
!

AWS Lambda Language Performance
Bachelor of Science Thesis in Software Engineering and Management

MEHRSHAD HOSSEINI
OMID SAHRAGARD

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

!

The Author grants to University of Gothenburg and Chalmers University of Technology the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher
or a company), acknowledge the third party about this agreement. If the Author has signed a
copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she
has obtained any necessary permission from this third party to let University of Gothenburg and
Chalmers University of Technology store the Work electronically and make it accessible on the
Internet.

A cloud benchmark on the Amazon Web Services Lambda platform

MEHRSHAD HOSSEINI
OMID SAHRAGARD

© MEHRSHAD HOSSEINI, June 2018.
© OMID SAHRAGARD, June 2018.

Supervisor: JOEL SCHEUNER
Examiner: RICHARD SVENSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

AWS Lambda Language Performance
Mehrshad Hosseini

Software Engineering and Management, BSc
University of Gothenburg

Gothenburg, Sweden
gushosme@student.gu.se

Omid Sahragard
Software Engineering and Management, BSc

University of Gothenburg
Gothenburg, Sweden

gussahom@student.gu.se

Abstract—Cloud services are experiencing expansive growth,
and the potential uses cases for its application in the IT
sector is becoming increasingly widespread. This rapid growth
is accompanied by a demand for performance which necessitates
systematic benchmarking. The process of setting up a cloud-
based benchmark is tedious and obstructive. Therefore, frequent
benchmarks must be conducted in order to inform individuals
from practitioners to hobbyists alike. Amazon Web Services is a
major market leader in cloud computing which offers a Function
as a Service platform named AWS Lambda. The following will
conduct a benchmark on the Lambda platform and its supported
languages: C#, Java, Node.js, and Python. The benchmark
will examine the performance of the respective languages with
relation to workload input size when configured to three different
memory sizes: 128, 512, and 1024MB. The results presented
reveal languages such as Java and C# consistently outperform
the other languages with C# being the most performant when
configured to 128 and 1024MB. All languages experienced a
performance increase in tandem with increasing memory size.

Keywords-cloud computing, AWS Lambda, cloud performance,
benchmark testing, Function as a Service, FaaS.

I. INTRODUCTION

Cloud computing has become widely adopted as an inte-
gral enterprising solution in the IT (Information Technology)
market. It has experts projecting continued growth into 2021
[1]. The cloud platform market has become a profitable and
competitive market led by technology giants such as Amazon,
Google, and Microsoft [1]. This competitive nature allow
cloud services to become more affordable and has led to
greater adoption. Furthermore, one of the reasons for this
growth is that both individuals and enterprises use cloud-
based platforms due to their appeal of ease of use and con-
venience. Cloud-based service users run their applications or
microservices in the cloud instead of hosting their applications
using their own or rented infrastructure. There are various
services which cloud computing platforms provide, however,
this study has chosen to focus on a new emerging architecture
called serverless. The incentive of a serverless architecture
is to execute code or services without having to configure
or maintain a server [2]. The focus therefore switches from
Infrastructure as a Service (IaaS) to Function as a Service
(FaaS). The cloud environment which we will be investigating
is the Lambda service which is the FaaS solution provided by
the current cloud market leader [3], Amazon Web Services
(AWS).

The AWS Lambda platform offers a pay-per-request basis
as the cost of a Lambda function execution is calculated based
on the number of requests, runtime duration, and memory
allocation [4]. In return, the cloud platform provides the
compute power, source code storage, server configuration,
deployment, networking, and scaling solutions to meet their
clients’ demands [5]. Therefore, it would be beneficial to
conduct systematic benchmarking which explores which of
the supported programming languages performs the quickest,
thus having the lowest operational cost. Additionally, a market
which is experiencing rapid growth may require continued
re-evaluation to assess up to date adjustments such as new,
custom hardware, and the latest cost optimisation techniques
[6]. This will allow professional software engineers to hobbyist
coders to obtain the best results through performance and cost.

There is insufficient, holistic systematic benchmarking aside
from sprawled blog posts. The intention of this paper is to
compare the programming language performance in different
operational configurations on the AWS Lambda platform in
order to contribute to the research space in a manner which
facilitates reproducibility and validity.

II. BACKGROUND

The following briefly expounds on the cloud computing
nomenclature aforementioned, and explains the tools used to
conduct the study.

A. The Appeal of Cloud Computing

There is currently no scientific consensus surrounding the
definition of cloud computing, albeit there are similarities in
terminology used by major providers to describe their cloud
services.

”Cloud computing is the on-demand delivery of compute
power, database storage, applications, and other IT resources
through a cloud services platform via the internet with pay-
as-you-go pricing.” - Amazon Web Services [7]

”In cloud computing, the capital investment in building
and maintaining data centers is replaced by consuming IT
resources as an elastic, utility-like service from a cloud
“provider” (including storage, computing, networking, data
processing and analytics, application development, machine
learning, and even fully managed services).” - Google Cloud
[8]

”Serverless computing is the abstraction of servers, infras-
tructure, and operating systems. When you build serverless
apps you don’t need to provision and manage any servers, so
you can take your mind off infrastructure concerns. Serverless
computing is driven by the reaction to events and triggers
happening in near-real-time—in the cloud. As a fully man-
aged service, server management and capacity planning are
invisible to the developer and billing is based just on resources
consumed or the actual time your code is running.” - Microsoft
Azure [9]

Cloud providers generally highlight four components in
what makes their services appealing: [7]

• Auto scaling. Users will no longer have to estimate their
capacity needs. As the number of requests increase, the
cloud provider will provision the needed resources as
deemed necessary. No bottlenecking.

• Provision servers in a matter of seconds. Users will no
longer need to manage expensive, monolithic infrastruc-
ture. Users can now re-direct that capital investment into
other sectors to benefit their customers.

• Economies of Scale. By aggregating many users in the
cloud, providers are able to exploit this resource pooling
to achieve lower prices for their users.

• Pay-as-you-go pricing. Only pay for the compute re-
sources you consumed. Many enterprises only utilise
approximately 20% of their IT infrastructure. This idle
time is costly, now the capital spent on compute resources
is efficiently utilised [10].

B. AWS Lambda

As aforementioned, Lambda is the Function as a Service
platform provided by Amazon Web Services which allows
users to deploy event-driven code, and is the sole benchmark-
ing environment of this study.

1) Language Support: AWS Lambda currently supports the
following languages: Node.js (JavaScript), Python, Java (Java
8 compatible), C# (.NET Core), and Go.

2) Tools for Deployment and Testing:
• Serverless Framework. The Serverless Framework, ac-

cording to their documentation, is a “CLI tool that
allows users to build & deploy auto-scaling, pay-per-
execution, event-driven functions.” The framework cur-
rently supports 8 cloud providers where Amazon Web
Services is one of them. CLI support allows the user to
control everything from function creation to deployment
to logging [11].

• API Gateway. Amazon API Gateway is a service which
allows you to create, publish, maintain and monitor APIs.
It will act as a gateway to run code on AWS Lambda
or any other web application. The cost is determined by
number of API calls and the amount of data consumed.

• Artillery. Artillery is a CLI load testing toolkit which
offers a number of ways to test your services. There
are quick tests where you can test a service through a
URL with specific parameters such as how many requests
and how many virtual users are sending those requests.

Users can also run scripted tests which can achieve more
complex behaviour.

• CloudWatch. Amazon provides its own monitoring ser-
vice named CloudWatch which includes a wide array of
tools to monitor the usage of your cloud resources. Tools
can be used for gathering metrics, logging, and creating
alarms.

3) AWS Lambda Resource Model: The Lambda resource
model primarily revolves around the amount of memory
allocated. Once function-specific configurations, for example,
memory size, and environment variables are published, these
settings are immutable for that version of the function [12].
AWS Lambda provisions compute power proportional to the
memory allocation by applying the same ratio as a general
purpose Amazon EC2 (Elastic Compute Cloud) instance type.
A memory allocation of 256MB (megabyte) will net you
twice the CPU power than if the function specified a 128MB
allocation [13]. As aforementioned, the function-specific con-
figurations are immutable, and must be re-configured if you
wish to increase memory size. AWS Lambda allows increases
in memory size in increments of 64MB, ranging from 128MB
to 3008MB [14].

III. RELATED WORK

The book titled “AWS Lambda: A Guide to Serverless
Microservices” by Matthew Fuller [15] is to be used as a
reference to Lambda concepts which will be supplemented
by the official AWS Lambda documentation to ensure its
relevance [16]. The two parameters this paper will examine in
relation to language performance are: workload input size, and
memory allocation. In the following section, we will overview
the findings of related research and their approach to the
solution domain.

Lynn et al. [1] discuss how FaaS has shown to increase
cost-efficiencies by reducing configuration and management
overheads, speed up the application and scale both ways as
necessary depending on traffic. The most noteworthy property
is the new business model where users of Lambda only pay
on a per request basis [17], rather than paying a recurring fee
regardless of use. The former business model, set up correctly,
can provide a much more competitive price for users of FaaS
platforms.

To run code in the cloud you must produce runnable
artefacts that can be uploaded and deployed as a Lambda
function. It has been empirically evaluated by Puripunpinyo
& Samadzadeh that the size of a software artefact has an
impact on the execution speed of the Lambda function as it
will increase the duration of time required for it to be loaded
into memory [18].

Cloud-based services must constantly juggle optimisation
between power consumption and performance, therefore many
platforms employ different optimisation techniques such as
the cold start. A cold start is required if a function has gone
through a period of inactivity where a new request will now
require additional startup time, thus incurring additional over-
head in terms of performance. Puripunpinyo & Samadzadeh

[18] demonstrate the benefits of reducing software artefact size
in Java to decrease startup duration.

Singh et al. discusses how different performance evaluation
approaches such as solving factorial or recursive calculations
may affect language performance due to their language classi-
fication and low-level implementation. For example, a factorial
computation strains the static memory allocation and this may
have a more apparent effect on certain languages such as C++
and C# based on their memory management [19].

The research findings of Lynn et al. and Puripunpinyo &
Samadzadeh note problems inherent to using Lambda. Lynn
et al. mention optimisations techniques that can be done while
Puripunpinyo & Samadzadeh lay out potential solutions to
problems such as the deployment artefact size affecting the
load and the cold start time. As demonstrated by reducing
the deployment artefact [18], one can observe a noticeable
increase in performance. Techniques to reduce the size of the
artefact such as shrinking the artefact by transformation of the
code, removing unnecessary code, obfuscation and minifica-
tion. Compression of the artefact can also be done. A technique
to reduce cold start times is to keep the containers warm by
calling them frequently. This is a practice recommended by
AWS [20]. The solution works well, however, the problem
remains when the function needs to scale because the container
must be reinitialized. Puripunpinyo & Samadzadeh note that
for this case it is important to keep the artefact size as low
as possible because this is the only factor that can reduce
the cold start time. One of the main advantages of using
serverless architectures is the freedom of not configuring any
infrastructure. Even though creating functions on the AWS
Lambda platform is relatively simple, it can be a hassle to
manage a lot of them. As a result, the Serverless Framework
[11] has been developed to make the deployment to FaaS
platforms even easier. We will be using this framework to
simplify and automate our deployment process. Also, Yan
Cui discusses [21] Artillery.io [22] as a great toolkit for load
testing, which can also be used to measure the performance
of Lambda functions as previously discussed in the ”Tools
for Deployment and Testing” sub-section of the background
section.

IV. RESEARCH METHODOLOGY

This section will discuss the research questions, and the
methodology employed in the study design. Lastly, it will
detail the threats to validity.

A. Research Questions

The study consists of one primary research question (RQ1)
and its derived sub-questions (SQ1-2).

RQ1: How do the supported programming languages per-
form on the AWS Lambda serverless platform?

SQ1: How do the different memory configurations affect
the languages’ performance?

SQ2: How does workload input size affect the performance?

B. Benchmark Design

The study has selected a quantitative research approach to
explore the aforementioned research questions as it is the most
applicable in observing the execution time of the Lambda
functions. Cloud performance benchmarking is a tedious ac-
tivity given the amount of preparation time needed to set up
a benchmark for deployment. Therefore, in order to make it
easier to work with Lambda and facilitate the benchmarking
process, we have chosen to use the Serverless Framework [11]
which provides the user with a number of tools to simplify the
deployment process to FaaS platforms. In addition to using the
Serverless Framework, we have developed a number of scripts
to further ease our data collection. As there are variables
that need to be adjusted, it is essential that scripts and tools
function as fluid as possible to automate multiple facets of
the study in order to negate potential error-prone tasks were
it to be done manually. The variables that need to be adjusted
accordingly are the following: the memory configuration for
the function and the array size. The sorting algorithm used to
sort the unsorted array has been extracted from Rosetta Code
[23]. Rosetta Code is a programming chrestomathy archive
which aims to provide similar solutions to the same task in
different programming languages. Listings 1 and 2 provide a
couple of examples of solutions given by Rosetta Code. This
study will benchmark all the supported languages except Go
due to time constraints.

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
{

i n t [] nums = {2 , 4 , 3 , 1 , 2} ;
A r r ay s . s o r t (nums) ;

}
}

Listing 1. Java Integer Array Sort Example

u s i n g System ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;

p u b l i c c l a s s Program {
s t a t i c vo id Main () {

i n t [] u n s o r t e d = {6 , 2 , 7 , 9} ;
Array . S o r t (u n s o r t e d) ;

}
}

Listing 2. C# Integer Array Sort Example

The executable code is uploaded and deployed as a Lambda
function by use of the Serverless Framework. The memory
allocation is defined in the serverless.yml configuration file
which is packaged with each function. The memory allocation
value is then defined by an environment variable. By altering
the environment variable and re-deploying the function, the
new memory allocation value will be applied. The benchmark-
ing process employs a script that we use to automatically build

and deploy each function to our AWS Lambda account, this
automation is key to saving time in a time-consuming task
as the deployment process is repetitive throughout the study.
Furthermore, as we are using a sole function per language,
these functions consist of generating a random integer array
with the desired array size along with their respective sorting
algorithm extracted from Rosetta Code. We originally intended
to create arrays of differing sizes where we would then insert
the data into each function with the aim of having the same
array data for each language using their respective sorting
algorithm. The problem we faced was that this approach limits
the array size to around 15,000 integers for some languages.
A class or method can only make up a certain size which
was easily exceeded with our intended array sizes. Due to
time constraints, we chose to populate the arrays with random
integers from 0 up to the desired array size. Our tests showed
that this approach did not give us a major variance in results,
although it is a confounding variable. The testing process
is repeated with different memory allocation: 128, 512, and
1024MB. For each memory size, the benchmark proceeds with
an array size of 0 and is incremented by 5,000 after each
invocation until the array size reaches 1,000,000. This is the
planned range due to a timeout issue concerning Amazon API
Gateway as there is a limit for how large the array sizes could
be. The reason for this is that we use the API Gateway to
call our Lambda functions, where we would pass the desired
array size as a parameter in the request. AWS has chosen to
put a limit of 30 seconds on each request made to their API
Gateway, which means that our array sizes could not exceed
a million integers. It could work for the compiled languages,
however, the interpreted languages perform slower for larger
input sizes. Therefore, there was a need for a common array
size ceiling where we could benchmark all languages to an
upper bound where none of the Lambda functions would
timeout.

Once Lambda functions are deployed, the Serverless Frame-
work client returns a URL that you can use to call the function.
We then use Artillery [22] to simulate a user request. In order
to simplify and automate the testing process, a script was
employed for this purpose. By running our main script, it runs
four testing instances that call the URL of each language with
the array size parameter starting from 0 and incrementing by
5000 until reaching 1,000,000 per the timeout limit restricted
by the API Gateway. We then repeat this process with different
memory configurations in order to conduct a quantitative data
collection. Ultimately, this research will analyse the acquired
data to conduct a comparison of the runtime performance
of each language in different configurations. All tests were
performed on the AWS Lambda (N.Virginia) region.

C. Benchmark Data and Analysis

Once the data collection process has been completed, the
benchmark data is then exported from CloudWatch to a CSV
(comma-separated values) format to then be manipulated in
RStudio. This study employed a combination of RStudio
[24] and CloudWatch for its statistical analysis and data

visualisation. All software artefacts produced such as scripts,
Lambda functions, and configuration files are available on a
public GitHub repository [25].

D. Validity Evaluation

Studies which conduct quantitative analysis must strive to
achieve a degree of validity in order to claim substantive
arguments and ensure research quality.

1) Construct Validity: Threats regarding construct validity
concern the relationship between theory and observation. Em-
pirical studies with a high level of construct validity ensures
that the measured variables are relevant to answering the
proposed research questions. To ensure that the correct metrics
were measured, this study made use of built-in monitoring and
logging tools officially supported by AWS Lambda such as
CloudWatch.

2) Internal Validity: Internal validity is the measurement
of the casual relationship produced by a study with regard to
the magnitude of confounding influences. The generation of
random integers to be used as our main dataset will be a con-
founding variable. A confounding variable of the algorithms
extracted from Rosetta Code may be that the solutions are
not the most optimal, thus do not show the full capabilities
of a language, however, these generic solutions are the ones
currently accepted by the community.

3) External Validity: This form of validity concerns the
research’s capabilities to generalise and extend the study
beyond the scope of the findings. All languages were tested
against a generic integer array sorting algorithm which is a
commonplace in the programming world, however, it may not
be entirely representative of a language’s overall performance.

V. RESULTS AND DISCUSSION

The following section addresses the results of the bench-
mark which is arranged according to the research questions
presented in the research methodology section.

1) How do the different memory configurations affect the
languages’ performance? (SQ1)

TABLE I
AWS LAMBDA BENCHMARK

Language Memory Size (MB) SD. (ms) Mean (ms) Median (ms)
Python 128 5457.40 8842.45 8909.79
Python 512 1625.73 2383.40 2449.63
Python 1024 652.36 942.99 895.73

Java 128 640.39 1051.88 966.50
Java 512 94.95 156.21 145.35
Java 1024 46.83 87.23 85.18

Node.js 128 4605.92 7584.17 7684.71
Node.js 512 1093.38 1669.75 1739.90
Node.js 1024 626.78 931.01 869.94

C# 128 446.38 703.68 691.26
C# 512 117.55 173.93 167.61
C# 1024 55.70 83.48 78.35

TABLE II
AWS LAMBDA BENCHMARK - PART 2

Language Memory Size (MB) Total (s) Maximum (ms) 95th (ms) 99th (ms)
Python 128 5329 18432.25 16955.94 17915.35
Python 512 1430 5267.25 4867.08 5120.91
Python 1024 565 2100.53 1988.42 2087.64

Java 128 638 3343.51 2148.03 2673.10
Java 512 132 476.28 303.63 391.71
Java 1024 53 216.44 162.71 173.21

Node.js 128 4550 16459.30 14892.62 15780.43
Node.js 512 1371 3718.96 3382.19 3649.70
Node.js 1024 558 2207.72 1978.63 2069.95

C# 128 428 1611.12 1397.34 1521.31
C# 512 106 417.12 381.45 404.09
C# 1024 50 213.91 171.72 199.19

Fig. 1. Python Benchmark - 128, 512, 1024MB

TABLE III
PYTHON - PERCENTUAL REDUCTION IN EXECUTION TIME

Memory→Memory (MB) Percentual Reduction in Execution Time
128→ 512 73%

128→ 1024 89%
512→ 1024 60%

The following can be extracted from the Python results
regarding different memory sizes. There is a significant
increase in performance in tandem with increasing mem-
ory size. Table 3 shows that a memory increase from 128
to 512MB results in a 73% reduction in duration, and
a jump to 1024MB obtains an 89% reduction. A move
from 512 to 1024MB resulted in a 60% reduction in
invocation time. Furthermore, a memory size of 512 or
1024MB gives the user more consistent performance as
demonstrated in Figure 1.

Fig. 2. Java Benchmark - 128, 512, 1024MB

TABLE IV
JAVA - PERCENTUAL REDUCTION IN EXECUTION TIME

Memory→Memory (MB) Percentual Reduction in Execution Time
128→ 512 79%
128→ 1024 92%
512→ 1024 60%

The Java benchmark results find a preference to higher
memory allocation. Table 4 enumerates a noticeable per-
formance increase from 128 to 1024MB which resulted
in a 92% reduction in duration. A large performance
increase was also found when switching from 128 to
512MB which saw a 79% reduction. As seen in Figure 2,
the memory size of 128MB resulted in a larger variance
in performance when compared to its 512 and 1024MB
counterparts.

Fig. 3. C# Benchmark - 128, 512, 1024MB

TABLE V
C# - PERCENTUAL REDUCTION IN EXECUTION TIME

Memory→Memory (MB) Percentual Reduction in Execution Time
128→ 512 75%
128→ 1024 88%
512→ 1024 53%

The C# benchmark resulted in similar performance im-
provements. Table 5 reveals that a configuration change
from 128 to 512MB saw a 75% reduction. Moreover,
128 to 1024MB obtained a 88% change while a jump
from 512 to 1024MB met diminishing results and im-
proved by a lesser 53%.

Fig. 4. Node.js Benchmark - 128, 512, 1024MB

TABLE VI
NODE.JS - PERCENTUAL REDUCTION IN EXECUTION TIME

Memory→Memory (MB) Percentual Reduction in Execution Time
128→ 512 70%

128→ 1024 88%
512→ 1024 59%

Following the Node.js tests as provided by Figure 4 and
Table 6, a reduction of 75% was realised when switching
from 128 to 512MB. A larger reduction of 88% can also
be found when increasing the memory size from 128 to
1024MB. 512→ 1024 resulted in a 53% reduction.
Overall, all languages experienced performance im-
provements when configuring a larger memory size as
expected and stated by Amazon Web Services [12].
However, languages such as Java reaped the greatest
benefit with higher memory allocation both in per-
formance and consistency. A Java function memory
allocation of 128MB resulted in worse, inconsistent
performance in comparison to other languages which
did not experience such a large variance in performance
while having the same memory size.

2) How does workload input size affect the performance?
(SQ2)

Fig. 5. Python, Java, Node.js, C# - 128MB

Fig. 6. Python, Java, Node.js, C# - 512MB

Fig. 7. Python, Java, Node.js, C# - 1024MB

Fig. 8. C# vs. Java - 1024MB

As we gauge how the workload size in terms of array
input size influences the languages’ performance, Java and
C# consistently outperform Python and Node.js across all
memory sizes. According to Table 1, for 128MB, Java and
C# had a median execution time of 1051.88ms and 703.68ms
respectively. Comparatively, Python and Node.js obtain much
larger durations of 8842.45 and 7584.17ms. C# performs
the best at the lowest memory allocation. Furthermore, Java
sees a performance increase when configured to 512MB and
beats out C# on average. At the highest memory allocation
of 1024MB, C# outperforms Java with the largest input
size taking a duration of 213.91ms while achieving lower
median and mean duration times compared to Java which
took 216.44ms for the largest input as seen in Table 2. As
the memory sizes increase, both Python and Node.js perform
relatively better, however, Java and C# outperform again.
Moreover, it is important to note that Python benefits more
at the largest memory allocation of 1024MB in comparison to
Node.js as they now both see similar performance in Figure
7 when before Node.js had a considerable advantage over
Python under the other memory sizes as seen in Figures 5 and
6. Ultimately, it may be possible to categorise the languages
into interpreted and compiled languages. Interpreted languages
such as Python and Node.js encountered higher execution
times than the compiled languages of Java and C#.

VI. CONCLUSION

The main objective of this thesis was to conduct a bench-
mark and evaluate the performance of the following lan-
guages on the AWS Lambda platform: C#, Java, Node.js,
and Python. Additionally, tools to facilitate and ease testing
and deployment were employed. The Serverless Framework
aided development and deployment of functions. It allows
for local test functions, and provides automated deployment
to the chosen platform. Also, monitoring and logging tools
such as Amazon’s CloudWatch, and Artillery.io were applied
to the data collection process. Initially, the research focused
on how memory allocation affected the languages’ perfor-
mance, therefore an investigation was performed on three
memory configurations: 128, 512, 1024MB. All languages saw

increases in performance when allocated more than 128MB
of memory. A move from 128 to 512MB saw improvements
ranging from 70-79%. Moreover, a memory increase from 128
to 1024MB would result in performance increases ranging
from 88-92%. The Java language benefited the most of all
languages in this change which obtained a 92% reduction
in execution time. A configuration from 512 to 1024MB
saw diminished improvements where languages’ execution
time were reduced 53-60%. The second portion of the study
revolved around how workload input size would impact the
languages’ performance. The end results presented that Java
and C# invariably outperformed the other languages by a large
extent with C# leading the benchmark at configurations of
128 and 1024MB, however, Java became the front runner at
512MB.

Future work of this thesis could include a repeat of the
research methodology with the inclusion of the Go language,
or other new language additions to the AWS Lambda platform.

ACKNOWLEDGEMENT

We would like to thank our supervisor, Joel Scheuner, for
his time and valuable feedback.

REFERENCES

[1] Lynn, Rosati, Lejeune, and Emeakaroha, “A preliminary review of
enterprise serverless cloud computing,” 2017 IEEE 9th International
Conference on Cloud Computing Technology and Science, p162-163,
2017.

[2] ——, “A preliminary review of enterprise serverless cloud computing,”
2017 IEEE 9th International Conference on Cloud Computing Technol-
ogy and Science, p162, 2017.

[3] S. B. May Al-Roomi, Shaikha Al-Ebrahim and I. Ahmad, “Cloud
computing pricing models: A survey,” 2013 International Journal of
Grid and Distributed Computing, p99, 2013.

[4] ——, “Cloud computing pricing models: A survey,” 2013 International
Journal of Grid and Distributed Computing, p95, 2013.

[5] R. W. Wei-Tsung Lin, Chandra Krintz and M. Zhang, “Tracking causal
order in aws lambda applications,” 2018 IEEE International Conference
on Cloud Engineering, p50-51, 2018.

[6] “Cost optimization.” [Online]. Available: https://aws.amazon.com/
pricing/cost-optimization/ [Accessed: 24-Mar-2018].

[7] “What is cloud computing?” [Online]. Available: https://aws.amazon.
com/what-is-cloud-computing/ [Accessed: 08-May-2018].

[8] “What is cloud computing?” [Online]. Available: https://cloud.google.
com/what-is-cloud-computing/ [Accessed: 08-May-2018].

[9] “What is serverless computing?” [Online]. Available: https:
//azure.microsoft.com/en-us/overview/serverless-computing/ [Accessed:
08-May-2018].

[10] “Aws re:invent 2017: Getting started with
serverless computing using aws lambda.” [Online].
Available: https://www.slideshare.net/AmazonWebServices/
getting-started-with-serverless-computing-using-aws-lambda-ent332-reinvent-2017
[Accessed: 08-May-2018].

[11] “Serverless framework documentation.” [Online]. Available: https:
//serverless.com/framework/docs [Accessed: 24-Mar-2018].

[12] “Environment variables.” [Online]. Available: https://docs.aws.amazon.
com/lambda/latest/dg/env variables.html [Accessed: 08-May-2018].

[13] “Amazon ec2 instance types.” [Online]. Available: https://aws.amazon.
com/ec2/instance-types/ [Accessed: 08-May-2018].

[14] “Configuring lambda functions.” [Online]. Available: https://docs.aws.
amazon.com/lambda/latest/dg/resource-model.html [Accessed: 08-May-
2018].

[15] M. Fuller, AWS Lambda: A Guide to Serverless Microservices. Amazon
Digital Services LLC, 2016.

[16] “Aws lambda documentation.” [Online]. Available: https://aws.amazon.
com/documentation/lambda [Accessed: 24-Mar-2018].

[17] “Aws lambda pricing.” [Online]. Available: https://aws.amazon.com/
lambda/pricing [Accessed: 24-Mar-2018].

[18] Puripunpinyo and Samadzadeh, “Effect of optimizing java deployment
artifacts on aws lambda,” Computer Communications Workshops (IN-
FOCOM WKSHPS), p443, 2017.

[19] Singh, Shukla, Chandra, and Dixit, “Performance evaluation of program-
ming languages,” Innovations in Information, Embedded and Commu-
nication Systems (ICIIECS), p978-p979, 2017.

[20] A. Hornsby and N. Undén, “Getting started with aws lambda and the
serverless cloud,” AWS Stockholm Summit, 2016.

[21] “Comparing aws lambda performance when using node.js,

java, C# or python.” [Online]. Available: https://read.acloud.guru/
comparing-aws-lambda-performance-when-using-node-js-java-c-or-python-281bef2c740f
[Accessed: 24-Mar-2018].

[22] “Artillery - a modern load testing toolkit.” [Online]. Available:
https://artillery.io/ [Accessed: 24-Mar-2018].

[23] “Rosetta code.” [Online]. Available: http://www.rosettacode.org/wiki/
Sort an integer array [Accessed: 22-Apr-2018].

[24] “Rstudio.” [Online]. Available: https://www.rstudio.com/ [Accessed:
24-Mar-2018].

[25] “Aws lambda benchmark.” [Online]. Available: https://github.com/
cocohub/aws-lambda-benchmarking [Accessed: 22-May-2018].

