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Abstract. This paper shows the investigation of the viability of finding lines of 

code (LOC) contributing to technical debt (TD) using machine learning (ML), by 

trying to imitate the static code analysis tool SonarQube. This is approached by 

letting industry professionals choose the SonarQube rules, followed by training 

different classifiers with the help of CCFlex (a tool for training classifiers with 

lines of code), while using SonarQube as an oracle (a source of training sample 

data) which selects the faulty lines of code. The codebase consisted of a couple 

of proprietary software solutions, provided by Diadrom (a Swedish software con-

sultancy company), along with open source software, such as ColourSharp [9]. 

The different classifiers were then analyzed for accuracy – compared against the 

oracle (SonarQube). The results of this paper demonstrate that using machine 

learning algorithms to detect LOC contributing to technical debt is a promising 

path that should be researched further. Within our chosen training parameters, 

the results show that increasing the percentage of LOC marked by the oracle 

brought increasingly better recall [7] values. The values increased more consist-

ently than they did by just increasing the amount of LOC used for training. Fur-

thermore, even though the precision is generally low within our parameters 

(meaning that the number of false positives is high), our classifiers still predicted 

many of the actually faulty LOC. These results are very promising when all of 

the training parameters are kept in mind. They show a lot of promise and open 

the gates to further exploration of this topic in the future. 

Keywords: Technical Debt, Machine Learning, Static Code Analysis. 

1 Introduction 

1.1 Problem Statement 

Software Engineering (SE) is a practice that systematically applies engineering to 

the development of software. As the software engineering profession matures, the soft-

ware reliability, maintainability, and security requirements increase, with software be-

coming more pervasive in everyday life. Software quality (SQ) is one aspect investi-

gated by SE, which deals with the software’s capability of satisfying the stated (and 

implied) needs under specific conditions – however, this depends on the stakeholders’ 

needs, wants, and expectations [23]. There is an interesting, still evolving concept of 

SQ, called technical debt, which deals with the consequences of the decisions that com-

panies/developers have to make during the software development process.  

Technical debt (TD) can be better explained as a software development concept that 

focuses on the costs that might arise because of certain decisions during software de-

velopment. The definition of TD has been expanded over time, as initially, TD was 

defined just as bad code which is postponed to be fixed [12]. One aspect of its im-

portance is presented in research that shows TD can cost companies up to $3.6 (USD) 

per line of code (LOC) [6]. Even the simplest software solutions can end up having 

thousands of LOC, which can accumulate to cause a lot of costs, failure to deliver etc., 
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if the risk of TD is not mitigated during the development. It must be noted that TD can 

prove a worthy risk in the short term, which allows the software developers to deliver 

a software solution faster, but can have negative consequences in the long term [13]. 

Having in mind that TD can be potentially very expensive, many solutions have been 

developed with the purpose of detecting it in time. One way to detect TD is through the 

use of static code analysis tools. There are already a number of existing tools available 

(i.e. SonarQube [5], Gendarme [24], FindBugs [25]), that aim to deal with detecting 

LOC that contribute to TD. However, traditional static software quality analysis tools 

also have their limitations.  

The first limitation that some of these tools have are the high false-positive detection 

rates. According to Jernej Novak et. al (2010) [26], the false-positive rates of software 

detection tools can even reach up to 50% in practice. On top of this, another issue exists 

– it’s not very easy to modify the existing tools’ fault recognition rules [27]. Different 

tools rely on different ways of implementing the rules, some through plugins and others 

through APIs. And even the simplest manner of extending the rules still requires the 

knowledge of how the tools work, and the ability to write a complex algorithm that will 

implement a fault detection rule. Adding to this, not all tools cover all coding standards, 

of which many exist – i.e. MISRA C [21], CERT C [28], Quantum Leaps [29] etc. 

Furthermore, these tools don’t usually cover different internal company standards. 

Simply said, there is no single and definite standard of rules, and not all standards are 

covered by existing tools. 

 

Having all of the above-mentioned limitations of static code analysis tools in con-

sideration, we decided to investigate a different approach to static code analysis in order 

to overcome those limitations – through a piece of software that can learn how to find 

faulty LOC based on examples, instead of rules. So, instead of having to come up with 

rules on how to address a certain issue, developers could just “feed” the software with 

examples in order to achieve the same result. In order to achieve this, we have tried to 

investigate whether it is possible to solve the problem of detecting LOC contributing to 

TD with the use of Machine Learning (ML). So, instead of understanding or creating a 

complex algorithm, a developer would show examples of problematic code to the ma-

chine, which will try to find patterns in order to identify problematic code in the future.  

Machine Learning (ML) is a powerful tool that can learn how to find patterns which 

map different inputs to different outputs. This concept introduces an opposite idea of 

creating and modifying rules - to build them (and even whole programs) based on ex-

amples (training data). Thus, it might help overcome the challenges that the current 

tools bring. However, it also introduces some drawbacks, since there are many algo-

rithms that can be used for machine learning, all of which have their own positive and 

negative sides in certain situations [31]. 

In order to construct an ML-based tool for identifying LOC contributing to TD, we 

need a bigger program of studies investigating different issues – e.g., whether people 

would accept the different way of specifying the “rules” by providing examples. But in 

order to see if that issue is even worth further investigation, we need to start from this 

study, which tries to understand the possibility of constructing such a tool. 
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In this study we try to replicate the code analysis tool SonarQube - which if success-

ful, could be further repeated for other tools. The study aims to answer whether it is 

feasible to create a code analysis tool by using ML, and whether the matter is worth of 

further exploration. More precisely, our investigation’s objective is to discover if it’s 

possible to use ML in technical debt and code quality analysis. Can ML be used to 

mimic and possibly improve code quality analysis? Can it become as good as So-

narQube only by analyzing its output data, or will feedback from professional program-

mers be required for reaching this goal and possibly overcoming it? 

To achieve this objective, we designed and performed an exploratory case study in 

collaboration with a Swedish software consultancy company – Diadrom, which pro-

vided us with the needed resources for our investigation. We decided to name this pro-

ject C.L.A.M. (Code Learning Analysis Machine). 

1.2 Outline 

This paper is structured in the following way: In Section 2, we have described previous 

work related to the research, and the background for the research.  In Section 3 the 

research study design and execution are described into detail, starting with the research 

methodology, data collection and analysis details, and all the way up to the conclusion. 

This is followed by the References, which are followed by the Appendix, which holds 

a lot of evaluation quality results.  

2 Related Work and Background 

Similar problems have been analyzed in both “Predicting Source Code Quality with 

Static Analysis and Machine Learning” [2] and “Using machine learning to design a 

flexible LOC counter” [3], with the former being a bit more related to the issue of code 

quality analysis with machine learning, but the latter being more related towards de-

signing a flexible software engineering tool with machine learning. A similar way to 

analyze code using ML is presented in the work “A Case Study on Effectively Identi-

fying Technical Debt” [15]. We have also identified two studies that helped us get a 

better grasp on what TD is and how to determine it effectively – “The Role of Technical 

Debt in Software Development” [13] and “A Case Study on Effectively Identifying 

Technical Debt” [14]. 

2.1 Predicting Source Code Quality with Static Analysis and Machine 

Learning  

In “Predicting Source Code Quality with Static Analysis and Machine Learning” [2] 

the authors approach the issue by using public datasets, peer review and classification, 

in order to create the training data used for machine learning. The purpose was to find 

out whether it can be decided if a piece of code is “good” or “bad” by using machine 

learning. We’re planning to build on this idea, but in a different direction - the industry. 

We want to find out whether we can replicate an already well-established tool in the 
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industry – SonarQube, to what extent that can be accomplished and to understand 

whether and to what extent it can be accepted by industry developers. 

2.2 Using Machine Learning to Design a Flexible LOC Counter 

The study “Using machine learning to design a flexible LOC counter” [3], shows a 

combined use of a software pipeline and machine learning in order to create a flexible 

line of code counter. The training data for the machine learning in this research was 

provided by industry professionals, who conducted the needed classification. This study 

resulted in the creation of CCFlex, which is one of the two main tools (the other one 

being SonarQube) that we’re going to use in our research. It will be used as the basis 

for machine learning in our research, as it can be trained with marked lines of code. 

2.3 The Role of Technical Debt in Software Development 

This study [13] focuses on researching technical debt – what it is, whether it plays a 

relevant role in software engineering, the causes of technical debt and the short and 

long-term effects of technical debt in software development.  

The results of the study show that there are always several reasons for technical debt 

– it does not stem from one. It also shows that there are mainly positive effects to TD 

in the short-term (due to the benefit of a quicker software release), which produce neg-

ative effects in the long-term (due to the accumulation of bad decisions and practices). 

The artefact produced during this study was a technical debt management framework, 

used for describing different categories in TD management. 

2.4 A Case Study on Effectively Identifying Technical Debt 

A study which focuses on the identification of TD [14], by comparing items related to 

TD selected by humans, and ones selected by 3 different analysis tools. Then they com-

pared the results and observed that the analysis tools and the developers found relevant 

TD-contributing items, however the developers usually found “defect debt”. Another 

observation they made was that static analysis tools overlook TD that is not caused by 

source code, but by other development artefacts. 

2.5 Automated Analysis of Source Code Patches using Machine Learning 

Algorithms 

In this work [15] a tool is presented, which can be used for the automated analysis of 

source code and branch differences. The tool uses ML for the analysis. The source code 

analysis using ML part of this work is an idea that is very similar to the way that ML is 

going to be used in our study (the CLAM project).  
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3 Research Design and Execution 

3.1 Research Questions 

Research Question 1: Can machine learning algorithms be used to build a code 

analyzer that will be able to detect lines of code contributing to technical debt? 

RQ 1.1: What accuracy can be achieved in detecting LOC contributing to TD, when 

taking SonarQube as an oracle? 

RQ 1.2: How does the number of labeled examples affect the accuracy of the ML-

based tool for detecting LOC contributing to TD, when taking SonarQube as an oracle? 

Purpose: Explore if it is possible to train a ML-based classifier to mimic SonarQube 

in detecting lines of code contributing to technical debt. 

3.2 Research Methodology, Data Collection and Analysis 

Our methodology focuses on conducting an exploratory case study [20], consisting of 

simulation experiments, with the goal of exploring whether it is possible to train ML-

based classifiers to mimic SonarQube in detecting LOC which contribute to TD. We 

decided to conduct an exploratory case study, because it allowed us to perform explor-

atory experiments with ML classifiers, by exploring different parameters - i.e. different 

sample size, or a different marked LOC density, etc. (as explained better in the follow-

ing paragraphs). We could then gather a lot of data from the experiments, which we 

could afterwards analyze and try to understand, with the purpose of understanding the 

accuracy of the classifiers and how the different parameters affect them. 

Obtaining the samples. The first step, necessary for carrying out the experiments, was 

obtaining the codebase. For the data collection, we managed to obtain our codebase by 

collaborating with the software consultancy company Diadrom, which provided us with 

2 proprietary software suites. Additionally, we also obtained code from ColourSharp 

[9], which is an open-source project. All of these suites were mainly written in C#. 

In order to effectively decide which SonarQube rules to use during the training of 

the classifiers, we had a small workshop with professional developers from Diadrom, 

during which they agreed that we should use all of the TD-related rules in our experi-

ments. After this, the software suites were compiled using MSBuild [10] and analyzed 

by SonarQube. When the analysis was over, we needed to mark the faulty LOC detected 

by SonarQube. This was accomplished by exporting the SonarQube results to CSV 

(comma-separated values) files, which contained the LOC that SonarQube found as 

faulty. Following this, bash scripts were made, which were used for copying the files 

with faulty code and marking the faulty lines of code inside of them. Now we had a 

pool of code that we could use in the training data samples. 

After all of these steps, the data was ready to be processed by CCFlex. Lines of code 

were extracted manually, but randomly, from the class files. We did this while still 

trying to maintain some code structure - for example, if a marked line was a part of a 

function, the whole function was used in the sample. This was done for the purpose of 

making the sample data more diverse, while preserving its integrity in terms of code 
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structure. Our assumption was that this would help the classifiers to find better patterns 

for detecting faulty LOC. We prepared 12 different sets of data (samples) in this man-

ner, and divided each one into 10 equal parts, which would be used for 10-fold cross-

validation (as explained below) [32]. The data was now ready to be processed by 

CCFlex. 

Training and testing the classifiers. CCFlex needed to be configured a bit before run-

ning it on the samples. Among the several types of configurations that it offered, we 

decided to configure which algorithms it should use for training. We chose the CART 

[16], RandomForest [17] and KNN [18] classifiers. The first two algorithms are deci-

sion tree based [16] [17], which use internal decision nodes for classifying. The KNN, 

on the other hand works through clustering the features of the data into an n-dimen-

sional space and then predicts trough comparing the placement of the training data and 

the testing data (data which is used to test the classifier’s prediction accuracy) on that 

space. We chose these algorithms because we could understand how they operate and 

they were also implemented into CCFlex. Additionally, we wanted to explore how sim-

ilarly functioning algorithms compare against each other and against different ones. 

CCFlex also allows some aspects of the algorithms to be configured as well. We chose 

to explore how tweaking the depth of the decision trees and the number of nearest 

neighbors would affect the classifiers - whether it would make them better or worse.  

During the training of the classifiers, we decided to do 36 runs (12 samples × 3 clas-

sifier configurations), in which the samples contained a different number of LOC and 

percentage of marked LOC, while the classifiers’ configuration varied in the tree depth, 

or number of nearest neighbors (5, 7 and 9) in different runs. We did runs with 100, 

500, 1000 and 2000 LOC, in combination with 10%, 25%, and a random (unobserved) 

percentage of marked LOC, all of which were combined with a varying classifier tree 

depth/no. of nearest neighbors, by using the 10-fold cross-validation technique. The 10-

fold cross-validation technique requires 10 iterations of training and testing of the clas-

sifiers, for each of the 36 runs, or 360 iterations in total. This was performed by, firstly, 

splitting the samples into 10 equal subsamples. After that, in each of the 10 iterations, 

9 subsamples of the data are used for training, and 1 subsample is used for the testing 

of the classifiers, in a manner in which each subsample is eventually used for both 

training and testing. The results from the testing of the subsamples were then averaged.  

    We limited the amount of LOC in the samples for several reasons. We wanted to see 

how viable it would be for developers in the real world to train the classifiers with a 

sample of a limited size. Even though developers might possibly have access to big 

amounts of data, if they were to mark their own faulty LOC (in order to train the clas-

sifier) it would take a lot of time to do it manually. Adding on to this, we wanted to 

investigate how different densities of faulty LOC in the sample would alter the results. 

This is because, although we have an oracle (SonarQube) which marks all the faulty 

LOC for us, developers who would try to train a classifier with their own rules wouldn’t 

have an oracle that would provide them with “unlimited” examples of faulty LOC. That 

is why samples with varying size and density of faulty LOC were chosen. We also 

wanted to explore whether the classifiers can be improved by tweaking some of their 

settings, with our chosen number of LOC. In order to achieve this, as mentioned above, 
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we combined 3 different tweaks of the tree depth (for the CART and Random Forest 

algorithms) and number of nearest neighbors (for the KNN algorithm), with values of 

5, 7 and 9. 

Data evaluation. When all of the iterations of running CCFlex were completed - both 

training and testing the classifiers, we had the data from the testing. ‘Testing’ in this 

case means running a trained classifier on a subsample that contains LOC, and then 

comparing the predicted results against the results from SonarQube [31]. From this 

comparison, we would get 4 types of results: a) true positive - faulty lines marked as 

faulty by both the classifier and SonarQube; b) false positive - faulty lines marked as 

faulty by the classifier, but not by SonarQube; c) true negative - lines not marked as 

faulty by both the classifier and SonarQube; d) false negative - lines not marked as 

faulty by the classifier but marked as faulty by SonarQube. With this data, we were able 

to create confusion matrices [30] for each classifier, which allowed us to visualize and 

analyze the results from the tests. Furthermore, they allowed us to calculate the accu-

racy, recall [7], precision [7] and F-score of the results, which show us the performance 

of the classifiers. The accuracy represents the amount of correctly marked lines, the 

recall represents the number of true positives, the precision shows the number of false 

positives, while the F-score represents the balance between the precision and the recall. 

With this, we were able to evaluate the performance of the classifiers. 

    Along with all of the previously mentioned data, we also decided to measure how 

the representation of some of the features used in the training of the classifiers might 

affect the results. The total number of features extracted from the samples varied be-

tween 800 and 1150. Most of these features were extracted using the bag of words 

model. We used all of these features in the classifier training. Out of all of them, 

however, we analyzed the influence of only 2 features, to see whether and how they 

affect the results. These two features were the number of words and number of charac-

ters in every LOC. We calculated the mean, median and standard deviations of these 

two features in order to try to see whether there is any correlation between these features 

and the classifier predictions. The reason that we chose to observe these 2 features was 

because they stood out in the pool of a thousand other features and could be easily 

measured and compared. 

3.3 Validity 

To ensure the validity in this research, we tried to analyze the aspects of validity men-

tioned in the checklist designed by Runeson and Höst [11] for case studies. We have 

identified the several threats to validity to our research and have devised a plan on how 

to avoid or mitigate them in some cases.  

In order to establish the construct validity, we will be using a Confusion Matrix [30], 

which is a common way to visualize and calculate the performance of algorithms in 

ML experiments. The use of such measures as Accuracy, Precision and Recall is a reg-

ular way of measuring the quality in this kind of scenario. In this way we will keep the 

construct validity’s integrity. 
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We also devised several ways to mitigate the internal validity threats. First, the train-

ing samples were chosen randomly from a pool of data, to avoid sample bias. On top 

of this, experiments were conducted with different sample sizes for every algorithm, in 

order to be able to evaluate the performance of the system when classifying the results. 

Additionally, in order to further sustain the validity, member checking was done by the 

most competent developers’ evaluation of SonarQube’s rules. These developers were 

selected by Diadrom’s CEO. 

There are some possible external validity threats. For example, the research was con-

ducted on code written in the C# programming language. This might make our research 

results not applicable to other languages, especially if they are not in the C-family of 

languages. Furthermore, for this research we used SonarQube as a point of reference 

which provides the data needed for the research – or in other words, an oracle. Depend-

ing on how other tools similar to SonarQube work, the study’s results may end up being 

limited to SonarQube and limited to the languages that SonarQube can analyze. In ad-

dition to this, the developers from Diadrom evaluated the rules which affected the train-

ing data at one point in the research. Due to the coding standards utilized by the devel-

opers in the company, the results might end up different than they would if they were 

conducted in a company with different standards. 

Finally, in order to mitigate or alleviate any reliability threats, we did our best to 

show every step during the experiments that we’ve conducted in our research, in a way 

that the study could be repeated with similar results if the same parameters are used.  

3.4 Results 

We trained the classifiers in several runs, using a different amount of marked and un-

marked lines of code, and varying lines of code in general. We did different runs with 

100, 500, 1000 and 2000 LOC. Each of them was tested with a different amount of 

marked lines: random percentage of marked LOC and set percentage of LOC – 10% 

and 25%. We also modified the classifiers’ depth. Below we present the results split 

along two parameters: Features and Evaluation Quality. 

 

Features. We used around 1000 features in the training of the classifiers. However we 

investigated 2 of them into more detail. The feature data that we focused on was the 

number of characters and number of words in each line. The average, median and stand-

ard deviation were calculated for the number of characters and number of words fea-

tures.  

Table 1. Features of the first run – random % of marked LOC. 

Lines of code Average No. 

of characters. 

Median No. 

of characters 

Stand. Dev. 

No. of char. 

Average No. 

of words 

Median No. 

of words 

Stand. Dev. 

No. of words 

100 26.36 21.5 25.18 2.1 1 2.26 

500 32.53 32 28.76 2.56 2 2.71 

1000 35.23 29 32.01 2.73 2 3.29 

2000 33.85 30 29.58 2.61 2 2.73 
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Table 2. Features of the second run – 10% of marked LOC. 

Lines of code Average No. 

of characters. 

Median No. 

of characters 

Stand. Dev. 

No. of char. 

Average No. 

of words 

Median No. 

of words 

Stand. Dev. 

No. of words 

100 37.45 35.5 31.74 2.4 2 2.09 

500 30.43 25 26.02 2.25 1.5 2.04 

1000 37.45 31 32.9 2.78 2 3.14 

2000 34.65 30 29.8 2.47 2 2.26 

Table 3. Features of the third run – 25% of marked LOC. 

Lines of code Average No. 

of characters. 

Median No. 

of characters 

Stand. Dev. 

No. of char. 

Average No. 

of words 

Median No. 

of words 

Stand. Dev. 

No. of words 

100 36.71 25.5 30.67 2.4 1.5 2.01 

500 36.53 35 30.34 2.78 2 2.51 

1000 34.76 30 29.49 2.59 2 2.34 

2000 36.52 52 29.88 2.88 2 2.38 

 

Evaluation Quality. The confusion matrix method was used to evaluate the accuracy 

of the classifiers. This method shows the number of true positive, true negative, false 

positive and false negative lines predicted by the classifiers. This way, the Accuracy, 

F1 Score, Precision and Recall can be measured. In order to test whether the accuracy 

can be improved with a different configuration, the max. depth of the CART and RF 

algorithms was modified, along with the number of nearest neighbors of the KNN al-

gorithm. The number of marked (faulty) lines in the training samples, was also a sample 

configuration which we experimented with. The tables below show charts of how the 

quality of the algorithms varied with different configurations of the samples (size, per-

centage of marked lines), and different configurations of the classifiers – tree depth/no. 

nearest neighbors of 5,7,9.  
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Table 4. A Chart Containing the Recall Values 

 
 

Table 4 represents the recall (no. of true positives) derived from the results of the 

classifier evaluation. A pattern can be noticed, according to which, the recall value is 

lower when the percentage of marked LOC in the samples is lower (10% vs 25%). 

Table 5, on the other hand, represents the precision values derived from the classifier 

evaluation. The precision, however, shows no pattern which demonstrates that its value 

is dependent on some parameter from the sample or a classifier configuration. 

Table 5. A Chart Containing the Precision Values 
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Table 6. A Chart Containing the Accuracy Values 

 
 

Table 6 represents the accuracy of the classifiers in different sample and classifier 

configurations. The accuracy seems to be the highest when the number of LOC and the 

percentage of marked LOC are at their highest configurations.  

The confusion matrices for these results are presented in the Appendix of this docu-

ment from Fig. 1 to Fig. 24, because of the size of the data. Those represent the average 

results that were observed during the classifier tests.  
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is due to the fact that even though the measures of the accuracy of the classifiers’ pre-

dictions vary quite a lot, we do not see any correlation between them and the represen-

tation of the features that we chose to examine. 

Secondly, we looked at the number of marked lines per sample, with the purpose of 

answering RQ1.2. We can see that they definitely shake the numbers when training 

with 100 LOC, from the sample confusion charts in Fig. 1 – Fig. 6 of the appendix. 

From the chart in Table 5, we can also see a trend of the precision rising when training 

with 25% of marked lines, and it is lower when the classifiers are trained with 10% of 

marked faulty LOC. The precision doesn’t seem affected by the size of the samples. 

The accuracy value seems unaffected by the number of marked LOC, but instead looks 

more affected by the number of total LOC per sample (the size of the sample). 

The recall is a value which shows the ratio of correctly predicted positive observa-

tions to all of the other observations in a class (the percentage of correctly guessed 

faulty lines). It is generally higher when the number of marked LOC is higher - and is 

consistently so. So, when we have a higher percentage of marked LOC, we can see that 

the recall is consistently higher, of course compared to other results with the same total 

number of LOC. What is noteworthy to mention from the results, is that the percentage 

of marked LOC brought more consistently positive recall values than the total amount 

of LOC did. However, both of those affect the recall. From this we can say that the 

percentage of marked LOC in a training sample is very important, at least when the 

total sample is not bigger than 2000 LOC. The recall values are very important in our 

case, because they show the amount of the true positives that our classifiers predicted. 

Even though the precision is quite low (which gets low when the number of false pos-

itives is high), our classifiers still predicted many of the actually faulty LOC. These 

results are very promising, since they show that if developers wanted to teach a classi-

fier how to find faulty code according to their own standards, they could plausibly get 

good results (but we cannot guarantee this, since more investigation is required in 

order to claim this) with only 250-500 LOC of examples of faulty code. In the future, 

we would like to try to see what kind of results could be gotten with up to 50% of 

marked LOC (equal number of marked and unmarked LOC), and how that would affect 

the recall and the precision. 

The precision in our case is usually quite low. In our best-case scenarios, we have 

around 20-50% false positives. This means that even though we have a promisingly 

high percentage of true positives, the number of false positives is also quite high, which 

would be inconvenient for the developers. However, like we mentioned, according to 

Jernej Novak et. al (2010) [26], some static software analysis suites can show up to 

50% of LOC marked as false positive, which means that our classifiers have room for 

improvement, but are not critically bad, especially since in some cases it might be more 

important to catch the actually faulty LOC (true positives), even if we have a lot of 

marked false positives. This might be so in cases where the faulty LOC is some criti-

cally bad piece of code that has to be found even at the cost of going through many 

falsely marked pieces of code. We see a problem, however, which is not consistently 

affected by the different parameters. The problem is that neither the size of the samples, 

the amount of marked LOC, nor the configuration of the classifiers show any pattern of 

affecting the precision in a positive or a negative manner.  But we have to agree that 
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the precision has a lot of space for improvement, so in the future it would be a nice idea 

to see how the precision would be affected by bigger and more saturated samples. 

The F-Score is a value which shows balance between the precision and the recall. 

Since its value is determined by both the precision and the recall values, we could not 

find any pattern which affects its value, because we don’t see any pattern in the value 

of the precision. It would play a bigger role into the results if we had more consistent 

precision values, and would show the dynamics between different patterns, but unfor-

tunately it doesn’t mean a lot to us in this study, with the current results. 

The Recall, Precision and F-Score values are all important values, very commonly 

more so than the Accuracy value, especially in cases when the sets of False Positive 

and False Negative values are very dissimilar [19]. However, it is important to have a 

high accuracy – in our case it should be optimally higher than the percentage of un-

marked LOC. This is because we could easily get a high accuracy of 90%, by just mark-

ing all of the LOC as non-faulty, if we have a sample with 90% non-faulty LOC. The 

results from our experiments show a pretty good accuracy, especially when the percent-

age of faulty LOC and the total number of LOC are high. This shows promise that the 

results might be better if the investigation would continue with a larger and denser sam-

ple, or with different classifier configurations. 

The last aspect that we explored was the configuration of the max depth of the CART 

and RF classifiers and the number of nearest neighbors of the KNN classifier. This was 

done in order to answer RQ1.1, and we did these different configurations with the goal 

of trying to increase the accuracy of the classifiers. While the depth doesn’t show any 

considerable differences in the CART and RF classifiers, the results give quite an ob-

vious difference when the number of nearest neighbors is changed. The rise of this 

number shows a drop in the amount of False Positive LOC marked by the KNN classi-

fier, when the number of training LOC is 1000 or 2000. When this is the case, the 

accuracy of the LOC marked by KNN increases. However, we see that sometimes the 

recall is affected negatively when the number of nearest neighbors is increased, and the 

sample size is equal to, or larger than 500 LOC. This behavior is more noticeable at the 

sample size of 2000 LOC, even though sometimes the decrease is very small, so it might 

not be significant. 

3.6 Conclusion 

During the course of our experiments, we did not manage to completely mimic So-

narQube in its functions. However, we did get positive and promising results. The high 

recall and high accuracy give hope that it might be possible to reliably detect LOC 

contributing to TD using ML in the future. Even though the precision remained quite 

low and unpredictable, our classifiers managed to predict 60-100% of the truly faulty 

lines correctly. This means that even though we had many false-positives, with a bigger 

size and saturation of the samples, and a different configuration of the classifiers, even 

better results might be achieved. We can use this information in order to answer RQ1.1 

- the accuracy was quite high in the experiments, and the recall was also pretty good, 

with the precision being the only down point. Furthermore, even though we used 

around 1000 features for training, we have investigated and measured 2 of them, 
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whose values turned out to be unrelated to the accuracy of the predictions. The mean 

and median values of these 2 features do not affect the classifiers in our investigation, 

which means that different features should be measured if the investigation is contin-

ued in the future, in order to find out if some other features impact the accuracy of the 

classifiers. 

 In order to answer RQ1.2, we can say that the number (or percentage) of marked 

lines in the sample noticeably influences the classifiers’ predictions, and also improves 

the classifiers’ accuracy and recall. However, the only parameter that successfully af-

fects the precision is the increased percentage of marked LOC per sample. 

Something that should be done in a future investigation of the problem, is to try and 

measure whether some rules are easier to detect than others, and maybe to try training 

different classifiers to recognize only one rule. For now, we have identified different 

patterns in the precision, recall and accuracy values, which are affected by different 

configurations of the samples and classifiers. More configurations should be explored 

in the future. 

So, can machine learning algorithms be used to build a code analyzer that will be 

able to detect lines of code contributing to technical debt? Our investigations show 

promising results, which means that we might be on a path to answer this question with 

a “Yes” in future explorations of the problem. 
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Appendix 

 
Fig. 1 – Confusion Matrix of classifiers trained with 100 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 

 
Fig. 2 – Confusion Matrix of classifiers trained with 100 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 

 
Fig. 3 – Confusion Matrix of classifiers trained with 100 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 

 
Fig. 4 – Confusion Matrix of classifiers trained with 100 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 
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Fig. 5 – Confusion Matrix of classifiers trained with 100 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 

 
Fig. 6 – Confusion Matrix of classifiers trained with 100 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 

 
Fig. 7 – Confusion Matrix of classifiers trained with 500 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 

 
Fig. 8 – Confusion Matrix of classifiers trained with 500 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 
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Fig. 9 – Confusion Matrix of classifiers trained with 500 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 

 
Fig. 10 – Confusion Matrix of classifiers trained with 500 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 

 
Fig. 11 – Confusion Matrix of classifiers trained with 500 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 

 
Fig. 12 – Confusion Matrix of classifiers trained with 500 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 
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Fig. 13 – Confusion Matrix of classifiers trained with 1000 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 

 
Fig. 14 – Confusion Matrix of classifiers trained with 1000 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 

 
Fig. 15 – Confusion Matrix of classifiers trained with 1000 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 

 
Fig. 16 – Confusion Matrix of classifiers trained with 1000 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 
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Fig. 17 – Confusion Matrix of classifiers trained with 1000 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 

 
Fig. 18 – Confusion Matrix of classifiers trained with 1000 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 

 
Fig. 19 – Confusion Matrix of classifiers trained with 2000 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 

 
Fig. 20 – Confusion Matrix of classifiers trained with 2000 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 
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Fig. 21 – Confusion Matrix of classifiers trained with 2000 LOC and 10% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 

 
Fig. 22 – Confusion Matrix of classifiers trained with 2000 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 5. 

 
Fig. 23 – Confusion Matrix of classifiers trained with 2000 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 7. 

 
Fig. 24 – Confusion Matrix of classifiers trained with 2000 LOC and 25% marked lines. 

The max depth of the CART and RF, and No. of nearest neighbors of KNN are 9. 


