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Abstract 
There exist more than 2000 cryptocurrencies today. Although choices of design and target 

groups vary across cryptocurrencies, current research primarily focuses on Bitcoin. If the 

differences in design choices makes cryptocurrencies heterogenous then existing research could 

be less relevant in explaining how the cryptocurrency market works.  

 

Very little is currently known about homogeneity among cryptocurrencies. Therefore, this 

paper aims to investigate if cryptocurrencies are homogenous. The question of homogeneity 

among cryptocurrencies is answered via a LASSO-model in which the drivers of returns that 

have been identified for Bitcoin in the contemporary theoretical framework are applied to a 

sample of 12 cryptocurrencies, further analysing over time and across design choices of 

cryptocurrencies.  

 

The results show that cryptocurrencies are heterogenous, apart from some similarities in the 

impact of technical drivers. The cryptocurrency market is highly integrated with evidence of 

substitution effects. Further, design choices related to demand and supply among 

cryptocurrencies can in several cases explain the impact of drivers of return. It is important to 

consider heterogeneity among cryptocurrencies in order to avoid misinterpretation or 

misdirected regulation of cryptocurrencies. 
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1. Introduction  

Standard economic goods are priced through the interaction between demand and supply, and 

these in turn are influenced by macroeconomic or institutional variables on the domestic or 

international level (Kristoufek, 2013). The demand for a commodity currency is driven by its 

intrinsic value and its value in future exchanges, for example gold can be used both to create 

jewellery and for trade (Bouri et al., 2017). In contrast, the value of a fiat currency is based 

solely on its value in future exchanges and the trust that it will continue to be valuable and 

accepted as a medium of exchange (Bouri et al., 2017; Kristoufek, 2013). This trust can be 

enhanced or created by a central issuers actions to guarantee a value for the fiat currency, a role 

traditionally inhabited by central banks with regards to national currencies.  

 

Cryptocurrencies are fiat currencies that differ from traditional currencies, such as the USD or 

EUR, in that they do not have a commodity backed value and no central authority guaranteeing 

its value (ECB, 2012). The rules governing supply are set out at the initial launch of the 

cryptocurrency. This entails that cryptocurrencies function as a fixed currency with no room 

for e.g. expansionary monetary policy (Gandal & Halaburda, 2014). For this reason, the demand 

for a cryptocurrency is mainly driven by its value in future exchanges (Bouri et al., 2017; 

Kristoufek, 2013), regardless if its used for speculation or transactions.  

 

There are more than 2000 cryptocurrencies currently listed on Coinmarketcap.com, which 

makes the large market capitalisation of the top 3 cryptocurrencies remarkable, as seen in figure 

1. When comparing the market capitalisation of the top 10 cryptocurrencies in figure 1, it can 

be seen that Bitcoin holds a unique position with 52 percent, followed by Ethereum and Ripple 

(XRP). The large number of cryptocurrencies stands in stark contrast to the large market shares 

of a select few cryptocurrencies. A potential explanation for both phenomena can be found in 

theories of network effects1. 

 

                                                           
1 One characteristic that is common to all currencies is the presence of positive network effects and the 

externalities arising from the effects. Positive network effects mean that the value of a product or service 

increase with the number of users whereas, for negative network effects the reverse is true.  



2 
 

 
Figure 1: Market shares cryptocurrencies 2019-01-07 (measured by market capitalisation) 
Source: Coinmarketcap.com (2019-07-21) 

 

Network effects can affect competition in that it makes entry more difficult, giving more 

influence to incumbent firms with previous established networks. Similar to a traditional fiat 

currency, the more users a cryptocurrency has, the easier it will be to transform the 

cryptocurrency into goods and services, thus increasing its value in future exchanges and trust 

that it will continue to be valuable and accepted as a medium of exchange (Bouri et al., 2017; 

Kristoufek, 2013). When the cryptocurrency becomes more popular its demand will increase, 

further adding to its popularity through a reinforcement effect (Gandal & Halaburda, 2014). 

The reinforcement effect suggests a movement towards one strong currency, or as implied in  

figure 1, a few strong cryptocurrencies.  

 

Further, the sheer number of cryptocurrencies could to some extent be motivated from 

speculative dynamics connected to the network effects. As the popularity and value of a 

cryptocurrency increase some people might fear that it is overvalued, which will lead to a 

substitution effect if they start looking for alternative cryptocurrency investments (Gandal & 

Halaburda, 2014). In order to challenge the incumbent firms, the newcomers in a market with 

strong network effects will often try to distinguish themselves in order to gain an edge in the 

competition (Gandal & Halaburda, 2014). There are several traits that can distinguish a 

cryptocurrency. Cryptocurrencies are similar in that they are based on the distributed ledger 

technology, but they can display heterogeneity in purpose and design choices (Burnie, 2018). 

For example, some cryptocurrencies have been implemented to specifically address technical 

shortcomings of Bitcoin, such as increasing transaction flows or offering a higher level of 

anonymity (Østbye, 2018; Foley, Karlsen & Putniņš, 2018). Differences in the designs of 
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cryptocurrencies could lead to differences in what influences supply and demand for each 

cryptocurrency. Differences in aims and which investor group the cryptocurrency targets might 

also lead to differences in what macroeconomic factors influence the pricing mechanisms and 

determines the returns of the cryptocurrency.  

 

Cryptocurrencies are, by nature, global and decentralised which might challenge the 

effectiveness of conventional monetary policy and offer additional risks around the globe. 

Compared to traditional currencies, cryptocurrencies have hitherto seen relatively little 

regulation. Several risks have been identified which might require regulatory attention, such as 

network effects making some cryptocurrencies too-big-to-fail or too-connected-to-fail (Minto 

et al., 2017), a strong connection to illegal activity and money laundering (ECB, 2015; Chilson, 

2018; Foley, Karlsen & Putniņš, 2018), systemic risk through direct or indirect exposure (Ali, 

Barrdear, Clews & Southgate, 2014) and a potential to break the traditional monopoly on money 

issuance held by Central Banks (Dabrowski & Janikowski, 2018).  

 

Regardless of the risks regulators try to mitigate, it is important to consider how the 

cryptocurrency market works2. Today, both theoretical and empirical research is narrowly 

focused on Bitcoin. Only few studies distinguish between currencies, protocols and 

decentralised applications (Corbet, Lucey, Urquhart & Yarovaya, 2018). This is a natural 

consequence since Bitcoin is the by far most well-known cryptocurrency, the most widely 

adopted cryptocurrency with the longest string of available data.  

 

However, given the potential heterogeneity among cryptocurrencies, an extensive Bitcoin focus 

might result in lower external validation of the available research. The results found that are 

applicable to Bitcoin might not be relevant when considering other cryptocurrencies. Further, 

the large volatility in prices for Bitcoin and other cryptocurrencies makes it necessary to 

continue conducting research. Results that were obtained in 2016 are probably not the same if 

obtained in 2018 and should not be considered equal or used in the calculation of averages 

(Corbet et al., 2018). If cryptocurrencies are homogenous, they should respond similarly to 

potential regulations implemented, thus facilitating the evaluation and comparison of the 

                                                           
2 When considering regulation for cryptocurrencies it is important to distinguish between regulation of the 
underlying distributed ledger technology and regulation of the cryptocurrencies themselves. Many of the 
characteristics that raise concerns around Bitcoin, such as anonymity and extensive energy use, are not 
necessarily representative for the wider distributed ledger technology (OECD, 2018). Further, they might not be 
representative for all cryptocurrencies.  
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potential impact of different types of regulation. However, if cryptocurrencies are heterogenous, 

their differences could imply that they respond differently to the potential regulations. There is 

a risk for misinterpretation and misdirected regulation if potential heterogeneity among 

cryptocurrencies is not considered. Further, if cryptocurrencies are perceived to have high 

similarities in risk exposure then a high level of interconnectedness could also become 

problematic as it increases the risk for contagion across the cryptocurrency market. 

 

Currently very little is known about homogeneity among cryptocurrencies. One way to advance 

knowledge on potential homogeneity among cryptocurrencies is to evaluate if they are 

homogenous in market characteristics such as supply and demand. Based on the classic 

economic assumption that all information is known to all investors and reflected in the price of 

an asset it becomes possible to capture the interactions between supply and demand combined 

with indirect influences of external factors in their impact on pricing. It is possible to capture a 

broad image of the cryptocurrency market by looking at prices for cryptocurrencies, in 

particular which determinants that drive the returns for cryptocurrencies.  

 

The aim of this paper is to evaluate homogeneity among cryptocurrencies. This paper takes the 

contemporary economic framework and applies the drivers of return that have been previously 

identified for Bitcoin to a sample of 12 cryptocurrencies, including Bitcoin. Thereby 

investigating the research question: Are cryptocurrencies homogenous with respect to drivers 

of returns? If cryptocurrencies are homogenous the same factors will influence, and drive 

returns for each respective cryptocurrency, including Bitcoin. Thus, this also allows testing 

whether Bitcoin should be seen as a representative cryptocurrency or not.  

 

The research question is answered via a LASSO-model, a penalized least squares technique that 

allows some coefficients to shrink towards or be exactly zero, thereby increasing prediction 

accuracy and creating ease of interpretation across the optimal model of drivers for returns for 

each cryptocurrency. The returns are further divided into three time periods and analysed over 

time and across design choices of cryptocurrencies. Finally concluding that, apart from some 

similarities in the impact of technical drivers, cryptocurrencies are not homogenous.  

 

The generalisability of these results is subject to certain limitations. For instance, some of the  

cryptocurrency specific determinants of returns evaluated only have available data for 

cryptocurrencies using a proof-of-work protocol. Further, the lack of cryptocurrencies in some 

categories have made comparison difficult as it is not possible to find common factors or make 
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comparisons in categories which only encompass one cryptocurrency. Another drawback of 

this study lies in the choice of methodology. The LASSO-approach exploits the variance-bias 

trade-off, yielding more comparable models but possibly introducing a bias. Several 

transformations of the data are conducted to decrease the potential bias however exact 

magnitudes of the drivers of returns should still be interpreted with caution. 

 

The paper is organised as follows, Part 2 offers a definition of cryptocurrencies, an overview 

of the cryptocurrency market and outlines the differences between cryptocurrencies. Part 3 

describes the current economic framework through the theories for drivers of returns that leads 

up to the choice of the hypotheses tested in this paper. Part 4 describes the data used and 

transformations made. Part 5 presents the methodology and discusses some potential 

shortcomings. Part 6 presents the objective findings and their implications, whereas Part 7 

provides an in-depth analysis of the individual hypotheses and how they relate to the findings. 

Part 8 concludes the paper with an outlook for future research. 

 

2. The cryptocurrency market 

This section describes the cryptocurrency market. Section 2.1 clearly defines the term used to 

denote cryptocurrencies. Section 2.2 gives an overview of the different actors on the 

cryptocurrency market and Section 2.3 gives a brief overview of the possible design choices a 

cryptocurrency can take on, summarized in Figure 1. The potential implications on demand and 

supply resulting from those design choices are further elaborated on in Part 3. 

 

2.1 Definition of cryptocurrencies 

Pieters (2017) offer a very clear definition of different types of digital currencies, see figure 2. 

Based on this Bitcoin, and similar currencies, could formally be described as decentralized 

virtual cryptocurrencies. Throughout the paper, I will use this definition but denote it with the 

more commonly known term cryptocurrency. The two terms are often used interchangeably 

since all cryptocurrencies are also decentralized virtual currencies (Pieters, 2017). 

Cryptocurrency is also the term used in the majority of the current research papers to 

collectively denote Bitcoin, Ether, Ripple and other similar decentralized virtual currencies. 
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Figure 2: Definition of currencies based on issuer and intended scope of use, transaction 

verification and technology 

Note: Reprinted from “The Potential Impact of Decentralized Virtual Currency on Monetary Policy” by Pieters, 

G. C., 2017, Available at SSRN: https://ssrn.com/abstract=2976515 

 

2.2 Actors on the cryptocurrency market 

A cryptocurrency is first created by an inventor, such as Satoshi Nakamoto for Bitcoin. The 

inventor develops the technical aspects of the network and writes the code (ECB, 2015). Once 

a cryptocurrency has been launched users can enter the network. Regardless if users choose to 

purchase cryptocurrencies for their role as means of payment or for speculation there are five 

ways they can obtain units: 1) purchase, 2) engage in activities that are rewarded with 

cryptocurrencies, 3) self-generate units through mining, 4) receive units as payment or 5) 

receive units as a donation or gift (ECB, 2015).  

 

Miners are users that offer computer processing power in exchange for a specific number of 

units of the cryptocurrency. The computer processing power is necessary to validate the 

available transactions and adding them to the distributed ledger (ECB, 2015). With more 

computer processing power, the process of validating becomes faster and more secure since the 

risk for double-spent or falsely introduced units decrease (ECB, 2015).  

 

Cryptocurrencies are traded on a global scale through trading services and platforms often 

offered by exchanges (ECB, 2015). Exchanges are usually non-financial companies that accept 

a wide range of payment options (ECB, 2015). The exchanges quote the exchange rates by 

which the exchange will buy/sell cryptocurrencies against the main traditional currencies, 

whereas trading platforms bring together buyers and sellers and allows them to offer and bid 
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among themselves (ECB, 2015). Wallet providers offer digital wallets where the users of the 

cryptocurrency can store their cryptographic key and transaction authentication codes along 

with the opportunity to initiate transactions and overview of historical transactions (ECB, 

2015).  

 

2.3 Differences in design choices among cryptocurrencies 

The choice of design when implementing a cryptocurrency is written into the initial coding and 

reflects a variety of potential uses, such as providing a new type of money (e.g. Bitcoin Cash), 

providing opportunities for a decentralized storage network (e.g. Filecoin) or generally 

providing a tool for application development (e.g. EOS and Qtum) (Burnie, 2018). Burnie 

(2018, pp.9-10) provides a comprehensive overview of some of the differences in design 

choices found among cryptocurrencies, summarized in Table 1. 
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Table 1: Design choices among some of the most traded cryptocurrencies 

Token supply 

How are tokens created? 

Fixed supply 

• NEO 

• Tron 

• Cardano 

• Qtum 

• Ripple 

Rise up to cap 

• Bitcoin 

• Litecoin 

• Ethereum Classic 

• Monero 

• Bitcoin Cash 

Rise indefinitely 

• Ethereum 

• Stellar 

• EOS 

Varies to maintain peg 

• Tether 

How are tokens distributed and transactions validated? 

Proof-Of-Work 

• Bitcoin 

• Litecoin 

• Ethereum 

• Ethereum Classic 

• Monero 

• Bitcoin Cash 

Run on top of Proof-Of-Work systems 

• Tron (on top of Ethereum) 

• Tether (on top of Bitcoin) 

Voting 

• Neo 

• EOS 

• Stellar 

Validators selected 

• Ripple 

Proof-of-stake 

• Cardano 

• Qtum 

Token demand  

What is the target market for the token? 

Generic 

• Bitcoin 

• Litecoin 

• Ethereum 

• Ethereum Classic 

• Monero 

• NEO 

• Bitcoin Cash 

• Tether 

Business-Oriented 

• Cardano 

• Ripple 

• EOS 

• Stellar 

• Qtum 

Content Creators on Internet 

• Tron 

What is the token being used for? 

Transaction 

• Litecoin 

• Monero 

• Bitcoin Cash 

• Ripple 

• Stellar 

Hybrid 

• Bitcoin 

• Ethereum 

• Cardano 

Applications 

• NEO 

• Tron 

• Qtum 

• EOS 

• Ethereum Classic 
Note: Reprinted from “Exploring the interconnectedness of cryptocurrencies using correlation networks” by 

Burnie, A., 2018, arXiv preprint arXiv:1806.06632, pp. 9-10 

 

How tokens are created determines the basic supply of the money. A fixed supply means that 

all the available tokens are created at the time of implementation and that no money creation 

occurs. A rise up to cap means that money supply increases according to publicly known 

algorithms up to a certain point. For Bitcoin the cap is set to be a maximum supply of 21 million 

Bitcoins in 2140 (ECB, 2015). If a currency is implemented with increasing money supply but 
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no cap, then it has the possibility to rise indefinitely. There are also some examples of 

cryptocurrencies trying to increase price stability by implementing a peg against one of the 

major traditional currencies, e.g. Tether pegged to the USD. 

 

Distribution of tokens and validation of transactions contribute to the supply of the 

cryptocurrency. With a proof-of-work system the miners compete for the right to validate 

transactions with their computational power whereas with a proof-of-stake system the 

validators are chosen based on their stakes in the system, e.g. total number of own coins. A 

system with selected validators means adding trusted miners to the system that are the only 

one’s able to validate transactions. Who the trusted miners are can also be determined through 

voting in which all account holders vote for their ideal mining candidates.  

 

The target market for the cryptocurrency is determined by how they define their intentions in 

their whitepaper, the first presentation of the cryptocurrency written by the inventor, or in other 

public communication. Business-oriented cryptocurrencies are those who are explicitly seeking 

commercial applications for their technology, such as for payments (Ripple, Stellar), for 

developing applications (Qtum, EOS) or for both (Cardano) (Burnie, 2018). Generic 

cryptocurrencies target a broader audience, motivating both business and non-business use of 

their token (Burnie, 2018). One noTable cryptocurrency that did not fit either category is Tron 

that specifically targets content creators online (Burnie, 2018). 

 

Further the cryptocurrencies could be divided by token functionality, if the token is designed 

and used mainly for transacting value, if tokens are designed to enable new development to 

applications or if tokens use a combination of the two functions (Burnie, 2018). 

 

3. Theory: Drivers of returns for cryptocurrencies 

One way of understanding the cryptocurrency market is to investigate the interaction between 

demand and supply that gives the prices on the market and their resulting returns. This is based 

on the classic economic assumption that all information is known to all investors and reflected 

in the price of an asset. As prices tend to fluctuate, often with upwards or downwards moving 

trends, daily returns can often offer more comparable measures of development over time. The 

homogeneity of cryptocurrencies will be evaluated by comparing the relative importance of 

drivers of returns. If cryptocurrencies are homogenous the same factors will influence, and drive 

returns for each respective cryptocurrency, including Bitcoin. Thus, this would further allow 

testing whether Bitcoin should be seen as a representative cryptocurrency. Bitcoin could be 
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representative if each cryptocurrency is influenced by the same variables as Bitcoin, at best 

with equal strength in effect. 

 

This rests on a simple logic, either cryptocurrencies are homogenous or not. The aim of this 

paper is to investigate this by attempting to prove that cryptocurrencies are homogenous with 

respect to drivers of returns. Further, if this holds true then Bitcoin could be seen as a 

representative cryptocurrency. Thus, the overarching null and alternative hypotheses are 

defined as: 

 

H0: Cryptocurrencies are homogenous with respect to drivers of returns. Bitcoin could be seen 

as a representative cryptocurrency.  

HA: Cryptocurrencies are non-homogenous, i.e. heterogenous, with respect to drivers of 

returns. Bitcoin should not be seen as a representative cryptocurrency.  

By looking at several potential drivers of returns identified in the current Bitcoin literature the 

null hypothesis can be evaluated to see if it holds for all aspects. Therefore, the overarching 

null hypothesis has been divided into several sub-hypotheses, ranging from H1 to H9, to test 

different variables. The null hypothesis could be said to hold true if cryptocurrencies display 

homogeneity in all sub-hypotheses and in the relative importance of the variables tested. 

 

Section 3.1 describes the sub-hypotheses that relates to the supply of a cryptocurrency whereas 

3.2 describes the sub-hypotheses that relates to the demand. The alternative hypotheses have 

been omitted in the following theory section for simplicity and ease of reading.  

 

3.1 Supply 

The supply function of a cryptocurrency is either fixed or evolves according to publicly known 

rules set out at the launch of the cryptocurrency, such as the mining algorithms used to control 

the supply of Bitcoin (Kristoufek, 2013). Essentially, a cryptocurrency functions as a fixed 

currency with no influence from central authorities (Gandal & Halaburda, 2014). Since the 

supply is publicly known and predefined or fixed in the long run, the supply of a cryptocurrency 

becomes exogenous to its own pricing mechanism, in contrast to gold that is endogenous in that 

a higher price might lead to more intensive mining (Bouri et al., 2017). Factors such as technical 

productivity and number of the cryptocurrency in circulation contribute to the pricing 

mechanism in defining an equilibrium between demand and supply for each cryptocurrency. A 

small and finite supply of cryptocurrencies combined with a high confidence in the design will 
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be reflected in high demand, which in turn leads to higher prices and large price fluctuations 

(Bianchi, 2018).  

 

3.1.1 Tokens in circulation 

Differences in how tokens are created contributes to supply in that it sets the initial framework 

for the number of tokens in circulation. For cryptocurrencies with a fixed supply the tokens in 

circulation is a fixed number. For cryptocurrencies that rise up to cap the number of tokens in 

circulation will continue to rise up to a certain point and for cryptocurrencies with no cap this 

increase is continuous. Thus, unless the supply is fixed it will continue to increase over some 

time. According to traditional economic theory increases in supply should lead to lower prices, 

ceteris paribus. Thereby, the number of tokens in circulation could be expected to have 

predictive power over the returns for cryptocurrencies that do not have a fixed supply. Ciaian, 

Rajcaniova and Kancs (2016) found that the number of Bitcoins has a negative impact with 

regards to determinants of Bitcoin prices. Li and Wang (2017) tested determinants of the 

Bitcoin exchange rate towards the USD and found that increases in Bitcoin supply had a 

significant effect in the early Bitcoin market (when the Mt. Gox exchange was still open) but 

not in the later market (after the closing of Mt. Gox in 2014). Polasik, Piotrowska, Wisniewski, 

Kotkowski & Lightfoot (2015) found no significant effect of changes in supply on Bitcoin 

returns. If cryptocurrencies are homogenous the choice of design for token creation should not 

create any variation across the cryptocurrencies tested, instead they should all follow the 

potential negative impact on returns that an increased supply suggests for Bitcoin. 

 

H1: Variations in number of tokens in circulation do not create any differences in determinants 

of returns for cryptocurrencies.  

 

3.1.2 Technical drivers 

Technical choices in the protocol design for cryptocurrencies are reflected in how tokens are 

distributed and transactions validated. Although the underlying distributed ledger technology 

is common for all cryptocurrencies the exact technical choice on how to reach consensus in 

transactions might vary. The choice of technical drivers and characteristics of the 

cryptocurrencies, such as technology used and limitation of quantity produced, could contribute 

to a positive value for a cryptocurrency (Dwyer, 2015). Thus, it could also contribute in driving 

returns, particularly if the technologies differ in their ability to provide efficient transactions. 

Technical drivers can be proxied by a cryptocurrency’s hash rate, a measure of how much 

computational power a cryptocurrency’s network consumes in order to generate a new block in 
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the blockchain (Bouoiyour & Selmi, 2015). The higher the hash rate the more likely a new 

block will be mined. Cryptocurrencies with higher hash rates decrease the time it takes for 

transactions to be approved and added to the blockchain and thereby become more attractive 

for trade. Bouoiyour and Selmi (2015) found a significant positive long run impact from 

increases in hash rate on log of Bitcoin prices. In a later analysis they use quantile regression 

and find a significant positive effect on the Bitcoin price index when prices are in bear state 

(the lower quantiles) but no significant effect for bull state (upper quantiles) or for the full 

sample (Bouoiyour & Selmi, 2017).  

 

H2: Variations in hash rate do not create any differences in determinants of returns for 

cryptocurrencies.  

 

3.2 Demand  

Demand for a cryptocurrency is driven by its value in future exchanges (Bouri et al., 2017; 

Kristoufek, 2013). The utility of holding a cryptocurrency can be influenced by several factors, 

such as its perceived usefulness for transactions or a high confidence in the design and future 

increased value of the cryptocurrency.  

 

Since the aim and use of cryptocurrencies vary, it becomes likely that changes in for example 

macroeconomic variables affect returns differently. A cryptocurrency mainly used for 

transactions should likely be positively affected by a favourable financial environment, for 

example its demand should increase as the stock indices improve. In contrast, if a 

cryptocurrency is used as a hedge against macroeconomic instability, its demand should 

increase as stock indices deteriorate or as volatility indices increase.  

 

3.2.1 Monetary velocity 

The monetary velocity of a cryptocurrency describes the rate at which money is exchanged in 

the cryptocurrency economy, i.e. how fast a cryptocurrency passes from one owner to the next. 

This offers a measure of the perceived usefulness of a cryptocurrency, and thus a higher 

monetary velocity could contribute to an increase in demand for a cryptocurrency. This might 

be particularly important depending on the target market of the token. Business-oriented 

cryptocurrencies that explicitly seek to provide commercial applications might benefit more 

from a higher perceived usefulness of the cryptocurrency, as compared to cryptocurrencies 

targeting content creators online. For cryptocurrencies such as Tron, a higher monetary velocity 

might still increase demand but it is likely not as critical as for cryptocurrencies targeting 
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business applications. Cryptocurrencies that target generic markets could end up on both ends 

of the spectrum. The monetary velocity can be proxied by for example output volume 

(Bouoiyour & Selmi, 2015), number of transactions performed (Polasik et al., 2015) or days 

destroyed per transaction (Ciaian et al., 2016). Bouoiyour & Selmi (2015) find no significant 

impact from monetary velocity on the logarithmized Bitcoin prices. In their later analysis, they 

discover a significant positive effect when looking at the whole sample and a negative effect 

that is significant for the bear state quantiles (Bouoiyour & Selmi, 2017). Polasik et al. (2015) 

shows that monthly change in number of Bitcoin transactions have a significant positive impact 

on Bitcoin returns. Ciaian et al. (2016) find no significant impact of days destroyed on Bitcoin 

prices.  

 

H3: Variations in monetary velocity do not create any differences in determinants of returns of 

cryptocurrencies. 

 

3.2.2 Network effects – first mover advantage 

One particular characteristic of the cryptocurrencies market is a strong presence of positive 

network effects. Currencies traditionally display large positive network effects since a currency 

is more useful when more people adopt it, and the more popular it becomes the more easily it 

can attract new users (Gandal & Halaburda, 2014). Markets with strong network effects often 

have unsTable competition since larger networks have an advantage which increases as new 

users join or switch from existing products (Waldman & Jensen, 2016). Further, the presence 

of network effects often creates multiple equilibria, either a lot of people join the platform 

because they expect a lot of people to join or the exact opposite could happen, that people do 

not join since they expect few others to join (Gans & Halaburda, 2013). This tipping effect 

makes it difficult for smaller networks to stay in business unless they display distinguishing 

characteristics and thereby the presence of network effects in a market affects competition since 

it makes entry more difficult (Waldman & Jensen, 2016). 

 

Given the presence of network effects, it becomes relevant to look at the date of implementation 

for each cryptocurrency. Generally, we would expect older cryptocurrencies to have taken a 

larger share of the market and therefore be perceived as more useful for future transactions, 

thus the increased demand should lead to higher returns. The previously accounted literature 

has not used date of implementation as an explanatory variable when studying cryptocurrencies’ 

returns. A decision likely made due to the difficulty in including a variable measuring a specific 

date without introducing multicollinearity into the model. One alternative way to look at the 
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matter is offered by Li and Wang (2017). They split their analysis of Bitcoin exchange rate 

towards the USD into early market (2011-01-01 – 2013-12-31) and late market (after closing 

of Mt.Gox, measured from 2013-12-31) (Li and Wang, 2017). This allows them to evaluate 

differences between early years of implementation and later years where Bitcoin had become 

more established. Comparing across different time periods offers a way to circumvent the 

potential problems of multicollinearity and still evaluate development over time for a specific 

cryptocurrency. It also makes it possible to divide and compare the sample of cryptocurrencies 

by their date of implementation. 

 

H4: Variations in date of implementation do not create any differences in determinants of returns 

of cryptocurrencies. 

 

3.2.3 Network effects – reinforcement effect 

Another consequence of network effects could be a reinforcement effect seen in the movement 

towards one strong currency, a “winner-takes-all” race (Gandal & Halaburda, 2014). 

Alternatively, if speculation is the main focus of investors, the network effects could give rise 

to a substitution effect. For example, as Bitcoin become more popular and more expensive, 

users could begin to worry that it might be overvalued and look for an alternative 

cryptocurrency investment (Gandal & Halaburda, 2014). By including lagged values of returns 

for some of the major cryptocurrencies a proxy for these potential effects could be captured. 

The lead in a “winner-takes-all” race should be negatively impacted by increases in returns of 

other cryptocurrencies. Cryptocurrencies presented as alternative investment should be 

positively impacted by increases in returns of the lead of the “winner-takes-all” race. The 

network effects could help to explain the different roles of cryptocurrencies by highlighting 

their position as for example incumbents in the market. Consequently, heterogeneity in 

cryptocurrencies market capitalisation could lead to different positions, with Bitcoin likely 

leading a potential “winner-takes-all” race whereas other cryptocurrencies could be more 

affected by a potential substitution effect. 

 

H5: Lagged values of returns for competing cryptocurrencies do not create any differences in 

determinants of returns of cryptocurrencies. There is no distinguishable move towards either a 

“winner-takes-all” race or a substitution effect. 
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3.2.4 Speculation 

Part of what drives demand in the cryptocurrency market is the expected profits of holding a 

cryptocurrency and selling it later, the speculative element (Cheah & Fry, 2015; Baur, Dimpfl 

& Kuck, 2018). Depending on the intended use for the token, the speculative element might be 

more or less important. Cryptocurrencies used for transactions might be held for a shorter time 

and thereby the speculative element could be less noticeable. For cryptocurrencies intended for 

use in applications, a new development might have a long-term perspective before it pays off, 

which in turn offers potential profits of holding the currency. The intrinsic value of a 

cryptocurrency is zero since no underlying asset value exists (Cheah & Fry, 2015). Thus, the 

price of a cryptocurrency is driven by the investor’s faith in future expected profits and 

perpetual growth, which in turn makes investor sentiment an important variable (Kristoufek, 

2013). This is proxied by investor attention through measures of Google searches (Kristoufek, 

2013; Bouyoir and Selmi 2015), possibly further decomposed into above or below trend values 

(Panagiotidis, Stengos & Vravosinos, 2018). 

 

Kristoufek (2013) proxies investor attention by Google and Wikipedia searches. He finds that 

the number of searches is significant in explaining Bitcoin prices but that the effect varies 

depending on the state of the Bitcoin market, the effect is positive when Bitcoin prices are above 

their trend value and negative when prices are below the trend value (Kristoufek, 2013). 

Panagotidis et al. (2018) find similar significant effects of Google searches on Bitcoin returns 

above and below trend, the strongest effect being with above trend values. Bouyoir and Selmi 

(2015) use total number of Google searches as a proxy for investor attention, which yields a 

significant positive effect on the logarithmized Bitcoin price in the short run but no effect in the 

long run. In a later analysis, they choose to use Google search queries for two countries of 

particular interest for their paper, India and Venezuela (Bouyoir & Selmi, 2017). They find a 

significant positive effect on Bitcoin price index when the market is functioning around normal 

and bull regimes (Bouyoir & Selmi, 2017). Li and Wang (2017) use Google searches and 

number of Twitter tweets and find a significant positive effect for both measures on the 

exchange rate of Bitcoin towards the USD in the early market period, whereas in the late market 

period the effect only remains for Google searches. Ciaian et al. (2016) find similar results using 

views on Wikipedia, a significant positive impact on Bitcoin prices but no effect in the long 

run. One potential explanation for this is that the information found on Wikipedia is at a basic 

level which in the long run has already become known to most users (Ciaian et al., 2016). 

Polasik et al. (2015) find a significant positive impact on Bitcoin returns from both percentage 
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increase in Google searches and percentage increase in number of articles mentioning Bitcoin. 

 

H6: Variations in level of speculation, proxied by investor attention, do not create any 

differences in determinants of returns of cryptocurrencies. 

 
 

3.2.5 Macroeconomic and financial development 

The decentralized nature of cryptocurrencies implies that traditional macroeconomic drivers of 

supply and demand for a currency do not directly influence the pricing mechanism. To offer a 

comparison, a traditional currency could adjust the exchange rate to accommodate changes in 

GDP, unemployment and financial status in the home country of the central issuer. For the 

USD, macroeconomic factors in the US are essential in explaining the price of the currency. 

However, in the case of cryptocurrencies the lack of a central issuer means that the potential 

impact of macroeconomic factors and financial indicators work in a more indirect manner. 

 

One example of a potential channel could be if favourable macroeconomic and financial 

development led to increased use of cryptocurrencies in trade and exchanges and thereby 

strengthened its demand, which in turn could have a positive impact on returns (Bouri et al., 

2017). This effect could be stronger for cryptocurrencies targeting individual users and 

transactions as these might be more influenced by general movements on the market. Ciaian et 

al. (2016) find that global macroeconomic and financial developments, such as the Dow Jones 

index and oil prices, do not significantly impact Bitcoin prices in the long run. Similarly, 

Bouyoir and Selmi (2017) show a short run positive impact from the Shanghai market index on 

the logarithmized Bitcoin prices but the effect does not remain in the long run. Panagotidis et 

al. (2018) find a positive effect of increases in the Nikkei index and oil prices on Bitcoin returns, 

however the overall effects from the stock markets are mixed. 

 

H7: Variations in macroeconomic and financial development do not create any differences in 

determinants of returns of cryptocurrencies. 

 

3.2.6 Uncertainty 

An alternative channel is offered by the possibility to use cryptocurrencies for hedging against 

traditional asset classes (Dyhrberg, 2016; Baur et al., 2015). This is likely a more advanced 

strategy and perhaps not something the average individual investor will attempt. If some 

cryptocurrencies are perceived as less related to the traditional markets, they could be used to 

hedge against this uncertainty. For example, an ability to hedge global uncertainty could 
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increase demand for a cryptocurrency when the traditional economy experiences a downturn, 

thereby raising the price and increasing the return. Panagotidis et al. (2018) find a significant 

negative effect on Bitcoin returns from increases in both Chinese and British uncertainty 

indices. Bouri et al. (2017) show that for short-term frequencies Bitcoin display some hedging 

capacities when the market is in bull regime, but in the bear regime they find a significant 

negative impact from the world uncertainty index on Bitcoin returns. Bouoyir and Selmi (2017) 

find a positive effect on the Bitcoin price index from the US volatility index when the market 

is in normal mode and from the British volatility index when the market is in bull state.  

 

H8: Variations in global and regional uncertainty do not create any differences in determinants 

of returns of cryptocurrencies. 

 

3.2.7 Hedge 

Traditional assets used for hedging include gold and fiat currencies. Thus, increases in those 

variables could signal a move towards more hedging which in turn could also increase demand 

for cryptocurrencies that are perceived as more suitable to use for hedging. Panagotidis et al. 

(2018) discover that the gold price and exchange rates have a positive effect on Bitcoin returns 

but only the gold price is significant. Bouoyoir and Selmi (2015) find no significant effect of 

gold price on the logarithmized Bitcoin prices. However, in their later analysis they find a 

negative effect of gold price on the Bitcoin price index when the market is in bear state, and a 

significant negative effect of the Chinese Yuan when the market is in bull state (Bouoyoir & 

Selmi, 2017). 

 

H9: Variations in financial development for assets traditionally used for hedging do not create 

any differences in determinants of returns of cryptocurrencies. 
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4. Data  

This section describes the data used and the variables selected in order to test the hypotheses. 

Section 4.1 describes the sample of cryptocurrencies used with a final list in Table 4. Section 

4.2 describes the dependent variable, cryptocurrency’s return, and transformations conducted. 

Section 4.3. describes the independent variables, divided into cryptocurrency specific variables 

in section 4.3.1 (summary statistics in Table 6) and variables that remain the same regardless 

of which cryptocurrency is investigated in section 4.3.2 (summary statistics in Table 7). Section 

4.4 describes regression diagnostics and unit root tests.  

4.1 Sample  

The subset of cryptocurrencies was selected if they had a large userbase relative to other 

cryptocurrencies, along the lines of Burnie (2018). For a cryptocurrency with a smaller userbase 

there will be a smaller number of buyers and sellers at any given point in time. Thus, sellers 

and buyers might need to adjust their prices to encourage sufficient demand and supply for their 

desired transaction. This increases the volatility of prices for smaller cryptocurrencies, which 

in turn will be driven by random noise (Burnie, 2018).  

A userbase can be either measured by market capitalisation or liquidity (Burnie, 2018). First a 

list of the recent top ten cryptocurrencies, ranked by either market capitalisation or liquidity 

(measured as total exchange volume), were compiled, see Table 2 and 3. Comparing the 

resulting selection with the selection made by Burnie (2018) it was found to be almost identical, 

with the exception of Bitcoin SV (BSV) and Monero (XMR). Bitcoin Satoshi’s Vision (i.e. SV) 

was created out of a hard fork on Bitcoin Cash on November 15, 2018 

(https://www.coindesk.com/price/Bitcoin-sv, 2019-07-21). Its recent date of implementation as 

compared to the other cryptocurrencies offers too little data for comparison and thus Bitcoin 

SV was omitted from the sample. Monero has dropped from the top ten, to ranking 11 when 

looking at market capitalisation. As it still remains among the high rankings it was included in 

the sample to increase the number of cryptocurrencies evaluated.  

  

https://www.coindesk.com/price/bitcoin-sv
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Table 2: Top ten cryptocurrencies ranked by total exchange volume (USD) 
 

CRYPTOCURRENCY ABBREVIATION TOTAL EXCHANGE VOLUME (USD) 

1 Bitcoin BTC 21.04B 
2 Ethereum ETH 8.15B 
3 Litecoin LTC 3.35B 
4 EOS EOS 2.18B 
5 Ripple XRP 1.64B 
6 Bitcoin Cash BCH 1.5B 
7 Ethereum Classic ETC 578.74M 
8 Tron TRX 549.68M 
9 Stellar XLM 495.90M 

10 NEO NEO 474.53M 
Source: https://www.coindesk.com/data (2019-07-21) 

 
Table 3: Top ten cryptocurrencies ranked by market capitalisation (USD) 

 
CRYPTOCURRENCY ABBREVIATION MARKET CAPITALISATION (USD) 

1 Bitcoin BTC 190.45B 
2 Ethereum ETH 24.28B 
3 Ripple XRP 13.18B 
4 Litecoin LTC 6.26B 
5 Bitcoin Cash BCH 5.87B 
6 EOS EOS 4.36B 
7 Bitcoin SV BSV 3.17B 
8 Tron TRX 1.99B 
9 Stellar XLM 1.82B 

10 Cardano  ADA 1.62B 
Source: https://www.coindesk.com/data (2019-07-21) 

The final sample of cryptocurrencies thus include 12 cryptocurrencies, listed with date of 

implementation and abbreviation in Table 4. For simplicity in Tables and ease of reading, the 

abbreviations listed in Table 4 are continuously used throughout the analysis.  

 

For an overview of the data used and its sources see Table 5. The cryptocurrency specific data 

were retrieved from CoinMetrics 2019-04-30. The data used covers the period 2013-10-02 to 

2018-04-01. For more details and motivation for the time periods selected, see Section 5.2. Data 

that is not in a daily frequency or that is in a 5-day frequency has been linearly interpolated to 

a 7-day frequency. The starting date is chosen to exclude the early-adoption phase of the first 

cryptocurrencies. The early adoption phase of cryptocurrencies mainly consist of data on 

Bitcoin prices, few transactions, low prices and small price fluctuations. Thus, for a comparison 

of homogeneity among cryptocurrencies the early adoption phase offers little additional 

information and its specific characteristics risk distorting the results. All variables are 

transformed to logarithmic first differences so that they are stationary and their coefficients 

https://www.coindesk.com/data
https://www.coindesk.com/data


20 
 

comparable, more details in Section 4.5. After transformation all variables were found to be 

stationary, i.e. I(0), more details in Appendix E.  

 
Table 4: Cryptocurrencies used and their abbreviations 

Cryptocurrency Implementation Abbreviation 

Bitcoin BTC 2009-01-03 BTC 

Litecoin LTC 2011-10-07 LTC 

Ripple XRP 2013-01-02 XRP 

Monero XMR 2014-04-18 XMR 

 Stellar XLM 2014-08-05 XLM 

Ethereum cl ETC 2015-07-30 ETC 

Ethereum ETH 2015-07-30 ETH 

NEO 2016-09-09 NEO 

EOS 2017-06-20 EOS 

Bitcoin cash BCH 2017-07-23 BCH 

Tron TRX 2017-08-28 TRX 

Cardano ADA 2017-09-24 ADA 
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4.2 Dependent variable  

Previous research has used returns measured on a monthly (Polasik et al., 2015), daily 

(Panagotidis et al., 2018; Balcilar Bouri, Gupta & Roubaud, 2017) or various frequencies basis 

(Bouri et al., 2017). It can also be measured as prices (Ciaian et al., 2016; Kristoufek, 2013), 

sometimes logarithmized (Bouyoir & Selmi, 2015), exchange rate of the cryptocurrency 

towards the USD (Li and Wang, 2017) or through a daily price index (Bouyoir & Selmi, 2017). 

This paper uses returns measured on a daily basis, transforming the daily prices to a first 

difference log return of each cryptocurrency.  

 

This paper uses the available daily (7-day) pricing data in USD for each cryptocurrency. In 

order to ensure stationarity and comparability of the data a log transformation is conducted as 

well as a first difference calculation of returns: 

𝑦𝑖𝑡 = ∆ln(𝑝𝑖𝑡) = ln(𝑝𝑖𝑡) − ln(𝑝𝑖,𝑡−𝑘) 

Where 𝑝𝑖𝑡 is the price of a cryptocurrency, 𝑦𝑖𝑡 is the first difference log return of cryptocurrency 

𝑖 where𝑖 = 1, 2 … ,𝑁, at time t. k is the number of lags specified and for the first difference 

returns k=1, i.e. a lag of one day. 

4.3 Independent variables 

The independent variables can be described as a vector of the form 𝒙𝒊 = (𝑥𝑖1, … , 𝑥𝑖𝑝)
𝑇
for each 

cryptocurrency 𝑖 where𝑖 = 1, 2 … ,𝑁, at time t. Among the independent variables some 

variables are cryptocurrency specific, i.e. they are variables that in one way or another 

characterise a specific cryptocurrency, such as that cryptocurrency’s exchange volume at a 

certain date. Other variables are not cryptocurrency specific, i.e. they take on the same values 

regardless of cryptocurrency. 

Table 5 offers an overview of the independent variables used to test each hypothesis and their 

sources. Table 6 presents summary statistics for independent variables that are cryptocurrency 

specific and Table 7 presents the summary statistics for the other variables. 
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Table 5: Overview of independent variables 

 

Note: CCC is the abbreviation of three letters used to identify each cryptocurrency, as listed in Table 4. Today 

means data is updated regularly to give a data availability up until present day, if nothing else is specified the 

acquired data stretches to 2019-06-08. 

 

4.3.1 Cryptocurrency specific independent variables 

Table 6 presents the descriptive statistics for the variables that are cryptocurrency-specific, 

measured before the transformation of the data. The data used for each sub-hypothesis is then 

described in the following paragraphs. 

Table 6: Summary statistics for independent variables that are cryptocurrency-specific 

 

4.3.1.1 Tokens in circulation 

Number of tokens in circulation can be quantified by looking at the current circulating supply. 

CoinMetrics provides a measure of the number of new coins that are brought into existence 

each day, calculated as the expected number of tokens per block in the blockchain every ten 

minutes, summed to a daily value of new coins (CoinMetrics, 2018). By summing generated 

Hypothesis Variable [original code] Code Source
Original 

frequency
Data availability

H1 Number of tokens in circulation circulating Coinmetrics
Daily (7-day)

The data sample stretches back to December 2013, but starts 

for each cryptocurrency at the time of its introduction

H2 Average difficulty averagedifficulty Coinmetrics
Daily (7-day)

The data sample stretches back to December 2013, but starts 

for each cryptocurrency at the time of its introduction

H3 Exchange volume exchangevolumeusd Coinmetrics
Daily (7-day)

The data sample stretches back to December 2013, but starts 

for each cryptocurrency at the time of its introduction

H4 Year of implementation introduction Coinmetrics n/a n/a

H5

Lagged values of log returns of other 

cryptocurrencies (lag=1)
L.LreturnCCC Coinmetrics Daily (7-day)

The data sample stretches back to December 2013, but starts 

for each cryptocurrency at the time of its introduction

H6 Google searches google GoogleTrends Weekly Start varies across cryptocurrencies, available to today

S&P500 index [GSPC] SP500 YahooFinance Daily (5-day) To today

NYSE index [NYA] NYSE YahooFinance Daily (5-day) To today

AMEX index [XMI] AMEX YahooFinance Daily (5-day) To today

NASDAQ index [IXIC] NASDAQ YahooFinance Daily (5-day) To today

Nikkei225 index [N225] NIKKEI YahooFinance Daily (5-day) To today

Shanghai Composite Index (SSE) SSE YahooFinance Daily (5-day) To today

Oil price Oil Quandl/OPEC/ORB Daily (5-day) 2001-03-02 to today

US policy uncertainty index [USEPU] USEPU
policyuncertainty.co

m Monthly
1985 to april 2019

Europe policy uncertainty index [EEPU] EEPU
policyuncertainty.co

m Monthly
2011 to april 2019

China policy uncertainty index [CEPU] CEPU
policyuncertainty.co

m Monthly
1995 to april 2019

CBOE S&P500 Volatility index [VIX] VIX WRDS/CBOE Daily (5-day) To 2019-05-31

CBOE S&P100 Volatility index [VXO] VXO WRDS/CBOE Daily (5-day) To 2019-05-31

CBOE NASDAQ Volatility index [VXN] VXN WRDS/CBOE Daily (5-day) To 2019-05-31

Exchange rate for People's Republic of China 

(Yuan/US$)
exchus ECB Daily (5-day) To today

Exchange rate for Japan (Yen/US$) exjpus ECB Daily (5-day) To today

Exchange rate for United Kingdom Pound 

(Pound/US$)
exukus ECB Daily (5-day) To today

Exchange rate for European Monetary Union 

(Euro/US$)
exeuus ECB Daily (5-day) To today

Gold price Gold Quandl/WGC Daily (5-day) 1969-12-29 to today

H7

H8

H9

ADA BCH BTC EOS ETC ETH LTC NEO TRX XLM XMR XRP
Price in USD: mean (st. dev.) 0.17 (0.19) 766.23 (633.12) 2 547.11 (3 424.60) 5.61 (4.19) 11.21 (9.56) 205.26 (266.37) 33.90 (54.19) 26.66 (34.62) 0.032 (0.027) 0.075  (0.13) 53.67 (86.89) 0.78 (0.34)

Price in USD: min/max 0.018/1.17 77.37 / 3 909 114.45 / 19 475.8 0.49  /  21.64 0.604 / 43.86 0.43 / 1 397.48 1.15  /  359.13 0.08  /  187.97 0.001 / 0.22 0.001 / 0.89 0.22  /  470.29 0.003 /  3.36

Return in USD: mean (st. dev.) 0.00009 (0.03) -0.63 (106.28) 1.98 (238.48) 0.0049 (0.65) 0.004 (1.29) 0.10 (21.31) 0.029 (5.19) 0.10 (3.92) 0.0004 (0.007) 0.00006 (0.015) 0.03 (8.28) 0.0001 (0.043)

Return in USD: min/max - 0.17 / 0.31 -639.28 / 1 083.97 -2 405 / 3 536.80 - 3.97   /  4.41 - 12.11 / 8.25 - 231.29  / 154.34 - 49.99  / 102.9 - 43.24 / 29.54 - 0.05 / 0.11 - 0.16  / 0.33 -97 /  94.58 - 0.92  /  0.76

Circulating supply: mean (st. dev.) n/a 652 878.5 (346 757.1) 3 472 321 (1 682 526) n/a 1.96e+07 / 1.12e+07 1.84e+07 (1.01e+07) 2.31e+07  (1.09e+07) n/a n/a n/a 1.16e+07 ( 4 649 672) n/a

Circulating supply: min/max n/a 0 / 1 222 800 4 775 / 5 843 019 n/a 39 311.09  / 3.76e+07 39 311.09 / 3.35e+07  29 550 / 3.95e+07 n/a n/a n/a 15 562.51  / 1.69e+07 n/a

Average difficulty: mean (st. dev.) n/a 3.52e+11 (1.98e+11) 1.38e+12 (2.21e+12) n/a 7.65e+13 (6.08e+13) 1.30e+15  (1.35e+15) 1 880 995 (3 324 578) n/a n/a n/a 2.16e+10  (3.10e+10) n/a

Exchangevolume: mean (st. dev.) 1.26e+08 (2.07e+08) 6.67e+08 (8.96e+08) 1.90e+09  (3.34e+09) 6.97e+08 (6.56e+08) 1.69e+08  (2.10e+08) 1.08e+09  (1.42e+09) 2.02e+08 (4.32e+08) 1.05e+08  (1.40e+08) 2.41e+08 (3.61e+08) 3.76e+07  (8.81e+07) 2.38e+07 (4.91e+07) 2.28e+08  (6.84e+08)

Exchange volume: min/max 1 739 460 / 1.71e+09 85 013 / 1.19e+10  0 / 2.38e+10 4 556 540 / 4.87e+09 267 367 / 1.73e+09  102 128  / 9.21e+09 0 / 6.96e+09 156  / 1.66e+09 26 475 / 4.09e+09  491 / 1.51e+09 7 900 /  5.44e+08 0  / 9.11e+09

Date of introduction 2017-09-24 2017-07-23 2009-01-03 2017-06-20 2015-07-30 2015-07-30 2011-10-07 2016-09-09 2017-08-28 2014-08-05 2014-04-18 2013-01-02

Google search intensity: mean (st. dev.) 6.84 (10.09) 3.30 (7.76) 8.62 / 12.52 72.50 (8.82) 13.61  (20.39) 10.66 (16.97) 8.82 (12.63) 64.81 (13.35) 30.34 (9.46) 17.75 (7.15) 8.46  (14.04) 5.04 (9.76)

observations of return 547 617 2 007 639 981 1 333 2 007 934 565 1 700 1 776 2 007

Variable: measurement

Cryptocurrency
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coins at the end of each day it is possible to create a value for current circulating supply.  

 

Unfortunately, the CoinMetrics data is only available for the major currencies, Bitcoin, 

Litecoin, Ethereum, Ethereum Classic, Monero and Bitcoin cash. Thus, this variable should be 

analysed with caution as a lack of data for minor currencies does not mean that it would not 

have proved important if the data was available. 

 

4.3.1.2 Technical drivers 

In order to test H2 a proxy for technology used is required. Commonly, this is calculated using 

hash rate. However, the data availability for this variable is only good for the largest 

cryptocurrencies, such as Bitcoin, and more lacking when it comes to other cryptocurrencies. 

Therefore, it has not been possible to find a comparable measure of hash rate for a sufficient 

subset of cryptocurrencies. Instead I use a measure from CoinMetrics, the variable average 

difficulty. This variable gives a measure for proof of work blockchains of how hard it is to solve 

the hash function in order to find a new block (CoinMetrics, 2018). Average difficulty is used 

as a proxy for hash power and is available for Bitcoin, Litecoin, Ethereum, Ethereum Classic, 

Monero and Bitcoin cash. Thus, this variable should be analysed with caution as a lack of data 

for other currencies do not signify that it would not have proved important if the data were 

available. 

 

4.3.1.3 Monetary velocity 

Two possible measures of monetary velocity are available in the CoinMetrics dataset that can 

be used to test H3, namely transaction count and output volume. Transaction count measures 

the number of transactions happening on the public blockchain per day (CoinMetrics, 2018). A 

problem with this measurement is that blockchains with low transaction fees typically have 

more and sometimes smaller transactions. Additionally, some networks, like Bitcoin, can 

collect several transactions into one which will then underestimate the true value (CoinMetrics, 

2018). Thus, this measure is difficult to use for comparison across different cryptocurrencies 

even if the variable is consistent over time within each cryptocurrency.  

 

A more general approach is offered by the output volume, the total volume of all transaction 

outputs per day. This is measured as exchange volume in the CoinMetrics dataset which is the 

dollar value of the volume of each cryptocurrency at major exchanges such as GDAX and 

Bitfinex (CoinMetrics, 2018). It does not include data on over-the-counter exchanges or other 

trading platforms, a meaningful proportion of all global exchange, but gives a general image of 

output volume. The use of both variables, transaction count and output volume, would likely 
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result in multicollinearity in the model since number of transactions is one of the variables that 

contributes to the calculation of output volume. Combining this with the risks associated with 

the variable for transaction count makes exchange volume the better proxy for monetary 

velocity and thus this is used for the analysis. 

 

4.3.1.4 Network effects – first mover advantage 

The potential first mover advantage resulting from network effects, specified in H4, is measured 

by comparing cryptocurrencies based on date of implementation across three different time 

periods, more details in section 5.2. This allows to compare the cryptocurrencies that had been 

implemented in or before the relevant time period and thereby identify common variables in 

the resulting models for early or later cryptocurrencies. 

 

As the data sample for each cryptocurrency starts at the time of its introduction, the date of 

implementation, described in Table 4, is measured as the first date for which data is available 

on the cryptocurrency in the CoinMetrics dataset. Often, this also corresponds to the date of the 

first transaction, however not in all cases. A possible explanation for this could be that it takes 

some time to mine sufficient funds, depending on rules governing supply, to make the first 

transactions relevant for the cryptocurrency. 

 

4.3.1.5 Network effects – reinforcement effect 

The possible impact of network effects, as examined in H5, can be seen through reinforcement 

or substitution effects in the interaction between cryptocurrencies’ returns and how they affect 

each other. This can be measured by including lagged values of returns for the other 

cryptocurrencies, using the same calculations for each dependent variable as described in 4.1 

and a lag of 1. A lag of 1 captures the short-term interactions on the cryptocurrency market and 

can give an adequate image of swift interactions between cryptocurrencies. However, it does 

not capture long-term movements on the market, and the potential impacts should be interpreted 

with caution. A deeper analysis into long-term movements on the markets and the inclusion of 

various lengths of lags for the returns of each cryptocurrency is beyond the scope of this paper 

but could offer opportunities for future research, for example by evaluating the optimal lag 

length to be included in the model.  

 

4.3.1.6 Speculation 

Several proxies for investor attention are available in order to test H6, such as Wikipedia and 

Google searches and number of mentions in newspapers. One disadvantage of search history 

on Wikipedia is that the available information is relatively basic. Thus it is important in the 
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early stages of adoption for new users seeking a general understanding, but in the later stages 

the information becomes less relevant. As a consequence, number of searches will naturally 

decrease over time. Additionally, a quantification of mentions in newspapers for each 

cryptocurrency would prove a too extensive analysis to be suitable for the extent of this paper.  

 

Google searches offer a general measure of interest over time, indirectly capturing both 

Wikipedia searches and mentions in newspaper as these will appear throughout the search 

history. Thus, for testing H6 investor attention is proxied by worldwide Google searches for the 

name of the cryptocurrency, available as weekly data from GoogleTrends (2019). The variable 

gives an index measure of the interest over time, ranging from 0 to a value of 100 for when the 

interest is at its peak, i.e. the highest number of Google searches (Google Trends, 2019). Thus, 

a value of 50 indicates that the search term is half as popular as during the peak. A value of 0 

indicates that data is missing for the time period. 

 

Google searches might be a rough proxy for some cryptocurrencies with more general names, 

as their search statistics might include a broader than intended search history. Further I have 

not taken potential misspellings into account. For a general measure of changes in investor 

attention this could suffice, particularly given the distinct names of several of the 

cryptocurrencies.  
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4.3.2 Not cryptocurrency specific independent variables  

Table 7 presents the descriptive statistics for the variables that are not cryptocurrency-

specific, measured before the transformation of the data.  

Table 7: Summary statistics for independent variables that are not cryptocurrency-specific 

 

4.3.2.1 Macroeconomic and financial development 

Changes in macroeconomic and financial development can be quantified by a large variety of 

variables. In this paper, I have focused on the potential channel offered by stock markets and 

oil prices. Both are likely influenced by and thereby able to signal changes in macroeconomic 

and financial development. This makes them relevant proxies in order to test H7.  

 

Changes in regional stock markets is quantified by stock indices. This paper looks at prices for 

several indices measured on a 5-day week: S&P500, NYSE, AMEX, NASDAQ, Nikkei225 and 

Shanghai Composite Index. Changes in oil price are measured by the reference price of the 

OPEC Crude Oil Basket. This currently includes Saharan Blend (Algeria), Girassol (Angola), 

Oriente (Ecuador), Iran Heavy (Islamic Republic of Iran), Basra Light (Iraq), Kuwait Export 

(Kuwait), Es Sider (Libya), Bonny Light (Nigeria), Qatar Marine (Qatar), Arab Light (Saudi 

Arabia), Murban (UAE) and Merey (Venezuela) (Quandl, 2019b). 

 

4.3.2.2 Uncertainty 

In order to test H8 several measures of uncertainty were used, such as the volatility indices 

(VIX) calculated by CBOE.  The VIX index calculations by CBOE are based on the midpoints 

of bid/ask quotes for options on each index, thereby offering an estimate of expected volatility 

of the respective equity market (CBOE, 2019). Measures of volatility indices included are 

Hypothesis Variable Obs Mean Std. Dev. Min Max

SP500 2 008 2254,87 331,03 1655,45 2930,75

NYSE 2 008 11236,00 984,60 9029,88 13637,02

AMEX 2 008 2053,40 295,39 1592,94 2676,69

NASDAQ 2 008 5596,58 1200,10 3677,78 8109,69

NIKKEI 2 008 18740,75 2678,55 13853,32 24270,62

SSE 2 008 2975,65 573,78 1991,25 5166,35

Oil 2 008 63,76 22,63 22,48 110,48

USEPU 2 008 109,69 21,03 71,26 201,03

EEPU 2 008 203,23 60,23 111,80 433,28

CEPU 2 008 212,57 223,37 8,02 1071,73

VIX 2 008 14,94 4,19 9,14 40,74

VXO 2 008 14,35 4,74 6,32 37,66

VXN 2 008 17,55 4,49 10,31 42,95

exeuus 2 008 0,85 0,07 0,72 0,96

exjpus 2 008 111,09 6,67 96,86 125,28

exukus 2 008 0,70 0,07 0,58 0,83

exchus 2 008 6,49 0,28 6,04 6,97

Gold 2 008 1244,17 68,08 1049,40 1385,00H9

H8

H7
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CBOE S&P500 VIX, CBOE S&P100 VIX and CBOE NASDAQ VIX. 

 

Further a measure of political uncertainty for the US (USEPU), Europe (EEPU) and China 

(CEPU) were included. This is offered by Economic Policy uncertainty calculating a monthly 

index based on three underlying components: A quantification of newspaper coverage related 

to policy-related economic uncertainty, a measure of the number of federal tax code provisions 

set to expire in future years and a third measure that use disagreement among economic 

forecasters as a proxy for uncertainty (Economic Policy Uncertainty, 2019).  

 

4.3.2.3 Hedging 

In order to evaluate the connection to hedging in H9 several measures of classical hedging 

instruments were selected, such as exchange rate for major currencies and an index price for 

gold. The exchange rate to USD was included for the People’s Republic of China (Yuan, 

exchus), for Japan (Yen, exjpus), for United Kingdom (Pound, exukus) and for the European 

Monetary Union (Euro, exeuus). The exchange rates were acquired from the Euro reference 

rates presented by the ECB and recalculated to dollar-based values for ease of comparison with 

previous research. 

 

The World Gold Council (WGC) is the market development organization for the gold industry 

and their 23 members comprise the world’s leading gold mining companies (Quandl, 2019a). 

Thus, the WGC gold price index denominated in USD offers a good measure of developments 

in gold prices.  

 

4.4 Stationarity 

A time series displays strict stationarity if the joint distribution of its observations is invariant 

under time shift (Tsay, 2014). A more common assumption is weak stationarity in which both 

the mean of the observations and the covariance between observations at different points in 

time are time invariant (Tsay, 2014). Regressions of interdependent and non-stationary time 

series may lead to spurious results (Ciaian et al., 2016). Price series are commonly believed to 

be non-stationary whereas return series, 𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1), are stationary (Tsay, 2014). 

 

Stationarity problems in previous research on cryptocurrencies have been dealt with in various 

ways. Li and Wang (2017) transform their variables by taking the first difference in order to 

address the non-stationarity in some of their variables. If variables are cointegrated and a first 

difference of the data is conducted some of this information will be lost. Thus, a first difference 
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model can still fail in identification when variables exhibit long-term equilibrium relationships. 

Li and Wang (2017) address this problem by applying a Vector Error Correction Model 

(VECM). Kristoufek (2013) tests all standard transformations of the original series, i.e. 

logarithmic transformation, the first differences and the first logarithmic differences, and his 

final choice is an application of a Vector Auto Regressive (VAR) and a VECM model. In order 

to further address co-integration in a mix of stationary and non-stationary time-series, Li and 

Wang (2017) use the autoregressive distributed lag (ARDL) model with a bounds test approach 

in their estimation. Similarly, the ARDL model with different specifications is used by Ciaian 

et al. (2016) and Bouyoir & Selmi (2015). As stationarity is a requirement for quantile 

regression Balcilar et al. (2017) choose to transform Bitcoin index and volume data to stationary 

returns, obtained as the first differences of the natural logarithmic values of the index expressed 

in percentage. In order to address stationarity problems, Panagotidis et al. (2018) use 

logarithmic first differences for most of the variables used. 

To investigate stationarity in the data unit root tests were conducted using the Augmented 

Dickey Fuller test for stationarity with different specifications, both including and excluding a 

potential trend. The results from the unit root tests were mixed across variables, suggesting that 

some of the time-series used were not stationary, see Table E2 in Appendix E.  

 

A differencing of variables was conducted to ensure stationarity in the data. Thereby 

transforming them to return series 𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1) similar to Balcilar et al. (2017) and 

Panagotidis et al. (2018). This transformation yields more comparable measures of growth rates 

across all variables. Variables that were already stationary before the transformation were still 

transformed for ease of comparison. Further, there should be no presence of a trend component 

in a stationary time series, but the results from the unit root tests suggests that there could be 

some impact of a trend, see Table E2 in Appendix E. As an extra precaution a trend variable, 

Trend, was included in order to ensure that there are no potential problems with time trends in 

the data. The variable Trend is continuously defined as 1 for the first observation, 2 for the 

second, 3 for the third observation and so on.  

 

After the log first difference transformation of the data all variables displayed stationary time 

series. Table E2 in Appendix E shows the detailed results of the augmented Dickey Fuller test 

before and after the log first difference transformation of the data.  
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Cointegration has not been tested for which could lead to problems such as some loss of 

information in the data. This could present a point for future research as the presence of 

cointegration would make a VECM or an ADL a better model choice for investigating the 

returns of cryptocurrencies. However, for a general overview the LASSO gives comparable 

results and it has therefore been the choice of this paper.  

4.5 Autocorrelation 

A common problem when looking at time series pricing data is autocorrelation, i.e. serial 

correlation, the tendency for one observation to be correlated with previous observations 

(Angrist & Pischke, 2008). The presence of autocorrelation can be a result of misspecification 

of variables or omission of relevant explanatory variables (Verbeek, 2017). An OLS regression 

with these properties could yield inconsistent estimators (Tsay, 2014). Polasik et al. (2015) use 

both Durbin-Watson and Breusch-Godfrey tests and find no autocorrelation at lag one and no 

residual serial correlation in their data, therefore choosing to use OLS regression. They further 

identify that some of their regressions suffer from an endogeneity and simultaneity problem, 

which they try to solve by using Instrument Variable (IV) regression (Polasik et al., 2015). 

When evaluating the available data for each cryptocurrency the Durbin–Watson statistics are 

close to 2, indicating that first-order residual autocorrelation is not a problem. For more detailed 

results see Table E1 in Appendix E.  

4.6 Other potential problems  

Balcilar et al. (2017) find that the evidence gained from linear models is not robust to the 

presence of non-linearity and structural breaks in the data. They suggest quantile regression in 

order to test for causality not only in means, but also in other quantiles, i.e. upper or lower 

quantiles (Balcilar et al., 2017). Similarly, Bouri et al. (2017) argue that the use of quantile 

regression involves a set of regression curves that differ across different quantiles of the 

conditional distribution of the dependent variable. However, one shortcoming of the quantile 

regression analysis approach is its inability to capture dependence in its entirety (Bouri et al., 

2017). Allowing for differences across quantiles is particularly important if the distribution has 

fat tails, further it offers the opportunity to divide the market into three states: bear (lower 

quantiles), normal (median), and bull (upper quantiles) (Balcilar et al., 2017). In their second 

analysis Bouoyir and Selmi (2017) use Bayesian quantile regression with the similar division 

of the market into three states, finding that the state of the market matters for the impact of 

variables. 
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Panagotidis et al. (2018) employ the Least Absolute Shrinkage and Selection Operator 

(LASSO) framework, based on the least-squares approach it considers all potential drivers for 

changes in the dependent variables but only a subset of the covariates is selected. LASSO is a 

selection procedure that allows for coefficient shrinkage (even setting some to zero), thereby 

automating model selection in linear regression (Panagotidis et al., 2018). In order to address 

structural breaks in the data, Panagotidis et al. (2018) consider both the full sample and a 

division into three sub-periods. The first period corresponds to an early-adoption phase with 

relatively low volatility (July 24th 2010 to October 1st 2013), the second period begins with the 

boom in late 2013 and the Mt.Gox’s bankruptcy and corresponds to the crash and gradual 

recovery of Bitcoin (October 2nd 2013 to January 3rd 2017), whereas the last period corresponds 

to the recent alleged bubble (January 4th 2017 to June 23rd 2017) (Panagotidis et al., 2018). 

 

A deeper investigation into quantile regression lies beyond the scope of this paper given the 

number of cryptocurrencies to be evaluated. Structural breaks on the other hand could have an 

impact on the data used and will be considered, more details in the method section 5.2 structural 

stability. 

5. Method  

Panagotidis et al. (2018) describes the advantage of using LASSO regression as it allows to 

consider all potential drivers but only a subset of the variables is selected. Using the LASSO-

approach for testing the hypotheses exploits the variance-bias trade-off, the LASSO reduces the 

complexity for the model, through shrinking or setting some coefficients to zero, thereby 

decreasing the variance of the prediction. However, in doing so it allows for a potential bias to 

be introduced into the model. This bias risk making the magnitudes of the estimated effects less 

reliable and one should be cautious when interpreting them. The aim of this paper is to evaluate 

homogeneity among cryptocurrencies, for this purpose the selection, direction of impact and 

relative importance of potential drivers of returns for each cryptocurrency gives enough 

information in order to evaluate the hypotheses. Thus, for the remaining of this paper the 

analysis will not discuss the exact magnitudes of the results found but rather focus on the bigger 

picture of homogeneity among cryptocurrencies. 

In order to prove or disprove homogeneity the exact magnitude might not be of the highest 

importance, but rather that the selection and relative importance of the potential drivers of 

returns are the same for all cryptocurrencies. That is, if we take the resulting models from a 
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LASSO-approach and rank the strength of the impact of the coefficients, a similar ranking for 

all cryptocurrencies should be found if they are homogenous. For example, if Bitcoin is seen as 

a representative currency with A, B and C as its strongest drivers of returns then this should be 

the same for all other cryptocurrencies. For example, results showing that Ethereum have B, D 

and F as its strongest drivers of returns would disprove the homogeneity assumption. For a 

visualisation see Figure 3.   

 

Figure 3: Example of expected results with homogeneity as compared to heterogeneity 

 

5.1 LASSO 

The Least Absolute Shrinkage and Selection operator (LASSO) was first introduced by Robert 

Tibshirani (1996). The LASSO methodology is a penalized least squares technique which by 

using a constraint allows some coefficients to shrink towards or be exactly 0 (Tibshirani, 1996). 

One underlying assumption for the LASSO regressions is sparsity, that the underlying true 

model of the data is sparse and that we seek a sparse solution in which many of the estimators, 

�̂�, are equal to zero (Gauraha, 2018). This assumption makes the LASSO able to handle high-

dimensional models where the number of regressors are large, possibly even exceeding the 

number of observations. Taken together, this makes the LASSO able of producing both 

interpreTable models similar to subset selection and sTable estimates similar to Ridge 

regression (Tibshirani, 1996).  

Similar to the OLS methodology, the LASSO minimizes the residual sum of squares. However, 

the LASSO tries to address two of the main reasons for why OLS regression often yield non-

satisfactory estimates. The first is prediction accuracy: OLS estimates often have low bias but 

large variance and prediction accuracy can sometimes be improved by shrinking towards, or 

setting some coefficients equal to 0 (Tibshirani, 1996). The shrinking towards zero removes the 
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variability in a model associated with many small coefficients, thus the right amount of 

shrinkage can provide a more sTable solution but offers a risk of introducing some bias to the 

model (Gauraha, 2018). The second is interpretation: Even if we have a large number of 

predictors we might want to determine a smaller subset that exhibits the strongest effects, 

thereby representing a more interpreTable model (Tibshirani, 1996). 

Suppose that we have data (𝒙𝒊, 𝑦𝑖), 𝑖 = 1, 2… , 𝑁, where 𝒙𝒊 = (𝑥𝑖1, … , 𝑥𝑖𝑝)
𝑇
are the predictor 

variables and 𝑦𝑖 are the responses. We assume that the 𝑦𝑖s are conditionally independent given 

the 𝑥𝑖𝑗s and that the  𝑥𝑖𝑗s are standardized so that ∑ 𝑥𝑖𝑗𝑖 𝑁⁄ = 0, ∑ 𝑥𝑖𝑗
2

𝑖 𝑁⁄ = 1.  

With�̂� =  (�̂�1, … , �̂�𝑝)
𝑇
, the LASSO estimator is defined as: 

�̂�𝑙𝑎𝑠𝑠𝑜 = argmin{∑(𝑦𝑖 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗

𝑃

𝑗=1

)

2
𝑁

𝑖=1

} subjectto∑|𝛽𝑗|

𝑃

𝑗=1

≤ 𝑡 

Here 𝑡 ≥ 0 is a tuning parameter that controls the amount of shrinkage that is applied to the 

estimates. For all t, the solution to 𝛽0, the intercept, becomes �̂�0 = �̅�. Without loss of generality 

we can thus assume that �̅� = 0 and hence omit 𝛽0.  

Let  �̂�𝑗
0 be the full least squares estimates and let 𝑡0 = ∑|�̂�𝑗

0|. This constraint makes the 

solutions non-linear in 𝑦𝑖, and a quadratic programming algorithm is used to compute them 

(Hastie, Tibshirani & Friedman, 2001). Values of 𝑡 < 𝑡0 will cause shrinkage of solutions 

towards 0, and some coefficients may be exactly equal to 0. This allows for model selection. If 

𝑡 ≥ 𝑡0 then the LASSO estimator is the same as the OLS estimator, which in turn allows for 

sTable estimation of the coefficients. 

The LASSO problem can equivalently be written in Lagrangian form as: 

�̂�𝑙𝑎𝑠𝑠𝑜 = argmin{
1

2
∑(𝑦𝑖 −∑𝛽𝑗𝑥𝑖𝑗

𝑃

𝑗=1

)

2

+ 𝜆(∑|𝛽𝑗|

𝑃

𝑗=1

)

𝑁

𝑖=1

} 

And estimated through cvlasso from the Stata package lassopack (Ahrens, Hansen & Schaffer, 

2019). Following Panagotidis et al. (2018) and common practice lambda, 𝜆, is allowed to vary 

and a value for it is chosen through cross-validation. Cross-validation divides the data 

repeatedly into training and validation data where the model is fit to the training data and the 

validation data is used to check the prediction error (Hastie et al., 2001; Ahrens et al., 2019). 
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This in turn allows identification of which values of 𝜆 that optimize predictive performance by 

minimising the estimated mean-squared prediction error (Hastie et al., 2001; Ahrens et al., 

2019). 

A rolling cross validation methodology with 10 folds was implemented to make the optimal use 

of the time-series structure in the dataset (Hyndman & Athanasopoulos, 2018). The 1-step 

ahead cross-validation splits the data into 10 groups of approximately equal size, k=1…10. The 

first fold is treated as the validation dataset and the remaining K-1 parts constitute the training 

dataset. Rolling cross validation considers the time-series structure in that the training window 

is iteratively extended (moved forward) by one step. This methodology helps finding the 

optimal value of 𝜆, the value that minimizes the estimated mean-squared prediction error.  

The cvalsso statapack implements a range of lambdas to be tested where each lambda must be 

greater than 0 (Ahrens et al., 2019). The default maximum value is equal to 2*max(X'y), where 

X is the pre-standardized regressor matrix and y is the vector of the response variable (Ahrens 

et al., 2019). The default minimum value must be between 0 and 1 and is calculated via a ratio 

of minimum to maximum lambda, usually 1/1000 (Ahrens et al., 2019).  

A high lambda yields a tightly fit model in which several coefficients are shrunken to exactly 

zero, whereas a low lambda allows more coefficients to remain in the optimal model. The 

minimisation of mean-squared prediction error by calculating the optimal value of lambda can 

only be solved if a local or global minimum falls within the range of the tested lambdas as it 

does in A) but not in C) in Figure 4. Further, if the quadratic function is strictly decreasing there 

might not exist a unique optimal value of lambda given the current data and specifications used, 

see B) in Figure 4 for an example.  

 

Figure 4: Illustration of different solutions for optimal lambda  
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Running the tests for a range of lambda values will only yield the results for values within the 

range, thus there is no way to distinguish between case B) and C) if the results of the 

mathematical operations are inconclusive. However, the max value of lambda implemented 

tends to be sufficiently high to shrink all coefficients to zero. If the optimal value of lambda is 

at the end of the lambda range this could then suggest that the current data or the variables used 

are not enough to determine what the optimal model should be. The selected variables are likely 

not the main drivers of returns for the cryptocurrency in the investigated time period.  

5.2 Structural stability 

The first part of the LASSO-analysis was conducted using all available data. No restrictions 

regarding dates were implemented which gives a good overview but can make the results 

sensitive to variables with little available data, such as returns for cryptocurrencies with a 

relatively recent date of implementation. The shrinking procedure of the LASSO operator 

should make sure that variables with too little data are excluded if they introduce more variation 

than what they are able to explain in the model, thus having their coefficients shrunken to zero. 

Results are shown in Table 8 in section 6.1. Out of the cryptocurrencies examined only XLM 

could not define a unique value for lambda in this part of the analysis and is hence omitted from 

the following comparisons.  

 

Structural breaks are unexpected changes over time in the parameters used in a time-series 

model, for example coefficients in the model can be different before and after a major change 

in macro-economic policy (Verbeek, 2017). The presence of structural breaks in the data can 

make the resulting model unreliable as what is relevant in one time period might not be relevant 

in the next. The great variation and difficulty in interpreting the results from the first part of the 

analysis, as seen in Table 8 in section 6.1, suggests that a further division of the data is needed 

in order to extract comparable models. It is possible that the market for cryptocurrencies have 

undergone large changes over time (for example with respect to attention in media or 

acceptance as medium of exchange or investment) resulting in structural breaks in the data.  

The current information on development and specific events in the cryptocurrency market is 

highly focused on Bitcoin, and there is little or limited information in the current research on 

market development for other cryptocurrencies. As the aim of this paper is to test homogeneity 

among cryptocurrencies it will consequently also evaluate the representativeness of Bitcoin. If 

homogeneity among cryptocurrencies is true, then a division into time periods based on the 

different phases the Bitcoin market have been through should not pose a problem and it 
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becomes possible to use the available information. Following Panagotidis et al (2018), a 

division into three different time periods were implemented in order to take structural breaks in 

the data into account, for a visualisation see Figure 5: 

1. Crash (2013-10-02 to 2017-01-03). This time period omits the first early market of 

Bitcoin and other cryptocurrencies where the volatility of prices and existing userbase 

were relatively low. Thereby, the analysis starts from the Bitcoin boom in early 2013, 

the subsequent crash and gradual recovery of Bitcoin up until the beginning of 2017 

(Panagotidis et al., 2018). Cryptocurrencies that had not yet been implemented in this 

time period are omitted from the analysis and as explanatory variables (EOS, BCH, 

TRX and ADA). 

2. Recent (2017-01-04 to 2017-06-23). This time period encompasses the more recent 

market and alleged bubble of Bitcoin and follows the work of Panagotidis et al. (2018) 

for ease of comparison. Cryptocurrencies that had not yet been implemented in this time 

period are omitted from the analysis and as explanatory variables (EOS, BCH, TRX and 

ADA). 

3. Current (2017-06-23 to 2019-04-01). This time period continues beyond the scope of 

Panagotidis et al. (2018) into current day. It is meant to capture the current development 

where cryptocurrencies have become more accepted and increasingly implemented into 

the traditional economy. It also encompasses a period with higher volatility as compared 

to the previous time periods.  

 
Figure 5: Illustration of development of Bitcoin price index in time periods used  

Source: https://www.coindesk.com/price/Bitcoin (2019-07-21), edited by including time periods 

https://www.coindesk.com/price/bitcoin
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The LASSO-analysis have been conducted for each subcategory of time separately. For a full 

overview of the results when divided into subcategories of time see Table 9 in Section 6.1.  

 

5.3 The impact of cryptocurrencies’ design choices  

Generally, all cryptocurrencies display large variation in what variables are relevant in 

explaining returns when comparing across time. The large variation could suggest that different 

explanatory variables are important at different stages of implementation for a cryptocurrency. 

It is also possible that cryptocurrencies with similarities in design choices, as described by the 

questions in Table 1 in Section 2.2, go through similar stages of implementation. If that is the 

case, the importance of design choices for a cryptocurrency could be seen when comparing 

across design choices for each time period. Thus, the subsequent analysis is divided into four 

parts based on the questions in Table 1: 

1. How are tokens created? 

2. How are tokens distributed and transactions validated? 

3. What is the target market for the token? 

4. What is the token being used for? 

The results from the LASSO-regression have been divided by category for each of the questions 

above. Any common factors found in the division by categories when evaluating the hypothesis 

could help explain and further the understanding of what makes some variables relevant in 

explaining the returns of cryptocurrencies. If there exists variation in the impact of some 

variables but the impacts appear to be common over categories, then it is possible that 

cryptocurrencies sharing these characteristics display some level of homogeneity that could 

help explain the impact. 

 

5.4 Endogeneity  

The models tested in this paper could suffer from endogeneity and simultaneity problems, the 

factors assumed to be driving returns could in fact be influenced by the returns of a 

cryptocurrency. This is not a likely problem for the variables that are not cryptocurrency 

specific, i.e. take on the same value regardless of cryptocurrency, as they are mainly broad 

indices measured by and influenced by several global factors. The current size of the 

cryptocurrency market and its limited usability as compared to traditional asset classes makes 

it unlikely that changes in returns for one individual cryptocurrency could cause changes in for 

example volatility indices or indices connected to the stock markets. However, it could be more 
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problematic for some of the cryptocurrency specific variables. The supply variables that are 

defined for each cryptocurrency at their time of implementation cannot be adjusted to 

accommodate changes in returns, hence circulating supply, average difficulty and year of 

implementation are not endogenous. Similarly, values for returns cannot be influenced by future 

returns which makes the variables with lagged returns of other cryptocurrencies exogenous. 

 

Exchange volume and Google searches are both influenced by the interest in and perceived 

usefulness of a cryptocurrency. Exchange volume could be endogenous if higher returns of a 

cryptocurrency led to more intensive trade with larger transactions. Investor attention proxied 

by Google searches could be endogenous if higher returns of a cryptocurrency increased the 

interest and demand for that cryptocurrency. Both drivers of returns are extensively used 

throughout the current literature, suggesting a praxis in which they are considered relevant in 

examining the broader image. Thereby they are included in this paper, thus accepting some risk 

of endogeneity in the models. There are some  alternative ways to deal with these potential 

endogeneity problems. These are generally beyond the scope of this paper and offer interesting 

areas of future research. One example could be to implement instrument variables, similar to 

the choice of Polasik et al. (2015), or to gain a deeper understanding of how interest in and 

perceived usefulness of a cryptocurrency changes and what influences it, e.g. by studying 

behavioural economics connected to cryptocurrencies. 

 

5.5 Limitations 

Using the LASSO-approach for testing the hypotheses exploits the variance-bias-tradeoff. It 

reduces the complexity for the model, but in doing so it allows for a potential bias to be 

introduced into the model. For the testing of the hypotheses in this paper the LASSO provides 

a number of models with comparable ranking and selection of the drivers of returns that are 

relevant for each cryptocurrency. As long as the bias does not change the relative order of the 

relevant drivers of returns it should only lead to a slightly higher caution in interpreting the 

magnitude of the effects. Given that log-transformations of the first difference of some variables 

reduce autocorrelation and provides stationarity of the time-series used should also help reduce 

the potential bias of the estimates. Adding lagged values of previous returns provides some 

short-term autoregressive elements to the models, however an extensive investigation into the 

most appropriate number of lags to be used is beyond the scope of this paper. Further, the great 

number of variables already included in the model makes it hard to include several lagged 
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values of all cryptocurrencies. Thus, for simplicity and in order to capture short term 

movements on the cryptocurrency market a lag of 1 is selected. As a consequence, these 

variables are likely better at capturing speculation such as day-to-day trading, rather than long-

term investments 

Structural breaks in the data could be tackled by dividing the data into subsamples based on 

specific events occurring for Bitcoin, similar to the three sub-periods used by Panagotidis et al. 

(2018). If Bitcoin is a representative currency, i.e. homogeneity holds, then choosing the sub-

periods based on events related to Bitcoin should not impact the relative importance of drivers 

of returns for other cryptocurrencies. By contrast, if Bitcoin is not a representative 

cryptocurrency then this division might not be suitable for all cryptocurrencies evaluated, 

introducing a risk of unreliable models. 

Another way to tackle developments in the market is to divide the market and compare across 

quantiles of returns, for example comparing across bull, bear and normal modes as in the paper 

by Bouoiyour & Selmi (2017). The investigation of differences across quantiles of the returns 

for cryptocurrencies is beyond the scope of this paper as it would simply result in too extensive 

calculations, however it holds good potential for future research and in-depth analysis. 

 

Historically, cryptocurrencies have had a strong connection with illegal activities and a large 

share of the initial trading of Bitcoin was related to illegal activities, such as drug dealing and 

trafficking. The ECB identifies the main risks a government faces related to cryptocurrencies 

as means of payment arise in cases when cryptocurrencies are used for money laundering, tax 

evasion or the financing of terrorism (ECB, 2015). The black market is increasingly adopting 

the opportunities for e-commerce and digital payments through cryptocurrencies (Foley, 

Karlsen & Putniņš, 2018). Approximately one-quarter (25 %) of all users and one-half of 

Bitcoin transactions (44 %) are associated with illegal activity (Foley, Karlsen & Putniņš, 

2018).  These proportions are decreasing, possibly due to increased regulatory attention, overall 

more investors or the emergence of alternative cryptocurrencies with higher level of anonymity 

(Foley, Karlsen & Putniņš, 2018). However, it is possible that a significant component of 

cryptocurrencies’ value as payment systems comes from facilitating illegal activities (Foley, 

Karlsen & Putniņš, 2018). If illegal activity, such as money laundering, is facilitated by the use 

of cryptocurrencies, it would contribute to driving the demand for a cryptocurrency. Out of the 

risks described by the ECB (2015), it is hard to find relevant metrics, especially related to tax 

evasion and financing of terrorism. The lack of objective data in the matter places the question 
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of the potential role of facilitating illegal activity and its implications for returns of 

cryptocurrencies beyond the scope of this paper. 

 

6. Results 

This section presents the results of the LASSO-analysis, first in its entirety in Table 8 and 9, 

and later divided into four parts based on the initial questions from Table 1, Tables of results 

are available in Appendix A through D:  

 

1. How are tokens created? (Appendix A) 

2. How are tokens distributed and transactions validated? (Appendix B) 

3. What is the target market for the token? (Appendix C) 

4. What is the token being used for? (Appendix D) 

The data is divided into three time periods, as described in Section 5.2, and each time period is 

looked at separately for each question in order to identify common patterns among 

cryptocurrencies. The aim is to present the findings in a more nuanced way and to avoid the 

influence of looking for particular results in order to confirm or reject the chosen hypotheses. 

A complete analysis for each hypotheses is conducted under Section 7. Analysis. 

 

6.1 Overview 

The first part of the analysis was conducted with no restrictions on the data related to time 

frames, resulting in Table 1 with cryptocurrencies sorted by date of implementation.  

 

As can be seen in Table 8, the optimal values for lambda vary greatly across cryptocurrencies 

and only XLM did not have a defined lambda. BTC, LTC, XMR and ADA have lambdas that 

are high enough to result in an optimal model where none of the chosen variables should be 

included to explain their returns. Out of those BTC, LTC and XMR are among the earliest 

implemented cryptocurrencies which could suggest that they have reached a new level of 

development in which the current theoretical setting is unable to explain their returns.  

 

Other cryptocurrencies offer more information. XRP, ETH, NEO, EOS and TRX have optimal 

values for lambdas ranging from 2.77 to 7.7 resulting in more comparable models. For 4 out of 

5 among those cryptocurrencies (XRP, ETH, NEO and EOS), Google searches have a positive 
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impact on returns. For 3 out of 5 (ETH, NEO and EOS) the returns for XRP have a negative 

impact on returns. For the cryptocurrencies in which the optimal lambda results in a model with 

only one relevant variable (ETC and BCH), indicate that average difficulty has a positive impact 

on their returns.   

 

In order to take structural breaks into account and to generate more comparable models the 

division into subcategories of time (Crash, Recent and Current) were conducted. For an 

overview of the results see Table 9. Out of the time periods and cryptocurrencies tested only 

XLM did not have a defined lambda for the current time period and is henceforth omitted from 

the analysis.  

 
Table 8: Overview LASSO-analysis with no restrictions on time 

 
 

  

BTC LTC XRP XMR XLM ETC ETH NEO EOS BCH TRX ADA

5.853 10.683 3.62 8.39 not def. 12.12 3.374 2.364 2.77 9.613 7.7 9.379

H1 circulating n/a n/a n/a n/a n/a n/a

H2 averagedifficulty n/a n/a 0.2264 0.0054 n/a n/a 0.0730 n/a n/a

H3 exchangevolumeusd 0.0090

L.LreturnADA -0.0455 n/a

L.LreturnBCH -0.0013 n/a

L.LreturnBTC n/a -0.0168

L.LreturnEOS n/a

L.LreturnETC -0.0450 n/a -0.0667

L.LreturnETH n/a

L.LreturnLTC n/a 0.0530

L.LreturnNEO n/a

L.LreturnTRX 0.1056 0.0279 n/a

L.LreturnXLM n/a 0.0065 0.0778

L.LreturnXMR n/a -0.0492

L.LreturnXRP n/a -0.0086 -0.0563 -0.0399

H6 google 0.0290 0.0824 0.5983 0.6986

SP500

NYSE

AMEX 0.3361 0.0949

NASDAQ

NIKKEI

SSE -0.1345

Oil

USEPU

EEPU 0.4699

CEPU -0.0743 -0.1462

VIX -0.0381

VXO

VXN 0.0436

exchus

exjpus

exukus

exeuus -0.5074 -0.5168

Gold

Trend

Constant -0.0001 0.0002 0.0004 -0.0009 - -0.0018 -0.00127 -0.0021 0.0035 -0.0018 0.0042 0.0021

H9

Cryptocurrency

Optimal lambda

H5

H7

H8
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Generally, all cryptocurrencies display large variation in what variables are relevant in 

explaining returns when comparing across time. As can be seen in Table 9 a few 

cryptocurrencies have variables that remain relevant throughout all three time periods, such as 

average difficulty for ETC and ETH, and Google searches for NEO.  

 

6.2 Design choices 

Table 9 offers an overview of the results but in order to understand why some variables are 

relevant in explaining returns in some time periods and others are not we need a little bit more 

information. By comparing the results from Table 9 divided by design choices it becomes 

possible to identify potential common factors. As the information compared is the same across 

all design choices the resulting Tables are presented in Appendix A through D and the 

comparisons across time periods presented below according to each question. 

 

6.2.1 How are tokens created?  

The Tables of results are presented in Appendix A. Looking at Table A1, in the first time period 

there are no common variables in the group of cryptocurrencies with fixed supply or where 

supply rises indefinitely. Generally, these categories also use higher optimal lambdas resulting 

in less variables used in their optimal models. In contrast the cryptocurrencies with supply that 

rise up to cap have lower lambdas, suggesting that the theoretical framework used here is more 

adapted to explaining variation in this category. For the category ‘rise up to cap’ several 

variables are common across all models in Table A1, the return of ETH, LTC and NEO, 

variations in SSE and oil prices, VIX indices and currency exchange rates towards the UK and 

the EU. However, the impacts of these variables are not consistent, for some cryptocurrencies 

the impact on returns is positive whereas for others the impact is negative. Further, the large 

magnitude of the impact of circulating supply is remarkable, with a positive impact for BTC 

and a negative impact for LTC and ETC.  

 

When looking at the Recent time period in Table A2 it is easier to find common variables in 

the categories for both fixed supply and supply that rise indefinitely. For cryptocurrencies with 

fixed supply the impact on returns is positive for both NEO and XRP from variables such as 

return of LTC, Google searches, NIKKEI and VXN index and exchange rate towards China. 

The impact on returns is negative for both NEO and XRP for the AMEX index. For 

cryptocurrencies where supply rises indefinitely, lagged return of XRP and increases in CEPU 
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index have a positive impact on both ETH and XLM. The results in Table A2 become less clear 

when looking at cryptocurrencies with a supply that rises up to cap. In the current time period, 

the optimal lambda for LTC results in a model where none of the variables are relevant in 

explaining returns. Even if excluding LTC and comparing the other three cryptocurrencies 

(BTC, ETC and XMR) there are no common variables for the current time periods. 

 

In the third time period, looking at the current market in Table A3, there are no variables that 

are common for all cryptocurrencies in any of the groups. For several of the cryptocurrencies 

with a supply that rises up to cap the optimal lambda results in a model with none of the current 

variables used in the final model (BTC, LTC and XMR). For the remaining cryptocurrencies 

average difficulty remains important with a positive impact on returns for ETC and BCH. For 

this category the high lambdas in the third category stands in strong contrast to the lower 

lambdas in the crash and recent periods, possibly suggesting a new turn of development that 

makes the current theoretical framework less suitable to explain current returns.  

 

6.2.2 How are tokens distributed and transactions validated?  

The resulting Tables are presented in Appendix B. In the first time period, crash as seen in 

Table B1, it is clear that the variables are relevant in explaining a lot of the variation in returns 

for cryptocurrencies using proof-of-work, whereas the resulting models for cryptocurrencies 

using voting suggests that the theoretical framework is less adapted to explaining changes in 

their returns. Since there is only one cryptocurrency using selected validators, it is not possible 

to compare across common explanatory variables. For cryptocurrencies using proof-of-work, 

only the return of ETH is relevant and common across all cryptocurrencies in Table B1. Further, 

there are several variables that are relevant for 4 out of 5 cryptocurrencies. Average difficulty 

and the return of NEO both have a positive impact on returns for LTC, ETC, ETH and XMR. 

The impact goes in different directions, some positive some negative, when looking at increases 

in SSE, oil and VIX indices, currency exchange rate towards UK and EU.  

 

In the second time period, as seen in Table B2, the variables become more relevant in explaining 

a lot of the variation in returns for cryptocurrencies using voting, and less relevant for 

cryptocurrencies using proof-of-work. There are no longer any variables that are common for 

all cryptocurrencies using proof-of-work. Average difficulty remains important with a positive 

impact on 3 out of 5 cryptocurrencies (BTC, ETC and ETH). However, in Table B2, there are 

several common variables for cryptocurrencies using voting. The impact on returns for both 

NEO and XLM is positive for exchange volume, lagged returns of LTC and XMR, increases in 
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the NIKKEI and VXN indices, the exchange rate towards China and increases in gold price. 

The impact on returns for both NEO and XLM is negative for the lagged return of ETC, 

increases in the AMEX index and the exchange rate towards Japan. Other common variables 

with different directions of impact on returns are lagged returns of ETH and XRP, and increases 

in the USEPU and EEPU indices. 

 

In the third time period, seen in Table B3, the variables have lost most of their relevance in 

explaining variation in returns for cryptocurrencies using proof-of-work, leaving no variables 

in the final model that are common across all cryptocurrencies in this category. Interestingly, 

average difficulty is still among the most relevant variables for cryptocurrencies using proof-

of-work, able to explain some of the variation in returns for ETC, ETH, BCH and TRX.  Since 

there is only one cryptocurrency using either selected validators or proof-of-stake it is not 

possible to compare across common explanatory variables. For cryptocurrencies using voting, 

XLM does not have a uniquely defined lambda for the Current time period, thus comparison in 

this category is only made between NEO and EOS from Table B3. The impact on returns for 

both NEO and EOS is positive for increases in Google searches and the NASDAQ index. The 

impact is negative for lagged returns of XRP, increases in the VIX index and exchange rate 

towards the EU.  

 

6.2.3 What is the target market for the token? 

The Tables of results are presented in Appendix C. In the first time period, seen in Table C1, it 

is hard to find common variables that have an impact on returns for both business-oriented and 

generic cryptocurrencies. The business-oriented cryptocurrencies, XLM and XRP, offer too 

little information for comparison. For the cryptocurrencies with a more generic target market it 

is easier to find common variables, although none remain important for all 6 cryptocurrencies. 

Average difficulty has a significant positive impact on returns for 4 out of 5 possible 

cryptocurrencies (LTC, ETC, ETH and XMR). Similarly, the lagged return of NEO has a 

positive impact on 4 out of 5 cryptocurrencies (BTC, LTC, ETC and XMR).  

 

In the second time period, seen in Table C2, the image becomes a bit clearer for business-

oriented cryptocurrencies with several common variables impacting returns. The lagged returns 

of Bitcoin and increases in the AMEX index both have a negative impact on returns for XLM 

and XRP. The lagged return of LTC, Google searches, increases in the NIKKEI and VXN 

indices and exchange rate towards China all have a positive impact on returns for both XLM 
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and XRP.  For the cryptocurrencies with a more generic target market there are no variables 

that are important for all 6 cryptocurrencies in Table C2. The lagged returns of XLM and 

increases in the VXO index both have a negative impact on 4 out of 6 cryptocurrencies (BTC, 

ETH, XMR and NEO) whereas the lagged returns of XMR have a more mixed impact.  

 

When looking at the third time period in Table C3 it is difficult to find common variables in all 

three categories of target markets, generic, business-oriented and directed towards content 

creators online. Further, since there is only one cryptocurrency focusing on content creators it 

is not possible to make comparisons across common explanatory variables in that category. 

Among the cryptocurrencies with a generic target market, the average difficulty stands out in 

that it has a positive impact on 3 out of 6 possible cryptocurrencies. Further the lagged returns 

of XRP have a negative impact on both ETH and NEO, whereas the impact on those 

cryptocurrencies are negative for Google searches. Among the business-oriented 

cryptocurrencies only Google searches show a positive impact on at least 2 out of 4 possible 

cryptocurrencies (EOS and XRP). 

 

6.2.4 What is the token being used for? 

The Tables of results are presented in Appendix D. Looking at Table D1, in the first time period 

there are no variables that are common for all cryptocurrencies used for transaction purposes. 

However, average difficulty has a positive impact on both cryptocurrencies with available data 

(LTC and XMR) and there are several variables that are common for 3 out of 4 cryptocurrencies, 

although with different direction of impact. For cryptocurrencies used mainly for applications 

there are no common variables influencing returns of NEO and ETC in Table D1. However, in 

the hybrid cases, the VXO index has a positive impact on returns for both BTC and ETH.  

 

When looking at the second time period in Table D2 there are still no variables that are common 

for all cryptocurrencies used for transaction purposes. The lagged returns of BTC have a 

positive impact on returns for XMR but a negative impact on returns for XRP and XLM. 

Increases in Google searches have a positive impact on returns for 3 out of 4 cryptocurrencies 

(XRP, XMR and XLM). For cryptocurrencies used mainly for applications, the lagged returns 

of XMR have a positive impact on the returns for both NEO and ETC. Among the hybrid 

cryptocurrencies, average difficulty has a positive impact on returns for both BTC and ETH 

whereas the impact of other common variables is more mixed.  
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In the third time, as seen in Table D3, no variables remain common in the categories of 

cryptocurrencies being used for transaction or hybrid purposes. Among the cryptocurrencies 

used for application purposes there are some that are common for at least 2 out of 4 possible 

cryptocurrencies. The lagged return of XLM has a positive impact on returns for both NEO and 

TRX. The lagged returns of XMR have a negative impact on returns for both NEO and EOS, 

whereas the impact of Google searches and increases in the NASDAQ index are positive. Both 

increases in the CEPU index and exchange rate towards the EU have a negative impact on 

returns for NEO and EOS. 

 

7. Analysis 

This section discusses the results along the sub-hypotheses H1 to H9. It demonstrates that only 

H2 could not be rejected, since the choice of technical drivers and hash rate have a similar 

impact on the cryptocurrencies for which data is available. This makes it possible to reject the 

overarching null hypothesis, and thus, confirming the alternative hypothesis: Cryptocurrencies 

are non-homogenous, i.e. heterogenous, with respect to drivers of returns. Consequently, 

Bitcoin should not be seen as a representative cryptocurrency.  

 

7.1 Tokens in circulation 

Variations in number of tokens in circulation creates differences in determinants of returns 

among cryptocurrencies. Those differences appear to, at least partly, be possible to explain in 

that number of tokens in circulation is only relevant for cryptocurrencies that share 

characteristics such as having a supply that rise up to cap and utilising a proof-of-work design. 

Bitcoin stands out in that circulating supply has a positive impact on its returns, whereas the 

impact is negative for the other cryptocurrencies. This suggests that Bitcoin should not be seen 

as a representative cryptocurrency with respect to the impact of circulating supply. 

 

When looking at Table 8, LASSO-analysis with no restrictions implemented, there is no 

difference between the cryptocurrencies. Differences in number of tokens in circulation is not 

relevant in explaining the determinants of the returns for cryptocurrencies where data is 

available. This is also true when looking at the current time period in Table 9, but slightly 

different in the earlier time periods. During the crash time period, the circulating supply is 

relevant for explaining returns of BTC, LTC and ETC, whereas in the recent time period it is 

only relevant for BTC and XMR. The effect is positive for BTC, a higher supply leads to a 

higher return in both time periods, but negative for LTC, ETC and XMR. 
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BTC, LTC, ETC and XMR all have supply that rise up to cap which, when looking at Table A1 

and A2 in Appendix A, seems to offer some explanation for the effect. Like the findings of Li 

and Wang (2017), the supply for those cryptocurrencies only has a significant effect in the 

earlier markets, possibly suggesting the impact of some large event in the market of the 

cryptocurrency or a new stage in the development and adaption phases of a cryptocurrency. In 

contrast to Ciaian et al. (2016), the effect here is positive for Bitcoin, possibly due to differences 

in measurements or choice of models. That the effect is negative for the other cryptocurrencies 

with supply that rise up to cap could suggest that they follow a similar development curve as 

Bitcoin, in which increases in supply lead to lower prices, ceteris paribus, in the crash and recent 

market. Since the time-periods chosen exclude the early introduction phase of Bitcoin it is 

possible that Bitcoin has already passed some kind of turning point, establishing enough 

demand that its strict rules on increasing supply can no longer fulfil the demand on the market. 

If the demand is high enough then the predictable increases in supply of Bitcoin will still not 

be enough to decrease prices. It is also possible that as the supply of Bitcoin increases so does 

the number of possible trading partners, thus in turn increasing demand further and leading to 

higher prices.  

 

Unfortunately, it is hard to draw any conclusions as there is only one other cryptocurrency with 

information about token creation available for which circulating supply is not relevant, ETH. 

The situation is the same when looking at distribution as a potential source of explanation in 

Table B1 and B2 in Appendix B, except for ETH. All cryptocurrencies for which circulating 

supply is relevant share the characteristic that distribution and validation of transactions are 

based on proof-of-work. However, the information on circulating supply is further only 

available for this category of cryptocurrencies. It is not possible to know what the results would 

have been if the information would have been available for all cryptocurrencies. 

 

Taken together, this variation in impact of number of tokens in circulation on the 

cryptocurrencies for which data is available makes it possible to reject H1: Variations in number 

of tokens in circulation do not create any differences in determinants of returns for 

cryptocurrencies. 

 

7.2 Technical drivers 

H2 states that variations in hash rate between cryptocurrencies do not create any differences in 

determinants of returns. The proxy used to evaluate this, the variable average difficulty is only 
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available for some of the cryptocurrencies. Among those, there are strong similarities in effect 

of average difficulty on returns. As can be seen in Table 9, the effect is especially strong in the 

first time period, crash, and continuous throughout all three time periods for some 

cryptocurrencies. The similarities in sign and occurrence over time of the effect suggests that 

at least some of the cryptocurrencies are similarly impacted, improvements in technical drivers 

such as hash rate contribute to higher returns. However, due to the lack of data, the effects found 

might only reflect the characteristics of the cryptocurrencies with the information available, 

such as proof-of-work protocols and generic target market. 

 

When looking at Table 8, the hash rate is relevant in explaining returns for ETC, ETH and LTC. 

The effect is positive, and it remains positive through all three time periods for ETH and ETC 

as seen in Table 9. It is also relevant for LTC and XMR in the crash market and BTC in the 

recent market, all with positive impact on returns. This supports the arguments of Dwyer (2015) 

that the choice of technical drivers and characteristics could contribute to a positive value for a 

cryptocurrency and is also in line with the results of Bouoiyour and Selmi (2015).  

 

Taking the different time periods into account the data on average difficulty offers too little 

information in order to motivate what is common across the cryptocurrencies. For example, the 

results in Appendices B and C offer no comparative cryptocurrencies in other categories, the 

information on average difficulty is only available for cryptocurrencies using proof-of-work 

and having a generic target market. This could suggest that proof-of-work and generic target 

markets are common factors for cryptocurrencies where a higher hash rate leads to higher 

returns for some cryptocurrencies.  However, given the lack of information it is not possible to 

conclude if the results would be similar for the other categories if data was available. 

 

The similarities in sign and occurrence over time of the effect  for the cryptocurrencies for 

which data is available suggests that H2 should not be rejected: Variations in hash rate do not 

create any differences in determinants of returns for cryptocurrencies. 

 

7.3 Monetary velocity 

The similarities in impact in recent and current time periods as seen in Table 9 could suggest 

some homogeneity among the cryptocurrencies in how they are impacted by changes in 

monetary velocity. However, the large difference between the number of cryptocurrencies 

where the impact is relevant in explaining returns and the number of cryptocurrencies where it 
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is not indicates that the effect of exchange volume is not homogenous across all 

cryptocurrencies. In addition, in the first period the effect on returns for BTC moves in opposite 

direction.  

 

Looking at Table 8, where no restrictions are implemented, exchange volume is only relevant 

in explaining returns of NEO. This suggests that increases in the total volume of all transactions 

outputs with NEO have a positive impact on the returns of NEO. Looking at the more detailed 

image with different time periods in Table 9 the impact is negative for BTC in the crash period 

but positive and relevant for the other cryptocurrencies in the crash period (LTC), in the recent 

period (XMR, XLM, BTC, NEO) and in the current period (NEO). It is not possible to 

distinguish any common characteristics when looking at design choices of the cryptocurrencies 

in Appendices A through D, rather the impact of monetary velocity seems to affect some 

cryptocurrencies in every possible category. This in turn could suggest that the common factor 

is something that is not captured by this division into types of design choices, but that there 

could still exist similarities across cryptocurrencies.  

 

One possible explanation for the negative effect on BTC returns in the crash period, in Table 9, 

can be found in the study by Bouoiyour & Selmi (2017), where, similarly, the impact on BTC 

is negative for the bear state quantiles. As this study does not include a way to measure the state 

of the market it is not possible to evaluate its potential impact. The positive impact of exchange 

volume on the other cryptocurrencies corresponds to the findings of Polasik et al. (2015), who 

concluded that monthly change in number of Bitcoin transactions have a significant positive 

impact on Bitcoin returns. For the cryptocurrencies where the exchange volume is not relevant, 

the results show similar outcomes to those of Ciaian et al. (2016), who find no significant impact 

on their tested measure, days destroyed.  

 

Given the large variation in how monetary velocity is measured in previous studies it becomes 

hard to draw conclusions, it is possible that the choice of measurement affects which 

cryptocurrencies display relevant impacts on returns. As the variable used for this study, 

exchange volume, does not include data on over-the-counter exchanges and trading platforms 

it is possible that the results would be more informative if it was possible to use an overall 

measure of all transaction outputs. The strong focus on exchanges with the variable tested could 

imply that we see an effect for cryptocurrencies where trading on exchanges is a large share of 

the volume but that cryptocurrencies with alternative trading routes are not captured to the same 

extent. 
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Taken together, this large difference between the number of cryptocurrencies where the impact 

is relevant in explaining returns and the number of cryptocurrencies where it is not, combined 

with the distinct impact on Bitcoin returns, makes it possible to reject H3: Variations in 

monetary velocity do not create any differences in determinants of returns of cryptocurrencies. 

 

7.4 Network effects – first mover advantage 

The division of the data into several time periods allows for some comparisons related to date 

of implementation. Comparison over time shows that variations in date of implementation 

appears to create some differences in returns for the cryptocurrencies. Particularly when 

considering the changes over time in number of relevant variables or looking at the impact of 

average difficulty as a competitive advantage. However, it is hard to isolate the effects and to 

fully distinguish it from the impact of e.g. proof-of-work protocol as design choice. Choosing 

another method that more clearly takes the time aspect into account could offer more detailed 

results and clearer insights into the impact of network effects and the role of date of 

implementation. 

 

When looking at the first time period in Table 9, older cryptocurrencies tend to have more 

variables that are relevant in explaining their returns. The older cryptocurrencies that share the 

characteristics of a proof-of-work protocol (BTC, LTC and XMR) also have several variables 

in common, as can be seen in Table B1 in Appendix B. The more recent cryptocurrencies have 

less variables relevant and common in explaining their returns in the crash period (XLM, ETC, 

ETH and NEO). 

 

In the recent time period in Table 9, the image becomes more mixed and it is hard to distinguish 

any particular common factors related to date of implementation. When looking at the third 

time period it is clear that the variables are slightly more relevant in explaining returns for later 

cryptocurrencies, as compared to the older ones where none of the selected variables should be 

included in the final model (BTC, LTC, XMR and XLM). For the cryptocurrencies with data 

on average difficulty, the variable is relevant for the more recent cryptocurrencies (ETC, ETH 

and BCH) but not for the older ones (BTC, LTC and XMR). The impact is positive, possibly 

suggesting that more recent cryptocurrencies use better hash rates to gain an edge in competition 

against the incumbent cryptocurrencies. This could be a sign of the presence of network effects 

in the cryptocurrency market. Further Google searches offer a mixed image, more relevant for 

the recent cryptocurrencies (ETH, NEO and EOS) but not for the newest ones (BCH, TRX and 
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ADA).  

 

The movement from more relevant variables to fewer for the older cryptocurrencies, as seen in 

Table 9, could imply that the current economic framework was very suitable for explaining 

returns for the older cryptocurrencies during the crash time period, with several relevant 

variables, but not as well fitted in the current time period. This supports the view of Corbet et 

al. (2018), results that were obtained in 2016 are probably not the same if obtained in 2018, and 

thus it is necessary to continue conducting research. The framework offers some relevance for 

more recent cryptocurrencies but not to the same extent as for the older cryptocurrencies in the 

crash time period. Given the large difference in numbers of variables that are relevant in 

explaining returns and how they vary across older and younger cryptocurrencies in different 

time periods, it is possible that we are looking at the cryptocurrencies at different stages of their 

development. It is also possible that the current division into different time periods, as it is based 

on BTC, is not as suitable for the other cryptocurrencies leading to unreliable models. 

 

Taken together, variations in date of implementation appears to create some differences in 

returns for the cryptocurrencies, thus making it possible to reject H4: Variations in date of 

implementation do not create any differences in determinants of returns of cryptocurrencies. 

 

7.5 Network effects – reinforcement effect 

Taken together, the large variations in relevance over time and whether the impact is positive 

or negative suggests that the cryptocurrency market is highly integrated with large interactions 

and interdependencies among cryptocurrencies in the short term. However, there is no clear cut 

“winner-takes-all” race across all three time periods distinguishable from Table 9 and the 

possible substitution effects change over time, suggesting movements on a very shifting market. 

This could be a consequence of the short-term time horizon chosen by only evaluating the 

interactions among cryptocurrencies with a lag of 1 and its possible that a more extensive study 

would yield more conclusive results.   

 

The impact of lagged values of returns for competing cryptocurrencies move in different 

directions in different time periods for almost all cryptocurrencies. As can be seen in Table 9, 

in the first time period, the returns of BTC is negatively impacted by all relevant 

cryptocurrencies which suggests a leading position in the “winner-takes-all” race. Increases in 

returns of other cryptocurrencies have a negative impact on return of BTC, possibly due to a 

substitution effect towards alternative cryptocurrency investments. However, this changes in 
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the recent and current time period in Table 9. In the recent time period, the impact on BTC 

returns from increases in other cryptocurrencies is mixed, with both positive and negative 

impact, and in the third time period none of the other cryptocurrencies’ returns remain relevant. 

One possible explanation could be if in the third time period BTC was well enough established 

to no longer be threatened by the other cryptocurrencies. For all other cryptocurrencies the 

results in Table 9 are mixed in all time periods, both with positive and negative impact. This 

suggests that a strong interaction between cryptocurrencies exists and that it has an impact on 

returns. However, it might not be as clear cut as a “winner-takes-all” race and it might rather 

be the results of movements on a very liquid market where the substitution effects changes 

depending on the current relative popularity of the cryptocurrencies. 

 

It is hard to find common factors that could help explain which cryptocurrencies display an 

impact and which ones do not. For the crash period, Table A1 and B1, in Appendices A and B 

respectively, suggests that cryptocurrencies with a supply that rise up to cap or with a proof-of-

work protocol are more sensitive to the returns of other cryptocurrencies. However, these 

differences disappear in the later time periods. For cryptocurrencies where the impact of the 

returns of other cryptocurrencies is not relevant a common factor appears to be the choice of 

how tokens are created. Looking at Table A1 in Appendix A, in the crash period 

cryptocurrencies with a supply that rise indefinitely (ETH, XLM) are not impacted by the 

returns of other cryptocurrencies. By contrast, in Table A3 cryptocurrencies with a supply that 

rise up to cap (BTC, LTC, ETC, XMR and BCH) are the ones not impacted by returns of other 

cryptocurrencies.  

 

The impact of lagged returns of other cryptocurrencies varies over time across all 

cryptocurrencies in Table 9, thus making it possible to reject H5: Lagged values of returns for 

competing cryptocurrencies do not create any differences in determinants of returns of 

cryptocurrencies. There is no distinguishable move towards either a “winner-takes-all” race 

or a substitution effect. 

 

7.6 Speculation 

As can be seen in Table 9, generally the impact on returns of investor attention, proxied by 

Google searches, is positive for many of the cryptocurrencies. However, there exists some 

interesting deviations in the first time period and there are several cryptocurrencies for which 

Google searches have no impact. The lack of effect for some cryptocurrencies could be a result 
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of the choice of variable, Google searches is a very rough proxy for cryptocurrencies with more 

general names, and thus the full effect for all cryptocurrencies might not have been captured.  

 

When looking at the results with no limitations implemented in Table 8, investor attention 

measured by Google searches is relevant in explaining returns with a positive impact for four 

cryptocurrencies (XRP, ETH, NEO and EOS). When dividing the sample into time periods in 

Table 9 investor attention generally remains an important variable but it is not possible to find 

common design choices suggesting an explanation for why. The impact of investor attention is 

generally positive, increases in Google searches have a positive impact on returns for a 

cryptocurrency, which is in line with previous findings (Kristoufek, 2013; Panagotidis et al., 

2018; Bouyoir and Selmi, 2015; Bouyoir & Selmi, 2017; Li and Wang, 2017; Ciaian et al., 

2016; Polasik et al., 2015). However, some cryptocurrencies in the crash time period in Table 

9 deviate from this (NEO, BTC and LTC). All three of them have a generic target market, as 

can be seen in Table C1 in Appendix C, and increases in Google searches in the crash period 

have a negative impact on their returns. One possible explanation for this could be if the 

increased investor attention were taken as a sign of a bubble in the cryptocurrency’s price which 

in turn made the generic investors turn away from the cryptocurrency, thus decreasing returns. 

Further investigation into this potential explanation is beyond the scope of this paper but it 

could offer interesting insights into the cryptocurrency market.  

 

Overall the results indicate that changes in investor attention impacts cryptocurrencies 

differently, especially when looking at different time periods, and thus it is possible to reject 

H6: Variations in level of speculation, proxied by investor attention, do not create any 

differences in determinants of returns of cryptocurrencies. 

 

7.7 Macroeconomic and financial development 

The large variation and differences in effects across cryptocurrencies suggests that variations 

in macro-financial development creates differences in determinants of returns of 

cryptocurrencies, both over time and for each cryptocurrency.  

 

Looking at the unrestricted results in Table 8, only NEO and EOS are impacted by changes in 

macroeconomic and financial developments. For both NEO and EOS, increases in the AMEX 

index have a positive impact on returns. This suggests that investors in those cryptocurrencies 

could be influenced by changes in the American stock market. Both cryptocurrencies are being 

used for applications, as can be seen in Appendix D. One potential explanation could be if 
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companies working with the applications related to cryptocurrencies were to a large extent 

based in the US. When the stock market captured by the AMEX index improves this signals a 

better situation for those companies which in turn spills over to increased demand for their 

products and in the extension the demand increases for the cryptocurrencies which in turn 

increase their returns. EOS is further negatively impacted by increases in the SSE index. One 

potential explanation for this could be if EOS was extensively used as an alternative investment 

to traditional Chinese stock. Then as the Chinese market improves, the investors are not seeking 

out alternative investments to the same extent thereby decreasing the demand for the 

cryptocurrencies and reducing returns. 

 

The impact of stock and oil indices varies across all cryptocurrencies over time, as can be seen 

in Table 9. In the third time period the impact seems less common, as compared to in the earlier 

time periods. This could suggest that early investors used cryptocurrencies as a complementary 

investment to their traditional stocks and that later we see a movement towards less interaction 

between the markets. It is possible that the cryptocurrency market has established itself as a 

market on its own and that spill-over effects across markets could be less problematic today as 

compared to earlier time periods.  

 

This large variation and differences in how macro-financial development influence returns of 

cryptocurrencies, makes it possible to reject H7: Variations in macroeconomic and financial 

development do not create any differences in determinants of returns of cryptocurrencies. 

 

7.8 Uncertainty 

When looking at the unrestricted results in Table 8 some effects of regional uncertainty have a 

positive impact on returns (EEPU on XRP, VXN on NEO) whereas others have a negative 

impact on returns (CEPU on NEO and EOS, and VIX on XRP). The image does not become 

clearer cut when looking at subcategories of time periods in Table 9. In the crash period, when 

uncertainty is relevant, the effect is mixed for all cryptocurrencies, except for CEPU where the 

impact is strictly negative. One potential explanation for this could be if a relatively large share 

of those investments came from China. If uncertainty arise in China, then investments in 

cryptocurrencies become less attractive for Chinese investors and they might prefer to move 

their investments into safer assets, thus decreasing demand and consequent returns for 

cryptocurrencies.  
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Generally, in the first time period, as seen in Table 9, the impact of uncertainty on returns were 

relevant for the most cryptocurrencies and this seems to have decreased over time to a quite 

low relevance in the current time period. In addition, during the crash time period the 

cryptocurrencies with a supply that rise up to cap or that could be defined by a proof-of-work 

protocol all had at least one uncertainty index that was relevant in explaining their returns, as 

seen in Table A1 and B1 in Appendices A and B respectively. This effect becomes much more 

mixed in the recent time period and then completely disappears in the current time period. 

The impacts of different measures of uncertainty varies between positive and negative, not 

displaying any clear patterns over time for any of the cryptocurrencies in Table 9. Further there 

is no uncertainty index that have an either all positive or all negative impact on returns for all 

the cryptocurrencies for which it is relevant. Taken together, this suggests large differences 

among cryptocurrencies in how their returns are impacted by global and regional uncertainty 

and thus it is possible to reject H8: Variations in global and regional uncertainty do not create 

any differences in determinants of returns of cryptocurrencies. 

 

7.9 Hedging 

Hedging could be a motivation in using cryptocurrencies, but if so the cryptocurrencies are not 

used to hedge for the same uncertainty and thus the resulting impact is not homogenous across 

cryptocurrencies. 

 

Looking at Table 8, where no restrictions are implemented, it is only the Euro to Dollar currency  

exchange rate that has a relevant impact on returns for cryptocurrencies. The impact is negative 

for NEO and EOS, both cryptocurrencies have an established voting system for distribution and 

validation of transactions and are extensively used for applications. Especially in the current 

time period the impact of the traditional hedging variables is only relevant for cryptocurrencies 

used in applications, see Table D3 in Appendix D. If increases in traditional hedges signals 

uncertainty and lead to increased demand for hedging opportunities, then the negative impact 

of cryptocurrencies used for applications could signal that they are connected to risky 

investments and thus demand for these decreases in times of uncertainty. The choice of a voting 

system for validation could further signal a stand away from traditional market forces. The 

variables chosen are very broad measures and it is possible that they capture something other 

than the potential to use cryptocurrencies for hedging.  
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Overall, the impact of exchange rates and the gold price index were more relevant in the earlier 

time periods, as can be seen in Table 9. During the crash time period the cryptocurrencies with 

a supply that rise up to cap or that could be defined by a proof-of-work protocol all had at least 

one traditional hedging variable that was relevant in explaining their returns, see Table A1 or 

B1 in Appendices A and B respectively. This effect becomes much more mixed in the recent 

time period and then completely disappears in the current time period. Further, there is no 

traditional hedge variable that has an either all positive or all negative impact on returns for all 

the cryptocurrencies for which it is relevant. 

The large differences in impact on returns for different cryptocurrencies and what potential 

uncertainties the cryptocurrencies are used to hedge for makes it possible to reject H9: 

Variations in financial development for assets traditionally used for hedging do not create any 

differences in determinants of returns of cryptocurrencies. 
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8. Conclusion 

Standard economic goods are priced by the interaction of demand and supply and by extension 

classic economic theory implies that the price of a good reflects all current available and 

relevant information. Cryptocurrencies are fiat currencies where the rules governing supply are 

set out at the initial launch of the cryptocurrency, whereas demand is influenced by its value in 

future exchanges. This makes market characteristics, such as the pricing mechanisms, returns 

and potential drivers of returns interesting subjects for study as they contain a lot of information, 

both information on the cryptocurrency itself and on factors that influence its value and the 

cryptocurrency market.  

 

The aim of the study was to examine if cryptocurrencies are homogeneous. The question of 

homogeneity among cryptocurrencies is answered by looking deeper into the pricing 

mechanisms of the cryptocurrency market in a LASSO analysis.  The drivers of returns that 

have been identified for Bitcoin in a contemporary theoretical framework were applied to a 

sample of 12 cryptocurrencies. Thereby offering comparison between cryptocurrencies, further 

analysing over time and across design choices of cryptocurrencies.  

 

The findings show that cryptocurrencies are not homogenous, i.e. they are heterogeneous with 

respect to drivers of returns. One potential exception is identified in that the choice of technical 

drivers and hash rate have a similar impact on the cryptocurrencies for which data is available. 

Several prior studies have noted the importance of hash rate (Dwyer, 2015; Bouyoir and Selmi, 

2017) and the positive impact of the variable average difficulty is in line with their results. 

Increases in technical drivers contribute to higher returns, especially for some of the more recent 

cryptocurrencies, which seems to use it to gain an edge in the competition against the incumbent 

cryptocurrencies in a market with strong positive network effects. 

 

Sections 7.4 and 7.5 show the presence of network effects and that short-term interactions 

between cryptocurrencies seem to matter on the cryptocurrency market, which is consistent 

with the work of Gandal and Halaburda (2014). Cryptocurrencies appear to undergo stages of 

development, and there could exist similarities across cryptocurrencies in different stages that 

could be further explored. It is also possible that the cryptocurrency market has developed past 

a simple hedge for uncertainty in traditional assets and has now established itself as a market 

on its own, thereby making interaction with for example stock markets less relevant for its 

pricing mechanism. From a regulatory perspective this could suggest a decrease in the systemic 

risk through potential direct or indirect exposure. However, more research is needed to confirm 
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the developments in the cryptocurrency market. An evaluation of the market interactions with 

a greater emphasis on the long-term perspective, i.e. by including more lags on returns of other 

cryptocurrencies would help further the understanding of the potential implications of network 

effects in the cryptocurrency market. 

 

This paper has also shown that Bitcoin displays several distinguishing traits, thus making it 

unlikely that it could be seen as a representative cryptocurrency. For example, the effect on 

Bitcoin return stands out as compared to the other cryptocurrencies, for variables measuring 

tokens in circulation and monetary velocity. When looking at the relation to other 

cryptocurrencies, Bitcoin appears to have taken a lead in a “winner-takes-all-race” in the earlier 

time periods, but this lead is later replaced by substitution effects and shifting interactions 

between all cryptocurrencies, suggesting high integration on the cryptocurrency market.  

 

The results in sections 7.7 and 7.8 indicate less spill-over effects between cryptocurrency and 

traditional markets in current time as opposed to earlier time periods. However, the results from 

section 7.4 and 7.5 indicate high short-term interconnectedness on the market. From a 

regulatory perspective, the decreased risk of contagion across markets is positive but the high 

interconnectedness could offer cause for concern. One risk could be if cryptocurrencies are 

perceived to have high similarities in risk exposure. This combined with a high integration of 

the cryptocurrency market could lead to potential problems spreading, from one cryptocurrency 

to another, on the cryptocurrency market. This in turn could potentially harm relatively 

unprotected investors and increase the risks for bubbles in the cryptocurrency market.  

 

Overall the findings show that cryptocurrencies are heterogenous and that the different design 

choices related to demand and supply appear to matter and can in several cases offer some 

explanations for the effects of variables. Cryptocurrencies with a supply that rise up to cap 

appear to be more sensitive to circulating supply. In the earlier time period, cryptocurrencies 

with a supply that rise up to cap were more sensitive to the returns of other cryptocurrencies, 

whereas cryptocurrencies with a supply that rise indefinitely were not impacted. In the more 

recent time period, this image is reversed and only cryptocurrencies with either fixed supply or 

supply that rise indefinitely were impacted by other cryptocurrencies’ returns. Cryptocurrencies 

that are used for applications appear to be slightly more sensitive to stock market development 

and traditional hedging measures.  

 

 



59 
 

One drawback of this study has been the limitations in available data, for example a lack of data 

for circulating supply and average difficulty, and a rough proxy for investor attention in Google 

searches. Another drawback was the lack of cryptocurrencies in some categories which has 

made comparison difficult, for example in Appendix B, only one cryptocurrency falls under the 

validators selected or proof-of-stake categories respectively. The impact of the variables used 

is often mixed, both in the relevance and the direction of impact. The limited availability of 

data, both on cryptocurrency specific variables and on variation in design choices, often makes 

it hard to evaluate the results. A larger sample of cryptocurrencies, or better underlying data for 

each cryptocurrency could help mitigate some of these drawbacks and shed more light on the 

cryptocurrency market. In particular, it could confirm or reject that some of the effects found 

can truly be attributed to proof-of-work protocol as a design choice. 

 

The findings may also be somewhat limited by the choice of model and the exact magnitudes 

of the effects should be interpreted with caution. The LASSO-approach when used for testing 

hypotheses exploits the variance-bias trade-off, thereby yielding more comparable models but 

possibly introducing a bias. Several transformations of the data are conducted to decrease the 

risks associated with this potential bias. This method offers comparative results across 

cryptocurrencies and sufficient information to reject the overarching null hypothesis for this 

study. However, in order to extend the knowledge on cryptocurrencies and the cryptocurrency 

market future research might wish to look at specific cryptocurrencies more in detail, possibly 

also taking cointegration into account by applying VECM or ADL models. In those cases, the 

resulting optimal models based on causality in means from the LASSO-methodology could be 

too restrictive. A non-linear analysis allowing for differences across each cryptocurrency’s 

quantiles of the conditional distribution of the dependent variable, would likely yield more 

information at the cost of a more extensive analysis. This would be a good future focus of 

research in order to deepen the understanding of a subsample of cryptocurrencies with specific 

characteristics, such as for example proof-of-work-protocols. 

 

One of the issues that emerges from these findings is the need for continuous research on 

cryptocurrencies. In the earlier time period (2013-10-02 to 2017-01-03), the current theoretical 

framework was relevant in explaining returns for cryptocurrencies sharing characteristics such 

as proof-of-work protocols for transaction validation and supply that rise up to cap. In contrast, 

in the more current time period (2017-06-23 to 2019-04-01), the theoretical framework was less 

fitted for explaining their returns. Overall, the impact of non-cryptocurrency specific factors 
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has decreased over time for all cryptocurrencies, suggesting that the current theoretical 

framework might not be as applicable today as it was in the early years of implementation. This 

is in line with the arguments of Corbet et al. (2018): results obtained in earlier time periods are 

not the same when obtained in later time periods and should thereby not be considered 

equivalent. This also indicates that continuous research on cryptocurrencies, both  for  Bitcoin 

and other cryptocurrencies, is needed.  

 

Cryptocurrencies are to their nature global, but their investors are often individuals with a more 

local angle of incidence. In-depth analysis of behavioural economics could help clarify how the 

cryptocurrency market works and decrease the risks associated with endogeneity in the current 

models. In particular, if it could offer a deeper understanding of for example user activity, the 

role of speculation and investor motivation and the perceived substitutability between 

cryptocurrencies. The aim should be to gain a deeper understanding of how individuals’ interest 

in and perceived usefulness of a cryptocurrency changes and what influences it. Further, the 

potential connection to illegal activity as identified by for example Foley, Karlsen & Putniņš, 

(2018) is a matter that needs to be considered when determining possible regulation of 

cryptocurrencies and future studies on the subject is therefore recommended. 

 

The findings in this paper show that cryptocurrencies are heterogenous, thus the strong Bitcoin 

focus could make the existing models and current economic framework less relevant in 

explaining how the cryptocurrency market works. There is a risk for misinterpretation and 

misdirected regulation if this heterogeneity among cryptocurrencies is not considered. More 

research is needed, both empirical and theoretical, especially into the details of what makes 

cryptocurrencies similar and how they interact.  
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Appendix A: How are tokens created? Results divided by time period 
Table A1: Determinants of returns for each cryptocurrency in the crash time period, ranging 

from 2013-10-02 to 2017-01-03 

 
 
  

NEO XRP BTC LTC ETC XMR ETH XLM

Token creation

H1 circulating n/a n/a 325.4565 -228.5603 -23.7102 n/a

H2 averagedifficulty n/a n/a 0.0255 0.3563 0.0245 0.0504 n/a

H3 exchangevolumeusd -0.0079 0.0029

L.LreturnADA

L.LreturnBCH 0.1670

L.LreturnBTC n/a -0.0970 0.3111

L.LreturnEOS n/a

L.LreturnETC 0.0406 -0.0489 -0.1293

L.LreturnETH -0.0345 -0.0513 0.1925 -0.0299 n/a

L.LreturnLTC -0.1149 n/a 0.1207 -0.0085

L.LreturnNEO n/a -0.0045 0.0133 0.0149 0.0006 0.0476

L.LreturnTRX

L.LreturnXLM -0.0008 0.0359 0.0642 n/a

L.LreturnXMR 0.0276 0.1037 n/a

L.LreturnXRP n/a -0.0281 -0.0698 -0.2466

H6 google -1.2240 -0.0220 -0.0285 0.2425

SP500 2.9806

NYSE -1.3087 -0.3232 -2.1330 3.1962

AMEX -0.0506 0.5891 0.3526 -2.1006

NASDAQ -1.0990 1.6826

NIKKEI -0.2899 -0.5428

SSE 0.0314 0.0178 0.5616 -0.7596 -1.1494

Oil 0.1275 0.1667 -0.0753 0.8530

USEPU 0.4539 0.4923 -0.2512

EEPU -0.4551

CEPU -0.0509 -0.1296 -0.2573 -0.3669

VIX 0.1028 0.1440 0.0005 -0.3088

VXO 0.0168 -0.0426 0.0138

VXN -0.1007 -0.1055 -0.0253 0.8421

exchus -1.4200 -3.2752 16.8547

exjpus -0.2349 -1.9856

exukus -0.3908 -0.35833 -0.3109 1.8826

exeuus 0.8559 1.0145 -0.5602 0.0268

Gold 0.0411 -0.1064 0.1453

Time trend Trend 0.0002 0.0003 0.0005

Constant -0.0033 0.0018 -0.3044 -0.1956 0.0576 -0.5105 -0.0029 0.0019

H9

Rise up to capFixed supply Rise indefinately

H5

H7

H8
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Table A2: Determinants of returns for each cryptocurrency in the Recent time period, ranging 

from 2017-01-04 to 2017-06-23 

 
 
  

NEO XRP BTC LTC ETC XMR ETH XLM

Token creation

H1 circulating n/a n/a 264.5955 -20.8651 n/a

H2 averagedifficulty n/a n/a 0.1746 0.4811 0.5232 n/a

H3 exchangevolumeusd 0.0114 0.0272 0.0173 0.0362

L.LreturnADA

L.LreturnBCH -0.6685

L.LreturnBTC -0.0551 n/a 0.0125 -0.0844

L.LreturnEOS

L.LreturnETC -0.1579 -0.0492 n/a -0.3593

L.LreturnETH -0.1246 0.0237 0.0854 n/a 0.1929

L.LreturnLTC 0.0820 0.1250 0.0568 n/a 0.1288

L.LreturnNEO n/a 0.0178 0.0751

L.LreturnTRX

L.LreturnXLM -0.2208 0.0109 -0.0062 -0.0322 -0.0586 n/a

L.LreturnXMR 0.9912 -0.0629 0.1755 n/a 0.2136 0.1215

L.LreturnXRP 0.1287 n/a -0.0078 -0.0204

H6 google 2.5363 0.6083 0.2884 0.2115 0.2249

SP500 33.7203 8.8993

NYSE -19.0948 -4.2253

AMEX -7.8270 -1.2387 -5.5482 -1.7066

NASDAQ -4.0599 1.209

NIKKEI 6.6608 0.8585 1.0886 0.6866 0.8988

SSE -3.2350 0.7494 -0.6770

Oil 0.3459 -0.0479 0.5207

USEPU 2.1338 0.4413 -0.7911

EEPU -1.8207 0.0478 0.3092 1.6427

CEPU 0.1624 0.0365

VIX 0.2614 -0.1642

VXO -0.5508 0.2003 -0.1452 -0.0371 -0.1088

VXN 0.4876 0.1176 0.3613 -0.0096 0.1283

exchus 0.7304 0.2850 -5.0706 -3.5882 6.5403

exjpus -7.1241 1.0674 -1.1492 -0.3492

exukus 8.2117 1.0112

exeuus -1.8914 3.1579

Gold 0.4650 0.1946 0.2939

Time trend Trend 0.0005 0.0001

Constant -0.5674 0.0193 -0.0280 0.0137 0.0102 0.0133 0.0137 -0.1683

H9

Rise indefinatelyRise up to capFixed supply

H5

H7

H8
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Table A3: Determinants of returns for each cryptocurrency in the Current time period, ranging 

from 2017-01-04 to 2019-01-01 

 
 

  

NEO XRP ADA TRX BTC LTC ETC XMR BCH ETH XLM EOS

Token creation

H1 circulating n/a n/a n/a n/a n/a n/a

H2 averagedifficulty n/a n/a n/a n/a 0.2264 0.0730 0.0054 n/a n/a

H3 exchangevolumeusd 0.0090

L.LreturnADA -0.0455 n/a

L.LreturnBCH -0.0013 n/a

L.LreturnBTC -0.0168 n/a

L.LreturnEOS n/a

L.LreturnETC -0.0450 -0.0667 n/a

L.LreturnETH n/a

L.LreturnLTC n/a 0.0530

L.LreturnNEO n/a

L.LreturnTRX 0.0279 0.1056 n/a

L.LreturnXLM 0.0065 0.0778 n/a

L.LreturnXMR -0.0492 n/a

L.LreturnXRP -0.0563 n/a -0.0086 -0.0399

H6 google 0.5983 0.0290 0.0824 0.6986

SP500

NYSE

AMEX 0.3361 0.0949

NASDAQ

NIKKEI

SSE -0.1345

Oil

USEPU

EEPU 0.4699

CEPU -0.0743 -0.1462

VIX -0.0381

VXO

VXN 0.0436

exchus

exjpus

exukus

exeuus -0.5074 -0.5168

Gold

Time trend Trend

Constant -0.0021 0.0004 0.0021 0.0042 0.0006 0.0002 -0.0018 -0.0009 -0.0018 -0.0013 - 0.0035

H9

Fixed supply Rise up to cap Rise indefinately

H5

H7

H8
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Appendix B: How are tokens distributed and transactions validated? Results 

divided by time period 
Table B1: Determinants of returns for each cryptocurrency in the Crash time period, ranging 

from 2013-10-02 to 2017-01-03 

 
 
  

BTC LTC ETC ETH XMR NEO XLM XRP

Distribution and validation
Validators 

selected

H1 circulating 325.4565 -228.5603 -23.7102 n/a n/a n/a

H2 averagedifficulty 0.0255 0.3563 0.0504 0.0245 n/a n/a n/a

H3 exchangevolumeusd -0.0079 0.0029

L.LreturnADA

L.LreturnBCH 0.1670

L.LreturnBTC n/a -0.0970 0.3111

L.LreturnEOS

L.LreturnETC -0.0489 n/a -0.1293 0.0406

L.LreturnETH -0.0345 -0.0513 0.1925 n/a -0.0299

L.LreturnLTC -0.1149 n/a 0.1207 -0.0085

L.LreturnNEO 0.0133 0.0149 0.0006 0.0476 n/a -0.0045

L.LreturnTRX

L.LreturnXLM -0.0008 0.0359 0.0642 n/a

L.LreturnXMR 0.0276 0.1037 n/a

L.LreturnXRP -0.0281 -0.0698 -0.2466 n/a

H6 google -0.0220 -0.0285 0.2425 -1.2240

SP500 2.9806

NYSE -0.3232 -2.1330 3.1962 -1.3087

AMEX 0.5891 0.3526 -2.1006 -0.0506

NASDAQ -1.0990 1.6826

NIKKEI -0.2899 -0.5428

SSE 0.0178 0.5616 -0.7596 -1.1494 0.0314

Oil 0.1275 0.1667 -0.0753 0.8530

USEPU 0.4539 0.4923 -0.2512

EEPU -0.4551

CEPU -0.1296 -0.2573 -0.3669 -0.0509

VIX 0.1028 0.1440 0.0005 -0.3088

VXO 0.0168 -0.0426 0.0138

VXN -0.1055 -0.0253 0.8421 -0.1007

exchus -1.4200 -3.2752 16.8547

exjpus -0.2349 -1.9856

exukus -0.3908 -0.35833 -0.3109 1.8826

exeuus 0.8559 1.0145 -0.5602 0.0268

Gold 0.0411 -0.1064 0.1453

Time trend Trend 0.0002 0.0003 0.0005

Constant -0.3044 -0.1956 0.0576 -0.0029 -0.5105 -0.0033 0.0019 0.0018

Voting

H5

H7

H8

H9

Proof-of-work
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Table B2: Determinants of returns for each cryptocurrency in the Recent time period, ranging 

from 2017-01-04 to 2017-06-23 

 
 
  

BTC LTC ETC ETH XMR NEO XLM XRP

Distribution and validation
Validators 

selected

H1 circulating 264.5955 -20.8651 n/a n/a n/a

H2 averagedifficulty 0.1746 0.4811 0.5232 n/a n/a n/a

H3 exchangevolumeusd 0.0272 0.0173 0.0114 0.0362

L.LreturnADA

L.LreturnBCH -0.6685

L.LreturnBTC n/a 0.0125 -0.0844 -0.0551

L.LreturnEOS

L.LreturnETC -0.0492 n/a -0.1579 -0.3593

L.LreturnETH 0.0237 n/a 0.0854 -0.1246 0.1929

L.LreturnLTC 0.0568 n/a 0.0820 0.1288 0.1250

L.LreturnNEO 0.0178 n/a 0.0751

L.LreturnTRX

L.LreturnXLM -0.0062 -0.0586 -0.0322 -0.2208 n/a 0.0109

L.LreturnXMR -0.0629 0.1755 0.2136 n/a 0.9912 0.1215

L.LreturnXRP -0.0078 0.1287 -0.0204 n/a

H6 google 0.2884 0.2115 2.5363 0.2249 0.6083

SP500 8.8993 33.7203

NYSE -4.2253 -19.0948

AMEX -5.5482 -7.8270 -1.7066 -1.2387

NASDAQ 1.209 -4.0599

NIKKEI 1.0886 0.6866 6.6608 0.8988 0.8585

SSE 0.7494 -0.6770 -3.2350

Oil -0.0479 0.5207 0.3459

USEPU 0.4413 2.1338 -0.7911

EEPU 0.0478 0.3092 -1.8207 1.6427

CEPU 0.0365 0.1624

VIX -0.1642 0.2614

VXO -0.1452 -0.1088 -0.0371 -0.5508 0.2003

VXN 0.3613 -0.0096 0.4876 0.1283 0.1176

exchus -5.0706 -3.5882 0.7304 6.5403 0.2850

exjpus -1.1492 -7.1241 -0.3492 1.0674

exukus 1.0112 8.2117

exeuus 3.1579 -1.8914

Gold 0.1946 0.4650 0.2939

Time trend Trend 0.0005 0.0001

Constant -0.0280 0.0137 0.0102 0.0137 0.0133 -0.5674 -0.1683 0.0193

Voting

H5

H7

H8

H9

Proof-of-work
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Table B3: Determinants of returns for each cryptocurrency in the Current time period, ranging 

from 2017-01-04 to 2019-01-01 

 
 

  

BTC LTC ETC ETH XMR BCH TRX NEO EOS XLM XRP ADA

Distribution and validation
Validators 

selected

Proof-of-

stake

H1 circulating n/a n/a n/a n/a n/a n/a

H2 averagedifficulty 0.2264 0.0054 0.0730 n/a n/a n/a n/a n/a n/a

H3 exchangevolumeusd 0.0090

L.LreturnADA -0.0455 n/a

L.LreturnBCH n/a -0.0013

L.LreturnBTC n/a -0.0168

L.LreturnEOS n/a

L.LreturnETC n/a -0.0667 -0.0450

L.LreturnETH n/a

L.LreturnLTC n/a 0.0530

L.LreturnNEO n/a

L.LreturnTRX n/a 0.0279 0.1056

L.LreturnXLM 0.0778 0.0065 n/a

L.LreturnXMR n/a -0.0492

L.LreturnXRP -0.0086 -0.0563 -0.0399 n/a

H6 google 0.0824 0.5983 0.6986 0.0290

SP500

NYSE

AMEX 0.3361 0.0949

NASDAQ

NIKKEI

SSE -0.1345

Oil

USEPU

EEPU 0.4699

CEPU -0.0743 -0.1462

VIX -0.0381

VXO

VXN 0.0436

exchus

exjpus

exukus

exeuus -0.5074 -0.5168

Gold

Time trend Trend

Constant 0.0006 0.0002 -0.0018 -0.0013 -0.0009 -0.0018 0.0042 -0.0021 0.0035 0.0004 0.0021

Voting

H5

H7

H8

H9

Proof-of-work
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Appendix C: What is the target market for the token? Results divided by time 

period 
Table C1: Determinants of returns for each cryptocurrency in the Crash time period, ranging 

from 2013-10-02 to 2017-01-03 

 
 
  

BTC LTC ETC ETH XMR NEO XLM XRP

Target market

H1 circulating 325.4565 -228.5603 -23.7102 n/a n/a n/a

H2 averagedifficulty 0.0255 0.3563 0.0504 0.0245 n/a n/a n/a

H3 exchangevolumeusd -0.0079 0.0029

L.LreturnADA

L.LreturnBCH 0.1670

L.LreturnBTC n/a -0.0970 0.3111

L.LreturnEOS

L.LreturnETC -0.0489 n/a -0.1293 0.0406

L.LreturnETH -0.0345 -0.0513 0.1925 n/a -0.0299

L.LreturnLTC -0.1149 n/a 0.1207 -0.0085

L.LreturnNEO 0.0133 0.0149 0.0006 0.0476 n/a -0.0045

L.LreturnTRX

L.LreturnXLM -0.0008 0.0359 0.0642 n/a

L.LreturnXMR 0.0276 0.1037 n/a

L.LreturnXRP -0.0281 -0.0698 -0.2466 n/a

H6 google -0.0220 -0.0285 0.2425 -1.2240

SP500 2.9806

NYSE -0.3232 -2.1330 3.1962 -1.3087

AMEX 0.5891 0.3526 -2.1006 -0.0506

NASDAQ -1.0990 1.6826

NIKKEI -0.2899 -0.5428

SSE 0.0178 0.5616 -0.7596 -1.1494 0.0314

Oil 0.1275 0.1667 -0.0753 0.8530

USEPU 0.4539 0.4923 -0.2512

EEPU -0.4551

CEPU -0.1296 -0.2573 -0.3669 -0.0509

VIX 0.1028 0.1440 0.0005 -0.3088

VXO 0.0168 -0.0426 0.0138

VXN -0.1055 -0.0253 0.8421 -0.1007

exchus -1.4200 -3.2752 16.8547

exjpus -0.2349 -1.9856

exukus -0.3908 -0.35833 -0.3109 1.8826

exeuus 0.8559 1.0145 -0.5602 0.0268

Gold 0.0411 -0.1064 0.1453

Time trend Trend 0.0002 0.0003 0.0005

Constant -0.3044 -0.1956 0.0576 -0.0029 -0.5105 -0.0033 0.0019 0.0018

Business-oriented

H5

H7

H8

H9

Generic
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Table C2: Determinants of returns for each cryptocurrency in the Recent time period, ranging 

from 2017-01-04 to 2017-06-23 

 
 
  

BTC LTC ETC ETH XMR NEO XLM XRP

Target market

H1 circulating 264.5955 -20.8651 n/a n/a n/a

H2 averagedifficulty 0.1746 0.4811 0.5232 n/a n/a n/a

H3 exchangevolumeusd 0.0272 0.0173 0.0114 0.0362

L.LreturnADA

L.LreturnBCH -0.6685

L.LreturnBTC n/a 0.0125 -0.0844 -0.0551

L.LreturnEOS

L.LreturnETC -0.0492 n/a -0.1579 -0.3593

L.LreturnETH 0.0237 n/a 0.0854 -0.1246 0.1929

L.LreturnLTC 0.0568 n/a 0.0820 0.1288 0.1250

L.LreturnNEO 0.0178 n/a 0.0751

L.LreturnTRX

L.LreturnXLM -0.0062 -0.0586 -0.0322 -0.2208 n/a 0.0109

L.LreturnXMR -0.0629 0.1755 0.2136 n/a 0.9912 0.1215

L.LreturnXRP -0.0078 0.1287 -0.0204 n/a

H6 google 0.2884 0.2115 2.5363 0.2249 0.6083

SP500 8.8993 33.7203

NYSE -4.2253 -19.0948

AMEX -5.5482 -7.8270 -1.7066 -1.2387

NASDAQ 1.209 -4.0599

NIKKEI 1.0886 0.6866 6.6608 0.8988 0.8585

SSE 0.7494 -0.6770 -3.2350

Oil -0.0479 0.5207 0.3459

USEPU 0.4413 2.1338 -0.7911

EEPU 0.0478 0.3092 -1.8207 1.6427

CEPU 0.0365 0.1624

VIX -0.1642 0.2614

VXO -0.1452 -0.1088 -0.0371 -0.5508 0.2003

VXN 0.3613 -0.0096 0.4876 0.1283 0.1176

exchus -5.0706 -3.5882 0.7304 6.5403 0.2850

exjpus -1.1492 -7.1241 -0.3492 1.0674

exukus 1.0112 8.2117

exeuus 3.1579 -1.8914

Gold 0.1946 0.4650 0.2939

Time trend Trend 0.0005 0.0001

Constant -0.0280 0.0137 0.0102 0.0137 0.0133 -0.5674 -0.1683 0.0193

Business-oriented

H5

H7

H8

H9

Generic
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Table C3: Determinants of returns for each cryptocurrency in the Current time period, ranging 

from 2017-01-04 to 2019-01-01 

 
 

  

BTC LTC ETC ETH XMR NEO BCH EOS XLM XRP ADA TRX

Target market
Content 

creators

H1 circulating n/a n/a n/a n/a n/a n/a

H2 averagedifficulty 0.2264 0.0054 n/a 0.0730 n/a n/a n/a n/a n/a

H3 exchangevolumeusd 0.0090

L.LreturnADA -0.0455 n/a

L.LreturnBCH -0.0013 n/a

L.LreturnBTC n/a -0.0168

L.LreturnEOS n/a

L.LreturnETC n/a -0.0450 -0.0667

L.LreturnETH n/a

L.LreturnLTC n/a 0.0530

L.LreturnNEO n/a

L.LreturnTRX 0.0279 0.1056 n/a

L.LreturnXLM 0.0065 n/a 0.0778

L.LreturnXMR n/a -0.0492

L.LreturnXRP -0.0086 -0.0563 -0.0399 n/a

H6 google 0.0824 0.5983 0.6986 0.0290

SP500

NYSE

AMEX 0.3361 0.0949

NASDAQ

NIKKEI

SSE -0.1345

Oil

USEPU

EEPU 0.4699

CEPU -0.0743 -0.1462

VIX -0.0381

VXO

VXN 0.0436

exchus

exjpus

exukus

exeuus -0.5074 -0.5168

Gold

Time trend Trend

Constant 0.0006 0.0002 -0.0018 -0.0013 -0.0009 -0.0021 -0.0018 0.0035 - 0.0004 0.0021 0.0042

Business-oriented

H5

H7

H8

H9

Generic
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Appendix D: What is the token being used for? Results divided by time period 
Table D1: Determinants of returns for each cryptocurrency in the Crash time period, ranging 

from 2013-10-02 to 2017-01-03 

 
 
  

LTC XRP XMR XLM BTC ETH NEO ETC

Token used for

H1 circulating -228.5603 n/a n/a 325.4565 n/a -23.7102

H2 averagedifficulty 0.0255 n/a 0.0245 n/a 0.0504 n/a 0.3563

H3 exchangevolumeusd 0.0029 -0.0079

L.LreturnADA

L.LreturnBCH 0.1670

L.LreturnBTC -0.0970 0.3111 n/a

L.LreturnEOS n/a

L.LreturnETC 0.0406 -0.1293 -0.0489

L.LreturnETH -0.0513 -0.0299 -0.0345 n/a 0.1925

L.LreturnLTC n/a -0.0085 -0.1149 0.1207

L.LreturnNEO 0.0149 -0.0045 0.0476 0.0133 n/a 0.0006

L.LreturnTRX

L.LreturnXLM 0.0359 0.0642 n/a -0.0008

L.LreturnXMR 0.1037 n/a 0.0276

L.LreturnXRP -0.0698 n/a -0.2466 -0.0281

H6 google -0.0285 0.2425 -0.0220 -1.2240

SP500 2.9806

NYSE -2.1330 -1.3087 3.1962 -0.3232

AMEX 0.3526 -0.0506 -2.1006 0.5891

NASDAQ 1.6826 -1.0990

NIKKEI -0.5428 -0.2899

SSE 0.5616 0.0314 -1.1494 0.0178 -0.7596

Oil 0.1667 0.8530 0.1275 -0.0753

USEPU 0.4923 -0.2512 0.4539

EEPU -0.4551

CEPU -0.2573 -0.0509 -0.3669 -0.1296

VIX 0.1440 -0.3088 0.1028 0.0005

VXO -0.0426 0.0168 0.0138

VXN -0.0253 -0.1007 0.8421 -0.1055

exchus -3.2752 16.8547 -1.4200

exjpus -0.2349 -1.9856

exukus -0.35833 1.8826 -0.3908 -0.3109

exeuus 1.0145 0.0268 0.8559 -0.5602

Gold -0.1064 0.1453 0.0411

Time trend Trend 0.0003 0.0005 0.0002

Constant -0.1956 0.0018 -0.5105 0.0019 -0.3044 -0.0029 -0.0033 0.0576

H9

ApplicationsHybridTransaction

H5

H7

H8
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Table D2: Determinants of returns for each cryptocurrency in the Recent time period, ranging 

from 2017-01-04 to 2017-06-23 

 

 
  

LTC XRP XMR XLM BTC ETH NEO ETC

Token used for

H1 circulating n/a -20.8651 n/a 264.5955 n/a

H2 averagedifficulty n/a n/a 0.1746 0.5232 n/a 0.4811

H3 exchangevolumeusd 0.0173 0.0362 0.0272 0.0114

L.LreturnADA

L.LreturnBCH -0.6685

L.LreturnBTC -0.0551 0.0125 -0.0844 n/a

L.LreturnEOS

L.LreturnETC -0.3593 -0.0492 -0.1579 n/a

L.LreturnETH 0.0854 0.1929 0.0237 n/a -0.1246

L.LreturnLTC n/a 0.1250 0.1288 0.0568 0.0820

L.LreturnNEO 0.0751 0.0178 n/a

L.LreturnTRX

L.LreturnXLM 0.0109 -0.0322 n/a -0.0062 -0.0586 -0.2208

L.LreturnXMR n/a 0.1215 -0.0629 0.2136 0.9912 0.1755

L.LreturnXRP n/a -0.0204 -0.0078 0.1287

H6 google 0.6083 0.2115 0.2249 0.2884 2.5363

SP500 8.8993 33.7203

NYSE -4.2253 -19.0948

AMEX -1.2387 -1.7066 -5.5482 -7.8270

NASDAQ 1.209 -4.0599

NIKKEI 0.8585 0.6866 0.8988 1.0886 6.6608

SSE 0.7494 -0.6770 -3.2350

Oil 0.5207 -0.0479 0.3459

USEPU -0.7911 0.4413 2.1338

EEPU 1.6427 0.0478 0.3092 -1.8207

CEPU 0.0365 0.1624

VIX -0.1642 0.2614

VXO 0.2003 -0.0371 -0.1452 -0.1088 -0.5508

VXN 0.1176 0.1283 0.3613 -0.0096 0.4876

exchus 0.2850 6.5403 -5.0706 -3.5882 0.7304

exjpus 1.0674 -0.3492 -1.1492 -7.1241

exukus 1.0112 8.2117

exeuus 3.1579 -1.8914

Gold 0.2939 0.1946 0.4650

Time trend Trend 0.0001 0.0005

Constant 0.0137 0.0193 0.0133 -0.1683 -0.0280 0.0137 -0.5674 0.0102

H9

ApplicationsHybridTransaction

H5

H7

H8



75 
 

Table D3: Determinants of returns for each cryptocurrency in the Current time period, ranging 

from 2017-01-04 to 2019-01-01 

 

 
  

LTC XRP XMR XLM BCH BTC ADA ETH NEO EOS TRX ETC

Token used for

H1 circulating n/a n/a n/a n/a n/a n/a

H2 averagedifficulty n/a n/a 0.0730 n/a 0.0054 n/a n/a n/a 0.2264

H3 exchangevolumeusd 0.0090

L.LreturnADA -0.0455 n/a

L.LreturnBCH n/a -0.0013

L.LreturnBTC -0.0168 n/a

L.LreturnEOS n/a

L.LreturnETC -0.0450 -0.0667 n/a

L.LreturnETH n/a

L.LreturnLTC n/a 0.0530

L.LreturnNEO n/a

L.LreturnTRX 0.1056 0.0279 n/a

L.LreturnXLM n/a 0.0065 0.0778

L.LreturnXMR n/a -0.0492

L.LreturnXRP n/a -0.0086 -0.0563 -0.0399

H6 google 0.0290 0.0824 0.5983 0.6986

SP500

NYSE

AMEX 0.3361 0.0949

NASDAQ

NIKKEI

SSE -0.1345

Oil

USEPU

EEPU 0.4699

CEPU -0.0743 -0.1462

VIX -0.0381

VXO

VXN 0.0436

exchus

exjpus

exukus

exeuus -0.5074 -0.5168

Gold

Time trend Trend

Constant 0.0002 0.0004 -0.0009 -0.0018 0.0006 0.0021 -0.0013 -0.0021 0.0035 0.0042 -0.0018

H9

ApplicationsHybridTransaction

H5

H7

H8
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Appendix E: Unit root tests 

The Durbin Watson test examines if there exists a first-order serial correlation (i.e. 

autocorrelation at lag 1) in the residuals of a linear regression. The Durbin Watson d statistic 

can take on values between 0 and 4 and under the null d is equal to 2, there is no 

autocorrelation. The null hypothesis of the Durbin Watson alternative test is that there is no 

first-order autocorrelation and the alternative hypothesis is that there exists autocorrelation. 

Values of d less than 2 suggest positive autocorrelation whereas values of d greater than 2 

suggest negative autocorrelation. Table E1 displays the results, for all cryptocurrencies the 

Durbin–Watson d statistics are close to 2, indicating that first-order residual autocorrelation is 

not a problem. 

 
Table E1: McKinnon approximate d-statistic from Durbin Watson alternative test for serial 

correlation 

Cryptocurrency Abbreviation d-statistic 

Cardano ADA 2,0086 

Bitcoin cash BCH 1,9257 

Bitcoin BTC 1,9451 

EOS EOS 2,0180 

Ethereum classic ETC 2,1582 

Ethereum ETH 2,0020 

Litecoin  LTC 1,9438 

NEO NEO 2,0691 

Tron TRX 1,8814 

 Stellar XLM 1,8939 

Monero XMR 2,1301 

Ripple  XRP 1,9949 

 
 

The augmented Dickey Fuller (A.D.F.) test examines if a variable follows a unit root-process 

under the null hypothesis that the variable contains a unit root. The alternative hypothesis is 

that the variable was generated through a stationary process. The results of the A.D.F in Table 

E2 shows the differences before and after the log first difference transformation of the data. 

Before the transformation several variables have resulting p-values that exceed 0.05 (for a 

5%-significance level) which means that the null cannot be rejected, non-stationarity is a 

problem in the time series for the variable. After the transformation all variables fall below 

0.05, thus they are stationary after the log first difference transformation. 
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Cryptocurrency Variable Dickey Fuller test D.F. with trend Dickey Fuller test D.F. with trend

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,538 0,7442 0 0

circulating 0,0014 0,7649 0 0

averagedifficulty 0,1968 0,4741 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,0213 0,06 0 0

circulating 0 0 0 0

averagedifficulty 0,991 0,9885 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,709 0,8726 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,3766 0,4747 0 0

circulating 0 1 0 0

averagedifficulty 0,6397 0,711 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,3857 0,6082 0 0

circulating 0 1 0 0

averagedifficulty 0,7446 0,9521 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,7048 0,9484 0 0

circulating 0 0 0,0034 0

averagedifficulty 0,9991 0,9952 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,6987 0,8559 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,9743 0,0874 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,2296 0,5112 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,2037 0,4592 0 0

circulating 0 0 0 0

averagedifficulty 0,2344 0,095 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,7525 0,9639 0 0

exchangevolumeusd 0 0 0 0

return 0 0 0 0

google 0,6156 0,8763 0 0

SP550 0,8116 0,2143 0 0

NYSE 0,5424 0,3428 0 0

AMEX 0,9173 0,6425 0 0

NASDAQ 0,902 0,371 0 0

NIKKEI 0,4037 0,3237 0 0

SSE 0,4097 0,781 0 0

Oil 0,3047 0,9503 0 0

USEPU 0,0455 0,0015 0 0

EEPU 0,8511 0,953 0 0

CEPU 0,8905 0,8895 0 0

VIX 0 0 0 0

VXO 0 0 0 0

VXN 0 0 0 0

exchus 0,7015 0,9229 0 0

exjpus 0,1932 0,544 0 0

exukus 0,6532 0,7135 0 0

exeuus 0,3991 0,816 0 0

Gold 0,0807 0,1982 0 0

XMR

XRP

Not 

cryptocurrency 

specific variables

ETC

ETH

LTC

NEO

TRX

XLM

Before transformation After transformation

ADA

BCH

BTC

EOS

Table E2: McKinnon approximate p-values for Z(t) from A.D.F. test of stationarity 

 

 


