

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Analyzing the Usage of Traceability Links
Within Open Source Software Projects
Bachelor of Science Thesis in Software Engineering and Management

Sebastian Fransson
Tim Jonasson

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

{Analyzing the usage of traceability links within open source software projects}

[Investigating the existence of explicit traceability links within projects that contain some form of modeling.]

© Sebastian Fransson, June 2019.

© Tim Jonasson, June 2019.

Supervisor: Jan-Philipp Steghöfer

Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Abstract—Traceability is important when it comes to many
different software engineering activities. It is used as a means
of enabling smoother maintenance and maneuvering within a
repository. Because of its importance, traceability within com-
mercial development has long been a subject of research and
development. Meanwhile traceability link existence and usage in
open source software (OSS) is not as common if compared to
commercial use. In this paper, we identify the usage of explicit
traceability links within open source software that contained
some form of modeling. We do so through representative reposi-
tories extracted from the Lindholmen Data Set, which at the time
consisted of 24730 repositories based on Github. We investigate
if these links exist as well as what the most common usage of
these links are. Then we proceed to discuss the maintenance
of traceability links over project lifetimes as well as how the
responsibility of maintaining the traceability links is shared. The
findings are that six out of our eight representative subjects
contain some form of explicit link, although these links are for
the most part not updated apart from a few exceptions. In the
end the teams do not share the responsibilities of updating these
traceability links but seemingly this task is performed only by
a few select individuals. We have thus proven that there does
indeed exist explicit types of traceability within OSS and that
in some cases they are updated in regular intervals during the
lifespan of the project. Through these results we present ideas
for potential further research within the domain.

Keywords: Traceability links; Open source development;
OSS; Modeling; Hierarchical clustering; Software mainte-
nance;

I. INTRODUCTION

Traceability in software engineering is the method of es-
tablishing a relation between different software artifacts, such
as documentation and code, in an effort to create an easier
way to maintain and navigate in a software project. The type
of links called ’Traceability links’ can come in many forms:
they can be the connection between documentation and a
part of the source code, or even how different requirements
are implemented in the system [1]. In the case of a code-
documentation link such as code-requirements, some type of
reference between the artifacts will exist, such as a code
comment stating that it partly fulfills the requirement of story
X. Another option is to investigate the commit message where
a code artifact was introduced, since issue tracking tools such
as Jira have a specific identification attached to the story/issue
which is then provided in the commit message. This identifier
is ultimately used to track the story/issue progress [2]. Through
this we can then see what requirements a certain code artifact
fulfills.

The area of traceability in software engineering has emerged
to become a hot topic over the last couple of years [3], [4].
The reason for this emerging interest lies in the fact that
traceability is helpful to developers since there are many uses
for it. As presented previously we have the maintenance and
understanding aspect of these links [5], and these give way to
less time spent scouring through projects when trying to find
what changes affect what parts of the system. This is especially
important for OSS projects, as anyone can pick up the code
and start working on it. These traceability links have different
forms, such as being implicit or explicit. What current research

has shown so far is that OSS projects most commonly rely on
implicit links that form between commits and issues, using the
method previously mentioned.

There are various methods of finding implicit links within
OSS projects, such as looking at the artifacts most commonly
committed to a repository over a period of time [6]. One can
then assume that these artifacts have some sort of connection,
either in the sense of dependency or general documentation
covering the area. There have been several studies on the usage
of such traceability links already [1], [7], [8]. While these links
are surely interesting and provide benefits to developers [9],
we believe that there are more avenues that can strengthen
the presence of traceability and its usage which have not been
thoroughly investigated.

The focus of this paper is on the explicit links that exist
between different software artifacts within an OSS project that
contains some sort of modeling. These models add helpful
information to the projects [10], [11], but it is not known
how or if they are linked to the other software artifacts within
the projects, e.g., the code, requirements and tests. Therefore
our aim in this paper is to show which types of traceability
links exist within OSS projects that make use of modeling.
In addition, we aim to show how these traceability links are
maintained throughout the lifespan of these OSS projects, as
well as to investigate how developers share responsibilities in
regards to maintaining these links.

The research questions that are posed to conduct these
investigations, are the following:

• RQ1: Do explicit traceability links, other than commit-
issue, exist within OSS projects using some form of
modeling?

• RQ2: What traceability link types are most common in
OSS projects that use some form of modeling?

• RQ3: Are traceability links maintained over the lifetime
of the project?

• RQ4: Is the maintenance of traceability links performed
by the entire team of committers?

The links or lack thereof would provide another helping
hand in increasing maintainability as well as how such links
can increase understanding around a piece of open source
software. In addition it would be the first time that traceability
links related to modelling artifacts will be investigated in the
context of OSS projects. Therefore we present our findings in
hope of providing this type of strengthening information that
can aid future research.

Finally we wish to investigate the maintenance of these
traceability links in order to show how developers within OSS
projects handle and distribute responsibilities when it comes
to the upkeep of said links. Through this we will provide
an insight into how well traceability links are handled by
developers both in regards to the upkeep of the actual links
as well as the presence or absence of shared responsibility
regarding them.

The remainder of this paper is structured as follows; Section
II discusses related studies within the area of traceability links
and how such links might be established and found. Section
III introduces methodology on how we conducted the research
as well as the limitations of our study, while Section IV
presents the results and findings of our investigation into OSS
repositories. Section V presents a discussion on the findings of
the paper. Finally, Section VI concludes the paper and presents
possible areas of future investigations.

II. RELATED WORK

A. Traceability in practice

One of the key challenges regarding traceability has always
been “the return of investment”, meaning that given the large
amount of resources required for the establishment, traceability
does not always provide developers with an immediate sense
of value. Not all of the established links are sure to yield
the expected results. However, the few that do will make
maintaining the software cheaper [12].

There are several different trace link recovery approaches
that have been proposed in order to support trace link creation.
These different approaches can be classified into three different
“types” as follows; “manual”, “semi-automatic” and “fully-
automatic” [12]. By semi-automatic it is meant that parts of
the process are conducted manually while others are performed
automatically. For the most part, the process follows the fully-
automatic version, at least up until a certain point. After the
automatic traceability extraction has been done, the researchers
themselves go through the candidate links and remove the ones
deemed incorrect as well as adding links missed by the tool.
This type of method can in theory be the “best of both worlds”.

Meanwhile, the automatic process generally gives an analyst
the ability to input the initial settings but does not allow
the analyst any further hand in the decision making process.
However this type of tracing does not ensure the correctness
of the established traceability relationship as there are no
evaluation of the findings by hand. Another issue with using an
automatic process is the fact that precision of such an approach
is rather low [13].

Finally we have the manual tracing process, which is the
process that we have chosen to use for this paper. In this
type of process the analyst themselves choose the way to
approach the problem out of many different approaches. The
analyst themselves go through code elements and documents
in order to find and establish eventual traceability elements.
This process however is highly time consuming and in the
cases of larger projects this type of tracing quickly becomes
unfeasible, additionally, there is no guarantee that the analyst
will find links in a consistent manner as the process quickly
proves a boring task and this tends to make the process error-
prone [12].

B. Existence of traceability links in OSS

The usage and understanding of traceability links can
be helpful for many different types of tasks, such as pro-
gram comprehension, maintenance, requirement tracing, im-

pact analysis, and reuse of existing software. There are studies
that show that traceability links help with increasing accuracy
when performing these types of maintenance tasks, such as
presented by Jaber et al. [14]. Finding these links however
can prove challenging and time consuming. Antoniol et al.
[1] proposes a way to recover traceability links using a
technique based on Information Retrieval (IR) methods. The
paper suggests that developers often use descriptive naming
while creating different software artifacts relating to the code,
such as variable names and class names. Then using this
information one can proceed to use these names as keywords
for searching through documentations and finding related
documents. However as previously presented, this type of
process runs the risk of low precision.

The authors then propose to use a probabilistic model or
a vector space model to rank the different documents by
relevance to the search query. Another way to establish such
links is through the usage of the latent semantic indexing
method or LSI for short [15]. In this paper the authors state
that their method of recovering traceability links requires less
processing than the papers in their related works section, while
also staying independent from factors such as language and
paradigms. And thus they conclude that it is better suited
for automation. There is no discernible way however to fully
automatically find traceability links in a reliable manner.
Decisions on the links found by tools are ultimately made
by the user [16].

Our focus is related to what we can see from the work of
Kadgi et al. [17]. It is shown that software repositories do
indeed contain forms and types of traceability links that we
can establish between different artifacts when dealing with
open source software projects, using methods described in
their paper. They propose looking into the change-sets of the
projects that they investigate, using the information stored
there to relate different artifacts such as through frequency
of occurrence together which is a common method used when
dealing with open source software repositories. Although this
can be done, the usage of commits and issue tracking is the
norm for most of the traceability link establishment research
being done in the field of OSS [18]. Therefore it is a method
which we will not be using, but instead merely allow ourselves
to be inspired by.

III. METHODOLOGY

The purpose of this paper is to show the usage of traceability
links through the collection and analysis of traceability link
data, which is contained within OSS projects that have some
measure of modeling present. The projects selected had to
meet the criteria of containing at least one type of model in
order to be incorporated into the final results. The Lindholmen
Data Set CSV dump was used as the population for this study
[19]. At the time the data-set contained a list of 24730 GitHub
projects that contain some form of modeling. The following
methodology will be focusing on cutting this population down
into only the most relevant group for our research. This group
were created by imposing a number of restrictions upon the

data-set that helped to sort out the repositories which met
our requirements. Then by way of clustering we selected
representatives that were used as the subjects of our research,
together with additional data extracted from the resulting
representative repositories.

A. Data collection

Because of the data-set being so large, sampling on
the population had to be done to decrease this population
to a more manageable size. To do this we applied an
agglomerative cluster sampling method [20], in order to
divide the repositories into smaller clusters based on a few
selected criteria. These criteria are as follows:

• Number of models in a project.
• Number of files in a project.
• Number of updates to .uml and .xmi models in a project.
• Latest commit not earlier than the beginning of 2019.

The number of models a project contains is already available
through the Lindholmen Data Set and was retrieved from there.

A number of bash scripts were then created to extract the
aforementioned information about the repositories while on
the master branch. These scripts extracted data directly from
the repositories as the information was not present within the
selected data-set.

The script created to extract the number of updates was used
to look for the occurrences of .uml and .xmi in the committed
files of each commit. To calculate the number of times models
had been updated in a single repository, we took the number
of occurrences of the models found in the commits and then
subtracted it by the number of models in the repository which
was documented in the Lindholmen Data Set CSV dump. This
was done to remove the occurrences where a model was first
added to the repository.

The dates were then organized and checked so that the
repositories whose last commit was made before January of
2019 could be removed, as we wanted to have projects that had
been updated fairly recently. The reason for having this kind
of restriction is so that we have repositories that can reflect the
current status of OSS projects. We did not check the quality
of the models as the only thing that we are concerned about
is that they actually exist and have had some form of update
throughout the lifespan of the project. Additionally as we were
pressed for time regarding the manual information gathering
and evaluation, we did not concern ourselves with the state of
the models. This was because it would not have been feasible
when looking at the sheer number of them being found within
certain repositories. We therefore assume that all models that
are present within the chosen repositories are relevant to our
research as long as they are contained within a repository that
has been updated within the year of 2019.

The clusters were created with the help of agglomerative
hierarchical clustering [13], [20], using the Ward’s method
[21]. Before the start of the clustering, there was a need for
the data to be normalized. This was to make sure that each of

the three data points, i.e. number of models, number of files
and number of updates had the same interval for their values
when calculating the distance between clusters. In each step
of the clustering the closest neighbors were merged into a new
cluster for the next iteration of the clustering. To choose which
two clusters to merge, we calculated the distance between each
of the clusters. By having the number of models, number of
files, and the number of updated .uml and .xmi models in each
project as our three data points, we calculated the Euclidean
distance [22] between the different clusters and as dictated by
the Ward’s method, merged the closest clusters together.

During this process we decided to set the break-even point
to a final cluster count of eight clusters. The reason for this was
that we wished to have a manageable number of repositories
to check, that were still a representative of the population, as
well as the fact that we did not have the knowledge of what
might be the right number of clusters for our case. Therefore
we follow the example of what was done in the study by Rath
et al. [20].

When the clusters had been formed through this type of
sorting, we executed a random sampling method on each of
the clusters as a way to select the final eight representatives
[13].

In order to answer RQ1 and RQ2 we proceeded to manually
search the representative projects for explicit traceability infor-
mation which are related between several parts of the projects.
These parts being: between models and code, between models
and requirements, between models and tests, between code
and tests and finally between code and requirements. Note that
traceability information such as between commits and issues
were not considered as it was not within the scope of our
intended research.

The links between models and code were located by manu-
ally searching through code artifacts for specific mentions of
models, which forms an explicit traceability link between the
code and the model. The models were also searched through
for artifacts mentioning different parts of code such as class
names or packages.

The links between requirements and models were located
through mentions of the models in the specific requirements,
such as an update to a certain model in relation to a code
change.

The links between models and tests were located by looking
through the test comments for mentions of the models such as
sequence diagrams and class-diagrams etc. The links between
code and tests were found through searching the testing
artifacts for mentions of the related code artifacts such as
through the test naming and test-suite documentation [23].

Finally, the links between code and requirements were
located through an investigation of the code and requirement
artifacts for any explicitly mentioned relation.

Beyond looking at these artifacts there was also a possibility
of external text or spreadsheet documents existing in the
repositories that would link the previously mentioned artifacts
together. These types of explicit links are called external links,
while there are also those that exist inside of the artifacts

themselves, such as in code comments. Such links are called
internal links.

In order to answer RQ3 and RQ4, we extracted additional
information from the repositories such as the number of
contributors maintaining the traceability links that we found,
as well as the number of updates made to them throughout
the lifetime of the project. In order to retrieve the number of
contributors to files where trace links were present, we decided
to manually look through all files containing traceability links
and documenting all unique contributors on those files as well
as in which of the commits to these files the actual links
were updated. Then in order for us to retrieve the informa-
tion regarding the number of updates made to traceability
links throughout their lifespan, we proceeded to manually go
through the files containing traceability links and documenting
the date each commit was made.

B. Data analysis

The data gathered from the repositories during the data
collection which regard to RQ1 and RQ2 was first grouped
after their type of traceability link before any analysis on
them could be done. The groups that they were divided into
are the following five:

• Between models and code
• Between models and requirements
• Between models and tests
• Between code and tests
• Between code and requirements

When the traceability links that had been found they were
successfully sorted between the five different groups, the goal
was to then to through these groups show what type of links
are present as well as which are the most recurring ones
between repositories in OSS development.

The gathered information regarding the contributors to the
found traceability links, as well as the number of updates
made to these links, were then sorted by relevance and
presented within tables and through subsections highlighting
each repository. One depicting the repositories with number
of committers per link as well as the updates of these links
within text form.

C. Validity threats

1) Construct Validity: As we have a relatively small base
population after the restrictions put on the used data-set, we
can see a threat to the construct validity in what is commonly
known as a random sampling error. As we are using such
a small representative population there will always be some
likelihood of encountering a random sampling error as the
sample population can never really match the entirety of the
population.

2) Internal Validity: Threats towards the internal validity
have been mitigated through the usage of both the agglom-
erative clustering as a way to normalize clusters so that they
may be on the same “height”, as well as the random sampling

that was made on the resulting clusters afterwards in order to
fairly select representatives of each cluster that would be used
in the study.

3) External Validity: External validity holds many different
types of validity that are closely related to empirical research,
such as the population validity. The population validity in
our case we believe to be uncompromised as we performed
random sampling upon the population in order to retrieve
representatives, which means that we have given each data-
point within the population an equal chance of being selected.
As we only use data extracted from repositories situated on
Github, we do not have the issue of live subjects compromising
the research through predispositions and opinions or possible
occurrences of the “Hawthorne effect” [24].

4) Limitations: The conducted study has a very limited
time-frame, as such we do not have the ability to secure that
we will provide a definitive answer in the end. To manage
with the short time-frame of this study we have chosen to
perform the study on a small sample size of OSS projects.
There is no way to get around this problem in this study but
in the case of future research on this subject that has a longer
time-frame it will be possible to do a more throughout study
of OSS projects that contains modeling documents.

IV. RESULTS

A. Existence and types of traceability links

After filtering away the repositories that do not contain
.uml and .xmi files, 7256 of the original 24730 projects from
the Lindholmen Data Set were left. Next we imposed the
restriction of the repositories having to have been updated in
2019, through looking at the latest commits of the various
repositories with the help of an automated script. We ended
up with 218 repositories out of the 7256 that were eligible.

These 218 repositories were then used to perform the
hierarchical agglomerative clustering, so that we could create
the necessary clusters for the final random sampling, from
which we retrieved representative repositories which we then
searched for explicit traceability links.

Fig. 1 itself is a representation of the clustering procedure,
i.e. how the different clusters are merged into what is finally
one large cluster. As we are performing an hierarchical ag-
glomerative clustering, we then start with all the 218 reposito-
ries within their own clusters and then we start to merge them
using the calculated Euclidean distance between the different
clusters, thus forming new and larger clusters that are to be
merged for the next iteration. The dendrogram then aids with
showing the process of selecting the final eight clusters that
we used in order to pick representatives for the population.
Additionally, we then use it in order to show the final size of
the eight clusters that we settled with.

Through performing this type of clustering, as well as
drawing up the resulting dendrogram, as seen in Fig. 1, we
then picked out the height to settle at where we would have
a manageable amount of clusters that we could make use of.
We did this by analyzing the dendrogram visually and decided
to settle at the height of seven where we ended up with eight

6 7 2 4 5 1 3
15

3
15

0
15

2
15

6
16

0
15

7
16

5
16

4
16

6
15

8
16

1
17

1
17

2
16

9
17

5
18

4
18

7
18

9
19

1
19

8
18

5
18

6
19

9
16

8
18

3
21

8
21

7
21

5
21

6
21

3
21

4
21

1
21

2
20

6
20

3
20

8
20

9
19

4
20

1
20

7
21

0
20

0
20

2
18

8
19

6
19

2
19

3
20

4
20

5
19

0
19

5
19

7
17

0
17

4
17

9
18

0
16

2
17

6
18

1
17

7
18

2
16

7
17

3
17

8
15

4
15

9
15

5
16

3 81 83 10
0

10
4

11
2

10
5

11
3 93 87 90 98 99 10
2

10
1

10
3

10
8

10
6

10
9

11
4

11
6

11
8

11
9

11
5

11
0

11
1

12
0

12
1

12
6

12
7

12
5

13
0

14
7

15
1

13
9

14
3

14
5

14
6

13
8

14
0

13
5

13
2

13
6

12
9

13
1

13
4

13
7

14
1

14
2 96 97 12
4

10
7

11
7

12
8

12
2

12
3

14
8

14
9

13
3

14
4 65 62 55 56 57 63 59 58 60 74 75 77 78 71 69 73 70 66 67 88 89 85 82 86 91 94 92 95 84 79 80 61 64 76 68 72 26 21 30 38 42 40 51 10 13 14 8 9 11 12 15 16 17 18 19 22 20 25 23 24 29 27 28 31 35 32 33 34 37 39 52 48 49 50 53 54 43 44 45 46 47 36 41

0
10

20
30

40
50

Cluster Dendrogram

hclust (*, "ward.D")
clusterDiagram

H
ei

gh
t

Fig. 1. Clustering procedure as well as marking the choosing of the eight clusters to represent the population in red

total clusters, which was our original goal, so that we could
pick representatives from each cluster through the use of the
aforementioned random sampling method. The boundaries of
these clusters are marked in red.

From a search that we performed by going through the eight
representative repositories, we found that there were explicit
links established in six out of eight repositories. We continued
with sorting the explicit links that we had found through the
search of the repositories into the categories mentioned in
Section III-B.

Table I shows how many links were found in each of the
eight representative repositories, as well as what type of links
they were.

The models to code links that we found were all located in
a small number of files that contained all links of this type.
These files were located in Repository C and were presented
in .pdf format, which described the diagrams and how they
related the different coding artifacts. This strengthened and
also aided in creating the links between models and code.
In the case for Repository G, all the links were located
in the same file, a .png file that showed the model with
documentation on which files it was linked to.

Between code and tests the links were found through the
same method for all four repositories that contained them.
The name of the test classes were usually linking to the code
through the naming of the test classes, and as for the remaining
links, there were comments in the testing code that specified
which file and part of the code that was being tested.

As for the last type of link that we found, code to require-
ments links, the only such traceability link that we found was
located in a comment of the code were it was specified that
the code was created according to the requirements from a
specified web-link.

We then ended up with a total set of 44 links between code
and tests, while 501 links were found to exist between models
and code as well as one link between code and requirements
across all the representative repositories. The number of links
of each type found in each repository is presented in Table I.
We can also see the rarity in the total number of files that exist
in all of the searched repositories vs the combined number of
links that we found, if we were to do this comparison we
would end up with 0,004 links per file, which indicates a very
small percentage of links present within such OSS projects.

B. Updates of traceability links in repositories

Presented in the following sub-subsections is information
regarding the six repositories that contained some form of
explicit links.

1) Repository A: Repository A had four files containing
traceability links. Three files which contained six test-code
links combined, as well as one file containing one code-
requirements link. These files were not created at the same
time but instead were created during different years (2014,
2015, 2017 and 2018). All of the links except the one created
during 2018 have been updated approximately once a year
since their creation. However there have been no updates
during 2019 so far.

TABLE I
THE NUMBER OF LINKS IN EACH REPOSITORY

Link type Models-code Models-requirements Models-tests Code-tests Code-Requirements
Repository A 0 0 0 6 1
Repository B 0 0 0 0 0
Repository C 493 0 0 0 0
Repository D 0 0 0 6 0
Repository E 0 0 0 17 0
Repository F 0 0 0 15 0
Repository G 8 0 0 0 0
Repository H 0 0 0 0 0

TABLE II
THE NUMBER OF FILES CONTAINING TRACEABILITY LINKS ORDERED BY THE NUMBER OF UNIQUE CONTRIBUTORS IN EACH REPOSITORY

Number of contributors Total Total of unique 1 unique 2 unique 3 unique 4 unique 5 unique 6 unique
Repository A 24 7 0 1 1 0 1 1
Repository C 4 1 18 0 0 0 0 0
Repository D 3 3 1 5 0 0 0 0
Repository E 8 5 4 5 3 1 1 0
Repository F 13 5 6 1 5 0 0 0
Repository G 2 1 1 0 0 0 0 0

2) Repository C: Repository C had 18 files containing
traceability links. All of these files externally established links
between model artifacts and code artifacts. However 16 of
them were added at the same date in 2013, and the remaining
two were created in 2016. The naming of these files imply
that the documents were created outside of GitHub and then
added to the GitHub repository when finished. This is because
they have dates present in the name of the files and no updates
have been made on any of the files since they were added to
the repository.

3) Repository D: Repository D had six files containing
traceability links. These six files all contained one test-code
link. Five of these were added at the same time and then
proceeded to get two updates, all at the same time, and then
they have not been touched since they were created in 2012.
However the remaining file, which was created in 2018, is a
code artifact that contains test-code links and has been updated
several times since then and has also been updated during
2019.

4) Repository E: Repository E had 14 files containing
traceability links. These 14 files all contained 17 test-code
links combined. Out of these 14, seven were created at the
same date during 2015. They have since then been updated
several times, sometimes together and sometimes separately.
But overall they have been updated approximately once a year
until late 2018. Out of the remaining files, four were created
during 2018 and have not received any updates. Two files have
also been updated several times a year since their creation in
2016 until early 2019. The final file was created during 2019
and has been updated several times since then.

5) Repository F: Repository F had twelve files containing
traceability links. These twelve files all contained 15 test-code
links combined. Out of these twelve files, six were created
during 2013 and 2014 that have yet to receive any updates
since then. One file was created during 2013 and the remaining

five during 2012. The ones created during 2012 got a few
updates during the same year but then were not updated again
until 2017 when they got updates around the same time as the
link created in 2013.

6) Repository G: Repository G had one file containing
eight traceability links. These eight links were all model-code.
This file was created during 2015 and has not received any
updates since.

C. Contributors on traceability links

In Table II the data for the number of unique contributors on
each link is shown as well as the total amount of contributors
for the entire project.

The data shows that there is rarely a case where all of
the contributors are participating in updating the traceability
links within the repository. Out of the six repositories that
we found traceability links in, only one of the repositories
had all their contributors participating in the maintenance of a
traceability link. However, this repository had a low number of
total contributors, in total three. As for the other repositories,
one of them only had two contributors but both of them did not
participate in the maintenance of the traceability links. For the
remaining four repositories that contained traceability links,
they had a higher number of contributors than the two other
repositories, but the number of contributors that participated
in the maintenance of the traceability links were less than the
total amount of contributors found in these repositories.

From the data we can also see that there is rarely a case
where our sample repositories have a consistent number of
contributors that are maintaining the traceability links. In
Table II it is shown that the repository with the highest number
of unique contributors on traceability links has some links with
two contributors but also has up to six unique contributors on
one link.

V. DISCUSSION

A. RQ1 & RQ2

The two questions that we are trying to answer in this
subsection are “Do explicit traceability links, other than
commit-issue, exist within OSS projects using some form
of modeling?” and “What traceability link types are most
common in OSS projects that use some form of modeling?”.

We can see from the amount of links that could be found in
the projects that were searched that different types of explicit
traceability links are not very popularly used within these
types of OSS projects, which makes it surprising that we
found traceability links within six out of the eight repositories
that were within our sample of representatives. Even though
models are used and in many cases updated quite a number
of times, there is still nothing that is linking them together
in a way that would make sense from a models to code class
standpoint, with the exception of two cluster samples. With
this we are referring to the fact that in six out of our eight
samples, we found no correlation between the models and code
that could link them together. The test to code links that were
found followed the same pattern across the repositories, which
is understandable since it is of modern coding standard to
name test files appropriately after what file they are testing,
as well as showing in code comments what the specific test is
indeed testing. This however, is not the only type of link that
we have seen being used, as comments that refer to the names
of classes under test also appear from time to time, showing
another way to link two such artifacts together in an explicit
manner.

While there were indeed quite a few links that were models
to code, it did appear that it is not the most popularly used
link type, as most of the links were found within a single
repository which was using them extensively. Even though
the model-code links were numerous, the most popularly used
link type across the cluster samples was the test-code links
that came from naming conventions and comments depicting
what code artifact it tested.

As for models to requirement links we failed to find any
instance of this type of link. From this we can not conclude
anything other than that we failed to prove that they exist. The
same goes for the models to test links that we also did not
find in any of the repositories.

We did however manage to find one link between code and
requirements. This link was formed through the code comment
stating that it fulfilled a certain requirement. In addition, there
was a web-link attached in the comment that linked to the
specified requirement. From this one link we can conclude that
there are links between code and requirements within OSS,
but we do not know how widely they are used. There is a
possibility that there are no code to requirements links other
than the one that we found. But since we found one link then
we believe that there is a possibility of there being more of
this type of link within other OSS projects. Taking all of these
points into account we can see that the overall usage of explicit

traceability links is scarce and mainly used when creating tests
for pieces of code within the system.

B. RQ3

In this subsection we are discussing the research question
“Are trace links maintained over the lifetime of the project?”.

From the results that we have gathered and shown in the
previous section it becomes apparent that not many traceability
links are maintained and also not very frequently. As most of
the links that are maintained get updated around once every
year, which could also be argued to be a reflection upon
how often the files that have these links are being changed
which might not necessarily mean that the link itself has been
altered at all. The question which we are trying to answer with
these results is after all if traceability links are updated during
the lifetime of the project, and some definitely are updated.
However, considering the question of how actively they are
maintained, it can be seen that the developers do in fact update
these links fairly rarely.

C. RQ4

This subsection is about research question four, “Is the
maintenance of trace links performed by the entire team of
committers?”.

As shown in Table II, there are several people that are
participating in maintaining the traceability links. However we
can also see that for our sample there is no relation between
the total number of contributors and the number of people
that are maintaining the traceability links. As such it can
be seen that not all the members of the teams are taking
an active role in maintaining the traceability links. Through
this we can argue that it does not seem to be something that
the developers within OSS believe to have the need of being
a shared responsibility between team members, but rather is
restricted to be kept by a select number of individuals.

VI. CONCLUSION

We can see through the gathered results and the discussion
presented that OSS projects do indeed use explicit traceability
links within certain areas. We can also see that the most
frequent type of traceability link is the one that ties to-
gether testing artifacts and code artifacts. These links establish
themselves through comments pointing towards code artifacts,
specifically what parts of the code that is being tested, and
in some cases why. We can also see that the models-code
is in a close second with the overwhelming amount of links
found, even though they were only present in two out of eight
repositories. Meanwhile the test-code links were found in four,
although significantly fewer in number.

Although these links are established with purpose of aiding
in maintaining the software, the links themselves are not often
updated during the lifetime of the repository. This can be
pointed out to be because the features are not used, bad
implementation or just simply because of neglect. Additionally
we see that the upkeep of explicit traceability links is not
a shared activity among the contributors on an OSS project.

Instead it is done by a few select individuals that execute their
upkeep with what was found to be a usual frequency of around
one year between each update.

We see possibilities to extend this research further in the fu-
ture by investigating the developer stance towards traceability
and its practical usage. In addition information can be gathered
regarding the knowledge of traceability within the open source
community, and on how traceability links have helped the
contributors when contributing to OSS projects. This research
can be done by performing interviews or sending out a simple
questionnaire to the developers of OSS projects that contain
some sorts of explicit traceability links.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering traceability links between code
and documentation,” IEEE transactions on software
engineering, vol. 28, no. 10, pp. 970–983, 2002.

[2] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M.
Marchesi, and R. Tonelli, “The jira repository dataset:
Understanding social aspects of software development,”
in Proceedings of the 11th international conference
on predictive models and data analytics in software
engineering, ACM, 2015, p. 1.

[3] G. Spanoudakis and A. Zisman, “Software traceability:
A roadmap,” in Handbook Of Software Engineering
And Knowledge Engineering: Vol 3: Recent Advances,
World Scientific, 2005, pp. 395–428.

[4] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grünbacher, A. Dekhtyar, G. Antoniol, and
J. Maletic, “The grand challenge of traceability (v1. 0),”
in Software and Systems Traceability, Springer, 2012,
pp. 343–409.

[5] P. Mäder and A. Egyed, “Do developers benefit from re-
quirements traceability when evolving and maintaining
a software system?” Empirical Software Engineering,
vol. 20, no. 2, pp. 413–441, 2015.

[6] H. Kagdi, J. I. Maletic, and B. Sharif, “Mining soft-
ware repositories for traceability links,” in 15th IEEE
International Conference on Program Comprehension
(ICPC’07), IEEE, 2007, pp. 145–154.

[7] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A.
Holbrook, “Assessing traceability of software engineer-
ing artifacts,” Requirements engineering, vol. 15, no. 3,
pp. 313–335, 2010.

[8] M. Rath, D. Lo, and P. Mäder, “Analyzing requirements
and traceability information to improve bug localiza-
tion,” in 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), IEEE, 2018,
pp. 442–453.

[9] A. Egyed and P. Grünbacher, “Supporting software
understanding with automated requirements traceabil-
ity,” International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 05, pp. 783–810,
2005.

[10] O. Badreddin, T. C. Lethbridge, and M. Elassar, “Mod-
eling practices in open source software,” in IFIP Inter-
national Conference on Open Source Systems, Springer,
2013, pp. 127–139.

[11] R. Hebig, T. H. Quang, M. R. Chaudron, G. Robles, and
M. A. Fernandez, “The quest for open source projects
that use uml: Mining github,” in Proceedings of the
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ACM,
2016, pp. 173–183.

[12] J. Cleland-Huang, O. Gotel, A. Zisman, et al., Software
and systems traceability, 3. Springer, 2012, vol. 2.

[13] G. G. Van Ryzin, “Cluster analysis as a basis for pur-
posive sampling of projects in case study evaluations,”
Evaluation Practice, vol. 16, no. 2, pp. 109–119, 1995.

[14] K. Jaber, B. Sharif, and C. Liu, “A study on the effect
of traceability links in software maintenance,” IEEE
Access, vol. 1, pp. 726–741, 2013.

[15] A. Marcus and J. I. Maletic, “Recovering
documentation-to-source-code traceability links
using latent semantic indexing,” in Proceedings of the
25th international conference on software engineering,
IEEE Computer Society, 2003, pp. 125–135.

[16] A. Marcus, X. Xie, and D. Poshyvanyk, “When and how
to visualize traceability links?” In Proceedings of the
3rd international workshop on Traceability in emerging
forms of software engineering, ACM, 2005, pp. 56–61.

[17] H. Kagdi and J. Maletic, “Software repositories: A
source for traceability links,” in International Workshop
on Traceability in Emerging Forms of Software Engi-
neering (GCT/TEFSEâ07), 2007, pp. 32–39.

[18] C. S. Corley, N. A. Kraft, L. H. Etzkorn, and S. K.
Lukins, “Recovering traceability links between source
code and fixed bugs via patch analysis,” in Proceedings
of the 6th International Workshop on Traceability in
Emerging Forms of Software Engineering, ACM, 2011,
pp. 31–37.

[19] Lindholmen data set, http://oss.models-db.com/, Ac-
cessed: 2019-02-26.

[20] M. Rath, M. T. Tomova, and P. Mäder, “Selecting
open source projects for traceability case studies,” in
International Working Conference on Requirements En-
gineering: Foundation for Software Quality, Springer,
2019, pp. 229–242.

[21] F. Murtagh and P. Legendre, “Ward’s hierarchical clus-
tering method: Clustering criterion and agglomerative
algorithm,” arXiv preprint arXiv:1111.6285, 2011.

[22] P.-E. Danielsson, “Euclidean distance mapping,” Com-
puter Graphics and image processing, vol. 14, no. 3,
pp. 227–248, 1980.

[23] B. Van Rompaey and S. Demeyer, “Establishing trace-
ability links between unit test cases and units un-
der test,” in Software Maintenance and Reengineering,
2009. CSMR’09. 13th European Conference on, IEEE,
2009, pp. 209–218.

[24] R. McCarney, J. Warner, S. Iliffe, R. Van Haselen,
M. Griffin, and P. Fisher, “The hawthorne effect: A
randomised, controlled trial,” BMC medical research
methodology, vol. 7, no. 1, p. 30, 2007.

