

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Automatic Classification of UML Sequence
Diagrams from Images

Bachelor of Science Thesis in Software Engineering and Management

Sayf Rashid

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Automatic Classification of UML Sequence Diagrams from Images

SAYF RASHID

© Sayf Rashid, January 2019.

Examiner: Jan-Philipp Steghöfer

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

The picture illustrates a sequence diagram image after the findcontours method (a method of the openCV

library) has been executed. The method was essential to perform the feature extraction.

1

Automatic Classification of UML Sequence Diagrams from

Images

Sayf Rashid

Department of Computer Science and Engineering

 University of Gothenburg

Gothenburg, Sweden
gusrashisa@student.gu.se

Abstract— Academia’s lack of UML artifacts has been

an impediment in researching UML and its implication in

software development. This has initiated the conception of

the UML repository, which is a platform were researchers

can share and study UML artifacts. To build such a

repository it’s required to collect UML diagrams. Therefore,

an artifact that can automatically classify such diagrams

would be of great value. In 2014, two students of University

of Gothenburg successfully developed such an artifact.

However, it was limited for classification of class diagrams

only. This paper presents an extension of that work by

including sequence diagrams, and considering that the most

accurate machine learning model in the study was support

vector machines, it was decided that further emphasis has to

be put on researching support vector machines to maximize

its usage to further improve the classifying accuracy. The

data elements (feature variables) inputted to the classifier

were acquired from the extracted features using image

processing. The research was carried out by using a design

science approach, which is an iterative research methodology

that dictates an evaluation at the end of the iteration.

Keywords—UML; machine learning; feature selection;

feature extraction; sequence diagrams; image classification.

I. INTRODUCTION

A. The UML Repository

Unified modeling language (UML) is de-facto industry
standard approach to illustrate the architecture and the design
of the system [1]. Sequence diagram which is a type of UML
diagram is predominantly employed to visualize the dynamic
behavior of the system and therefore considered an important
artifact to understand the system and the software architecture
as a whole [2].

This paper is extending previous work on UML
classification for class diagrams [3] by including UML
sequence diagrams.

In addition to presenting the design of the sequence
diagram classifier the paper is a part of a bigger ambition to
develop the UML repository, which is a platform to
search/retrieve/filter diagrams from a collection of UML
images from open source projects [4]. This repository exists to
aid researchers in studying and sharing modeling artifacts.

The background of the ambition to develop the UML
repository stems from several authors emphasizing the need to

study UML practice in software development, the recurring
motivation for this need is to better understand how modeling
affects the software quality [5].

B. Research problem

The objective with this paper is to automate classification
of images containing sequence diagrams from other images.

The authors of the previous work on class diagrams has
already developed an artifact that is capable of extracting most
elements of a sequence diagram necessary to build the features
needed to be used as feature variables, meaning elements such
as rectangles and lines. Furthermore, the same features used as
feature variables to classify class diagrams could also be used
in this research.

What the main problem is and what this research intend to
find out, is if those features are enough, or is it necessary to
create new features to accurately classify sequence diagram
images from other images.

To answer that an iterative research approach were
employed, design science (section III). Were the main goal in
the first iteration of the process was to build a dataset (section
IV) and train the previous artifact with the new dataset.

C. Contribution

The papers contribution is:

 The performance of the features extracted for

predicting classification of UML sequence diagrams.

 The technical contributions involving realizing the
artifact.

 The classifier will aid academia for further research on

UML.

 The dataset used in this research could be used to

perform further research on sequence diagrams.

D. Structure of the paper

The remainder of the paper is organized as follows.

Section II reviews previous works related to the UML

repository and image classification also an in-depth review of

the support vector machine (SVM) machine learning model.

Section III presents the research question and the

methodology.

Section IV describes the approach employed in this

research. Section V, presents the results. Section VI discusses

mailto:gusrashisa@student.gu.se

2

the results of the research and the last section VIII ends with a

conclusion.

II. RELATED WORK & THEORY

Despite the lack of research on classification of UML
sequence diagrams. There exists a considerable amount of
research on image classification in related areas, such as
classification of charts and class diagrams [3].

In a similar research conducted on recognizing UML
diagrams a tool was developed alongside that takes an image as
input and the classification verdict as the output [6].

Though a difference to note is that the tool does not
classify the type of UML diagram, it merely recognizes if
it is a UML diagram or not.

A. The UML Repository

The goal of building the UML repository has made a lot of
progress, currently img2UML tool has been built that can
extract class diagrams images to XMI files [7]. Also a class
diagram classifier artifact has been developed [3].

B. Previous work

The research and work behind the class diagram classifier
has been presented in the paper “Automatic Classification of
Class Diagrams from Images”, which is where most of the
ideas and approaches used in this research were derived from.

The authors’ goals was to find which features in an image
could best classify class diagrams from images and also which
machine learning model performs the best.

Their approach was to first identify and then extract the
features they deemed hold value in classification.

 Once the 23 identified features were retrieved from the
image processing (Table I), they developed the classifier by
training a machine learner using a labeled training set
containing those 23 features as the feature variables (also called
predictors).

For the dataset the authors’ retrieved 1300 images from
Google, 650 of those images were class diagrams, 650 images
were non-class diagrams e.g. sequence diagrams and other
diagrams, also a few random images were inserted.

Information gain was used to evaluate the performance of
the features, were it was evident that F09 carried most
information, though it has to be noted that information gain
doesn’t tell which feature carries most weight when it come to
the classification.

The authors also ran the feature sets with different features
from the table, were the best performance was achieved when
all of the features were used.

Of the six machine-learning models that were evaluated
logistic regression (achieved 91.4%) which was the most
accurate in classifying non-class diagram images and SVM was
the least accurate (achieved 89.0%). Since the priority was to
exclude non-class diagrams, thus the best models were the one
with highest rate in classifying non-class diagrams.

Therefore, logistic regression was considered to be the best,
respectively SVM the worst machine learning model for
classification of class diagrams from images. Though the same
authors in their bachelor thesis [8] found out in the same

research that SVM performs the best in classifying non-class
diagrams, were it achieved 92.90%.

TABLE I. EXTRACTED FEATURES

Feat. Name Description

F01 Rectangles’
portion of image,
percentage

Calculated by dividing the sum of the area
of all the rectangles with the area of the
image itself

F02 Rectangle size
variation, ratio

Calculated by dividing the rectangle size
standard deviation with the rectangle
average size

F03-06 Rectangle
distribution,
percentage

The image is divided into four equally
sized sections and the area of the rectangles
inside the sections is then divided by the
total area of the rectangles. The 4 sections
sum up to 100%

F07 Rectangle
connections,
percentage

Calculated by counting all rectangles that
are connected to at least one rectangle, and
dividing that number by the total amount of
rectangles in the image

F08-10 Rectangle dividing
lines, percentage

The rectangles are split into three groups,
with rectangles that have: no dividing lines
(F08); one or two dividing lines (F09); or
three or more dividing lines (F10). This
produces three numbers that represent the
percentage of rectangles within each group

F11/F12 Rectangles
horizontally/vertic
ally aligned, ratio

Sides of rectangles, horizontal (F11) and
vertical (F12), that are aligned with sides of
other rectangles are counted. The numbers
are then divided with the number of
detected rectangles in the image -- resulting
in two ratios on rectangle horizontal and
vertical alignments

F13/F14 Average
horizontal/vertical
line size, ratio

Average size of horizontal (F13) and
vertical (F14) lines that are larger than ⅔ of
the images width or height, divided by the
images width or height, respectively

F15 Parent rectangles
in parent
rectangles,
percentage

Rectangles that have rectangles within
them can possibly be packages. This
feature is the percentage of the area of
those parent rectangles that is within other
parent rectangles

F16 Rectangles in
rectangles,
percentage

This feature is calculated in the same
manner as F15, but with rectangles, instead
of parent rectangles

F17 Rectangles height-
width ratio

The average ratio between the height of the
rectangles and the width of the rectangles

F18 Geometrical
shapes’ portion of
image

The same as F01, but with rhombuses,
triangles and ellipses

F19 Lines connecting
Geometrical
shapes, ratio

The number of connecting lines from
shapes, other than rectangles, divided by
the number of detected shapes in the image

F20 Noise, percentage Detected lines that are outside of
rectangles, divided by the number of all
detected lines

F21-23 Color frequency,
percentage

Three most frequent colors in the image are
found. Then a percentage out of all
appearing colors is found for the three
colors

Note. Table retrieved from “Automatic classification of UML Class diagrams from
images”, by T. Ho-Quang & M. R.V. Chaudron, 2014.

3

C. Image classification

There are various image classification approaches [9, 10,

11]. This subsection will elaborate on approaches and theories

relevant for this research.

An image classification process could be followed

through the following steps [12]:

1) Identification of required data
Obtaining significant amount of data is critical to

accurately develop a classifier [11]. According to [11] the

optimal approach to collect the required dataset is through an

expert. Otherwise brute-force is the best choice, i.e. collect

any relevant data, though this approach expects a considerable

amount of pre-processing.

2) Preprocessing
Often the dataset and the images contain “noise” and

“inconsistencies”. Therefore, a preprocessing step before the

image extraction is highly preferred [10].

The preprocessing steps may involve normalization and

filtering [9].

3) Feature extraction
An important step in image classification is feature

extraction, were the goal is to extract the most important

feature that discriminate it from other classes [13]. According

to [14] a feature has a large discriminative power if it is

similar within the same class but dissimilar between different

classes.
4) Machine learning model selection

Choosing the correct machine learning model is a difficult

task, though support vector machine has given great result in

classification of class diagrams [8] and has a good reputation

in achieving high accuracy with a small training-set [15],

which makes it the best candidate model for this research.

5) Evaluation of classification performance
There are different aspects to look for when evaluating a

classifier the most common being the accuracy [12].

D. Machine learning

Machine learning which belongs to the domain of AI has
due to its increasing popularity recently made a lot of progress.
This popularity can be credited to the surge in data usage in all
areas of the society [16]. One area of particular interest to this
research is image classification.

Although there are different types of machine learning
approaches, such as reinforcement learning and unsupervised
learning, this research will only focus on the supervised
learning approach.

In supervised learning, the machine learner learns by the
manually labeled data, which is also called the training set. I.e.,
when training the machine-learner every data is mapped to its
corresponding label. Through this procedure the machine-
learner learns a behavior or a pattern [17].

There are various machine-learning models that suit its
specific purpose [16].

E. Support Vector Machine

1) Background
Support vector machine (SVM) is a supervised machine

learning model, which has its roots from statistical learning

theory and structural risk minimization principle [15]. Its

popularity in classification problems is mainly accredited to its

simplicity and strong performance [15, 16, 18].

SVM operates by finding the optimal hyper-plane that

separates the classes.

The hyper-plane is given by this formula:

 .

Were (w) is the weight vector, (x) the input vector and (b)

the bias.

To find the optimal hyper-plane that separates the classes

it is needed to look (mathematically) were the vectors (input

data from the training-set) are closest to the hyper-plane f(x)

from the two classes that have the biggest margin also called

the maximum-margin line. Those vectors are called the

support vectors which will be used to classify the unlabeled
data, hence the name support vector machine.

To best explain how SVM operates an example is

illustrated in Figure 1. The example depicts a two

dimensional feature plane (Vertical lines percentage &

Horizontal line percentage). We can observe two classes the

red class (the data we want to classify), which is labeled with

1 and the blue class which is labeled with -1. The green line is

the optimal line that perfectly separates the two classes. The

space between the black lines is the maximum margins

between the classes. The data on the left side of the margins

are classified negative and the red on the right side are
classified positive.

Figure 1: A depiction of how a linear SVM separates the data in the feature plane.

The purpose of wanting a vast margin between the classes
is to reduce generalization errors and thus increase the accuracy
of the classifier [19].

2) Radial basis function kernel
Figure 1 depicts a linear classifier which performs well in a

linear separable dataset but on non-linearly separable datasets
the performance will be unsatisfactory.

Therefore, kernels that map the data into another space
were introduced to solve the non-linear problem, such as the
radial basis function (RBF) kernel.

If uncertain of which kernel to use the preferred kernel is
RBF. Since the kernel is known to perform well in on a variety

4

of problems [20], except for when the feature space is vast, e.g.
text classification. Then a linear kernel is more suiting [21].

Figure 2: A depiction of how RBF kernel separates the non-linear data.

The RBF kernel is given by this formula:

3) SVM Parameters

 In the RBF formula, the parameter C is the cost which

decides how much errors are permitted. The parameter γ is

gamma which decides how fit the decision boundaries should

be. A large gamma value will lead to a narrow decision

boundary. Cross-validation is used to tune the parameters,

since it is not known beforehand which parameter value

performs the best [22].

III. RESEARCH METHOD

The aim of the presented study is to aid academia and
researchers in studying UML artifacts by developing a
sequence diagram classifier and thus enriching the UML
repository with sequence diagrams.

The aim is broken down into the following research
questions:

Main Research Question:

RQ1: How can classification of UML sequence diagram from
images become automated?

Sub-Questions:

SQ1: What features in an image can help classify an UML

sequence diagram, or exclude similar images?

SQ2: What level of accuracy can be expected with said
classification?

The main research question is addressed by the
development of the artifact. The sub questions will address the
details to achieving an acceptable accuracy level.

DDeessiiggnn sscciieennccee rreesseeaarrcchh mmeetthhooddoollooggyy

Considering the research question and the artifact that
needed to be developed and subsequently evaluated in an
iterative manner, design science research methodology deemed
to be a suitable fit for the research methodology of this thesis.

 Design science has the goal of developing an artifact that
addresses a practical problem that hasn’t been solved before
[23]. The remaining part of this section will describe the design
science process that was followed:

A. Problem Identification

The first step in our research was to identify the research
problem and justify the value of solving the problem.

In section I it was concluded that researchers has a need to
study UML artifacts which could be solved through the
development of the UML classifier by expanding the UML
repository with additional UML diagrams, i.e. sequence
diagram images.

Thus, the identified problem is the lack of UML artifacts
and part of the solution is the development of the classifier
which could help in collecting UML artifacts.

B. Objectives of a solution

The next step in our process was to define the objectives

of the sequence diagram classifier. I.e., what the development

of the artifact needs to accomplish and which requirements do

the artifact need to fulfill in order to be considered

accomplished.

Considering that the classifier is an extension of the

previous work to classify class diagrams [3, 8], which were
used to classify class diagram images from a database

containing a vast amount of images. The same priority of

having an accuracy rate over 90% in classifying negative

images (also called specificity), and achieving over 85%

accuracy rate in positive images remains (also called

sensitivity). This priority is because the negative images

outnumber the positive images.

C. Design & Development

This step along with the evaluation step (D. Evaluation)

was iterated until the objective set in B (Objectives of a

solution) had been reached. This step entails the development

of the artifact and considering that it was developed in

multiple iterations, it will be communicated in section IV

according to the iterations that were followed.

D. Evaluation

To evaluate the performance of the classifier after the

design and development iteration phase was over, 10-fold

cross evaluation were employed.

Figure 3: 10-fold cross evaluation

K-fold cross evaluation is a statistical method were each

image is utilized both in training and for testing the classifier.

5

The method works by splitting up the dataset into k

equally sized folds, and then train on k-1 folds and test the

classifier with the last fold. This method is employed to ensure

accurate accuracy rate [24].

It has to be noted that k-fold cross evaluation was also

used to evaluate and choosing the best parameters for the
SVM, though this process was automated by the openCV

library method trainAuto.

For evaluating the test-sets, the metrics specificity,

sensitivity and accuracy were employed. Specificity also

called true negative rate (TNR) were used to evaluate how

accurate the classifier classifies non-sequence diagrams. The

metric has the following formula:

Were TN is true negative and FP is false positive, i.e.

images that are negative but the classifier classifies it as

positive.

Sensitivity also called true positive rate (TPR) were used

to evaluate how accurate the classifier classifies sequence

diagram images. The metric has the following formula:

Were TP is true positive and FN is false negative, i.e.

images that are positive but classified as negative.

Accuracy is the overall correctness of the classifier, i.e.

both the false negative and the false positive are measured.
The metric is given through the following formula:

The results of the evaluation are presented in section V

(Results).

E. Communication

The research will be communicated through this paper.

IV. APPROACH

This section will describe the approach employed in this

research, also the features extracted and the motivation for

their extractions. Furthermore, an overview of the artifact and

the components will be presented.

Before going into details about how iteration 1 were

conducted, it has to be emphasized that this research is an

extension of previous work [3, 8] and large parts of the

previous work were reused with some modification to work

for this research.

A. UML diagram classifier

The UML diagram classifier was developed in 2014 by

two students of Gothenburg University [8]. It’s comprised of

two components an image processing, and a machine learning

component.

1) Image processing
The image processing component takes in an image of

various formats, which then gets processed with the usage of

the popular OpenCV library. In order to extract the features,

the coordinates of the lines and corners of the rectangles needs

to be located and stored.

This is done by using algorithms such as probabilistic

Hough lines transform, canny edge detector and findcontours.

Canny edge detector which is used to detect the edges was
used before applying the algorithms to find the lines and

contours.

Figure 4: Using canny edge detector on a grayscaled image.

Probabilistic Hough lines transform Figure 5 is used to

extract the lines from the images and findcontours Figure 6 is
used to extract the shapes, e.g. the rectangles.

Once the image has been processed (Figure 7) and the

relevant information has been retrieved and the duplicate

features has been filtered out, then the building of the feature

variables will start in the sub-component feature-extractor.

Figure 7: The extracted features are put back and displayed with some

distorted parts.

2) Machine learning

The machine learning component is comprised of two parts:
1. The trainer, which takes in a vector with the feature

variables gotten from the image processing and maps it

into a manually assigned label, meaning a value that

represent if it is a sequence diagram or not.

Figure 6: FindContours method. Figure 5: Probabilistic Hough lines

transform.

6

The output of this component is the trained classifier

which will be used to classify the unlabeled data.

2. The trained classifier, which takes in unlabeled data and

predict whether the data is a sequence diagram or not.

Figure 8: An overview of the overall framework.

B. Iteration 1

The plan to conduct the first iteration was largely based on

how an image classification process was followed according

to section II.

1) Identification of required data
We know from section II that SVMs discriminates

between the classes by creating support vectors from the

training-set were the features of the respective classes are most

similar. Thus, to create the best classifier it is required to have
a good representation of sequence diagram images and also of

images that have similar features as sequence diagrams.

We chose to obtain a balanced dataset (the negative and

positive labeled classes are similarly sized) since SVM

performs poorly on imbalanced dataset [25].
The images of sequence diagrams were collected with the

usage of the search engine Google by inputting the term
“sequence diagram”.

We also obtained few sequence diagrams images from the
previous works negative dataset for a total accumulation of
375 sequence diagram images. For the negative class we used
the previous work negative dataset, since they had a good
representation of many different diagram types. Though, the
images of sequence diagrams were removed and a portion of
the class diagrams from their positive labeled dataset were
inputted to our negative labeled dataset.

2) Preprocessing
Before doing the feature extraction the images needs some

preprocessing to enhance the features relevant to the feature

extraction, e.g. the lines, corner. To perform this procedure the
openCV methods grayscale and Gaussian blur were used.

Grayscale is a method that transforms the original image

which is usually in RGB (colored) to black & white, it is done

because of the methods to extract the features work better in

grayscale format.

Gaussian blur is used to blur the image, this is needed e.g.

to avoid counting double lines were only one line exist, it is

also used to even out the image in case the corners are non-

continuous because of low quality.

Figure 9: From RGB colors to black & white.

3) Feature extraction
In [3, 8] the researcher extracted 23 features (Table I) for

classification of class diagram, this paper will explain why the

same features are relevant for classification of sequence

diagrams.

Firstly we need to be reminded that support vectors are

created from both classes training data. Therefore, features

that exist in both classes, but more pronounced or less

pronounced in one class have more discriminative power.

We also know that SVM uses combinations of the features

to discriminate between the classes. Hence, a single feature
that seem to hold no value in the classification might play a

vital role in the classification performance, when used in

combination with other features.

The following features (described in Table I) were used in

iteration 1:

F01: The size of the image that are rectangles is relevant

when used with other features since knowing how much image

is covered by rectangles does give some information about the

image.

F02: The size variation of the rectangles could carry some

information for the classifier.

F03-06: In which section of the image the rectangles are
located in is a relevant feature.

F07: Rectangle connection is not prevalent in sequence

diagrams but is in other diagrams and therefore relevant.

F08-10: F09 was the feature which gave most information

in classification of class diagrams, thus, the features is

relevant.

F11/12: Horizontally aligned rectangles are a defining

feature of sequence diagrams and other diagram types.

F13/14: The lines that are vertically or horizontally

aligned are a relevant feature.

F15: Rectangles that are within other rectangles is not
prevalent feature in sequence diagrams but is in other diagram

types, therefore relevant in classification.

F16: Could be relevant.

F17: Rectangles height/width ratio a relevant feature.

F18: Shapes portion of the image could be a relevant

feature.

F19: Connecting lines to a shape is a relevant feature

since the lines in sequence diagram and other diagram types

may have a triangle head.

F20: The feature Noise contained information in

classifying class diagrams [3] and therefore relevant.

F21-23: Probably not relevant, though certain diagrams
do have varied color frequency.

7

The logic behind why the feature variables are either in

ratio or in percentage is because the value should be relative to

all images. E.g. the amount of rectangles in an image is not

relevant, since it does not give enough information. Though,

the percentage of the image size that are rectangles is relevant

since it gives more information since it tells the machine
learner what sort of information the image contains.

4) Machine learning
SVM with the RBF kernel performed well in [8] and

therefore chosen as the machine learning model. Though there

were other SVMs that were considered e.g. linear but since the

data type was unknown, RBF was chosen. Primarily because it

is the most popular kernel type and performs well in most

problem settings. The RBF kernel has two parameters that

should be correctly tuned for optimal performance the gamma

and the cost as mentioned in section II. The tuning was done

automatically by using the openCV method trainAuto, which

works in this manner. The method grid searches different

parameters iteratively through cross-validation and chooses
the parameters that yield the best performance.

5) Evaluation
To evaluate the classifiers performance we followed the

evaluation steps described in section III (RESEARCH METHOD).

C. Iteration 2

The requirements were not met in iteration 1, therefore in
iteration 2, we needed to define new features that have a large

discriminative power and extract them. Though, the previous

23 features were kept, since those features gave good results

and were very close to meeting the requirements.

F24: By looking at the sequence diagram (Figure 10) we

can quickly observe a feature (A lifeline, the

picture to the right) that could be used to increase
the accuracy of the classifier.

To extract a feature that is more unique to

sequence diagrams and thus increase its

discriminative power, the feature requires more

than one lifeline to be counted as a lifeline, since

a sequence diagram contain multiple lifelines. Furthermore the

heights of the top rectangles in the lifelines have to be

approximately the same.

To increase the distinctiveness of the feature, the lines

including the activation rectangle (the vertical rectangles in

figure 10) have to be longer than half the height of the image,
since the lifeline usually starts from the top of the image and

ends at the bottom of the image.

There were certain constraints needed to be considered

when selecting this feature:

1. Not all lifelines contain a straight line or dotted line some

contain an activation rectangle.

2. The rectangles of a lifeline don’t always have to be

horizontally aligned (this constraint was ignored since

most of the rectangles are horizontally aligned).

3. Not all sequence diagram images uses a rectangle to

illustrate the head of the lifeline (this constraint was also
ignored since it was considered impossible to include all

shape types, and rectangles are the most common).

Figure 10: A sequence diagram made by the students of SE&M in GU.

F25: This feature also targets the same feature as F24

though the line is excluded from the requirement, this feature

was chosen by considering that image processing is not perfect

and often important details of the diagram are lost, e.g. the

lines of the lifelines. To make this feature more unique the

bottom corners of the rectangles that are extracted need to be

above the center point of the image.

The following table containing the features that were

extracted:

TABLE II. FEATURES ADDED

Feat. Name Description

F24 Lifelines,
percentage.

Percentage of rectangles that are
horizontally aligned and have the same
height and are connected to a line/dotted
line, which is longer than half the image
height.

F25 Rectangles top of the
image that are
horizontally aligned,
percentage.

Percentage of rectangles that are aligned
horizontally and in the upper part of the
image.

To extract the feature “F24” the first thing that needed to

be done was storing all the rectangles, secondly we needed to

store all the rectangles containing a line that starts from its

southern center point and contains at least 50% of the pixel

height of the image, meaning if an image is 500 pixel in height

then the line needs to be over 250 pixels.

Counting the height of the line an algorithm originally

developed for lane-following in the self-driving car was used

though with slight modifications [26]. The algorithm worked

like this:

1. Canny edge detector needs to be used for step 2.

2. The lines need to be thickened which is done with

probabilistic Hough line.

3. To count the size of the line it’s required to have two

loops, one that loops the image vertically and another that

loops horizontally. The vertical loop begins from where
the rectangle ends and continues until the image ends. The

horizontal loop is where the algorithm counts the white

pixels, which it does by checking the five pixels to the left

of the center point of the rectangle, if it detects a white

pixel than the algorithm counts it as a pixel belonging to a

line.

8

After confirming if a vertical line exists it was needed to

filter out the rectangles that are approximately of the same

heights. Thus, the algorithm has established that the rectangle

is a lifeline.

In order to make the feature to be a value that is relevant

for the machine learner, the percentage of the total rectangles
that are the top of the lifelines is computed and inputted to the

machine learner.

To extract feature “F25” the steps containing the line was

skipped. Furthermore, the rectangles are filtered based on their

bottom vertical position, meaning if the y-value is lower than

the y-value of the center point it will not be counted as a

rectangle. The motivation for removing the rectangles that are

beneath the center point of the images is because rectangles in

sequence diagrams are predominantly located in the upper part

of the image.

V. RESULTS

This section will present the results based on the iterations
that were followed.

TABLE III. CROSS-EVALUATION RESULTS
 23 FEATURES

Iteration Accuracy TNR TPR FP FN Size

1 87.1 % 88.1% 86.0% 5 6 74

2 88.1% 88.1% 88.1% 5 5 74

3 93.7% 92.5% 94.9% 3 2 74

4 92.7% 95.0% 90.5% 2 4 76

5 89.4% 84.4% 95.0% 7 2 76

6 89.4% 86.4% 92.7% 6 3 76

7 84.4% 80.9% 88.4% 9 5 76

8 90.5% 82.6% 100% 8 0 76

9 85.4% 80.9% 90.5% 9 4 76

10 93.5% 92.3% 94.7% 3 2 72

TOTAL 89.3% 86.8% 91.9% 57 33 750

Table III displays the results gotten from the 10 fold

cross-evaluation in iteration 1, were the 23 features from the

previous work were evaluated. Size was the amount of images

in the evaluations test-set.

TABLE IV. CROSS-EVALUATION RESULTS
 25 FEATURES

Iteration Accuracy TNR TPR FP FN Size

1 93.7 % 97.4% 90.2% 1 4 74

2 91.4% 94.9% 88.1% 2 5 74

3 89.2% 92.5% 86.0% 3 6 74

4 90.5% 92.7% 88.4% 3 5 76

5 89.4% 90.5% 88.4% 4 5 76

6 89.4% 95.0% 84.4% 2 7 76

7 88.4% 86.4% 90.5% 6 4 76

8 92.7% 90.5% 95.0% 4 2 76

9 91.6% 88.4% 95.0% 5 2 76

10 92.3% 90.0% 94.7% 4 2 72

TOTAL 90.8% 91.7% 89.9% 34 42 750

Table IV displays the results gotten from the 10 fold

cross-evaluation in iteration 2 were the 2 features were added
to the previous features.

VI. DISCUSSION

With the results obtained from section V, we can conclude
that the requirements of over 90% in specificity and 85% in

sensitivity were met. Thus, the research succeeded in

achieving automatic classification of sequence diagrams from

images.

Due to answer RQ1 and SQ1 our first theory was that the

same features to classify class diagram images would also be

able to classify sequence diagram images. The results showed

that the same features indeed gave good results in achieving

classification of sequence diagram from images.

The result of iteration 1 using the 23 features defined in

[8] to classify class diagrams gave very similar results as in [3]

which too would not meet the requirement of over 90% in
specificity.

In iteration 2, two new features were defined based upon

the research regarding feature extraction, described in section

II.

The goal was to define features that have large

discriminative power, which is a feature that is similar within

the same class but dissimilar between different classes. Hence,

the feature lifeline was extracted. This improved the

specificity of the classifier at the expense of the sensitivity.

While examining the two classifiers we can observe a

major difference:

TABLE V. SVM PARAMETERS

 23 Feats. 25 Feats.

Gamma 0.03375 0.50625

Cost 6.25 6.25

 The difference in the gamma value, which affects the

decision boundary, is substantial. This could be the reason
why the 23 features classifier has higher sensitivity and lower

specificity. As we know from section II (SVM) that lower

gamma results in larger decision boundary. This explains why

the big fluctuation in accuracy, 9.3% in iteration 1 versus

5.3% in iteration 2.

Considering that the trainAuto method uses the best

parameters as possible we can conclude that the two added

features do improve the accuracy.

A. Threats to validity

1) Threats to Internal Validity
The image processing component is a validity threat since

there is no possible way to process the image to suit all

images. I.e. different images require different preprocessing

algorithms and thresholds to enhance the features. Therefore

some images will always have less or wrong features extracted

which can affect the classification verdict.

2) Threats to External Validity

The size of the dataset were much smaller in this research

(750 images) compared to the previous works dataset (1300

images) which could reduce the classifiaction accuracy and

therefore considered a validity threat.

9

VII. CONCLUSION & FUTURE WORK

With the accuracy of the classifier meeting the
requirements, this paper also found that the same features used

in classification of class diagrams yielded good result in

classifying sequence diagram images.

The contribution of this research is the sequence diagram

classifier and the results of the features performance in

classification of sequence diagrams from images.

For future work on classification of sequence diagrams the

performance of the machine learning model neural networks

could be evaluated and compared to SVM.

ACKNOWLEDGMENT

The author of this paper would like to acknowledge and
thank the work and efforts of all who have contributed to the
making of this paper.

REFERENCES

[1] G. Scaniello, B. Noble, and I. N. Sneddon, “On the Impact of UML
Analysis Models on Source Code Comprehensibility and

Modifiability,”, April 2014 G. Scaniello, B. Noble, and I. N. Sneddon,
“On the Impact of UML Analysis Models on Source Code

Comprehensibility and Modifiability,”, April 2014

[2] R. Rathinasabapathy, "Object oriented software design for association

rule mining algorithms using sequence diagram," 2015 IEEE
International Conference on Electrical, Computer and Communication

Technologies (ICECCT), Coimbatore, 2015, pp. 1-4.

[3] T. Ho-Quang, M. R. V. Chaudron, I. Samúelsson, J. Hjaltason, B. Karas-
neh, H. Osman, "Automatic classification of UML class diagrams from

images", Proceedings of the 2014 21st Asia-Pacific Software
Engineering Conference - Volume 01, pp. 399-406, 2014.

[4] The UML repository. http://models-db.com/

[5] B. Karasneh, M. R. V. Chaudron, "Img2UML: A System for Extracting

UML Models from Images", 39th Euromicro Conference Series on
Software Engineering and Advanced Applications Santander, 2013.

[6] Valentín Moreno, Gonzalo Génova, Manuela Alejandres, and Anabel

Fraga. 2016. Automatic classification of web images as UML diagrams.
In Proceedings of the 4th Spanish Conference on Information Retrieval

(CERI '16). ACM, New York, NY, USA, Article 17, 8 pages.

[7] B. Karasneh and M. R. V. Chaudron, "Extracting UML models from
images," 2013 5th International Conference on Computer Science and

Information Technology, Amman, 2013, pp. 169-178.

[8] I. Samúelsson, J. Hjaltason, “Automatic classification of UML Class

diagrams through image feature extraction and machine learning” in
bachelor thesis, 2015.

[9] Choras, Ryszard S.. (2007). Image feature extraction techniques and

their applications for CBIR and biometrics systems. International
Journal of Biology and Biomedical Engineering. 1.

[10] Shameena N, R. Jabbar, “A Study of Preprocessing and Segmentation
Techniques on Cardiac Medical Images”, in International Journal of

Engineering Research & Technology (IJERT), 2014.

[11] Kotsiantis, Sotiris. (2007). Supervised Machine Learning: A Review of
Classification Techniques.. Informatica (Slovenia). 31. 249-268.

[12] D. Lu and Q. Weng, “A survey of image classification methods and

techniques for improving classification performance,” International
Journal of Remote Sensing, vol. 28, no. 5, pp. 823-870, 2007.

[13] G. Kumar and P. K. Bhatia, "A Detailed Review of Feature Extraction in

Image Processing Systems," 2014 Fourth International Conference on
Advanced Computing & Communication Technologies, Rohtak, 2014,

pp. 5-12.

[14] A. Vailaya, A. Jain and Hong Jiang Zhang, "On image classification:
city vs. landscape," Proceedings. IEEE Workshop on Content-Based

Access of Image and Video Libraries (Cat. No.98EX173), Santa Barbara,
CA, USA, 1998, pp. 3-8.

[15] Achirul Nanda, Muhammad & Seminar, Kudang & Nandika, Dodi &

Maddu, Akhiruddin. (2018). A Comparison Study of Kernel Functions
in the Support Vector Machine and Its Application for Termite

Detection. Information. 9. 5. 10.3390/info9010005.

[16] Osisanwo F.Y., Akinsola J.E.T., “Supervised Machine Learning

Algorithms: Classification and Comparison”, in International Journal of
Computer Trends and Technology(IJCTT) –Volume 48 Number 3 June

2017.

[17] Hsu, C.-W & Chang, C.-C & Lin, C.-J. (2003). A Practical Guide to
Support Vector Classification. 101. 1396-1400.

[18] Simeone, Osvaldo. (2018). A Very Brief Introduction to Machine

Learning With Applications to Communication Systems.

[19] Andrew Ng, “Support Vector Machine, CS229 Lecture notes”.

[20] Claesen, Marc & De Smet, Frank & Suykens, Johan & De Moor, Bart.
(2014). Fast prediction with SVM models containing RBF kernels.

[21] R. Toth, “Selecting Negative Examples for Training an SVM

Classifier,” in Master thesis, 2011.

[22] Amami, Rimah & Ben Ayed, Dorra & Ellouze, Noureddine. (2015).

Practical Selection of SVM Supervised Parameters with Different
Feature Representations for Vowel Recognition. 7.

[23] Hevner, Alan & R, Alan & March, Salvatore & T, Salvatore & , Park &

Park, Jinsoo & , Ram & , Sudha. (2004). Design Science in Information
Systems Research. Management Information Systems Quarterly. 28. 75-.

[24] P. REFAEILZADEH, L. Tang, “Cross-Validation” in Encyclopedia of

Database Systems, 532-538, 2009.

[25] Akbani, Rehan & Kwek, Stephen & Japkowicz, Nathalie. (2004).
Applying Support Vector Machines to Imbalanced Data Sets. Lecture

Notes Artif. Intell.. 3201. 39-50. 10.1007/978-3-540-30115-8_7.

[26] Bacha, Andrew. (2019). Line detection and lane following for an
autonomous mobile robot [electronic resource] /.

http://models-db.com/

