

Towards Automating a Risk-First Threat
Analysis Technique
Bachelor of Science Thesis in Software Engineering and Management

KARANVEER SINGH
MARGIT SAAL
ANDRIUS SAKALAS

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

© KARANVEER SINGH, June 2019.
© MARGIT SAAL, June 2019.
© ANDRIUS SAKALAS, June 2019.

Supervisor: KATJA TUMA
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Towards Automating a Risk-First Threat Analysis
Technique

Margit Saal
Dept. of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
gussaalma@student.gu.se

Andrius Sakalas
Dept. of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
gussakan@student.gu.se

Karanveer Singh
Dept. of Computer Science

and Engineering
University of Gothenburg

Gothenburg, Sweden
guskaransi@student.gu.se

Abstract—During the past decade, secure software design
techniques have found their way into the software development
lifecycle. In this context, threat modeling (or analysis) method-
ologies are used to systematically identify threats in the design
phase of software development. However, threat modeling is
often performed manually, which is time-consuming and error-
prone. An existing methodology called eSTRIDE tries to solve
the problem of high manual effort by introducing security
related enrichment’s to the software architecture models and by
introducing reductions during the analysis. But the lack of tool
support may counteract the advantages of using the methodology.
Therefore, the aim of this work is to find out how to support
semi-automation of eSTRIDE. We have produced a prototype tool
using the design science research methodology, which allows the
user to create or modify an extended Data Flow Diagram of their
system and perform eSTRIDE. A workshop with ten participants
was used to evaluate the tool. We studied the average precision,
recall and productivity of the analysis results. Finally, we found
the perceived usability of the tool, which was mostly positive.

I. INTRODUCTION

Security and privacy issues are becoming a major concern in
organizations developing software products Meland and Jensen
[1] Williams et al. [2]. Secure software design is needed to
reduce the risk of security breaches in organizations. Security
could be achieved using threat modeling techniques to find out
what might go wrong with a software project - the potential
threats are then identified and prioritized Shostack [3] Cruzes
et al. [4]. The goal for the built software is to be available as
well as maintain necessary confidentiality and integrity even if
attacked Cruzes et al. [4]. Using threat modeling in software
projects, security analysts can find threats in the early stages
and then plan the project in a way where the threats can be
mitigated or tracked Sion et al. [5].

There is existing literature on threat modeling method-
ologies and even supporting semi-automation of the analy-
sis procedure Shostack [3] Sion et al. [5] Lund et al. [6]
Tuma et al. [7]. Many threat modeling methods use Data
Flow Diagrams (DFDs) as a base, which are architectural
views that show software components and data exchanges
between these components Shostack [3] Sion et al. [5]. Most
model-based threat modeling techniques explore the diagram
and find possible threats in different locations. Many threat
analysis techniques use regular DFDs, which do not include

already known constraints or security decisions. Not taking
this security relevant information into account could lead to
wasted effort as all threats or threat categories are elicited and
analysed, but later a large amount of them are discarded due
to their low priority Sion et al. [5].

STRIDE is a model-based methodology that helps to sys-
tematically discover security threats in a system design. It
stands for the following threat categories: Spoofing, Tamper-
ing, Repudiation, Information Disclosure, Denial of Service
and Elevation of Privilege, which are mapped to the elements
of the aforementioned DFD base model during threat elic-
itation Shostack [3]. Analyzing only a handful of software
components with STRIDE can reveal many security threats
Scandariato et al. [8]. This issue is known as the threat explo-
sion problem, which occurs during threat category mapping,
resulting in processes potentially being exposed to threats from
all the categories, and in large systems the number of these
processes can be very high. Therefore, performing systematic
threat analysis on large software architecture models requires
high manual effort for organizations where security experts can
be limited. These issues can also lead to overlooked threats.

Herein we will use the extended STRIDE (eSTRIDE)
methodology. eSTRIDE uses extended Data Flow Diagrams
(eDFDs) Tuma et al. [9], which include extensions to the
regular DFD that specify assets, their traces, security ob-
jectives, value of security objectives, domain assumptions
and communication channels. The ambition of this risk-first
approach is to lower the manual effort required to perform
a fully-fledged STRIDE threat analysis Tuma and Scandariato
[10] Scandariato et al. [11]. It is referred to as risk-first because
the assets are analyzed and potential risks are identified before
the security threats are identified. The methodology creates
an abstraction before threat analysis by bundling data flows
and processes which help resist threat explosion Tuma et al.
[9]. The aforementioned extensions in the model are later-
on used during the analysis to make reductions. The aim of
eSTRIDE is to find the most important security threats faster.
Many companies overlook the usage of threat analysis in their
projects as doing it manually can be very resource-intensive.
If the process was semi-automated, a lot of time and money
could be saved. The lack of a tool counteracts the advantages

presented by the methodology. Therefore, there is a need to
find out how to support the semi-automation of eSTRIDE.

To this aim, this study contributes with a prototype tool
implemented by following the design science methodology.
This research may benefit people working with threat analysis
of software projects in the design phase. The research could
also be beneficial to the researchers in the field as we will
be looking into how the process of automating threat analysis
can be supported. The developed artifact was evaluated with
workshops and interviews. The result of this research can also
lead to developing even better automation of the methodology
in the future.

The rest of this thesis is structured as follows. In Section
II we describe the research questions, and in Section III we
present the background and position our work in the context of
existing literature. Section IV describes the research method-
ology used in this thesis and the threats to validity. Section
V gives an overview of the developed artifact, evaluation
results and discussion. Section VI presents the conclusions
and possible future work.

II. RESEARCH QUESTIONS

This section presents the research questions this study aims
to answer. The study will firstly focus on the concepts of
modeling and representing eDFDs and eSTRIDE reductions.
Thereafter, we will find requirements that emerge after eval-
uating the artifact. In the end, we want to know up to what
extent the artifact automates the methodology specifically with
a focus on the precision, productivity and recall of an analysis
performed with the tool as well as the perceived usability of
the tool.

First, we will need to find out requirements for semi-
automating eSTRIDE as there is no semi-automation tool for
it yet. Hence, we constructed the first research question.

• RQ1: What is required to effectively support the automa-
tion of eSTRIDE?

The first sub-question is constructed to find the requirements
for modeling and graphically representing eDFDs.

• RQ1.1: What are the requirements for modeling and
graphically representing eDFDs?

The eSTRIDE reductions have been initially proposed as a
set of guidelines written in natural language and have not been
implemented yet. The second sub-question is constructed to
find requirements to semi-automate the eSTRIDE reductions.

• RQ1.2: What are the requirements for supporting
eSTRIDE reductions?

The second research question aims to find emergent re-
quirements from the first iteration of the design science
methodology.

• RQ2: What are the emergent requirements that are re-
quired for automating eSTRIDE?

The third research question is constructed to evaluate the
precision, productivity, recall, and perceived usability of the
prototype tool.

• RQ3: To what extent is the developed prototype tool
automating eSTRIDE?

The first sub-question serves the purpose to quantitatively
estimate the performed eSTRIDE analysis.

• RQ3.1: What is the precision, productivity, and recall of
an analysis performed with the eSTRIDE prototype tool?

The second sub-question serves the purpose to use the
perception of participants to qualitatively estimate the usability
of the tool.

• RQ3.2: What is the perceived usability of the tool?

III. BACKGROUND AND RELATED WORK

In this section we cover the background and related work
for this research.

A. Background

1) STRIDE: is a systematic threat analysis methodology. It
consists of steps such as: defining users and realistic usage
scenarios, gathering assumptions, constructing a DFD of the
system Shostack [3]. Afterwards, the analyst maps the diagram
elements to the following STRIDE categories:

Spoofing (S) refers to a person or program that successfully
pretends to be another legitimate user or program. Tampering
(T) refers to someone modifying application resources, such
as memory data, that they are not supposed to. Repudiation
(R) refers to someone able to deny doing an action within
the system. Information disclosure (I) refers to a threat agent
obtaining private information they are not supposed to access.
Denial of service (D) refers to attacks on the system that make
a system resource unavailable to its intended users. Elevation
of privilege (E) refers to someone obtaining access to resources
that they should not be able to access, as the resources are
normally protected.

Afterwards, threats are refined and documented.
2) DFD: is a diagram that represents how the data enters,

leaves and traverses a system. DFD elements comprise of pro-
cesses, where data is processed; data flows, where information
travels from element to element; data stores, where data is
stored; and external entities, which are an external source or
target for data. DFDs are commonly used in threat modeling.

3) eSTRIDE: is a model-based technique to systematically
discover the security threats in a system design Tuma et al.
[9]. The ”e” stands for extended as it expands on the STRIDE
methodology. Furthermore, the methodology uses the afore-
mentioned eDFDs, which include the necessary extensions for
the methodology. One way eSTRIDE fights threat explosion
is with abstractions, such as process folding and data flow
bundling, that are used to reduce the complexity of the
diagram.

Process folding is when processes are merged into one
element. This can be done if the data flows transporting assets
between the processes are mounted on the same channel. If the
priorities are low or medium, at least one domain assumption
has to be done to mitigate one of the objectives of an asset.
However, if any of the assets travelling have high priority,

there must be mitigation domain assumptions in place for all
the objectives.

Data flow bundling is when two or more data flows are
bundled together into one element. This can be done if the
flows are travelling on the same channel and from the same
source to the same target. However, in case the flows go
through a critical area (high priority), one needs to check for
end-to-end flows of the assets and see if the unaligned parts of
their routes are not critical. The precise guidelines for process
folding and data flow bundling are described in Tuma et al.
[9].

The aforementioned abstractions are done before the threats
are identified. The analyst will consider each end-to-end
scenario with assets that have high-priority objectives and map
the elements that handle such assets to STRIDE categories.
Since the analyst will know the priorities and objectives of
each asset, they can focus only on the most important threat
categories. Domain assumptions can also help the analyst to
determine whether a threat category is applicable in a specific
location. As a result, helping to limit irrelevant or low-priority
threats.

4) eDFD: is based on the DFD, but includes extensions
such as assets, which are valuable data Tuma et al. [9]. The
asset’s source and target will be marked in the diagram and its
path will be considered as an end-to-end flow. Furthermore,
each asset will have at least one security objective and pri-
ority. An objective could be either Integrity, Confidentiality
or Availability. The priorities are either High, Medium or
Low, and show the severity of impact if that objective gets
compromised. The diagram also holds extensions such as
communication channels, which show the network each asset
moves on. Finally, a domain expert will also be able to extend
the diagram with domain assumptions, which are assumptions
that some component or objective is already secure, because
security mechanisms are already in place.

B. Related Work

In this section we address the related work with respect to
the area of threat modeling and automation of threat modeling.

1) Threat modeling: Threat modeling is an essential part
of many companies’ development process e.g. Microsoft Sion
et al. [5]. It is essential to find possible threats in the early
stages of a project and then plan the development in a way
where they can mitigate or track these threats Shostack [3].
Making design decisions according to the found threats can
reduce the risk of having to change plans and features on the
way, which usually can be very costly and time-consuming.

There are many threat modeling methodologies available.
Most of them use some sort of an architectural diagram of
the project as a base, which means they are model-based.
There are methodologies that use DFDs, such as STRIDE and
LINDDUN which are software-centric approaches Shostack
[3] Sion et al. [5]. These methods are systematic, as they
go through the diagram and find potential threats in the
system in each location, but they can also be very repetitive
and time-consuming, as all threats are found and not just

the most relevant ones (or higher-priority ones). Low-priority
threats can be ignored later, but spending resources to find all
these threats can be inefficient. To counter this issue, some
researchers have included security solution elements to their
DFDs, which then are considered during elicitation Sion et al.
[5].

LINDDUN stands for different threat categories like Link-
ability, Identifiability, Non-repudiation, Detectability, Disclo-
sure of information, Unawareness and Non-compliance. It is
a model-based threat modelling technique that has a primary
focus on privacy. The methodology provides a thorough list of
privacy threats that can be used as an insight during analysis.
Moreover, the technique analyses a DFD and tries to map
potential subjects to distinct privacy threats Wuyts et al. [12].
Process for Attack Simulation and Threat Analysis (PASTA) is
an asset-centric approach that focuses on developing measures
that counter an attack related to the value of the asset.
PASTA also uses DFDs, use cases, building attack trees etc.,
to provide a systematic analysis of the intruders profile, for
example, the most likely attack methods and/or desired assets
by the intruder UcedaVelez and Morana [13]. The CORAS
methodology is also asset-centric and includes a language,
a tool and uses Unified Modeling Language (UML) based
CORAS diagrams as a starting foundation Lund et al. [6].

Attack graphs are another threat modeling technique, which
can be made with the knowledge of vulnerabilities on local
hosts and how the different hosts are connectedSheyner et al.
[14]. The graphs provide analysts with series of potential
exploits.

2) Empirical studies with threat modeling: There have been
studies on the STRIDE methodology and its productivity,
correctness (precision) and completeness (recall). For instance,
one empirical study shows that performing STRIDE was not
perceived as difficult, but rather time-consuming Scandariato
et al. [8]. They also mention that due to overconfidence, the
possibility of threats going undetected is high. Another study
was conducted, where students had to identify threats using
either STRIDE per element or STRIDE per interactionTuma
and Scandariato [10]. The average time spent in identifying
threats was 3.5 hours for per element analysis and 3.95 hours
per interaction, which shows it can take a lot of time to
complete.

3) Automating threat modeling: Lack of implementation
tools can weaken any threat modeling methodology Mauw and
Oostdijk [15]. This means that automation tools for different
threat modeling techniques are important. As threat modeling
can be very time-consuming and also requires security special-
ists, semi-automation tools have been made to try to reduce
the resources needed. ThreatModeler is a defense-oriented tool
that uses attack libraries for threat analysis Shostack [3]. The
tool produces attack trees with the component, requirements
that can be violated, threats and attacks while our approach
produces a list of threat categories applicable for each com-
ponent.

The Microsoft Threat Modeling tool is known to be easy to
use and it allows the user to draw their diagrams Shostack [3].

Similarly to our approach, the tool then analyzes the model
and elicits possible threat categories. However, the Microsoft
Threat Modeling tool is based on the STRIDE methodology.

Another tool is Security and Privacy Architecture through
Risk-driven Threat Assessment (SPARTA), which extends
DFDs with already applied security and privacy countermea-
sures and takes it into account during the threat elicitation so
only the most important threats are prioritized Sion et al. [5]
Sion et al. [16]. Similarly to us, SPARTA is also implemented
as an Eclipse plug-in and uses a similar meta-model for repre-
senting the architectural model. However, SPARTA generates
a list of threat categories based on STRIDE and then suggests
threat prioritization based on quantifying the risk. On the other
hand, our tool relies on the security experts opinion about the
asset importance and elicits the threat categories according to
eSTRIDE.

The aforementioned CORAS methodology also includes a
semi-automation tool Lund et al. [6]. However, as mentioned
before, their methodology uses the CORAS specific diagrams
and language in contrast to our approach.

More interesting work on automating threat analysis has
been recently done, where the authors also introduce additional
semantics and guidelines for building threat models Berger
et al. [17]. However, they do not handle threat explosion and do
not analyze end-to-end flows of assets. No existing work offers
support for the semi-automation of the eSTRIDE methodology.

IV. RESEARCH METHODOLOGY

In this section we describe the research methodology used
in this work and the threats to validity of this study.

The selected research methodology is Design Science and
the strength of design science research is that it focuses on
knowledge-intensive design and helps solve real problems
by developing innovative artifacts. In our research, we have
created a prototype tool as the artifact to semi-automate threat
analysis Hevner et al. [18]. We decided to follow the Design
Science Research Process (DSRP) methodology as it helps to
ensure focus on the artifact while prioritizing its relevance to
the industry Peffers et al. [19]. In what follows we describe
the steps of DSRP and briefly show the main outcomes of
applying each step in our research.

A. DSRP Steps

1) Problem identification and motivation: Problem identifi-
cation and motivation focuses on the research problem. There
is an architectural threat analysis method called eSTRIDE,
which only shows the most relevant and important threats for
the current project, but there is no semi-automation tool that
implements the methodology. A solution that semi-automates
the process of architectural threat analysis in the early stages
of a project can ensure that possible threats can be mitigated,
which helps saving resources and increases the chance of
the project being successful. Whereas, many of the threat
methodologies used in existing tools present repetitive and less
relevant threats, which then need to be manually analyzed and
omitted.

2) Objectives of a solution: Objectives of a solution iden-
tifies why the solution is needed and aims to provide a
solution for the problem identified in Step 1. The main
objective of our solution is to create a tool that implements
eSTRIDE threat analysis methodology and effectively supports
the semi-automation of this methodology. Our aim is to
support eSTRIDE reductions by providing abstractions which
can be achieved by bundling data flows and process folding
before performing threat analysis. This helps us to counter the
’threat explosion’ problem i.e, when a large number of threats
(often irrelevant) are found when STRIDE is performed on a
large DFD.

3) Design and development: Design and development fo-
cuses on designing and implementing our solution of the
research problem. The design of the artifact was iteratively
developed and discussed between the team members. We
approached this phase strategically. First, we wanted to find out
the requirements for modelling and representing eDFDs. This
was achieved by studying related work. Second, we wanted
to support eSTRIDE methodology including abstractions. We
have developed a prototype tool as a design science artifact.
The tool can help perform threat analysis on the modelled
eDFD and list the categories of potential threats to the user.

4) Demonstration: Demonstration focuses on presenting
the developed artifact. We demonstrated our artifact by con-
ducting two workshops in an academic environment, where the
tool was used to solve an existing example problem. First, we
gathered demographic data of the participants with an entry
survey. Second, we had a training session with the participants,
where we introduced threat analysis and the participants had
a hands-on session on how to perform manual eSTRIDE.
Thereafter, we explained how to use the tool and provided
documentation related to the task they had to perform with it.
The participants were provided with a DFD and had to extend
it using our tool. Then the tool gave the users abstraction
recommendations according to the eSTRIDE methodology. In
the end, relevant threat categories were printed to the user
according to their model. The workshops had in total 10
participants, primarily undergraduate students in the software
engineering field.

5) Evaluation: Evaluation focuses on evaluating the artifact
and how it relates to the research problem. To evaluate the
artifact tool, we conducted 2 workshops to gather quantitative
and qualitative data. We collected the data from the resulting
threats found by the participants using our tool, conducting
entry survey and exit interviews related to the perceived
usability of the tool. We conducted the workshops on two
separate days.

6) Communication: Communication focuses on the studied
problem along with the artifact developed which is presented
to relevant audience. We will present our findings in the thesis
for other researchers to base or extend their work.

B. Data Collection

We conducted a workshop where we introduced the par-
ticipants to threat analysis. We reached out to two companies

asking for their security experts to participate in our workshop
in order to validate our prototype tool. We did not get
any response from those companies. Instead, due to time
constraints we used convenience sampling where we contacted
our colleagues related to the Software Engineering field. We
reached out to them by sending emails with information
about the workshop. Everyone who responded was invited to
participate in the workshop. The time taken to complete the
workshop was 3 hours where we gave the participants breaks
throughout the course of the workshop. Figure 1 shows the
structure of the workshop for collecting data -

a) Entry Questionnaire: (5 minutes) - We conducted a
survey 1 to collect information about the background of our
participants and if they had any knowledge related to threat
analysis. The survey consisted of both open and close ended
questions. The theoretical population were people who are
working or studying in the field of Software Engineering.

b) Introduction: (30 minutes) - We conducted a training
session. The training material can be found here 2. It consisted
of three parts: (1) Training on security principles and threat
analysis (including theory behind eSTRIDE methodology),
(2) Hands-on exercise with a pen-and-paper execution of
eSTRIDE and (3) Introduction to tool and solving a problem
with it.

c) Manual Threat Analysis: (60 minutes) - We conducted
a hands-on exercise with the participants where we performed
eSTRIDE on a simplified in-vehicle architecture, previously
analyzed using eSTRIDE in Tuma et al. [9]. Modern vehicle
systems are highly complex and comprise of hundreds of
various components called Electronic Control Units (ECUs)
which are responsible for specific features of the vehicle. If any
one of those ECUs are compromised the driver may potentially
lose the functionality provided by that ECU and this might lead
to a dangerous situations. To mitigate these potential security
breaches the architecture of the vehicle system needs to be
modelled and thereafter analyzed to discover the potential
threats. The participants were provided with (1) Domain
Description including scenarios, (2) Architecture of the system
and (3) DFD of the architecture. They were asked to perform
the eSTRIDE methodology to elicit possible threat categories
for the system and were later compared to the ground truth.
They completed this tutorial in a group. The reasoning behind
providing them with a problem was to get them familiar with
the threat modelling technique and have a valid comparison
point for the tool and the time taken to perform it.

d) Introduction to Artifact Tool: (10 minutes) - The
participants were provided with a hands on tutorial explaining
different elements and functionality of the tool.

e) Semi-Automated Threat Analysis: (45-60 minutes) -
The problem is related to a Home Monitoring System (Home-
Sys) which is a system for remote monitoring of residential
homes. The purpose of the system is to provide necessary

1https://forms.gle/rGPmR2LoNJty8LG3A
2https://docs.google.com/presentation/d/1IJ USJ57fvo00DsM8s

v5XwxVAYBaumrReB5iQixS5A/edit?usp=sharing

features for clients to automatically receive notifications and
manage different events in their homes.

HomeSys consists of documentation related to its domain,
requirement specification and architectural description which
comprises of 30 pages. Therefore, it is large enough to reason
about security threats. Also, the HomeSys example was used
in a previous study to measure performance of STRIDE
techniques Tuma and Scandariato [10]. Therefore, we consider
it as a valid case for our study.

The HomeSys can have multiple sensors and triggers in-
stalled across the home. They collect sensitive data from
smoke detectors, temperature sensors, cameras, etc. If the
system is compromised the alarms may not be triggered, there
could be an unauthorized access to camera feed, etc. With
the growing number of sensors and triggers there is a need
for a secure design of the system. Threat analysis can be
performed on the designed model, to find and mitigate the
potential threats.

We provided the participants with system documentation
which includes (1) The domain description of the system with
scenarios, (2) The requirement specification of the system,
(3) Architectural description documented in unified modelling
language (UML) and (4) DFD of the architecture. The DFD
of HomeSys was larger compared to the simplified in-vehicle
architecture. The complete description of the system is avail-
able in goo [20]. They were asked to use our artifact tool
to perform threat analysis using eSTRIDE. Their results were
later on compared to the ground truth. The whole task was to
be done individually.

f) Exit Interviews: (15 minutes) - Interviews were con-
ducted during which the interviewee was presented with
open-ended questions regarding the usability of the tool.
Additionally, we asked questions related to the perception of
the interviewee about their correct, incorrect and overlooked
threats compared to our ground truth.

C. Data Analysis

We have carried out an eSTRIDE analysis of the systems
used in the study. Therefore, we have a ’reference solution’
which is based on existing analysis of the HomeSys Tuma and
Scandariato [10]. From hereon, we state the ’reference solu-
tion’ as the ground truth which contains all the possible threat
categories that an optimal implementation of the methodology
would produce.

An overview of the terminology used in the thesis is
presented in the Table I. Every threat category in the report
has been noted as either correct (true positive), incorrect (false
positive) or overlooked threat (false negative).

We have used both quantitative and qualitative content
analysis techniques Linker et al. [21]. Qualitative content
analysis was used to analyze responses from the interviewees
and quantitative data analysis was used to analyze the outputs
the participants produced by performing the semi-automatic
eSTRIDE. We have analyzed the data of our participants to
see how many true positives, false positives and false negatives
were found. The threat categories were compared to the ground

https://forms.gle/rGPmR2LoNJty8LG3A
https://docs.google.com/presentation/d/1IJ_USJ57fvo00DsM8s_v5XwxVAYBaumrReB5iQixS5A/edit?usp=sharing
https://docs.google.com/presentation/d/1IJ_USJ57fvo00DsM8s_v5XwxVAYBaumrReB5iQixS5A/edit?usp=sharing

Fig. 1. Workshop Structure

TABLE I
TERMINOLOGY

Term Meaning

True Positives (TP) Correct threat category
False Negatives (FN) Overlooked threat category
False Positives (FP) Incorrect threat category
Precision (Prec) TP/(TP+FP)
Recall (Rec) TP/(TP+FN)
Productivity (Prod) TP/Time

truth which was created by us and revised by our supervisor.
We consider a threat category as a true positive when it has
the same name and location compared to the ground truth. We
consider threat categories as false positives when they have a
different name in a specific location compared to the ground
truth. False negatives are threat categories present in a location
in the ground truth, but absent in the participants’ results.
We have also calculated the average precision, recall and
productivity, where precision is the percentage of the produced
threat categories that are correct, recall is the percentage of the
existing threat categories that are discovered and productivity
is the threat categories produced per minute.

We have analyzed the responses of our participants by find-
ing themes and patterns in their answers to identify the main
topics shared between the interviewees Wildemuth [22]. We
familiarized ourselves with the data by going over it multiple
times. We started to detect similarities between responses and
created different themes while analyzing the data. Thereafter,
we created annotations on the data to group them to those
themes.

The interview questions were also aimed to answer the
research questions. All interview questions can be found in
the appendix. Interview questions 2, 3, 4 and 5 on regard the
usability of the tool and are related to the RQ3, RQ3.1 and
RQ3.2. We also asked our participants to compare their results
to the ground truth to investigate their perceived precision,

productivity and recall. The perception of precision, recall and
productivity questions 1 and 2 are also related to RQ3.2.

D. Threats to Validity

The four perspectives of validity and threats are considered
as presented in Wohlin et al. [23].

1) Internal Validity: This validity threat is connected to
different factors what might affect the results of the research.
As the knowledge base can be insufficient, it means that the
process of the research could include a lot of trial and error
Hevner et al. [18]. One threat could be that we might have
made mistakes during the creation of the ground truth or
while assessing their reported results. As the ground truth was
created by us and our supervisor there could be human error.
This could have been mitigated if security experts would have
validated the ground truth, but due to time constraints we could
not find available security experts. Nevertheless, this threat is
minimized as our ground truth is based on the existing analysis
of HomeSys.

A threat could be the maturation of the participants as they
could have become tired or bored because of the size of the
task. We provided them breaks to lessen the chances of them
becoming tired.

The participants also had a similar background as we
found out with the entry survey. This lessens the chance of
having their individual differences affect the results. To avoid
bias in the data analysis, the qualitative data was analyzed
independently by all team-members. Then, the results of each
independent analysis were compared and discussed between
team members.

2) Conclusion validity: This validity threat is concerned
with incorrect conclusions made by the researchers due to
various sources. The time spent on the task was reported by
the participants themselves, which could be a limitation. We
did stress the importance of accuracy of the time reporting.
During the workshops we were there to try to reduce the
possibility of subject influence. Our results might be affected
by a small sample size (10 participants) and biased by the use

of convenience sampling. Also, participants may have attended
our workshop just because they had an interest for our research
topic. In this case, we might have not collected data from
the people who represent the whole population, for example,
people with no interest in the research topic. Due to this
reason, the results might have been biased. With qualitative
data from interviews, the sample does not need to be very
large. Our sample is also quite homogeneous so there cannot
be big variation because of individual differences.

We went over the interview questions and workshop con-
tents with our supervisor and tried to perfect them and
also had a dry-run of the workshop with two participants,
where we got feedback for everything including the interview
questions. Therefore we think that the chance of subjects
misunderstanding the questions or exercises is small, but it
cannot be completely excluded.

3) Construct validity: This validity threat should show if
the observations of the researchers actually correspond to the
research questions and the idea of the research. We might have
written biased interview questions. To mitigate this limitation,
we went over the questions with our supervisor to get feedback
and as mentioned before, we also had two people do a dry-run
of the workshop and give feedback on the interview questions.
According to their feedback, we implemented changes to
reduce potential misunderstanding.

Another threat could be that we collected the requirements
(RQ1.1 and RQ1.2) based on reading related work and looking
into existing tools rather than going to companies who actually
collect requirements.

We explained the topic in the workshop with a crash
course, the participants also did a manual tutorial and we
also made sure to specify to the participants that anonymity
will be provided and that we expect complete honesty in the
interviews. This was done to reduce the threat of hypothesis
guessing, which means that the participants could try to guess
what the researchers want. We believe that as the topic is not
very personal, the participants understood our need for their
honest feedback and felt comfortable giving it.

4) External validity: This validity threat is concerned with
the ability to generalize the findings outside the scope of the
study. Since the workshop included using the design artifact on
a single project, we cannot be sure that we can generalize for
different projects or environments Hevner et al. [18]. Since
our participants were mainly undergraduate students instead
of professionals, it might also affect the generalization of
the results. We had no people from the industry, because
it was hard to find people who were able to dedicate their
time to participate in the study. Nonetheless, as the software
engineering field is progressing, students are more and more
integrated in the field during studies. This reduces the gap
between the knowledge from people who work in the industry
and students. Also, half of our participants were working
as software developers. We conducted workshop to provide
appropriate amount of knowledge to the students, so that they
have the competence to perform the analysis. According to
some sources, participants in the research do not only have to

be people from the industry, as students can be almost on the
same level as the people who work in the industry Svahnberg
et al. [24]. Since our sample size was small, we feel like the
study should be repeated with a larger sample size and more
random sampling to be able to generalize outside the scope of
the study.

V. RESULTS AND DISCUSSION

In this section we give an overview of the developed artifact,
describe the results from this study and relate them to existing
work.

A. Developed Artifact

We have developed a tool as a plugin for the Eclipse
environment that lets the user create eDFD models and detect
threat categories based on the eSTRIDE methodology. The
tool uses a meta-model that contains information about all
the elements of the eDFD and the relationship between them
as a base structure for the eDFD diagram. When the user
launches the Eclipse Runtime, they can use a graphical model
editor based on Sirius framework to model an eDFD. The user
can select the needed eDFD component from the palette and
change the elements properties. The tool also allows the user
to simultaneously modify a textual representation of the eDFD
based on the xText framework. Changes made on the graphical
representation will be updated in the textual representation
and vice-versa. Once the user has created the eDFD of their
system, they can use our tool to perform threat analysis.
Our algorithms will analyze the model and provide the user
with suggestions for abstractions such as bundling data flows
and folding processes. The user can then update the model
based on the suggestion list. The suggestions show which
elements can be merged together to reduce the complexity of
the diagram, which counters threat explosion. After bundling
the suggested data flows and folding the processes, the user
can execute the eSTRIDE algorithm, which will analyze all
the elements in the eDFD model and elicit possible (relevant)
threat categories in a table format. The developed artifact tool
can be found here 3 and screenshots of the developed artifact
can be found in the appendix.

B. Participants

We collected information on the background of the partici-
pants with a short entry questionnaire. The survey consisted of
questions about the participant’s education, work experience
and perceived familiarity of related topics to the workshop.
From the survey we found that most of our participants
were of a similar background. Most of the participants were
students, half of them working as software developers. Most
had 1-3 years of experience both in software architecture and
software development. Six participants had less than a year of
experience in threat analysis and four had none. None of the
participants had ever used a threat analysis methodology nor
any threat analysis tools. Most participants had at least some
knowledge on how to make a DFD, which is relevant as the

3https://github.com/Karanveer4/ArchitecturalThreatAnalysis

https://github.com/Karanveer4/ArchitecturalThreatAnalysis

threat modeling methodology we base the workshop on, uses
an DFD as a base they need to extend. Six participants had
at least some knowledge about secure software design. Every
participant had used the Eclipse environment before.

C. Limitations of the tool

In the interviews we asked our participants for the limita-
tions of the tool and one main limitation that was mentioned
was that the tool does not offer highlighting the path from
where the asset starts to where it ends. Currently to track down
the start of the asset and where it ends has to be done manually
by looking into asset and which target it has. The second big
limitation is that the tool does not add the assets automatically
to end-to-end flows. The user has to manually add the asset
to the elements until the asset target is reached. This can lead
to errors in missing to add the asset to the flow and getting a
wrong result in the end. One participant said that the properties
could be added to multiple elements at once. Currently the user
can only modify one element at a time. One participant said
that the tool could be a standalone as the current platform
(Eclipse) is not comfortable to use. The last limitation we
found from interviews was that the tool does not provide any
live collaboration. If the tool would provide a cloud feature
where users can work together on the same diagram it would
eliminate this limitation. Also, the suggestions for reductions
that are output by the algorithms currently only look into areas
with low and medium priority assets. This means that some
possible reductions will not be suggested. Therefore, adding
the implementation logic for reductions in high priority areas
could be done in the future. As our developed tool is made
in the Eclipse environment with several frameworks that have
to be installed beforehand, some people may not use it due
to this complexity. From interviews we have seen that some
participants would prefer that the tool would be available
as a standalone program. By having the tool standalone any
compatibility issues with different systems could be fixed by
gathering feedback from the users. It would also be difficult
to introduce the tool to the industry as they might also prefer
to have a separate program instead.

D. RQ1

To find out what is required to effectively support the
automation of eSTRIDE we have researched related work. We
developed a prototype tool using an approach that includes the
requirements we elicited. The evaluation of the tool shows that
the overall perception of the prototype tool was positive. The
following sub-questions aim to answer specific concepts of
automating eSTRIDE.

1) RQ1.1: To enable modeling and representation of
eDFDs, one needs to take into account how to include a data
structure for representing graphs, that show different relations
and all the included elements. There is also a need for a
graphical representation of the model, which should have the
generally used representation styles for each diagram element.
In the case of an eDFD it could mean for example that the
processes are shown as a circle or an ellipse and an external

entity would be a rectangle. There should also be a way
to create and edit the models. To ensure the correctness of
the model a validation process should be created. Our tool
requires a meta-model for representing graphs, that shows all
the possible components of an eDFD, how they are connected
and what they consist of. The eDFD meta-model is made using
the Eclipse Modeling Framework as an Eclipse Ecore model.
This information is then used to allow the user to model and
represent eDFDs with the help of Eclipse Sirius. The graphical
eDFD model editor needs to allow making new eDFD ele-
ments and also to fill the properties and connections between
them. Also, as work for a future iteration, we could use the
Acceleo Query Language to validate the eDFD correctness.

2) RQ1.2: To answer RQ1.2 we saw that reductions are
usually done to reduce threat explosion. Threat explosion is a
problem incurred by security experts when performing threat
analysis and they try to counter it by making abstractions.
For example, experts often group similar elements of the
DFD on the basis of the type of threats they are subject
too. This technique is called reduction in regards to STRIDE
methodology. To support eSTRIDE reductions, one requires to
have an eDFD of the system. The eDFD should be enriched
with extended notations like Assets marked with their security
objectives and priorities, domain assumptions, domain proper-
ties and communication channel. One way abstraction can be
achieved is by reducing the number of DFD elements based
on some guidelines. There are two initial guidelines to provide
abstraction, namely bundling data flows and process folding.
The extended notation plays an important role in aiding
the guidelines. We require to have algorithms implementing
the mentioned guidelines. The prototype tool contains an
algorithm that supports the eSTRIDE methodology and its
abstractions. It also has a modelling tool to create DFDs and
extend them to eDFDs. The tool fully automates the eSTRIDE
mapping, which means that the user does not need to do
any eSTRIDE threat categories documentation manually. The
tool provides a suggestion list for abstractions, which contains
process folding or data flow bundling. The tool does not
automatically fold processes or bundle data flows, the user
is still responsible to check the elements and do the folding or
bundling in the tool manually. The tool also does not provide
any attack scenarios, it only displays the threat categories
associated with the entity. The security analyst still has to
go through the threat category list and make possible attack
scenarios.

E. RQ2

To answer RQ2 we have analyzed the data collected from
the interviews conducted during our workshops. As we provide
a modelling environment in our tool where the user can create
an eDFD of a system, some new requirements were found
here. Users wanted to have a feature in the tool that highlights
various paths of an asset which can help them understand
end-to-end flows throughout the system. They also wanted
to have features that highlight errors and different priority
values of an asset. Another requirement was found where the

user wants to add assets to end-to-end flows without repetitive
clicking i.e. choosing different elements in the diagram and
adding assets manually. They want to automate the process
of adding assets. Once the asset has been created, it should
automatically add itself to all the different elements between
its source and target to complete end-to-end flow. Additional
requirements were found where the user wanted our tool to
be a standalone application and not as a plugin in the Eclipse
environment. A cloud based feature was also mentioned which
lets multiple users work on the tool simultaneously. At this
point, the final list of threat categories are displayed on the
console. Users wanted to have a new window in the tool
which displayed the final results. Adding to that they wanted
to sort threats according to threat categories, alphabetically or
by type of entity. Based on our data, these are a few emergent
requirements that are required for automating eSTRIDE.

F. RQ3

The prototype tool is able to produce data flow bundling and
process folding suggestion list. The implemented algorithm
checks the created eDFD and generates a formatted list with
entities that can be bundled or folded. The tool does not make
any modifications to the eDFD, the user is still responsible
to make the suggested changes. The tool also automates
eSTRIDE mapping. The user can run the eSTRIDE algorithm
to get a formatted list of entities and the threat categories
associated with it. The user does not need to do any manual
mapping as the algorithm takes care of it.

1) RQ3.1: We have compared the results of an analysis
performed by workshop participants to a ground truth to find
the true positives, false positives and false negatives, which can
be seen in Table II. This information was used to calculate the
average precision, recall and productivity.

TABLE II
AMOUNT OF TRUE POSITIVES, FALSE POSITIVES AND FALSE NEGATIVES

Participant TP FP FN TIME (min)
1 91 31 35 48
2 85 24 39 55
3 68 22 59 59
4 55 37 72 45
5 50 11 75 51
6 55 22 71 47
7 70 21 56 55
8 65 31 59 58
9 95 17 35 60
10 103 31 23 52
µ 73.7 24.7 52.4 53
σ 18.6 7.8 18.2 5.2

Precision
Precision shows how many threat categories found by

the participant are correct. The average precision of the
participants was 74.8% with a standard deviation of 7.1%.

The participant’s own average perception on their precision
was 53.5% (standard deviation 12.0%), which means that on
average they had less confidence in the correctness of their
results. The reason why participants might have thought that
they were not as precise could be that they felt like they did
not have enough knowledge about the domain. Also, when
they compared their results to the ground truth they might
have only checked part of them and this could have led them
to perceive that they are only around 50% correct.

Compared to the literature, average precision was recorded
at 60% Tuma and Scandariato [10] and 76% Scandariato
et al. [11]. We can see that the prototype tool does not differ
significantly in term of the measured precision. In addition, the
related work measures security threats, whereas we measure
security threat categories, therefore a direct comparison is not
possible.

Recall
Recall shows how many threat categories go undetected

by the participant. The average recall of the results was
58.5% (standard deviation 14.6%). The perceived recall of the
participants was 60.3% (standard deviation 18.5%), which is
very similar to the calculated average recall. When partici-
pants were asked to compare the results, sometimes they had
fewer threat categories or less elements with threat categories
elicited. This could have influenced the quite correct percep-
tion of their recall. However, the larger standard deviation
could be because some participants were overly confident e.g.
one said that they did not look over any threats. Overconfi-
dence in the participants perception of their recall was also
mentioned in Scandariato et al. [8].

We cannot make any direct comparisons with existing work
as there are no studies yet on the recall of an analysis made
with the eSTRIDE methodology. However, in a descriptive
study on the similar STRIDE methodology they got an average
recall of 0.36 (36%) Scandariato et al. [8]. Another study
found the recall of STRIDE is 0.62 for the per element
technique and 0.49 per interaction Tuma and Scandariato [10].
While comparing our results with these existing works, we still
need to consider that they elicited threats in these studies, but
we elicited threat categories. Nevertheless, our values are in
good agreement with the aforementioned works, and can give
insight on what the recall could be for threats deduced from
an eSTRIDE analysis.

Productivity
The participants spent on average 53 minutes on the task.

On average they produced 73.7 correct threat categories for
the task. We compared the time spent with the amount of
true positives and saw that the average productivity was 1.4
threat categories per minute (standard deviation 0.3). We asked
the participants to compare the perceived productivity of both
manual training and the tool. As a result, seven participants
perceived the tool to be faster, mainly as the tool performs the
threat category elicitation automatically.

The productivity of performing STRIDE per element is 3.5
correct security threats per hour Tuma and Scandariato [10].
By analyzing the amount of elements in the DFD, we can

estimate the productivity of performing the threat analysis.
Also, in the paper Scandariato et al. [11] they present their
results for productivity of performing threat analysis using
STRIDE. They report that the average productivity is 1.2
threats per hour, thus even to analyze a small scale DFD, it
will take days to finish the analysis.

As far as we know, there is no existing work on the pro-
ductivity of an eSTRIDE analysis yet, but we could compare
with work on the STRIDE methodology. As our tool provides
eSTRIDE reduction suggestions, abstractions can be made
on the model which results in simplifying the eDFD. After
analyzing the HomeSys eDFD (ground truth) with our pro-
totype tool it provided a suggestion list of different elements
that could be bundled or folded. We see after applying the
reduction suggestions we could reduce the size of the diagram
from 65 total elements to 53 more relevant elements. As
we have fewer elements to go through, finding the threat
categories would consume less time. We can see in existing
literature, that there is a correlation between how much time it
takes in the threat category elicitation step and how much time
a fully-fledged STRIDE analysis takes Scandariato et al. [8].
We could compare that thanks to these eSTRIDE reductions
made on the DFD, completing a STRIDE analysis on it would
take less time in total.

Also using our prototype tool, it would produce fewer threat
categories compared to a STRIDE analysis, but as far as
we know, there is no existing work on the productivity per
threat category to compare with. We think this would be an
interesting future work. After analyzing our ground truth with
STRIDE, we would get 223 threat categories, but using the
eSTRIDE reductions and mapping the amount of generated
threat categories would be 123.

2) RQ3.2: We have organized two workshops to evalu-
ate the usability of the tool. The workshop contained an
introduction to the methodology and afterwards participants
performed an example task using manual eSTRIDE to gain
an understanding on how the methodology works. The second
part of the workshop was to work with the tool to analyze a
larger problem individually. After the workshop we conducted
interviews where we had open questions for the usability of
our tool, more specifically -

• ”How would you describe your overall experience with
using the tool?”

• ”How clear would you say the tool displayed the final
threat categories and suggestions?”

• ”How do you compare doing the diagram extensions
manually and in the tool?”

• ”What features would you like to see in the tool that do
not exist at this point?”

The questions consisted of multiple sub-questions to get more
information about the usability of the tool. Seven participants
had a good impression of the tool. Five participants were
confused on how to use the tool in the beginning, but once
they were familiar with the tool they said it was easy to
use. Five participants noticed that the tool requires a lot of
clicking for some of tasks that could be reduced to a couple

of clicks instead. Five of the participants said that the tool
provides an easier and more organized way of keeping track
of the eDFD and changes made to it compared to the manual
way. The tool allows the user to interact with the eDFD
and freely manipulate the diagram, which provides a better
overview of the eDFD when it gets larger. Moreover, four
participants said that mapping assets to an end-to-end flow was
the most difficult task. It required participants to go through
each element individually while adding the assets that the flow
is carrying. The easiest task for the participants while using
the tool, was adding assets and their values as it wasn’t very
click-intensive.

In brief, by analyzing the data we found that the tool
provides an easier and more organized way of keeping track
of the different elements in the eDFD. Furthermore, the users
had a positive impression on the usability of the tool once
they got accustomed to using it. We also asked whether our
participants would use the tool in the future, of which three
participants said ’yes’, whereas four participants would use it
if they would have to perform threat analysis or work in a
place where it is required.

VI. CONCLUSIONS

The purpose of this work was to study and understand
how to support the semi-automation of the risk-first analysis
methodology called eSTRIDE. To this aim, we have produced
a prototype tool artifact as an Eclipse plugin. Automation tools
for different methodologies are important as they can reduce
the required resources. Therefore, our tool aims to automate
the eSTRIDE analysis and to offer a graphical user interface
for building eDFDs. Within our study, we defined requirements
related to the graphical user interface for modeling and repre-
sentation of eDFDs and to the analysis algorithms needed to
support eSTRIDE.

From the workshops we found emergent requirements such
as highlighting the asset path, a cloud feature for collaboration,
adding values to multiple elements at once and to have asset
values in different colors according to their priorities. Like-
wise, we found the average recall, productivity and precision
of an analysis performed by the participants. Specifically, the
average recall was 58.5%, average precision was 74.8% and
the average productivity was 1.4 threat categories per minute.

The measured recall and precision did not differ signifi-
cantly compared to manually performing STRIDE Scandari-
ato et al. [11] Tuma and Scandariato [10]. The measured
productivity was not directly comparable with other papers
as we elicited threat categories, but they deduced threats
Scandariato et al. [8] Tuma and Scandariato [10]. Nevertheless,
when using our eSTRIDE reductions, the diagram would have
less elements, which would result in less time compared to
STRIDE analysis and therefore may lead to better productivity.

In our case, we had a total of 65 elements in the HomeSys
DFD and after applying eSTRIDE methodology we got 12
reduction suggestions which reduced the number of elements
to 53. Additionally, performing a STRIDE analysis on our

ground truth would generate 223 threat categories, but whilst
using our prototype tool it generates 123 threat categories.

Finally, we studied the perceived usability of the tool. Ac-
cording to the perception of the participants, the tool provides
an easier and more organized way to track the diagram, is
perceived to be faster and reduces human error compared to
manual analysis.

This prototype tool is the first attempt of semi-automating
eSTRIDE. The participants of our evaluation mentioned sev-
eral ways to improve the tool in future work. For instance,
possible improvements could be eDFD validation or the de-
velopment of the aforementioned emergent requirements.

ACKNOWLEDGMENT

The authors would like to thank Katja Tuma for the invalu-
able support she provided throughout the study presented in
this thesis work.

REFERENCES

[1] P. H. Meland and J. Jensen. Secure software design
in practice. In 2008 Third International Conference on
Availability, Reliability and Security, pages 1164–1171,
March 2008. doi: 10.1109/ARES.2008.48.

[2] L. Williams, G. McGraw, and S. Migues. Engineering
security vulnerability prevention, detection, and response.
IEEE Software, 35(5):76–80, Sep. 2018. ISSN 0740-
7459.

[3] Adam Shostack. Threat modeling: Designing for secu-
rity. John Wiley & Sons, 2014.

[4] Daniela Cruzes, Martin Jaatun, Karin Bernsmed, and
Inger Anne Tondel. Challenges and experiences with
applying microsoft threat modeling in agile development
projects. pages 111–120, 11 2018. doi: 10.1109/ASWEC.
2018.00023.

[5] Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and
Wouter Joosen. Solution-aware data flow diagrams for
security threat modeling. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pages
1425–1432. ACM, 2018.

[6] Mass Soldal Lund, Bjornar Solhaug, and Ketil Stolen.
Model-driven risk analysis: the CORAS approach.
Springer Science & Business Media, 2010.

[7] Katja Tuma, Gul Calikli, and R Scandariato. Threat
analysis of software systems: A systematic literature
review. Journal of Systems and Software, 144, 06 2018.
doi: 10.1016/j.jss.2018.06.073.

[8] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen.
A descriptive study of microsoft’s threat modeling tech-
nique. Requir. Eng., 20(2):163–180, June 2015. ISSN
0947-3602. doi: 10.1007/s00766-013-0195-2. URL
http://dx.doi.org/10.1007/s00766-013-0195-2.

[9] Katja Tuma, Riccardo Scandariato, Mathias Widman, and
Christian Sandberg. Towards security threats that matter.
In Computer Security, pages 47–62. Springer, 2017.

[10] Katja Tuma and Riccardo Scandariato. Two architec-
tural threat analysis techniques compared. In Carlos E.

Cuesta, David Garlan, and Jennifer Pérez, editors, Soft-
ware Architecture, pages 347–363, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-00761-4.

[11] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen.
A descriptive study of microsoft’s threat model-
ing technique. Requirements Engineering, 20(2):
163–180, Jun 2015. ISSN 1432-010X. doi: 10.
1007/s00766-013-0195-2. URL https://doi.org/10.1007/
s00766-013-0195-2.

[12] Kim Wuyts, Riccardo Scandariato, and Wouter Joosen.
Empirical evaluation of a privacy-focused threat model-
ing methodology. Journal of Systems and Software, 96:
122–138, 2014.

[13] Tony UcedaVelez and Marco M Morana. Risk Cen-
tric Threat Modeling: process for attack simulation and
threat analysis. John Wiley & Sons, 2015.

[14] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.
Wing. Automated generation and analysis of attack
graphs. In Proceedings 2002 IEEE Symposium on
Security and Privacy, pages 273–284, May 2002. doi:
10.1109/SECPRI.2002.1004377.

[15] Sjouke Mauw and Martijn Oostdijk. Foundations of
attack trees. volume 3935, pages 186–198, 07 2006. doi:
10.1007/11734727 17.

[16] L. Sion, D. Van Landuyt, K. Yskout, and W. Joosen.
Sparta: Security privacy architecture through risk-driven
threat assessment. In 2018 IEEE International Con-
ference on Software Architecture Companion (ICSA-C),
pages 89–92, April 2018. doi: 10.1109/ICSA-C.2018.
00032.

[17] Bernhard J. Berger, Karsten Sohr, and Rainer Koschke.
Automatically extracting threats from extended data flow
diagrams. In Juan Caballero, Eric Bodden, and Elias
Athanasopoulos, editors, Engineering Secure Software
and Systems, pages 56–71, Cham, 2016. Springer Inter-
national Publishing. ISBN 978-3-319-30806-7.

[18] Alan Hevner, Alan R, Salvatore March, Salvatore T, Park
, Jinsoo Park, Ram , and Sudha . Design science in
information systems research. Management Information
Systems Quarterly, 28:75–, 03 2004.

[19] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and
S Chatterjee. A design science research methodology for
information systems research. Journal of Management
Information Systems, 24:45–77, 01 2007.

[20] Lab material - empirical study: Threat modeling. https:
//sites.google.com/site/empiricalstudythreatanalysis/
define. [Online; accessed 28-May-2019].

[21] Johan Linker, Sardar Sulaman, Martin Host, and Rafael
de Mello. Guidelines for conducting surveys in software
engineering. 05 2015.

[22] B.M. Wildemuth. Applications of Social Research Meth-
ods to Questions in Information and Library Science, 2nd
Edition. ABC-CLIO, 2016. ISBN 9781440839054. URL
https://books.google.se/books?id=uv98DQAAQBAJ.

[23] Claes Wohlin, Per Runeson, Martin Host, Magnus C
Ohlsson, Bjrn Regnell, and Anders Wesslen. Experi-

http://dx.doi.org/10.1007/s00766-013-0195-2
https://doi.org/10.1007/s00766-013-0195-2
https://doi.org/10.1007/s00766-013-0195-2
https://sites.google.com/site/empiricalstudythreatanalysis/define
https://sites.google.com/site/empiricalstudythreatanalysis/define
https://sites.google.com/site/empiricalstudythreatanalysis/define
https://books.google.se/books?id=uv98DQAAQBAJ

mentation in software engineering. Springer Science &
Business Media, 2012.

[24] Mikael Svahnberg, Aybke Aurum, and Claes Wohlin. Us-
ing students as subjects - an empirical evaluation. pages
288–290, 01 2008. doi: 10.1145/1414004.1414055.

APPENDIX

INTERVIEW QUESTIONS

Perception of usability of the tool:
1) Have you used threat analysis in any of your previous projects ?

a) If yes, how do you compare using a threat analysis methodology to just eliciting security related requirements?
b) If no, is there any particular reason you never used it before?

2) How would you describe your overall experience with using the tool?
a) What was the most difficult part of performing the task with the tool?
b) What was the easiest part of performing the task with the tool?
c) While using the tool were you ever confused how to use it? Where/Why?
d) How do you compare using the tool with using common sense to identify threats?

3) How clear would you say the tool displayed the final threat categories and suggestions?
a) Do you have any suggestions on how to improve displaying the categories and suggestions?

4) How do you compare doing the diagram extensions manually and in the tool?
a) How do you compare doing the abstractions manually and in the tool? (if applicable)
b) How do you compare doing the eSTRIDE analysis manually and in the tool?
c) How do you compare the precision of the manual analysis to the tool?
d) How do you compare the recall of the manual analysis to the tool?
e) How do you compare the productivity of the manual analysis to the tool?

5) What features would you like to see in the tool that do not exist at this point?
a) Do you see any limitations in this tool? If yes, What are they?

6) Do you think you would use the tool in the future? Why?
7) Is there anything else you would like to say before we end the interview?

Perception of precision, recall and productivity:
1) Compared to the ground truth, from 0-100 percent how precise do you think your results are? Why?
2) Compared to the ground truth, from 0-100 percent, how many threats do you think your results overlooked? Why?
3) What threats did you miss and why?
4) What threats are incorrect and why?

DEVELOPED ARTIFACT

Fig. 2. Graphical Modelling Environment

Fig. 3. Textual Modelling Environment

Fig. 4. Threat Category Documentation

SURVEY QUESTIONS

Fig. 5. Survey Questions

Fig. 6. Survey Questions

Fig. 7. Survey Questions

	Introduction
	Research Questions
	Background and related work
	Background
	STRIDE
	DFD
	eSTRIDE
	eDFD

	Related Work
	Threat modeling
	Empirical studies with threat modeling
	Automating threat modeling

	Research Methodology
	DSRP Steps
	Problem identification and motivation
	Objectives of a solution
	Design and development
	Demonstration
	Evaluation
	Communication

	Data Collection
	Data Analysis
	Threats to Validity
	Internal Validity
	Conclusion validity
	Construct validity
	External validity

	Results and Discussion
	Developed Artifact
	Participants
	Limitations of the tool
	RQ1
	RQ1.1
	RQ1.2

	RQ2
	RQ3
	RQ3.1
	RQ3.2

	Conclusions

