

Analysing the differences in comment quality
between open source development and
industrial practices: a case study

Bachelor of Science Thesis in Software Engineering and Management

AHMED NUUR
ALEXANDER GUSTAFSSON
AWELE AZIMOH

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

The Author grants to University of Gothenburg and Chalmers University of Technology
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party
to let University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Analysing the differences in comment quality between open source development and
industrial practices: a case study

Many developers view comments as one of the most important artifacts of software development,
however few comparisons have been made examining the differences in commenting habits of open
source developers and industrial practises. This paper finds differences in the quality of comments
between these two categories. The goal of highlighting these differences is to potentially help bridge
this gap and improve the internal quality of software products.

© AHMED NUUR, June 2018.
© ALEXANDER GUSTAFSSON, June 2018.
© AWELE AZIMOH, June 2018.

Supervisor: MIROSLAW OCHODEK
Examiner: JAN-PHILIPP STEGHÖFER

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Analysing the differences in comment quality
between open source development and industrial

practices: a case study

Ahmed Nuur
Department of computer Science and Engineering

Software Engineering & Management Program
Gothenburg Sweden

gusnuuah@student.gu.se

Alexander Gustafsson
Department of computer Science and Engineering

Software Engineering & Management Program
Gothenburg Sweden

gusgusalh@student.gu.se

Awele Azimoh
Department of computer Science and Engineering

Software Engineering & Management Program
Gothenburg Sweden

gusaziaw@student.gu.se

Abstract — Many developers view comments as one of the most
important artifacts of software development, however few
comparisons have been made examining the differences in
commenting habits of open source developers and industrial
practises. This paper finds differences in the quality of
comments between these two categories. The goal of
highlighting these differences is to potentially help bridge this
gap and improve the internal quality of software products.

Keywords—code comments; ; concurrency; Dale-chall ;

I. INTRODUCTION

A. Background

The importance of commenting code cannot be overstated.
Many view comments as the second most important artifact
used in gaining an understanding of a system, second only to
the code they describe. It is also one of the most widely used
means of gaining such an understanding.[8]

Few studies have examined the potential differences in
quality regarding comments in open source development and
industrial practices. One of the potential reasons being
difficulties at acquiring source code from the industry.

Commenting code helps improve maintainability and
readability[1][2]. Some studies have shown that the
commenting habits of open source developers and industrial
practices widely differ[3][4], this could mean a difference in
comment quality. Finding and remedying such a difference
could lead to improvements in the maintainability and
readability of future software.

This paper aims to fill a gap in knowledge regarding the
differences in the quality of comments. Highlighting these
differences could potentially allow for improvements in
internal quality of software products. If this paper finds a
significant difference in the quality of comments this could
allow for future research to investigate potential reasons for

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

mailto:gusnuuah@student.gu.se
mailto:gusgusalh@student.gu.se
mailto:gusaziaw@student.gu.se

these differences or even a way of eliminating them.

B. Research Questions

Main Research Question: What are the differences in
quality between code comments in industrial practices and
open source development?

Assumptions: We assume that there are some differences in
the commenting habits of open source developers and current
industrial practises. This means that searching for differences
in metrics such as comment density are unneeded and focus
can instead be placed on comparing specifically the quality
of comments.

The remainder of this paper is organised as follows: section
II gives an overview of related work, section III describes the
research methodology used in the study. In section IV the
results of the study are presented and discussed. Section V
discusses the threats to validity, section VI summarizes the
research findings.

II. RELATED WORK / BACKGROUND

According to Arafat and Riehle[5] commenting code is a
critical part of programming. Also their findings are that both
team and project size are unrelated to the comment density of
the product whilst the age of the project correlates in a way
that the comment density decreases as the project ages. This
would help account for certain factors in our study as it
would mean that differences in team and project size do not
affect the amount of commenting expected. It is worth
noting, however that this project only encompassed open
source projects and so this may still need accounting for
when dealing with the larger software industry. On their
approach to arrive to the solution they have used a database
from about 10,000 successful open source projects that were
active at the time of the study, on the other hand since we are
mostly interested in differences in the quality of the
comments in open source development when compared to
that of industrial practices, this approach will not be
appropriate for our study.

Sundbakken[3] finds in his examination of four open source
projects a comment density ranging from 0.09% to 1.22%.
When examining a closed source project Siy and Votta[4]

instead found a comment density of around 50%. This would
indicate that there is not only a difference in the commenting
habits of open source developers and those working in the
industry but also that it is substantial.

Khamis et al. decided on a number of metrics that can be
used to determine the quality of comment [6]. One of these
being readability heuristics; an example of this being The
Fog Index. Then they used these metrics as basis for their
analysis of comments using a natural language processing
program they developed. Some of these metrics will be good
for determining the quality of comments that we aim to
examine. This report will be making use of readability as a
metric for quality and although Khamis et al. made use of a
different metric for readability it could still provide insight
into the value of readability. The study also gives
information regarding natural language processing and its
viability in a study such as this.

Steidl et al.[7] proposed two different metrics to determine
coherence attributes, first using words contained in the
comment to compare it to the words contained in the method
name, second, using the length of inline comments as their
indicator of their coherence to the line of the code. This
coherence metric will be used in this report to help determine
the quality of comments.

III. RESEARCH METHODOLOGY

To bring us to understand this complex issue we will be
using a case study to arrive to a solution. According to Colin
Robson (1993) “case study is a strategy for doing research
which involves an empirical investigation of a particular
contemporary phenomenal within its context using multiple
source of evidence”. When dealing with large software
companies isolating some issues can be complicated and we
deem it infeasible to attempt an experiment in such a short
period of time. Quantitative data collection will be used to
collect data which are analysed through numerical
comparison and statistical analysis. We have developed an
automated tool that will help us evaluate the code we are
given via several metrics that we have decided upon.

To collect the data, we have approached one software
company that was willing to share with us their source code.
As for the open source projects data was gathered by

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

analysing source code from projects that were being actively
worked on and that have existed for at least a year. To make
sure that projects were actively worked on we looked
closely, checking if the amount of the contribution has not
fallen dramatically since last year, such as having 30% of
last year's contribution. The other major criteria for selecting
the open source projects was that it should be written in C++
programming language, this was mainly due to the code we
received from the company being written in C++. It is also
unclear how selecting projects that were written in a different
programming language could have changed the results.

Evaluation: Once we have collected the data we measured
quality using several metrics. One of these metrics is the
coherence coefficient created by Steidl et al [7]. A
coefficient like this was deemed useful for determining the
usefulness of a comment based on the context it intends to
explain. A simple way of describing this metric would be as
how different a comment is from the code it describes. If a
comment is too similar it can be seen as obsolete and if they
are too different it often does not do a good enough job of
describing the code[7]. Another metric that was used is the
Dale-Chall score in an attempt to measure the readability of
the comments as it has been shown to effectively determine
the reading difficulty of a given text [12]. We have also
considered metrics for both the amount of acronyms used
and the length of the comments. Once we have established
these values for both the open source projects and the
industrial ones we made use of statistical inference testing to
make certain any potential differences are scientifically
significant. The statistical inference tests used on the study
would include the Shapiro-Wilk test to check for normality
of data[15] and the Welch Two Sample t-test checking for
significant difference between the data sets(concurrency and
dale-chall scores for both types of source code)[10][14][16].

The generalizability of the study is difficult to fully estimate
but it is worth noting that this report only examines 4 cases.
It has been shown that the size of the project and and teams
should have no effect on the quality, so they have been
eliminated as factors [5]. Using the same programming
language and making sure all projects are still being
maintained certainly helps, however more studies will most
likely have to be conducted. An example of where it is
difficult to determine which group to generalize to is in the
case of the software companies. It is impossible to determine
if the habits we see them exhibit are representative of

companies in general or if it just localized to Swedish
companies for example.

Interview Guide

Upon completion of collecting and analysing the given data,
we followed up with an interview session. The interview was
conducted in a semi-structured manner. We decided to use
this approach because it is highly interactive, researchers can
clarify respondents and probe unexpected responses [11]. It
is a strategy to avoid one-worded answers. The questions are
designed in an open-ended manner which should lead to
meaningful and thoughtful responses as opposed to
triggering simple yes and no answers. [13]

Interview Questions:

1. A concurrency value greater than 0 but less than 0.5
is considered an acceptable value, one of the
comment that we analysed has a concurrency value
of 0.75, does the comment add any significance to
the understandability of the code?

2. A comment is seen as normal if it has a comment
length between 3 to 29 words, one of the code
comment that we came a-cross has exactly one
word as its comment, does this make any
significance to the understandability of the code?

3. A code comment that we have analysed has a
concurrency value of 0, does the comment has any
importance in regard to understanding the code?

The interview questions were constructed based on our
metrics and the results from evaluation of the company’s
comments. This was done with the intent of getting
evaluation for the metrics from the developers’ perspective
and to identify their reasoning behind why notable comments
were done the way they were in some of the cases. For
example, a comment is said to be normal if the text is within
the range 3 to 29 words; comments that are out of range were
noted down for questioning. The interview was conducted
after the researchers evaluated the comments from the
company's source code. There was not a particular criteria
for selecting the subject we interviewed, we simply picked
developers of the company based on their availability and the
only condition being that they were aware of the code in
question. Only one developer was available for the interview,

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

however he was a senior developer so, his knowledge was
well grounded to answer the interview questions regarding
the comments in the company’s source code.

Before the commencement of the interview, a small
preparatory session was conducted for the subject to have an
idea on the basis of the interview and an understanding of the
kind of interview questions that would be asked. The
researchers first introduced the subject to the metrics used
for evaluating the comments: Concurrency, Readability
(Dale-chall score) and Length of comments, These were
thoroughly explained to the subject: making sure he
understood the metrics and reasoning behind them. Then the
subject was asked of his opinion on the chosen metrics and
was made aware that the questions were based on the metrics
and the notable findings from the evaluated comments. The
subject was rather pleased with the metrics and was
comfortable enough to answer the interview questions.

IV. RESULTS

Measurement instrument: The measurement instrument
developed is a simple application created using JAVA . The
user interface (see Appendix, Figure 3) of the application
allows the user to input both a comment and the code it
describes and then format the comment. Then it calculates
and reports the quality measures, i.e. readability and
concurrency (see Appendix, Figure 4). The calculation of the
measures is based on natural language processing tools
(NLP). We use Stanford Core NLP for that purpose. [9].
Stanford Core NLP is a Java framework for natural language
processing that allows us to process the comments and
perform the tasks such as sentence and word segmentation.
To calculate the readability measure, we firstly segment the
comments into words and then calculate its Dale-Chall score.
The score is calculated by comparing the words of the
comment to a list of 3000 words that at least 80% of the
American 4th graders tested knew when read.[10] The
percentage of words outside the list is a good indicator of the
difficulty of the text. The higher the percentage of words
used that are not included in the list the higher the level of
reading comprehension needed to understand the text
becomes. Concurrency is calculated by dividing the amount
of similar words in the comment and code with the total
amount of words in the comment. To determine if two words
are similar the application calculates the Levenshtein

distance (LD) between them and if it is two or lower the
application considers the words similar. Levenshtein distance
is measured by calculating the cost of changing one word
into another. The cost increases by one for each character
that needs to be changed, removed or added until both words
are the same. The application is expected to analyse only the
words in comments, so a filter function was implemented.
On execution it loops through the comment and formats it by
removing the characters or combinations such as: (/, *, //**)
usually used in declaring a block or line of comment in code.

Comment-quality metrics: The results collected from the
company consists of 42 C++ functions and their comments.
These were selected randomly from a set of source codes
provided by the company. At least 5 functions and comments
were selected from each source-code file of the said set,
therefore providing a sample representation of the company's
source code. However analysing a larger sample of data
would potentially result to a more sufficient data for a
baseline and consequently improve the generalizability of the
research.

The results show an average concurrency of 0.5. As most
comments that have a score higher than 0.5 can be seen as
redundant this could be indicative of a high number of
comments that add little of value. The average Dale-Chall
score is 7.77 which means that on average the comments
should be easily understood by an average 9th or 10th-grade
student [14]. If we instead of using the average of the scores
from each comment use all the comments to calculate the
combined score the result gives us a value of 8.64 which is
supposed to be easily understood by an average 11th or
12th-grade student [14]. The average length of the comments
is 9.78.

The results collected from actively worked open source
projects are also 42 C++ function and their comments, they
exhibit an average concurrency of 0.32 which is slightly
lower than the average concurrency collected from the
software company and is thus considered an acceptable
value[7]. The average Dale-Chall score is 9.66 which also
shows that the average comment should be easily understood
by an average 9th or 10th grade student[14]. The average
length of the comments collected from the open source
projects are 8.2. A comment length is seen as normal if its
not less than 3 or more than 29 words, however some of the
code comments that we have examined has a length less than

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

3 which implies that the comment contains less information
or explains the obvious.

Interview: After finishing the development of the
application, the researchers visited the company to collect
data. At said company we were given access to several files
containing commented C++ source code. We analysed the
data on the spot and after this we interviewed one of
developers first trying to confirm that our metrics were
useful and second of all asking questions about parts of the
code that our analysis indicated were poorly commented.

Statistical inference testing: To further compare the metrics
Welch’s T-test[16] is used on both the Dale-Chall score and
concurrency between open source and the examined
company. This will show if the findings occurred simply by
chance. A T-test was chosen primarily due to the small
sample size and also the popularity of the test which means
that the results are easy to understand if there is to be further
research done in the future. The test assumes a confidence
interval of 95% which indicates a 5% chance of encountering
a false positive. For the t-test to be usable the data must be
assumed to be normalized. The way this is achieved is
through use of the Shapiro–Wilk test. The Shapiro-Wilk test
returns a probability value(p-value) p. The data can be
assumed to be normalized if:

p < α

In this case α is 0.05 as the chosen confidence interval was
95%. The Shapiro-Wilk test returns a p-value of 0.02853 for
the readability data and a p-value of 0.01259 for the
concurrency data both of which are below α and so the data
can be assumed to be normalized and so a t-test can be
performed.

The t-test returns a t-value t, a p-value p and two critical

values and . The following hypotheses have been tc1 tc2
devised to examine the difference in concurrency.

: H0 Ccoef CcoefClosed = Open
: H1 Ccoef ≠ CcoefClosed Open

represents the concurrency coefficient for theCcoef Closed

software company and represents the Ccoef Open
concurrency coefficient for the open source projects. H0

represents the concurrency values of both being equal. When
running the t-test we can determine that is false if t 0. H0 ≠
However to prove that these findings are significant the
value of t must also be compares to the critical values. The
findings are significantly different if:

t <= or <= ttc1 tc2

As can be seen in figure 1 the value of t is -3.9399, the value
of is -0.28600545 and the value of is -0.09396245. tc1 tc2
As t< the samples are significantly different. The findings tc1
are significant if:

p < α

In this case α is 0.05 as the chosen confidence interval was
95%. As can be seen in figure 1 p = 0.0001781 and so the
findings are significant and so can be ruled out.H0

The same process can then be applied to the readability score
of the comments.

: H0 DaleChallClosed = DaleChallOpen
: H1 ≠ DaleChallDaleChallClosed Open

represents the Dale-Chall scores of theDaleChallClosed

software company’s comments and DaleChallOpen
represents the Dale-Chall scores of the open source project’s
comments.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

As seen in figure 2 t = 1.9, = -0.08931653 and = tc1 tc2
3.871142632. As < t > these find samples are not tc1 tc2
significantly different. As the confidence interval of 95%
was used the value of α is 0.05 and as can be seen in figure 2
the value of p is 0.061 which means that the findings are not
significant.

V. VALIDITY THREATS

Internal validity

The artifact is developed according to metrics the researchers
subjectively deemed optimal for evaluating the quality of
comments. There are several other methods which could be
used for the evaluation asides the selected metrics, however
using the use of other metrics could yield a different set of
results for the same sample data. Given the very limited time
provided for the research, it was conducted using a small
sample data, performing the same analysis over a larger
sample of data could lead to different set of results.
Moreover if more time was given for the research, additional
metrics could have been added for the comment evaluation
to make a more comprehensive research. As far as software
is concerned, the tool is expected to function without faults
on every execution. To minimize the risk of errors due to
software related issues / bugs, thorough testing of the
software will be performed. The researchers evaluated 42
functions and methods from both open source projects and
the chosen company. The data’s sample size is not
significant enough to be generalized on a larger scale.

External validity

The interview was conducted with only one subject due to
unavailability of the company's developers. Though the
available subject is a senior developer and is well grounded
on the company's source code, interviewing one person could
give room to bias answers as we’re limited to one point view
rather having multiple non-externally influenced answers of
the various subjects.

 VI. DISCUSSION
Our study shows a difference between comment quality in
Open source projects and Industrial projects. Based on the
research findings, there was a significant difference in the
concurrency. Company projects had a score of 0.5 while
open source projects had a score of 0.32. Concurrency is said
to be acceptable when it is within the range of values greater
than 0 and less than or equal 0.5. In both cases we have
values within the range, so they are both acceptable.
Moreover the difference in score is a result of comments in
the open source data having a higher similarity with their
corresponding method. To evaluate readability, using the
Dale-Chall score, the results show that the company project
has an average score of 7.77 whilst the open source projects
has an average score of 9.66. According to the scale set by
Dale-chall, both scores fall within the difficulty levels of
grade 9 to 15 students, which means the words used in text
are familiar and overall the comments can be easily
understood by grade 9 to 15 students. However, there is a
difference in score, with open source projects having a
higher value (9.66) with a difficulty level: easily
understandable by grade 13-15 (college students) and the
company project having a lower value (7.66) with a
difficulty level: easily understandable by grade 9-10
students. Though both results have good readability scores,
the difference in score simply shows that on average, the
experience level needed to easily understand the comments
in company projects is less than that of the open source
projects. The researchers analysed the comments of 42
methods in both open source and company data. In total, the
company data contained 359 words of comment with an
average of 8.54 words per method and open source projects
contained 307 words of comments with an average of 7.3
words per method. In both cases, the length of the comments
is seen as normal as they are within the range of 3-29 words
per code comment.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Interview

The focus of the interview was to evaluate the metrics from
the developers perspective and to identify the reasoning
behind why notable comments were done the way they were.
The point of analysis in this case was concurrency and length
of comment. The developer’s comments about concurrency
were in agreement with our metric which suggested that any
comment unrelated to the code would yield a concurrency
value greater than 0.5. The developer stated the that
comment was unrelated to code as confirmed by the
concurrency value of 0.75. Also the developer’s comment
about length of comment agree with the metric which
suggest that comments contain words less than 3 and greater
than 29 are not normal. The developer stated that the
comment is unnecessary and does not improve
understandability of code as confirmed by the comment with
a length of 1. Overall the responses on the interview show
that the developers shared the same opinion as researchers
and agreed with the metrics. (see Appendix, Table 4).

 VII. CONCLUSION

The aim of this study has been to identify the potential
differences in the quality of comments comparing open
source developers with industrial practices. This was
accomplished using the application developed in the process
that would evaluate the quality of comments based on
several selected metrics. In the end the study finds that there
is a significant difference in the comment quality of open
source developers and industrial practices concerning
concurrency. A significant difference in readability however,
could not be established.

This study manages to further build upon the studies of
Sundbakken[3] and Siy and Votta[4] which give data
regarding the comment density of open source developers
and those working in the industry. It accomplishes this by
making use of metrics created by Steidl et al.[7] to measure
the quality of comments.

Future research could focus on the reasons behind the
differences in quality found in this report. First investigating
if these differences serve a purpose such as projects in the
industry needing a higher comment concurrency value. If no
good reason for these differences is found then future

research could focus on finding ways of amending this
disparity.

REFERENCES
[1] J. Börstler, B. Paech “The Role of Method Chains and Comments in
Software Readability and Comprehension—An Experiment” IEEE

transactions on software engineering, VOL. 42, NO. 9, September 2016

[2] T. Tenny “Program Readability: Procedures Versus Comments” IEEE
transactions on software engineering, VOL. 14. NO. 9, SEPTEMBER 1988

[3] M. Sundbakken, “Accessing the maintainability of C++ source code”
December 2001

[4] H. Siy, L. Votta, “Does The Modern Code Inspection Have Value?”

[5] O. Arafat, D. Riehle “The Comment Density of Open Source Software
Code” in Proceedings - International Conference on Software Engineering
May 2009

[6] N. Khamis, R. Witte, and J. Rilling, “Automatic Quality Assessment of
Source Code Comments: the Javadoc Miner,” ser. NLDB ’10, 2010.

[7] D. Steidl, B. Hummel, E. Juergens” Quality Analysis of Source Code
Comments” ICPC May 20-21 2013.

[8] N. Anquetil, S. C. B. de Souza, K. M. de Oliveira, “A Study of the
Documentation Essential to Software Maintenance,” ser. SIGDOC ’05,
2005.

[9] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, S. McClosky
“The Stanford CoreNLP Natural Language Processing Toolkit” In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations , pp. 55-60.

[10] E. Dale, J. Chall “Readability revisited: The new Dale-Chall readability
formula.” May 1st, 1995.

[11] G. Calkli, Lecture 5 “Data collection techniques” slide 8, change of
software development process, 2017, University of Gothenburg

[12] J. Begeny, D. Greene “Can readability formulas be used to successfully
gauge difficulty of reading materials?”

[13] T. J Rapley “The art(fulness) open-ended interviewing: some
considerations on analysing interviews” December 1st, 2001

[14]
http://www.readabilityformulas.com/new-dale-chall-readability-formula.php

[15] Shapiro, Samuel Sanford, and Martin B. Wilk. "An analysis of variance
test for normality (complete samples)." Biometrika 52.3/4 (1965): 591-611.

[16] Derrick, Ben, Deirdre, Toher & Paul White. “Why Welch’s test is Type
I error robust.” University of the West of England, Bristol, England

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

http://journals.sagepub.com/author/Rapley%2C+Timothy+John

 APPENDIX

Table 1.

Method Concurren
cy

Dale-Chall
score

length of
comments

Parameters/retur
n types

Comments Line of code

GrpcLibrary
Codegen init 0.28 10.71 7

 // To call
grpc_init().

73

std::shared_
ptr<Channel
Credentials>
SslCredentia
ls 0.43 15.19 7

yes // Builds SSL
Credentials given
SSL specific
options

78

GrpcLibrary
Codegen init

 // To call
grpc_init().

80

std::shared_
ptr<Channel
Credentials>
AltsCredenti
als 0.14 15.19 7

 // Builds ALTS
Credentials given
ALTS specific
options

93

std::shared_
ptr<CallCred
entials>
GoogleCom
puteEngineC
redentials 0.37 7.95 8

 // Builds
credentials for use
when running in
GCE

111

std::shared_
ptr<CallCred
entials>
ServiceAcco
untJWTAcce
ssCredential
s 0.75 11.68 4

yes // Builds JWT
credentials.

118

std::shared_
ptr<CallCred
entials>
GoogleRefre
shTokenCre 0.8 10.16 5

yes // Builds refresh
token credentials.

133

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

dentials

std::shared_
ptr<CallCred
entials>
AccessToke
nCredentials 0.8 7.02 5

 // Builds access
token credentials.

142

std::shared_
ptr<CallCred
entials>
GoogleIAM
Credentials 0.66 14.25 3

yes // Builds IAM
credentials

149

namespace 1 19.38 1 _ // namespace 234
SecureAuth
Context
cpp_channel
_auth_conte
xt

0.11 9.62 27

 // const_cast is
safe since the
SecureAuthConte
xt does not take
owndership and
the object is
passed as a const
ref to
plugin_->GetMet
adata

242

w->thread_p
ool_->Add 0.33 9.02 3

 // Asynchronous
return.

212

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

std::shared_
ptr<Channel
Credentials>
CompositeC
hannelCrede
ntials(const
std::shared_
ptr<Channel
Credentials>
&
channel_cre
ds, const
std::shared_
ptr<CallCred
entials>&
call_creds)

0.48 10.23 52

 // Combines one
channel
credentials and
one call
credentials into a
channel
composite
credentials. //Note
that we are not
saving
shared_ptrs to the
two credentials
passed in here.
This is OK
because the
underlying C
objects (i.e.,
channel_creds
and call_creds)
into
grpc_composite_c
redentials_create
will see their
refcounts
incremented.

158

SecureAuth
Context
cpp_channel
_auth_conte
xt(const_cast
<grpc_auth_
context*>(co
ntext.channe
l_auth_conte
xt), false); 0.5 8.26 30

 // const_cast is
safe since the
SecureAuthConte
xt does not take
owndership and
the object is
passed as a const
ref to
plugin_->GetMet
adata.

242

GRPC_MET
ADATA_C
REDENTIA
LS_PLUGI
N_SYNC_M
AX 0 11.58 2

 // Synchronous
return

258

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

 Table 2.

Comment Methods concurrency Dale-chall
words

length of
comments

Very unlikely: it
requires 2^32 distinct
threads to wait
simultaneously

bool
cond_variable::imp_wait(u32
_old, u64 _timeout) noexcept
verify(HERE), _old != -1;

0.46 9.11 13

TLS variable for
tracking owned
mutexes

thread_local std
vector<shared_mutex*>
g_tls_locks;

0.2 14.4 6

Acquire writer lock imp_wait(m_value.load()); 0.33 9.01 3
Convert to reader lock s64 value =

m_value.fetch_add(c_one -
c_min);

0.25 7.75 4

Wait as a reader if
necessary

if value + c_one - c_min < 0

NtWaitForKeyedEvent nullptr,
int*&m_value + 1, false,
nullptr;

0.5 6.55 6

Acquire writer lock imp_wait(0); 0.0 9.0 3
Convert to reader lock m_value += c_one - c_min; 0.25 7.75 4
Convert to reader lock s64 value1 =

m_value.fetch_add(c_one -
c_min);

0.25 7.75 4

Wait as a reader if
necessary

while futex int*
&m_value.raw() +
IS_LE_MACHINE,
FUTEX_WAIT_BITSET_PRI
VATE, int value1 >> 32,
nullptr, nullptr, INT_MIN

0.5 6.55 6

If blocked by writers,
release the reader lock
and try again

const s64 value2 = m
value.fetch_op[] s64& value

0.25 6.84 12

Check reader count,
notify the writer if
necessary

if _old + c_min % c_one == 0 0.2 5.8 9

Load new value, try to
acquire c_sig

const s64 value =
m_value.fetch_op([](s64&
value)

0.37 7.9 8

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Conditional decrement return

m_value.fetch_op([](s64&
value) { if (value >= c_min)
value -= c_min; }) >= c_min;

0.0 19.4 2

Conditional decrement
(TODO: obtain c_sig)

return
m_value.compare_and_swap_t
est(c_one, 0);

0.37 17.77 8

Try hard way const s32 value =
m_value.op_fetch([](s32&
value)

0.0 0.14 3

Use sign bit to
acknowledge waiter
presence

if value && value >
INT32_MIN

value--;

if value < 0

0.28 6.2 7

Remove sign bit value -= INT32_MIN; 0.0 0.14 3
Signal other waiter to
wake up or to restore
sign bit

futex & m_value.raw(),
FUTEX_WAKE_PRIVATE,
1, null pointer, null pointer, 0;

0.36 7.03 11

Conditional decrement

const s32 value =
m_value.fetch_op([](s32&
value)
{
if (value > 0)
{
value -= 1;
}
});

return value > 0;

0.0 19.4 2

Check RTM and MPX
extensions in order to
filter out TSX on
Haswell CPUs

static const bool g_value =
get_cpuid(0, 0)[0] >= 0x7 &&
(get_cpuid(7, 0)[1] & 0x4800)
== 0x4800;
return g_value;

0.21 11.0 14

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Check AVX512F,
AVX512CD,
AVX512DQ,
AVX512BW,
AVX512VL
extensions (Skylake-X
level support)

static const bool g_value =
get_cpuid(0, 0)[0] >= 0x7 &&
(get_cpuid(7, 0)[1] &
0xd0030000) == 0xd0030000
&& (get_cpuid(1,0)[2] &
0x0C000000) == 0x0C000000
&& (get_xgetbv(0) & 0xe6)
== 0xe6;
return g_value;

0.37 13.26 16

Magic static static asmjit::JitRuntime g_rt; 0.5 0.099 2

Memory manager
mutex

shared_mutex s_mutex; 0.33 14.25 3

Size of virtual
memory area
reserved: 512 MB

static const u64
s_memory_size = 0x20000000;

0.333 11.0 9

Try to reserve a
portion of virtual
memory in the first 2
GB address space
beforehand, if
possible.

static void* const s_memory =
[]() -> void*

0.5 9.3 20

Reset memory
manager

extern void jit_finalize() 0.0 9.0 3

Helper class struct MemoryManager :
llvm::RTDyldMemoryManager

0.0 0.09 2

Verify address for
small code model

if ((u64)s_memory >
0x80000000 - s_memory_size
? (u64)addr - (u64)s_memory
>= s_memory_size : addr >=
0x80000000)

0.0 9.11 6

Table 3.

Method Concurrency Dale-Chall

score
length of comments Parameters/re

turn types
Comments

 0.3478260867 7.619943478 23 yes

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

 0.375 8.33955 16 yes

 0.5 11.68 4 yes

 0.5 13.8458 8 yes

 0.5 9.33 16 yes

 0.43 7.6685 21 yes

 0.714 10.712271 7 _

 0.666 9.16743 6 yes

 0.6 0.248 5 yes

 0.4 0.24 5 yes

 0.5 5.9957 8 yes

 0.8333 0.2976 6 yes

 0.6666 9.167 6 _

 0.3043 8.1124 23 _

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

 0.4444 12.805 9 _

 0.6 10.1645 5 _

 0.333 9.0186 3 _

 0.333 9.3162 9 yes

 0.4545 9.8911 11 yes

 0.5 13.8458 8 _

 0.4 8.8425 10 _

 0.5 13.5525 10 No

 0.56 12.81 9 _

 0.375 11.883 8 Yes

 0.3684 11.1894 19 Yes

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

 0.647 5.403 17 yes

 0.8 9.6138 15 Yes

 0.66 0.45 9 yes

 0.347 8.11 23

 0.44 12.805 9

 0.5 11.68 4

 1 9.018 3

 1 0.19 4

 0.4 8.43 21 Return missing

 0.5 0.248 5

 0 0.1984 4

 0.6 7.025 5

 0.66 6.5507 6

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

 0.6 0.248 5

 0.5 5.54 12

 0.25 5.995 8

 0.333 9.167 6

 0.5105315735 7.77177844 9.785714286

The method and comment section of the company result table is highlighted in black to conceal the company data. They company
requested that we kept the information confidential hence the highlight

ARTIFACT

 Repository:https://github.com/huphup68/Comment-Quality-Evaluator

Figure 3 is an image of the Comment quality Evaluator tool that has been developed. After execution, the data: comments and
method are inputted for the application to analyse and return results.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

https://github.com/huphup68/Comment-Quality-Evaluator

Figure 4 is an image of the tool after analysing the given data. The concurrency value is higher than 0 and lower than 0.5 and
is therefore considered an acceptable value [7]. The length of the comment is not less than 3 nor more than 29 which means the
comment is seen as normal. The Dale-Chall score of the comment indicates that it should be easily understood by an average
9th or 10th-grade student [14].

Table 4.

 Question Answer

Q1 A concurrency value greater than 0 but less than
0.5 is considered an acceptable value, one of the
comment that we analysed has a concurrency
value of 0.75, this means the code comment is
almost similar to the function name, does the
comment add any significance to the
understandability of the code?

I would have prefered to have a comment that says
something about the method function, however that's not
the case here & its difficult to see exactly what one would
have written.

Q2 A comment is seen as normal if it has a
comment length between 3 to 29 words, one of
the code comment that we came a-cross has
exactly one word as its comment, does this
make any significance to
the understandability of the code?

It's a keyword that describes one of the variables in the
code, I can see what it's referring to, however its
unnecessary and does not improve the understandability of
the code.

Q3 A code comment that we have analysed has a
concurrency of 0 value, does the comment have

The comment does not add anything to the
understandability of the code, in the comment the author

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

any importance in regard to understanding the
code?

simply credits the original contributor of the code and has
re-used the code.

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

