

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Performance Analysis of Large-scale Real-
time Video Stream Configurations
Bachelor of Science Thesis in Software Engineering and Management

ERIK LAURIN
JOACIM EBERLÉN

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

© ERIK LAURIN, June 2019.

© JOACIM EBERLÉN, June 2019.

Supervisor: Christian Berger

Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Performance Analysis of Large-scale Real-time
Video Stream Configurations

Erik Laurin
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

erikgustavlaurin@gmail.com

Joacim Eberlén
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

jeberlen@gmail.se

Abstract—The rapid technology development has resulted in
sensors able to deliver very high-quality output. The high quality
calls for efficient compression algorithms to handle the vast
amount of data produced. This study aims to find a compression
algorithm that delivers video streams of the highest possible
quality given the constraints real-time processing using the User
Datagram Protocol (UDP). This paper describes the experimental
approach created to find such compression algorithm. Machine
learning in the form of Bayesian optimization was applied to
evaluate and hence deduce the optimal encoder parameters for
each encoder and resolution in scope.

WebM Project’s VP9 implementation proved to be the most
optimal encoder in scope for all resolutions evaluated in the ex-
periment but the highest (QXGA - 2048x1536). For video streams
in QXGA, VP9 hardware accelerated by Intel’s QuickSync was
found to perform best.

Index Terms—Video coding, Encoding, Codecs, H.264, VP9,
QSV, Intel QuickSync, Real-time encoding, SSIM, Autonomous
driving, Bayesian Optimization

I. INTRODUCTION

A. Background

Sensors are becoming increasingly advanced, producing
more data, due to higher quality outputs. As the output quality
is improved, systems relying on the sensors’ outputs are able
to make more precise calculations. To take advantage of the
increased sensor quality, the systems must also be able to
cope with the enormous amount of data produced. Vehicles
equipped with sensing devices for autonomous driving are
examples of such systems with a data production of up to
1,000 megabytes per second [1].

Lossy video compression is an area where much research
and development are invested in. This is primarily because of
video content that is typically streamed over networks. Video
streaming is expected to continue growing over the coming
years [2]. Lossy video compression algorithms are typically
optimized for content used for entertainment purposes such as
web-based or TV-boxes-video streaming services. However,
there are other areas where some degree of quality reduction
can be tolerated, in exchange for less amount of data. One
case is within the automotive domain where disk space and
bandwidth are finite and expensive. The requirements and
constraints differ between the entertainment and the auto-
motive domains. Therefore the most optimal lossy video

compression algorithm strategy cannot simply be transferred.
A compression strategy streamlined for the automotive domain
is highly desirable, especially in the light of the upcoming 5G
communication standard that is said to become an essential
resource for autonomous driving.

Numerous codecs exist on the market. H.264 is an estab-
lished codec found as hardware implementation in modern
smartphones and computer chips. H.264 is still a dominating
codec in the web world. However, newer implementations
found in competing H.265 and VP9 bring newer technologies,
which pave the way for better performance.

B. Problem Domain & Motivation

The sensing device set-up in a modern car can produce enor-
mous amounts of data. The data translates to major bandwidth
and, depending on application, disk space consumption. In
the automotive domain, self-driving algorithms and Advanced
Driver Assistance Systems (ADAS) often rely on camera
sensors as part of their input. Hence, self-driving algorithms
and ADAS are likely to benefit from increased video quality
[3]. The ongoing development of both safe algorithms in
general, but especially AI systems, requires a lot of data
for training, testing, and validating. High-performance sensor
output, such as a more detailed camera feed, is therefore highly
relevant.

A consensus of which lossy video compression algorithm
is most useful, in terms of specific application, such as web-
based video-streaming for entertainment, can be deduced from
existing research. However, obtaining a broader understanding
of which algorithm fits an entire domain most optimally, is
harder. This is especially true for the automotive domain as
the requirements are different to the entertainment domain
where most existing research has been done. While quality
and size are important in both domains, encoding time is of
high significance for the automotive domain.

C. Research Goal & Research Questions

This paper strives towards elucidating the performance of
lossy video compression algorithms for the use with self-
driving vehicle algorithms such as object- or lane-detection.
We set out to deduce the most suitable video compression

Fig. 1: Revere’s Volvo XC90 equipment with a stereo config-
uration of high-performance Basler cameras

algorithm for a set of different pre-recorded lossless driv-
ing scenario video sequences (our datasets). The algorithms
were validated on datasets from Revere as well as on the
acknowledged KITTI dataset from the Karlsruhe Institute of
Technology for assessing our results’ transferability [4].

Different architectural approaches exist for creating sophis-
ticated systems that support the enormous amount of data an
autonomous car produces and distributes. A Volvo XC90 from
Revere’s test vehicle fleet, equipped with a stereo configuration
of high-performance Basler cameras capable of capturing
video frames losslessly, was used for data collection to create
our dataset (see Fig. 1) [5]. The test vehicle was using UDP in
its communication middleware used for relaying messages for
the microservices that constitute the vehicleâĂŹs autonomous
software system. The UDP has a packet limitation and thus
the test vehicle had an inherited limitation of that each frame
could not exceed the protocol specific 65507 bytes.

In addition, the encoding time could at most take 40
microseconds. 40 microseconds corresponds to a frame rate
of 25 frames per second (FPS). This constraint was set to
ensure a smooth motion for human perception of video.

Objective video quality can be assessed in numerous ways.
From simpler Video Quality assessment Metrics (VQM) such
as Mean-Square-Error (MSE) to more sophisticated metrics
such as Structural Similarity (SSIM). The mentioned VQMs
are of full reference type meaning they are used when both
the uncompressed and the compressed data are available to
calculate the quality difference.

SSIM provides a good trade-off between complexity and
accuracy and has consequently become a broadly recognized
VQM by both academic researchers and industrial practition-
ers [6], [7]. Therefore, SSIM was used to assess the objective
quality of the compressed video sequences in the study.

RQ-1 Which video compression algorithm performs the
best in terms of SSIM given typical driving situations for
inter-urban and urban driving situations in daylight with good

weather while aiming at a maximum frame size of not more
than 65507 bytes to allow for network broadcast at a frame
rate of not less than 25FPS?

RQ-2 How transferable are the resulting parameters for the
various video compression algorithms when they are compared
to a different video dataset, for instance from KITTI?

D. Contributions

The experiment proved the value of using different encoders
and encoder configurations dependant on video stream and
encoding machine. Our results shows that, out of the encoders
in scope (see List 2, 3), VP9 provides a higher SSIM value
on lower resolutions, but is incapable to encode the highest
resolution (QXGA) unless hardware accelerated. Combined
with the results, the authors also provide graphs comparing the
encoder performance based on resolution, encoder and relative
SSIM results on a H.264 baseline per dataset.

The study’s transferability was evaluated by comparing the
results from the datasets collected by Revere Laboratory to
the KITTI dataset. As can be seen in section IV-B, the best
compression algorithm was the same regardless of which
dataset the video feed originated from.

In parallel with knowledge acquisition, a software artifact
was developed using modern Software Engineering practices.
The software artifact developed, called Coordinator Script
(CS), can run on Unix-like platforms. New datasets can be
added by simply including them in the ‘datasets‘ folder and
thanks to CS’s high modularity, new encoders can easily be
added to extend the experiment’s scope [8].

E. Scope

The goal of our work was to analyze which compression
strategy, in terms of codec, type of acceleration as well
as codec configuration, provides the best objective quality
results, while meeting certain constraints relevant to the field
of autonomous driving. The work was solely geared towards
fields where quality is important, but encoding time and size
are of primary concern. Consequently, our scope and thus the
applicability of this study is systems where the compression
must be close to ’real-time’ and the resulting size from the
compression limited.

F. Structure of the Article

The paper is structured as follows: Section II provides a
brief literature review of published related work. Section III
outlines our methodology to collect, process and evaluate the
data obtained in the study. Section IV presents the results
obtained in the study. Section V discusses the results of our
study and how it contributes to research. In Section V-D, we
discuss how the threat to validity may compromise the study.
Our work is concluded in Section VI where our conclusion
and ideas about future works are presented.

II. RELATED WORKS

To understand the ins-and-outs of video encoding, the
authors gathered knowledge through their thesis supervisor,

shorter articles and forum posts. Using the basic understanding
of video codecs and VQMs, research papers were found,
mostly through Google Scholar and earlier research studies
conducted in the Chalmers Revere Laboratory.

A. Quality Metric Choice

Multiple VQMs are freely available. We previously dis-
cussed two widely used VQMs namely PSNR and SSIM [9].
According to Dosselmann and Yang, SSIM produces much
more reliable result for lossy images than PSNR is able to do.
Dosselmann and Yang made a comparison between SSIM and
Mean-Squared Error (MSE). The formula for PSNR is directly
correlated to the MSE value of an image [10]. Therefore, we
have a strong argument for choosing SSIM over PSNR as our
video quality metric. The aforementioned paper compares the
two metrics statistically and using algebraic functions [10].
While this applies to the human visual system, and this study
was realized in the field of autonomous driving using machine
vision, there were reasons to evaluate machine vision VQMs
further.

No standardized VQM for machine vision was not found
by the authors. However, other special case VQMs exist, for
example SC-VQM [11]. This VQM was developed to better
predict and evaluate image quality for virtual and augmented
reality domains. According to Haccius and Herfet, their VQM
was better than conventional VQMs at evaluating the quality in
video streams containing virtual and augmented reality [11].
Our focus is not to develop a new VQM and no standard
VQM for the machine vision domain exists, as of January
2019. Therefore, we chose SSIM as our VQM.

B. Optimization Algorithm

An encoder can often be configured by numerous parame-
ters to obtain a certain behavior. To find the best encoding
configuration candidates, the authors had to solve a large
optimization problem. We discussed which path to take: ei-
ther brute forcing/manually testing every combination, or to
use a machine learning optimization algorithm. The machine
learning approach had to be chosen due to the vast number of
parameters that needed to be optimized and the limited time
frame given for this thesis.

Bayesian optimization is an optimization technique created
to solve problems that are time-consuming and contain a large
parameter space. The parameter space is every possible pa-
rameter and the parameters’ individual ranges [12]. Bayesian
optimization is composed of two main components. An ob-
jective function is what the algorithm optimizes by altering
its dependent parameters. The algorithm begins by choosing
multiple points in the parameter-space. Often these points are
chosen completely at random. When the objective function has
been evaluated with the initial points the algorithm tweaks the
parameters for the next N iterations. In every iteration, the
function’s metric is evaluated and the parameters are changed
to further improve the metric [12]. In our case, the parameter-
space is quite large so this optimization algorithm was the one
we found suitable for our problem.

C. Codec Performance
Encoder comparison is also a critical field to review. Ac-

cording to D. Grois et. al., the encoder with the highest
coding efficiency is H.265 (HEVC), which outperforms the
VP9 encoder by 79.4% on average. The VP9 encoder was also
outperformed by H.264, with regards to coding efficiency. D.
Grois et. al. attempted to configure the encoders in as similar
fashion as possible. The encoders were then asked to encode
four video streams of high resolution [13]. However, this study
was not concerned with real-time encoding but the general
video quality. The results were measured using Bjøntegaard-
Delta Bit Rate (BD-BR). BD-BR yields a negative value if the
bit rate is reduced and a positive if increased [13].

Similar results were found in a study of different amount of
movement captured using Youtube, Twitch, Vimeo and Daily
Motions recommended bit rates. The results state the H.265
(HEVC) encoder outperformed both VP9 and H.264, in terms
of compression efficiency, in every case of the paper [14]. An
issue found in ’FFmpeg based Coding Efficiency Comparison
of H.264/AVC, H.265/HEVC and VP9 Video Coding Stan-
dards for Video Hosting Websites’ was the recommended bit
rates. The recommended bit rate is stated as 8000 kb/s for
FHD resolution, while the actual recommendations are lower
from the streaming websites. The recommended bit rates are:

• Youtube has a recommendation of 3000-6000 kb/s [15],
• Twitch has a recommendation of 3500-5000 kb/s [16],
• Vimeo has a recommendation of 10 000-20 000 kb/s [17],

and
• Daily motion recommends 4000 kb/s [18].
So the claim of using the recommended bit rates of the

major streaming websites is flawed which compromises the
paper’s general validity [14]. However, this indicated that the
H.265 encoder might prove to outperform the codecs in our
scope on a higher bit rate than plausible for our constraints.
When comparing H.264 and VP9, J. Pavlič and J. Burkeljca
show that during a video stream with no movement H.264
performed 18.03% better, but for all other cases VP9 was the
superior [14].

D. Hardware and Software Encoding
Video encoding can be done either using a software encoder

or a hardware accelerated encoder. A software encoder utilizes
the regular CPU cores of the machine. Hardware accelerated
encoder utilizes dedicated cores, either on the CPU, such as
Intel’s QuickSync, or on the GPU, such as Nvidia’s NVENC.
As our scope includes both software and hardware encoders, a
comparison of the encoding types proved useful. In ‘Software
and Hardware HEVC Encoding‘ J. Kufa and T. Kratochvil
present results showing that software accelerated x265 was un-
able to encode a video stream in FHD resolution in real-time.
However, the hardware accelerated QSV-H.265 did manage
the aforementioned, even with slightly better PSNR than what
x265 managed in not real-time [19]. This proves the value of
hardware encoding on higher resolutions. Software encoding
provides a better quality but with a 20% longer encoding
duration than QSV when using the same base codec [19].

III. METHODOLOGY

A controlled experiment approach was designed and
adopted to answer the research questions. The experimental
unit used was the main computer in Revere’s truck named
GDL Truck (see List 1. The aforementioned machine was
the computational unit that ran the experimental object, the
artifact, the so-called Coordinator Script. The dependent vari-
able, SSIM, was calculated by the script. The constraints
frame size and encoding time, together with the experimental
unit and object, were all held constant to ensure that these
controlled variable would not interfere, when assessing the
relation between the dependent and independent variable.

List 1. Experimental Unit Specifications

• Hardware
– CPU: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz
– GPU: NVIDIA Corporation GP107 [GeForce GTX

1050 Ti]
– RAM: 16227828 kB
– Motherboard: Supermicro X11SCZ-F
– Storage:

∗ 2x Western Digital Ultrastar DC HC510 8TB
∗ 1x Crucial P1 500GB

• Software
– OS: ArchLinux
– Kernel: Linux voyager-apollo-x8664-1 5.0.7-rt5-1-rt

#1 SMP PREEMPT RT Mon May 6 14:12:28 CEST
2019 x86_64 GNU/Linux

– Docker: 18.09.5-ce, build e8ff056dbc
– Drivers:

∗ Graphics: NVIDIA 418.56
– Python dependencies:

∗ python: 3.6
∗ docker: 3.7.2
∗ docker-pycreds: 0.4.0
∗ matplotlib: 3.0.3
∗ numpy: 1.16.3
∗ scikit-optimize: 0.5.2
∗ scipy: 1.2.1

Running CS on a single machine solidifies our environment.
By using strict version control of each software component
used, the environment was considered controlled. The software
developed was not included as an end result of the research
so design-science with iterations would be redundant. The
results were based on a single run of a dataset using the
software developed. Therefore multiple evaluations of the
artifact provides little to no value.

To answer the two research questions, SSIM, encoding time
and frame size had to be obtained for the datasets and compres-
sion algorithms in scope. CS was developed to handle video
frames, compress them, and calculate the aforementioned
values. The artifact relied on two different microservices to
operate; the frame-feed-evaluator (FFE), to interact with the
OpenDLV software ecosystem and the encoder microservices

[20]–[23], to compress the video frames [24]. The FFE made
the frames available for the encoder microservices which
compressed the frames based on a particular configuration.
The compressed frames were then evaluated in the FFE, where
the SSIM, encoding time and the frame size were calculated.
CS automated this process by systematically evaluate the
different codecs, type of encoding and resolutions we wanted
to investigate. This was done in three layers:

1) Try all available codecs (see List 2) both hardware and
software accelerated (see List 3),

2) In all resolutions (see List 4), and
3) Continuously try to improve the encoding performance

(highest SSIM given the encoding time and size con-
straint) by altering the encoder configurations.

Due to the limited time frame for this bachelor’s thesis, we
were provided the FFE and the encoder microservices from
the Revere laboratory. Hence our focus lied on developing a
methodology and an artifact that would collect data to provide
insight into our problem domain. Consequently, our choice
of encoders and acceleration types were therefore limited to
what had been developed beforehand at Revere. We chose to
use all encoders and acceleration types that we had at our
disposal (see List 2 and 3) However, to make the encoders suit
our research, we modified them to give us more control over
their configurations (see Appendix A for which parameters we
chose to open up for evaluation).

The same goes for the datasets we chose to use in the
research. The datasets ‘COPPLAR route’ and ’AstaZero Rural
Road‘ were simply selected, because they were the datasets
we had access to that fulfilled our requirements of being
lossless and in high resolution (QXGA - 2048 x 1536). The
KITTI dataset was chosen because its relatively high resolution
(KITTI - 1392 x 512) but also as it contained sequences similar
to the COPPLAR route dataset.

Evaluating various resolutions rather than focus solely on
one led to broader results and thus wider application of those
results. The resolutions that were used in the experiment can be
seen in List 4. The resolutions were chosen not only because
of their commonplace, but also since they provide a nicely
spaced diverse range.

In the software accelerated encoders, the number of threads
were set to 4. This was done to control that each encoder
worked on the same premises and thus obtain compara-
ble results. As for the hardware accelerated encoders, Intel
QuickSync, the number of threads could not be explicitly set
as the implementation did not allow such setting.

List 2. List of codecs

• H.264
• VP9

List 3. List of acceleration types

• Software encoding
• Hardware encoding

– Intel QuickSync

List 4. List of resolutions

• VGA - 640 x 480
• SVGA - 800 x 600
• XGA - 1024 x 768
• WXGA - 1280 x 720
• KITTI - 1392 x 512
• FHD - 1920 x 1080
• QXGA - 2048 x 1536

List 5. List of video datasets

• COPPLAR route, daytime and sunny - urban
• AstaZero Rural Road, daytime and sunny - inter-urban

Note that because the encoder microservices use the fol-
lowing implementations we use the naming H.264 to refer to
Cisco’s openh264 v1.8.0 implementation [25], VP9 to refer to
WebM Project’s libvpx v1.8.0 [26] as well as QSV-H264 and
QSV-VP9 to refer to Intel’s libyami 1.3.1 [27].

A. Research Question 1

To attempt to answer research question 1, SSIM, encoding
time and frame size had to be obtained for all the compressed
video sequences to compare the different compression algo-
rithms.

The configuration of the compression algorithms has direct
causation to the compression result, both in terms of quality,
encoding time and frame size. Thus the best configuration for
every algorithm, resolution and video sequence was attempted
to be used to obtain results allowing a fair comparison of
the different compression algorithms. The CS was developed,
and utilized for this purpose. To attempt to find the optimal
configuration for each of the algorithm, resolution and video
sequence, given the encoding time and frame size constraints,
machine learning was applied. The form of machine learning
used was Bayesian optimization based on Gaussian process
regression through the Python library Scikit-Optimize [28].
For each optimization iteration, the algorithm automatically
changed the configuration of the encoder to maximize the
SSIM while not violating the encoding time nor the frame size.
Each encoder optimization was initialized with a default con-
figuration that had been showed to historically give a mediocre
SSIM to increase the probability of faster convergence than
initializing the optimization with random configurations. In
addition to the initialization above, 12 different configurations
were randomly generated. Based on these 13 configurations,
the machine learning algorithm attempted 80 times to improve
the configuration. In each iteration, the encoding configuration
was changed by the optimization algorithm on its effort
to improve the SSIM. The optimization algorithm took the

resulting SSIM and attempted to distinguish how the tuning
of the encoding configuration affected the VQM to continu-
ously try to improve the SSIM. The mentioned optimization
did not only reduce the resources required to find the best
candidate configurations of the compression algorithms but it
also limited the human element from the optimizing process.

The artifact was then moved to the experimental unit (see
List 1) where the experiment was executed. The above was
done on all the different datasets (see List 5) to get the different
compression algorithms performance on all driving scenarios.
The artifact generated data in the form of reports containing
SSIM, encoder time and frame size for each encoder, reso-
lution and dataset as well as graphs illustrating the obtained
data.

Fig. 2 shows a high-level flow chart of the CS.

B. Research Question 2

To answer our second research question, we executed CS
again but with frames from the KITTI dataset solely in the
KITTI resolution (see list 4). Consequently, we obtained the
same result from the artifact as for research question 1, but for
the KITTI dataset and resolution. The entire KITTI dataset was
not used but a subset from the ’CITY’ category in the dataset
corresponding to one of our datasets, namely COPPLAR route
[29]. The aforementioned KITTI CITY subset was chosen
as it was the most similar in terms of weather, time of the
day, driving environment and traffic to the COPPLAR route
dataset as an attempt to control these variables to the degree
possible. The resulting best suitable compression algorithm
and its configuration could hereby be compared between the
KITTI subset and COPPLAR route to see how transferable
the results thus the encoding strategies and their configurations
were.

C. Data collection

Using Bayhesian optimization with Gaussian regression the
authors tried finding the global minimum, the maximum SSIM,
for each encoding configuration, resolution and dataset. If
necessary, the SC handles the build process of the Dockerized
encoder microservices concurrently (see Appendix C). In
every iteration of the optimization, the FFE and one encoder
microservice is combined to evaluate the current dataset
and resolution. The main method of the coordinator iterates
through every encoder, also called codec module in scope.
The codec modules are composed out of functions directly
correlated to our chosen encoders (2). Each codec module
includes a parameter space, which defines the range and name
of each parameter, a default configuration, and the objective
function. The objective function included in the codec modules
handle the running of Docker containers and evaluates the
results of these.

During the evaluation of all the encoders, CS creates reports,
in the form of .csv files. The reports contain SSIM, frame size
and and encoding time. When all the resolutions have been
evaluated for one encoder, a subsequent script is run which
generates a box and whiskers plot displaying the results of

Fig. 2: Flow chart - Coordinator Script

the best candidate configuration for each resolution (4) found
during the evaluation of that encoder. The graph depicts one
compression strategy with its best candidate configuration and
the resulting average SSIM, frame size, and encoding time for
respective resolution on the video sequenced used. The test
run evaluated the first 900 frames of all datasets (see List 5).

D. Datasets

During the course of the thesis multiple datasets were used.
Two sets collected by the Revere laboratory, the COPPLAR
route and the AstaZero Rural Road at the AstaZero proving
grounds. In addition, the KITTI dataset, collected in Karlsruhe
by the KITTI team was also used. The AstaZero Rural Road
dataset was collected to provide a set not governed by the
European GDPR statutes. This dataset was the only one that
the research team could examine manually.

The AstaZero dataset was collected using the same camera,
in the same car as the COPPLAR route dataset. The collection
of video streams were done through Dockerized microservices,
developed by Revere. The microservices used to collect the
sets were:

1) opendlv-video-x264-recorder, and
2) opendlv-device-camera-pylon [30], [31]
The KITTI dataset was simply downloaded from their

official website [4].

IV. RESULTS

CS generated three kinds of graphs together with reports
containing both encoder configurations and data for each
evaluated frame.

One ‘encoder graph‘ was generated for every encoder in
every dataset (see Fig. 5). Note that the encoder graph was
only generated if the encoder managed to produce a valid
configuration for the dataset. The graph shows how the en-
coder’s best candidate configuration performed in terms of
SSIM, frame size and encoding time for every resolution it
managed to encode. At the bottom of the graph the number
with the prefix ‘C‘ indicates which encoder configuration was
used to obtain those values. The aforementioned graph and all
other encoder graphs can be found in full-size in Appendix
B-C.

To easier get an overview of how the encoder performed,
one ‘joint graph‘ was generated for every resolution in the
datasets (see Fig. 6). The joint graph shows the SSIM that

each encoder obtained for the specific resolution. The x-tick
labels show which encoder corresponds to the bar plot and
which encoder configuration was used (the best candidate
configuration). The aforementioned graph and all other joint
graphs can be found in full-size in Appendix B-B.

One ‘comparison graph‘ was generated per dataset (see Fig.
3 and 4) The graph shows how the different encoders compare
in terms of SSIM percentage change in comparison to the
baseline encoder, H.264. H.264 was chosen as the baseline
encoder because it managed to produce a valid configuration
that met the constraints on all resolutions. The aforementioned
graphs can be found in full-size in Appendix B-A.

Fig. 3: Comparison graph showing the SSIM change in per-
centage for the encoders in comparison to the baseline encoder
- H.264 - for dataset AstaZero Rural Road

A. Research question 1

Which video compression algorithm performs the best in
terms of SSIM given typical driving situations for inter-urban
and urban driving situations in daylight with good weather

Fig. 4: Comparison graph showing the SSIM change in per-
centage for the encoders in comparison to the baseline encoder
- H.264 - for dataset COPPLAR route

Fig. 5: Encoder graph - depicting SSIM, frame size and
encoding time for the H.264 encoder across all resolution in
dataset AstaZero Rural Road

while aiming at a maximum frame size of not more than 65507
bytes to allow for network broadcast at a frame rate of not
less than 25FPS?

Both comparison graphs for the respective datasets (COP-
PLAR Route - urban and AstaZero Rural Road - inter-urban)
depicted a similar trend (see Fig. 3 and 4 as well as Fig. 10
and 11 in Appendix B-A for full-size). The trend showed that
VP9 produced the highest SSIM for all resolutions but the
highest, QXGA (2048x1536), in respective driving situation.
For QXGA, the VP9 encoder was unable to encode the
datasets without violating the constraints. Instead, for this
very resolution, the hardware accelerated version of VP9 using
Intel QuickSync produced the highest SSIM in both driving
situations.

Fig. 6: Joint graph - depicting SSIM for VGA resolution in
terms of encoder in dataset AstaZero Rural Road

Dataset
Parameter KITTI COPPLAR route
GOP 59 92
rc_dropframe_thresh 19 66
rc_resize_allowed 0 1
rc_resize_up_thresh 61 28
rc_resize_down_thresh 22 42
rc_undershoot_pct 43 76
rc_overshoot_pct 43 84
rc_min_quantizer 1 20
rc_end_usage 1 1
rc_buf_sz 4160 1578
rc_buf_initial_sz 2969 2482
rc_buf_optimal_sz 4225 1222
rc_target_bitrate 4872672 2255460
kf_mode 0 1
kf_min_dist 0 0
kf_max_dist 171 94
VP8E_SET_CPUUSED 9 6

TABLE I: Best candidate encoder configurations for KITTI
resolution for the urban datasets

The different best encoder configurations candidates used in
respective dataset and resolution were recorded (see Appendix
B-D).

B. Research question 2

How transferable are the resulting parameters for the vari-
ous video compression algorithms when they are compared to
a different video dataset, for instance from KITTI?

In the KITTI dataset, VP9 managed to obtain a SSIM
over 40 % higher than the baseline encoder H.264 (see Fig.
7 and 8 as well as Fig. 12 and 27 in Appendix B). For
the KITTI resolution, only the software accelerated codecs
managed to produce results that did not violate the constraints.
Consequently, for the KITTI dataset, VP9 encoder performed
best in terms of SSIM.

For the KITTI resolution in the other corresponding urban
dataset, the COPPLAR route, VP9 also performed superior
to the other encoders in terms of SSIM (see Fig. 9 as well as
24 in Appendix B-B for full-size). Therefore, we can establish
that the compression algorithm that has yielded the best result,
regardless of dataset, was VP9.

The encoder configuration for VP9 differed between the
different datasets to the extent that no trend clear trend could

be deduced. TABLE I) display the encoder configurations side
by side for an easy comparison.

Fig. 7: Comparison graph - KITTI

Fig. 8: Joint graph - depicting SSIM for KITTI resolution in
terms of encoder in dataset KITTI

V. ANALYSIS & DISCUSSION

A. Graphs

1) Encoder graphs: Each encoder graph display respective
encoder’s performance, in terms of SSIM, frame size and
encoder time, when using the best candidate configuration
for each resolution. The two datasets’ H.264 encoder graphs
were not very similar. By visualizing the data produced by this
encoder in the encoder graphs, one can soon see that H.264,
while yielding acceptable results, fluctuates more than other
encoders in terms of frame size, encoding time and SSIM (see
Fig. 28, 32 and 36).

For QSV-H264, the hardware accelerated H.264 codec, a
more stable trend between the two datasets was observed. This

Fig. 9: Joint graph - depicting SSIM for KITTI resolution in
terms of encoder in dataset COPPLAR route

trends entails a better transferability between datasets when
using hardware acceleration for the H.264 encoder (see Fig.
29 and Fig. 33).

The different encoder graphs for software VP9 also shows
similar fluctuation to the software H.264 encoder. For the VGA
resolution, the SSIM result was the best of all encoders. If the
size was taken into consideration, it does not compare well
to its hardware accelerated counterpart (QSV-VP9). In this
thesis work however, size was a constraint and not considered
a metric. The VP9 software encoder, while fluctuating more
on size and time, provides the best results in terms of SSIM
for every resolution except QXGA (see Fig. 30, Fig. 37 and
Fig. 34). The performance results of VP9 was in accordance
with the encoder comparison by D. Grois et. al. [13] discussed
in the related works section. The results from this paper also
states that VP9 has a higher BD-BR value.

The encoder graphs for QSV-VP9 were similar between the
different datasets with a small difference in SSIM (see Fig. 31
and Fig. 35). The datasets includes different frames but yield
similar values in SSIM, size and time.

While software encoders might yield a better result, for most
resolutions, we can conclude that in terms of size and time,
a hardware accelerated QSV encoder provides more stability
at nearly the same SSIM score, and this can factor into the
future work in this field.

2) Joint graphs: In the joint graphs we were looking
into the resulting SSIM for each encoder’s best configuration
candidate for a specific resolution. The KITTI dataset was
excluded for every resolution but the KITTI resolution. For
VGA, SVGA, and XGA, every encoder could find a best
configuration candidate. For WXGA, KITTI and FHD only
the software encoders found a configuration that met the
constraints (See the Threats to Validity section V-D). For
the highest resolution H.264, QSV-H264 and QSV-VP9 found
configurations that met the set constraints B-B.

3) Comparison graphs: The comparison graphs states that,
as previously mentioned, VP9 as the encoder yielding the
highest SSIM. We can also see that for most resolutions,
QSV-H264 returned a worse SSIM in comparison with the
H.264 baseline. In conjunction with the results discussed in
the Encoder graphs, section V-A1, the QSV-VP9 had worse

Frame Encoding time in µs
1555491996050879.png 49827
1555491996157157.png 8774

TABLE II: One of the Results from this study, VP9-C24 on
the QXGA Resolution (COPPLAR)

SSIM in comparison to its software counterpart, and failed on
3 resolutions (WXGA, KITTI and FHD).

The baseline was chosen to be the H.264 encoder, due to
early tests which showed the authors that the encoder had the
possibility to find a valid configuration thus generating a result
on every resolution. As the results show, software H.264 was
generally a valid choice of encoder given our constraints, but
was outperformed by the more modern encoder in our scope.
The authors decided that a resolution without H.264 as a base
line would be redundant because of the other graphs in the
comparison graphs B-A

The findings of this study agree with earlier research, both
D.Grois et. al. as well as J. Pavlic and J. Burkeljca found
that the VP9 encoder was the best choice for their individual
purposes, without H.265 considered [13], [14]. The fact that
the VP9 encoder could not handle the QXGA resolution in our
study, but could in theirs, was most likely due to our encoding
time and frame size constraints. This also proves the value of
investigation of the H265 encoder.

B. Research Question 1

On the highest resolution, the QSV-VP9 encoder was found
to be the most optimal choice. The software VP9 encoder
was unable to encode the video streams without violating
the constraints. The authors manually looked into the reasons
behind this fact. Table II illustrates the encoding time for
two frames on one specific configuration in QXGA. This
configuration resulted in a frame with the encoding time of
49827 ms, which was approximately 25% above the maximum
encoding time allowed. Earlier research suggest that hardware
accelerated encoders can code around 20% faster than software
encoders and thus can explain why the hardware accelerated
VP9 managed to encode the video given the constraints [19].

The best configuration candidates differed between the
two datasets (see Appendix B-D2 and B-D3). As the global
minimums were unknown, we cannot deduce that the best con-
figuration candidates for respective datasets differed because
the global minimums were found. On the other hand, neither
can we deduce that the global minimums were not found and
hence the best configuration candidate differentiated.

For instance, as the two datasets were likely to contain
a difference in motion between frames. The compression
algorithms used by the encoders will optimize differently (as
the change delta between frames were different). When a video
has no movement, the encoder only has to place one I-frame
at the beginning and still be fully optimal. This would explain
the differences in parameters that depend on I-frame handling
in the encoder.

Another reason for the difference in configuration can be
the optimization algorithm used in CS. The algorithm might

converge in a local minimum and hence there was no guarantee
that the best configuration candidate was the actual optimal
point in the parameter space.

C. Research Question 2

When collecting data from the KITTI dataset the VP9 en-
coder obtained a SSIM more than 40% higher than the H.264
encoder. The reason for this might be that the optimization
algorithm simply converged in a local minimum for the H.264
encoder. It may also be an effect of the KITTI dataset that was
of lower resolution and lossy in comparison to the lossless
COPPLAR Route dataset which simply could benefit VP9.
However, as VP9 was proved to perform considerably better
than H.264 on scenes with a lot of movement [14], the result
was not very surprising as KITTI was recorded with half
the FPS than the COPPLAR Route dataset resulting in more
movement.

VP9 proved to be the best encoder in terms of SSIM
in respective dataset evaluated as shown in section IV-B.
However, as can be observed in TABLE I in section IV-B,
the best encoding configurations candidates differed greatly
between the datasets and no clear trend could be deduced.
Consequently, it suggests that the encoder, VP9, is transferable
as the best compression algorithm while its configuration is
not and should be tweaked for the application and platform to
obtain the best possible results.

D. Threats to Validity

1) Internal threats: The experiment relies on multiple
encoder microservices. These encoders are developed and
maintained by the Revere Laboratory and extended by us. As
each microservice had to be implemented and tested by an
external force in order to be accessible to us, the number of
encoders in the experiment was directly dependant on which
encoders Revere offered. Consequently, many other compres-
sion algorithms than the ones evaluated in the experiment exist.
Therefore, we cannot conclude that our research deduces the
best encoder given our constraints, but rather has the potential
to show the most suitable encoder of the ones evaluated. A
broader set of encoders including, for instance, the codec
H.265 (HEVC) and the hardware acceleration NVENC, would
have the potential to give better coverage and potentially better
encoding strategies. Therefore, the CS was designed in a
modular fashion to encourage further investigation of more
encoders at a later date.

The initial plan was to have larger set of datasets in the
experiment. The datasets used for research question 1 had to
be lossless and of QXGA (2048 x 1536) resolution to keep
consistency, comparability and hence to reduce the potential
introduction of more threats. Unfortunately availability of
datasets, that met the constraints, was limited. We cannot claim
that the result of this paper applies to all video compression
applications within the automotive domain. Yet, our result for
research question 2 do indicate that our study does provide
a general consensus of which encoding strategy yields good
performance. As stated previously, the CS was constructed in

such manner that adding additional datasets, to increase the
experiment’s scope, is a simple task.

Investigating the second research question, assessing the
transferability of our results, required another dataset col-
lected independently from datasets from the Revere laboratory.
Therefore, open datasets available online were researched.
However, this posed a challenge as most public free datasets
were not of the high resolution we desired. For instance, the
nuScenes dataset published in the beginning of 2019 was of
surprisingly low resolution and therefore deemed unfit for our
application. Instead, the acknowledged KITTI dataset from
2011 was used. It did not possess such high resolution as
datasets gathered with the Basler cameras from the Revere
laboratory, but it was still of high resolution (KITTI resolution
- 1392 x 512). Accurately mapping one dataset from Revere
to a video sequence in KITTI posed a threat as this was
done by simply choosing the two sequences that looked the
most similar to one another subjectively. Yet, fundamental
differences of the videos exist such as FPS differences (KITTI:
10, COPPLAR route: 20). The KITTI dataset was included to
assess the transferability of our results. However, as fundamen-
tal differences do exist between the datasets, the conclusion
on the results being transferable or not may have been done
on false premises as a result of the datasets being potentially
incomparable.

As of 2019, very limited research has been done on video
quality metrics for machine vision and an industry standard is
yet to be established. As developing a machine vision metric
was outside the scope of this thesis, SSIM was adopted as it
was regarded as a major and acknowledged VQM. However,
the perception of video quality may differ between human and
machine vision and hence may affect the result.

Our results shows a single best configuration candidate for
each encoder, resolution and dataset. However, during the
optimization process we could observe multiple configurations
yielding the same SSIM result, especially on lower resolutions.
On the higher resolutions - KITTI, FHD, and QXGA - the
results produced seemed to contain more similar configuration
parameters. From this, we can see that there were in fact
multiple best configurations, which might be seen as a threat
to the testing validity. We used the earliest encounter of the
same SSIM, if was the highest obtained, as the end result.
Another method to validate these configurations could be to
compare the frequency of each of the optimal configurations
but also to include frame size and encoding time in the score
for the configuration and not solely the SSIM.

Each encoder configuration could be tailored by a set
parameters. Which parameters to be altered in the encoders
were decided through literature review (see Appendix A). As
it might pose as a threat to not include a parameter, which
potentially could be a crucial parameter, as many parameters
as possible were included as long as they did not render
significant instability or had literature arguing against the
usage.

Initially, in the software artifact, the optimization algorithm
always got the inverted SSIM value (range from 0 to 1)

returned after each iteration. Every time any constraints were
violated the script simply returned the worst possible value
(1, the worst inverted SSIM). A time violation of 1 percent
returned the same value to the optimization algorithm as a
time violation of n percent. Consequently, the optimization
algorithm was unable to differentiate an encoder configuration
that slightly violated the constraints to one that violated them
radically. Therefore, it was unable to make the next decision
well informed. The solution for this was to define a sane max
violation of 150 percent. This value was derived by analyzing
the behavior of the optimization algorithm and discussing the
issue with the Revere Laboratory. In theory, the larger violation
range the better, as the algorithm easier could approximate how
illegal a configuration was. However, a larger violation range
also meant a longer run time and thus 150 percent was agreed
as a fair compromise. With this change, a time violation of n
percent would evaluate to the worst SSIM plus the violation, 1
+ n. This solution gave the algorithm the possibility to easier
prevent itself from converging in a local minimum. Yet, a
larger violation range would reduce this threat even further
but at the cost of even longer run time.

Using an optimization algorithm rather than brute-force to
find the optimal configuration for each encoder was necessary
due to the time frame of the thesis work. Although this did
pose a threat as we cannot know for certain that the machine
learning algorithm actually found the global minimum and
did not converge in a local minimum. To reduce this threat,
and considering our limited knowledge in machine learning,
the authors sought information and guidance on the matter in
the Revere Laboratory as well as they chose to adapt a fully
working library using an acknowledged optimization strategy
for the encoder configuration optimization [28].

The larger the dataset, the longer run time for CS. However,
the optimization algorithm in CS could be slightly tweaked to
execute fewer optimization iterations and hence have a shorter
run time. Yet, decreasing the number of iterations would have
lead to a greater risk of converging in a local minimum. Due
to machine availability and time constraint, both the number
of frames and the optimization iterations had to be limited. A
convergence graph for each optimization was therefore gener-
ated to see around which iteration the optimization algorithm
generally plateaued on improving SSIM. A value higher than
this was used as the number of iterations for the optimization
algorithm (80 iterations). However, as this value was obtained
on another platform to where the artifact was finally ran, it
may be too small than what was desired. In addition, the time
constraint and machine availability made us to have to use a
subset of our datasets. Using subsets of the datasets has the
potential to reduce the frames’ diversity. If unlucky, the frames
used could reflect a very monotonous sequence in the video
(for instance where the vehicle was at a standstill). The team
therefore chose to start the subset (900 frames) at the 100th
frame in each dataset to ensure that the vehicle was on the
move at least in the start of the subset. Thoughts on picking
frames in a specific interval was had. However, the encoders
would compress the synthetic subsets poorly as I-frames would

constantly have to be added to encode correctly. Consequently,
the synthetically created subset containing nonconsecutive
frames would have a bad resemblance with real-time streams
and thus generate results not relevant to us. Another way of
covering a larger set of potential configurations would be to
take subsets of the datasets, approximately a tenth in size to
the test sets, and use them as validation sets. A validation run
would be ran in addition to the rest run with the optimization
algorithm tuned to a greater number of optimization iterations
and higher mutation rate. By initializing the test run with
the best candidate configurations obtained for the different
encoders from the validation run, the chances of the test run
to converging in a local minimum would be reduced.

When experimenting on a technology which is self-
optimizing, encoders, we cannot fully assert that the difference
between best configuration candidates was a result of different
datasets. As the encoder was constantly adjusting how to
handle upcoming frames, the authors were faced with a risk
of not being able to adhere the results to a specific cause. The
risk was analyzed through reading about different amounts of
difference between frames, namely the paper by J. Pavlic and
J. Burkeljca [14]. This risk was still present in the study, but
acknowledged, as the encoders may obtain a best configuration
candidate based on the amount of movement in the video feed
rather than their own configuration.

Some resolutions proved to be more difficult to encode
for encoders using Intel QuickSync (QSV) than others. The
resolutions VGA, SVGA, XGA and QXGA, were encoded
without any problems. The other resolutions; WXGA, FHD
and KITTI, were also encoded but with a considerably longer
encoding time (at least 20 times longer). What differentiated
these resolutions, other than the number of pixels, were the
aspect ratios. The resolutions that were encoded with normal
encoding time was of aspect ratio 4:3 while the resolutions
with abnormally long encoding time had either an aspect ratio
of 16:9 or 2.76:1 (11:4). The long encoding time for the two
latter aspect ratios made the hardware accelerated encoders
useless as the resulting encoding time well exceeded the con-
straint. An explanation for the aforementioned phenomenon
has tried to be found, but unfortunately without any luck.
Consequently, the conclusion validity for both research ques-
tions might have gotten compromised as the QSV encoders
could somehow have been made incompatible to encode such
resolutions by the authors. Yet, it might also be a limitation of
the hardware acceleration. However, this was not very likely
(at least for WXGA and FHD) as there are numerous reports
on the internet, including from Intel themselves, of success-
fully encoded WXGA and FHD video streams. Unfortunately,
this limitation could not be explained and other hardware
accelerated encoders could not be substituted as no other was
available at the time of the experiment.

2) External threats: To ensure transferability thus reduce
the threat to external validity, care was put into having a set
of diverse datasets. This was be done by using video sequences
from another vehicle than ours in another geographic area
but with similar content. The risk of our result only being

applicable for our car, our camera, and our location, was by
the aforementioned therefore reduced.

VI. CONCLUSION AND FUTURE WORK

The research field of autonomous driving is of global inter-
est, and most sensing device setups include camera sensors.
Based on this paper, other researchers and organizations can
choose the correct encoder for their video feeds.

Video feeds differ in resolution, in difference between
frames and in quality. The authors of this study used the
standard resolutions - used in many cameras - to make the
results as re-usable as possible, with the forethought of giving
other researchers the possibility to easier select an encoder.
As a future research topic, the amount of difference between
frames could be in scope.

Our study was conducted using two different codecs both
accelerated by software and hardware. The next step of much
interest would be to include NVIDIA’s NVENC encoding and
additional codecs using various implementations. As previ-
ously mentioned in section II, the H.265 codec is likely to
outperform both VP9 and H.264 in terms of bit rate savings
and bit rate overhead [14]. Therefore, it would be of high
interest to examine if this is true in our context, as a replication
study.

To conclude, our study proves the VP9 encoder to be the
most optimal encoder on all resolutions expect in QXGA
resolution. When working with video feeds in real-time and
in high resolutions (QXGA and above) hardware acceleration
(QSV) is recommended. In addition, as the best encoding
configurations candidates differed greatly between the urban
datasets and no clear trend could be deduced. Consequently,
it suggests that the encoder, VP9, is transferable as the best
compression algorithm while its configuration is not and
should be tweaked to perform optimally.

VII. ACKNOWLEDGEMENTS

This study would not have been possible without the support
of the Revere Laboratory team, Christian Berger, Arpit Karso-
lia, Ola Benderius, and anyone else in the Revere Laboratory
involved. Christian developed the encoder microservices that
the authors have extended with additional parameters as well
as the FFE, the fundamentals of our experimental instrument.
In addition, Christian was our academic supervisor providing
invaluable expertise, guidance but also the experimental unit.
Arpit gave input on how to presenting the data collected and
additional pointers on research methodology. Ola supported
us in the knowledge acquisition surrounding machine learning
and optimization. The Revere Laboratory as such also provided
the platform for the experiment, expert knowledge on general
research, and workspace for the authors.

Additionally, we would like to express our gratitude to Justi-
nas Stirbys, who proof-read the paper and provided general
writing advice.

REFERENCES

[1] F. Giaimo and C. Berger, “Design criteria to architect continuous
experimentation for self-driving vehicles,” in 2017 IEEE International
Conference on Software Architecture (ICSA). IEEE, 2017, pp. 203–210.

[2] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–
2022,” White Paper, 2018.

[3] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:
Contactless attacks against sensors of self-driving vehicle,” DEF CON,
vol. 24, 2016.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[5] “Research | safer - vehicle and traffic safety centre at chalmers,”
reVeRe - Research Vehicle Resource at Chalmers. [Online]. Available:
https://www.saferresearch.com/research#revere

[6] T. Zhao, K. Zeng, A. Rehman, and Z. Wang, “On the use of ssim in
hevc,” in 2013 Asilomar Conference on Signals, Systems and Computers.
IEEE, 2013, pp. 1107–1111.

[7] S. Wang, A. Rehman, Z. Wang, S. Ma, and W. Gao, “Ssim-motivated
rate-distortion optimization for video coding,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 4, pp. 516–529,
2012.

[8] E. L. Christian Berger, Joacim Eberlen, “se-research/video-codec-
performance-for-autonomous-driving,” https://github.com/se-research/
video-codec-performance-for-autonomous-driving/releases/tag/v2.1,
2019, experimental setup to systematically study the
performance of video codecs for autonomous driving. commit:
e6c775317612df29ef996bcc7098c06a56e11ae9.

[9] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010
20th International Conference on Pattern Recognition, Aug 2010, pp.
2366–2369.

[10] R. Dosselmann and X. D. Yang, “A comprehensive assessment of
the structural similarity index,” Signal, Image and Video Processing,
vol. 5, no. 1, pp. 81–91, Mar 2011. [Online]. Available: https:
//doi.org/10.1007/s11760-009-0144-1

[11] C. Haccius and T. Herfet, “Computer vision performance and image
quality metrics - a reciprocal relation,” in Computer Vision Performance
and Image Quality Metrics - A Reciprocal Relation, 01 2017, pp. 27–37.

[12] P. I. Frazier, “A tutorial on bayesian optimization,” 07 2018, a simple
tutorial on Bayesian Optimization.

[13] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar, “Per-
formance comparison of h.265/mpeg-hevc, vp9, and h.264/mpeg-avc
encoders,” in 2013 Picture Coding Symposium (PCS), Dec 2013, pp.
394–397.

[14] J. Pavlic and J. Burkeljca, “Ffmpeg based coding efficiency comparison
of h.264/avc, h.265/hevc and vp9 video coding standards for video
hosting websites,” International Journal of Computer Applications, vol.
182, pp. 1–8, 01 2019.

[15] “Live encoder settings, bitrates, and resolutions,” https://support.google.
com/youtube/answer/2853702?hl=en, accessed: 2019-05-23.

[16] “Broadcasting guidelines,” https://stream.twitch.tv/encoding/, accessed:
2019-05-23.

[17] “Encoder guides,” https://help.vimeo.com/hc/en-us/articles/
115012811208-Encoder-guides, accessed: 2019-05-23.

[18] “Encoding parameters,” https://faq.dailymotion.com/hc/en-us/articles/
203655666-Encoding-parameters, accessed: 2019-05-23.

[19] J. Kufa and T. Kratochvil, “Software and hardware hevc encoding,” in
2017 International Conference on Systems, Signals and Image Process-
ing (IWSSIP), May 2017, pp. 1–5.

[20] C. Berger, “Release version v0.0.2,” https://github.com/chalmers-revere/
opendlv-video-h264-encoder/releases/tag/v0.0.2, 2019, openDLV Mi-
croservice to convert an image in shared memory to an h264 frame using
openh264. commit: 87e8f0e4a1317597656fc4e9c3ccd48ea1f65be6.

[21] ——, “Release version v0.0.8,” https://github.com/chalmers-revere/
opendlv-video-vpx-encoder/releases/tag/v0.0.8, 2019, openDLV Mi-
croservice to convert an image in shared memory to a VPX frame (VP8
or VP9). commit: 86b5f627b4a42ffe5ee96931934f943d5cf4cab3.

[22] ——, “Release version v0.0.2,” https://github.com/chrberger/
video-qsv-h264-encoder/releases/tag/v0.0.2, 2019, intel QuickSync
hardware-accelerated video encoding for h264. commit:
8b9665d05e8e46f6858c29dd682d9cf56b2edef7.

[23] ——, “Release version v0.0.1,” https://github.com/chrberger/
video-qsv-vp9-encoder/releases/tag/v0.0.1, 2019, intel QuickSync
hardware-accelerated video encoding for VP9. commit:
30bcab334109051a8faedaaf7d7b49a9821bd3f3.

[24] ——, “frame-feed-evaluator,” https://github.com/chrberger/
frame-feed-evaluator, 2019, repository to systemat-
ically evaluate video compression codecs. commit:
5c6424181d6ec7e28e221cc72045a57cdd300149.

[25] https://github.com/cisco/openh264/blob/v1.8.0/CONTRIBUTORS,
“Release version 1.8.0 - cisco/openh264,” https://github.
com/cisco/openh264/releases/tag/v1.8.0, 2019, repository
for the h264 codec implemented as openh264. commit:
6fe15a6b82d492bebe388c55b7ee5131208e7334.

[26] T. W. project, “Release version 1.8.0 - webmproject/libvpx,” https://
github.com/webmproject/libvpx/releases/tag/v1.8.0, 2019, repository for
the VPX codec commit: b85ac11737430a7f600ac4efb643d4833afd7428.

[27] A. The WebM Project, Intel Corporation, “Release version 1.3.1
- intel/libyami,” https://github.com/intel/libyami/releases/tag/1.3.1,
2019, repository for QSV hardware acceleration. commit:
fb48083de91f837ddbf599dd4b5ad1eb1239e1cf.

[28] andreh7, N. Campos, M. Cherti, A. Fabisch, T. Fan, T. Head, M. Kumar,
G. Louppe, K. Malone, nel215, M. Pak, I. Shcherbatyi, T. Smith,
and Z. Vinicius, “Scikit-optimize,” https://github.com/scikit-optimize/
scikit-optimize, 2019, scikit-Optimize, or skopt, is a simple and efficient
library to minimize (very) expensive and noisy black-box functions. It
implements several methods for sequential model-based optimization.
skopt aims to be accessible and easy to use in many contexts. commit:
af5450a51599bbfa4846342188948c147ceba14c.

[29] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “2011_09_29_drive_0071
(unsynced+unrectified data, image_02),” http://www.cvlibs.net/datasets/
kitti/raw_data.php?type=city, 2013.

[30] C. Berger, “chalmers-revere/opendlv-video-x264-recorder,”
https://github.com/chalmers-revere/opendlv-video-x264-recorder/
releases/tag/v0.0.3, 2019, repository for an OpenDLV Microservice that
converts an image in shared memory to a lossless h264 frame using
libx264. commit: 203f7fc251da7ecf491e20bc7c022a504762b9a0.

[31] ——, “chalmers-revere/opendlv-device-camera-pylon,” https://github.
com/chalmers-revere/opendlv-device-camera-pylon/releases/tag/v0.0.1,
2019, repository for an OpenDLV Microservice that interfaces with
GiGE cameras supported by the pylon library (eg., Basler cameras).
commit: f74da40d25dfb9ed99c2c44acfdd62f39356dcfa.

[32] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of hierarchical b
pictures and mctf.” in ICME. Citeseer, 2006, pp. 1929–1932.

[33] H. Kalva, “The h. 264 video coding standard,” IEEE multimedia, vol. 13,
no. 4, pp. 86–90, 2006.

[34] K.-T. Fung, Y.-L. Chan, and W.-C. Siu, “New architecture for dynamic
frame-skipping transcoder,” IEEE transactions on Image Processing,
vol. 11, no. 8, pp. 886–900, 2002.

[35] Intel, “libyami-utils/yamitranscode.1,” https://github.com/intel/
libyami-utils/blob/master/doc/yamitranscode.1#L27, 2019, repository
to systematically evaluate video compression codecs. commit:
2164966849f011c4242663fefb5229a8b2be9e2b.

[36] Y. Su and M.-T. Sun, “Fast multiple reference frame motion estimation
for h. 264/avc,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 3, pp. 447–452, 2006.

[37] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the h. 264/avc video coding standard,” IEEE Transactions on circuits
and systems for video technology, vol. 13, no. 7, pp. 560–576, 2003.

[38] P. List, A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz,
“Adaptive deblocking filter,” IEEE transactions on circuits and systems
for video technology, vol. 13, no. 7, pp. 614–619, 2003.

[39] G. R. M. J. Mirza and M. Javed, “In-loop deblocking filter for h. 264/avc
video,” in Proceedings of the 5th WSEAS International Conference on
Signal Processing, Madrid, Spain, 2006, pp. 235–240.

[40] M. Rezaei, I. Bouazizi, V. K. M. Vadakital, and M. Gabbouj, “Optimal
channel changing delay for mobile tv over dvb-h,” in 2007 IEEE
International Conference on Portable Information Devices. IEEE, 2007,
pp. 1–5.

[41] P. Ai, S. Chen, Z. Chu, P. Du, M. Ettl, A. Gal, X. Guang, L. Guo, Y. Guo,
H. Huang, S. Huang, E. Hugg, C. Jennings, Z. Jia, D. Jin, J. Li, J. Li,
K. Li, K. Li, M. Li, X. Li, B. Ling, A. Liu, W. Liu, V. Patil, E. Rescorla,
A. Roach, S. Shan, S. Tao, M. StorsjÃű, B. Vibber, J. Wang, J. Wang,
Z. Wang, H. Willems, G. J. Wolfe, K. Wu, G. Xu, J. Xu, G. Yang, L. Yao,
J. Zhang, R. Zhang, V. Zhang, L. Zhu, J. Zhu, D. Zhang, H. Zhu, and

https://www.saferresearch.com/research#revere
https://github.com/se-research/video-codec-performance-for-autonomous-driving/releases/tag/v2.1
https://github.com/se-research/video-codec-performance-for-autonomous-driving/releases/tag/v2.1
https://doi.org/10.1007/s11760-009-0144-1
https://doi.org/10.1007/s11760-009-0144-1
https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en
https://stream.twitch.tv/encoding/
https://help.vimeo.com/hc/en-us/articles/115012811208-Encoder-guides
https://help.vimeo.com/hc/en-us/articles/115012811208-Encoder-guides
https://faq.dailymotion.com/hc/en-us/articles/203655666-Encoding-parameters
https://faq.dailymotion.com/hc/en-us/articles/203655666-Encoding-parameters
https://github.com/chalmers-revere/opendlv-video-h264-encoder/releases/tag/v0.0.2
https://github.com/chalmers-revere/opendlv-video-h264-encoder/releases/tag/v0.0.2
https://github.com/chalmers-revere/opendlv-video-vpx-encoder/releases/tag/v0.0.8
https://github.com/chalmers-revere/opendlv-video-vpx-encoder/releases/tag/v0.0.8
https://github.com/chrberger/video-qsv-h264-encoder/releases/tag/v0.0.2
https://github.com/chrberger/video-qsv-h264-encoder/releases/tag/v0.0.2
https://github.com/chrberger/video-qsv-vp9-encoder/releases/tag/v0.0.1
https://github.com/chrberger/video-qsv-vp9-encoder/releases/tag/v0.0.1
https://github.com/chrberger/frame-feed-evaluator
https://github.com/chrberger/frame-feed-evaluator
https://github.com/cisco/openh264/releases/tag/v1.8.0
https://github.com/cisco/openh264/releases/tag/v1.8.0
https://github.com/webmproject/libvpx/releases/tag/v1.8.0
https://github.com/webmproject/libvpx/releases/tag/v1.8.0
https://github.com/intel/libyami/releases/tag/1.3.1
https://github.com/scikit-optimize/scikit-optimize
https://github.com/scikit-optimize/scikit-optimize
http://www.cvlibs.net/datasets/kitti/raw_data.php?type=city
http://www.cvlibs.net/datasets/kitti/raw_data.php?type=city
https://github.com/chalmers-revere/opendlv-video-x264-recorder/releases/tag/v0.0.3
https://github.com/chalmers-revere/opendlv-video-x264-recorder/releases/tag/v0.0.3
https://github.com/chalmers-revere/opendlv-device-camera-pylon/releases/tag/v0.0.1
https://github.com/chalmers-revere/opendlv-device-camera-pylon/releases/tag/v0.0.1
https://github.com/intel/libyami-utils/blob/master/doc/yamitranscode.1#L27
https://github.com/intel/libyami-utils/blob/master/doc/yamitranscode.1#L27

H. Shi, “Typesandstructures - cisco/openh264 wiki,” https://github.com/
cisco/openh264/wiki/TypesAndStructures, 2015, repository for Cisco
openh264. commit: 38b50752583cfea02f2626229989858a7cf483d1.

[42] N. Ozbek and A. M. Tekalp, “H. 264 encoding of videos with large
number of shot transitions using long-term reference pictures,” in 2006
14th European Signal Processing Conference. IEEE, 2006, pp. 1–4.

[43] H.-Y. Cheong, A. M. Tourapis, J. Llach, and J. Boyce, “Adaptive spatio-
temporal filtering for video denoising,” in 2004 International Conference
on Image Processing, 2004. ICIP’04., vol. 2. IEEE, 2004, pp. 965–968.

[44] S. M. Kim, J. W. Byun, and C. S. Won, “A scene change detection
in h. 264/avc compression domain,” in Pacific-Rim Conference on
Multimedia. Springer, 2005, pp. 1072–1082.

[45] “vpx_codec_enc_cfg struct reference,” http://doxygen.
db48x.net/mozilla/html/structvpx__codec__enc__cfg.html#
a9abffd5b85a0babbe3073b763f3311e1, accessed: 2019-05-23.

[46] S. Winkler, M. Kunt, and C. J. van den Branden Lambrecht,
Vision and Video: Models and Applications. Boston, MA: Springer
US, 2001, pp. 201–229. [Online]. Available: https://doi.org/10.1007/
978-1-4757-3411-9_10

APPENDIX A
CHOICES OF PARAMETERS

A. Intel QuickSync (QSV)

Two microservices used Intel’s hardware acceleration
QuickSync to encode VP9 and H.264. Therefore, the two
microservices had many parameters in common.

As the experiment has an FPS of 25 as a precondition,
the parameter frameRateNum was left to its default value
and, as with all encoder in our scope, it was not included
in the optimization process. The intraPeriod parameter was
made available to control the group of pictures or the GOP
structure to set the interval for new I-frames. As I-frames are
the least compressible of the I, P and B-frames, controlling
their frequency is important in a frame size point of view
[32]. The parameter ipPeriod controls the distance between an
I and a P frame. Again, as P-frames differ in size in regards
to the other frames, controlling its frequency will affect the
frame size and is therefore of interest to investigate. bit rate
is another parameter that was chosen to be altered as it has
a direct correlation to SSIM, frame size and encoding time if
a rate control mode is selected that relies on this parameter
[33]. initQP is the initial quantization parameter (QP) for a
video sequence. If rate control that is using QP is used, this
parameter will govern what the QP will be at the start of the
video sequence. As QP is used to regulate an image’s level
of detail, and is directly connected to bit rate, it is interlinked
with the constraints of this experiment and thus needed to be
investigated [33]. The parameters minQP and maxQP sets the
range of the QP. The parameter disableFrameSkip is used to
toggle the frame skip function. Frame skip is used to ensure
that the defined bit rate is met and therefore of interest to this
experiment [34]. diffQPIP and diffQPIB are the differences
in QP between adjacent I and P frames and I and B frames
respectively [35]. As frame size is dependent on frame type,
these two parameters were of interest in the experiment.
The numRefFrames gives the encoder the possibility to select
numerous previously decoded frames to use as a blueprint
for the next frame and is thought to improve video coding
performance [36]. The Intel QuickSync provides a parameter

called enableLowPower. Power consumption is not in the
scope of this research but rather speed and size and hence
this parameter was set to false throughout the experiment.
The parameter is also infamous for its instability on VP9
on higher resolutions with the current drivers at the time of
the experiment. The bitDepth parameter governs how many
colors that can be used in a pixel. Higher bit depth leads to
higher frame size and was therefore selected to be investigated.
rcMode, or rate control mode, decides which mode that will
be used to control the number of bits used for each frame.
Consequently, this parameter is of much interest to us since
quality, encoding time and frame size is a direct effect of this
parameter.

Unfortunately, the documentation of Intel QuickSync, in
regards to the parameter set provided to configure the en-
coding, is very limited. Consequently, parameters where no
information of their use and range were given, were ignored
to not break the configuration. The following parameters were
ignored: level, VideoTemporalLayers, VideoTemporalLayerIDs
and leastInputCount.

1) H.264: In addition to the above parameters, some param-
eters were also codec specific. enableCabac toggles between
the entropy codings CABAC and CALVC and enableDct8x8
toggles the use of 8x8 transforms. Both parameters were
chosen to be investigated as they are said to have high
significance for the encoding efficiency [37]. The parame-
ter enableDeblockFilter toggles the deblocking filter used in
H.264. This parameter is very much in the scope of this
research as it directly affects the encoding efficiency and time
[38], [39]. The idrInterval specifies the Instantaneous Decoder
Refresh (IDR) frame interval. As the IDR frames frequency
affects the encoding efficiency and quality the parameter was
chosen to be included in our parameter space [40].

Again, due to the poor documentation in Intel QuickSync,
no information was given for the following parameters and
they were therefore unusable in our scope as no ranges
were given which caused crashes: basicUnitSize, VUIFlag,
SamplingAspectRatio and priorityId.

2) VP9: For VP9 QSV-accelerated, only one parameter
was available, namely referenceMode. The aforementioned
parameter sets the reference mode for the encoder. Even
though the documentation for it was scarce, we chose to
include it in the parameter space as it was a boolean and thus
could only be either true or false.

B. H.264

As previously mentioned the fps parameter - fMaxFrameR-
ate - was set to a default of 25 fps, and not included in the op-
timization process. iUsageType dictated the ’encoder use’ and
as our scope was real-time video streams, we chose the corre-
sponding setting, namely ’CAMERA_VIDEO_REAL_TIME’
[41]. Similar to QSV, the intra period, parameterized as uiIn-
traPeriod in H.264, was altered to control the group of pictures
(GOP). The GOP dictates the interval for new I-frames which
differ in size in comparison to other frame types and hence

https://github.com/cisco/openh264/wiki/TypesAndStructures
https://github.com/cisco/openh264/wiki/TypesAndStructures
http://doxygen.db48x.net/mozilla/html/structvpx__codec__enc__cfg.html#a9abffd5b85a0babbe3073b763f3311e1
http://doxygen.db48x.net/mozilla/html/structvpx__codec__enc__cfg.html#a9abffd5b85a0babbe3073b763f3311e1
http://doxygen.db48x.net/mozilla/html/structvpx__codec__enc__cfg.html#a9abffd5b85a0babbe3073b763f3311e1
https://doi.org/10.1007/978-1-4757-3411-9_10
https://doi.org/10.1007/978-1-4757-3411-9_10

pose as an interesting parameter to us [32]. Similarly, iTarget-
bit rate was chosen to be controlled because of its direct corre-
lation to SSIM, frame size and encoding time if a rate control
mode is selected that relies on this parameter [33]. The iNum-
RefFrame parameter gives the encoder the possibility to select
numerous previously decoded frames to use as a blueprint
for the next frame and is thought to improve video coding
performance [36]. Its two modes, ’AUTO_REF_PIC_COUNT’
and ’I_NUM_REF_FRAME’ were both chosen to be evaluated
in the experiment. The parameter iEntropyCodingModeFlag
dictates the entropy mode, either Context Adaptive Binary
Arithmetic Coder (CABAC) or Context Adaptive Variable
Length Coder (CAVLC) can be chosen. Due to its signif-
icant impact on encoding efficiency, it was chosen to be
investigated [37]. The bEnableFrameSkip parameter governs
the frame skip function which is used to ensure that the
defined bit rate is met and is therefore of interest to this
experiment [34]. The bit rate can be set to not exceed a
certain value with the iMaxbit rate parameter. As bit rate is
directly linked to SSIM, frame size and encoding time this
parameter was of interest [33]. The quantization parameter
(QP) is used to regulate an image’s level of detail and is
directly connected to bit rate. The QP can only be the range
set by the two parameters iMaxQp and iMinQp and they
are therefore of interest. bEnableAdaptiveQuant controls the
function to adaptively control QP and thus has a correlation
to bit rate which is of much interest to us. The parameter
bEnableLongTermReference toggles the long term reference
function. As this function has shown in experiential trials to
reduce the frame size significantly, while keeping the quality
intact. The function was therefore included in the experiment
[42]. iLoopFilterDisableIdc controls if loop filtering should be
activated. The filter has shown to improve video quality and
affect frame size and is therefore of interest to be included in
our study [39] [38]. H.264 denoising function is controlled
by bEnableDenoise and since it has shown indication to
improve both encoding efficiency and video quality, we chose
to include it [43]. H.264’s scene change detection function,
toggled by bEnableSceneChangeDetect, has the potential to
affect the computing overhead considerably and is therefore
included in our experiment [44]. The rate control parameter,
iRCMode is of significant interest as it controls how the
number of bits that will be used for each frame. Consequently,
the iRCMode parameter is included in the experiment since it
has a direct impact on quality, encoding time and frame size.
The parameter iComplexityMode can be set in three modes;
low, medium and high complexity which the encoding speed
and quality are influenced by [41]. Therefore, the parameter
was included in our experiment.

A few parameters were also ignored. bSimulcastAVC, bIs-
LosslessLink and iLTRRefNum were ignored as they were not
fully implemented in the current revision of H.264 [41].

C. VP9

Each encoder include multiple parameters, some more vital
than others in regards to our constraints. The encoder in-

cludes an option to ensure, if possible, error resilience. The
g_error_resilient parameter was not used in this experiment
as the impact of enabling this mode was unclear, and not well
defined in documentation [45].

In the VP9 encoder we are using a video control variable
called VP8E_SET_CPUUSED, which is a range from 0 to 16
(Quality to Speed).

The g_usage parameter is unused in this project, as no value
was added by redefining this variable from its default. The
height and width of each frame was instantiated to have the
same values as the current resolution 4.

The default for the profile parameter is used, due to datasets
which are used in the experiment. The default "0" is defined
as an 8 bit color depth and 4:2:0 chroma sub-sampling image
[46]. The frames provided in the datasets are of this type,
therefore the default value is the only applicable option.

To ensure continuous behavior across all encoders in scope
the g_threads parameter was set to 4.

To decide which keyframe mode to use, automatic place-
ment or a fixed interval, the parameter kf_mode is set to either
0 or 1. In libvpx terms, this is translated into VPX_KF_AUTO
and VPX_KF_DISABLED. When disabled the placement of
keyframes is governed by kf_min_dist and kf_max_dist. When
these parameters holds the same value the placement is con-
stant.

In the codec there is a possibility to define rc_buf_initial_sz,
rc_buf_optimal_sz and rc_buf_sz which dictates how much
buffering time the decoder should use for each frame. In the
scope of this research the ranges, in mutual order: 0 - 4000,
0-5000, and 0-6000.

Another piece of functionality of the codec is to enable
strategic frame drops to meet the requirements defined. The
range is between 0-100 percent, when the target bit rate buffer
falls below this percentage a frame is dropped.

VPx includes two rate control modes, Variable Bit
Rate (VBR) and Constant Bit Rate (CBR). The parameter
rc_end_usage governs this, the range on our space is 0 (CBR)
or 1 (VBR). In CBR the bit rate cannot change to ensure that
the frame conveys to the constraints set upon it, while VBR is
lenient and will try to change the target bit rate to meet these
constraints. The target bit rate (rc_target_bit rate) default is
800 000 and in our space it ranges from 100 000 to 5 000
000. The type of the target bit rate is kilobytes/second so the
value from our space is always divided by 1000 in the encoder
microservice.

To further control the bit rate two tolerance variables are in
place, rc_overshoot_pct and rc_undershoot_pct. These define
in percentage how much the bit rate can change in VBR. In
the experiment space these range from 0-100 percent.

The quantizer parameters are the closest quality control
variables available in libvpx, the rc_max_quantizer is, in our
script, always the maximum of 52 - worst quality possible
- while rc_min_quantizer varies between 0 and 52. The
resulting frame will be somewhere in the range between these
parameters.

On low data rates the possibility to create a lower resolution
frame and up-scaled it to the predefined width and height
of the encoder can create a higher quality frame with a
smaller size. This is controlled by the boolean parameter
rc_resize_allowed and the percentage based (0-100) param-
eters rc_resize_down_thresh and rc_resize_up_thresh.

The scope of the experiment states the the encoding have
to be real-time. The team have defined a maximum encoding
time as 40 ms. In the VP9 encoder, two-pass encoding and
all interconnected parameters - passes and pass - have been
skipped due to the impossibility of real-time encoding when
active.

There is also a list of 2 pass specific parameters, which are
all ignored:

• rc_2pass_vbr_bias_pct
• rc_2pass_vbr_maxsection_pct
• rc_2pass_vbr_minsection_pct
• rc_twopass_stats_in
In VP9, the presets available are best, good and real-time.

In the scope of this experiment this will be constantly set to
real-time.

As the experiment also states that our video-feeds are in 25
fps, therefore this parameter is not changed in the optimization
process. The timebase of the encoder - g_timebase - is updated
by the notifyAll call of the live camera interface. If the
environment is not a live stream the default is 25 fps, a
g_timebase value of 1 / 20. The parameter lag-in-frames is
ignored due to the statement in the official documentation of
the codec [26]. The official documentation states that lag-in-
frames is not appropriate when using the real-time preset.

APPENDIX B
DATA

A. Comparison graphs

Fig. 10: Comparison graph of the AstaZero Rural Road dataset

Fig. 11: Comparison graph of the COPPLAR dataset

Fig. 12: Comparison graph of the KITTI dataset

B. Joint graphs

Fig. 13: SSIM comparison for VGA (AstaZero Rural Road)

Fig. 14: SSIM comparison for SVGA (AstaZero Rural Road)

Fig. 15: SSIM comparison for XGA (AstaZero Rural Road)

Fig. 16: SSIM comparison for WXGA (AstaZero Rural Road)

Fig. 17: SSIM comparison for the KITTI resolution (AstaZero Rural Road)

Fig. 18: SSIM comparison for FHD (AstaZero Rural Road)

Fig. 19: SSIM comparison for QXGA (AstaZero Rural Road)

Fig. 20: SSIM comparison for VGA (COPPLAR)

Fig. 21: SSIM comparison for SVGA (COPPLAR)

Fig. 22: SSIM comparison for XGA (COPPLAR)

Fig. 23: SSIM comparison for WXGA (COPPLAR)

Fig. 24: SSIM comparison for the KITTI resolution (COPPLAR)

Fig. 25: SSIM comparison for FHD (COPPLAR)

Fig. 26: SSIM comparison for QXGA (COPPLAR)

Fig. 27: SSIM comparison for the KITTI resolution (KITTI)

C. Encoder graphs

Fig. 28: Encoder graph for H264 (AstaZero Rural Road)

Fig. 29: Encoder graph for QSV-H264 (AstaZero Rural Road)

Fig. 30: Encoder graph for VP9 (AstaZero Rural Road)

Fig. 31: Encoder graph for QSV-VP9 (AstaZero Rural Road)

Fig. 32: Encoder graph for H264 (COPPLAR)

Fig. 33: Encoder graph for QSV-H264 (COPPLAR)

Fig. 34: Encoder graph for VP9 (COPPLAR)

Fig. 35: Encoder graph for QSV-VP9 (COPPLAR)

Fig. 36: Encoder graph for H264 (KITTI)

Fig. 37: Encoder graph for VP9 (KITTI)

D. Best candidate encoder configurations

1) KITTI:

List 1. VP9 encoder configuration KITTI resolution - C31

• gop: 59
• rc_dropframe_thresh: 19
• rc_resize_allowed: 0
• rc_resize_up_thresh: 28
• rc_resize_down_thresh: 61
• rc_undershoot_pct: 22
• rc_overshoot_pct: 43
• rc_min_quantizer: 43
• rc_end_usage: 1
• rc_buf_sz: 4160
• rc_buf_initial_sz: 2969
• rc_buf_optimal_sz: 4225
• rc_target_bitrate: 4872672
• kf_mode: 0
• kf_min_dist: 0
• kf_max_dist: 171
• VP8E_SET_CPUUSED: 9

2) AstaZero Rural Road:

List 2. VP9 encoder configuration VGA resolution - C34

• gop: 197
• rc_dropframe_thresh: 85
• rc_resize_allowed: 0
• rc_resize_up_thresh: 22
• rc_resize_down_thresh: 63
• rc_undershoot_pct: 51
• rc_overshoot_pct: 70
• rc_min_quantizer: 15
• rc_end_usage: 1
• rc_buf_sz: 2476
• rc_buf_initial_sz: 2719
• rc_buf_optimal_sz: 736
• rc_target_bitrate: 824902
• kf_mode: 0
• kf_min_dist: 0
• kf_max_dist: 0
• VP8E_SET_CPUUSED: 7

List 3. VP9 encoder configuration SVGA resolution - C52

• gop: 134
• rc_dropframe_thresh: 3
• rc_resize_allowed: 0
• rc_resize_up_thresh: 49
• rc_resize_down_thresh: 58
• rc_undershoot_pct: 94
• rc_overshoot_pct: 78
• rc_min_quantizer: 16
• rc_end_usage: 0
• rc_buf_sz: 3478

• rc_buf_initial_sz: 3250
• rc_buf_optimal_sz: 2794
• rc_target_bitrate: 4961811
• kf_mode: 1
• kf_min_dist: 1
• kf_max_dist: 63
• VP8E_SET_CPUUSED: 7

List 4. VP9 encoder configuration XGA resolution - C34

• gop: 41
• rc_dropframe_thresh: 45
• rc_resize_allowed: 0
• rc_resize_up_thresh: 39
• rc_resize_down_thresh: 19
• rc_undershoot_pct: 57
• rc_overshoot_pct: 75
• rc_min_quantizer: 24
• rc_end_usage: 1
• rc_buf_sz: 1158
• rc_buf_initial_sz: 2922
• rc_buf_optimal_sz: 3071
• rc_target_bitrate: 4710463
• kf_mode: 0
• kf_min_dist: 1
• kf_max_dist: 67
• VP8E_SET_CPUUSED: 8

List 5. VP9 encoder configuration WXGA resolution - C44

• gop: 215
• rc_dropframe_thresh: 23
• rc_resize_allowed: 0
• rc_resize_up_thresh: 27
• rc_resize_down_thresh: 73
• rc_undershoot_pct: 90
• rc_overshoot_pct: 64
• rc_min_quantizer: 28
• rc_end_usage: 0
• rc_buf_sz: 2299
• rc_buf_initial_sz: 1455
• rc_buf_optimal_sz: 3708
• rc_target_bitrate: 3641195
• kf_mode: 0
• kf_min_dist: 1
• kf_max_dist: 104
• VP8E_SET_CPUUSED: 7

List 6. VP9 encoder configuration KITTI resolution - C37

• gop: 210
• rc_dropframe_thresh: 18
• rc_resize_allowed: 1
• rc_resize_up_thresh: 3
• rc_resize_down_thresh: 34
• rc_undershoot_pct: 14

• rc_overshoot_pct: 60
• rc_min_quantizer: 23
• rc_end_usage: 0
• rc_buf_sz: 4678
• rc_buf_initial_sz: 1961
• rc_buf_optimal_sz: 4562
• rc_target_bitrate: 3269399
• kf_mode: 0
• kf_min_dist: 1
• kf_max_dist: 146
• VP8E_SET_CPUUSED: 7

List 7. VP9 encoder configuration FHD resolution - C26

• gop: 150
• rc_dropframe_thresh: 27
• rc_resize_allowed: 1
• rc_resize_up_thresh: 91
• rc_resize_down_thresh: 99
• rc_undershoot_pct: 0
• rc_overshoot_pct: 36
• rc_min_quantizer: 38
• rc_end_usage: 1
• rc_buf_sz: 2768
• rc_buf_initial_sz: 1792
• rc_buf_optimal_sz: 924
• rc_target_bitrate: 1373290
• kf_mode: 0
• kf_min_dist: 0
• kf_max_dist: 0
• VP8E_SET_CPUUSED: 8

List 8. QSV-VP9 encoder configuration QXGA resolution -
C8

• intraPeriod: 127
• rcParams.bitRate: 3216
• ipPeriod: 17
• rcParams.initQP: 41
• rcParams.minQP: 3
• rcParams.maxQP: 4
• rcParams.disableFrameSkip: 1
• rcParams.diffQPIP: 48
• rcParams.diffQPIB: 28
• numRefFrames: 9
• rcMode: 1
• referenceMode: 0

3) COPPLAR:

List 9. VP9 encoder configuration VGA resolution - C21

• gop: 1
• rc_dropframe_thresh: 36
• rc_resize_allowed: 1
• rc_resize_up_thresh: 100
• rc_resize_down_thresh: 45
• rc_undershoot_pct: 39
• rc_overshoot_pct: 100
• rc_min_quantizer: 15
• rc_end_usage: 1
• rc_buf_sz: 6000
• rc_buf_initial_sz: 4000
• rc_buf_optimal_sz: 4673
• rc_target_bitrate: 3416808
• kf_mode: 1
• kf_min_dist: 0
• kf_max_dist: 178
• VP8E_SET_CPUUSED: 8

List 10. VP9 encoder configuration SVGA resolution - C18

• gop: 157
• rc_dropframe_thresh: 0
• rc_resize_allowed: 1
• rc_resize_up_thresh: 0
• rc_resize_down_thresh: 97
• rc_undershoot_pct: 99
• rc_overshoot_pct: 15
• rc_min_quantizer: 13
• rc_end_usage: 0
• rc_buf_sz: 6000
• rc_buf_initial_sz: 1202
• rc_buf_optimal_sz: 0
• rc_target_bitrate: 3935011
• kf_mode: 1
• kf_min_dist: 1
• kf_max_dist: 163
• VP8E_SET_CPUUSED: 9

List 11. VP9 encoder configuration XGA resolution - C17

• gop: 173
• rc_dropframe_thresh: 7
• rc_resize_allowed: 1
• rc_resize_up_thresh: 12
• rc_resize_down_thresh: 72
• rc_undershoot_pct: 98
• rc_overshoot_pct: 39
• rc_min_quantizer: 22
• rc_end_usage: 0
• rc_buf_sz: 3507
• rc_buf_initial_sz: 1355
• rc_buf_optimal_sz: 1770
• rc_target_bitrate: 2720561

• kf_mode: 1
• kf_min_dist: 0
• kf_max_dist: 165
• VP8E_SET_CPUUSED: 8

List 12. VP9 encoder configuration WXGA resolution - C62

• gop: 226
• rc_dropframe_thresh: 61
• rc_resize_allowed: 1
• rc_resize_up_thresh: 48
• rc_resize_down_thresh: 60
• rc_undershoot_pct: 5
• rc_overshoot_pct: 68
• rc_min_quantizer: 30
• rc_end_usage: 1
• rc_buf_sz: 431
• rc_buf_initial_sz: 146
• rc_buf_optimal_sz: 1060
• rc_target_bitrate: 4366560
• kf_mode: 1
• kf_min_dist: 0
• kf_max_dist: 140
• VP8E_SET_CPUUSED: 9

List 13. VP9 encoder configuration KITTI resolution - C75

• gop: 92
• rc_dropframe_thresh: 66
• rc_resize_allowed: 1
• rc_resize_up_thresh: 28
• rc_resize_down_thresh: 42
• rc_undershoot_pct: 76
• rc_overshoot_pct: 84
• rc_min_quantizer: 20
• rc_end_usage: 1
• rc_buf_sz: 1578
• rc_buf_initial_sz: 2482
• rc_buf_optimal_sz: 1222
• rc_target_bitrate: 2255460
• kf_mode: 1
• kf_min_dist: 0
• kf_max_dist: 94
• VP8E_SET_CPUUSED: 6

List 14. VP9 encoder configuration FHD resolution - C62

• gop: 90
• rc_dropframe_thresh: 48
• rc_resize_allowed: 1
• rc_resize_up_thresh: 94
• rc_resize_down_thresh: 50
• rc_undershoot_pct: 7
• rc_overshoot_pct: 61
• rc_min_quantizer: 33
• rc_end_usage: 1

• rc_buf_sz: 3488
• rc_buf_initial_sz: 304
• rc_buf_optimal_sz: 84
• rc_target_bitrate: 165729
• kf_mode: 1
• kf_min_dist: 0
• kf_max_dist: 12
• VP8E_SET_CPUUSED: 8

List 15. QSV-VP9 encoder configuration QXGA resolution -
C32

• intraPeriod: 43
• rcParams.bitRate: 2034
• ipPeriod: 48
• rcParams.initQP: 0
• rcParams.minQP: 23
• rcParams.maxQP: 27
• rcParams.disableFrameSkip: 0
• rcParams.diffQPIP: 11
• rcParams.diffQPIB: 26
• numRefFrames: 16
• rcMode: 3
• referenceMode: 1

APPENDIX C
SOFTWARE ARCHITECTURE

Fig. 38: Composite system architecture of CS

	Introduction
	Background
	Problem Domain & Motivation
	Research Goal & Research Questions
	Contributions
	Scope
	Structure of the Article

	Related Works
	Quality Metric Choice
	Optimization Algorithm
	Codec Performance
	Hardware and Software Encoding

	Methodology
	Research Question 1
	Research Question 2
	Data collection
	Datasets

	Results
	Research question 1
	Research question 2

	Analysis & Discussion
	Graphs
	Encoder graphs
	Joint graphs
	Comparison graphs

	Research Question 1
	Research Question 2
	Threats to Validity
	Internal threats
	External threats

	Conclusion and Future Work
	Acknowledgements
	References
	Appendix A: Choices of parameters
	Intel QuickSync (QSV)
	H.264
	VP9

	H.264
	VP9

	Appendix B: Data
	Comparison graphs
	Joint graphs
	Encoder graphs
	Best candidate encoder configurations
	KITTI
	AstaZero Rural Road
	COPPLAR

	Appendix C: Software architecture

