmIkhzDwYeIVvn4F0d_tDXSvVR6?usp=sharing
https://drive.google.com/drive/folders/16zybMfmIkhzDwYeIVvn4F0d_tDXSvVR6?usp=sharing


Distance
(m)

Trial
Nr.

Accuracy
(%)

FP FN Detection
Rate
(%)

1 1 68.2 0 13 62.9
1 2 62.1 0 6 82.9
1 3 57.1 0 8 77.8
1 4 69.2 0 10 72.2
1 5 63.0 0 8 77.1
2 1 35.0 0 14 57.6
2 2 27.8 1 15 51.5
2 3 18.8 1 16 46.9
2 4 21.1 2 14 51.5
2 5 22.2 1 18 42.4
3 1 10.5 0 12 57.6
3 2 14.3 0 10 67.7
3 3 8.0 1 6 77.4
3 4 13.0 1 7 73.3
3 5 9.5 1 10 67.7

Table II shows the distance to cone from the Pi NoIR camera
module, the trial number, the processed frames (FPS) and cone
detection accuracy expressed as percentages. For a cone to be
accurately detect, the detected distance to the cone must equal
the real distance ±0.05. 0.05 (5cm) was selected as an error
margin, due to its common use in scientific experiments and
statistics. Based on the collected results it can be seen that
accuracy decreases as distance increases. The accuracy never
reaches our set goal, with the highest accuracy being roughly
69%, seen in Figure 4. The decreasing trean in accuracy
can be explained by the way distance to cone is calculated.
The calculation is based on the ratio between the real-world
object height and the object height in pixels. To calculate the
estimated distance d, you require focal length f, real-world
and pixel cone height heightCONE, image height heightIMAGE

and sensor height heightSENSOR. The calculation formula is:

d =
f(mm) ∗ heightCONE(mm) ∗ heightIMAGE(px)

heightCONE(px) ∗ heightSENSOR(mm)

TABLE III: Distance vs Possible Pixel Range

Distance
(m)

Min Cone
Height (px)

Max Cone
Height (px)

Pixel
Range

1 164 180 16
2 84 88 4
3 57 58 2
4 43 43 1
5 N/A N/A 0.5

The decrease in accuracy is specifically caused by cone
height pixel values. Figure 5 shows the cone height (px)
ranges for each distance. If the pixel value of cone height
is outside these ranges, then the detected distance exceeds the
0.05 error margin and the cone is not accurately detected. To
accurately detected the cone, the cone height must be 164-
180px for one meter, 84-88px for two meters and 57-58px for
three meters. The pixel ranges are represented in Table III as

60
80

10
0

12
0

14
0

16
0

18
0

Acceptable Cone Heigths vs Distance

Distance (m)

C
on

e 
he

ig
ht

 (
px

)

1 2 3

Fig. 5: Acceptable Cone Heights (px)

well. From the table it can be seen that for accurate detection,
the possible cone height pixel ranges decrease exponentially.
Meaning, that if the artifact would have been evaluated at 4
meters, the detected cone height would have to be exact to 1
pixel. Furthermore, the current formula for calculating distance
would not return values, within the error margin, for distances
equal or greater than 5 meters.

The number of False Positives (FP) and False Negatives
(FN) in terms of cone detentions can be seen in Table II.
False positives were found by checking if the detected distance
exceeds a certain threshold. The threshold being 50cm, or half
of the first distance examined. False negatives were calculated
by subtracting number of false positives and detected cones
from total processed frames. From Table II, it can be seen that
the number of FP is at most 2 per experiment run. Therefore,
G2.3 was reached. However, the same cannot be said for G2.2.
Using our definition for FN, it can be seen that there are a
large quantity of false negatives that greatly exceed our goal’s
threshold. The cone detection rate, expressed as a percentage,
was calculated by dividing the the number of correctly detected
cones by total number of frames processed, or FPS. From
Table II it can be seen that cone detection rates vary, between
42% and 83%.

Lastly, during testing, the impact of lighting on the artifact
was discovered. Image processing would be less effective



under lower lighting. The lack of light reduces the visibility
of edges, making them less pronounced and smoother when
processing images. Making it more difficult for PPHT to
detect cones. Similarly, the edges become less pronounced as
distance to the cone increases. Thus requiring an increase in
exposure time for the camera module. With a larger exposure
time, the background becomes more pronounced, requiring
more time to process. Thus, the artifact’s FPS decreases with
distance.

V. DISCUSSION

A. Research Question 1

To answer RQ1 the results show that a Raspberry Pi with a
Pi NoIR V2 camera is able to achieve approximately 30-35FPS
while detecting cones from 1 to 3 meters. The results show
that high-speed, low-cost solution with the current artifact is
not possible, due to large image processing time. However,
a real-time, low-cost solution is achievable. The developed
artifact has a higher FPS than previously mentioned lane and
vehicle tracking solutions that managed to achieve 11FPS [3]
and 20FPS [4] respectively. Our artifact’s FPS is in the same
range (30FPS) as Liu et. al who analyzed video sequences to
detect and track lane markings [5]. If comparing solely FPS,
our artifact is able to match existing solutions that use PCs
for processing. However, these research projects used image
datasets to evaluate their developed solutions under different
road and weather conditions.

In comparison, our developed artifact lacks robustness and
was evaluated in a controlled environment. Meaning, a direct
comparison in performance cannot be made. Additionally, our
solution under-performs in terms of FPS, when compared to
solutions using CMOS, described in Section II-D, and the
cluster based lane and road marking detection algorithm made
by Gupta and Choudhary [7]. Using raspiraw [26] library
it is possible to perform high-speed image capture using a
Raspberry Pi and Pi camera module. However, the image
capture speed is still lower than other low-cost solutions
that managed to achieve 1560FPS videography. The 1560FPS
solution has achieved by using a cluster of 52 cameras [9]. The
cluster camera solution used more cameras to supplemented
the individual camera speeds, whereas the proposed paper
solution attempted to maximise a singular cameras speed.

B. Research Question 2

To answer RQ2, the developed artifact used a ratio based
calculation to estimate distance to cones. The results show
that the developed artifact is lacking in terms of accuracy. The
detection rate of cones varies between 42% and 83%, which
is significantly lower than existing solutions by M. Anandhalli
and V. P. Baligar that has a 96% vehicle detection accuracy [6]
and Kochláň et. al solution that has 95.7% and 93.2% detection
accuracy for traffic volume and vehicle detection respectively
[14]. Moreover, Sivaraman and M. M. Trivedi also managed
achieved 93.2% lane localization accuracy [3].

Our developed solution achieved 57-68% cone detection
accuracy at 1 meter, 18.8-35% at 2 meters and 8-14% at 3

meters. Additionally, the artifact has a high false negative
count, meaning the artifact failed to identify present cones in
frames. The low accuracy combined with a high false negative
count, make the artifact unsuited for safety critical systems,
such as vehicles. At least without future improvements.

C. Threats to Validity

Several limitations affecting generality and applicability of
the thesis have been identified.

1) Dependability: Dependability refers to the research find-
ings’ consistency and repeatably [31]. The developed artifact
implements PPTH. This particular variation of Hough Trans-
form requires randomly selecting one of the edge pixels from
the resulting edge detection image, to begin finding geometric
primitives [29]. Meaning that PPTH performance may vary
between trials. The developed artifact does not account for
randomization.

Another example of a dependability threat could be seen
with cone detection accuracy. For instance, because of the
current implementation for a cone to be accurately detected
from 3 meters, the cone height can only have two possible
values. This small margin may provide inconsistent results.

2) Internal Validity: Internal validity refers to factors in-
fluencing causal relations. Specifically, ensuring that factors
outside the conducted research do not influence the inves-
tigated goal [32]. Study inclusion/exclusion bias refers to
problems that can arise when looking for supporting studies
[33]. At the start of the project, the authors inclusion/exclusion
criteria were vague and generic, mainly just “image captur-
ing/processing”. This may resulted in a skewed foundation
of knowledge and literature review that could have then
negatively affected the research outcome.

Similar to the previous validity threat, construction of search
string refers to problems that are caused by a poorly formed
research paper search string, criteria [33]. This may have
caused the author to find some irrelevant studies or miss some
relevant ones. The impact of this validity threat is also a lower
quality foundation of knowledge.

Selection of digital libraries is threat to validity, which
refers to problems caused search engines when looking for
related work [33]. The different search engines can be either
too broad, or too specific. As the previous internal validity
threats, the impact of this threat is skewing your foundation
of knowledge. In the context of this study, the author mainly
used Google Scholar, University of Gothenburg Library2 and
ScienceDirect3. Google Scholar provides a wide range of
sources, from peer reviewed papers to patents. By using
Google Scholar the author may have used low quality studies
in their research. On the other hand, ScienceDirect seems
to be a specific and narrow search engine, which may have
complicated finding related work.

3) External Validity: Generalizability, or external validity,
refers to the extent that a particular situation can be applied

2University of Gothenburg Library ub.gu.se/sv
3ScienceDirect https://www.sciencedirect.com/

ub.gu.se/sv
https://www.sciencedirect.com/


to the other settings [34]. In this context, the artifact was
evaluated in a controlled environment. Therefore its perfor-
mance in a different environment, such as, a city or a race
track is unknown. Similarly, the artifact has not been evaluated
under different weather conditions, therefore the artifact’s
performance in rainy, foggy etc weather cannot be deduced.
High performance under different weather conditions or in a
different environment are a necessity for vehicles to ensure
driver safety. Thus, evaluating the artifact in a controlled
environment severely limits its generalizability.

Another external validity threat is the artifact’s dependence
on light. PPHT and Canny edge detection are highly depen-
dent on image preprocessing. Without sufficient lighting, the
already low cone detection accuracy and rate will decrease
further. Meaning the artifact cannot be effectively used in the
dark.

For cone detection, the artifact has a maximum possible
range of 4 meters. Meaning, that in a real-world scenario
the artifact is only suited for short distance cone detection.
Canny edge detection and PPHT would still be performed
on strong edges in images, making it possible to detect the
general area of cones that are further away. However, the
artifact is capturing frames using raspiraw at 180FPS with
a 640x240 image resolution. The captured images were low
quality, making long distance cone detection more difficult,
due to a lack of salient edges in low quality images.

VI. CONCLUSION

Fast traveling vehicles required to make fast and accurate
decisions, which is usually solved with expensive systems.
The aim of this study was to use design science, dynamic
analysis and controlled experiments to provide an affordable,
high-speed solution for cone detection. The project used a
Pi NoIR V2 camera module for Raspberry Pi 3. Raspberry
Pis are cheap and affordable, meaning that individuals want-
ing to experiment with high-speed cameras are not required
to possess expensive equipment. The reduced expensiveness
means that the solution is applicable to a broader audience,
for instance academics, students, and hobbyists. The results
showed that the project aim for high-speed image capture
and processing was not reached. However, low-cost appliances
can be used to achieve real-time cone detection at 30-35FPS
using Canny edge detection, Progressive Probabilistic Hough
Transform and open-source software. However, the solution
has high amount of false negatives, poor cone detection rate
and varying cone detection accuracy, 9-69%. For future work
the existing distance calculation formula could be replaced
with the Pinhole camera model to improve the artifact’s
accuracy. To reduce computation the solution could incor-
porate frame subtraction, to create regions of interest and
detect objects in motion more robustly. Another possibility is
exchanging Canny edge detection for either Sobel, Prewitt or
Robert’s operators, which are computationally less expensive
than Canny edge detection.

REFERENCES

[1] A. Conci and A. Sanchez, “Scientific image processing,” Computing in
Science & Engineering, vol. 13, no. 3, pp. 6–8, 2011.

[2] C. Lipski, B. Scholz, K. Berger, C. Linz, T. Stich, and M. Magnor, “A
fast and robust approach to lane marking detection and lane tracking,” in
2008 IEEE Southwest Symposium on Image Analysis and Interpretation.
IEEE, 2008, pp. 57–60.

[3] S. Sivaraman and M. M. Trivedi, “Integrated lane and vehicle detection,
localization, and tracking: A synergistic approach,” IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 2, pp. 906–917, 2013.

[4] Y.-J. Wu, F.-L. Lian, C.-P. Huang, and T.-H. Chang, “Image processing
techniques for lane-related information extraction and multi-vehicle
detection in intelligent highway vehicles,” Int. J. Automotive Technology,
vol. 8, no. 4, pp. 513–520, 2007.

[5] W. Liu, H. Zhang, B. Duan, H. Yuan, and H. Zhao, “Vision-based real-
time lane marking detection and tracking,” in 2008 11th International
IEEE Conference on Intelligent Transportation Systems, Oct 2008, pp.
49–54.

[6] M. Anandhalli and V. P. Baligar, “A novel approach in real-time vehicle
detection and tracking using raspberry pi,” Alexandria engineering
journal, vol. 57, no. 3, pp. 1597–1607, 2018.

[7] A. Gupta and A. Choudhary, “A framework for camera-based real-
time lane and road surface marking detection and recognition,” IEEE
Transactions on Intelligent Vehicles, vol. 3, no. 4, pp. 476–485, 2018.

[8] C. Theobalt, I. Albrecht, J. Haber, M. Magnor, and H.-P. Seidel,
“Pitching a baseball: tracking high-speed motion with multi-exposure
images,” in ACM Transactions on Graphics (TOG), vol. 23, no. 3.
ACM, 2004, pp. 540–547.

[9] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz, “High-speed
videography using a dense camera array,” in Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., vol. 2, June 2004, pp. II–II.

[10] S. MacNeill and J.-J. Chanaron, “Trends and drivers of change in
the european automotive industry:(i) mapping the current situation,”
International journal of automotive technology and management, vol. 5,
no. 1, pp. 83–106, 2005.

[11] F. Kuhnert, C. Stürmer, and A. Koster, “Five trends transforming
the automotive industry,” PricewaterhouseCoopers GmbH Wirtschaft-
sprüfungsgesellschaft: Berlin, Germany, 2018.

[12] G. Senthilkumar, K. Gopalakrishnan, and V. S. Kumar, “Embedded im-
age capturing system using raspberry pi system,” International Journal
of Emerging Trends & Technology in Computer Science, vol. 3, no. 2,
pp. 213–215, 2014.

[13] H.-Q. Nguyen, T. T. K. Loan, B. D. Mao, and E.-N. Huh, “Low
cost real-time system monitoring using raspberry pi,” in 2015 Seventh
International Conference on Ubiquitous and Future Networks. IEEE,
2015, pp. 857–859.

[14] M. Kochláň, M. Hodoň, L. Čechovič, J. Kapitulı́k, and M. Jurečka,
“Wsn for traffic monitoring using raspberry pi board,” in 2014 Federated
Conference on Computer Science and Information Systems. IEEE, 2014,
pp. 1023–1026.

[15] L. Ujjainiya and M. K. Chakravarthi, “Raspberry pi based cost effective
vehicle collision avoidance system using image processing,” ARPN J.
Eng. Appl. Sci, vol. 10, no. 7, 2015.

[16] J. Choi, S.-W. Han, S.-J. Kim, S.-I. Chang, and E. Yoon, “A spatial-
temporal multiresolution cmos image sensor with adaptive frame rates
for tracking the moving objects in region-of-interest and suppressing
motion blur,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp.
2978–2989, 2007.

[17] D. Litwiller, “Ccd vs. cmos: Facts and fiction,” Photonics spectra,
vol. 35, no. 1, pp. 154–158, 2001.

[18] B. Zhao, X. Zhang, S. Chen, K. Low, and H. Zhuang, “A 64× 64 cmos
image sensor with on-chip moving object detection and localization,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 4, pp. 581–588, April 2012.

[19] A. Teman, S. Fisher, L. Sudakov, A. Fish, and O. Yadid-Pecht, “Au-
tonomous cmos image sensor for real time target detection and tracking,”
in 2008 IEEE International Symposium on Circuits and Systems. IEEE,
2008, pp. 2138–2141.

[20] J. Iivari and J. R. Venable, “Action research and design science research-
seemingly similar but decisively dissimilar,” 2009.



[21] M. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren, “Action
design research,” Management Information Systems Quarterly, vol. 35,
no. 1, pp. 37–56, 2011.

[22] R. H. Von Alan, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS quarterly, vol. 28, no. 1, pp. 75–105,
2004.

[23] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A
design science research methodology for information systems research,”
Journal of management information systems, vol. 24, no. 3, pp. 45–77,
2007.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[25] Picamera documentation. Accessed: 2019-04-07. [Online]. Available:
https://picamera.readthedocs.io/en/release-1.12/fov.html

[26] Hermann-SW and 6by9, “Raspiraw,” https://github.com/Hermann-SW/
fork-raspiraw, 2019.

[27] R. Maini and H. Aggarwal, “Study and comparison of various image
edge detection techniques,” International journal of image processing
(IJIP), vol. 3, no. 1, 2008.

[28] G. Shrivakshan and C. Chandrasekar, “A comparison of various edge
detection techniques used in image processing,” International Journal
of Computer Science Issues (IJCSI), vol. 9, no. 5, p. 269, 2012.

[29] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using
the progressive probabilistic hough transform,” Computer Vision and
Image Understanding, vol. 78, no. 1, pp. 119–137, 2000.

[30] techyian, “Mmal,” https://github.com/techyian/MMALSharp/wiki/
What-is-MMAL%3F, 2019.

[31] R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research-an initial survey.” in Seke, 2010, pp. 374–379.

[32] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, p. 131, 2009.

[33] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Ver-beek, and A. Chatzi-
georgiou, “Identifying, categorizing and mitigating threats to validity
in software engineering secondary studies,” Information and Software
Technology, 2018.

[34] J. Maxwell, “Understanding and validity in qualitative research,” Har-
vard Educational Review, vol. 62, no. 3, pp. 279–301, 1992.

https://picamera.readthedocs.io/en/release-1.12/fov.html
https://github.com/Hermann-SW/fork-raspiraw
https://github.com/Hermann-SW/fork-raspiraw
https://github.com/techyian/MMALSharp/wiki/What-is-MMAL%3F
https://github.com/techyian/MMALSharp/wiki/What-is-MMAL%3F


APPENDIX A
DESIGN CYCLE 1 RESULTS

TABLE IV: Design Cycle 1 Performance Measurements

Trial Nr. Edge
Detection
(s)

PPHT (s) Total (s)

1 0.010 0.073 0.083
2 0.006 0.099 0.105
3 0.020 0.151 0.171
4 0.005 0.048 0.053
5 0.006 0.032 0.038
6 0.004 0.169 0.173
7 0.013 0.030 0.043
8 0.006 0.088 0.093
9 0.015 0.101 0.116

10 0.013 0.044 0.056
11 0.005 0.137 0.142
12 0.007 0.151 0.158
13 0.014 0.040 0.054
14 0.007 0.127 0.134
15 0.005 0.067 0.072
16 0.011 0.087 0.098
17 0.016 0.105 0.121
18 0.008 0.064 0.072
19 0.005 0.071 0.076
20 0.006 0.156 0.162
21 0.005 0.063 0.069
22 0.010 0.093 0.102
23 0.013 0.170 0.183
24 0.005 0.047 0.052
25 0.004 0.048 0.052
26 0.004 0.196 0.200
27 0.012 0.089 0.101
28 0.016 0.111 0.127
29 0.007 0.067 0.074
30 0.006 0.145 0.151
31 0.005 0.059 0.064
32 0.010 0.117 0.128
33 0.014 0.108 0.122
34 0.014 0.082 0.096
35 0.013 0.067 0.080
36 0.011 0.174 0.185
37 0.009 0.034 0.043
38 0.006 0.098 0.104
39 0.010 0.118 0.128
40 0.009 0.083 0.092
41 0.005 0.130 0.135
42 0.013 0.051 0.064
43 0.010 0.084 0.094

44 0.006 0.097 0.104
45 0.010 0.079 0.089
46 0.005 0.127 0.133
47 0.010 0.032 0.042
48 0.018 0.132 0.149
49 0.009 0.120 0.129
50 0.005 0.040 0.045
51 0.006 0.092 0.098
52 0.011 0.084 0.094
53 0.014 0.117 0.130
54 0.011 0.043 0.054
55 0.016 0.178 0.194
56 0.014 0.152 0.166
57 0.017 0.071 0.087
58 0.010 0.060 0.069
59 0.010 0.123 0.134
60 0.010 0.197 0.207
61 0.013 0.080 0.093
62 0.011 0.045 0.056
63 0.007 0.036 0.043
64 0.011 0.101 0.112
65 0.011 0.132 0.142
66 0.006 0.095 0.102
67 0.011 0.097 0.108
68 0.011 0.111 0.121
69 0.013 0.080 0.093
70 0.005 0.038 0.043
71 0.014 0.147 0.161
72 0.006 0.118 0.124
73 0.006 0.092 0.098
74 0.007 0.030 0.037
75 0.016 0.191 0.206
76 0.010 0.086 0.097
77 0.010 0.044 0.054
78 0.007 0.142 0.149
79 0.010 0.026 0.037
80 0.010 0.057 0.067
81 0.012 0.104 0.116
82 0.010 0.120 0.130
83 0.010 0.117 0.127
84 0.006 0.100 0.106
85 0.013 0.053 0.065
86 0.016 0.081 0.096
87 0.005 0.147 0.152
88 0.005 0.113 0.118
89 0.008 0.049 0.057
90 0.009 0.111 0.120
91 0.009 0.069 0.079
92 0.006 0.112 0.118
93 0.012 0.118 0.130



94 0.010 0.064 0.073
95 0.011 0.038 0.049
96 0.007 0.185 0.192
97 0.017 0.204 0.221
98 0.008 0.044 0.052
99 0.009 0.038 0.047

100 0.005 0.142 0.148

APPENDIX B
DESIGN CYCLE 2 RESULTS

TABLE V: 1 Meter, Trial 1

Detected Distance (mm) Cone Height (px)

970.769 177
876.664 196
954.589 180

1041.370 165
938.940 183

1022.774 168
1004.831 171
1004.831 171
1004.831 171

918.856 187
987.506 174

1016.722 169
998.989 172
913.969 188
987.506 174
981.863 175
944.099 182
933.837 184
987.506 174

1010.742 170
904.348 190

1022.774 168

TABLE VI: 1 Meter, Trial 2

Detected Distance (mm) Cone Height (px)

949.315 181
954.589 180
933.837 184
959.922 179
954.589 180

1028.899 167
998.989 172

1041.370 165
1028.899 167

993.214 173
959.922 179
899.613 191
913.969 188
913.969 188

1035.097 166
913.969 188
944.099 182
993.214 173

1010.742 170
998.989 172
998.989 172

1028.899 167
959.922 179
944.099 182
933.837 184
938.940 183
987.506 174
959.922 179
928.790 185

TABLE VII: 1 Meter, Trial 3

Detected Distance (mm) Cone Height (px)

1010.742 170
981.863 175
944.099 182
965.315 178
954.589 180

1041.370 165
1028.899 167

949.315 181
918.856 187
928.790 185
987.506 174
890.291 193

1004.831 171
1010.742 170
1004.831 171

965.315 178
981.863 175
949.315 181
987.506 174
938.940 183
928.790 185
959.922 179
928.790 185

1004.831 171
976.285 176
918.856 187
928.790 185

TABLE VIII: 1 Meter, Trial 4

Detected Distance (mm) Cone Height (px)

959.922 179
970.769 177

1041.370 165
938.940 183



954.589 180
928.790 185
904.348 190
872.214 197

1004.831 171
965.315 178

1028.899 167
899.613 191
981.863 175
970.769 177
876.664 196
976.285 176
918.856 187
987.506 174

1060.655 162
998.989 172

1028.899 167
1010.742 170
1004.831 171

976.285 176
976.285 176

1010.742 170

TABLE IX: 1 Meter, Trial 5

Detected Distance (mm) Cone Height (px)

1035.097 166
976.285 176

1041.370 165
933.837 184
981.863 175
993.214 173
904.348 190
954.589 180
959.922 179
899.613 191
976.285 176

1022.774 168
976.285 176
976.285 176
987.506 174

1035.097 166
1010.742 170

899.613 191
923.796 186
938.940 183
938.940 183
933.837 184
987.506 174
949.315 181

1035.097 166
1010.742 170

909.133 189

TABLE X: 2 Meters, Trial 1

Detected Distance (mm) Cone Height (px)

2070.194 83
2231.508 77
2095.440 82
1909.179 90
1789.855 96
2095.440 82
2121.310 81
2095.440 82
2231.508 77
1952.569 88
2021.483 85
2454.658 70
2121.310 81
2021.483 85
1997.978 86
2121.310 81
2147.826 80
1997.978 86
2021.483 85
2045.549 84

TABLE XI: 2 Meters, Trial 2

Detected Distance (mm) Cone Height (px)

2021.483 85
2045.549 84
1909.179 90
1909.179 90
1909.179 90
2202.898 78
2321.974 74
2070.194 83
2321.974 74
2070.194 83
2095.440 82
2147.826 80
2202.898 78
1975.012 87
1997.978 86
2564.568 67
2202.898 78
1997.978 86

TABLE XII: 2 Meters, Trial 3

Detected Distance (mm) Cone Height (px)

2771.388 62
1975.012 87
1952.569 88



1888.199 91
2386.473 72
2291.014 75
1909.179 90
2231.508 77
2231.508 77
2147.826 80
2231.508 77
2231.508 77
2147.826 80
2175.014 79
2021.483 85
2147.826 80

TABLE XIII: 2 Meters, Trial 4

Detected Distance (mm) Cone Height (px)

2202.898 78
2147.826 80
2321.974 74
1975.012 87
2121.310 81
1808.696 95
2147.826 80
1997.978 86
2260.870 76
2603.426 66
1930.630 89
2175.014 79
2095.440 82
2021.483 85
2490.233 69
2771.388 62
2095.440 82
1952.569 88
2231.508 77

TABLE XIV: 2 Meters, Trial 5

Detected Distance (mm) Cone Height (px)

2045.549 84
1997.978 86
2021.483 85
2095.440 82
2147.826 80
2202.898 78
2454.658 70
2231.508 77
1867.675 92
2231.508 77
2454.658 70
2231.508 77
1997.978 86
1930.630 89

2231.508 77
2070.194 83
2603.426 66
2490.233 69

TABLE XV: 3 Meters, Trial 1

Detected Distance (mm) Cone Height (px)

2816.821 61
3068.323 56
2816.821 61
2863.768 60
2816.821 61
2863.768 60
3181.965 54
3014.493 57
3242.002 53
2684.783 64
3181.965 54
2771.388 62
2816.821 61
3124.111 55
2771.388 62
2727.398 63
2603.426 66
2816.821 61
2962.519 58

TABLE XVI: 3 Meters, Trial 2

Detected Distance (mm) Cone Height (px)

2912.307 59
3124.111 55
3242.002 53
3014.493 57
3242.002 53
3242.002 53
3242.002 53
3242.002 53
3181.965 54
2727.398 63
3242.002 53
2684.783 64
2962.519 58
2771.388 62
2771.388 62
3436.522 50
3436.522 50
3242.002 53
2771.388 62
2962.519 58
2863.768 60

TABLE XVII: 3 Meters, Trial 3



Detected Distance (mm) Cone Height (px)

3181.965 54
2816.821 61
2863.768 60
3242.002 53
2863.768 60
2863.768 60
2816.821 61
2727.398 63
2962.519 58
2863.768 60
2771.388 62
3369.139 51
2727.398 63
3068.323 56
3735.350 46
3181.965 54
2863.768 60
2912.307 59
2816.821 61
2962.519 58
2684.783 64
2684.783 64
2912.307 59
2863.768 60
3181.965 54

TABLE XVIII: 3 Meters, Trial 4

Detected Distance (mm) Cone Height (px)

3181.965 54
2816.821 61
3369.139 51
2962.519 58
3242.002 53
2912.307 59
3181.965 54
2564.568 67
2771.388 62
2816.821 61
3242.002 53
2962.519 58
3242.002 53
3124.111 55
2863.768 60
2962.519 58
3181.965 54
2863.768 60
9545.894 18
2771.388 62
3181.965 54
2863.768 60

3181.965 54

TABLE XIX: 3 Meters, Trial 5

Detected Distance (mm) Cone Height (px)

2727.398 63
2727.398 63
2962.519 58
2643.478 65
3242.002 53
2771.388 62
2771.388 62
2912.307 59
3369.139 51
2771.388 62
2727.398 63
2816.821 61
3369.139 51
2771.388 62
3242.002 53
2912.307 59
2863.768 60
3014.493 57
3506.655 49
3242.002 53
2863.768 60


	Introduction
	Background
	Motivation
	Research Questions
	Contributions
	Scope
	Structure

	Literature Review
	Image Capture & Processing in Automotive Industry
	Image Capture & Processing with Raspberry Pis
	High-Speed, Low-Cost Cameras
	Object Detection with CMOS sensors

	Methodology
	Research Approach
	Data Collection
	Design Cycle 1
	Design Cycle 2

	Results
	Discussion
	Research Question 1
	Research Question 2
	Threats to Validity
	Dependability
	Internal Validity
	External Validity


	Conclusion
	References
	Appendix A: Design Cycle 1 Results
	Appendix B: Design Cycle 2 Results

