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Abstract— Academia’s lack of UML artifacts has been 

an impediment in researching UML and its implication in 

software development. This has initiated the conception of 

the UML repository, which is a platform were researchers 

can share and study UML artifacts. To build such a 

repository it’s required to collect UML diagrams. Therefore, 

an artifact that can automatically classify such diagrams 

would be of great value. In 2014, two students of University 

of Gothenburg successfully developed such an artifact. 

However, it was limited for classification of class diagrams 

only. This paper presents an extension of that work by 

including sequence diagrams, and considering that the most 

accurate machine learning model in  the study was support 

vector machines, it was decided that further emphasis has to 

be put on researching support vector machines to maximize 

its usage to further improve the classifying accuracy. The 

data elements (feature variables) inputted to the classifier 

were acquired from the extracted features using image 

processing. The research was carried out by using a design 

science approach, which is an iterative research methodology 

that dictates an evaluation at the end of the iteration. 

Keywords—UML; machine learning; feature selection; 

feature extraction; sequence diagrams; image classification.  

I.  INTRODUCTION  

A. The UML Repository 

Unified modeling language (UML) is de-facto industry 
standard approach to illustrate the architecture and the design 
of the system [1].  Sequence diagram which is a type of UML 
diagram is predominantly employed to visualize the dynamic 
behavior of the system and therefore considered an important 
artifact to understand the system and the software architecture 
as a whole [2]. 

This paper is extending  previous  work  on  UML 
classification  for  class  diagrams [3]  by  including UML  
sequence  diagrams.  

In addition to presenting the design of the sequence 
diagram classifier the paper is a part of a bigger ambition to 
develop the UML repository, which is a platform to 
search/retrieve/filter diagrams from a collection of UML 
images from open source projects [4]. This repository exists to 
aid researchers in studying and sharing modeling artifacts. 

The background of the ambition to develop the UML 
repository stems from several authors emphasizing the need to 

study UML practice in software development, the recurring 
motivation for this need is to better understand how modeling 
affects the software quality [5].  

B. Research problem 

The objective with this paper is to automate classification 
of images containing sequence diagrams from other images.  

The authors of the previous work on class diagrams has 
already developed an artifact that is capable of extracting most 
elements of a sequence diagram necessary to build the features 
needed to be used as feature variables, meaning elements such 
as rectangles and lines. Furthermore, the same features used as 
feature variables to classify class diagrams could also be used 
in this research.  

What the main problem is and what this research intend to 
find out, is if those features are enough, or is it necessary to 
create new features to accurately classify sequence diagram 
images from other images. 

To answer that an iterative research approach were 
employed, design science (section III). Were the main goal in 
the first iteration of the process was to build a dataset (section 
IV) and train the previous artifact with the new dataset. 

C. Contribution 

The papers contribution is: 

 The performance of the features extracted for 

predicting classification of UML sequence diagrams. 

 The technical contributions involving realizing the 
artifact. 

 The classifier will aid academia for further research on 

UML.  

 The dataset used in this research could be used to 

perform further research on sequence diagrams. 

D. Structure of the paper 

The remainder of the paper is organized as follows. 

Section II reviews previous works related to the UML 

repository and image classification also an in-depth review of 

the support vector machine (SVM) machine learning model. 

Section III presents the research question and the 

methodology.  

Section IV describes the approach employed in this 

research. Section V, presents the results. Section VI discusses 
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the results of the research and the last section VIII ends with a 

conclusion. 

 

II. RELATED WORK & THEORY 

Despite the lack of research on classification of UML 
sequence diagrams. There exists a considerable amount of 
research on image classification in related areas, such as 
classification of charts and class diagrams [3]. 

In a similar research conducted on recognizing UML 
diagrams a tool was developed alongside that takes an image as 
input and the classification verdict as the output [6].  

Though a difference to note is that the tool does  not  
classify  the  type  of  UML  diagram,  it  merely recognizes  if 
it is a UML diagram or not. 

A. The UML Repository 

The goal of building the UML repository has made a lot of 
progress, currently img2UML tool has been built that can 
extract class diagrams images to XMI files [7]. Also a class 
diagram classifier artifact has been developed [3].  

B. Previous work 

The research and work behind the class diagram classifier 
has been presented in the paper “Automatic Classification of 
Class Diagrams from Images”, which is where most of the 
ideas and approaches used in this research were derived from.  

The authors’ goals was to find which features in an image 
could best classify class diagrams from images and also which 
machine learning model performs the best.  

Their approach was to first identify and then extract the 
features they deemed hold value in classification.  

 Once the 23 identified features were retrieved from the 
image processing (Table I), they developed the classifier by 
training a machine learner using a labeled training set 
containing those 23 features as the feature variables (also called 
predictors).  

For the dataset the authors’ retrieved 1300 images from 
Google, 650 of those images were class diagrams, 650 images 
were non-class diagrams e.g. sequence diagrams and other 
diagrams, also a few random images were inserted. 

Information gain was used to evaluate the performance of 
the features, were it was evident that F09 carried most 
information, though it has to be noted that information gain 
doesn’t tell which feature carries most weight when it come to 
the classification.  

The authors also ran the feature sets with different features 
from the table, were the best performance was achieved when 
all of the features were used. 

Of the six machine-learning models that were evaluated 
logistic regression (achieved 91.4%) which was the most 
accurate in classifying non-class diagram images and SVM was 
the least accurate (achieved 89.0%). Since the priority was to 
exclude non-class diagrams, thus the best models were the one 
with highest rate in classifying non-class diagrams. 

Therefore, logistic regression was considered to be the best, 
respectively SVM the worst machine learning model for 
classification of class diagrams from images. Though the same 
authors in their bachelor thesis [8] found out in the same 

research that SVM performs the best in classifying non-class 
diagrams, were it achieved 92.90%.   

TABLE I.  EXTRACTED FEATURES 

Feat. Name Description 

F01 Rectangles’ 
portion of image, 
percentage 

Calculated by dividing the sum of the area 
of all the rectangles with the area of the 
image itself 

F02 Rectangle size 
variation, ratio 

Calculated by dividing the rectangle size 
standard deviation with the rectangle 
average size 

F03-06 Rectangle 
distribution, 
percentage 

The image is divided into four equally 
sized sections and the area of the rectangles 
inside the sections is then divided by the 
total area of the rectangles. The 4 sections 
sum up to 100% 

F07 Rectangle 
connections, 
percentage 

Calculated by counting all rectangles that 
are connected to at least one rectangle, and 
dividing that number by the total amount of 
rectangles in the image 

F08-10 Rectangle dividing 
lines, percentage 

The rectangles are split into three groups, 
with rectangles that have: no dividing lines 
(F08); one or two dividing lines (F09); or 
three or more dividing lines (F10). This 
produces three numbers that represent the 
percentage of rectangles within each group 

F11/F12 Rectangles 
horizontally/vertic
ally aligned, ratio 

Sides of rectangles, horizontal (F11) and 
vertical (F12), that are aligned with sides of 
other rectangles are counted. The numbers 
are then divided with the number of 
detected rectangles in the image -- resulting 
in two ratios on rectangle horizontal and 
vertical alignments 

F13/F14 Average 
horizontal/vertical 
line size, ratio 

Average size of horizontal (F13) and 
vertical (F14) lines that are larger than ⅔ of 
the images width or height, divided by the 
images width or height, respectively 

F15 Parent rectangles 
in parent 
rectangles, 
percentage 

Rectangles that have rectangles within 
them can possibly be packages. This 
feature is the percentage of the area of 
those parent rectangles that is within other 
parent rectangles 

F16 Rectangles in 
rectangles, 
percentage 

This feature is calculated in the same 
manner as F15, but with rectangles, instead 
of parent rectangles 

F17 Rectangles height-
width ratio 

The average ratio between the height of the 
rectangles and the width of the rectangles 

F18 Geometrical 
shapes’ portion of 
image 

The same as F01, but with rhombuses, 
triangles and ellipses 

F19 Lines connecting 
Geometrical 
shapes, ratio 

The number of connecting lines from 
shapes, other than rectangles, divided by 
the number of detected shapes in the image 

F20 Noise, percentage Detected lines that are outside of 
rectangles, divided by the number of all 
detected lines 

F21-23 Color frequency, 
percentage 

Three most frequent colors in the image are 
found. Then a percentage out of all 
appearing colors is found for the three 
colors 

Note. Table retrieved from “Automatic classification of UML Class diagrams from 
images”, by T. Ho-Quang & M. R.V. Chaudron, 2014. 
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C. Image classification 

There are various image classification approaches [9, 10, 

11]. This subsection will elaborate on approaches and theories 

relevant for this research.  

An image classification process could be followed 

through the following steps [12]: 

1) Identification of required data 
Obtaining significant amount of data is critical to 

accurately develop a classifier [11]. According to [11] the 

optimal approach to collect the required dataset is through an 

expert. Otherwise brute-force is the best choice, i.e. collect 

any relevant data, though this approach expects a considerable 

amount of pre-processing. 

2) Preprocessing 
Often the dataset and the images contain “noise” and 

“inconsistencies”. Therefore, a preprocessing step before the 

image extraction is highly preferred [10]. 

The preprocessing steps may involve normalization and 

filtering [9].  

3) Feature extraction  
An important step in image classification is feature 

extraction, were the goal is to extract the most important 

feature that discriminate it from other classes [13]. According 

to [14] a feature has a large discriminative power if it is 

similar within the same class but dissimilar between different 

classes. 
4) Machine learning model selection 

Choosing the correct machine learning model is a difficult 

task, though support vector machine has given great result in 

classification of class diagrams [8] and has a good reputation 

in achieving high accuracy with a small training-set [15], 

which makes it the best candidate model for this research. 

5) Evaluation of classification performance 
There are different aspects to look for when evaluating a 

classifier the most common being the accuracy [12]. 

D. Machine learning 

Machine learning which belongs to the domain of AI has 
due to its increasing popularity recently made a lot of progress. 
This popularity can be credited to the surge in data usage in all 
areas of the society [16]. One area of particular interest to this 
research is image classification.  

Although there are different types of machine learning 
approaches, such as reinforcement learning and unsupervised 
learning, this research will only focus on the supervised 
learning approach.  

In supervised learning, the machine learner learns by the 
manually labeled data, which is also called the training set. I.e., 
when training the machine-learner every data is mapped to its 
corresponding label. Through this procedure the machine-
learner learns a behavior or a pattern [17].  

There are various machine-learning models that suit its 
specific purpose [16].  

E. Support Vector Machine 

1) Background 
Support vector machine (SVM) is a supervised machine 

learning model, which has its roots from statistical learning 

theory and structural risk minimization principle [15]. Its 

popularity in classification problems is mainly accredited to its 

simplicity and strong performance [15, 16, 18]. 

SVM operates by finding the optimal hyper-plane that 

separates the classes.  
 

The hyper-plane is given by this formula: 
 

            . 

Were (w) is the weight vector, (x) the input vector and (b) 

the bias. 

To find the optimal hyper-plane that separates the classes 

it is needed to look (mathematically) were the vectors (input 

data from the training-set) are closest to the hyper-plane f(x) 

from the two classes that have the biggest margin also called 

the maximum-margin line. Those vectors are called the 

support vectors which will be used to classify the unlabeled 
data, hence the name support vector machine. 

To best explain how SVM operates an example is 

illustrated in Figure 1. The example depicts a two 

dimensional feature plane (Vertical lines percentage & 

Horizontal line percentage). We can observe two classes the 

red class (the data we want to classify), which is labeled with 

1 and the blue class which is labeled with -1. The green line is 

the optimal line that perfectly separates the two classes. The 

space between the black lines is the maximum margins 

between the classes. The data on the left side of the margins 

are classified negative and the red on the right side are 
classified positive. 

 

 

Figure 1: A depiction of how a linear SVM separates the data in the feature plane. 
 

The purpose of wanting a vast margin between the classes 
is to reduce generalization errors and thus increase the accuracy 
of the classifier [19].  

 

2) Radial basis function kernel 
Figure 1 depicts a linear classifier which performs well in a 

linear separable dataset but on non-linearly separable datasets 
the performance will be unsatisfactory.  

Therefore, kernels that map the data into another space 
were introduced to solve the non-linear problem, such as the 
radial basis function (RBF) kernel. 

If uncertain of which kernel to use the preferred kernel is 
RBF.  Since the kernel is known to perform well in on a variety 
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of problems [20], except for when the feature space is vast, e.g. 
text classification. Then a linear kernel is more suiting [21].  

 
 

 
Figure 2: A depiction of how RBF kernel separates the non-linear data. 

 

The RBF kernel is given by this formula: 
 
 

                    
 
   

 

3) SVM Parameters 
 

 In the RBF formula, the parameter C is the cost which 

decides how much errors are permitted. The parameter γ is 

gamma which decides how fit the decision boundaries should 

be. A large gamma value will lead to a narrow decision 

boundary. Cross-validation is used to tune the parameters, 

since it is not known beforehand which parameter value 

performs the best [22]. 

III. RESEARCH METHOD 

The aim of the presented study is to aid academia and 
researchers in studying UML artifacts by developing a 
sequence diagram classifier and thus enriching the UML 
repository with sequence diagrams. 

The aim is broken down into the following research 
questions: 

 

Main Research Question: 

RQ1: How can classification of UML sequence diagram from 
images become automated? 

Sub-Questions:  

SQ1: What features in an image can help classify an UML 

sequence diagram, or exclude similar images? 

SQ2: What level of accuracy can be expected with said 
classification? 

 

The main research question is addressed by the 
development of the artifact. The sub questions will address the 
details to achieving an acceptable accuracy level. 

 

DDeessiiggnn  sscciieennccee  rreesseeaarrcchh  mmeetthhooddoollooggyy  
 

Considering the research question and the artifact that 
needed to be developed and subsequently evaluated in an 
iterative manner, design science research methodology deemed 
to be a suitable fit for the research methodology of this thesis. 

 Design science has the goal of developing an artifact that 
addresses a practical problem that hasn’t been solved before 
[23]. The remaining part of this section will describe the design 
science process that was followed:  

A. Problem Identification 

The first step in our research was to identify the research 
problem and justify the value of solving the problem.  

In section I it was concluded that researchers has a need to 
study UML artifacts which could be solved through the 
development of the UML classifier by expanding the UML 
repository with additional UML diagrams, i.e. sequence 
diagram images.   

Thus, the identified problem is the lack of UML artifacts 
and part of the solution is the development of the classifier 
which could help in collecting UML artifacts. 

B. Objectives of a solution 

The next step in our process was to define the objectives 

of the sequence diagram classifier. I.e., what the development 

of the artifact needs to accomplish and which requirements do 

the artifact need to fulfill in order to be considered 

accomplished. 

Considering that the classifier is an extension of the 

previous work to classify class diagrams [3, 8], which were 
used to classify class diagram images from a database 

containing a vast amount of images. The same priority of 

having an accuracy rate over 90% in classifying negative 

images (also called specificity), and achieving over 85% 

accuracy rate in positive images remains (also called 

sensitivity). This priority is because the negative images 

outnumber the positive images.  

C. Design & Development 

This step along with the evaluation step (D. Evaluation) 

was iterated until the objective set in B (Objectives of a 

solution) had been reached. This step entails the development 

of the artifact and considering that it was developed in 

multiple iterations, it will be communicated in section IV 

according to the iterations that were followed.   

D. Evaluation 

To evaluate the performance of the classifier after the 

design and development iteration phase was over, 10-fold 

cross evaluation were employed.  

 
Figure 3: 10-fold cross evaluation 

 

K-fold cross evaluation is a statistical method were each 

image is utilized both in training and for testing the classifier. 
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The method works by splitting up the dataset into k 

equally sized folds, and then train on k-1 folds and test the 

classifier with the last fold. This method is employed to ensure 

accurate accuracy rate [24].  

It has to be noted that k-fold cross evaluation was also 

used to evaluate and choosing the best parameters for the 
SVM, though this process was automated by the openCV 

library method trainAuto.  

For evaluating the test-sets, the metrics specificity, 

sensitivity and accuracy were employed. Specificity also 

called true negative rate (TNR) were used to evaluate how 

accurate the classifier classifies non-sequence diagrams. The 

metric has the following formula: 
 
 

                  
  

     
  

 

Were TN is true negative and FP is false positive, i.e. 

images that are negative but the classifier classifies it as 

positive. 

Sensitivity also called true positive rate (TPR) were used 

to evaluate how accurate the classifier classifies sequence 

diagram images. The metric has the following formula: 
 
 

                  
  

     
 

 
 
 

Were TP is true positive and FN is false negative, i.e. 

images that are positive but classified as negative.  

Accuracy is the overall correctness of the classifier, i.e. 

both the false negative and the false positive are measured. 
The metric is given through the following formula: 

      

           
     

           
  

    

 

The results of the evaluation are presented in section V 

(Results). 

E. Communication 

The research will be communicated through this paper. 

IV. APPROACH 

This section will describe the approach employed in this 

research, also the features extracted and the motivation for 

their extractions. Furthermore, an overview of the artifact and 

the components will be presented.  

Before going into details about how iteration 1 were 

conducted, it has to be emphasized that this research is an 

extension of previous work [3, 8] and large parts of the 

previous work were reused with some modification to work 

for this research.  

A. UML diagram classifier 

The UML diagram classifier was developed in 2014 by 

two students of Gothenburg University [8]. It’s comprised of 

two components an image processing, and a machine learning 

component.  

1) Image processing 
The image processing component takes in an image of 

various formats, which then gets processed with the usage of 

the popular OpenCV library. In order to extract the features, 

the coordinates of the lines and corners of the rectangles needs 

to be located and stored. 

This is done by using algorithms such as probabilistic 

Hough lines transform, canny edge detector and findcontours. 

Canny edge detector which is used to detect the edges was 
used before applying the algorithms to find the lines and 

contours. 

 

  

Figure 4: Using canny edge detector on a grayscaled image. 
 

Probabilistic Hough lines transform Figure 5 is used to 

extract the lines from the images and findcontours Figure 6 is 
used to extract the shapes, e.g. the rectangles.  

 

  

 

 

Once the image has been processed (Figure 7) and the 

relevant information has been retrieved and the duplicate 

features has been filtered out, then the building of the feature 

variables will start in the sub-component feature-extractor. 

 

 

 
Figure 7: The extracted features are put back and displayed with some 

distorted parts. 

 
2) Machine learning 

The machine learning component is comprised of two parts: 
1. The trainer, which takes in a vector with the feature 

variables gotten from the image processing and maps it 

into a manually assigned label, meaning a value that 

represent if it is a sequence diagram or not.  

Figure 6: FindContours method. Figure 5: Probabilistic Hough lines 

transform. 



 

6 
 

The output of this component is the trained classifier 

which will be used to classify the unlabeled data. 

2. The trained classifier, which takes in unlabeled data and 

predict whether the data is a sequence diagram or not. 

 

 
Figure 8: An overview of the overall framework. 

 

B. Iteration 1 

The plan to conduct the first iteration was largely based on 

how an image classification process was followed according 

to section II. 

1) Identification of required data 
We know from section II that SVMs discriminates 

between the classes by creating support vectors from the 

training-set were the features of the respective classes are most 

similar. Thus, to create the best classifier it is required to have 
a good representation of sequence diagram images and also of 

images that have similar features as sequence diagrams.  

We chose to obtain a balanced dataset (the negative and 

positive labeled classes are similarly sized) since SVM 

performs poorly on imbalanced dataset [25].  
The images of sequence diagrams were collected with the 

usage of the search engine Google by inputting the term 
“sequence diagram”.  

We also obtained few sequence diagrams images from the 
previous works negative dataset for a total accumulation of 
375 sequence diagram images. For the negative class we used 
the previous work negative dataset, since they had a good 
representation of many different diagram types. Though, the 
images of sequence diagrams were removed and a portion of 
the class diagrams from their positive labeled dataset were 
inputted to our negative labeled dataset. 

2) Preprocessing 
Before doing the feature extraction the images needs some 

preprocessing to enhance the features relevant to the feature 

extraction, e.g. the lines, corner. To perform this procedure the 
openCV methods grayscale and Gaussian blur were used. 

Grayscale is a method that transforms the original image 

which is usually in RGB (colored) to black & white, it is done 

because of the methods to extract the features work better in 

grayscale format. 

Gaussian blur is used to blur the image, this is needed e.g. 

to avoid counting double lines were only one line exist, it is 

also used to even out the image in case the corners are non-

continuous because of low quality.  
 

  
Figure 9: From RGB colors to black & white. 

 

3) Feature extraction  
In [3, 8] the researcher extracted 23 features (Table I) for 

classification of class diagram, this paper will explain why the 

same features are relevant for classification of sequence 

diagrams. 

Firstly we need to be reminded that support vectors are 

created from both classes training data. Therefore, features 

that exist in both classes, but more pronounced or less 

pronounced in one class have more discriminative power. 

We also know that SVM uses combinations of the features 

to discriminate between the classes. Hence, a single feature 
that seem to hold no value in the classification might play a 

vital role in the classification performance, when used in 

combination with other features. 

The following features (described in Table I) were used in 

iteration 1: 

F01: The size of the image that are rectangles is relevant 

when used with other features since knowing how much image 

is covered by rectangles does give some information about the 

image. 

F02: The size variation of the rectangles could carry some 

information for the classifier. 

F03-06:  In which section of the image the rectangles are 
located in is a relevant feature.      

F07: Rectangle connection is not prevalent in sequence 

diagrams but is in other diagrams and therefore relevant.   

F08-10: F09 was the feature which gave most information 

in classification of class diagrams, thus, the features is 

relevant.  

F11/12:  Horizontally aligned rectangles are a defining 

feature of sequence diagrams and other diagram types.  

F13/14: The lines that are vertically or horizontally 

aligned are a relevant feature. 

F15: Rectangles that are within other rectangles is not 
prevalent feature in sequence diagrams but is in other diagram 

types, therefore relevant in classification.  

F16:   Could be relevant. 

F17:   Rectangles height/width ratio a relevant feature. 

F18: Shapes portion of the image could be a relevant 

feature. 

F19: Connecting lines to a shape is a relevant feature 

since the lines in sequence diagram and other diagram types 

may have a triangle head. 

F20:  The feature Noise contained information in 

classifying class diagrams [3] and therefore relevant. 

F21-23: Probably not relevant, though certain diagrams 
do have varied color frequency.      
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The logic behind why the feature variables are either in 

ratio or in percentage is because the value should be relative to 

all images. E.g. the amount of rectangles in an image is not 

relevant, since it does not give enough information. Though, 

the percentage of the image size that are rectangles is relevant 

since it gives more information since it tells the machine 
learner what sort of information the image contains.  

4) Machine learning 
SVM with the RBF kernel performed well in [8] and 

therefore chosen as the machine learning model. Though there 

were other SVMs that were considered e.g. linear but since the 

data type was unknown, RBF was chosen. Primarily because it 

is the most popular kernel type and performs well in most 

problem settings. The RBF kernel has two parameters that 

should be correctly tuned for optimal performance the gamma 

and the cost as mentioned in section II. The tuning was done 

automatically by using the openCV method trainAuto, which 

works in this manner. The method grid searches different 

parameters iteratively through cross-validation and chooses 
the parameters that yield the best performance.  

5)  Evaluation   
To evaluate the classifiers performance we followed the 

evaluation steps described in section III (RESEARCH METHOD).  

C. Iteration 2 

The requirements were not met in iteration 1, therefore in 
iteration 2, we needed to define new features that have a large 

discriminative power and extract them. Though, the previous 

23 features were kept, since those features gave good results 

and were very close to meeting the requirements.  
 
 

F24: By looking at the sequence diagram (Figure 10) we 

can quickly observe a feature (A lifeline, the 

picture to the right) that could be used to increase 
the accuracy of the classifier.  

To extract a feature that is more unique to 

sequence diagrams and thus increase its 

discriminative power, the feature requires more 

than one lifeline to be counted as a lifeline, since 

a sequence diagram contain multiple lifelines. Furthermore the 

heights of the top rectangles in the lifelines have to be 

approximately the same.  

To increase the distinctiveness of the feature, the lines 

including the activation rectangle (the vertical rectangles in 

figure 10) have to be longer than half the height of the image, 
since the lifeline usually starts from the top of the image and 

ends at the bottom of the image.   

There were certain constraints needed to be considered 

when selecting this feature: 

1. Not all lifelines contain a straight line or dotted line some 

contain an activation rectangle. 

2. The rectangles of a lifeline don’t always have to be 

horizontally aligned (this constraint was ignored since 

most of the rectangles are horizontally aligned). 

3. Not all sequence diagram images uses a rectangle to 

illustrate the head of the lifeline (this constraint was also 
ignored since it was considered impossible to include all 

shape types, and rectangles are the most common). 

 
Figure 10: A sequence diagram made by the students of SE&M in GU. 

 

F25: This feature also targets the same feature as F24 

though the line is excluded from the requirement, this feature 

was chosen by considering that image processing is not perfect 

and often important details of the diagram are lost, e.g. the 

lines of the lifelines. To make this feature more unique the 

bottom corners of the rectangles that are extracted need to be 

above the center point of the image.  
 

The following table containing the features that were 

extracted: 

TABLE II.   FEATURES ADDED 

Feat. Name Description 

F24 Lifelines, 
percentage. 

Percentage of rectangles that are 
horizontally aligned and have the same 
height and are connected to a line/dotted 
line, which is longer than half the image 
height. 

F25 Rectangles top of the 
image that are 
horizontally aligned, 
percentage. 

Percentage of rectangles that are aligned 
horizontally and in the upper part of the 
image.  

 

To extract the feature “F24” the first thing that needed to 

be done was storing all the rectangles, secondly we needed to 

store all the rectangles containing a line that starts from its 

southern center point and contains at least 50% of the pixel 

height of the image, meaning if an image is 500 pixel in height 

then the line needs to be over 250 pixels. 

Counting the height of the line an algorithm originally 

developed for lane-following in the self-driving car was used 

though with slight modifications [26]. The algorithm worked 

like this: 
 

1. Canny edge detector needs to be used for step 2. 

2. The lines need to be thickened which is done with 

probabilistic Hough line. 

3. To count the size of the line it’s required to have two 

loops, one that loops the image vertically and another that 

loops horizontally. The vertical loop begins from where 
the rectangle ends and continues until the image ends. The 

horizontal loop is where the algorithm counts the white 

pixels, which it does by checking the five pixels to the left 

of the center point of the rectangle, if it detects a white 

pixel than the algorithm counts it as a pixel belonging to a 

line.  
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After confirming if a vertical line exists it was needed to 

filter out the rectangles that are approximately of the same 

heights. Thus, the algorithm has established that the rectangle 

is a lifeline.  

In order to make the feature to be a value that is relevant 

for the machine learner, the percentage of the total rectangles 
that are the top of the lifelines is computed and inputted to the 

machine learner.  

To extract feature “F25” the steps containing the line was 

skipped. Furthermore, the rectangles are filtered based on their 

bottom vertical position, meaning if the y-value is lower than 

the y-value of the center point it will not be counted as a 

rectangle. The motivation for removing the rectangles that are 

beneath the center point of the images is because rectangles in 

sequence diagrams are predominantly located in the upper part 

of the image. 

V. RESULTS 

This section will present the results based on the iterations 
that were followed. 

 

TABLE III. CROSS-EVALUATION  RESULTS 
 23 FEATURES 

Iteration Accuracy TNR TPR FP FN Size 

1 87.1 % 88.1% 86.0% 5 6 74 

2 88.1% 88.1% 88.1% 5 5 74 

3 93.7% 92.5% 94.9% 3 2 74 

4 92.7% 95.0% 90.5% 2 4 76 

5 89.4% 84.4% 95.0% 7 2 76 

6 89.4% 86.4% 92.7% 6 3 76 

7 84.4% 80.9% 88.4% 9 5 76 

8 90.5% 82.6% 100% 8 0 76 

9 85.4% 80.9% 90.5% 9 4 76 

10 93.5% 92.3% 94.7% 3 2 72 

TOTAL 89.3% 86.8% 91.9% 57 33 750 

 
Table III displays the results gotten from the 10 fold 

cross-evaluation in iteration 1, were the 23 features from the 

previous work were evaluated. Size was the amount of images 

in the evaluations test-set.  

 

 

TABLE IV. CROSS-EVALUATION  RESULTS 
 25 FEATURES 

Iteration Accuracy TNR TPR FP FN Size 

1 93.7 % 97.4% 90.2% 1 4 74 

2 91.4% 94.9% 88.1% 2 5 74 

3 89.2% 92.5% 86.0% 3 6 74 

4 90.5% 92.7% 88.4% 3 5 76 

5 89.4% 90.5% 88.4% 4 5 76 

6 89.4% 95.0% 84.4% 2 7 76 

7 88.4% 86.4% 90.5% 6 4 76 

8 92.7% 90.5% 95.0% 4 2 76 

9 91.6% 88.4% 95.0% 5 2 76 

10 92.3% 90.0% 94.7% 4 2 72 

TOTAL 90.8% 91.7% 89.9% 34 42 750 

 

Table IV displays the results gotten from the 10 fold 

cross-evaluation in iteration 2 were the 2 features were added 
to the previous features. 

VI. DISCUSSION 

With the results obtained from section V, we can conclude 
that the requirements of over 90% in specificity and 85% in 

sensitivity were met. Thus, the research succeeded in 

achieving automatic classification of sequence diagrams from 

images.  

Due to answer RQ1 and SQ1 our first theory was that the 

same features to classify class diagram images would also be 

able to classify sequence diagram images. The results showed 

that the same features indeed gave good results in achieving 

classification of sequence diagram from images. 

The result of iteration 1 using the 23 features defined in 

[8] to classify class diagrams gave very similar results as in [3] 

which too would not meet the requirement of over 90% in 
specificity. 

In iteration 2, two new features were defined based upon 

the research regarding feature extraction, described in section 

II.  

The goal was to define features that have large 

discriminative power, which is a feature that is similar within 

the same class but dissimilar between different classes. Hence, 

the feature lifeline was extracted. This improved the 

specificity of the classifier at the expense of the sensitivity. 

While examining the two classifiers we can observe a 

major difference: 

 
TABLE V.  SVM PARAMETERS 

 

 23 Feats. 25 Feats. 

Gamma 0.03375 0.50625 

Cost 6.25 6.25 

 

  The difference in the gamma value, which affects the 

decision boundary, is substantial. This could be the reason 
why the 23 features classifier has higher sensitivity and lower 

specificity. As we know from section II (SVM) that lower 

gamma results in larger decision boundary. This explains why 

the big fluctuation in accuracy, 9.3% in iteration 1 versus 

5.3% in iteration 2.  

Considering that the trainAuto method uses the best 

parameters as possible we can conclude that the two added 

features do improve the accuracy.  

A. Threats to validity  

1) Threats to Internal Validity 
The image processing component is a validity threat since 

there is no possible way to process the image to suit all 

images.   I.e. different images require different preprocessing 

algorithms and thresholds to enhance the features. Therefore 

some images will always have less or wrong features extracted 

which can affect the classification verdict. 

2) Threats to External Validity 

The size of the dataset were much smaller in this research 

(750 images) compared to the previous works dataset (1300 

images) which could reduce the classifiaction accuracy and 

therefore considered a validity threat. 
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VII. CONCLUSION & FUTURE WORK 

With the accuracy of the classifier meeting the 
requirements, this paper also found that the same features used 

in classification of class diagrams yielded good result in 

classifying sequence diagram images. 

The contribution of this research is the sequence diagram 

classifier and the results of the features performance in 

classification of sequence diagrams from images. 

For future work on classification of sequence diagrams the 

performance of the machine learning model neural networks 

could be evaluated and compared to SVM.   
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