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Abstract— We adapted Goal-Oriented Action planning, a 

decision-making architecture common in video games into the 

machine learning world with the objective of creating a safer 

artificial intelligence. We evaluate it in randomly generated 2D 

grid-world scenarios and show that this adaptation can create a 

safer AI that also learns faster than conventional methods.  

I. INTRODUCTION 

Artificial intelligence (AI) is increasing its prevalence in 

our modern society. It is used now in tasks ranging from 

driving cars to advertisement targeting. It is thought that we 

could see AI assist doctors or lawyers within our lifetimes [1].  

Being able to delegate such responsibilities to AI and exploit 

its potential depends, among other things, on our capacity to 

make it operate safely. AI Safety is an important and ongoing 

problem that needs to be researched. This paper will use a 

design science approach to create and analyze a solution that 

can increase AI safety in reinforcement learning agents 

through the rewards they gain while training to perform their 

tasks. 

A. Background 

Before going further into our problem domain, we need to 

define some terms: 

● Agent - object that can perceive the world and acts 

autonomously upon its perception [7], 

● Reinforcement learning (RL) - discipline that teaches 

a behavior to an agent through rewards, it is a part of 

machine learning. Relevant definitions within RL are: 

o Reward function - defines the way that the agent is 

rewarded; 

o Gridworld – 2D sandbox environment. This is the 

environment the agent interacts with.  

o Initial state - state how the episode starts. 

o Final state - state that ends the episode, this can be 

caused by stepping in a specific cell or running out of 

steps. 

o Episode - the sequence of states between an initial 

state and a final state. 

o Step - the execution of an action 

o Timestep - interval of steps 

● Goal-Oriented Action Planning (GOAP) - real-time 

planning system created to improve decision making 

in game’s AI. GOAP has some definitions of its own 

which are relevant for our study: 

○ State – single property of the world represented as a 

tuple of name of the state and a boolean value (ex. 

{front_is_clear, true}), 

○ World state – collection of all the states in the world, 

○ Goal state – collection of states the agent will try to 

reach. (ex. [{front_is_clear, true}, {front_is_safe, 

true}]), 

○ Action – actions consist of three parts: 

■ Preconditions – a collection of states that are 

required for action to be executed; 

■ Effects – a collection of states that will change in the 

world state after action is executed; 

■ Cost – the price to pay for executing an action (can 

be represented as points, time units, etc.). 

○ Plan – a chain of actions linked together by their 

preconditions and effects. After executing the plan, 

the goal state will be reached. 

B. The problem 

1) Reinforcement learning 

A RL agent learns by getting rewarded for behaving 

desirably. However, at the start of its execution the agent is 

completely unaware of its surroundings and of its objective. It 

chooses randomly from the actions available to it and gets 

rewarded or punished by the reward function. With the reward 

information, it creates a map of the possible reward it can get 

by doing certain actions in a sequence and will strive to act in 

the way it gets the most reward. If a set of actions exist that 

reward the agent for acting in a different way than it was 

meant to by design, then the reward function has specification 

problems. That is, it is not defined correctly. 



2) Safety 

Specification problems are a safety concern because the 

behavior of an agent with such problems becomes 

unpredictable. Furthermore, creating a reward function 

without any specification problems can be complicated. Such 

reward function would require the designer to think of all the 

possible combinations of undesired actions that might reward 

the agent. Doing so in a big environment with many actions 

can be considered, at the slightest, to be challenging. 

From the software engineering viewpoint, we can define 

safety critical systems as “those in which a system failure 

could harm human life, other living things, physical structures 

or the environment”.  [8] 

Thus, using a reinforcement learning agent for a safety 

critical task can be a safety hazard because of the difficulty of 

creating reward functions without specification problems. 

C. Research Question 

This research will raise the following question: 

How to create safer reward functions for reinforcement 

learning agents for a grid world environment using Goal 

Oriented Action Planning? 

A safer reward function is one that trains the agent to reach 

its goals while reducing probability of unsafe actions. We 

assume unsafe actions as those that might damage the agent 

itself or the environment. To simplify the scope of our 

research we will use an abstract unsafe tile (a gridworld 

object) and stepping into unsafe tile is considered damaging 

for both - the agent and the environment. 

D. Thesis Structure 

Section II discusses related work to our research and 

explains how this research differs. 

Section III clarifies the setting in which our research takes 

place including our motivation and proposed solutions. This 

section incorporates the scientific and technical contributions 

of this thesis. 

Section IV describes the selected methodologies to carry out 

the data collection and the use given to the collected data.  

Section V describes the artifact. Section VI provides the 

data analysis of the experiments. Section VII concludes this 

thesis. 

II. RELATED WORK 

A. Relevant literature from the problem domain 

Leike et al. in “AI Safety Gridworlds” [3] does experiments 

with two types of agent. They are placed in different gridworld 

environments, each made to test reinforcement learning agents 

in specific scenarios which are prone to induce safety 

problems. This research exposed the safety problems present 

in the RL world and the need for safer agents.  

Amodei et al. in “Concrete Problems in AI safety” [4] 

explained their safety concerns in many aspects of RL, 

including specification problems. This paper also presents 

thoughts about safety from different research communities 

within and outside the machine learning field. 

Both studies are relevant to our research. They both point 

out the risks related to RL and specification problems and the 

consequences these problems can have. 

B. Literature on potential solution approaches 

Hadfield-Menell et al. in “Inverse Reward Design” [2] 

created an approach to mitigate the risk of a misspecified 

reward function, not by creating a better reward function but 

by having the agent understand the designer’s intentions 

through demonstration of optimal behavior. However similar 

in the objective (minimizing the safety risk) this study’s 

approaches the problem from a different angle from us. They 

want to teach the agent through demonstrations whilst our 

objective is to improve the safety of the reward function 

without affecting the internal workings of the agent.  

Another potential method is reward shaping [5]. The 

purpose of reward shaping is to allow the agent to learn a 

behavior faster than training without reward shaping. It does 

this by rewarding the agent as it gets closer to fulfilling its 

objective. Although this method was not intended to make 

reward functions safer, we found the idea of it useful to 

“encourage” an agent to follow our methodology. 

Except for reward shaping, the solutions found in the 

literature do not strive to create safer reward functions. 

Instead, they completely change the way the agent manages 

the specification problems. 

III. RESEARCH CONTEXT AND SCOPE 

A. Motivation and proposed solutions 

Noting the lack of solutions for safety issues caused by 

specification problems in RL, this research will focus on 

reward functions. We want to improve the safety of the 

behavior of the RL agent without changing the RL algorithm 

itself, only changing the reward function (that might have 

specification problems).  

This thesis will explore the possibility of implementing 

Goal-Oriented Action Planning into the reward function of a 

RL agent. GOAP has been proven a valuable tool in AI 

decision making for games. The main reasons why we think 

GOAP can be used to create safer reward functions are: 

● GOAP works at run time and it can choose the actions 

real-time, so no matter in which situation the agent has 

found itself, GOAP should be able to create a plan for 

it. 

● GOAP is scalable, this means that even though we 

will apply it in a gridworld with limited possibilities it 



can still be used for larger and more complicated 

environments, helping justify this thesis.  

The downside of GOAP is that it is not designed for RL. 

For GOAP to function at its best, it needs to understand the 

whole virtual world and not just what the agent perceives. 

GOAP needs to access all the possible actions with their 

prerequisites and effects. For this reason, we are not 

considering using GOAP to decide every action. GOAP will 

only be used for safety-critical situations. However, when 

such a situation takes place, GOAP will not control the agent. 

Instead, we will reward the agent if it decides to follow 

GOAP’s advice. In this way we are only dealing with reward 

functions. 

A reward function created using GOAP should give the RL 

agent the best qualities of the two different AIs, it should be 

able to explore and learn on its own while still have a 

predefined plan if it ever encounters a safety critical scenario. 

B. Scientific and technical contributions 

Scientific contribution: This study will extend the scientific 

body of knowledge showing the results of our initiative to 

others. 

Technical contribution: We created and will later evaluate 

our method for designing safer reward functions. Based on our 

results, this research can lay the groundwork for more 

ambitious and bigger projects.  

 

IV. Methodology 

 

 Figure 1: Methodology 

As explained in figure 1, the methodology used in this 

research worked in iterations. In step one “Awareness of the 

problem” we went through the domain problem’s literature 

and discussed it with our senior colleagues.  

For the second step “Suggestion” we argued on the challenge 

of adapting GOAP to the RL environment. Every discussion 

would result in a different implementation of GOAP (there 

were three in total).  

In the “Development” step we tested the implementation that 

we created by training the agent, implicitly creating an artefact 

(the method explaining how to adapt GOAP into a RL agent) 

that we would then evaluate in the “Evaluation” stage. 

The data collected in the evaluation would allow us to create 

a conclusion for the current iteration. With the conclusion data 

we would either start another iteration or once we were 

satisfied with the results, proceed to write the paper and 

explicitly record the method utilized. 

 If in any of these steps we found a problem with our 

understanding of the problem, our implementation or the way 

we were training the agent, we went through a new iteration of 

the research process. 

A. Data collection 

The sources of information for this study are execution logs 

from training RL agents. The agent used in all our tests uses 

the same implementation of the Advantage-Actor-Critic 

Model by Yuhuai, et al. [9] 

We reward both agents, with or without GOAP, equally. 

That is, the agent gets rewarded the same amount for stepping 

in an unsafe tile, reaching the goal, doing a step, etc. The only 

difference is that the GOAP implementation gets rewarded if it 

follows the current plan and punished if it stops doing so. 

a) Scenarios 

 

 

 Figure 2: The perception 

The agent’s perception is a 7x7 cell square containing the 

world to the front and sides of the agent. Figure 2 shows an 

example of what the agent sees, on the left side is the 

environment and on the right is the agent’s perception of it. 

 



 

 Figure 3: Randomly generated scenarios 

The agent trains in an 8x8 scenario with 27 randomly placed 

unsafe cells. The scenario always generates a safe random 

path from the starting cell to the goal cell that does not require 

stepping on the unsafe cells. Figure 3 contains two examples 

of possible randomly generated scenarios. 

 Our implementation of GOAP is only able to create plans 

based on what the agent perceives when the plan is created. 

The planner does not store the states that are outside the 

perception. The agent has different safety objectives 

depending on what is available to it. If at any moment the 

perception contains a safe path to the goal, then it will use 

GOAP to create a plan to reach it safely. However, more 

objectives are possible. Objectives are set according to the 

desired states of a cell. For example, the objective to go to the 

goal looks for a cell that has the state: 

{current_is_goal, True} 

 In this experiment, however, we did not make use of any 

other objective than going to the goal. 

Collected Data 

As we train the agent in these random scenarios, after every 

cycle we get its learning data, and a cycle takes 2400 steps. 

Per every cycle we get:  

● Total number of steps, 

● Total amount of violations (unsafe action), 

● Mean reward, 

● Steps per episode. 

From these data points we can then calculate the safety of 

the trained agent (Probability that the agent doesn’t do an 

unsafe action). We will also use these data points to 

investigate possible changes in training performance caused 

by implementing GOAP. 

B. The environment 

The gridworld is created using “gym-minigrid”, a library 

made to research AI agents in different situations. “gym-

minigrid” is available online [6]. The intention of using the 

gridworld is to replicate the real world while retaining control 

of the variables around the experiment. It allows us to have an 

agent in an environment it can perceive as well as to teach 

such agent. It also provides the possibility to create scenarios, 

actions and objects for the agent to interact with. The 

gridworld allows us to evaluate agents.  

C. Reward Design 

We stimulated the agent to explore by not punishing it the 

first time it went into any cell. At the same time, we punish it 

strongly for staying in the same cell.  

V. RESULTS 

The product of this research is a method with guidelines on 

designing reward functions for reinforcement learning agents 

in a gridworld environment by implementing GOAP. Steps to 

implement our method are visualized in Figure 5.  

       

 Figure 4: Elements of the artefact 

 

 Figure 5: Flow of the artefact 

1. Environment. The layout and the properties of the 

environment depend on the scenario. Depending on the chosen 

gridworld implementation it might already have various 

objects included else they will have to be created. If we want 

to have unsafe objects in the environment we will have to 

define what unsafe is. This can be done by making a collection 

of objects we want to consider unsafe (by name, by color, etc.) 

or we can use a generic unsafe object of type world object. 



Finally, we create an instance of the environment according to 

desired scenario including one or more unsafe objects and at 

least one goal object. 

2. States. As seen in Figure 4, state is a crucial element 

which other elements depend on. It may be difficult at the 

beginning to define all the states that might be used in other 

components, so we start by creating a placeholder for states to 

be filled later when implementing other components.  

Every cell in the environment has their own set of states, 

according to the cell. For example, if a cell is unsafe, it will 

need to have a state containing that information. 

Other important states are the agent’s states, depending on 

how you decide to implement the action planner, it is not 

enough to say that an agent is in certain state because it is on a 

cell. A couple examples of an agent’s states can be its 

orientation, what it is carrying, etc. 

3. Actions. The actions are those that already exist in 

the environment. They are the basic actions like move 

forward, turn left, pick up, toggle, etc. We need to adapt those 

simple actions and give them preconditions, effects and cost. 

For example, move forward should have as a precondition that 

the tile in front of the agent is safe. As seen in Figure 4, an 

action can have multiple preconditions and effects.     

The preconditions of an action are the states that need to be 

satisfied before performing such action. The effects of an 

action define how the world state will change after the action. 

The cost of an action depends on the logic applied to the 

scenario, it might be represented as points or time units. Cost 

is explained further in step 5.  

The purpose of giving actions preconditions and effects is 

chaining them. For example, action “A” has as preconditions 

the same states that action “B” has as effects. The planner will 

then chain B’s effects and A’s preconditions. This allows the 

planner to be able to predict all the way to the world state 

present after A is executed while being present in the world 

state that existed before B was executed.  

4. Goals. A goal can be any desired set of states that is 

present in your environment. Goals should be meaningful and 

closely related to your agent’s objectives.  

5. Planner. When we have elements described above, 

we can combine them and implement the planner. The planner 

takes a goal, compares it to the current world state and 

generates an action plan to lead the agent to a cell that 

contains the goal state. Implementation is done using an A* 

algorithm which creates a graph with states represented as 

nodes and actions represented as edges. The cost of reaching a 

node should be equal to the cost of the actions. The algorithm 

will start its work going backwards from the goal state 

generating all the possible chains of actions until it reaches the 

current world state. It will then output the path with the lowest 

total cost. Now it is clear why the actions need to have a cost. 

The complexity of executing an action should be reflected in 

its cost. 

6.  Reward function. When we have set up the planner 

we need to decide when we want it to be executed and how do 

we treat its results. In a traditional implementation of GOAP, 

the action planner is responsible for every action an AI takes. 

It always has a “global” goal to achieve and every time it is 

given a goal it generates a plan for it. In our context we do not 

want to be in control of an agent all the time, we want it to 

learn and our scope is only safety-critical situations. We only 

want a “safety action plan” to be triggered when these 

situations arise. At the same time, in these situations we also 

do not want to take over control of the agent but help it learn 

how to deal with them. This can be achieved by letting the 

agent complete its intended action. We then later intercept the 

reward passed as the return value of the action. First, we need 

to identify if there is a safety-critical situation observed in the 

environment and whether that situation matches any of the 

prerequisites of the goals. It is possible that we may have 

multiple goals and more than one may be suitable for the 

given situation. In this case we need goals to be put in a 

priority list so that when the planner starts it will try first to 

match the goal that is the most relevant, if the planner cannot 

match the goal, then it will go to the next one. If there are no 

met prerequisites, we pass the reward that was intercepted. In 

case the plan has been generated we will need to pass it to the 

next step. On the next step we intercept the reward again and 

check if any plan has been passed. If it has, we pop the first 

action from the plan and check if it matches the one that the 

agent just made. If it does not match we pass a negative 

reward and clear the plan because it would not be valid any 

more. If the actions match, we pass a positive reward and the 

rest of the plan to the agent and make sure we keep track of 

how far the agent has followed the plan. We keep on checking 

the plan with every action the agent executes, as long as both 

actions match we reward the agent proportionally to how far 

the plan has been followed. If the actions do not match, we 

must pass a negative reward almost equal to the amount of 

positive rewards the agent has gained until then by following 

the current plan. 

The purpose of this step is to “encourage” the agent to 

follow the plan by rewarding him incrementally for every 

consecutive successful action that matches the planned 

actions. If the agent steers away from the plan, we must punish 

it with a punishment equal or almost equal to the positive 

rewards it has collected from following the plan until that 

point. This is to prevent the agent from reward hacking. 

 

 

 

 



VI. ANALYSIS 

 During the evaluation phase of our artefact we have trained 

the same agent in the random scenarios, with and without 

GOAP.  

 

Figure 6: Results and comparison 

They were both trained with the same configurations and 

with the same rewards.  

A.  Without GOAP: 

 

Figure 7: An execution without GOAP 

The agent was trained without GOAP fourteen times. On six 

of those fourteen times it was stopped before it learned. On the 

other nine executions the agent went to the goal in the most 

direct way, passing through unsafe tiles despite getting 

punished for it. This is reflected in Figure 6 and 7. Figure 6 

contains information about the average of successful 

executions (i.e. where the agent trained) for both GOAP and 

non GOAP. 

Figure 7 shows a typical example of an execution without 

GOAP. The agent roams around getting punished until it finds 

the goal, after that the agent goes to the goal directly without 

avoiding unsafe tiles. It’s worth noticing that in Figure 7 the 

mean reward was approximately -70. 

 

 

 

 

 

     

B. With GOAP: 

 

Figure 8: An execution with GOAP 

The agent was trained with GOAP twelve times. On four of 

those twelve times it was stopped before it had time to learn. 

On the other eight executions the agent learned to go to the 

goal avoiding the unsafe tiles. As explained in Figure 6: It 

needed, on average 39,51% less timesteps to learn that the 

agent without GOAP. Once it had learned, it took 125% more 

steps than the agent without GOAP but also did 85% more 

safe actions.  

Figure 8 shows what training an agent with GOAP usually 

looks like. It slowly goes up as it learns to avoid the obstacles 

and then settles once it has learned the optimal route. 

C. Overall 

Throughout testing we noticed an impact on learning 

process speed when using GOAP. Depending on the agent’s 

perception, goal specifications and number of times action 

plan is generated, the speed was dropping up to 6 times. We 

assume this is because of the way A* algorithm is 

implemented as the aim was to make it produce reliable results 

while not considering its efficiency. 

The biggest shortfall of the current implementation of the 

action planner is that it relies exclusively on what the agent is 

able to perceive at the time the plan is created, therefore it 

cannot create more elaborate plans to find the goal or to 

understand the environment around it. This could also mean 

that in bigger scenarios the current implementation of GOAP 

might not be beneficial, the same might be true if the agent has 

a smaller perception. 

D. Threats to validity 

There is a risk that our measurement of safety is not relevant 

for the software engineering definition of safety since it does 

not directly relate to the capacity of the system of harming 

living things or our environment. 

Even though we are running our experiments in random 

scenarios created in the same way for both GOAP and non-

Steps until 

trained (AVG)

Steps

Per episode (AVG)

Safe Actions %

GOAP 1744440 26,34089524 99,91867051

NO GOAP 2883973,333 11,69907407 53,81094329

GOAP did: 39,51% less 125% more 85% more



GOAP, we are not comparing their performance in the same 

scenarios. Because of this our results can be inconclusive. 

However, we got recurrent results for both methods, so there 

is no hint to getting different results testing them in the same 

scenarios. 

The experiments ran using only one reward configuration. 

Even if it was the same for both the control group and GOAP, 

it might imply that our results are not representative of any 

other configuration and might change the result. 

VII. CONCLUSION 

In this thesis we explored the possibility to apply Goal-

oriented action planning methodology to reinforcement 

learning agent to create safer reward function. We have 

followed the methodology and created an action planner able 

to work in a gridworld environment where it was tested with 

randomly generated scenarios. We believe that using GOAP 

together with reinforcement learning is a promising approach, 

that has potential for both safety and non-safety related 

scenarios. GOAP requires concrete and meaningful goals 

which might be hard to identify taking only safety in 

consideration. The method we produced during this thesis is 

generic and can be applied to various experiments. This 

method is also scalable meaning that it would not take much 

effort to adjust the planner to newly added world objects, 

actions or goals. 
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