

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Creating safer reward functions for
reinforcement learning agents in the
gridworld

Bachelor of Science Thesis in Software Engineering and Management

ANDRES DE BIASE
MANTAS NAMGAUDIS

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

The Author grants to University of Gothenburg and Chalmers University of Technology the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Implementing Goal-Oriented Action Planning:

Rewarding the reinforcement learning real-time for behaving in a safe manner.

ANDRES DE BIASE

MANTAS NAMGAUDIS

© ANDRES DE BIASE, June 2018.

© MANTAS NAMGAUDIS, June 2018.

Supervisor: PATRIZIO PELLICCIONE

Examiner: MIROSŁAW OCHODEK

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

Gym-minigrid: environment where our experiments took place, blue arrows represent a plan to reach the goal

created by our implementation of Goal-Oriented Action Planning.

Creating safer reward functions for reinforcement

learning agents in the gridworld

Andres De Biase Mantas Namgaudis

Department of Computer Science and Engineering Department of Computer Science and Engineering

University of Gothenburg University of Gothenburg

gusdebana@student.gu.se gusnamgma@student.gu.se

Abstract— We adapted Goal-Oriented Action planning, a

decision-making architecture common in video games into the

machine learning world with the objective of creating a safer

artificial intelligence. We evaluate it in randomly generated 2D

grid-world scenarios and show that this adaptation can create a

safer AI that also learns faster than conventional methods.

I. INTRODUCTION

Artificial intelligence (AI) is increasing its prevalence in

our modern society. It is used now in tasks ranging from

driving cars to advertisement targeting. It is thought that we

could see AI assist doctors or lawyers within our lifetimes [1].

Being able to delegate such responsibilities to AI and exploit

its potential depends, among other things, on our capacity to

make it operate safely. AI Safety is an important and ongoing

problem that needs to be researched. This paper will use a

design science approach to create and analyze a solution that

can increase AI safety in reinforcement learning agents

through the rewards they gain while training to perform their

tasks.

A. Background

Before going further into our problem domain, we need to

define some terms:

● Agent - object that can perceive the world and acts

autonomously upon its perception [7],

● Reinforcement learning (RL) - discipline that teaches

a behavior to an agent through rewards, it is a part of

machine learning. Relevant definitions within RL are:

o Reward function - defines the way that the agent is

rewarded;

o Gridworld – 2D sandbox environment. This is the

environment the agent interacts with.

o Initial state - state how the episode starts.

o Final state - state that ends the episode, this can be

caused by stepping in a specific cell or running out of

steps.

o Episode - the sequence of states between an initial

state and a final state.

o Step - the execution of an action

o Timestep - interval of steps

● Goal-Oriented Action Planning (GOAP) - real-time

planning system created to improve decision making

in game’s AI. GOAP has some definitions of its own

which are relevant for our study:

○ State – single property of the world represented as a

tuple of name of the state and a boolean value (ex.

{front_is_clear, true}),

○ World state – collection of all the states in the world,

○ Goal state – collection of states the agent will try to

reach. (ex. [{front_is_clear, true}, {front_is_safe,

true}]),

○ Action – actions consist of three parts:

■ Preconditions – a collection of states that are

required for action to be executed;

■ Effects – a collection of states that will change in the

world state after action is executed;

■ Cost – the price to pay for executing an action (can

be represented as points, time units, etc.).

○ Plan – a chain of actions linked together by their

preconditions and effects. After executing the plan,

the goal state will be reached.

B. The problem

1) Reinforcement learning

A RL agent learns by getting rewarded for behaving

desirably. However, at the start of its execution the agent is

completely unaware of its surroundings and of its objective. It

chooses randomly from the actions available to it and gets

rewarded or punished by the reward function. With the reward

information, it creates a map of the possible reward it can get

by doing certain actions in a sequence and will strive to act in

the way it gets the most reward. If a set of actions exist that

reward the agent for acting in a different way than it was

meant to by design, then the reward function has specification

problems. That is, it is not defined correctly.

2) Safety

Specification problems are a safety concern because the

behavior of an agent with such problems becomes

unpredictable. Furthermore, creating a reward function

without any specification problems can be complicated. Such

reward function would require the designer to think of all the

possible combinations of undesired actions that might reward

the agent. Doing so in a big environment with many actions

can be considered, at the slightest, to be challenging.

From the software engineering viewpoint, we can define

safety critical systems as “those in which a system failure

could harm human life, other living things, physical structures

or the environment”. [8]

Thus, using a reinforcement learning agent for a safety

critical task can be a safety hazard because of the difficulty of

creating reward functions without specification problems.

C. Research Question

This research will raise the following question:

How to create safer reward functions for reinforcement

learning agents for a grid world environment using Goal

Oriented Action Planning?

A safer reward function is one that trains the agent to reach

its goals while reducing probability of unsafe actions. We

assume unsafe actions as those that might damage the agent

itself or the environment. To simplify the scope of our

research we will use an abstract unsafe tile (a gridworld

object) and stepping into unsafe tile is considered damaging

for both - the agent and the environment.

D. Thesis Structure

Section II discusses related work to our research and

explains how this research differs.

Section III clarifies the setting in which our research takes

place including our motivation and proposed solutions. This

section incorporates the scientific and technical contributions

of this thesis.

Section IV describes the selected methodologies to carry out

the data collection and the use given to the collected data.

Section V describes the artifact. Section VI provides the

data analysis of the experiments. Section VII concludes this

thesis.

II. RELATED WORK

A. Relevant literature from the problem domain

Leike et al. in “AI Safety Gridworlds” [3] does experiments

with two types of agent. They are placed in different gridworld

environments, each made to test reinforcement learning agents

in specific scenarios which are prone to induce safety

problems. This research exposed the safety problems present

in the RL world and the need for safer agents.

Amodei et al. in “Concrete Problems in AI safety” [4]

explained their safety concerns in many aspects of RL,

including specification problems. This paper also presents

thoughts about safety from different research communities

within and outside the machine learning field.

Both studies are relevant to our research. They both point

out the risks related to RL and specification problems and the

consequences these problems can have.

B. Literature on potential solution approaches

Hadfield-Menell et al. in “Inverse Reward Design” [2]

created an approach to mitigate the risk of a misspecified

reward function, not by creating a better reward function but

by having the agent understand the designer’s intentions

through demonstration of optimal behavior. However similar

in the objective (minimizing the safety risk) this study’s

approaches the problem from a different angle from us. They

want to teach the agent through demonstrations whilst our

objective is to improve the safety of the reward function

without affecting the internal workings of the agent.

Another potential method is reward shaping [5]. The

purpose of reward shaping is to allow the agent to learn a

behavior faster than training without reward shaping. It does

this by rewarding the agent as it gets closer to fulfilling its

objective. Although this method was not intended to make

reward functions safer, we found the idea of it useful to

“encourage” an agent to follow our methodology.

Except for reward shaping, the solutions found in the

literature do not strive to create safer reward functions.

Instead, they completely change the way the agent manages

the specification problems.

III. RESEARCH CONTEXT AND SCOPE

A. Motivation and proposed solutions

Noting the lack of solutions for safety issues caused by

specification problems in RL, this research will focus on

reward functions. We want to improve the safety of the

behavior of the RL agent without changing the RL algorithm

itself, only changing the reward function (that might have

specification problems).

This thesis will explore the possibility of implementing

Goal-Oriented Action Planning into the reward function of a

RL agent. GOAP has been proven a valuable tool in AI

decision making for games. The main reasons why we think

GOAP can be used to create safer reward functions are:

● GOAP works at run time and it can choose the actions

real-time, so no matter in which situation the agent has

found itself, GOAP should be able to create a plan for

it.

● GOAP is scalable, this means that even though we

will apply it in a gridworld with limited possibilities it

can still be used for larger and more complicated

environments, helping justify this thesis.

The downside of GOAP is that it is not designed for RL.

For GOAP to function at its best, it needs to understand the

whole virtual world and not just what the agent perceives.

GOAP needs to access all the possible actions with their

prerequisites and effects. For this reason, we are not

considering using GOAP to decide every action. GOAP will

only be used for safety-critical situations. However, when

such a situation takes place, GOAP will not control the agent.

Instead, we will reward the agent if it decides to follow

GOAP’s advice. In this way we are only dealing with reward

functions.

A reward function created using GOAP should give the RL

agent the best qualities of the two different AIs, it should be

able to explore and learn on its own while still have a

predefined plan if it ever encounters a safety critical scenario.

B. Scientific and technical contributions

Scientific contribution: This study will extend the scientific

body of knowledge showing the results of our initiative to

others.

Technical contribution: We created and will later evaluate

our method for designing safer reward functions. Based on our

results, this research can lay the groundwork for more

ambitious and bigger projects.

IV. Methodology

 Figure 1: Methodology

As explained in figure 1, the methodology used in this

research worked in iterations. In step one “Awareness of the

problem” we went through the domain problem’s literature

and discussed it with our senior colleagues.

For the second step “Suggestion” we argued on the challenge

of adapting GOAP to the RL environment. Every discussion

would result in a different implementation of GOAP (there

were three in total).

In the “Development” step we tested the implementation that

we created by training the agent, implicitly creating an artefact

(the method explaining how to adapt GOAP into a RL agent)

that we would then evaluate in the “Evaluation” stage.

The data collected in the evaluation would allow us to create

a conclusion for the current iteration. With the conclusion data

we would either start another iteration or once we were

satisfied with the results, proceed to write the paper and

explicitly record the method utilized.

 If in any of these steps we found a problem with our

understanding of the problem, our implementation or the way

we were training the agent, we went through a new iteration of

the research process.

A. Data collection

The sources of information for this study are execution logs

from training RL agents. The agent used in all our tests uses

the same implementation of the Advantage-Actor-Critic

Model by Yuhuai, et al. [9]

We reward both agents, with or without GOAP, equally.

That is, the agent gets rewarded the same amount for stepping

in an unsafe tile, reaching the goal, doing a step, etc. The only

difference is that the GOAP implementation gets rewarded if it

follows the current plan and punished if it stops doing so.

a) Scenarios

 Figure 2: The perception

The agent’s perception is a 7x7 cell square containing the

world to the front and sides of the agent. Figure 2 shows an

example of what the agent sees, on the left side is the

environment and on the right is the agent’s perception of it.

 Figure 3: Randomly generated scenarios

The agent trains in an 8x8 scenario with 27 randomly placed

unsafe cells. The scenario always generates a safe random

path from the starting cell to the goal cell that does not require

stepping on the unsafe cells. Figure 3 contains two examples

of possible randomly generated scenarios.

 Our implementation of GOAP is only able to create plans

based on what the agent perceives when the plan is created.

The planner does not store the states that are outside the

perception. The agent has different safety objectives

depending on what is available to it. If at any moment the

perception contains a safe path to the goal, then it will use

GOAP to create a plan to reach it safely. However, more

objectives are possible. Objectives are set according to the

desired states of a cell. For example, the objective to go to the

goal looks for a cell that has the state:

{current_is_goal, True}

 In this experiment, however, we did not make use of any

other objective than going to the goal.

Collected Data

As we train the agent in these random scenarios, after every

cycle we get its learning data, and a cycle takes 2400 steps.

Per every cycle we get:

● Total number of steps,

● Total amount of violations (unsafe action),

● Mean reward,

● Steps per episode.

From these data points we can then calculate the safety of

the trained agent (Probability that the agent doesn’t do an

unsafe action). We will also use these data points to

investigate possible changes in training performance caused

by implementing GOAP.

B. The environment

The gridworld is created using “gym-minigrid”, a library

made to research AI agents in different situations. “gym-

minigrid” is available online [6]. The intention of using the

gridworld is to replicate the real world while retaining control

of the variables around the experiment. It allows us to have an

agent in an environment it can perceive as well as to teach

such agent. It also provides the possibility to create scenarios,

actions and objects for the agent to interact with. The

gridworld allows us to evaluate agents.

C. Reward Design

We stimulated the agent to explore by not punishing it the

first time it went into any cell. At the same time, we punish it

strongly for staying in the same cell.

V. RESULTS

The product of this research is a method with guidelines on

designing reward functions for reinforcement learning agents

in a gridworld environment by implementing GOAP. Steps to

implement our method are visualized in Figure 5.

 Figure 4: Elements of the artefact

 Figure 5: Flow of the artefact

1. Environment. The layout and the properties of the

environment depend on the scenario. Depending on the chosen

gridworld implementation it might already have various

objects included else they will have to be created. If we want

to have unsafe objects in the environment we will have to

define what unsafe is. This can be done by making a collection

of objects we want to consider unsafe (by name, by color, etc.)

or we can use a generic unsafe object of type world object.

Finally, we create an instance of the environment according to

desired scenario including one or more unsafe objects and at

least one goal object.

2. States. As seen in Figure 4, state is a crucial element

which other elements depend on. It may be difficult at the

beginning to define all the states that might be used in other

components, so we start by creating a placeholder for states to

be filled later when implementing other components.

Every cell in the environment has their own set of states,

according to the cell. For example, if a cell is unsafe, it will

need to have a state containing that information.

Other important states are the agent’s states, depending on

how you decide to implement the action planner, it is not

enough to say that an agent is in certain state because it is on a

cell. A couple examples of an agent’s states can be its

orientation, what it is carrying, etc.

3. Actions. The actions are those that already exist in

the environment. They are the basic actions like move

forward, turn left, pick up, toggle, etc. We need to adapt those

simple actions and give them preconditions, effects and cost.

For example, move forward should have as a precondition that

the tile in front of the agent is safe. As seen in Figure 4, an

action can have multiple preconditions and effects.

The preconditions of an action are the states that need to be

satisfied before performing such action. The effects of an

action define how the world state will change after the action.

The cost of an action depends on the logic applied to the

scenario, it might be represented as points or time units. Cost

is explained further in step 5.

The purpose of giving actions preconditions and effects is

chaining them. For example, action “A” has as preconditions

the same states that action “B” has as effects. The planner will

then chain B’s effects and A’s preconditions. This allows the

planner to be able to predict all the way to the world state

present after A is executed while being present in the world

state that existed before B was executed.

4. Goals. A goal can be any desired set of states that is

present in your environment. Goals should be meaningful and

closely related to your agent’s objectives.

5. Planner. When we have elements described above,

we can combine them and implement the planner. The planner

takes a goal, compares it to the current world state and

generates an action plan to lead the agent to a cell that

contains the goal state. Implementation is done using an A*

algorithm which creates a graph with states represented as

nodes and actions represented as edges. The cost of reaching a

node should be equal to the cost of the actions. The algorithm

will start its work going backwards from the goal state

generating all the possible chains of actions until it reaches the

current world state. It will then output the path with the lowest

total cost. Now it is clear why the actions need to have a cost.

The complexity of executing an action should be reflected in

its cost.

6. Reward function. When we have set up the planner

we need to decide when we want it to be executed and how do

we treat its results. In a traditional implementation of GOAP,

the action planner is responsible for every action an AI takes.

It always has a “global” goal to achieve and every time it is

given a goal it generates a plan for it. In our context we do not

want to be in control of an agent all the time, we want it to

learn and our scope is only safety-critical situations. We only

want a “safety action plan” to be triggered when these

situations arise. At the same time, in these situations we also

do not want to take over control of the agent but help it learn

how to deal with them. This can be achieved by letting the

agent complete its intended action. We then later intercept the

reward passed as the return value of the action. First, we need

to identify if there is a safety-critical situation observed in the

environment and whether that situation matches any of the

prerequisites of the goals. It is possible that we may have

multiple goals and more than one may be suitable for the

given situation. In this case we need goals to be put in a

priority list so that when the planner starts it will try first to

match the goal that is the most relevant, if the planner cannot

match the goal, then it will go to the next one. If there are no

met prerequisites, we pass the reward that was intercepted. In

case the plan has been generated we will need to pass it to the

next step. On the next step we intercept the reward again and

check if any plan has been passed. If it has, we pop the first

action from the plan and check if it matches the one that the

agent just made. If it does not match we pass a negative

reward and clear the plan because it would not be valid any

more. If the actions match, we pass a positive reward and the

rest of the plan to the agent and make sure we keep track of

how far the agent has followed the plan. We keep on checking

the plan with every action the agent executes, as long as both

actions match we reward the agent proportionally to how far

the plan has been followed. If the actions do not match, we

must pass a negative reward almost equal to the amount of

positive rewards the agent has gained until then by following

the current plan.

The purpose of this step is to “encourage” the agent to

follow the plan by rewarding him incrementally for every

consecutive successful action that matches the planned

actions. If the agent steers away from the plan, we must punish

it with a punishment equal or almost equal to the positive

rewards it has collected from following the plan until that

point. This is to prevent the agent from reward hacking.

VI. ANALYSIS

 During the evaluation phase of our artefact we have trained

the same agent in the random scenarios, with and without

GOAP.

Figure 6: Results and comparison

They were both trained with the same configurations and

with the same rewards.

A. Without GOAP:

Figure 7: An execution without GOAP

The agent was trained without GOAP fourteen times. On six

of those fourteen times it was stopped before it learned. On the

other nine executions the agent went to the goal in the most

direct way, passing through unsafe tiles despite getting

punished for it. This is reflected in Figure 6 and 7. Figure 6

contains information about the average of successful

executions (i.e. where the agent trained) for both GOAP and

non GOAP.

Figure 7 shows a typical example of an execution without

GOAP. The agent roams around getting punished until it finds

the goal, after that the agent goes to the goal directly without

avoiding unsafe tiles. It’s worth noticing that in Figure 7 the

mean reward was approximately -70.

B. With GOAP:

Figure 8: An execution with GOAP

The agent was trained with GOAP twelve times. On four of

those twelve times it was stopped before it had time to learn.

On the other eight executions the agent learned to go to the

goal avoiding the unsafe tiles. As explained in Figure 6: It

needed, on average 39,51% less timesteps to learn that the

agent without GOAP. Once it had learned, it took 125% more

steps than the agent without GOAP but also did 85% more

safe actions.

Figure 8 shows what training an agent with GOAP usually

looks like. It slowly goes up as it learns to avoid the obstacles

and then settles once it has learned the optimal route.

C. Overall

Throughout testing we noticed an impact on learning

process speed when using GOAP. Depending on the agent’s

perception, goal specifications and number of times action

plan is generated, the speed was dropping up to 6 times. We

assume this is because of the way A* algorithm is

implemented as the aim was to make it produce reliable results

while not considering its efficiency.

The biggest shortfall of the current implementation of the

action planner is that it relies exclusively on what the agent is

able to perceive at the time the plan is created, therefore it

cannot create more elaborate plans to find the goal or to

understand the environment around it. This could also mean

that in bigger scenarios the current implementation of GOAP

might not be beneficial, the same might be true if the agent has

a smaller perception.

D. Threats to validity

There is a risk that our measurement of safety is not relevant

for the software engineering definition of safety since it does

not directly relate to the capacity of the system of harming

living things or our environment.

Even though we are running our experiments in random

scenarios created in the same way for both GOAP and non-

Steps until

trained (AVG)

Steps

Per episode (AVG)

Safe Actions %

GOAP 1744440 26,34089524 99,91867051

NO GOAP 2883973,333 11,69907407 53,81094329

GOAP did: 39,51% less 125% more 85% more

GOAP, we are not comparing their performance in the same

scenarios. Because of this our results can be inconclusive.

However, we got recurrent results for both methods, so there

is no hint to getting different results testing them in the same

scenarios.

The experiments ran using only one reward configuration.

Even if it was the same for both the control group and GOAP,

it might imply that our results are not representative of any

other configuration and might change the result.

VII. CONCLUSION

In this thesis we explored the possibility to apply Goal-

oriented action planning methodology to reinforcement

learning agent to create safer reward function. We have

followed the methodology and created an action planner able

to work in a gridworld environment where it was tested with

randomly generated scenarios. We believe that using GOAP

together with reinforcement learning is a promising approach,

that has potential for both safety and non-safety related

scenarios. GOAP requires concrete and meaningful goals

which might be hard to identify taking only safety in

consideration. The method we produced during this thesis is

generic and can be applied to various experiments. This

method is also scalable meaning that it would not take much

effort to adjust the planner to newly added world objects,

actions or goals.

 REFERENCES

[1] Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G.,

... & Leyton-Brown, K. (2016). Artificial intelligence and life in 2030.
one hundred year study on artificial intelligence: Report of the 2015-

2016 Study Panel. Stanford, CA: Stanford University. http://ai100.
stanford. edu/2016-report. Accessed February, 7, 2017.

[2] Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., & Dragan, A.
(2017). Inverse reward design. In Advances in Neural Information
Processing Systems (pp. 6768-6777).

[3] Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt, T., Lefrancq,
A., ... & Legg, S. (2017). AI Safety Gridworlds. arXiv preprint
arXiv:1711.09883.

[4] Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., &

Mané, D. (2016). Concrete problems in AI safety. arXiv preprint
arXiv:1606.06565.

[5] Ng, A. Y., Harada, D., & Russell, S. (1999, June). Policy invariance

under reward transformations: Theory and application to reward

shaping. In ICML (Vol. 99, pp. 278-287). Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 116–131.

[6] Chevalier-Boisvert, M. (n.d.). Gym-minigrid. Retrieved from
https://github.com/maximecb/gym-minigrid

[7] Russel, S., Norvig, P. (2018). Artificial Intelligence: A Modern
Approach, pp. 31.

[8] IEEE Computer Society (2014). Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0, chp. 10, pp. 4.

[9] Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., & Ba, J. (2017). Scalable

trust-region method for deep reinforcement learning using Kronecker-
factored approximation. In Advances in neural information processing
systems (pp. 5285-5294).

