

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

A Comparative Case Study on Tools for
Internal Software Quality Measures

Bachelor of Science Thesis in Software Engineering and Management

MAYRA NILSSON

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

{A Comparative Case Study on Tools for Internal Software Quality Measures}

{MAYRA G. NILSSON }

© {MAYRA G. NILSSON}, June 2018.

Supervisor: {LUCAS GREN}{VARD ANTINYAN}
Examiner: {JENIFFER HORKOFF}

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover:
Generated image based on keywords used in this thesis.]

1

A Comparative Case Study on Tools for Internal
Software Quality Measures

Mayra Nilsson

The Gothenburg University
 Department of Computer Science

and Engineering
Software Engineering Division

Sweden
gussolma@student.gu.se

 Abstract — Internal software quality is measured
using quality metrics, which are implemented in static
software analysis tools. There is no current research on
which tool is the best suited to improve internal software
quality, i.e. implements scientifically validated metrics,
has sufficient features and consistent measurement
results. The approach to solve this problem was to find
academic papers that have validated software metrics
and then find tools that support these metrics,
additionally these tools were evaluated for consistency of
results and other user relevant characteristics. An
evaluation of the criteria above resulted in a
recommendation for the Java/C/C++ tool Understand
and the C/C++ tool QAC.

 Keywords — software metrics tools, static analysis
tools, metrics, attributes.

I. INTRODUCTION

 Software quality has been a major concern for as long as
software has existed [1]. Billing errors and medical fatalities
can be traced to the issue of software quality [2]. The
ISO/IE 9126 standard defines quality as “the totality of
characteristics of an entity that bears on its ability to satisfy
stated and implied needs” [3]. This standard categorizes
software into internal and external quality where internal
quality is related to maintainability, flexibility, testability,
re-usability and understandability and external quality is
related to robustness, reliability, adaptability and usability of
the software artefact. In other words, external quality is
concerned with what the end user will experience, and
internal quality is related to the development phase, which
ultimately is the ability to modify the code safely [38]. One
might argue that the customers point of view is the most
relevant, but since software inevitably needs to evolve and
adapt to an ever-changing environment internal quality is
essential. Unadaptable code can mean high maintenance
costs and could in extreme cases cause major rework [39].
The focus of this thesis is internal software quality metrics
and the tools used to measure them, specifically which
validated metrics are implemented in the tools, whether the
measurements for these metrics are consistent and if these

tools have enough support and integration capabilities to be
used daily.

 While much research has been conducted on internal
software quality metrics in the form of empirical studies,
mapping studies and systematic literature reviews [4] [5]
[6], very little research has been done on the tools that
implement these measures regarding their capabilities and
limitations. Lincke, Lundberg and Löwe [7] conducted a
study on software metric tools, which concludes that there
are variations regarding the output from different tools for
the same metric on the same software source. This indicates
that the implementation of a given metric varies from tool to
tool. The limitation of their study is that the metrics were
selected based on which metrics are generally available in
commonly used tools. The fact that the metrics are not
necessary scientifically validated limits its usefulness, since
practitioners cannot be certain that the metric actually
relates to internal software quality. Scientifically validated
means that an empirical study has been conducted that
concludes that a given metric can predict an external
software quality attribute, where an external attribute can for
example be maintainability, fault proneness or testability.
Empirical validation is done by studying one or several
metrics on iterations of source code and using statistical
analysis methods to determine if there is a significant
relationship between a metric and an external attribute.
Basili et al [4] conducted such a study on 8 separate groups
of students developing a system based on the same
requirements. For each iteration of the software the metrics
were studied to see if they could predict the faults that were
found by independent testing.

 Briand et al [35] define empirical validation of a metric
as “The measure has been used in an empirical validation
investigating its causal relationship on an external quality
attribute”. An external quality attribute is a quality or
property of a software product that cannot be measured
solely in terms of the product itself [35]. For instance, to
measure maintainability of a product, measurement of
maintenance activities on the product will be required in
addition to measurement of the product itself [35]. This is
only possible once the product is close to completion.
Internal quality metrics are used to measure internal quality

2

attributes like complexity or cohesion, which can be
measured on the code itself at an early stage in a project.
The value of validating an internal quality metric in regard
to an external attribute is that they can then be used to
predict the external attribute at an early stage in the project.

 Many different static software metric tools are used for
commercial purposes, but the choice of which tools to use is
not based on the scientific validity of the measures but
rather on how popular these measures are and whether they
are recommended by external standards, for instance
MISRA or ISO 9126. To the best of the author’s knowledge
there is no scientific study which investigates the existing
tools and provides knowledge on their adequacy of use in
terms of validity of measures, coverage of programming
languages, supported operating systems, integration
capabilities, documentation and ease of adoption and use.
The aim of this thesis is therefore to identify studies that
validate internal software metrics and provide an overview
of the tools that support validated internal quality measures
in order to support decision making regarding which tool or
combination of tools would be suitable for a given situation.
To make this information accessible, a checklist was
developed where the identified tools are classified according
to the metrics that they support. Additionally, knowledge is
provided regarding the consistency of the measurements in
the selected tools. The consistency is evaluated based on the
measurement results from using these tools on different sets
of open source code projects. To address the research
problem the following research question was formulated:

Which are the key internal code quality measures in
available tools that could help practitioners to improve
internal quality?

In order to answer the above stated question, the following
sub questions were answered:

 RQ1 Which are the most validated internal quality

measures according to existing scientific studies?
 RQ 2 Which are the tools that support these

measures and also have high availability in terms
of cost, coverage of programming languages, user
interface, supported operating systems, integration
capabilities and available documentation?

 RQ 3 To what extent are these tools consistent in
conducting measurements on a set of open source
projects?

II. LITERATURE REVIEW

 Internal software quality is related to the structure of the
software itself as opposed to external software quality which
is concerned with the behaviour of the software when it is in
use. The end user of the software will obviously be
concerned with how well the software works when it is in
use. The structure of the software is not visible to the end
user but is still of immense importance since it is commonly
believed that there is a relationship between internal
attributes (e.g., size, complexity cohesion) and external
attributes (e.g., maintainability, understandability) [8]. In

addition, the availability of software testing is not the same
for external and internal attributes. External quality is
limited to the final stages of software development, whereas
testing for internal quality is possible from the early stages
of the development cycle, hence internal quality attributes
have an important role to play in the improvement of
software quality. The internal quality attributes are
measured by means of internal quality metrics [9].
According to Lanza and Marinescu [10] software metrics
are created by mapping a particular characteristic of a
measured entity to a numerical value or by assigning it a
categorical value. Over the last past 40 years, a significant
number of software metrics have been proposed in order to
improve internal software quality. Unfortunately, it is
difficult to analyse the quality of these metrics because of a
lack of agreement upon a validation framework, however
this has not stopped researchers from analysing and
evaluating metrics [11]. There are a significant number of
metrics available to assess software products, for instance a
mapping study on source code metrics by Nuñez-Varela et
al. [12] shows that there are currently 300 metrics based on
the 226 papers that were studied.

Metrics can be valid for all programming languages, but
some apply only to specific programming paradigms and the
majority can be classified as Traditional or Object Oriented
Metrics (OO) [13] [14]. Considering the popularity of object
oriented metrics, it is not surprising that most of the
validation studies concentrate on OO [15] [16]. Basili et al.
[4], conducted an experimental investigation on OO design
metrics introduced by Chidamber & Kemerer to find out
whether or not these metrics can be used as predictors for
fault-prone classes. The results showed that WMC
(Weighted Method Count), DIT (Depth of Inheritance of a
class), NOC (Number of Children of a Class), CBO
(Coupling Between Objects), RFC (Response for a Class)
and LCOM (Lack of Cohesion of Methods) are useful to
predict class fault-proneness in early development phases.
The same results were obtained by Krishnan et al. [17]. In
2012 Yeresime [18] performed a theoretical and empirical
evaluation on a subset of the traditional metrics and object
oriented metrics used to estimate a systems reliability,
testing effort and complexity. The paper explored source
code metrics such as cyclomatic complexity, size, comment
percentage and CK Metrics (WMC, DIT, NOC, CBO, RFC
LCOM). Yeresime’s studies concluded that the
aforementioned traditional and object oriented metrics
provide relevant information to practitioners in regard to
fault prediction while at the same time provide a basis for
software quality assessment. Jabangwe et al. [19] in their
systematic literature review which focused mainly on
empirical evaluations of measures used on object oriented
programs concluded that the link from metrics to reliability
and maintainability across studies is the strongest for: LOC
(Lines of Code), WMC McCabe (Weighted Method Count),
RFC (Response for a Class) and CBO (Coupling Between
Objects). This topic was later also studied by Ludwig et al.
[20] and Li et al. [21]. Antinyan, et al. [22] proved in their
empirical study on complexity that complexity metrics such
as McCabe cyclomatic complexity [23], Halstead measures
[24], Fan-Out, Fan-In, Coupling Measures of Henry &
Kafura [25], Chidamber & Kemerer OO measures [26] Size

3

measure [27] and Readability measures [28] [29] correlate
strongly to maintenance time. They also suggested that more
work is required to understand how software engineers can
effectively use existing metrics to reduce maintenance
effort. In 2017 Alzahrani and Melton [30] defined and
validated client-based cohesion metrics for OO classes, they
performed a multivariate regression analysis on fourteen
cohesion metrics applying the backwards selection process
to find the best combination of cohesion metrics that can be
used together to predict testing effort, the results revealed
that LCOM1 (Lack of Cohesion of Methods 1) LCOM2
(Lack of Cohesion of Methods 2), LCOM3 (Lack of
Cohesion of Methods 3) and CCC (Client Class Cohesion)
are significant predictors for testing effort in classes [31].
The empirical validation of OO metrics on open source
software for fault prediction carried out by Gyimothy et al.
[16] on Mozilla and its bug database Bugzilla shows that
CBO (Coupling between Objects), LOC (Lines of Code)
and LCOM (Lack of Cohesion on Methods) metrics can
predict fault-proneness of classes. The empirical validation
of nine OO class complexity metrics and their ability to
predict error-prone classes in iterative software development
performed by Olague et al. [32] has shown that WMC,
WMC McCabe among others can be used over several
iterations of highly iterative or agile software products to
predict fault-prone classes.

 In 2010 Al Dallal [33] mathematically validated sixteen
class cohesion metrics using class cohesion properties, as a
result only TCC (Tight Class Cohesion), LCC (Loose Class
Cohesion) [34], DC(D) (Degree of Cohesion-Direct), DC(I)
(Degree of Cohesion-Indirect), COH (Briand Cohesion) [35]
and ICBMC (Improve Cohesion Based on Member
Connectivity) [36, 37] were considered valid from a
theoretical perspective, he concluded that all the other
metrics studied need to be revised otherwise their use as
cohesion indicators is questionable.

III. RESEARCH METHOD

 In order to answer research question 1 a review of
previous work on software metrics validation was done. The
main goal was to elicit the validated internal quality
measures based on scientific studies. There are two types of
validation, theoretical and empirical [35]. For the following
sections only empirical studies will be considered, since this
is considered to be the most relevant form of validation [35].
After selecting the empirically validated metrics, tools were
found that support these metrics and they were tested for
consistency on an open source code bases.

Step 1: Searching and identification of relevant papers

 To perform the search of relevant papers related to the
topic the online database SCOPUS1 was used to identify
relevant research papers, the subject area was restricted to
Engineering and Computer Science, the string below was
built based on keywords as well as synonyms defined for the

1 https://www.scopus.com

study. Since the main purpose was to find reliable scientific
text and metadata only digital libraries and international
publishers of scientific journals such as Google Scholars2,
IEEE Digital Library 3 , Science Direct 4 , Springer 5 and
Engineering Village6 were used as sources.

 validated OR verification of internal quality OR code
quality OR software quality AND internal metric OR

metrics OR software metrics OR code metrics OR measure
OR measuring AND tools OR metrics tools

 After the search 567 articles were found (Fig. 1) many of
which were irrelevant for the purpose of this paper.

Fig 1 Pie chart showing types and percentage of papers found

 A second search was done to narrow down the search
and this time the following string was used:

validated AND evaluation AND internal AND
quality OR code AND quality OR software AND

quality OR internal AND
metric OR metrics OR software AND

metrics OR code AND
metrics OR measure OR measuring OR tools OR m

etrics AND tools AND (EXCLUDE (SUBJAREA
, "MEDI") OR EXCLUDE (SUBJAREA , "BIOC"

) OR EXCLUDE (SUBJAREA , "ENVI") OR
EXCLUDE (SUBJAREA , "CHEM") OR EXCLUDE (

SUBJAREA , "AGRI") OR EXCLUDE (
SUBJAREA, "PHYS") OR EXCLUDE (SUBJAREA

, "SOCI"))

 The result of the second search was 292 papers related to
the topic.

Step 2: The analysis of papers

2 https://scholar.google.se/
3 http://www.springer.com
4 http://ieeexplore.ieee.org
5 http://www.sciencedirect.com
6 https://www.engineeringvillage.com

4

 The 292 scientific papers and articles found in step 1
were assessed according the following criteria:

Inclusion Criteria

I1 Papers published in a Journal or Conference
I2 Papers that present studies on empirical validation

or verification of internal quality or software
metrics.

Exclusion Criteria

E1 Papers that are not written in English
E2 Papers that do not have internal metrics context and

do not provide scientific validation of internal
quality metrics.

Table 1 Inclusion and Exclusion criteria

 The output from this step resulted on a list of 13 relevant
research papers verifying or validating internal software
metrics. This metrics were categorized into Traditional
(LOC, McCabe, etc) and Object Oriented (OO) (coupling,
cohesion and inheritance).

Step 3: Selection of validated metrics

 The goal of this step was to select the metrics that have
been validated. A total number of 29 metrics that have one
or more papers that supported them were selected. In order
to reduce the risk that a metric has been incorrectly
validated only metrics that have been validated at least twice
were considered. Out of the 29 metrics with one or more
papers supporting them a subset of 18 metrics were found
that have two or more papers supporting them. The
complete list of the validated metrics and the subset selected
and used is shown in Table 3 and Table 4 respectively.

Step 4: Selection of tools

 For the selection of the tools, a free search on internet
was conducted. The main criteria was that the tools should
calculate any type of static analysis. As a result, 130 tools
were found (Appendix A).
After the initial search the tools were chosen according the
following criteria:

Criteria The tool should be able to

C1 Support static analysis
C2 Run one or more of the metrics established in

Table 4
C3 Be open source, freeware or commercial tool with

a trail option
C4 Support programs written in C/C++ or Java
C5 Support system integration to IDEs, Continuous

Integration, Version Control or Issue Tracker Tools
C6 Provide documentation such as user manual and

installation manual

Table 2 Tools selection criteria

 As a result, 8 tools were selected for this thesis: QAC7,
Understan 8 , CPPDepend 9 , SourceMeter 10 , SonarQube 11 ,
Eclipse Metrics Plugin12, CodeSonar13 and SourceMonitor14.

Step 5: Selection of code source

 The tools were tested on two different Github open
source projects, one written in Java and one written in
C/C++. Github provides a large variety of open source
software projects written in different programming
languages. The following criteria was applied when
selecting a source:

 The source needs to be written in one single
programming language, either C or Java.

 The source needs to be able to compile in their
respective environment.

 Because of the limited licenses of some
commercial tools the maximum size needs to be
less than 10 000 lines of code

 The projects were chosen randomly given the constraints

stated above.

Step 6: Consistency of test results

 In this step open source code was analysed by the tools
selected in step 5 regarding the metrics selected in step 4.
During this phase the tools are divided into two groups,
firstly Eclipse Metrics, SourceMonitor, SonarQube and
Understand are tested using Java and QA-C and CPPDepend
using C. The output from this step is a matrix with tool,
metric, and the measurement results.

IV. RESULTS

A. Selection of metrics

 In this section the results obtained from the search for
internal quality metrics is presented. A total number of 292
papers on internal software quality were found. Based on the
inclusion and exclusion criteria described in Table 1,
Section III, 13 research papers were selected for this study.

 After narrowing down the number of scientific papers an
in-depth analysis of each was performed and a preliminary
table with the 29 metrics found in these papers was created
(Table 3).

7 https://www.qa-systems.com
8 https://scitools.com
9 https://www.cppdepend.com
10 https://www.sourcemeter.com
11 https://www.sonarqube.org
12 eclipse-metrics.sourceforge.net
13 https://www.grammatech.com
14 www.campwoodsw.com

5

Metric No. of paper

1 Weight Methods per Class 9

2 Lack of Cohesion on Methods 8

3 Depth of Inheritance 8

4 Response for Classes 8

5 Number of Classes 8

6 Coupling Between Objects 7

7 Tight Class Cohesion 5

8 Loose Class Cohesion 4

9 Lines of Code 4

10 McCabe Complexity 3

11 Lack of Cohesion on Methods 2 3

12 Lack of Cohesion on Methods 3 2

13 Lack of Cohesion on Methods 1 2

14 Degree of Cohesion (Direct) 2

15 Degree of Cohesion (Indirect) 2

16 Fan-Out Fan-In 2

17 Number of Methods 2

18 Weight Methods per Class (MacCabe) 1

19 Standard Deviation Method Complexity 1

20 Average Method Complexity 1

21 Maximum CC of a Single Method of a Class 1

22 Number of Instance Methods 1

23 Number of Trivial Methods 1

24 Number of send Statements defined in a Class 1

25 Number of ADT defined in a Class 1

26 Sensitive Class Cohesion 1

27 Improved Connection Based on Member Connectivity 1

28 Lack of Cohesion on Methods 4 1

29 Number of Attributes 1

Table 3 List of found validated metrics in literature

 To reduce the risk of incorrectly validated metrics an
additional condition of 2 supporting papers was imposed.
This resulted in a final selection of 18 metrics as shown in
Table 4.

Metric Attribute Paper

1 Lack of Cohesion on Methods Cohesion [4][15][16][17][18]
[19][21][30]

2 Depth of Inheritance Inheritance [4][5][15][16][17]
[18][19][21]

3 Response for Classes Coupling [4][5][15][16][17]
[18][19][21]

4 Coupling Between Objects Coupling [4][5][15][16][17]
[18][19]

5 Number of Classes Inheritance [4][5][15][16][17]
[18][19][21]

6 Weight Methods per Class Complexity [4][5][15][16][17]
[18][19][21][32]

7 Lines of Code Size [5][15][16][19]

8 Number of Methods Size [5][21]

9 McCabe Complexity Complexity [5][18][32]

10 LCOM1 Cohesion [19][30]

11 LCOM2 Cohesion [5][19][30]

12 LCOM3 Cohesion [19][30]

13 LCOM4 Cohesion [30]

14 Loose Class Cohesion Cohesion [5][30][33][34]

15 Tight Class Cohesion Cohesion [5][19][30][33][34]

16 Fan- Out Fan-In Coupling [5][15]

17 Degree of Cohesion (Direct) Cohesion [30][33]

18 Degree of Cohesion (Indirect) Cohesion [30][33]

Table 4 List of metrics and corresponding attributes

B. Selection of Tools

 Research question 2 is concerned with which tools
support the validated measures and in addition have other
characteristics that make them easy to adopt. In total there
are over 130 commercial and non-commercial tools (see
Appendix A) that claim to support one or several of the
validated metrics in Table 4. No tool was found that
supports all of the metrics in table 4, which meant finding
tools that support as many of the validated metrics as
possible. A preliminary search of the prospects for each tool
indicated that several metrics were supported, but a deeper
analysis of the technical documentation showed this was this
was not always the case, since some metrics were not in the
trial versions or were supported, but under a different name
than in table 4. The aim of this paper is to aid practitioners
to improve the quality of their code, so given that there are
several tools that support the same metrics additional criteria
can be imposed to find the most useful tools. These criteria
are integration capabilities to IDEs, version control
systems, continuous integration and issue tracker systems,
etc. In addition, the availability and quality of

6

documentation was also considered. A table representing
such information was created (Table 6). An additional
limitation was that most of the commercial tools trial
versions did not allow for a full evaluation since reports
generated by the tools could not be saved, printed or
exported and not all metrics or features supported were
available. Moreover, some of them required legal binding
contracts for the trial as well as written clarification of the
purpose and the context in which the tool´s reports will be
used. Applying all these constraints on the tools narrowed
the selection down to 6 as shown in Table 5. A list with a
detailed description of the metrics per tool is presented in
Appendix B

Tool Description

QA-C Is a commercial static code analysis software tool for the C and
C++ language. It performs in-depth analysis on source code
without executing programs. It provides analysis and reports on
internal software measurements, data flow problems, software
defects, languages implementation, errors, inconsistencies,
dangerous usage and coding standards violations according to
regulations for MISRA, ISO 26262, CWE and CERT. It supports
66 internal metrics divided into File Based Metrics and Function
Based Metrics.

Understand Is a commercial code exploration and metrics tool for Java, C,
C++, C#. It supports 102 different standard metrics.

CPPDepend Is a commercial static analysis tool for C and C++. The tool
supports 40 code metrics, allows the visualization of dependencies
using directed graphs and dependency matrix. It also performs
code base snapshots comparisons, and validation of architectural
and quality rules. The metrics are divided into Metrics on Fields,
Metrics on Methods, Metrics on Types, Metrics on Namespaces,
Metrics on Assemblies and Metrics on Applications.

SonarQube SonarQube, formerly Sonar, is an open source and commercial
platform for continuous inspection of code quality. It performs
automatic reviews with static analysis of code to detect bugs,
conduct code smells and security vulnerabilities on 20+
programming languages It offers reports on duplicated code,
coding standards, unit tests, code coverage, code complexity,
comments, bugs, and security vulnerabilities. It supports 59
metrics.

Eclipse Metrics
Plugin version
1.0.9

Is a free code analysis plugin that calculates various code metrics
during build cycles and warns via the problems view of range
violations for each metric. This allows for continuous code
inspections. It Is able to export metrics to HTML for public display
or to CSV format for further analysis. It supports 28 different
metrics.

Source
Monitor

Is an open source and freeware program for static code analysis it
calculates method and function level metrics for C++, C, C#,
VB.NET and Java. It displays and prints metrics in tables and
charts, including Kiviat diagrams and exports metrics to XML or
CSV (comma-separated-value) files. It supports 12 metrics.

Table 5 Description of Selected Tools

 Table 6 shows which characteristics are supported by
which tool. In this table support is indicated by either 1 or 0,
where 1 means that the tool supports this sub-characteristic
and 0 means this it is not supported. The total score at the
bottom of the table is an arithmetic average of the sub-
characteristics per tool.

B. Selection of Source Code

The selection of the source code was done according to the
criteria set out in the research method section, the following
projects were used:

 E-grep 15 project written in C/C++, this is an

acronym for Extended Global Regular Expressions
Print. It is a program which scans a specified file
line by line, returning lines that contain a pattern
matching a given regular expression.

 Java-DataStructures 16 project written in Java it
contains various algorithms for the implementation
of the different types of sorting data structures.

Table 6 Tools Characteristics and Scores

C. Comparative tests

Research question 3 concerns to which degree the tools
produce consistent results. For this purpose, each of the
tools was tested on the selected source and for each metric a
measurement was obtained. However, issues regarding
naming conventions was a major concern during the testing
phase, the names of the metrics vary from tool to tool and
they do not necessarily match the names used in the research
papers. Out of the 18 validated metrics found only 9 metrics

15 https://github.com/garyhouston/regexp.old
16 https://github.com/TheAlgorithms/Java/

7

were identified and tested. The tools were selected because
they stated in their prospects that they support all 18
metrics, but during testing of the trail versions and analysis
of the technical documentation it became apparent that only
9 were actually available. This could either be due to
incorrect documentation or limitations in the trail versions.
Table 7 shows the measurement results from the four
selected tools for Java. Source code metrics can typically be
measured on entities such as project, file or
function/method. For the purpose of this thesis the project
entity was selected since it would otherwise be impossible
to present any results. Table 7 would at a file level have
been a matrix of 648 cells (9 metrics * 18 files * 4 tools =
648). In addition, not all of the tools support representation
on file or method level, at least not for the trial versions
used for this thesis.

JAVA Eclipse Source
Monitor

Understand SonarQube

LCOM NA NA 2.38 NA

DIT 1.34 2.09 1.53 NA

RFC NA NA 1.12 NA

CBO NA NA 2 NA

NOC 7 NA 8 NA

LOC 1310 1310 1310 1328

NOM 1.14 2.82 NA NA

CC 2.75 2.43 2.43 8.4

FI-FO NA 3 2.6 NA

Table 7 Average Number of validated Metrics on the Tools for Java

In the same way for C/C++ project out of the 18 validated
metrics selected only 2 were found, LOC and CC. See Table
8

Table 8 Average Number of validated Metrics on the Tools for C
LOC 7642 includes the compiler files.

V. DISCUSSION

 If software development departments could to a larger
degree base their testing on scientifically validated metrics
and only acquire tools that are easy to adopt and use, then an
increase in internal software quality could most likely be
achieved. The aim of this thesis is therefore to find validated
internal measures and tools that support these measures in a
consistent manner, while meeting availability criteria such
as coverage of programming languages, user interface,
supported operating systems, integration capabilities and
available documentation. The academic community has
proposed a large number of metrics and several of these

have also been validated, however, the academic studies on
these metrics is somewhat unevenly distributed, some
metrics have received much more attention than others.
Metrics such as WMC have been studied in 9 different
papers, followed by LOCM, DIT, RFC and NOC with 8 and
CBO with 7. The other 23 metrics have been studied to a
lesser extent.

 Unfortunately, the currently available tools either do not
support all of the validated metrics or they use names which
do not match the ones used in academic papers. This
situation is confusing and could indeed slow down the
adoption of metric testing. A practitioner that is not
academically inclined may well select a tool and start using
it and only later find that adapting the code based on
measurements from these metrics does little or nothing to
improve the quality of software, which may cause them to
abandon this type of testing. The tools themselves leave a
lot to be desired regarding basic user friendliness. During
the testing phase the author faced a considerable number of
technical issues and the documentation is often
questionable. It requires a lot of time to set up the tool
environment and get them to working correctly. Most of
them had specific technical requirements for the pieces of
code that are to be tested, for instance, some tools were not
able to start the analysis without a Build, Cmake or Visual
studio project file. Several tools required a specific
hardware in order to use their servers to run the static code
analysis, however none of this is explicitly mentioned in
their documentation. SourceMeter had to be excluded
because it was not able to execute on the demonstration
code that was included with the installation files, despite
following every instruction in detail. Some of the tools
require a working build chain in order to function and some
do not, which can lead to issues if for instance one source
requires VisualStudio10 and another requires
VisualStudio15 and they cannot co-exist on the same
machine. In summary none of these tools are easy to use and
this is a real hurdle to overcome if these tools are to be
adopted. There are also big differences between the
commercial and free tools, where the commercial tools offer
an overwhelming level of detail and the free tools can be
somewhat less detailed reports. See Appendix C.

 Another issue with the tools is that they do not always
support reporting results on the same level. The
measurements can be reported on entities such as project,
file or function/method level, but not all tools support this.
The most relevant level would normally be function/method
level since this level can be assigned to a developer or a
team for tracking and improvement. To compare the metrics
across the tools a project level view had to be adopted since
this was the smallest possible denominator. On the positive
side the metrics that can be compared. i.e. the metrics that
are supported by more than one of the tools showed a fairly
good consistency as shown in Table 9 and 10. One
exception is Cyclomatic Complexity, where SonarQube has
project level complexity of 8.4 and the other tools calculate
a complexity of about 2.5. Possibly this is related to how
these averages are calculated. For Eclipse, SourceMonitor
and Understand the complexity is calculated by the tools.

C QA-C CPPDepend

LOC 2680 (7462) 1183

CC 10.6 (10.6) 9.61

8

For SonarQube the average was calculated manually by
adding the complexity of each file and dividing by the
number of files. It is not clear how the other tools have
calculated their complexity. In order to get a better
understanding of the differences CC was analysed on a file
level and even here there were still differences between the
tools, but not as substantial. The maximum complexity for
Sonarqube was 16 and the minimum was 1 For Eclipse 12/2,
Source Monitor 12/1 and Understand 12/1. This indicates
that the average calculation for SonarQube differs from the
other tools in some way and that the difference is not mainly
caused by different definitions of complexity. The other
exception is LOC for CCPDepend, which calculates 1183
lines of code and QAC calculated 2680. A count of the
actual lines of code in a text editor showed that the correct
LOC is 2680 and not 1183.

JAVA Average Standard deviation

DIT 1,715 0,375

NOC 7,500 0,500

LOC 1314,500 7,794

NOM 1,98 0,840

CC 2,8 0,200

Table 9 Average and standard deviation for Java

C Average Standard deviation

LOC 1931 748.5

CC 10,105 0,495

Table 10 Average and standard deviation for c

 Of the tools tested Understand covers the most metrics,
has sufficient documentation, supports both C/C++ and Java
and is easy to use. QAC offers the most detailed reports, has
good documentation and excellent support, but only
supports C/C++. Both of these tools also support project,
file and function level views and offer high levels of
integration. The results from these two tools are also
consistent with each other. The objective score for
characteristics presented in table 6 also indicates that these
are the two best tools. SourceMonitor is a third option for
practitioners that do not need the integration capabilities of
Understand and QAC or are not interested in using a
commercial tool. In summary QAC and Understand are the
two tools that can be highly recommended to practitioners.
There is however still room for improvement in both of
these tools, since only a portion of the validated metrics are
actually supported. Potentially there is a market gap for at
tool that actually focuses on metrics that have proper
scientific backing. Of the tools that were not recommended
CPPdepend has insufficient metric resolution, SonarQube
lacks metric support and Eclipse Metrics Plugin lacks metric
resolution and integration capabilities. These tools need to
address these issues if they tools are to be relevant for
practitioners.

VI. THREATS OF VALIDITY

 When performing a comparative case study, validity
issues might arise in the collected data whereby certain
assumptions made do not stand as true, compromising and
possibly invalidating the data. As such, this must be
avoided. During this study’s data collection process, the
following limitations have been considered and addressed as
discussed in this section.

A. Internal Validity

 Error in underlying papers, the validity of a metric is
established in other papers. In theory these results could be
incorrect, which could influence the result of this thesis. The
threat to validity for a specific metric can be assumed to be
lower the more independent validation studies have been
conducted. This threat is mitigated by the fact that 80 % of
the metrics are supported by 2 or more papers.

 Error on the search process, the searching was based on
a single indexing system (SCOPUS) where abstract, title
and keywords only were considered which could lead to the
omission or repetition of papers. This kind of limitation is
particularly difficult to tackle, the step taken in this case
study to challenge this threat is to ensure the search by using
two different search strings at the same time.

 Omission of relevant papers, as stated in the research
method section during the initial search 567 papers were
found, but many of these were not relevant to this thesis as
they also included papers about medicine, biochemistry,
environmental science, chemistry, agriculture, physics or
social science. The reason for these papers being found by
the search is presumably that the keywords “metrics”,
“software” and “validation” are common to many scientific
papers. In the second search the subject areas above were
excluded and as a result 292 papers were found. After
examining the abstracts 13 papers were actually found to be
relevant to this thesis. Theoretically there could be a paper
were a researcher has looked into validation of a software
metric in for instance the chemical industry, but in that case,
it would be fair to assume that the author in that case should
have marked his research as “SOFT” instead of “CHEM”
for SCOPUS. It is also possible that a researcher did
validation work on metrics in the software field but omitted
this from the abstract. This can be considered to be unlikely.
It is also possible that the author missed a paper while
looking through the 292 abstracts. There is also a risk that
the search strings were incorrectly defined.

B. External Validity

 Non-representative source code, if the code selected for
this study is not representative of the main population of
source codes then the results from this thesis would not be
valid in a wider context. This threat is mitigated by choosing
a large open source code base. The assumption being that a
large source will contain more variation than a small source
and should therefore provide a more representative result.
Using open source code means that other researchers can

9

check the results if they were so inclined. The source code
size was limited to 100 000 lines due to trial limitations of
certain tools. It is theoretically possible that very large and
typically commercial source would have given different
results.

 Bias regarding code selection. In theory there could be a
difference in the results between sources from different
areas. For example, code written for the military or for
medical use might differ from open source code. These
differences cannot be evaluated, since no such sources are
available.

 Bias regarding naming conventions. Unfortunately, each
tool can use names for metrics that do not match the names
used in academic papers, which leads to a mapping problem,
which if done incorrectly could be a threat to validity.

VII. CONCLUSIONS

 There are several internal software quality metrics
proposed by the research community for facilitating a better
design of software. These metrics are supported in a variety
of available internal quality measurement tools. While the
metrics and their validity are relatively well-documented in
the literature, there is little research on which tools are
suitable for measurements in terms of cost, availability,
integrity, system support, and measurement consistency.
This thesis identified validated metrics in the literature,
selected a range of tools that support these metrics and
tested these tools for the properties stated above. Of the
tools tested Understand covers most metrics, has sufficient
documentation, supports both C/C++ and Java and is easy to
use. QA-C offers the most detailed reports, has good
documentation and excellent support, but only supports
C/C++. Both of these tools support project, file and function
level views and offer high levels of integration. The results
from these two tools are consistent with each other. These
are the two tools that can be recommended to practitioners.
The other tools that were not recommended had various
issues.

 CPPdepend has insufficient metric resolution,
SonarQube lacks metric support and Eclipse Metrics Plugin
lacks metric resolution and integration capabilities. These
tools need to address these issues if they tools are to be
relevant for practitioners. SourceMonitor needs better
integration options, but it could still be of interest for
practitioners that do not need the integration capabilities of
QA-C or Understand and do not want to use a commercial
tool. A topic for further study would be to verify the metrics
used by the tools in table 6 against the validated metrics in
table 4. The tools do not always use the same names for
metrics as found in academic papers, which means that the
mathematical definitions need to be compared in order to
define the number of supported metrics per tool.

 REFERENCES

[1] G.G Schulmeyer, J.I. McManus Handbook of Software Quality
Assurance (2nd ed.). 1992. . Van Nostrand Reinhold Co., New York,
NY, USA.

[2] N. G. Leveson and C. S. Turner. 1993. An Investigation of the
Therac-25 Accidents. Computer 26, 7 (July 1993), 18-4.

[3] ISO/IEC 9126-1:2001 Software engineering - Product quality. Web
https://www.iso.org/standard/22749.html

[4] V. R. Basili, L. C. Briand and W. L. Melo, "A validation of object-
oriented design metrics as quality indicators," in IEEE Transactions
on Software Engineering, vol. 22, no. 10, pp. 751-761, Oct 1996.

[5] M. Santos, P. Afonso, P. H. Bermejo and H. Costa, "Metrics and
statistical techniques used to evaluate internal quality of object-
oriented software: A systematic mapping," 2016 35th International
Conference of the Chilean Computer Science Society (SCCC),
Valparaíso, 2016, pp. 1-11.

[6] A. B. Carrillo, P. R. Mateo and M. R. Monje, "Metrics to evaluate
functional quality: A systematic review," 7th Iberian Conference on
Information Systems and Technologies (CISTI 2012), Madrid, 2012,
pp. 1-6.

[7] R. Lincke, J. Lundberg, and W. Löwe. 2008. Comparing software
metrics tools. In Proceedings of the 2008 international symposium on
Software testing and analysis (ISSTA '08).

[8] L. C. Briand, S. Morasca and V. R. Basili, "Property-based software
engineering measurement," in IEEE Transactions on Software
Engineering, vol. 22, no. 1, pp. 68-86, Jan 1996.

[9] MJ. Ordonez, H.M. Haddad.” The State of Metrics in Software
Industry”. Fifth International Conference on Information Technology:
New Generations, April 2008 Page(s):453 - 458

[10] M. Lanza, Marinescu, R., 2016. “Object Oriented Metrics in
Practice”. Springer Berlin Heidelberg, Berlin, Heidelberg.

[11] A. Nunez-Varela, H. Perez-Gonzales, J.C. Cuevas-Trello,
Soubervielle-Montalvo, “A methodology for Obtaining Universal
Software Code Metrics”. The 2013 Iberoamerican Conference on
Electronics Engineering and Computer Science. Procedia Technology
7(2013)336-343.

[12] A. Nuñez-Varela, Pérez-Gonzalez, Héctor G., Martínez-Perez,
Francisco E., Soubervielle-Montalvo, Carlos, “Source code metrics:
A systematic mapping study”, Journal of Systems and Software
1281641972017 2017/06/01/ 0164-1212.

[13] Shepperd, M. J. & Ince, D., 1993. Derivation and Validation of
Software Metrics. Clarendon Press, Oxford, UK.

[14] N. Fenton, S. L. Pfleeger, 1977. Software Metrics, A Rigorous and
Practical Approach. 2nd ed. International Thomson Computer Press.

[15] Saraiva, J. de A.G, de França, Micael S., Soares, Sérgio C.B., Filho,
Fernando J.C.L., Souza, Renata M.C.R., 2015. “Classifying metrics
for assessing Object-Oriented Software Maintainability: A family of
metrics catalogs”. Journal of Systems and Software Vol 13, Pages 85-
101. Informatics Center, Federal University of Pernambuco, Brasil.

[16] T. Gyimothy, R. Ferenc and I. Siket, "Empirical validation of object-
oriented metrics on open source software for fault prediction," in
IEEE Transactions on Software Engineering, vol. 31, no. 10, pp. 897-
910, Oct. 2005.

[17] M. S. Krishnan, R. Subramanyam, "Empirical analysis of CK metrics
for object-oriented design complexity: implications for software
defects," in IEEE Transactions on Software Engineering, vol. 29, no.
4, pp. 297-310, April 2003.

[18] S. Yeresime,, J. Pati,, S. Rath,, “Effectiveness of Software Metrics
for Object-oriented System”, Procedia Technology 6-420- 427- 2012-
2012/01/01/- 2nd International Conference on Communication,
Computing & Security [ICCCS-2012]- 2212-0173.

[19] S. Jabangwe, J. Börstler, D. Šmite,. et al. Empirical evidence on the
link between object-oriented measures and external quality attributes:
a systematic literature review (2015) 20: 640.
https://doi.org/10.1007/s10664-013-9291-7.

[20] J. Ludwig, S. Xu and F. Webber, "Compiling static software metrics
for reliability and maintainability from GitHub repositories," 2017
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Banff, AB, 2017, pp. 5-9.

[21] W. Li, S. Henry. “Object-oriented metrics that predict
maintainability”. Journal of Systems and Software, Volume 23, Issue
2, 1993. Pages 111-122. ISSN 0164-1212.

[22] Antinyan, V., Staron, M., Sandberg, A., "Evaluating code complexity
triggers, use of complexity measures and the influence of code
complexity on maintenance time",Empirical Software Engineering,

2017, Dec 01. Volume 22, 6. Pages 3057— 3087.

10

[23] T. J. McCabe. 1976. A Complexity Measure. IEEE Trans. Softw. Eng.
2, 4 (July 1976), 308-320.

[24] Halstead MH (1977) Elements of Software Science (Operating and
programming systems series). Elsevier Science Inc.

[25] Henry S, Kafura D (1981) Software structure metrics based on
information flow. IEEE Trans Softw Eng 5:510–518

[26] Chidamber SR, Kemerer CF (1994) A metrics suite for object-
oriented design. IEEE Trans Softw Eng 20(6):476–493

[27] Antinyan V et al. (2014) Identifying risky areas of software code in
Agile/Lean software development: An industrial experience report.
2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering, (CSMR-
WCRE), IEEE.

[28] Tenny T (1988) Program readability: Procedures versus comments.
IEEE Trans Softw Eng 14(9):1271–1279

[29] Buse RP, Weimer WR (2010) Learning a metric for code readability.
IEEE Trans Softw Eng 36(4):546–558

[30] J. Al Dallal and L. C. Briand, “A Precise Method-Method Interaction
Based Cohesion Metric for Object-Oriented Classes,” ACM Trans.
Softw. Eng. Methodol., vol. 21, no. 2, pp. 1–34, 2012.

[31] M. Alzahrani and A. Melton, "Defining and Validating a Client-
Based Cohesion Metric for Object-Oriented Classes," 2017 IEEE 41st
Annual Computer Software and Applications Conference
(COMPSAC), Turin, 2017, pp. 91-96.

[32] Olague, H. M., Etzkorn, L. H., Messimer, S. L. and Delugach, H. S.
(2008), An empirical validation of object‐oriented class complexity
metrics and their ability to predict error‐prone classes in highly

iterative, or agile, software: a case study. J. Softw. Maint. Evol.: Res.
Pract., 20: 171-197.

[33] J Al Dallal. (2010) Mathematical validation of object-oriented class
cohesion metrics. International Journal of Computers, 4 (2) (2010),
pp. 45-52 .

[34] J. M. Bieman and B. Kang, Cohesion and reuse in an object-oriented
system, Proceedings of the 1995 Symposium on Software reusability,
Seattle, Washington, United States, pp. 259-262, 1995

[35] L. C. Briand, J. Daly, and J. Wuest, A unified framework for cohesion
measurement in object-oriented systems, Empirical Software
Engineering - An International Journal, Vol. 3, No. 1, 1998, pp.
65117.

[36] Y. Zhou, B. Xu, J. Zhao, and H. Yang, ICBMC: An improved
cohesion measure for classes, Proc. of International Conference on
Software Maintenance, 2002, pp. 44-53.

[37] J. Alghamdi, Measuring software coupling, Proceedings of the 6th
WSEAS International Conference on Software Engineering, Parallel
and Distributed Systems, p.6-12, February 16-19, 2007, Corfu Island,
Greece.

[38] D. Nicolette, (2015). Software development metrics. Page 90.
[39] S. Freeman, N. Pryce. 2009. Growing Object-Oriented Software,

Guided by Tests (1st ed.). Addison-Wesley Professional. Page 10.

Appendix A

Language Tools

Multi
Language (48)

APPscreener,Application Inspector, Axivion Bauhaus Suite, CAST, Checkmarx,Cigital , CM evolveIT,
Code Dx , Compuware, ConQAT, Coverity , DefenseCode ThunderScan, Micro Focus, Gamma,
GrammaTech, IBM Security AppScan, Facebook Infer , Imagix 4D, Kiuwan, Klocwork, LDRA Testbed,
MALPAS, Moose, Parasoft, Copy/Paste Detector (CPD), Polyspace, Pretty Diff, Protecode, PVS-Studio,
RSM, Rogue Wave Software, Semmle, SideCI , Silverthread, SnappyTick (SAST), SofCheck Inspector,
Sonargraph, SonarQube, Sotoarc, SourceMeter, SQuORE, SPARROW, Understand, Veracode, Yasca,
Application Analyzer, CodeMR.

.NET (9)
.NETCompilerPlatform, CodeIt.Right, CodePush, Designite, FXCop, NDepend, Parasoft, Sonargraph,
StyleCop

Ada (8) sPARK Toolset, AdaConstrol, CodePeer, Fluctuat, LDRA Testbed, Polypace, SoftCheck Inspector

C, C++ (25)
AdLint, Astreé, Axivion Bauhaus Suite, BLAST, Cppcheck, cpplint, Clang, Coccinelle, Coverity,
Cppdepend, ECLAIR, Eclipse, Flawfinder, Fluctuat, Frama-C, Goanna, Infer, Lint, PC-Lint, Polyspace,
PRQA QA C, SLAMproject, Sparse, Splint, Visual Studio

Java (16)
Checkstyle, ErrorProne, Findbugs, Infer, Intellij IDEA, Jarchitect, Jtest,PMD,SemmleCode, Sonargraph,
Sonargraph Explorer, Soot, Spoon, Squale, SourceMeter, ThreadSafe, Xanitizer

JAvaScript (6) DeepScan, StandrdJS, ESLint, Google Closure Compiler, JSHint, JSLint

Perl (5) Perl-Critic, Devel:Cover, PerlTidy, Padre, Kritika

PHP (4) Progpilot, PHPPMD, RIPS, Phlint

Phyton (5) Bandit, PyCharm, PyChecker, Pyflackes, Pylint

Ruby (4) Flay, Flog, Reek, RuboCop

Appendix B

SourceMonitor

Measures Name Measure definition

Number Of Files Number of Files

Number of Lines of Code
Number of code lines of the method, with or without
including empty lines (Specificatins are done when creating
the project)

Number of Statements Number of statement of the code

Porcentage of Branches Number of Branches of the code

Number of Calls Number of calls performed in the code

11

Number of Classes Number of classes defined

Number of Methods/Class Number of methods and classes

Average Statements/ Methods Average number of statements and methods

Max Complexity Maximal complexity

Max Depth Maximal depth of a branch

Average Depth Average depth of a branch

Average Complexity Average Complexity

UNDERSTAND

Measure ID
Measures Name

Measure definition

AltAvgLineBlank
Average Number of Blank Lines (Include

Inactive)
Average number of blank lines for all nested functions or
methods, including inactive regions.

AltAvgLineCode
Average Number of Lines of Code (Include

Inactive)
Average number of lines containing source code for all
nested functions or methods, including inactive regions.

AltAvgLineComment
Average Number of Lines with Comments

(Include Inactive)
Average number of lines containing comment for all
nested functions or methods, including inactive regions.

AltCountLineBlank Blank Lines of Code (Include Inactive) Number of blank lines, including inactive regions.

AltCountLineCode Lines of Code (Include Inactive)
Number of lines containing source code, including inactive
regions.

AltCountLineComment Lines with Comments (Include Inactive)
Number of lines containing comment, including inactive
regions.

AvgCyclomatic Average Cyclomatic Complexity
Average cyclomatic complexity for all nested functions or
methods.

AvgCyclomaticModified Average Modified Cyclomatic Complexity
Average modified cyclomatic complexity for all nested
functions or methods.

AvgCyclomaticStrict Average Strict Cyclomatic Complexity
Average strict cyclomatic complexity for all nested
functions or methods.

AvgEssential Average Essential Cyclomatic Complexity
Average Essential complexity for all nested functions or
methods.

AvgEssentialStrictModified
Average Essential Strict Modified

Complexity
Average strict modified essential complexity for all nested
functions or methods.

AvgLine Average Number of Lines
Average number of lines for all nested functions or

methods.

AvgLineBlank Average Number of Blank Lines
Average number of blank for all nested functions or

methods.

AvgLineCode Average Number of Lines of Code
Average number of lines containing source code for all

nested functions or methods.

AvgLineComment Average Number of Lines with Comments
Average number of lines containing comment for all

nested functions or methods.

CountClassBase Base Classes Number of immediate base classes. [aka IFANIN]

CountClassCoupled Coupling Between Objects
Number of other classes coupled to. [aka CBO (coupling

between object classes)]

CountClassDerived Number of Children
Number of immediate subclasses. [aka NOC (number of

children)]

CountDeclClass Classes Number of classes.

CountDeclClassMethod Class Methods Number of class methods.

CountDeclClassVariable Class Variables Number of class variables.

CountDeclFile Number of Files Number of files.

CountDeclFunction Function Number of functions.

CountDeclInstanceMethod Instance Methods Number of instance methods. [aka NIM]

CountDeclInstanceVariable Instance Variables Number of instance variables. [aka NIV]

CountDeclInstanceVariableInternal Internal Instance Variables Number of internal instance variables.

CountDeclInstanceVariablePrivate Private Instance Variables Number of private instance variables.

CountDeclInstanceVariableProtected Protected Instance Variables Number of protected instance variables.

12

CountDeclInstanceVariableProtectedInternal Protected Internal Instance Variables Number of protected internal instance variables.

CountDeclInstanceVariablePublic Public Instance Variables Number of public instance variables.

CountDeclMethod Local Methods Number of local methods.

CountDeclMethodAll Methods
Number of methods, including inherited ones. [aka RFC

(response for class)]

CountDeclMethodConst Local Const Methods Number of local const methods.

CountDeclMethodDefault Local Default Visibility Methods Number of local default methods.

CountDeclMethodFriend Friend Methods Number of local friend methods. [aka NFM]

CountDeclMethodInternal Local Internal Methods Number of local internal methods.

CountDeclMethodPrivate Private Methods Number of local private methods. [aka NPM]

CountDeclMethodProtected Protected Methods Number of local protected methods.

CountDeclMethodProtectedInternal Local Protected Internal Methods Number of local protected internal methods.

CountDeclMethodPublic Public Methods Number of local public methods. [aka NPRM]

CountDeclMethodStrictPrivate Local strict private methods Number of local strict private methods.

CountDeclMethodStrictPublished Local strict published methods Number of local strict published methods.

CountDeclModule Modules Number of modules.

CountDeclProgUnit Program Units
Number of non-nested modules, block data units, and

subprograms.

CountDeclProperty Properties Number of properties.

CountDeclPropertyAuto Auto Implemented Properties Number of auto-implemented properties.

CountDeclSubprogram Subprograms Number of subprograms.

CountInput Inputs
Number of calling subprograms plus global variables read.

[aka FANIN]

CountLine Physical Lines Number of all lines. [aka NL]

CountLineBlank Blank Lines of Code Number of blank lines. [aka BLOC]

CountLineBlank_Html Blank html lines Number of blank html lines.

CountLineBlank_Javascript Blank javascript lines Number of blank javascript lines.

CountLineBlank_Php Blank php lines Number of blank php lines.

CountLineCode Source Lines of Code Number of lines containing source code. [aka LOC]

CountLineCodeDecl Declarative Lines of Code Number of lines containing declarative source code.

CountLineCodeExe Executable Lines of Code Number of lines containing executable source code.

CountLineCode_Javascript Javascript source code lines Number of javascript lines containing source code.

CountLineCode_Php PHP Source Code Lines Number of php lines containing source code.

CountLineComment Lines with Comments Number of lines containing comment. [aka CLOC]

CountLineComment_Html HTML Comment Lines Number of html lines containing comment.

CountLineComment_Javascript Javascript Comment Lines Number of javascript lines containing comment.

CountLineComment_Php PHP Comment Lines Number of php lines containing comment.

CountLineInactive Inactive Lines Number of inactive lines.

CountLinePreprocessor Preprocessor Lines Number of preprocessor lines.

CountLine_Html HTMLLines Number of all html lines.

CountLine_Javascript Javascript Lines Number of all javascript lines.

CountLine_Php PHP Lines Number of all php lines.

CountOutput Outputs
Number of called subprograms plus global variables set.

[aka FANOUT]

CountPackageCoupled Coupled Packages Number of other packages coupled to.

CountPath Paths
Number of possible paths, not counting abnormal exits or

gotos. [aka NPATH]

13

CountPathLog Paths (Log10x)
Log10, truncated to an integer value, of the metric

CountPath

CountSemicolon Semicolons Number of semicolons.

CountStmt Statements Number of statements.

CountStmtDecl Declarative Statements Number of declarative statements.

CountStmtDecl_Javascript Javascript Declarative Statements Number of javascript declarative statements.

CountStmtDecl_Php PHP Declarative Statements Number of php declarative statements.

CountStmtEmpty Empty Statements Number of empty statements.

CountStmtExe Executable Statements Number of executable statements.

CountStmtExe_Javascript Javascript Executable Statements Number of javascript executable statements.

CountStmtExe_Php PHP Executable Statements Number of php executable statements.

Cyclomatic Cyclomatic Complexity Cyclomatic complexity.

CyclomaticModified Modified Cyclomatic Complexity Modified cyclomatic complexity.

CyclomaticStrict Strict Cyclomatic Complexity Strict cyclomatic complexity.

Essential Essential Complexity Essential complexity. [aka Ev(G)]

EssentialStrictModified Essential Strict Modified Complexity Strict Modified Essential complexity.

Knots Knots Measure of overlapping jumps.

MaxCyclomatic Max Cyclomatic Complexity
Maximum cyclomatic complexity of all nested functions

or methods.

MaxCyclomaticModified Max Modified Cyclomatic Complexity
Maximum modified cyclomatic complexity of nested

functions or methods.

MaxCyclomaticStrict Max Strict Cyclomatic Complexity
Maximum strict cyclomatic complexity of nested functions

or methods.

MaxEssential Max Essential Complexity
Maximum essential complexity of all nested functions or

methods.

MaxEssentialKnots Max Knots
Maximum Knots after structured programming constructs

have been removed.

MaxEssentialStrictModified Max Essential Strict Modified Complexity
Maximum strict modified essential complexity of all

nested functions or methods.

MaxInheritanceTree Depth of Inheritance Tree Maximum depth of class in inheritance tree. [aka DIT]

MaxNesting Nesting Maximum nesting level of control constructs.

MinEssentialKnots Minimum Knots
Minimum Knots after structured programming constructs

have been removed.

PercentLackOfCohesion Lack of Cohesion in Methods
100% minus the average cohesion for package entities.

[aka LCOM, LOCM]

RatioCommentToCode Comment to Code Ratio Ratio of comment lines to code lines.

SumCyclomatic Sum Cyclomatic Complexity
Sum of cyclomatic complexity of all nested functions or

methods. [aka WMC]

SumCyclomaticModified Sum Modified Cyclomatic Complexity
Sum of modified cyclomatic complexity of all nested

functions or methods.

SumCyclomaticStrict Sum Strict Cyclomatic Complexity
Sum of strict cyclomatic complexity of all nested functions

or methods.

SumEssential Sum Essential Complexity
Sum of essential complexity of all nested functions or

methods.

SumEssentialStrictModified Sum Essential Strict Modified Complexity
Sum of strict modified essential complexity of all nested

functions or methods.

Eclipse Metrics Plugin

Measures Name
Measure definition

Number of Classes
Total number of classes in the selected scope

Number of Children
Total number of direct subclasses of a class. A class implementing an interface
counts as a direct child of that interface

Number of Interfaces
Total number of interfaces in the selected scope

Depth of Inheritance Tree (DIT)
Distance from class Object in the inheritance hierarchy.

14

Number of Overridden Methods (NORM)

Total number of methods in the selected scope that are overridden from an
ancestor class. Here you can control whether to count abstract methods,
methods that call the inherited implementation (through use of super.[same-
method] call). Certain methods that are supposed to be overridden can be
excluded explicitly (like toString, equals and hashCode).

Number of Methods (NOM)
Total number of methods defined in the selected scope

Number of Fields
Total number of fields defined in the selected scope

Lines of Code

since version 1.3.6 Lines of code has been changed and separated into: TLOC:
Total lines of code that will counts non-blank and non-comment lines in a
compilation unit. usefull for thoses interested in computed KLOC. MLOC:
Method lines of code will counts and sum non-blank and non-comment lines
inside method bodies

Specialization Index
Average of the specialization index, defined as NORM * DIT / NOM. This is a
class level metric

McCabe Cyclomatic Complexity

Counts the number of flows through a piece of code. Each time a branch
occurs (if, for, while, do, case, catch and the ?: ternary operator, as well as the
&& and || conditional logic operators in expressions) this metric is
incremented by one. Calculated for methods only. For a full treatment of this
metric see McCabe.

Weighted Methods per Class (WMC) Sum of the McCabe Cyclomatic Complexity for all methods in a class

Lack of Cohesion of Methods (LCOM*)

A measure for the Cohesiveness of a class. Calculated with the Henderson-
Sellers method (LCOM*, see page 147). If (m(A) is the number of methods
accessing an attribute A, calculate the average of m(A) for all attributes,
subtract the number of methods m and divide the result by (1-m). A low value
indicates a cohesive class and a value close to 1 indicates a lack of cohesion
and suggests the class might better be split into a number of (sub)classes. I'm
unsure of the usefullness of this metric in Java since it penalizes the proper use
of getters and setters as the only methods that directly access an attribute and
the other methods using the gettter/setter methods. Perhaps I could alter the
implementation to take this into account, assuming standard JavaBean naming
conventions.

Afferent Coupling (Ca)
The number of classes outside a package that depend on classes inside the
package.

Efferent Coupling (Ce)
The number of classes inside a package that depend on classes outside the
package.

Instability (I)
Ce / (Ca + Ce)

Abstractness (A)
The number of abstract classes (and interfaces) divided by the total number of
types in a package

Normalized Distance from Main Sequence (Dn
| A + I - 1 |, this number should be small, close to zero for good packaging
design.

Design Size | Design Size in Class Total number of source classes.

Hierarchies | Number of Hierarchies (NOH) A count of the number of class hierarchies in the design.

Abstraction | Average Number of Ancestors (ANA) The average number of classes from which each class inherits information.

Encapsulation | Data Access Metrics (DAM)

The ratio of the number of private (protected) attributes to the total number of
attributes declared in the class. Interpreted as the average across all design
classes with at least one attribute, of the ratio of non-public to total attributes
in a class.

Coupling | Direct Class Coupling (DCC)

A count of the different number of classes that a class is directly related to.
The metric includes classes that are directly related by attribute declarations
and message passing (parameters) in methods. Interpreted as an average over
all classes when applied to a design as a whole; a count of the number of
distinct user-defined classes a class is coupled to by method parameter or
attribute type. The java.util.Collection classes are counted as user-defined
classes if they represent a collection of a user-defined class.

Cohesion | Cohesion Among Methods in Class (CAM)

Represents the relatedness among methods of a class, computed using the
summation of the intersection of parameters of a method with the maximum
independent set of all parameter types in the class. Constructors and static
methods are excluded.

Composition | Measure of Aggregation (MOA)

A count of the number of data declarations whose types are user-defined
classes. Interpreted as the average value across all design classes. We define
‘user defined classes’ as non-primitive types that are not included in the Java
standard libraries and collections of user-defined classes from the
java.util.collections package.

Inheritance | Measure of Functional Abstraction (MFA)

A ratio of the number of methods inherited by a class to the number of
methods accessible by member methods of the class. Interpreted as the average
across all classes in a design of the ratio of the number of methods inherited by
a class to the total number of methods available to that class, i.e. inherited and
defined methods.

Polymorphism | Number of Polymorphic Methods (NOP)

The count of the number of the methods that can exhibit polymorphic
behaviour. Interpreted as the average across all classes, where a method can
exhibit polymorphic behaviour if it is overridden by one or more descendent
classes.

Messaging | Class Interface Size (CIS)
A count of the number of public methods in a class. Interpreted as the average
across all classes in a design.

15

Complexity | Number of Methods (NOM)
A count of all the methods defined in a class. Interpreted as the average across
all classes in a design.

SonarQube

Measures Name
Measure definition

Complexity

It is the complexity calculated based on the number of paths through the code. Whenever the control flow of a
function splits, the complexity counter gets incremented by one. Each function has a minimum complexity of
1. This calculation varies slightly by language because keywords and functionalities do.

Cognitive Complexity

How hard it is to understand the code's control flow. See https://www.sonarsource.com/resources/white-
papers/cognitive-complexity.html for complete description of the mathematical model applied to compute this
measure.

Duplicated blocks

Number of duplicated blocks of lines. For a block of code to be considered as duplicated:Non-Java
projects:There should be at least 100 successive and duplicated tokens. 30 lines of code for COBOL 10 lines of
code for other languages Java projects: There should be at least 10 successive and duplicated statements
whatever the number of tokens and lines. Differences in indentation as well as in string literals are ignored
while detecting duplications.

Duplicated files
Number of files involved in duplications.

Duplicated lines
Number of lines involved in duplications.

Duplicated lines (%)
Density of duplication = Duplicated lines / Lines * 100

New issues
Number of new issues.

False positive issues
Number of false positive issues

Open issues
Number of issues whose status is Open

Confirmed issues
Number of issues whose status is Confirmed

Reopened issues
Number of issues whose status is Reopened

Code Smells
Number of code smells.

New Code Smells
Number of new code smells.

Maintainability Rating (formerly SQALE Rating)

Rating given to your project related to the value of your Technical Debt Ratio. The default Maintainability
Rating grid is:A=0-0.05, B=0.06-0.1, C=0.11-0.20, D=0.21-0.5, E=0.51-1 The Maintainability Rating scale can
be alternately stated by saying that if the outstanding remediation cost is: <=5% of the time that has already
gone into the application, the rating is A between 6 to 10% the rating is a B between 11 to 20% the rating is a C
between 21 to 50% the rating is a D anything over 50% is an

Technical Debt
Effort to fix all maintainability issues. The measure is stored in minutes in the DB. An 8-hour day is assumed
when values are shown in days.

Technical Debt on new code
Technical Debt of new code

Technical Debt Ratio

Ratio between the cost to develop the software and the cost to fix it. The Technical Debt Ratio formula is:
Remediation cost / Development cost Which can be restated as: Remediation cost / (Cost to develop 1 line
of code * Number of lines of code) The value of the cost to develop a line of code is 0.06 days.

Technical Debt Ratio on new code
Ratio between the cost to develop the code changed in the leak period and the cost of the issues linked to it.

Bugs
Number of bugs.

New Bugs

Number of new bugs. A = 0 Bug B = at least 1 Minor Bug C = at least 1 Major Bug D = at least 1 Critical Bug
E = at least 1 Blocker Bug

Reliability remediation effort
Effort to fix all bug issues. The measure is stored in minutes in the DB. An 8-hour day is assumed when values
are shown in days.

Reliability remediation effort on new code
Same as Reliability remediation effort by on the code changed in the leak period.

New Vulnerabilities
Number of new vulnerabilities.

Security Rating

A = 0 Vulnerability B = at least 1 Minor Vulnerability C = at least 1 Major Vulnerability D = at least 1 Critical
Vulnerability E = at least 1 Blocker Vulnerability

Security remediation effort
Effort to fix all vulnerability issues. The measure is stored in minutes in the DB. An 8-hour day is assumed
when values are shown in days.

Security remediation effort on new code
Same as Security remediation effort by on the code changed in the leak period.

Comments (%)
Density of comment lines = Comment lines / (Lines of code + Comment lines) * 100

Directories
Number of directories.

Files
Number of files.

Lines
Number of physical lines (number of carriage returns).

16

Lines of code
Number of physical lines that contain at least one character which is neither a whitespace nor a tabulation nor
part of a comment.

Lines of code per language
Non Commenting Lines of Code Distributed By Language

Functions
Number of functions. Depending on the language, a function is either a function or a method or a paragraph.

Projects
Number of projects in a view.

Statements
Number of statements.

Classes
Number of classes (including nested classes, interfaces, enums and annotations).

Comment lines

Number of lines containing either comment or commented-out code. Non-significant comment lines (empty
comment lines, comment lines containing only special characters, etc.) do not increase the number of comment
lines. The following piece of code contains 9 comment lines:

Condition coverage
Condition coverage = (CT + CF) / (2*B) whereCT = conditions that have been evaluated to 'true' at least
onceCF = conditions that have been evaluated to 'false' at least onceB = total number of conditions

Condition coverage on new code
Identical to Condition coverage but restricted to new / updated source code.

Condition coverage hits
List of covered conditions.

Conditions by line
Number of conditions by line.

Covered conditions by line
Number of covered conditions by line.

Coverage

Coverage = (CT + CF + LC)/(2*B + EL) where
CT = conditions that have been evaluated to 'true' at least once CF = conditions that have been evaluated to
'false' at least once LC = covered lines = lines_to_cover - uncovered_lines B = total number of conditions EL =
total number of executable lines (lines_to_cover)

Coverage on new code
Identical to Coverage but restricted to new / updated source code.

Line coverage
Line coverage = LC / EL where LC = covered lines (lines_to_cover - uncovered_lines) EL = total number of
executable lines (lines_to_cover)

Line coverage on new code
Identical to Line coverage but restricted to new / updated source code.

Line coverage hits
List of covered lines.

Lines to cover
Number of lines of code which could be covered by unit tests (for example, blank lines or full comments lines
are not considered as lines to cover).

Lines to cover on new code
Identical to Lines to cover but restricted to new / updated source code.

Skipped unit tests
Number of skipped unit tests.

Uncovered conditions
Number of conditions which are not covered by unit tests.

Uncovered conditions on new code
Identical to Uncovered conditions but restricted to new / updated source code.

Uncovered lines
Number of lines of code which are not covered by unit tests.

Uncovered lines on new code
Identical to Uncovered lines but restricted to new / updated source code.

Unit tests
Number of unit tests.

Unit tests duration
Time required to execute all the unit tests.

Unit test errors
Number of unit tests that have failed.

Unit test failures
Number of unit tests that have failed with an unexpected exception.

Unit test success density (%)
Test success density = (Unit tests - (Unit test errors + Unit test failures)) / Unit tests * 100

QA-C

Measure
ID

Measure Name Measure Description

STAKI Akiyama’s Criterion

This metric is the sum of the cyclomatic complexity (STCYC) and the number of
function calls (STSUB). Although this is not an independent metric, it is included on
account of its use in documented case histories. See Akiyama10 and Shooman11 for
more details. The metric is calculated as: STAKI = STCYC + STSUB

STAV1 Average Size of Statement in Function (variant 1)

These metrics (STAV1, STAV2, and STAV3) measure the average number of
operands and operators per statement in the body of the function. They are calculated
as follows: STAVx = (N1 + N2) / number of statements in the function where N1 is
Halstead’s number of operator occurrences. N2 is Halstead’s number of operand
occurrences.
The STAVx metrics are computed using STST1, STST2 and STST3 to represent the
number of statements in a function. Hence there are three variants: STAV1, STAV2
and STAV3, relating to the respective statement count metrics. This metric is used to
detect components with long statements. Statements comprising a large number of
textual elements (operators and operands) require more effort by the reader in order to
understand them. This metric is a good indicator of the program’s readability.
Metric values are computed as follows:
STAV1 = (STFN1 + STFN2)

17

STAV2 Average Size of Statement in Function (variant 2)
See above STAV2 = (STFN1 + STFN2) / STST2

STAV3 Average Size of Statement in Function (variant 3)
See above STST2 STAV3 = (STFN1 + STFN2) / STST3

STBAK Number of Backward Jumps

Jumps are never recommended and backward jumps are particularly undesirable. If
possible, the code should be redesigned to use structured control constructs such as
while or for instead of goto. It differs from the metric STSUB, in that only distinct
functions are counted (multiple instances of calls to a particular function are counted
as one call), and also that functions called via pointers are not counted

STCAL Number of Functions Called from Function
This metric counts the number of function calls in a function. It differs from the
metric STSUB, in that only distinct functions are counted (multiple instances of calls
to a particular function are counted as one call), and also that functions called via
pointers are not counted

STCYC Cyclomatic Complexity

Cyclomatic complexity is calculated as the number of decisions plus 1. High
cyclomatic complexity indicates inadequate modularization or too much logic in one
function. Software metric research has indicated that functions with a cyclomatic
complexity greater than 10 tend to have problems related to their complexity. Some
metrication tools include use of the ternary operator ? : when calculating cyclomatic
complexity. It could also be argued that use of the && and ||operators should be
included. Instead, STCYC calculation is based on statements alone.

STELF Number of Dangling Else-Ifs

This is the number of if-else-if constructs that do not end in an else clause. This
metric is calculated by counting all if statements that do not have a corresponding else
and for which QA·C issues a warning 2004. STELF provides a quick reference
allowing monitoring of these warnings.

STFDN Number of distinct operands in a Function

This metric is Halstead’s distinct operand count on a function basis (DN). STFDN is
related to STFN2, STOPN and STM20: all of these metrics count ’operands’, the
difference is summarized as: STFN2 Counts ALL operands in the function body
STFDN Counts DISTINCT operands in the function body STM20 Counts ALL
operands in the file STOPN Counts DISTINCT operands in the file

STFDT Number of distinct operators in a Function

ThismetricisHalstead’sdistinctoperatorcountonafunctionbasis(DT).STFDTisrelated to
STFN1, STOPT and STM21: all of these metrics count ’operators’, the difference is
summarized as: STFN1 Counts ALL operators in the function body STFDT Counts
DISTINCT operators in the function body STM21 Counts ALL operators in the file
STOPT Counts DISTINCT operators in the file

STFN1 Number of Operator Occurrences in Function

This metric is Halstead’s operator count on a function basis (N1). STFN1 is related to
STFDT, STOPT and STM21: all of these metrics count ’operators’, the difference is
summarized as: STFN1 Counts ALL operators in the function body STFDT Counts
DISTINCT operators in the function body STM21 Counts ALL operators in the file
STOPT Counts DISTINCT operators in the file

STFN2 Number of Operand Occurrences in Function

This metric is Halstead’s operand count on a function basis (N2). STFN2 is related to
STFDN, STOPN and STM20: all of these metrics count ’operands’, the difference is
summarized as: STFN2 Counts ALL operands in the function body STFDN Counts
DISTINCT operands in the function body STM20 Counts ALL operands in the file
STOPN Counts DISTINCT operands in the file

STGTO Number of Goto statements Some occurrences of goto simplify error handling. However, they should be avoided
whenever possible. According to the Plum Hall Guidelines, goto should not be used.

STKDN Knot Densit
This is the number of knots per executable line of code. The metric is calculated as:
STKDN = STKNT / STXLN
The value is computed as zero when STXLN is zero.

STKNT Knot Count

This is the number of knots in a function. A knot is a crossing of control structures,
caused by an explicit jump out of a control structure either by break, continue, goto,
or return. STKNT is undefined for functions with unreachable code. This metric
measures knots, not by counting control structure crossings, but by counting the
following keywords: • goto statements, • continue statements within loop statements, •
break statements within loop or switch statements, except those at top switch level, •
all return statements except those at top function level.

STLCT Number of Local Variables Declared This is the number of local variables of storage class auto, register, or static declared
in a function. Thesearevariablesthatthathavenolinkage

STLIN Number of Code Lines

This is the total number of lines, including blank and comment lines, in a function
definition between (but excluding) the opening and closing brace of the function
body. It is computed on raw code. STLIN is undefined for functions which have
#include’d code or macros which include braces in their definition. Long functions are
difficult to read, as they do not fit on one screen or one listing page. An upper limit of
200 is recommended.

STLOP Number of Logical Operators This is the total number of logical operators (&&, ||) in the conditions of do-while,
for, if, switch, orwhile statementsinafunction

STM07 Essential Cyclomatic Complexity

The essential cyclomatic complexity is obtained in the same way as the cyclomatic
complexity but is based on a ’reduced’ control flow graph. The purpose of reducing a
graph is to check that the component complies with the rules of structured
programming. A control graph that can be reduced to a graph whose cyclomatic
complexity is 1 is said to be structured. Otherwise reduction will show elements of the
control graph which do not comply with the rules of structured programming. The
principle of control graph reduction is to simplify the most deeply nested control
subgraphsinto asingle reducedsubgraph. A subgraph isa sequenceof nodeson
thecontrol flowgraphwhichhasonlyoneentryandexitpoint.
FourcasesareidentifiedbyMcCabe13 which result in an unstructured control graph.
These are: a branch into a decision structure, • a branch from inside a decision
structure, • a branch into a loop structure, • a branch from inside a loop structure.
However, if a subgraph possesses multiple entry or exit points then it cannot be
reduced. The use of multiple entry and exit points breaks the most fundamental rule of
structured programming.

STM19 Number of Exit Points

This metric is a measure of the number of exit points in a software component and is
calculated by counting the number of return statements. A function that has no return
statements will have an STM19 value of zero even though it will exit when falling
through the last statement. This is regardless of whether the function is declared to
have a return value or not (i.e. returns void). Calls to non-returning functions such as
exit() or abort() are ignored by this metric.

STM29 Number of Functions Calling this Function
This metric is defined as the number of functions calling the designated function. The
number of calls to a function is an indicator of criticality. The more a function is
called, the more critical it is and, therefore, the more reliable it should be.

18

STMCC Myer’s Interval

This is an extension to the cyclomatic complexity metric. It is expressed as a pair of
numbers, conventionally separated by a colon. Myer’s Interval is defined as STCYC :
STCYC + L. Cyclomatic complexity (STCYC) is a measure of the number of
decisions in the control flow of a function. L is the value of the QA·C STLOP metric
which is a measure of the number of logical operators (&&, ||) in the conditional
expressions of a function. A high value of L indicates that there are many compound
decisions, which makes the code more difficult to understand. A Myer’s interval of 10
is considered very high. When exporting metric values or displaying in the Metrics
Browser, rather than attempting to display a value pair, the value of L is chosen for
STMCC.

STMIF Deepest Level of Nesting

This metric is a measure of the maximum control flow nesting in your source code.
You can reduce the value of this metric by turning your nesting into separate
functions. This will improve the readability of the code by reducing both the nesting
and the average cyclomatic complexity per function.
STMIFisincrementedinswitch,do,while,if andfor statements. Thenestinglevelofcode is
not always visually apparent from the indentation of the code. In particular, an else if
construct increases the level of nesting in the control flow structure, but is
conventionally written without additional indentation.

STPAR Number of Function Parameters This metric counts the number of declared parameters in the function argument list.
Note that ellipsis parameters are ignored.

STPBG Residual Bugs (STPTH-based est.)

Hopkins, in Hatton & Hopkins14 investigated software with a known audit history
and observed a correlation between Static Path Count (STPTH) and the number of
bugs that had been found. This relationship is expressed as STPBG. STPBG = log10
(STPTH)

STPDN Path Density
This is a measure of the number of paths relative to the number of executable lines of
code. STPDN = STPTH / STXLN. STPDN is computed as zero when STXLN is zero.

STPTH Estimated Static Program Paths

This is similar to Nejmeh’s NPATH statistic and gives an upper bound on the number
of possible paths in the control flow of a function. It is the number of non-cyclic
execution paths in a function. The NPATH value for a sequence of statements at the
same nesting level is the product of the NPATH values for each statement and for the
nested structures. NPATH is the product of: NPATH(sequence of non control
statements) = 1 • NPATH(if) = NPATH(body of then) + NPATH(body of else) •
NPATH(while) = NPATH(body of while) + 1 • NPATH(do while) = NPATH(body
of while) + 1 • NPATH(for) = NPATH(body of for) + 1 • NPATH(switch) = Sum(
NPATH(body of case 1) ... NPATH(body of case n)) Note: else and default are
counted whether they are present or not. In switch statements, multiple case options
on the same branch of the switch statement body are counted once for each
independent branch only. The true path count through a function usually obeys the
inequality: cyclomatic complexity ≤ true path count ≤ static path count

STRET Number of Return Points in Function

STRET is the count of the reachable return statements in the function, plus one if
there exists a reachable implicit return at the } that terminates the function. Structured
Programming requires that every function should have exactly one entry and one exit.
This is indicated by a STRET value of 1. STRET is useful when the programmer
wants to concentrate on functions that do not follow the Structured Programming
paradigm, for example those with switch statements with returns in many or every
branch. This metric is computed during data flow analysis, see Data flow-Dependent
Metric Values

STST1 Number of Statements in Function (variant 1)

These metrics count the number of statements in the function body. There are 3
variants on the metric: STST1 is the base definition and counts all statements. See
table to the right. This metric indicates the maintainability of the function. Number of
statements also correlates with most of the metrics defined by Halstead. The greater
the number of statements containedinafunction,
thegreaterthenumberofoperandsandoperators, andhencethe greater the effort required
to understand the function.
Functions with high statement counts should be limited. Restructuring into smaller
sub-functions is often appropriate

STST2 Number of Statements in Function (variant 2)
STST2 is STST1 except block, empty statements and labels are not counted.

STST3 Number of Statements in Function (variant 3)
STST3 is STST2 except declarations are not counted.

STSUB Number of Function Calls

The number of function calls within a function. Functions with a large number of
function calls are more difficult to understand because their functionality is spread
across several components. Note that the calculation of STSUB is based on the
number of function calls and not the number of distinct functions that are called, see
STCAL. A large STSUB value may be an indication of poor design; for example, a
calling tree that spreads too rapidly. See Brandl (1990)16 for a discussion of design
complexity and how it is highlighted by the shape of the calling tree.

STUNR Number of Unreachable Statements

This metric is the count of all statements within the function body that are guaranteed
never to be executed. STUNR uses the same method for identifying statements as
metric STST1. Hence STUNR counts the following as statements if unreachable. See
table to the right the colum Statement Kind Counted. This metric is computed during
data flow analysis, see Data flow-Dependent Metric Values

STUNV Unused or Non-Reused Variables

An unused variable is one that has been defined, but which is never referenced. A
nonreused variable is a variable that has a value by assignment, but which is never
used subsequently. Such variables are generally clutter and are often evidence of
"software ageing", which is the effect of a number of programmers making changes.

STXLN Number of Executable Lines

This is a count of lines in a function body that have code tokens. Comments, braces,
and all tokens of declarations are not treated as code tokens. The function below has
an STXLN value of 9. This metric is used in the computation of the STKDN and
STPDN metrics

STBME Embedded Programmer Months The estimate the number of programmer-months required to create the source code in
the embedded environment is: STBME = 3.6 * (STTPP / 1000) 1.20

STBMO Organic Programmer Months The estimate the number of programmer-months required to create the source code in
the organic environment is: STBMO = 2.4 * (STTPP / 1000) 1.05

STBMS Semi-detached Programmer Months The estimate the number of programmer-months required to create the source code in
the semi-detached environment is: STBMS = 3.0 * (STTPP / 1000) 1.12

19

STBUG Residual Bugs (token-based estimate)

This is an estimate of the number of bugs in the file, based on the number of estimated
tokens. Its value would normally be lower than the sum of the function-based STPBG
values. For a more detailed discussion of software bug estimates,see Hatton and
Hopkins. STBUG = 0.001 * STEFF 2/3

STCDN Comment to Code Ratio

This metric is defined to be the number of visible characters in comments, divided by
the number of visible characters outside comments. Comment delimiters are ignored.
Whitespace characters in strings are treated as visible characters. A large value of
STCDN indicates that there may be too many comments, which can make a module
difficult to read. A small value indicates that there may not be enough comments,
which can make a module difficult to understand. The value of STCDN is affected by
how QA·C counts the comments. QA·C can count comments in three possible ways:
all comments, (a), • all comments except for those from headers, (n), •
inlineorinternalcomments(i). Thesearecommentswithinfunctionsandcomments that
annotate a line of code (comments that are on the same line as code at file scope).
You can determine which counting method is used in Comment Count by setting the -
co option on the command line.

STDEV Estimated Development (programmer-days)

This is an estimate of the number of programmer days required to develop the source
file. Unlike COCOMO statistics, which are based solely on the number of lines of
code, this estimate is derived from the file’s difficulty factor. It is a more accurate
measure of the development time, especially after the scaling factor has been adjusted
for a particular software environment. STDEV = STEFF / dev_scaling where
dev_scaling is a scaling factor defined in -prodoption development::scaling. The
default is 6000.

STDIF Program Difficulty

This is a measure of the difficulty of a translation unit. An average C program has a
difficulty of around 12. Anything significantly above this has a rich vocabulary and is
potentially difficult to understand. STDIF = STVOL / ((2 + STVAR) * log2 (2 +
STVAR))

STECT Number of External Variables Declared

This is a measure of the number of data objects (not including functions) declared
with external linkage. It is an indication of the amount of global data being passed
between modules. It is always desirable to reduce dependence on global data to a
minimum.

STEFF Program Effort
This metric is a measure of the programmer effort involved in the production of a
translation unit. It is used to produce a development time estimate. STEFF = STVOL
* STDIF

STFCO Estimated Function Coupling

Since the actual value of Brandl’s metric requires a full, well-structured calling tree,
STFCO can only be an estimate. A high figure indicates a large change of complexity
between levels of the calling tree. The metric is computed from STFNC and the
STSUB values of the component functions in the translation unit: STFCO =
Σ(STSUB) - STFNC + 1

STFNC Number of Functions in File
This metric is a count of the number of function definitions in the file.

STHAL Halstead Prediction of STTOT

This metric and also STZIP are predictions (derived from the vocabulary analysis
metrics STOPN and STOPT) of what the value of STTOT should be. If they differ
from STTOT by more than a factor of 2, it is an indication of an unusual vocabulary.
This usually means that either the source code contains sections of rather repetitive
code or it has an unusually rich vocabulary. The two metrics are computed as follows:
STZIP = (STOPN + STOPT) * (0.5772 + ln (STOPN + STOPT)) STHAL = STOPT *
log2 (STOPT) + STOPN * log2 (STOPN)

STM20 Number of Operand Occurrences

ThismetricisthenumberofoperandsinasoftwarecomponentandisoneoftheHalstead
vocabulary analysis metrics. Halstead considered that a component is a series of
tokens that can be defined as either operators or operands. Unlike STOPN, this metric
is the count of every instance of an operand in a file, regardlessofwhetherornotitis
distinct. STOPNonlycountstheoperandsthatare distinct.

STM21 Number of Operator Occurrences ThismetricisthenumberofoperatorsinasoftwarecomponentandisoneoftheHalstead
vocabulary analysis metrics. Halstead considered that a component is a series of
tokens that can be defined as either operators or operands. Unlike STOPT, this metric
is the count of every instance of an operator in a file, regardless of whether or not it is
distinct. STOPT only counts the operators that are distinct.

STM22 Number of Statements

This metric is the number of statements in a software component. This is a count of
semicolons in a file except for the following instances: within for expressions, •
within struct or union declarations/definitions, • within comments, • within literals, •
within preprocessor directives, • within old-style C function parameter lists

STM28 Number of Non-Header Comments

This metric is a count of the occurrences of C or C++ style comments in a source file,
except for those that are within the header of a file. A file header is defined as tokens
preceding the first code token or preprocessor directive token. STM28 is based on the
method used to compute STCDN but differs from STCDN in that STCDN counts the
visible characters within comments whereas STM28 counts the occurrences of
comments.

STM33 Number of Internal Comments

This metric is a count of C style or C++ comments in a source file that are within
functions or annotate a line of code at file scope. Comments within functions are all
comments at block scope. Comments that annotate code are ones that start or end on
the same line as code. STM33 is based on the method used to compute STCDN but
differs from STCDN in that STCDN counts the visible characters within comments
whereas STM33 counts the occurrences of comments.

STOPN Number of Distinct Operands

This is the number of distinct operands used in the file. Distinct operands are defined
as unique identifiers and each occurrence of a literal. Most literals, except 0 and 1, are
usually distinct within a program. Since macros are usually used for fixed success and
failure values (such as TRUE and FALSE), the differences in counting strategies are
fairly minimal.

STOPT Number of Distinct Operators
This covers any source code tokens not supplied by the user, such as keywords,
operators, and punctuation. STOPT is used in the calculation of a number of other
metrics.

STSCT Number of Static Variables Declared This metric is computed as the number of variables and functions declared static at
file scope.

STSHN Shannon Information Content

Also known as the "entropy" H, this metric is a widely recognized algorithm for
estimating the program space required to encode the functions in a source file.
STSHN is measured in bits and is calculated as follows: STSHN = STZIP * log2
(√(STOPN + STOPT) + ln (STOPN + STOPT))

STTDE Embedded Total Months
The estimate the elapsed time in months required to develop source code in an
embedded environment is: STTDE = 2.5 * STBME to the porwer of 0.32

20

STTDO Organic Total Months The estimate the elapsed time in months required to develop source code in an
organic environment is: STTDO = 2.5 * STBMO to the power of 0.38

STTDS Semi-detached Total Months The estimate the elapsed time in months required to develop source code in a
semidetached environment is: STTDS = 2.5 * STBMS to power of 0.35

STTLN Total Preprocessed Source Lines
Thismetricisacountofthetotalamountoflinesinthetranslationunitafterpre-processing.
The pre-processed file will reflect the processing of include files, pre-processor
directives and the stripping of comment lines.

STTOT Total Number of Tokens Used
This metric is the total number of tokens, not distinct tokens, in the source file.

STTPP Total Unpreprocessed Code Lines This metric is a count of the total number of source lines in the file before pre-
processing.

STVAR Total Number of Variables
This metric represents the total number of distinct identifiers

STVOL Program Volume

This is a measure of the number of bits required for a uniform binary encoding of the
program text. It is used to calculate various Halstead vocabulary metrics. The
following is the calculation for the program volume: STVOL = STTOT * log2
(STOPN + STOPT)

STZIP Zipf Prediction of STTOT
STZIP = (STOPN + STOPT) * (0.5772 + ln (STOPN + STOPT)) See STHAL.

CPPDepend

Measures Name
Measure definition

NbLinesOfCode

 This metric (known as LOC) can be computed only if PDB files are present. NDepend computes this metric directly from the info
provided in PDB files. The LOC for a method is equals to the number of sequence point found for this method in the PDB file. A
sequence point is used to mark a spot in the IL code that corresponds to a specific location in the original source. More info about
sequence points here.Notice that sequence points which correspond to C# braces‘{‘ and ‘}’ are not taken account.

NbLinesOfComment

(Only available for C# code, a VB.NET version is currently under development). This metric can be computed only if PDB files are
present and if corresponding source files can be found. The number of lines of comment is computed as follow: For a method, it is the
number of lines of comment that can be found in its body. In C# the body of a method begins with a '{' and ends with a '}'. If a method
contains an anonymous method, lines of comment defined in the anonymous method are not counted for the outer method but are
counted for the anonymous method. -For a type, it is the sum of the number of lines of comment that can be found in each of its partial
definition. In C#, each partial definition of a type begins with a '{ and ends with a '}'. -For a namespace, it is the sum of the number of
lines of comment that can be found in each of its partial definition. In C# each partial definition of a namespace begins with a '{ and
ends with a '}'. -For an assembly, it is the sum of the number of lines of comment that can be found in each of its source file. otice that
this metric is not an additive metric (i.e for example, the number of lines of comment of a namespace can be greater than the number of
lines of comment over all its types). Recommendations: This metric is not helpful to asses the quality of source code. We prefer to use
the metric PercentageComment.

PercentageComment

 (Only available for C# code, a VB.NET version is currently under development) This metric is computed with the following formula:
PercentageComment = 100*NbLinesOfComment / (NbLinesOfComment + NbLinesOfCode)
Recommendations: Code where the percentage of comment is lower than 20% should be more commented. However overly
commented code (>40%) is not necessarily a blessing as it can be considered as an insult to the intelligence of the reader.

NbILInstructions

Notice that the number of IL instructions can vary depending if your assemblies are compiled in debug or in release mode. Indeed
compiler's optimizations can modify the number of IL instructions. For example a compiler can add some nop IL instructions in debug
mode to handle Edit and Continue and to allow attach an IL instruction to a curly brace. Notice that IL instructions of third-party
assemblies are not taken account.
Recommendations: Methods where NbILInstructions is higher than 100 are hard to understand and maintain. Methods where
NbILInstructions is higher than 200 are extremely complex and should be split in smaller methods (except if they are automatically
generated by a tool).

NbAssemblies
Only application assemblies are taken into account.

NbNamespaces
The number of namespaces. The anonymous namespace counts as one. If a namespace is defined over N assemblies, it will count as N.
Namespaces declared in third-party assemblies are not taken account.

NbTypes
The number of types. A type can be an abstract or a concrete class, a structure, an enumeration, a delegate class or an interface. Types
declared in third-party assemblies are not taken account.

NbMethods

The number of methods. A method can be an abstract, virtual or non-virtual method, a method declared in an interface, a constructor, a
class constructor, a finalizer, a property/indexer getter or setter, an event adder or remover. Methods declared in third-party assemblies
are not taken account. Recommendations: Types where NbMethods > 20 might be hard to understand and maintain but there might be
cases where it is relevant to have a high value for NbMethods. For example, the System.Windows.Forms.DataGridView third-party
class has more than 1000 methods.

NbFields

The number of fields. A field can be a regular field, an enumeration's value or a readonly or a const field. Fields declared in third-party
assemblies are not taken account. Recommendations: Types that are not enumeration and where NbFields is higher 20 might be hard to
understand and maintain but there might be cases where it is relevant to have a high value for NbFields. For example, the
System.Windows.Forms.Control third-party class has more than 200 fields.

PercentageCoverage

The percentage of code coverage by tests. Code coverage data are imported from coverage files. If you are using the uncoverable
attribute feature on a method for example, if all sibling methods are 100% covered, then the parent type will be considered as 100%
covered. Coverage metrics are not available if the metric NbLinesOfCode is not available.

NbLinesOfCodeCovered
The number of lines of code covered by tests.

NbLinesOfCodeNotCovered
The number of lines of code not covered by tests.

Afferent coupling (Ca)
The number of types outside this assembly that depend on types within this assembly. High afferent coupling indicates that the
concerned assemblies have many responsibilities.

Efferent coupling (Ce)
The number of types outside this assembly used by child types of this assembly. High efferent coupling indicates that the concerned
assembly is dependant. Notice that types declared in third-party assemblies are taken into account.

Relational Cohesion (H)

Average number of internal relationships per type. Let R be the number of type relationships that are internal to this assembly (i.e that
do not connect to types outside the assembly). Let N be the number of types within the assembly. H = (R + 1)/ N. The extra 1 in the
formula prevents H=0 when N=1. The relational cohesion represents the relationship that this assembly has to all its types.
Recommendations: As classes inside an assembly should be strongly related, the cohesion should be high. On the other hand, too high
values may indicate over-coupling. A good range for RelationalCohesion is 1.5 to 4.0. Assemblies where RelationalCohesion < 1.5 or
RelationalCohesion > 4.0 might be problematic.

21

Instability (I)

The ratio of efferent coupling (Ce) to total coupling. I = Ce / (Ce + Ca). This metric is an indicator of the assembly's resilience to
change. The range for this metric is 0 to 1, with I=0 indicating a completely stable assembly and I=1 indicating a completely instable
assembly.

Abstractness (A)

The ratio of the number of internal abstract types (i.e abstract classes and interfaces) to the number of internal types. The range for this
metric is 0 to 1, with A=0 indicating a completely concrete assembly and A=1 indicating a completely abstract assembly.

Distance from main
sequence (D)

The perpendicular normalized distance of an assembly from the idealized line A + I = 1 (called main sequence). This metric is an
indicator of the assembly's balance between abstractness and stability. An assembly squarely on the main sequence is optimally
balanced with respect to its abstractness and stability. Ideal assemblies are either completely abstract and stable (I=0, A=1) or
completely concrete and instable (I=1, A=0). The range for this metric is 0 to 1, with D=0 indicating an assembly that is coincident
with the main sequence and D=1 indicating an assembly that is as far from the main sequence as possible. The picture in the report
reveals if an assembly is in the zone of pain (I and A both close to 0) or in the zone of uselessness (I and A both close to 1).
Recommendations: Assemblies where NormDistFromMainSeq is higher than 0.7 might be problematic. However, in the real world it
is very hard to avoid such assemblies.

Afferent coupling at
namespace level
(NamespaceCa)

The Afferent Coupling for a particular namespace is the number of namespaces that depends directly on it. Related Link::
Code metrics on Coupling, Dead Code, Design flaws and Re-engineering

Efferent coupling at
namespace level
(NamespaceCe

The Efferent Coupling for a particular namespace is the number of namespaces it directly depends on. Notice that namespaces declared
in third-party assemblies are taken into account. Related Link::
Code metrics on Coupling, Dead Code, Design flaws and Re-engineering.
Related Link::
Layering, the Level metric and the Discourse of Method

Level

(defined for assemblies, namespaces, types, methods) The Level value for a namespace is defined as follow: Level = 0 : if the
namespace doesn’t use any other namespace. Level metric definitions for assemblies, types and methods are inferred from the above
definition.
This metric has been first defined by John Lakos in his book Large-Scale C++ Software Design. Level = 1 + (Max Level over
namespace it uses direcly) Level = N/A : if the namespace is involved in a dependency cycle or uses directly or indirectly a namespace
involved in a dependency cycle. Recommendations: This metric helps objectively classify the assemblies, namespaces, types and
methods as high level,mid level or low level. There is no particular recommendation for high or small values.
This metric is also useful to discover dependency cycles in your application. For instance if some namespaces are matched by the
following CQLinq query, it means that there is some dependency cycles between the namespaces of your application: from n in
Application.Namespaces where n.Level == null select n

Type rank

TypeRank values are computed by applying the Google PageRank algorithm on the graph of types' dependencies. A homothety of
center 0.15 is applied to make it so that the average of TypeRank is 1. Recommendations: Types with high TypeRank should be more
carefully tested because bugs in such types will likely be more catastrophic.

Efferent Coupling at type
level (Ce)

The Efferent Coupling for a particular type is the number of types it directly depends on. Notice that types declared in third-party
assemblies are taken into account. Recommendations: Types where TypeCe > 50 are types that depends on too many other types. They
are complex and have more than one responsibility. They are good candidate for refactoring.
Related Link::
Code metrics on Coupling, Dead Code, Design flaws and Re-engineering.

Lack of Cohesion Of
Methods (LCOM)

The single responsibility principle states that a class should not have more than one reason to change. Such a class is said to be
cohesive. A high LCOM value generally pinpoints a poorly cohesive class. There are several LCOM metrics. The LCOM takes its
values in the range [0-1]. The LCOM HS (HS stands for Henderson-Sellers) takes its values in the range [0-2]. A LCOM HS value
higher than 1 should be considered alarming. Here are algorithms used by NDepend to compute LCOM metrics: LCOM = 1 –
(sum(MF)/M*F), LCOM HS = (M – sum(MF)/F)(M-1) Where: M is the number of methods in class (both static and instance methods
are counted, it includes also constructors, properties getters/setters, events add/remove methods). F is the number of instance fields in
the class. MF is the number of methods of the class accessing a particular instance field. Sum(MF) is the sum of MF over all instance
fields of the class. The underlying idea behind these formulas can be stated as follow: a class is utterly cohesive if all its methods use
all its instance fields, which means that sum(MF)=M*F and then LCOM = 0 and LCOMHS = Recommendations: Types where LCOM
> 0.8 and NbFields > 10 and NbMethods >10 might be problematic. However, it is very hard to avoid such non-cohesive types. Types
where LCOMHS > 1.0 and NbFields > 10 and NbMethods >10 should be avoided. Note that this constraint is stronger (and thus easier
to satisfy) than the constraint types where LCOM > 0.8 and NbFields > 10 and NbMethods >10.

cyclomatic complexity

(defined for types, methods) (Only available for C# code, a VB.NET version is currently under development) Cyclomatic complexity is
a popular procedural software metric equal to the number of decisions that can be taken in a procedure. Concretely, in C# the CC of a
method is 1 + {the number of following expressions found in the body of the method}: if | while | for | foreach | case | default | continue
| goto | && | || | catch | ternary operator ?: | ?? Following expressions are not counted for CC computation: else | do | switch | try | using |
throw | finally | return | object creation | method call | field access. The Cyclomatic Complexity metric is defined on methods. Adapted
to the OO world, this metric is also defined for classes and structures as the sum of its methods CC. Notice that the CC of an
anonymous method is not counted when computing the CC of its outer method. Recommendations: Methods where CC is higher than
15 are hard to understand and maintain. Methods where CC is higher than 30 are extremely complex and should be split into smaller
methods (except if they are automatically generated by a tool).

IL Cyclomatic Complexity
(ILCC)

The CC metric is language dependent. Thus, NDepend provides the ILCC which is language independent because it is computed from
IL as 1 + {the number of different offsets targeted by a jump/branch IL instruction}. Experience shows that NDepend CC is a bit larger
than the CC computed in C# or VB.NET. Indeed, a C# 'if' expression yields one IL jump. A C# 'for' loop yields two different offsets
targeted by a branch IL instruction while a foreach C# loop yields three. Recommendations: Methods where ILCyclomaticComplexity
is higher than 20 are hard to understand and maintain. Methods where ILCyclomaticComplexity is higher than 40 are extremely
complex and should be split into smaller methods (except if they are automatically generated by a tool).

Size of instance

 (defined for instance fields and types) The size of instances of an instance field is defined as the size, in bytes, of instances of its type.
The size of instance of a static field is equal to 0. The size of instances of a class or a structure is defined as the sum of size of instances
of its fields plus the size of instances of its base class. Fields of reference types (class, interface, delegate…) always count for 4 bytes
while the footprint of fields of value types (structure, int, byte, double…) might vary. Size of instances of an enumeration is equal to
the size of instances of the underlying numeric primitive type. It is computed from the value__ instance field (all enumerations have
such a field when compiled in IL). Size of instances of generic types might be erroneous because we can’t statically know the footprint
of parameter types (except when they have the class constraint). Recommendations: Types where SizeOfInst is higher than 64 might
degrade performance (depending on the number of instances created at runtime) and might be hard to maintain. However it is not a rule
since sometime there is no alternative (the size of instances of the System.Net.NetworkInformation.SystemIcmpV6Statistics third-
party class is 2064 bytes). Non-static and non-generic types where SizeOfInst is equal to 0 indicate stateless types that might
eventually be turned into static classes.

NbInterfacesImplemented

The number of interfaces implemented. This metric is available for interfaces, in this case the value is the number of interface
extended, directly or indirectly. For derived class, this metric also count the sum of interfaces implemented by base class(es).

Association Between Class
(ABC)

The Association Between Classes metric for a particular class or structure is the number of members of others types it directly uses in
the body of its methods.

Number of Children (NOC)

The number of children for a class is the number of sub-classes (whatever their positions in the sub branch of the inheritance tree). The
number of children for an interface is the number of types that implement it. In both cases the computation of this metric only count
types declared in the application code and thus, doesn't take account of types declared in third-party assemblies.

Depth of Inheritance Tree
(DIT)

The Depth of Inheritance Tree for a class or a structure is its number of base classes (including the SystRecommendations: Types
where DepthOfInheritance is higher or equal than 6 might be hard to maintain. However it is not a rule since sometimes your classes
might inherit from third-party classes which have a high value for depth of inheritance. For example, the average depth of inheritance
for third-party classes which derive from System.Windows.Forms.Control is 5.3.em.Object class thus DIT >= 1).

22

Method rank

MethodRank values are computed by applying the Google PageRank algorithm on the graph of methods' dependencies. A homothety
of center 0.15 is applied to make it so that the average of MethodRank is 1. Recommendations: Methods with high MethodRank should
be more carefully tested because bugs in such methods will likely be more catastrophic. Related Link::
Code metrics on Coupling, Dead Code, Design flaws and Re-engineering.

Afferent coupling at method
level (MethodCa)

The Afferent Coupling for a particular method is the number of methods that depends directly on it. Related Link::
Code metrics on Coupling, Dead Code, Design flaws and Re-engineering

Efferent coupling at method
level (MethodCe)

The Efferent Coupling for a particular method is the number of methods it directly depends on. Notice that methods declared in third-
party assemblies are taken into account. Related Link::
Code metrics on Coupling, Dead Code, Design flaws and Re-engineering

IL Nesting Depth

The metric Nesting Depth for a method is the maximum number of encapsulated scopes inside the body of the method. The metric IL
Nesting Depth is computed from the IL code. Values computed are very similar to what we would expect by computing them from the
C# or VB.NET source code. When you have a testing condition with N conditions, such as if(i > 9 && i < 12) then it is considered as
N scopes because it is possible to decompose such conditions into N atomic conditions. When a method has a large number of case
statements corresponding to a switch, the C# and VB.NET compiler generally produce optimizations while generating the IL. In such
case, the IL Nesting Depth corresponding value might be slightly higher to what you would expect. Recommendations: Methods where
ILNestingDepth is higher than 4 are hard to understand and maintain. Methods where ILNestingDepth is higher than 8 are extremely
complex and should be split in smaller methods (except if they are automatically generated by a tool).

NbParameters

The number of parameters of a method. Ref and Out are also counted. The this reference passed to instance methods in IL is not
counted as a parameter. Recommendations: Methods where NbParameters is higher than 5 might be painful to call and might degrade
performance. You should prefer using additional properties/fields to the declaring type to handle numerous states. Another alternative
is to provide a class or structure dedicated to handle arguments passing (for example see the class System.Diagnostics.ProcessStartInfo
and the method System.Diagnostics.Process.Start(ProcessStartInfo)).

NbVariables

The number of variables declared in the body of a method. Recommendations: Methods where NbVariables is higher than 8 are hard to
understand and maintain. Methods where NbVariables is higher than 15 are extremely complex and should be split in smaller methods
(except if they are automatically generated by a tool)

NbOverloads

The number of overloads of a method. . If a method is not overloaded, its NbOverloads value is equals to 1. This metric is also
applicable to constructors. Recommendations: Methods where NbOverloads is higher than 6 might be a problem to maintain and
provoke higher coupling than necessary. This might also reveal a potential misused of the C# and VB.NET language that since C#3
and VB9 support object initialization. This feature helps reducing the number of constructors of a class.

Appendix C

23

