

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Visual SLAM in an automotive context:
Implementing ORB-SLAM2 in the OpenDLV
framework
Bachelor of Science Thesis in Software Engineering and Management

Linus Eiderström Swahn
Pontus Pohl

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Visual SLAM in an automotive context:
Implementing ORB-SLAM2 inside the OpenDLV framework

Linus. Eiderström Swahn
Pontus. Pohl

© Linus. Eiderström Swahn, June 2018.
© Pontus. Pohl, June 2018.

Supervisor: Christian. Berger
Examiner: Piergiuseppe. Mallozzi

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Abstract— Simultaneous Localization and Mapping (SLAM)
is a technique frequently used in the area of self-driving
cars for mapping and odometry. SLAM has traditionally been
performed using laser based range finders of the light detection
and ranging (LIDAR) types. Due to the high cost of these
sensors there is currently a trend of implementing visually-
based SLAM systems using cameras as sensory input. This
thesis explores the possibility of integrating a visual-SLAM
component into an automotive framework as well as how this
visual-SLAM compares to LIDAR based SLAM techniques.
Using a state of the art visual SLAM algorithm, ORB-SLAM2,
we implement and evaluate a modern visual-SLAM solution
within the OpenDLV framework by performing a Design
Science Research (DSR) study with the goal of implementing a
microservice containing the ORB-SLAM2 algorithm inside of
OpenDLV. The software artifact resulting from the DSR study is
then evaluated using the evaluation methodology included in the
KITTI visual odometry benchmark. Based on the results from
this evaluation we conclude that the ORB-SLAM2 algorithm
can successfully be integrated in the OpenDLV framework and
that it is a possible replacement for LIDAR-based SLAM.

I. INTRODUCTION

Self-driving vehicles is a technical domain that could be
seen as a frontier for the automotive industry. Several major
car manufacturers are spending effort and engineers to further
develop the techniques and implementations to fulfill this
vision[1]. Besides the interest from car manufacturers, the
academic community is also very interested in the problems
and potential solutions that the area of autonomous vehicles
promises. The Chalmers Revere laboratory is a research
laboratory at Chalmers university of technology that is
dedicated to the study and research regarding self-driving cars.
This thesis will be conducted in collaboration with Chalmers
Revere.

The area of mobile robotics can be perceived as a precursor
to the current research area of autonomous vehicles since
many of the problem areas are shared between the application
of intelligent vehicles and that of autonomous robots. Specif-
ically the concept of mapping and autonomous driving are
areas that research first began in the mobile robotic community
but is now also of interest to the domain of autonomous
vehicles[2]. In order to solve these problems, many different
techniques have been researched and tested[3]. With the
development of more advanced sensory hardware such as three
dimensional laser based range finders and stereo vision, the
possibilities for more advanced techniques for solving these
problems have become available[3]. Simultaneous localization
and mapping (SLAM) is a technique that allows robots or
autonomous vehicles to simultaneously localize themselves
in regards to the surrounding environment as well as build a
map of the world they navigate in[3].

Among laser based range finders the current state of the art
hardware used are of the light detection and ranging (LIDAR)
type. Multiple-beam scanning LIDAR devices are the most
common type of LIDAR used in autonomous driving and
one major manufacturer of such sensors is a company called
Velodyne, that makes several different models[3]. A LIDAR
works by rotating a laser based range finder, or several vertical
ones in the case of multiple-beam LIDARS, at high speeds

and measuring the distance from the LIDAR to obstacles
surrounding the LIDAR using the time of flight of the laser
beam[3]. Even though Velodyne LIDARS have decreased in
price recently[4], the more advanced models still carry a price
tag upwards of 75,000$[5]. In comparison, stereo cameras
that can be used for visual SLAM carry a price tag upwards
of 500$[6].

Two solutions that represent the current state of the art
when it comes to LIDAR-based SLAM are IMLS-SLAM
developed by Jean-Emmanuel Deschaud[7] and LOAM by
Ji Zhang and Sanjiv Singh[8]. IMLS-SLAM uses a scan-
to-model matching framework in order to get the trajectory
the LIDAR has traveled between scans. The LOAM solution
relies on two algorithms running in parallel. One algorithm
performs high frequency, low fidelity odometry estimation
while the other algorithm performs at much lower frequency
but does a fine matching and registration of the point cloud
the LIDAR outputs. LOAM and ILMS are ranked second
and third respectively on the KITTI Odometry benchmark
leader boards[9].

A topic that has become more and more popular in recent
years is that of Visual SLAM[3]. Visual SLAM is a collection
of methods for implementing the SLAM technique using
image-based input from Monocular, Stereo or RGB-D cameras
as opposed to that of laser based range finders. The area of
Visual SLAM, while being more technically challenging than
traditional SLAM also shows promise in that it can provide
odometry information which is a key component of modern
SLAM systems[3]. In the field of autonomous vehicles the
area of visual SLAM has become an highly researched topic
with several different techniques and implementations being
developed[2]. A common focus of the advancements being
done in the automotive visual SLAM area is the problem
of minimizing the location drift that can occur with SLAM
systems[3], [10].

ORB-SLAM2 is an open-source visual SLAM algorithm
that uses a key frame based approach[11], which utilizes
visual input from monocular or stereo cameras as input
and outputs the camera pose for each frame along with
a map containing points describing the world the camera
travels through. Furthermore it utilizes a technique called loop
closing, that enables it to effectively adjust it’s trajectory and
have a low error margin on estimated positions. Maintaining
an accurate trajectory even after several kilometers without
drift is one of the big challenges of visual SLAM [2].
ORB-SLAM2 has been tested on standard desktop hardware
in the form of an Intel Core i7-4790 desktop computer
with 16Gb RAM, meaning it doesn’t require specialized
computational hardware but instead can function on hardware
easily accessible to anyone[11].

The Kitty Vision Benchmark Suite is a useful resource
when developing SLAM algorithms[9]. It provides camera,
LIDAR and ground truth data as well as an evaluation
methodology that can be used when developing SLAM
solutions. The data is compiled from test drives conducted
by a group of researchers based in Germany[12]. The dataset
is used as a benchmark by several researchers focused on the

1

SLAM problem[9]. In this thesis, the Kitti Vision Benchmark
Suite will be used during the development and evaluation of
the implementation.

With the high cost of LIDAR sensors when compared to
cameras, visual SLAM solutions has the potential to provide
autonomous vehicle systems with a low cost replacement
or complement for some of the problems that a SLAM
system solves[3]. With this in consideration there is an
interesting possibility of integrating a visual SLAM algorithm
in the OpenDLV framework being developed at Chalmers
Revere laboratory. OpenDLV is an open source framework
for autonomous cars. It provides a microservice based
architecture that is designed to be run on autonomous vehicle
platforms[13]. In this thesis we aim to investigate how well
a vision-based implementation of SLAM based on the ORB-
SLAM2 algorithm could be integrated into the OpenDLV
framework and in what way such an implementation can
benefit the automotive framework compared to the traditional
LIDAR-based SLAM approach.

Our hypothesis is that by integrating the ORB-SLAM2
algorithm in the OpenDLV framework we will be able to
evaluate it’s suitability to be used in a real world autonomous
car platform. By doing this we will contribute to the body
of research by evaluating this approach to solve visual
SLAM in a real world automotive context. By being the
first to implement the ORB-SLAM2 algorithm inside of an
automotive platform like OpenDLV our work will benefit
future students, researchers, and upcoming projects using
the OpenDLV framework as well as provide additional
evaluation of ORB-SLAM2 as a visual SLAM algorithm. In
addition, we will provide our implementation as open source
using GPL-3.0[14] license and make it available on Github
at https://github.com/chalmers-revere/
opendlv-perception-vision-orbslam2.

II. RELATED WORK

The Springer Handbook of Robotics by Bruno Siciliano
et al.̇ provides a comprehensive coverage on the field of
robotics. In particular there is a chapter covering the basic
theory, history and current work that has been done on the
SLAM topic. In our case this book provides domain overview
and historical background as well as a reference for our own
research[3].

Focusing more specifically on the area of autonomous cars,
Guillaume Bresson, Zayed Alsayed, Li Yu and Sébastien
Glaser has written the article: Simultaneous Localization
And Mapping: A Survey of Current Trends in Autonomous
Driving[2] which provides a background and an overview of
the current state of technology regarding SLAM and visual
SLAM in the area of autonomous cars specifically. This
paper gives background to our problem domain and will help
motivate why this thesis should be conducted.

Prior research in the domain of visually based SLAM has
been conducted by R. Mur-Artal and J. D. Tardos with their
papers on ORB-SLAM and ORB-SLAM2. ORB2-SLAM
is a key-frame based visual SLAM algorithm basing its
feature extraction on the computationally efficient ORB

(Oriented Fast and Rotated Briefs)[15]. ORB-SLAM is able to
operate in real-time without using any other processing power
than what is available in consumer grade CPU’s by using
these efficient ORB features. The ORB-SLAM algorithm,
performing visual SLAM using a monocular camera is
explained in further detail in the the paper ORB-SLAM: a
Versatile and Accurate Monocular SLAM System by R. Mur-
Artal and J. D. Tardos[11]. The ORB-SLAM2 algorithm
improves on the efficient SLAM solution introduced in ORB-
SLAM by introducing the usage of either a stereoscopic or
RGB-D camera as well. Using stereoscopic images as input
for the algorithm fixes the issue with inconsistent scaling that
occurs in monocular SLAM solutions[3]. The ORB-SLAM2
algorithm is further described in the article ORB-SLAM2:
an Open-Source SLAM System for Monocular, Stereo and
RGB-D Cameras by R. Mur-Artal and J. D. Tardos[11]. Since
this thesis focuses on adapting the ORB-SLAM2 algorithm
for use inside of OpenDLV these two papers provides the
technical background for understanding the algorithm.

Because the motivation for this thesis is related to the
comparison between visual and LIDAR-based SLAM, ILMS
and LOAM has been selected as two LIDAR-based SLAM
solutions used as a reference for the evaluation of the work
being done in this thesis. The article ”IMLS-SLAM: scan-
to-model matching based on 3D data” by Jean-Emmanuel
Deschaud[7] provides background, implementation and results
for the ILMS algorithm. The article ”Low-drift and real-
time lidar odometry and mapping” by Ji Zhang and Sanjiv
Singh[8] describes the LOAM SLAM solution in great detail,
including the results of their work.

When it comes to evaluating SLAM solutions, the KITTI
Vision Benchmark Suite provides both sensor data to use
as input as well as an evaluation methodology for enabling
relevant comparisons between different SLAM algorithms
and implementations. We have opted to use this method for
SLAM evaluation based on its popularity[2] and prevalence
of comparable results, particularly in the form of the two
LIDAR-based SLAM algorithms described in the previous
paragraph. The evaluation methodology is described in greater
detail in the article Are we ready for Autonomous Driving?
The KITTI Vision Benchmark Suite by Andreas Geiger, Philip
Lenz and Raquel Urtasun[16].

Our proposed solution will be implemented as a microser-
vice inside of OpenDLV, an open-source framework for
autonomous cars being developed at Chalmers Revere lab.
The OpenDLV framework will provide the overall structure
and context where our proposed solution can function and
will allow us to test our solution in a real autonomous driving
scenario. The OpenDLV framework is described in more detail
in the article Containerized Development and Microservices
for Self-Driving Vehicles: Experiences & Best Practices by
Christian Berger, Bjornborg Nguyen, and Ola Benderius[13].

III. METHODOLOGY

Our research questions will be focused on the utility a
camera-based visual SLAM solution can provide in the
context of an automotive framework as well as how it

2

https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2
https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2

compares to LIDAR-based SLAM solutions. The algorithm
that will be used for this comparison is the ORB-SLAM2
algorithm described in the introduction and the automotive
framework will be the OpenDLV framework also described
in the introduction.

(RQ I) To what extents can the ORB-SLAM2 algorithm be
used as a visual SLAM component inside of the
OpenDLV framework?

(RQ II) To what extents can the ORB-SLAM2 algorithm be
considered a replacement to a LIDAR-based SLAM
solution in the OpenDLV framework?

In order to answer our research questions, we will conduct
a design science study with the goal of implementing the
ORB-SLAM2 algorithm inside the OpenDLV framework
as well as implementing the necessary infrastructure and
visualization to properly evaluate and use this new component
inside the framework. The reason for choosing design science
as our research methodology is because of the strengths the
methodology has when it comes to applying research to a
real world problem[17].

The design science methodology will be constructed accord-
ing to the six activities for Design Science Research(DSR)
study[18]. These six steps will be described in further detail
below.

A. Identification and motivation of problem

The first of the step of DSR covers the identification of
the research problem and the motivation for carrying out the
research being conducted.

In this thesis we have identified that there exists a large
interest in the research community towards implementing
visually-based SLAM solutions as a complement to the
traditional LIDAR-based SLAM solutions. Among these
visual SLAM solutions we have identified ORB-SLAM2
as a suitable candidate to further evaluate. Whilst the ORB-
SLAM2 algorithm has been tested on an automotive dataset
such as KITTI, we have not found any prior evaluation using a
real automotive framework which is our motivation for doing
such an evaluation. Furthermore, the autonomous vehicle
framework OpenDLV currently lacks a visually-based SLAM
component, which is why it’s of relevance to implement
ORB-SLAM2 in this framework. This implementation will
provide the means of further evaluating the suitability of
the ORB-SLAM2 algorithm in the automotive context as
well as further extending the functionality of the OpenDLV
framework.

B. Objectives of solution

The second of the six steps describes what the implemented
software artifacts objectives are in regards to the problem
defined in the previous step.

In this thesis we aim to provide a software artifact
containing the ORB-SLAM2 algorithm and visualization
adapted to work within the OpenDLV framework. This artifact
will consist of a microservice containing the ORB-SLAM2
algorithm and a microservice containing visualization for
the output generated by the first microservice. The first

microservice will be self contained and receive image data
over the OpenDLV framework from either recorded data sets
or a live camera feed. The microservice will output consisting
of a camera trajectory as well as a map of points describing
the world around the vehicle. This data will be outputted over
the OpenDLV conference system for consumption in other
connected microservices containing visualizing components
or potential driving logic. The second microservice will be a
consumer of the output of the first microservice and allow
visualization of the trajectory as well as map points delivered
from the first microservice.

The first objective of this artifact is to provide a functional
implementation of the ORB-SLAM2 algorithm contained in
a OpenDLV microservice. A second objective is to enable
us to compare the output of this implementation with that of
the original unmodified ORB-SLAM2 algorithm as well as
other SLAM solutions.

These objectives are motivated by the problem found
in step one. It’s further motivated by the fact that such
an implementation can be of future use to students and
researchers working with the OpenDLV framework.

In addition to implementing the two microservices we will
also define a new message set so that OpenDLV can handle
the internal communication of the type of camera trajectory
and map data outputted by the ORB-SLAM2 algorithm.

C. Design and development

The third of the steps is the design and implementation of
the software artifact that can be used to answer the research
questions defined earlier in the thesis.

More in-depth details regarding the software artifact and
its implementation will be described in detail in the next
section.

The implementation of the ORB-SLAM2 algorithm inside
of OpenDLV, has been a collaborative effort together with
Marcus Andersson and Martin Baerveldt, two master students
at Chalmers University of Technology who will also use this
implementation in their master thesis.

D. Demonstration of solution

The fourth step of the DSR methodology should demon-
strate the software artifact.

In order to demonstrate the utility of the implemented
software artifact the solution will be using the KITTI
odometry data set as input and the resulting camera trajectory
will be collected for each sequence. The sequences that
will be used are the training data set that includes the
ground truth data. Using the Software Development Kit
(SDK) provided by the KITTI benchmark, the translational
error can then be extracted. This will then be the basis of
comparison between this implementation and the original
ORB-SLAM2 implementation as well as the two LIDAR-
based SLAM solutions, thus demonstrating the utility of the
software artifact. In addition to providing the raw results, the
visualization provided will also be used to provide a visual
demonstration of the output generated by the ORB-SLAM2
algorithm.

3

Because of the usage of docker containers within
the OpenDLV framework[13] an already built solu-
tion of the software artifact can easily be run for
demonstration purposes by any interested party with
the only prerequisite being that they have docker and
docker-compose installed locally. Further details can be
found at https://github.com/chalmers-revere/
opendlv-perception-vision-orbslam2.

E. Evaluation of solution

The fifth step is the evaluation of the software artifact and
it’s output.

The evaluation of the software artifact will be made using
dynamic analysis which is an analytical design evaluation
method. We will use a combination of performance and accu-
racy metrics in order to evaluate how well our implementation
of ORB-SLAM2 compares to the original implementation.
We will also use the accuracy metric in order to compare
this visual SLAM implementation with that of LIDAR-based
SLAM solutions. The performance metrics that will be used
for evaluation is the average CPU an memory. The amount of
translational drift will be used as an accuracy metric during
evaluation.

One of the motivations of using the ORB-SLAM2 as a
visual SLAM component inside OpenDLV was the stated
efficiancy of the algorithm and its abillity to run on consumer-
grade hardware as described in the related works section. In
order to properly evaluate the software artifact based on
the objective of providing a functioning implementation of
ORB-SLAM2 inside of OpenDLV, performance is one of the
metrics of intereset to compare between our implementation
and the original. Since visual SLAM solutions demands more
computational power than traditional SLAM[3] its important
for us to evaluate wether or not our implementation is as
computational efficient as the original solution. To provide
comparable results between our implementation and the
original we will utilize the KITTY training dataset[12] to
gather metrics on the system load when the microservice runs.
By running both algorithms on all sequences in the training
set we can measure the average cpu-load and the average
memory-load for each sequence for both algorithms. Average
and median values will be calculated for the complete set of
cpu averages and memory averages recorded. The data used
for this evaluation will be carried out on a consumer desktop
computer with the following specifications: quad-core Intel
i5-7600K CPU @ 3.80GHz, 16 GB DDR4 @ 2933MHZ. In
order to capture the required data, the linux utility ps will be
used which is a wrapper application around the Linux pseudo
file system[19] allowing access to kernel states. When the
algorithm finishes processing a dataset, the ps utility calculates
the average CPU load by summing together the cpu time
spent in user and kernel space, as well as CPU time spent
waiting for child processes. This value is then divided by the
total time that the process has been running.

CPU% = S/T .
Finally to achieve a value that represents the fraction of the

total available CPU resources, the value is divided by number

of CPU-cores. Memory usage is computed by calculating
how much memory the process has allocated divided by the
total amount of memory.

Since one of the main features of SLAM is the ability
to measure odometry this is also the focus area of our
evaluation in order to answer the question whether or not
Visual SLAM can provide a replacement technology to
LIDAR-based SLAM. As discussed in the introduction, one
of the most important properties of a SLAM implementation
is the amount of drift that occurs. Since the drift accumulates
with time, it’s of the utmost importance to have as little
translational drift as possible. The KITTI Vision Benchmark
Suite provides a odometry benchmark that we will use for
evaluating the drift in our implementation. The KITTI Vision
Benchmark Suite provides both camera and LIDAR datasets
as well as ground truth which allows different algorithms
and implementations to be evaluated on equal grounds. The
odometry benchmark also includes an evaluation methodology
that enables us to compare this implementation with that of
other SLAM solutions, including LIDAR-based ones[9]. We
will also be able to compare this implementation with the
original ORB-SLAM2 algorithm.

The KITTI team bases their evaluation methodology on the
work done by Kummerle at al.[20]. Their proposed evaluation
is based on measuring translational and rotational errors on a
pose by pose basis. The contrasting evaluation would instead
be based on just comparing the end pose with the ground
truth. This contrasting evaluation is flawed in the sense that
an algorithm might perform flawlessly for 99% of frames,
but if a minor rotational error occurs early in a dataset, the
end result can be very different from the ground truth even
though technically only minor drift occurred.

The evaluation method used by the KITTI team extends
the evaluation method proposed by Kummerle at al. by
separating rotational and translational errors into two separate
metrics[16]. In order to get comparable results for our
implementation of ORB-SLAM2 we have used the SDK that
KITTI provides alongside the datasets in their benchmark.
This SDK contains code that outputs these translational and
rotational errors as well as plots and graphs illustrating the
difference with the ground truth. This tool is the same as the
one used to evaluate the algorithms residing on the official
KITTI Odometry leader boards[9].

The data that we will base this evaluation on is the
training data comprised of sequence 00 to 10 of the Odometry
benchmark challenge. The reason for using this data is that it
contains ground truth data thus allowing us to calculate the
translational error. There also exists other SLAM solutions
that have published their results on this dataset thus allowing
us to compare different solutions with each other. Since we
want to make a comparison on a sequence by sequence basis
in some cases, we have calculated the averages for each
sequence and will provide them alongside comparable data
from other algorithms in the result section.

The OpenDLV framework doesn’t currently have an
implementation of a LIDAR-based SLAM solution. This
means that in order to make a comparison with LIDAR-based

4

https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2
https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2

SLAM we will have to use other SLAM implementations and
have them act as a replacement in order to draw conclusions
on our work. The algorithms wee have chosen to compare
this implementation of ORB-SLAM2 with is LOAM[8] and
IMLS-SLAM++[7]. The reason for these in particular is that
they currently rank number two and three respectively on the
KITTI leader boards, meaning they could be seen as state
of the art LIDAR-based SLAM implementations. Lastly they
both have published their results with the training data set,
thus allowing us to make a direct comparison with our results.

F. Communication of findings

The final step of the DSR method is how the findings of
the research is communicated with the rest of the world.

This thesis will be available online after the date of
approval. As mentioned in the introduction the software
artifacts produced as a part of this thesis will be available
online and under the open source license GPL-V3.

IV. THE DESIGN AND IMPLEMENTATION OF THE
SOFTWARE ARTIFACT

OpenDLV is a microservice based framework. Because of
this, the ORB-SLAM2 algorithm as well as the visualizer have
been implemented inside of two self contained components
called opendlv-perception-vision-orbslam2[21] and orb-slam-
vehicle-viewer[22] respectively. OpenDLV is based on a
data transport library called libcluon[23] which enables a
common protocol definition for all software in the distributed
chain. In our case this means that we can utilize a common
communication protocol to exchange messages between the
ORB-SLAM2 algorithm process, and the visualizer process.

A. ORB-SLAM2

The source code for the ORB-SLAM2
based component can be found at: https:
//github.com/chalmers-revere/
opendlv-perception-vision-orbslam2.

The ORB-SLAM2 algorithm itself contains several differ-
ent components all responsible for extracting 3d-information
from 2d pictures. In figure 1 an overview of the ORB2-slam
algorithm components is visible.

The algorithm starts by reading an image delivered by the
OpenDLV conference. The images sent by OpenDLV could
be either be recorded live by the system or replayed from
a saved recording. The images are handled using the Mat
object from OpenCV which is essentially a Matrix with rows
and columns containing pixel data.

In summary, the ORB-SLAM2 algorithm works by using
three parallel threads. One thread for tracking features in
the current frame and matching them to existing features in
previous frames. The second thread manages the local map
by updating it with new map points as well as performs local
bundle adjustment, readjusting the local map. The third thread
applies loop closing and can also launch a fourth thread,
which adjusts the entire map. From all frames processed,
certain frames are selected to be key-frames which is frames
that are useful for localization. The key-frames a connected

Fig. 1. ORB2-slam components

in a weighted graph that links the entire set of key frames,
where frames that share observations are linked. This enables
efficient graph optimization to be applied to various parts or
the entire map. For further reading about ORB2-SLAM, see
ORB-SLAM2: an Open-Source SLAM System for Monocular,
Stereo and RGB-D Cameras [11].

The output of the algorithm consists of a camera pose as
well as a map containing map points. Each frame calculated
by the algorithm contains the camera pose for the camera at
that frame. The camera pose is represented by an extrinsic
matrix[24]. The extrinsic matrix is composed of the camera
rotation R and the translation:

[
R t

]
=

r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3

In order to transform the extrinsic camera matrix into real
world position, we can use the following relationship:

C = −RtT .
We can therefore get the world position of the camera at

each frame by taking the negative transposed rotation and
multiply it with the camera transform.

Each map point has world position expressed as a x, y and
z coordinate. For each frame processed by the algorithm, the
camera world position and every new map point is sent in an
OpenDLV envelop to the conference for consumption in other
components. Since the ORB-SLAM2 algorithm constantly
updates the map points and trajectory points, the whole map
and trajectory is sent every other second to guarantee that
they both stay up to date.

The changes made to the ORB-SLAM2 algorithm when im-
plementing it in the OpenDLV framework can be summarized
with the following points:

• In order to conform to the OpenDLV coding standards,
the use of raw pointers in the original ORB-SLAM2
code base has been completely replaced with shared ptr
or unique ptr from the standard c++ library where each
type is warranted.

5

https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2
https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2
https://github.com/chalmers-revere/opendlv-perception-vision-orbslam2

• Since OpenDLV has a strong emphasis on code clarity
and follows a different code naming standard for its
code base than the original implementation, relevant
parts of the algorithm has been refactored naming wise
to introduce what we believe to be a clearer purpose of
certain parts of the code base.

• The OpenDLV microservices is built on containerization
using docker. This means that third-party dependencies
has to be handled differently than in the original
implementation and work was conducted on getting all
functionality to work running both natively and inside the
final docker environment. Especially when implementing
the loop closing functionality we had to iterate the final
docker image several times because of incompatibilities
with the g2o library inside the docker environment.

The inputs and outputs of the algorithm has been com-
pletely rewritten to work inside the OpenDLV infrastructure.
Currently the ORB-SLAM2 OpenDLV microservice can be
run either using images sent over the OpenDLV conference
system, meaning it can use prerecorded image sets that are
played back inside the OpenDLV ecosystem, or by live images
sent from a camera component running in OpenDLV. The
other way the microservice can be serviced with images
is by reading an image set from the file system. This last
method has been used extensively for debugging and testing
purposes during development using the KITTI dataset. The
ORB-SLAM2 OpenDLV container outputs the results of the
algorithm using a new message set containing map points
and camera trajectory. For each frame the last changes are
sent and every other second the complete map and trajectory
is sent. This is done to compensate for the fact that ORB-
SLAM2 constantly updates previous map points and trajectory
according to new data it encounters. The camera trajectory
is transformed from camera space to world space according
the equation described above.

Since the original code base for the ORB-SLAM2 algorithm
is very large and complex, the following steps were taken
during the implementation in order to successfully adapt the
algorithm for OpenDLV:

• The algorithm was divided into different parts that could
be worked on in parallel. Mainly functionality was
divided between orb extraction, tracking, data structures,
mapping and loop closing.

• Each section was worked on until functional and then
tested together with other implemented parts of the
algorithm.

• As soon as the first iteration of the software solution
that could produce output was completed, the solution
was evaluated.

• By evaluating and implementing improvements the
software artifact evolved until the final version was used
for capturing the results of this thesis.

B. Visualizer

The source code for the visualizer can be
found at: https://github.com/guding/
orb-slam-vehicle-viewer.

The visualizer is a web based component implemented
in javascript using the 3d library three.js[25] to visualize
three dimensional data from the algorithm. Other open-source
libraries used includes Twitter-Bootstrap, font-awesome and
jquery for visual components and scripting, as well as yarn,
gulp and babel for build-tasks. The visualizer displays the
results of the ORB-SLAM2 algorithm by receiving each
message sent from the first microservice and parsing it. Each
message contains arrays of map points and trajectory points
as well as the current index that each array should start at.
The reason for this message structure is that since a map and
trajectory can potentially contain several thousands of points,
the data needs to be split between several messages. Internally,
the visualizer stores map points and trajectory points in arrays.
Since the message sent from the ORB-SLAM2 microservice
also contains array indexes these arrays can quickly be filled
and rewritten by new messages containing updated trajectories
and maps.

In order to visualize the output of the ORB-SLAM2
algorithm a new message set had to be defined in OpenDLV
containing the camera pose as well as map points. Using this
output the visualizer displays the map points created by the
ORB-SLAM2 algorithm along with the camera position at
every frame of input.

The OpenDLV visualizer can be seen in figure 2. The
visualizer consists of a map displaying the camera trajectory
as red dots and map points as white dots. In addition to
the map, the status of the connection with the OpenDLV
conference is displayed as well as the amount of messages
sent per second. When running the whole system the map is
updated in real time. The camera is controlled by keyboard
input. The camera can be zoomed using the W and S keys.
A and D moves the camera sideways. Q and E rotates the
camera.

Fig. 2. OpenDLV visualizer

V. RESULTS

A. Visual odometry

Shown in table I on page 7 is the output of the evaluation
of our ORB2-SLAM implementation. Alongside the results
of our implementation is the results from the original
ORB2 algorithm[11] and two additional LIDAR-based SLAM

6

https://github.com/guding/orb-slam-vehicle-viewer
https://github.com/guding/orb-slam-vehicle-viewer

TABLE I
TRANSLATION ERROR FOR INDIVIDUAL SEQUENCES - LOWER IS BETTER

Sequence Loop LOAM IMLS ORB-SLAM2 ORB-SLAM2
closing Original OpenDLV

00 Yes 0.78% 0.50% 0.71% 0.78%
01 No 1.43% 0.82% 1.40% 2.83%
02 Yes 0.92% 0.53% 0.76% 0.81%
03 No 0.86% 0.68% 0.79% 1.29%
04 No 0.71% 0.33% 0.44% 2.31%
05 Yes 0.57% 0.32% 0.39% 0.40%
06 Yes 0.65% 0.33% 0.49% 0.72%
07 Yes 0.63% 0.33% 0.51% 0.54%
08 Yes 1.12% 0.80% 1.03% 1.13%
09 No 0.77% 0.55% 0.87% 1.34%
10 No 0.79% 0.53% 0.64% 0.71%

overall No n/a n/a 0.96% 1.66%
Yes n/a n/a 0.73% 0.80%
Both n/a 0.55% 0.77% 0.94%

TABLE II
TRANSLATIONAL ERROR DIFFERENCES WITH ORIGINAL IMPLEMENTATION

Sequence Loop ORB-SLAM2 ORB-SLAM2 Difference
closing Original OpenDLV

00 Yes 0.71% 0.78% 0.07%
01 No 1.40% 2.83% 1.43%
02 Yes 0.76% 0.81% 0.05%
03 No 0.79% 1.29% 0.50%
04 No 0.44% 2.31% 1.87%
05 Yes 0.39% 0.40% 0.01%
06 Yes 0.49% 0.72% 0.23%
07 Yes 0.51% 0.54% 0.03%
08 Yes 1.03% 1.13% 0.10%
09 No 0.87% 1.34% 0.47%
10 No 0.64% 0.71% 0.07%

overall No 0.96% 1.66% 0.70%
Yes 0.73% 0.80% 0.07%
Both 0.77% 0.94% 0.17%

algorithms[7][8]. Represented in table I is the amount of
translation error when compared to the ground truth data
provided by the KITTI datasets. In addition to the results for
each sequence, the overall translational drift for the training
data set is also available for all implementations except LOAM
that didn’t publish that information in their paper.

Included in the table is also the information if the sequence
contains loop closing possibilities or not.

The first notable observation when looking at the results, is
the comparison between our implementation and the original
ORB2 SLAM algorithm. Our implementation is performing
a bit worse across all datasets but is still very close to
the original, which indicates that we have managed to to
implement the algorithm without too much loss in accuracy.
Overall, the original implementation is 0.17% better than our
implementation. When comparing datasets with or without
loop closing, the original implementation is 0.07% better
with loop closing and 0.70% better without.

The difference in drift between the original implementation
and our implementation can be more properly visualized in
figure 3 and 4. As explained in section IV, the output from
the algorithm is the camera pose at each frame of input. By

Fig. 3. KITTI-dataset Sequence 00 trajectories

Fig. 4. KITTI-dataset Sequence 01 trajectories

applying the transformation also described in section IV on
the camera pose, we get the real world position. Both figure
3 and 4 have drawn the position at each frame, creating the
trajectory that the vehicle has traveled. Also included in each
figure is the ground truth provided by the KITTI data set
which means we can visualize the drift in position that occurs
between the SLAM algorithm and where the vehicle actually
is. In both figures the output of our artifact is shown on
the right and the output from the original ORB2-SLAM is
shown on the left. As we can see there is a smaller difference
between the implementations in figure 3, which shows the
trajectories for dataset sequence 00 that contains loop-closing
compared to figure 4 that shows a sequence without loop
closing.

Secondly, both the original ORB2-SLAM as well as our
implementation performs very similarly to the LIDAR based
algorithms. The best performing algorithm IMLS-SLAM[7]
is ahead by a fraction on most datasets. When it comes to
LOAM it gets out performed by the original ORB-SLAM2
while our implementation is sometimes better and sometimes
worse.

B. performance

Table III and IV shows output from the performance
evaluation of our implementation of the ORB2 algorithm
and the original implementation. Our implementation reaches
a CPU usage average of 38,05% across the datasets with a

7

TABLE III
CPU USAGE - LOWER IS BETTER

Sequence ORB2(Original) ORB2(opendlv) Difference

00 30.75% 38.75% 8.00%
01 43.00% 41.00% -2.00%
02 31.75% 37.25% 5.50%
03 30.00% 37.50% 7.50%
04 37.25% 37.00% -0.25%
05 30.25% 40.75% 10.50%
06 37.50% 39.50% 2.00%
07 26.75% 37.50% 10.75%
08 28.75% 36.50% 7.75%
09 30.00% 36.25% 6.25%
10 26.75% 36.50% 9.75%

average 32.07% % 38.05% 5.98%
median 30.25% % 37.50% 7.50%

TABLE IV
MEMORY USAGE - LOWER IS BETTER

Sequence ORB2(Original) ORB2(opendlv) Difference

00 19.40% 20.10% 0.70%
01 10.50% 7.30% -3.2%
02 24.50% 23.60% -0.90%
03 4.30% 4.00% -0.30%
04 3.80% 3.20% -0.60%
05 11.10% 11.90% 0.80%
06 7.40% 6.70% -0.70%
07 5.20% 5.60% 0.40%
08 11.10% 10.30% -0.80%
09 6.90% 8.00% 1.10%
10 5.00% 4.70% -0.30%

average 9.92% % 9.58% -0.35%
median 7.40% % 7.30% -0.30%

maximum reached level of 41,00% on dataset 1. The memory
consumption is on average 9,58% with a maximum usage of
23,60% on dataset 2. The percentages are of course relative
to the specification of the executing computer which in this
case had a QUAD-CORE Intel i5-7600K CPU @ 3.80GHz
and 16 GB DDR4 @ 2933MHZ memory. At the time of
writing, this is a reasonable specification for customer-grade
desktop computer, but there are hardware available in the
market with much higher performance, for a low price.

VI. DISCUSSION

In this section we will discuss the answers to our two
research questions based on the results described in the
previous section and relating it to existing work.

A. Research Question 1:

Our first research question is: To what extents can the
ORB-SLAM2 algorithm be used as a visual SLAM component
inside of the OpenDLV framework?. In order to properly
answer this question we have investigated both the resource
consumption the ORB-SLAM2 algorithm generates when
implemented inside of an OpenDLV microservice, as well as
how accurate this implementation is compared to the original
ORB-SLAM2 implementation.

As seen in the results table I, the accuracy of the OpenDLV
implementation is worse than the original ORB-SLAM2

algorithm across all sequences. The difference is however
quite small in the case of sequences where loop closing
occurs, and a little bit higher in sequences where it doesn’t
occur. There could several reasons for these differences. The
ORB-SLAM2 algorithm is a rather large and complex piece
of software. It is possible that some minor mistake was made
when implementing the OpenDLV adaption of the algorithm.
The most notable difference between our implementation
and the original is on the sequences that contain no loop-
closing. The algorithm optimizes and recalculates the map
and trajectories when a loop-closing occurs and on datasets
that contain a loop closing we perform almost as well as
the original implementation. On datasets without a loop
closing event however, the difference from the original
implementation is greater. This phenomenon is something
we would have liked to investigate more, but we consider
it out of the scope for this thesis. We do believe that it is
a candidate for further research to investigate this as it is
currently related to the largest difference in accuracy.

When it comes to computational performance we notice
overall higher cpu usage when testing our implementation,
compared to the original implementation. This is most likely
related to the use of smart pointers[26] compared to the
raw pointers used in the original implementation. Smart
pointers introduces protection against memory leaks at the
expense of requiring additional processing power. Overall
our implementation still stays within the scope of consumer
grade hardware which means that it can run in real time on
reasonably priced hardware. Memory consumption is almost
the same for both implementations with a slightly higher
consumption by the original implementation. This could also
be tied to the use of smart pointers versus raw pointers. We
would have liked to investigate the performance further using
a more specialized tool such as valgrind, but time constraints
prevents us from including such evaluations in this thesis.

As mentioned by Bresson et al. the full SLAM problem
can be difficult to handle in real time, and to be usable in an
autonomous vehicle, a SLAM algorithm should preferably
be able to run in real time. One of the features of the
ORB2-SLAM algorithm[11] is it’s use of the ORB(Oriented
FAST and rotated BRIEF) technique[15], designed to run
efficiently on standard CPUs, for fast and efficient feature
extraction. ORB-SLAM2 performs several computations on
structures that are derived from ORBs that are extracted
from each frame, but central to the algorithms performance
is the ORB extraction and its efficiency. Based on our
results, the OpenDLV implementation seems to follow the
low performance requirements of the original implementation.

Because of the similar accuracy to the original ORB-
SLAM2 implementation along with the reasonable processing
requirements, we argue that our implementation of the ORB-
SLAM2 algorithm can be used as a visually-based SLAM
component within the OpenDLV framework.

B. Research Question 2:

Our second research question is: To what extents can the
ORB-SLAM2 algorithm be considered a replacement to a

8

LIDAR-based SLAM solution in the OpenDLV framework?.
We have investigated the accuracy of the ORB-SLAM2
OpenDLV implementation and how it compares to LIDAR-
based SLAM implementations, in order to answer this
question.

Based on the results, we can see that the OpenDLV
implementation of ORB-SLAM2 performs worse overall
compared to IMLS-SLAM. When compared to LOAM it
performs better on some sequences and worse on others. In
particular, all sequences without loop-closing, except sequence
10 the OpenDLV implementation shows worse translational
drift than the LIDAR-based solutions. Worth discussing is
also how well the original ORB-SLAM2 implementation
compares to the LIDAR-based solutions. The original ORB-
SLAM2 implementation outperforms LOAM but not IMLS
on all sequences. This leads us to believe that the ORB-
SLAM2 algorithm itself has the potential to be a replacement,
or at least a complement to LIDAR-based SLAM in the
OpenDLV framework, even though our implementation isn’t
a perfect representation of the possible accuracy. It is worth
mentioning that neither visual nor LIDAR-based SLAM
solutions can ever represent the ”truth” when it comes to
vehicle trajectory. They are techniques that both just represent
an estimation of what the real trajectory is. In that regard the
answer to research question 2 becomes dependent on if there
ever is a ”minimal” level of acceptable drift. Bresson et al.
discusses the accuracy performance of SLAM solutions in
autonomous driving and they argue that accuracy should
be kept within 20 centimeters at all times[2]. With that
value in mind, none of the solutions mentioned in this thesis
achieves an average drift that low[11]. Bresson et al. further
argues that it’s necessary to have techniques for dealing with
previous knowledge in the SLAM solutions that deals with
the large scale environments encountered by autonomous
vehicles. Loop closing is mentioned as one such technique.

Based on this reasoning we argue that an ORB-SLAM2-
based SLAM implementation could work as a replacement
to a LIDAR-based one in the OpenDLV framework. This
conclusion is based on the fact that even though the accuracy
isn’t better than LIDAR-based solutions, it comes very
close, with the potential to come even closer based on the
comparison with the original ORB-SLAM2 implementation.
It is further based on the fact that the ORB-SLAM2 algorithm
contains the important loop closing feature identified in the
previous research done on the subject.

VII. THREATS TO VALIDITY

A. Generalizability validity

One potential threat to generalizability validity is the fact
that our results are limited to the use of the KITTI odometry
dataset. The KITTI dataset is currently the main tool for
evaluating the positioning accuracy according to Bresson et
al.[2] and covers a wide range of traffic scenarios and road
conditions. There might however be other variables or factors
affecting the comparisons we make between SLAM solutions
that are not captured by the KITTI dataset. For example, one
possibility is the effect of different lightning conditions since

LIDAR-based rangefinders are less light sensitive to their
measuring than cameras are. We do believe that using the
KITTI dataset is sufficient for the scope of this thesis but we
acknowledge the need to reproduce our results using other
datasets in the future.

Since one of the criteria when choosing comparable LIDAR-
based SLAM solutions was that they had results for the
KITTI dataset, this represents another threat to generalizability
validity. There might be other, better suited solutions, that
have not been validated using KITTI that we could have used
for comparison instead. With the popularity of KITTI we do
however argue that this potential threat is small.

Another potential validity threat we have found is that
OpenDLV currently lacks an implementation of a LIDAR-
based SLAM solution. This means that the comparison we
perform in this thesis becomes more hypothetical than we
would have wanted. It would have benefited our results if
we could have had for example performance comparisons
between LIDAR and visual SLAM solutions inside OpenDLV
alongside the accuracy comparison, but we feel that for the
scope of this thesis our current evaluation is enough.

B. Construction validity

In order to minimize threats to construction validity we
have designed our methodology so that we minimize the risk
of our thesis having biased results. This is mainly achieved
by using the KITTI benchmark and evaluation methodology
when we compare SLAM solutions. We opted to use the
KITTI benchmark because of its popularity both among visual
and LIDAR-based SLAM solutions.

C. Internal validity

We have strived to be as transparent as possible when
describing our methodology that has led to the results we
have presented in this thesis. By using methodology and tools
based on previous research that are available to everyone we
are confident that our results can be reproduced in a consistent
manner by other students or researchers and that they are in
fact not related to us personally. By publishing our finished
software artifact as open source we also provide the means
to exactly replicate everything done in this thesis by any
interested party.

VIII. CONCLUSION

In this thesis, we have investigated the possibility of
using the ORB-SLAM2 algorithm as a visually-based SLAM
solution inside the OpenDLV framework. We also investigated
the potential the ORB-SLAM2 algorithm has as a replacement
for LIDAR-based SLAM solutions in the context of OpenDLV.
In order to perform this investigation, we conducted a DSR
study with the goal of implementing the ORB-SLAM2 within
the OpenDLV framework and we evaluated our software
artifact using performance and accuracy metrics. Based on the
results and our discussion we have concluded that the ORB-
SLAM2 algorithm can be successfully used as a visually-
based SLAM solution within the OpenDLV framework. We
also concluded that the ORB-SLAM2 algorithm has the

9

potential to replace LIDAR-based SLAM within the OpenDLV
framework.

During the evaluation and discussion around the results
achieved in this thesis, we have identified several areas where
there exists the potential for future research to be conducted.

First of all we have found that there is an opportunity
to implement a LIDAR-based SLAM solution inside the
OpenDLV framework, which can be used to further confirm
or reject the results found in this thesis. Based on a study
of prior research done on the subject such a LIDAR-based
solution should include techniques similar to loop closing in
order to properly conform to the requirements discussed by
Bresson et al.[2]. Such an implementation could be used in
conjunction with the software artifact produced by this thesis
to further evaluate the SLAM area within the context of the
OpenDLV framework.

Secondly we have identified different areas where the the
research done in this thesis could be extended. Following on
points made in the section on validity threats, the evaluation
methodology used in this thesis should be applied to other
datasets to address the the generalizability threat related to
the use of only the KITTI dataset. With the inclusion of a
LIDAR-based SLAM solution in the OpenDLV framework
there is also the possibility of recording a new dataset
containing exactly the parameters and variables of interest.
With existence of an autonomous vehicle platform to record
such a data collection at Chalmers Revere, we believe this
to be an interesting basis for future work. Such a research
project could also utilize the work done by Y. Hang and C.
Berger for identifying the kind of data to collect[27].

Lastly we also suggest that research should be conducted
by implementing a mapping feature inside of the OpenDLV
framework, responsible for storing and loading maps to be
used in conjunction with any SLAM solution LIDAR or
visually-based. This seems like a logical next step in regards
to SLAM functionality inside the OpenDLV framework.

REFERENCES

[1] Permit holders (testing with a driver).
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/permit.
Accessed: 2018-03-05.

[2] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser.
Simultaneous localization and mapping: A survey of current trends
in autonomous driving. IEEE Transactions on Intelligent Vehicles,
2(3):194–220, 2017.

[3] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.
Springer, 2016.

[4] Velodyne cuts vlp-16 lidar price to $4k.
https://www.spar3d.com/news/lidar/velodyne-cuts-vlp-16-lidar-
price-4k/, Jan 2018. Accessed: 2018-03-24.

[5] Lidar costs $75,000 per car. if the price doesn’t drop to
a few hundred bucks, driverless cars won’t go mass mar-
ket. http://www.latimes.com/business/la-fi-hy-ouster-lidar-20171211-
htmlstory.html, Dec 2017. Accessed: 2018-04-01.

[6] Stereo labs. https://www.stereolabs.com/. Accessed: 2018-04-01.
[7] J.-E. Deschaud. IMLS-SLAM: scan-to-model matching based on 3D

data. ArXiv e-prints, February 2018.
[8] Ji Zhang and Sanjiv Singh. Low-drift and real-time lidar odometry

and mapping. Autonomous Robots, 41(2):401–416, 2017.
[9] The kitti vision benchmark suite.

http://www.cvlibs.net/datasets/kitti/eval odometry.php. Accessed:
2018-03-15.

[10] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and
mapping: part i. IEEE robotics & automation magazine, 13(2):99–110,
2006.

[11] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras. IEEE
Transactions on Robotics, 33(5):1255–1262, 2017.

[12] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. International Journal of
Robotics Research (IJRR), 2013.

[13] Christian Berger, Bjornborg Nguyen, and Ola Benderius. Containerized
development and microservices for self-driving vehicles: Experiences
& best practices. pages 7–12. IEEE, April 2017.

[14] Gnu general public license. https://www.gnu.org/licenses/gpl-
3.0.en.html, 2016.

[15] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In Computer Vision (ICCV),
2011 IEEE international conference on, pages 2564–2571. IEEE, 2011.

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

[17] R Hevner Von Alan, Salvatore T March, Jinsoo Park, and Sudha
Ram. Design science in information systems research. MIS quarterly,
28(1):75–105, 2004.

[18] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir
Chatterjee. A design science research methodology for information
systems research. Journal of management information systems,
24(3):45–77, 2007.

[19] /proc. http://man7.org/linux/man-pages/man5/proc.5.html, September
2017. Accessed: 2018-04-15.

[20] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke,
Giorgio Grisetti, Cyrill Stachniss, and Alexander Kleiner. On measuring
the accuracy of slam algorithms. Autonomous Robots, 27(4):387, 2009.

10

[21] Chalmers revere orb-slam2. https://github.com/chalmers-revere/opendlv-
perception-vision-orbslam2. Accessed: 2018-03-01.

[22] Chalmers revere vehicle viewer. https://github.com/chalmers-
revere/opendlv-vehicle-view. Accessed: 2018-03-01.

[23] chrberger/libcluon. https://github.com/chrberger/libcluon. Accessed:
2018-03-01.

[24] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge University Press, 2017.

[25] Three.js javascript 3d library. https://threejs.org/. Accessed: 2018-03-
24.

[26] Nicolai M Josuttis. The C++ standard library: a tutorial and reference.
Addison-Wesley, 2012.

[27] Hang Yin and Christian Berger. When to use what data set for your
self-driving car algorithm: An overview of publicly available driving
datasets. In Intelligent Transportation Systems (ITSC), 2017 IEEE 20th
International Conference on, pages 1–8. IEEE, 2017.

11

