

A design study on the migration of an on-

premise software application to the cloud

Bachelor of Science Thesis in Software Engineering and Management

NIMA FARAHBAKHSH-FARD

JOHAN RINGSTRÖM

PIERRE LEVEAU

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

The Author grants to University of Gothenburg and Chalmers University of Technology the non-exclusive right

to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company),
acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party

regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third
party to let University of Gothenburg and Chalmers University of Technology store the Work electronically and make
it accessible on the Internet.

A design study on the migration of an on-premise software application to the cloud

NIMA FARAHBAKHSH-FARD

JOHAN RINGSTRÖM

PIERRE LEVEAU

© NIMA FARAHBAKHSH-FARD, June 2018.

© JOHAN RINGSTRÖM, June 2018.

© PIERRE LEVEAU, June 2018.

Supervisor: ROGARDT HELDAL

Examiner: JAN SCHRÖDER

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Abstract—This research paper aims to highlight two things; the

difference in development time when migrating an on-premise

application to the cloud with two different migration strategies

and the performance of the application after migration with the

two strategies. This design study features an experience report

where the two migration strategies are evaluated in the aspect of

development time. The experience report serves to answer

research question 1; “What are the differences between the

rehosting (lift-and-shift) strategy and the refactoring (making it

cloud native) strategy in the aspect of development time?”.

Research question 2; “How will the performance of the

application differ after being migrated to the cloud using the

rehosting (lift-and-shift) strategy and the refactoring (to cloud

native) strategy?“ was answered by measuring execution time for

the mobile applications methods. The study shows that although

the development time for refactoring was longer than for

rehosting, it did not differ as much as expected for inexperienced

cloud platform users who are migrating a small 3-tier application.

The refactored application performed better than the rehosted

application in the method execution time tests.

FF. INTRODUCTION

In recent years the migration of on-premises application to

the cloud has become an important topic for researchers and

industry [1]. There are several advantages suggested as to why

to deploy your software on to the cloud, where cost savings is

the most stressed reason. This comes from the fact that the

cloud architecture provides the applications the ability to scale

when needed and that the software companies can buy as

much storages resources and computational power as they

need when needed [2]. This has highlighted the importance of

migrating on-premise software applications to the cloud to get

the benefits of cloud computing.

Recent systematic literature reviews have shown that there

has been a growth of maturity of the cloud migration research

field, but that there is a need for more results of cloud

migration evaluation [3]. When studying literature on cloud

migration it is very hard to find studies that deal with the

migration of smaller on -premises application, which is what

we are going to focus on in this study.

There are several ways to migrate your application to the

cloud. David S. Linthicum suggest seven paths to go when

considering migrating an application to the cloud. The seven

R's of migration paths are: replace, reuse, refactor, replatform,

rehost, retain and retire [4]. Which path to take when migrating

an application to the cloud is one of the hardest parts of

application migration and although a best practice is starting to

emerge, the industry is still struggling to choose the right path

[5].
This study will be a part of this cloud migration evaluation

domain and its purpose is to investigate two different strategies

of migrating a small legacy 3-tier mobile application to the

cloud and compare advantages and disadvantages of the two

strategies within the specific scenario. The study is motivated

by the need to understand what advantages and disadvantages

there are, with different paths when migrating an application to

the cloud.

This study focuses on the rehosting and the refactoring

strategy to migration. Rehosting, or the “Lift and shift”

strategy, describes a scenario where an application is migrated

to the cloud with as little code change as possible [12],

whereas the so called refactoring migration strategy describes a

scenario where you redesign the application to comply with the

cloud platform infrastructure to use the cloud in a more

efficient way [12], that is to say, to make it cloud native. In our

case we will refactor a small legacy 3-tier mobile application.

This approach of comparing the rehosting and refactoring

strategies will add knowledge to the cloud migration research

domain that helps practitioners to decide what migration

strategies to take when migrating an application to the cloud.

The reason for evaluating these two approaches is that they are

the most commonly used approaches when migrating to the

cloud. We believe that the standardized nature of these

approaches makes them the most interesting to conduct

research about.

Development time will be compared of the two migration

strategies and performance testing will be conducted on the

mobile application after migrating with the two different

strategies. This study does not aim to be generalizable but

strives to complement previous research with an investigation

of a migration endeavor within specific circumstances.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

 II. RESEARCH QUESTIONS Rehosting:

RQ1: What are the differences between the rehosting (lift- For this approach we have used google cloud platform as a

and-shift) strategy and the refactoring (to cloud native) Infrastructure as a service [24] (IaaS) and the cloud SQL as

strategy in the aspect of development time? storage.

RQ2: How will the performance of the application differ ● Compute Engine provides virtual machines which run

after being migrated to the cloud using the rehosting (lift-and- on Google's data centers and fiber network and it

shift) strategy and the refactoring (to cloud native) strategy? supports scaling from one instance to global cloud

Based on previous research, our assumptions for these computing [17].

● Cloud SQL is a database service with which you can

research questions are that while a rehosting (“lift and shift”)

fully manage a relational MySQL database on the

strategy will save you development time, it will not provide us

cloud [18].

with the performance benefits that refactoring to a cloud native

architecture will. As mentioned previously, regarding the lack
Refactoring:

of study on this field, these assumptions may not be accurate

when migrating smaller applications. For this approach we used the Firebase platform, which is

III. LITERATURE REVIEW

integrated with the Google Cloud Platform (GCP) but more

 directed at mobile and web applications, to create a cloud

Definitions and background

native backend (Back end as a Service, BaaS [24]) for our

We have in this paper already used the term cloud several
mobile application. Firebase libraries were used in the android

code to create connections to the backend, making it possible
times as if it has a well-defined meaning but this is not the case

to connect the android application directly to the database
[14]. The birth of cloud computing could be argued to be set to

without using any servers.

2006 when Amazon Web services launched the first general

purpose public cloud service (Simple Storage Service, S3) and The following Firebase SDK’s were used

from this date many cloud providers have emerged [14]. AWS,
● Firebase Realtime Database SDK, the data is stored as

Google cloud and Azure are the biggest providers today. All

JSON and synchronized in realtime to all connected

these cloud providers are defining what the cloud really is

clients. [20]

[14].

● Firebase Authentication SDK, adds a unique user id

National Institute of Standards and Technology (NIST)

to each user and their data can only be accessed by

defines the cloud as “...a model for enabling ubiquitous, that user id. The users can however share their data

convenient, on-demand network access to a shared pool of with other users if they want to. [21]

configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly This BaaS solution is one of several ways to go when

provisioned and released with minimal management effort or refactoring a legacy application to be cloud native. This

service provider interaction. This cloud model is composed of decision was made because the Realtime Database

five essential characteristics, three service models, and four synchronizes with all clients connected and the fact that it was

deployment models.”. [15] With the scope of this study this JSON based. These features are very compatible with the

definition holds fairly well. One obvious flaw is that it only legacy application and was able to fulfill all the requirements

includes three services, Software as a service(SaaS), Platform of the legacy application. Another way of refactoring an

as a service(PaaS) and Infrastructure as a service (IaaS). Now application to become cloud native, is to split the legacy

you can easily add several more to that list, Function as monolithic application into small, so called microservices [8].

service(FaaS), Backend as a Service(BaaS) being two This approach is generally more suited with bigger

examples [24]. applications [8] where it makes more sense to divide the

The cloud provider we will migrate our on-premise application
functionality into smaller loosely coupled services. In our case

refactoring to microservices would have become a more time
to is the Google Cloud (GC), with its cloud management

consuming and complex endeavor and could also have

interface, Google Cloud Platform (GCP), which gives the

influenced the performance in a negative way, because it is
developers remote access to its resources [16]. GCP is one of

commonly observed that microservices can introduce
the most important and fastest growing cloud provider today

additional lag. [23]

and has a range of big companies, such as HTC, Coca-Cola

and Spotify [16]. Services they provide are numerous and The on-premise application (Figure 1.), that has been

divided into different areas such as, Compute Engine, migrated to the cloud, consists of 4 components; an Android

Databases and storage, Cloud AI, IoT, Big Data and many mobile application (1859 lines of code), an Mqtt broker, an

more. In our case, when migrating the on-premise application Erlang server (573 lines of code) and a MySQL database. The

to the cloud we have used: premise of the application is to create grocery lists and share

them with friends or family. The Mqtt broker provides a
publish and subscribe functionality to the application which

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

allows users to send and receive grocery lists between each

other. (The lines of code in the Grocode application only

pertains to the java classes of the application and excludes xml

files, gradle builds, resources, etc.) [19].

Figure 1: On-premise application.

and if the architecture should be updated [8][9]. These books

and articles also address the issue of migration to the cloud.

Most of them look at either the practical way of doing this or

how to adjust the architecture when migrating. We are doing

much of the same things but also implementing aspects such as

looking at the performance of the application after migrating

using our two different approaches.
Solution approaches

As stated earlier the problem of migrating to the cloud has

been a “hot topic” in recent years. There are several blog posts

and articles [4] online where people propose the solution of

using a cloud native structure, for the software application. The

general idea is that a cloud native structure is an efficient way

of using the cloud for each business’ individual agenda and

that it provides a big boost in scalability. To achieve a cloud

native architecture, we must refactor our application.

Besides refactoring, the other strategy that we are

evaluating is rehosting (lift-and- shift), where a legacy

application is moved to the cloud without redesigning the

application. This does not however guarantee that the

application will be able to take full advantage of the cloud.

We also discussed, but later discarded other options when

migrating to the cloud such as replatforming. With replatform

migrations, the core architecture of the application is kept but

some parts, such as the database for example, can be moved to

the cloud to achieve desired benefits without spending the

resources that refactoring requires [10].

IV. RESEARCH METHODOLOGY

Relevant literature

Our study is a design research paper where we have

migrated a small legacy 3-tier application to the cloud using

In the previously mentioned systematic literature review by
the two migration strategies; rehosting and refactoring. The

application used is an android mobile application called
Jamshidi he proposed a framework for characterizing cloud

“GroCode”, developed by seven students from the Software
migration studies. He identifies four major themes:

Engineering and Management program in Gothenburg.

● Maturity level, which is concerned with the

Motivation for our chosen research methodology

methodology.

In the article “Design science in information system

● Migration characterization, which is concerned with

the intention of the migration, the migration task, research” by Hevner et al. [11] he discusses what constitutes

migration type and the means of migrations. design science research. They identify seven guidelines for a

● Migration support, which is concerned with tool design science approach. The first guideline is Design as an

support, automation and support. Artifact, the second is Problem Relevance and the fourth is

● Constraints, which is concerned with architectural Research Contributions. These guidelines can be said to

style, target platform and cloud stack layer. answer the question when it is appropriate to do a design

All these characterization parameters can describe different science study.

variations and approaches when studying cloud migration. Our
● Guideline 1: Our research will produce two different

study, with its motivation to contribute to the knowledge body

cloud migration methods as artifacts.

of how to choose the right migration strategy is most closely

related to studies that focus on migration types (migration ● Guideline 2: Our artefacts are technology-based and,

strategy) and/or means of migration and especially experience as described in the introduction, our research on cloud

and lessons learned studies. migration of a small legacy three tier application is

There is plenty of existing literature on the problem of
important and relevant for practitioners in the

industry.

knowing how to migrate a legacy application to a cloud

● Guideline 4: This study's design artefacts aims to

platform [5][6][7] and plenty of articles with regards to how

 create two methods that will contribute to the cloud

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

migration, in the sense that it will give a scientific

evaluation of the two methods and help practitioners

to make well educated choices when migrating a

small mobile application to the cloud.

Hevner et al. also stresses the importance of the novelty of

the artefact designed. [11] As already discussed these methods

cannot be said to be new, they are well described practices

when migrating legacy applications to the cloud. The novelty

of our artefacts lies in the specific circumstances of how they

are developed. That is, as previously stated, that there is little

research done on the area of cloud migration methods on

smaller applications.

Another method to answer the research questions could

have been to conduct a case study, that would have focused on

the migration process in a real-world context. Due to a limited

time frame this was not possible and would also have been

harder to exactly estimate the time spend on the migration

process, due to a less controlled environment and it would

have been hard to find a company that migrated the exact same

application to the cloud using two different migration

methods. The fact that the context is to some extent controlled,

is also a drawback for this design sciences study. Instead of a

real-world context, the migration process has been conducted

by the researchers themselves which can be said to be a

validity threat as discussed in the validity threat section and

can also to some extent be of less relevance to the industry.

Another limitation with design science is that it only tries

to establish how well an artifact works not try to theorize about

why it works [11]

The fifth guideline, Research rigor, for conducting a design

science, addresses how the research is conducted [11]. In this

study, this puts the focus on how the artefacts. the migration

methods, was done and later how the evaluation of them was

conducted.

Data collection

migration processes and these are presented in an upcoming

section of this paper. The main reason for this experience

report was to, in a structured way, log the time we spent on the

migration process, and in the end to be able to elicit and

compare the effort made when migrating the application to the

cloud.
There are many different tools you can use to track time.

The most of them are developed to assist people that work and

charge their clients by the hour. We looked at different

alternatives to track the time we spent on the migration

processes. In the end we ended up tracking time by logging at

what time of the day we started working and at what time we

stopped working. The important thing in this case was to know

what to and not to track and be very mindful not to log time

spent on tasks that are irrelevant for the migration and not to

miss logging time spent on relevant activities. We had to

define what development time, from RQ1, really is.

Relevant activities, for the migration process, are tightly

connected to the different phases of a software lifecycle. In the

article “Exploring the factors influencing the cloud computing

adoption: a systematic study on cloud migration” Rashmi Rai

et al. introduce a five-phase migration model inspired of the

software lifecycle models [22]

To answer the research questions the researchers, three

third year students from the Software Engineering and

Management program in Gothenburg with little or no

The relevant activities that we have tracked are:

experience of cloud migration, have conducted two migrations,

following two different strategies, of the GroCode on-premise ● Feasibility analysis: Knowledge gathering about

application, to the cloud. The reason for these two migrations

cloud migration in general.

were to be able to evaluate the actual migration strategies in
● Migration planning: Planning for how to migrate the

regard to time (RQ1) and the deployed applications in regard

to performance (RQ2). application. Decision making of which cloud provider

The data has been collected in two phases; first, an
to use, which parts to migrate and which services to

use.

experience report [13] of the migration processes, where the
● Migration Execution: Migrating the application and

time spent on the migrations is logged. Second, performance

testing in the form of execution time of methods in the two data using the platform, services and strategies that

applications when deployed on the cloud. was planned for in the previous phase. Refactoring

The experience report consists of a log where the
and change of code.

● Testing and migration validation: Testing the

researcher documented the process of the two migrations. In

the log the researchers have documented the challenges and migrated application to validate the migrated system

unexpected obstacles the two strategies introduced during the

Department of Computer Science and Engineering

UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

 and debugging and fixing problems that was activities that was not relevant to the migration

 encountered. process.

The last phase, Monitoring and maintenance is not within Initially we realized the validity threat of us being

the scope of this study. The process is iterative in the sense that it in a changed state after we finish our first migration

was possible to go back to a previous phase if so needed. since we have learned new things and gained

We started the migration by gathering general knowledge
experience when working with the cloud platform.

While working with the second migration strategy
about cloud migration. The time we spent on this phase was

though, we quickly realized that the experience we

considered as development time spent for both the rehosting

had gained in the first migration process was of very

and refactoring strategies since what we learned during this

limited advantage to us since the refactoring strategy

phase helped carry out both migration processes.

 and making the application completely cloud native

The next step was to start planning for migrating with the requires learning to use new platforms, such as

rehosting strategy and later to execute the migration and firebase, and hardly any of the knowledge gathered in

testing and debugging the deployed application. The rehosting the first migration process was of any use.

process was followed by more knowledge gathering and
● Internal Validity is concerned with the risk of drawing

planning, where all researchers looked at different ways of

wrong causal relationships [25]. This study's research

migrating our application to the cloud and making it cloud

questions are not of the kind that are seeking a cause

native and when we felt confident enough, we started with the

and effect type of answer. This is in line with the
execution phase and the refactoring process. All the steps

design science methodology that are more focused on

explained were thoroughly documented in the aspect of time

establishing how efficient an artefact is not why this

and various challenges that we faced. This can be read about in

is the case. But implicitly our questions relate the
detail in the appended experience report document referenced

results of the migration strategies and because of the

earlier in this section.

 fact that we, the researchers did the migration

To answer RQ2 we have collected quantitative data by ourselves the processes were totally transparent to us,

conducting execution time tests (in milliseconds) on key which mitigates the risk of drawing the wrong casual

mobile application methods. The reasoning behind testing the relationships in regard to development time and RQ1.

performance inside the application is because we want to know
In regard to performance and RQ2 it is harder to

how fast the application executes methods (where the method

mitigate the risk of drawing wrong casualties.
send/fetch data from database) since the mobile user interface

Actually, it is not possible, within the scope of this

(UI) and application as a whole stayed the same on both

study, to try to determine exactly what is the cause of

approaches. To measure execution time for the lift and shift

the performances of the migrated application, other
approach we used

the built in android studio logger

than to relate it to the specific migration strategy used.

TimingLogger. And traces were used from the Firebase

Performance API for the cloud native approach. While

Firebase offered this feature for both approaches with their ● External Validity puts the focus on whether a study is

monitoring tool we learned that it updated very slowly (every generalizable or not [25]. As stated before this study

12 hours) and therefore choose to go with TimingLogger for does not strive to be generalizable but aims to

the other approach. These two are essentially the same since complement previous research with an investigation

they both measure the time (milliseconds) from start() to stop() of a migration endeavor within specific circumstances

in application code. All the methods were tested five times such as the small size of the application that is

each and an average or median will be measured based on the migrated and the inexperience of the ones completing

distribution. the migration.

Validity Threats ● Reliability: if a study is reliable it can be replicated by

To look for validity threats and try to minimize the impact
other researchers, i.e. the study should not be biased

or subjective and the researcher’s choices, research
of these threats we used the four categories; Construct validity,

design, methods and data should be clearly described

internal validity, external validity and reliability [25].

 and made available [25]. In this study we can see a

● Construct validity pertains to what extent the potential risk of confirmation bias where we try to

 researchers is measuring the right things in regard to confirm our assumptions. This risk was mitigated by

 the research question [25]. In our case a threat was checking ourselves to make sure that we do not have

 that we would measure other activities that we had any preference in regard to the outcome. The whole

 not defined as development time. To mitigate this research process is made transparent, from how we

 risk, we focused on having a very structured working gathered data, wrote an experience report, and

 process where we worked together in no longer then conducted our performance tests.

 two-hour time slots. This to be able to stay focused

 and observant so that no one drifted away on

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Evaluation week 5:

The third of Hevner et al. guidelines, Design evaluation,

stresses the importance of well executed evaluation methods
[11]. To evaluate our results, we will take what Hevner et al.

describe as an analytical approach [11]. In the case of RQ1 we

use a static analytical approach, where the time consumed

when migrating the application, with two different strategies,

is compared. In the case of RQ2 we use a dynamic analytical

analysis, where we take the data collected from performance

tests of the deployed applications and compare the results. To

conclude the advantages and disadvantages of using the two

migration strategies we cross-referenced the performance of

the application, after using the migration strategies, and the

time consumed outcome.

In the six guidelines, Design as a search process, Hevner et

al. describes design science as an iterative process, as a search

for an effective solution to a problem [11]. Alternative designs

are created and later evaluated, in this case two different

solutions are created to a problem and later evaluated with

each other.

• A total of 99.5 hours was spent on getting

familiar with the firebase platform and migrating

our MySQL database to it.

week 6:
• A total of 119 hours was spent on customizing our

android application to work with the firebase database

and optimizing the new application.
• Total time spent on the rehosting process: 206 hours.
• Total time spent on the refactoring process:

269 hours.

Results for research question 2

Performance testing

 V. RESULT
Figure 2. Lift/Shift tests

Results for research question 1

The results of our migration strategies will here be

Figure 3. Firebase test.

displayed by presenting how many hours in total (all

developer’s hours added together) was spent on knowledge
In these tests we focused on the execution time (in

gathering and executing the migrations every week of the

milliseconds) for the key methods in the mobile application.

processes. This section is a shorter summary of the experience

These methods are as follows:

report referenced earlier.

● Login: Time for a user to authenticate with the

week 1:

 application.

• A total of 60.5 hours was spent on gathering

● Fetch the users lists.

knowledge about the google cloud platform.

● Fetch the items in a list.

(counts for both rehosting and refactoring)

App startup was measured just to guarantee that there wasn’t

week 2 (rehosting starts): any big performance issue with the specific application before

• The rehosting process was started by migrating our testing the methods. For the lift and shift approach we did 5

 Erlang server and our MySQL database to the cloud. tests on each method and calculated an average value because

• The server migration started on Monday and of the normal distribution (Figure 2) and for the cloud native

approach we collected data from 5 tests for a period of 12

 was finished on Wednesday.

• hours and calculated the average of that (Figure 3).

The database was migrated on Thursday and Friday.

• A total of 46 hours was spent on migrating the VI. DISCUSSION

•

Erlang server to the cloud.
Our assumptions were that migration with the rehosting

A total of 42.5 hours was spent on migrating the

strategy would be significantly easier and less time consuming

database to the cloud. Debugging was still required.

 to carry out. We realized quite early on in the first migration

week 3:
 process that the lift-and-shift method would not be a matter of

simply moving our software components to the cloud platform

• A total of 40 hours was spent on debugging

and getting it to work with minor configurations. As is shown

the migrated application back-end on the cloud

 in the results section, the development time spent on the

week 4 (refactoring starts):
rehosting process is not far from that spent on the refactoring

process. We realize that one major factor for this outcome is

• A total of 17 hours was spent on optimizing

the fact that we, the developers, did not have any experience of

the rehosted application.

•
working with cloud platforms before this study. If we had

A total of 50.5 hours was spent on reading about

worked with the cloud platform before, some of the obstacles

various approaches to the rehosting process.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

that we faced could probably have been avoided or dealt with prove that it could be worth it to consider migrating in a way

more efficiently. This further emphasizes that the aim of study that makes the application cloud native.

is to complement previous research with a scenario with
VIII. REFERENCES

specific parameters, as mentioned in the introduction.

Therefore, the parameters for this study should be taken into [1] Jamshidi, P., Ahmad, A., & Pahl, C. (2013). Cloud migration research: a

consideration when viewing the outcome of the study which systematic review. IEEE Transactions on Cloud Computing, 1(2), 142-

should act as complementary information rather than a best 157.

[2] Hajjat, M., Sun, X., Sung, Y. W. E., Maltz, D., Rao, S., Sripanidkulchai,

practice. For example, one of the major issues that we had with

 K., & Tawarmalani, M. (2010, August). Cloudward bound: planning for

the rehosting process was that the migrated database did not beneficial migration of enterprise applications to the cloud. In ACM

automatically generate some values as it did when it was used SIGCOMM Computer Communication Review (Vol. 40, No. 4, pp. 243-

on the previous, non-cloud based, host. This issue caused the 254). ACM.

SQL queries in the server to return errors. Getting familiar [3] Rai, R., Sahoo, G., & Mehfuz, S. (2015). Exploring the factors

with the cloud platform was also something that required more
 influencing the cloud computing adoption: a systematic study on cloud

migration. SpringerPlus, 4(1), 197.

time and effort than we initially expected.

[4] Linthicum, D. S. (2017). Cloud-Native Applications and Cloud

The refactoring process proved to be more time consuming
 Migration: The Good, the Bad, and the Points Between. IEEE Cloud

Computing, 4(5), 12-14.

than the rehosting process as we had expected. What required

[5] Bond, J. (2015). The enterprise cloud: Best practices for transforming

most time was figuring out how to migrate our application in a

 legacy IT. " O'Reilly Media, Inc.".

way that makes it cloud native. We decided to stay on the [6] Daconta, M. C. (2013). The Great Cloud Migration: Your Roadmap to

Google Cloud platform and use the Firebase where the android Cloud Computing, Big Data and Linked Data. Outskirts Press.

application communicated directly with the Firebase Realtime [7] Passmore, E. (2016). Migrating Large-Scale Services to the Cloud.

database. Our assumptions for the development time of the Apress.

two migration strategies proved to be accurate even for our [8] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2015, September).

small application, although the differences were smaller than Migrating to cloud-native architectures using microservices: an

expected. The motivation of our assumptions and the reasons
 experience report. In European Conference on Service-Oriented and

 Cloud Computing (pp. 201-215). Springer, Cham.

for how the results turned out are the same, refactoring [9] Zhang, W., Berre, A. J., Roman, D., & Huru, H. A. (2009, October).

generally takes more time than rehosting because architectural Migrating legacy applications to the service Cloud. In 14th Conference

changes are bigger, thus forcing changes in the different companion on Object Oriented Programming Systems Languages and

components of the application to make them compatible with Applications (OOPSLA 2009) (pp. 59-68).

each other. Rehosting requires no changes in the architecture [10] Suleman, A. (2018). The Best Cloud Migration Path: Lift And Shift,

and less code changes than refactoring.
 Replatform Or Refactor?. Retrieved from

 https://www.forbes.com/sites/forbestechcouncil/2018/03/23/the-best-cloud-

For the performance testing we assumed that a refactored
 migration-path-lift-and-shift-replatform-or-refactor/#631ae0fd4f51

[11] Von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design

approach would have an edge in execution time based on the

science in information systems research. MIS quarterly, 28(1), 75-105.

added cloud native functionality, which the results also shows.

[12] JWoods, J. (2011). Five Options for Migrating Applications to the,

Having an average execution time 38% faster for the login

 Cloud: Rehost, Refactor, Revise, Rebuild or Replace. In Gartner The

method, 25% faster for loading user lists and 38% faster for Future of IT Conference.

loading items lists than the rehosting application. If you then [13] Ringström, J., Farahbakhsh-Fard, N. and Leveau, P. (n.d.). Experience

take the development time into account and compare these two Report. [online] Available at:

metrics one could argue that refactoring your application to
 https://docs.google.com/document/d/1X64bGsbJhd5elfIDsgMUjrkU7Iie

 PXB1sH4i5qt3pGU/edit.

the cloud is more beneficial. Another advantage with the

[14] Nane Kratzke, Peter-Christian Quint, Understanding cloud-native

refactoring strategy is that a cloud native application more

 applications after 10 years of cloud computing - A systematic mapping

easily can make use of all the services and tools that the cloud study, Journal of Systems and Software, Volume 126, 2017.

provides. [15] Peter Mell, Timothy Grance, The NIST Definition of Cloud Computing,

VII. CONCLUSION
 Computer Security Division Information Technology Laboratory

 National Institute of Standards and Technology, Special Publication 800-

This study has provided us with valuable insight to the
 145, 2011.

[16] S. Challita, F. Zalila, C. Gourdin and P. Merle, "A Precise Model for

world of cloud computing. We set out to find answers to the

 Google Cloud Platform," 2018 IEEE International Conference on Cloud

frequently asked question of what method to use when Engineering (IC2E), Orlando, FL, 2018, pp. 177-183.

migrating an application to the cloud. We found that with our [17] Compute engine, [Online] Available: https://cloud.google.com/compute/

small 3-tier application the difference in development time [Accessed: 11-April-2018].

between the rehosting approach and the refactoring was not [18] Cloud SQL, [Online], Available: https://cloud.google.com/sql/

significant enough to go with a rehosting migration method. If [Accessed: 12-April-2018].

you then take into account that the refactoring approach gave [19] The-Embedded-8,[Online]Available: https://github.com/The-

us better performance and options to incorporate different
 Embedded-8, [Accessed: 10-May-2018].

[20] Firebase Realtime Database, [Online] Available:

cloud services one could argue that this approach would be

 https://firebase.google.com/docs/database/, [Accessed: 25-April-2018].

more beneficial. In the case of an organization wanting to
conduct a migration with similar parameters, this study helps

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

[21]

Firebase Authentication, [Online] Available:
https://firebase.google.com/docs/auth/, [Accessed: 25-April-2018].

[22] Rashmi RaiEmail, Gadadhar Sahoo, Shabana, Mehfuz, Exploring the

factors influencing the cloud computing adoption: a systematic study on

cloud migration, SpringerPlus, 2015.
[23] N. Alshuqayran, N. Ali and R. Evans, "A Systematic Mapping Study in

Microservice Architecture," 2016 IEEE 9th International Conference on

Service-Oriented Computing and Applications (SOCA), Macau, 2016,
pp. 44-51.

[24] Lucas F. Albuquerque,, Felipe Silva Ferraz, Rodrigo F. A. P. Oliveira,

Sergio M. L. Galdino, Function-as-a-Service X Platform-as-a-Service:

Towards a Comparative Study on FaaS and PaaS, The Twelfth

International Conference on Software Engineering Advances, 2017.
[25] Per Runeson, Martin Höst, Guidelines for conducting and reporting case

study, Empir Software Eng, 2009

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

