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Abstract
In this work we investigate two methods to find similar clinical trials; creating a
graph database to migrate clinical trials meta-data from relational database, and
clustering clinical trials. We succeeded in identifying similar groups of clinical trials
using the clustering method. However, we were not able to evaluate migrating the
meta-data into graph database method due to limitations of the chosen software.
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1
Introduction

Pharmaceutical companies spend large amounts of money and decades on research
to develop new drugs. According to The Pharmaceutical Research and Manufac-
turers of America organization (PhRMA) in 2013, it takes at least 10 years on
average and around a cost of $2.6 billion to bring a new approved medicine to
patients1. These researches generate enormous amounts of data. One type of data
generated is acquired and analyzed data from clinical trials. This generated data
need to be managed and utilized in an efficient manner to make the most of these
investments.
In the last few years, there has been an increased interest across the pharmaceu-
tical industry in clinical trial data sharing and reusing to explore new scientific
innovation, and decrease the time to develop and move a new drug to the market
[1].
One of the first steps to share and reuse clinical trial data is to pool similar
studies that investigated specific compound, lab measurements, or other interesting
factor to scientists. Usually clinical research scientists suggest to pool a group of
old studies (legacy studies), that they think are similar, and hand them to data
scientists and other IT staff to prepare for further investigation. However, pooling
suggested similar studies might take months and sometimes fails due to different
clinical trial data structures and heterogeneity of the collected data.
We propose to use multiple big data techniques to discover clinical trials which
are similar from a data structure point of view, to make data-driven pooling sug-
gestions, that can lead to shorter pooling time and a higher rate of success.

1.1 Problem Description
As mentioned in the introduction, pharmaceutical companies are heading toward
reusing their legacy studies data. However, pooling scientists’ suggested stud-
ies sometimes fail since different clinical trial data structures are not taken into
consideration from the beginning.

1https://www.phrma.org/advocacy/research-development/clinical-trials
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1. Introduction

The usage of different standards to design clinical trials is one of the reasons for
heterogeneity of collected data in clinical trials and their structure. Groups like
the Clinical Data Interchange Standards Consortium (CDISC) and the National
Cancer Institute Enterprise Vocabulary Services (NCI EVS) have been key drivers
of these standards2.
The way clinical research data is handled and structured over time has dramati-
cally changed. CDISC and NCI EVS have both been working endlessly to draft
standards, and drive the pharmaceutical industry to become more standardized
[2]. CDISC standards are widely used to design and structure study planning and
data collection, tabulation, analysis, and submission to the US Food and Drug
Administration (FDA) and other regulatory agencies internationally3.
The CDISC effort focuses on defining clinical trials datasets and meta-data stan-
dards to build formal data models that use a controlled terminology standard [3].
In CDISC standards glossary V12.0 (2018)4 dataset is defined as "a collection of
structured data in a single file" from the same domain, e.g., all data collected re-
garding demographic information like sex and ethnicity are stored in demographic
dataset, abbreviated as DEM dataset or DM dataset.
Eventhough using standards was suppose to make pharmaceutical companies and
regulatory organizations work more efficient, many companies have implemented
inefficient meta-data management solutions using outdated technologies. They
stored each domain dataset in a separate SAS file (collected demographic infor-
mation in a DM dataset, lab results information in a LAB dataset), similar to
Excel files, noticing that one standard might define around hundred of datasets.
This resulted in multiple spreadsheets per study, leading to disconnected meta-
data repository and difficulty to understand the relationships between collected
elements [4]. Figure 1.1 shows an example of multiple studies’ data management
systems, where each block has sometimes hundred of files that belong to a study,
and each file contains hundred to thousands of records of collected data from one
domain, e.g., demographic information (DM), lab results information (LAB), de-
vice events information (DE), etc. It is obvious how the number of disparate files
quickly becomes unmanageable with thousands of studies.
Standards define what each dataset should collect, which are normally represented
as columns in a dataset. These columns are called variables. Number of variables
per dataset might vary from twenty to hundreds. Figure 1.2 shows some of the
demographic dataset variables according to one of CDISC standards’ versions in
meta-data form. The first column holds dataset name, in this case demographic
dataset, abbreviated to DM. The second column shows DM dataset collected vari-

2https://www.cancer.gov/research/resources/terminology/cdisc/
3https://www.cdisc.org/standards/foundational/
4https://www.cdisc.org/standards/glossary/
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1. Introduction

Figure 1.1: This figure shows multiple studies’ data management systems. Each block
represents a study repository. Each file represents a dataset that collects data with the same
characteristics, also called dataset domain, (demographic dataset (DM), laboratory test results
dataset (LAB), device events dataset (DE), etc.)

ables abbreviated when possible, e.g., STUDYID is study identifier. The third
column shows the full form of the variable abbreviation. All collected variables
by DM dataset are related to demographic information, e.g., AGE, SEX, RACE,
ETHNIC, etc, in addition to other variables that identify the study (STUDYID)
and participating subjects in clinical trial (SUBJID).
Homogeneity of collected variables is one of the factors in finding similar clinical
trials to pool, which can be verified by first checking if these trials have collected
the same variables. Usually data scientists need to query each domain datasets’
variables per study, and compare them with the other studies’ datasets variables.
This process can be done when pooling a couple of studies, but it is time consum-
ing. However, when scaling this process to ten, a hundred, or even thousands of
studies, it becomes impossible to query with the current data management sys-
tems. Another factor of complexity and variability of pooled studies with the
current data management systems is with each new version of standards, organi-
zations might use different abbreviation to variables of the same meaning in older
versions.
This problem was piling up through the years, but with the rising of legacy studies
data reusing trend, companies had to face the challenge of finding similar studies
across these disparate files. A few years ago AstraZeneca performed two projects
called MetaDataHub and Clinical Data Index (CDI), where a number of studies
were searched, and locations for data and key documents were saved in a database.
The CDI project focused on extracting studies’ meta-data, and storing them in a
relational database (RDB) [5, 6]. The extracted meta-data contained each clinical
trial datasets and their variables, resulting in RDB tables similar to figure 1.2 all
stored in one data management system.

3



1. Introduction

Figure 1.2: This figure shows what demographic dataset (DM) should collect according
to one of CDISC standards’ versions in meta-data form. The first column holds dataset name,
in this case demographic dataset, abbreviated to DM. The second column shows DM dataset
collected variables abbreviated when possible. Third column shows the full form of the variable
abbreviation.

The CDI project was the first step to find similar studies by addressing questions
about what variables are captured in the studies. However, with around 20,000
studies and each one of them having hundred of datasets and variables, they ended
up with millions of variables to query in RDB.
With data growing in volume, this challenge becomes a big data one, and requires
big data technology. We propose using different big data methods to find similar
studies. The first step is visualizing studies using a directed graph to understand
the relationship between datasets and variables in a clinical trial. The second step
is storing studies’ extracted meta-data in a graph database instead of a relational
database, to discover relations between studies and find similar ones. The final
step is clustering studies, to find groups of similar studies in terms of their collected
variables.

1.2 Objectives and Research Questions
In this project we aim to make pooling clinical trials data faster and more efficient
by identifying similar clinical trials from data structure perspective to have data
driven pooling suggestions. In the current data management systems, it is difficult
to identify which of many studies can be pooled, and judge quickly how easy or
difficult it might be to combine data from a particular set of studies. So, we
propose to use a big data technology to store data to make the former easier to
accomplish, in addition to applying a clustering algorithm to find groups of similar
trials.
By the end of the project, we want to answer the below questions:

4



1. Introduction

• Can studies’ meta-data (datasets and variables) visualization using a directed
graph help to understand the relation between datasets and variables better
in order to build a graph database?

• Can a graph database provide an efficient aggregated view of the different
data related to clinical trials to discover relations between studies that the
current RDBs cannot provide?

• How many groups of studies can be discovered if we cluster studies according
to their collected variables?

1.3 Report structure
The contents of this thesis are organized as follow. After the introduction, chapter
2 introduces some of the concepts and methods used later in the implementation
chapter. Chapter 3 explains the implemented methods to answer our research
questions. In chapter 4, we present our results. The last chapter 5 provides an
overview of the thesis, discusses what has been accomplished, and the lessons
learned.

5
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2
Background

In this chapter, we will explain some of the mentioned concepts in the report in
addition to the methods used. This will lay the foundation for the methods used
in the implementation chapter.

2.1 Clinical Trial
According to CDISC standards glossary V12.0 (2018)1 clinical trial is defined as
"research investigation involving human subjects that is designed to answer spe-
cific questions about the safety and efficacy of a biomedical intervention (drug,
treatment, device) or new ways of using a known drug, treatment, or device)". In
AstraZeneca, there are around 20,000 clinical trials stored in different data man-
agement systems due to legacy organizations mergers and acquisitions.

2.1.1 Clinical Trial Data
According to the former CDISC glossary, clinical trial data is defined as "data
collected in the course of a clinical trial". As mentioned in section 1.1, CDISC is
one of the standardization organizations that issues how clinical trials should be
designed and structured and what type of data should be collected.
Usually a standard defines clinical trial data in terms of datasets and variables.
CDISC standards glossary V12.0 (2018) defines dataset as "collection of struc-
tured data in a single file". Each dataset file contains data from the same domain,
e.g., all data collected about untoward medical occurrence in participating sub-
jects in a clinical trial, like any unintended symptom, are stored in adverse event
(AE) dataset file. In the previous CDISC glossary, a variable is defined as "any
entity that varies; any attribute, phenomenon, or event that can have different
qualitative or quantitative values". In a clinical trial dataset file, a variable cor-
responds to a column. Figure 2.1 displays clinical trial data. The tables show
datasets, where each row is a record for a participating subject and each column is

1https://www.cdisc.org/standards/glossary/
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2. Background

a variable collected. Both datasets have common variables that identify the clini-
cal trial (STUDYID) and participating subjects (USUBJIS), in addition to other
variables that belong only to specific dataset (RACE variable in DM dataset and
LBTESTCD variable in LB dataset).

Figure 2.1: This figure shows a clinical trial data. Each file represents a dataset (demographic
dataset (DM), laboratory test results dataset (LB), etc.). The tables, with the red arrows pointing
at them, are what dataset file usually contains. The right table is DM dataset and the left one is
LB dataset, where each column correspond to a collected variable. STUDYID variable column
contains the clinical trial unique ID. Domain variable column contains dataset name. USUBJID
variable column contains a unique subject identifier for each subject participant. In the DM
dataset table, the race variable column contains a code that correspond to each subject race,
e.g., C41260 is Asian. Each row in the dataset is a record for participating subjects in the clinical
trial.

Meta-data is defined as "data about data", more accurately, meta-data could be
defined as "the information required to contextualize and understand a given data
element" [4]. Within clinical trial, meta-data has multiple levels, but we are inter-
ested in only two of them:

• Dataset level meta-data describes the properties of a dataset. Figure 2.2
shows dataset level meta-data for a clinical trial, where rows contain datasets
available in the clinical trial. Domain name column contains the dataset’s
abbreviated name, which is usually used to name the dataset file in the data
management system.

• Variable level meta-data describes variable level properties. Figure 1.2

8



2. Background

in section 1.1 shows an example of variable level meta-data for DM dataset.
Each row is a variable record that was represented as a column in the clinical
trial dataset shown in Figure 2.1.

In the CDI project, data scientists and IT staff worked on indexing clinical trial
SAS datasets for studies in different data management systems to extract their
meta-data for dataset and variable levels. They stored each level meta-data in
different RDB tables. Figure 2.3 represents the transformation process from SAS
dataset files into meta-data level RDB.

Figure 2.2: This figure shows dataset level meta-data for a clinical trial. Each row in the
table is a record for a dataset in the clinical trial. The domain label column contains the dataset
names, and the domain name column contains the abbreviated form for each name.

2.1.2 Clinical Trial Data Pooling and Reusing
In this section two initiatives are mentioned as examples of multiple efforts to pool
clinical trial data for reusing, and how big data technology can help in facilitating
it.
As mentioned in [7], there have been multiple initiatives to create pool analysis
datasets in the health domain to reuse research data because the right dataset is
essential to obtain the right insights in data science. As a start, it is important for
data scientists to have a good understanding of the availability of relevant datasets
as well as the content and structure of these datasets, before starting the actual
data analysis to catalyze scientific innovation.
The most challenging step is understanding the structure of different clinical trials
to create pool analysis datasets. One of the initiatives to reuse clinical trial data is
The Yale University Open Data Access (YODA) project [8]. The YODA founders
highlighted in [8] how the proactive preparation of a catalogue of available trials
for a large company with a multitude of marketed products is time and resource
intensive. However, it is important to understand the differences and similarities

9



2. Background

Figure 2.3: This figure shows the transformation process from SAS dataset files into meta-
data level RDB for CDI project. There are three level meta-data; dataset, variable, and code

between clinical trials to be able to prepare a catalogue of available trials for fur-
ther analysis. In another initiative called Strategic Health IT Advanced Research
Projects (SHARP) program [9], semantic web technologies are being used on med-
ical data for high-throughput extraction, representation, integration, and querying
[10].

2.2 NoSQL Database
For 40 years relational databases have dominated the entire database market, until
the 2000’s when NoSQL databases started to enter the market. The term NoSQL
was first introduced by Carlo Strozzi in 1998 for a relational database that does
not use SQL (structured query language) as a query language, and it stood for
"no SQL". It is stated on his website that his use of term has nothing to do with
the current NoSQL movement2. The term was re-introduced in 2009 in an event
for "open source distributed, non relational databases" where Google and Amazon
talked about their new non-relational databases, Bigtable [11] and Dynamo [12].
Currently, the term NoSQL stands for "not only SQL", to highlight that NoSQL
database model does not replace relational database model rather provides an

2http://www.strozzi.it/cgi-bin/CSA/tw7/I/enU S/NoSQL/Home

10



2. Background

alternative when relational database does not scale.
One of the main reasons for NoSQL databases gaining popularity was that big com-
panies, such as Amazon and Google, required databases that can handle massive
amounts of data. In addition, NoSQL databases support flexible schema, resulting
in easier modification for database model compared to relational database. Fur-
thermore, NoSQL offers four categories of data models depending on application
purpose and use cases; key-value databases, document databases, column-oriented
databases, and graph databases.
Graph databases will be used in this project, and the following section will explain
more about them. The other three types are beyond this project scope.

2.2.1 Graph Databases
Graph databases are a NoSQL database type where data are represented as nodes,
the relation between them as edges, and nodes can have properties, resulting in
graphs of interconnected key-value pairings. Figure 2.4 is an example of a graph
database.

Figure 2.4: This figure shows an example of a property graph type. Im-
age source; https://medium.com/@npsinghmrj/what-are-graph-databases-and-different-types-
of-graph-databases-369e5040a9d0

Graph databases are specialized in efficient management of heavily linked data,
and focus on visual representation of information, which makes them more human-
friendly than other NoSQL databases [13]. This makes graph databases a good fit
for use cases when we are interested in relationships between data more than the
data itself, just like in social networks and recommendation systems. In our use
case when querying "which clinical trials investigated product X, have Y dataset

11



2. Background

and collected Z variable" in relational databases, it would require multiple joins
between different tables, that becomes heavily performance demanding, while in
graph databases the traversal between relationships (edges) is efficient. Further-
more, graph databases have the advantage of keeping all information about an
entity3 in a single node, and showing the entity relationships with others by edges,
making it more natural for users to understand data.
As mentioned in 2.2.1, NoSQL databases support flexible schema, and in graph
databases case no pre-defined schema is needed to start creating the database and
storing data, and new information and relations can be continuously added and
updated without much effort. This leads to easier adaptation to schema evolution
and ability to capture ad-hoc relations continuously [14]. All of the previous men-
tioned characteristics make graph database a good choice for our use case. One
thing to highlight, not all graph databases models support the previous mentioned
characteristics.
There are three types of graph databases based on the data model:

• Hypergraphs.
• Property graphs.
• Resource description framework (RDF) stores.

In the following sections, more details will be provided about these types.

2.2.1.1 Property Graphs

A property graph model is widely used in most graph database systems because it
is an intuitive and easy to understand. All of the graph database characteristics
that were mentioned in 2.2.1 apply to property graph models. It is made up of
nodes, relationships, properties, and labels [15]. Figure 2.4 shows an example of a
property graph.

• Nodes: nodes represent the information entities in the graph. They can hold
any number of attributes called properties in the form of key-value pairs.
Nodes can be tagged with one or more labels to group nodes together, and
indicate the roles they play within the dataset.

• Relationships: a relationship connects two nodes together to indicate a con-
nection between them (one-to-one relationship). Relationships are repre-
sented as directed named arcs, with a start node and an end node. Just
like nodes, relationships can have properties, which can provide an addi-
tional meta-data for graph algorithms, e.g., relationships can have weight as
a property, which can be used in finding short path in a graph.

3An information entity is any object in a use case that we want to model and store information
about.
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2.2.1.2 Hypergraphs

A hypergraph is a graph data model, which contains nodes and edges, and can
handle many-to-many relationships between information entities, unlike the other
graph databases. This means an edge can have any number of nodes at either end
of it, and it is called hyperedge. Figure 2.5 shows an example of a hypergraph.

Figure 2.5: This figure shows an example of a hypergraph. It has four hyperedges and seven
nodes. Image credits from the author of [16]

This model may require a description for understanding the relationships between
nodes, but still it is a simple, generic model. Hypergraphs can be translated
into a property graph by transferring the multidimensional hyperedges into more
relationships (edges) between nodes to make them one-to-one relationships, but
this will increase the cost of storage [15, 16].

2.2.1.3 RDF Stores

Resource description framework (RDF) is a standard data model for supporting
resource description, or meta-data, for the Web, and it is part of the Semantic
Web movement [17]. RDF stores or triple stores are databases for the storage and
retrieval of any type of data expressed in RDF format [18]. RDF express data in
a format known as a triple of subject-predicate-object data structure, more will
be explained in section 2.3. RDF graph notation is represented by a node for the
subject, a node for the object, and an arc for the predicate. Figure 2.6 shows an
example of an RDF graph, where Amsterdam is a subject, city is an object, and
the directed arc with a label Is_a is a predicate.

13



2. Background

Figure 2.6: This figure shows an example of an RDF graph. Image credits from the authors
of [19]

A set of triples expressing information about a use case provide a rich dataset from
which to harvest knowledge and infer connections [15]. However, Triple stores
are not “native” graph databases, they fall under a general category of graph
databases because they do not support all their characteristics. RDF stores do
not support index free adjacency, which allows for relationship traversal, resulting
in fast querying. On the other hand RDF stores store triples as independent
artifacts, which allows them to scale horizontally for storage, but prevents them
from rapidly traversing relationships. To perform queries, RDF stores must create
connected structures from independent facts, which adds latency for each query
[15].

2.3 RDF Data Model
To understand the RDF data model, we need to define four fundamental concepts
of RDF data model; resources, properties, statements, and graphs.

2.3.1 Resources
A resource is an object of interest that we want to model. It can be considered
as the equivalent of an information entity. In an RDF graph, a resource is the
subject node. Every resource has a URI (universal resource identifier), which is
unique, to distinguish them from each other. Using the URIs mechanism allows for
a global, worldwide unique naming scheme, which means we can identify if any two
resources are referring to the same thing or not, and easily merge different RDF
data models [19]. RDF data model uses some of the world wide web consortium
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(W3C) standards for URI namespace4, and there are some collaborative commu-
nity groups, like schema.org5, who support providing a common set of semantic
vocabularies for resources, which can be used as URIs.

2.3.2 Properties
Properties describe relationships between resources, and they are considered as a
special kind of resources, which means they are also identified by URIs.

2.3.3 Statements
Statements assert the properties of resources, and in RDF it is formed as subject-
predicate-object, or entity-attribute-value [19]. Subject is a resource, or an entity
of interest, while object can be either another resource, or a value referred to it
as literal6. Predicate is object’s attribute that describes the relationship with the
object.
RDF statements can be expressed in many different formats, called serializations.
The four common RDF serialisation formats are:

• RDF/XML
• N-Triples
• Turtle
• JSON

Listing 2.1 shows an example of RDF statements written in OWL2 language
using RDF/XML syntax. In this example both the subject and object are re-
sources, where MedicalTrial is the subject, Dataset is the object, and hasDataset
is the predicate. We used schema.org to identify the resource MedicalTrial using
"http://schema.org/MedicalTrial" URI.

Listing 2.1: An example of an RDF statements written in OWL2 using RD-
F/XML syntax

<owl:ObjectProperty rdf:about=" ht tp : //www. semanticweb . org /
on t o l o g i e s /2019/AZ−t h e s i s−onto logy#hasDataset ">
<rd f s :domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l " />
<rd f s :range rdf:resource=" ht tp : //www. semanticweb . org /

PharmaCl in ica lTr ia l#Dataset " />
</owl:ObjectProperty >

4A namespace is a set of symbols that are used to organize objects of various kinds, so that
these objects may be referred to by name. Namespace ensures that all the identifiers within it
must have unique names so that they can be easily identified.

5schema.org
6Literals are atomic values, for example, numbers, strings, or dates.

15



2. Background

2.3.4 Graphs

RDF statements can be represented as a graph. Figure 2.7 shows a graph repre-
sentation for former RDF statements, where URIs were dropped for readability,
which is a common practice. As mentioned in 2.2.1.3 subject and object are rep-
resented as nodes, and predicate as arc. The arc is directed from the subject of
the statement to the object of the statement, with the label on the arc to the
statement’s property [19].

Figure 2.7: This figure shows a graph representation for RDF statements.

2.4 RDF Schema

RDF schema (RDFS) is an ontology language that defines class relations, property
relations, and domain and range restrictions for properties. Individual objects
that belong to a class are referred to as instances of that class. Authors of [19]
book describe RDFS as a mechanism for describing specific domains, since RDF
is domain-independent. Figure 2.8 illustrate how RDF is domain-independent,
but having its RDFS shed lights of the specific domain of interest. This RDFS
describes classes such as person and residential unit, subclasses like apartment,
and properties like residesAt. It specifies the domain and range for each property
to provide some kind of constrains on which entities can be connected together,
or what type of value an entity’s instance can be assigned to.
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Figure 2.8: This figure shows RDFS and RDF layers. Image credits from the authors of
[19].

2.5 OWL2
Web Ontology Language OWL2 is a Semantic Web language designed to repre-
sent rich and complex knowledge about resources, and relations between them.
OWL2 is mainly used to build ontology7. It extends RDF and RDF schema with
a number of very expressive language features, but every OWL2 document is a le-
gal RDF document, while RDF document needs some extensions and restrictions
before being considered OWL2 document [19].
Just like RDF, OWL2 defines class relations, property relations, and domain and
range restrictions for properties, however OWL2 distinguishes two types of prop-
erties:

7An ontology is an explicit formal specification of the concepts in a domain.
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• Object Properties: These properties relate individuals (resources) to other
individuals (resources).

• Datatype Properties: These properties relate individuals to literal values of
a certain data type.

Listing 2.2 shows examples of an object property and a datatype property taken
from [19] book. The object property rents connect the class person to class apart-
ment. The datatype property specify that age value should be a positive integer.

Listing 2.2: Examples of OWL2 properties
<!−−
/////////////////////////////////////////////////////////
// Object Prope r t i e s example
/////////////////////////////////////////////////////////
−−>

:rents rdf: type owl:ObjectProperty
rdfs:domain :Person
rdfs: range :Apartment
<!−−
/////////////////////////////////////////////////////////
// Datatype Prope r t i e s example
/////////////////////////////////////////////////////////
−−>

:age rd f :type owl:DatatypeProperty
r d f s :range xsd:nonNegat iveInteger

OWL2 language provide a feature called automatic reasoning. Automatic reason-
ing allows us to check the correctness of the ontology, which can help verify our
ontology[19]. Some of the use cases a reasoner checks are:

• Check the consistency of the ontology.
• Check for unintended relations between classes.
• Check if imported instances match defined types.

OWL2 has four standard syntaxes:
• RDF/XML.
• Manchester Syntax.
• OWL/XMLs.
• The Functional Style syntax.

In this project, we will extend our RDF and RDF schema by using OWL2, to
make use of the automatic reasoner. RDF/XML format will be used as a syntax
format.

18



2. Background

2.6 Protégé

Protégé8 was developed by Stanford center for biomedical informatics research
(BMIR), and is described as "a free, open source ontology editor and a knowledge
management system, which provides a graphic user interface to define ontologies,
and infer new information based on the analysis of an ontology". It supports RDF,
RDFS, and OWL2 languages, and can be used to edit schemas. It has a feature for
importing instances into classes and properties, and it supports multiple reasoners
for automatic reasoning. It is going to be used in this project for creating our
schema and importing data into it.

2.7 Clustering
Clustering is an unsupervised machine learning problem, where the goal is to assign
a set of objects X = {x1, x2, ..., xn} to groups, called clusters C = {c1, c2, ..., cn},
where objects in a cluster are more similar to each other than to those of other
clusters according to a specific similarity measurement. In chapter 3, we are going
to use hierarchical clustering to find similar clinical trials according to their col-
lected variables. Thus, in the following sections, we are going to introduce a basic
description of used algorithm and similarity measurement.

2.7.1 Hierarchical Clustering
Hierarchical clustering algorithms build a hierarchy of clusters. The output of
hierarchical clustering is a dendrogram, which is a tree showing a sequence of
nested clusterings [20]. There are two types of hierarchical clustering:

• Agglomerative: agglomerative is a bottom-up approach, where each object in
X = {x1, x2, ..., xn} is considered as singleton cluster, then pairs of clusters
are merged according to similarity measurement, until having at the end
one large cluster of all objects. This approach is the most common one in
hierarchical clustering.

• Divisive: divisive is a top-down approach, and it is the reverse of agglom-
erative. It starts by assigning all objects in X = {x1, x2, ..., xn} to one big
cluster, then recursively splitting it to the most appropriate clusters. The
process continues until a stopping criterion is achieved.

Figure 2.9 shows an example of hierarchical clustering output, dendrogram, where
the difference between agglomerative and divisive hierarchical approaches is high-
lighted by arrows. One thing to highlight is through the thesis we will use the term

8https://en.wikipedia.org/wiki/Prot%C3%A9g%C3%A9_(software)/
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hierarchical clustering without specifying which approach. However, we mean ag-
glomerative hierarchical clustering. Everything we explain and talk about can be
projected on divisive approach by doing some slight changes.

Figure 2.9: Overview of the difference between agglomerative and divisive hierarchical
clustering. Image credits from the authors of [21].

To explain hierarchical clustering, we assume we have n objectsX = {x1, x2, ..., xn},
and m+ 1 clusters C = {c0, c2, ..., c3}, where c0 is the weak clustering of n objects
with distance value 0, and cm is the strong clustering (the final cluster with all
objects and/or clusters). d is a similarity function, e.g., the Euclidean distance.

d(x, y) =
√√√√ n∑

i=1
(xi − yi)2

We can divide hierarchical clustering algorithm into four steps according to authors
of [22]:

Step 1. Start with calculating the distance matrix. Distance matrix values are cal-
culated as follow; given two objects xi and xj, their distance matrix value in
row i and column j of the matrix is

d(xi, xj) = ai,j

Step 2 Given the clustering ci−1 with the distance matrix between each cluster or
object and every other. Let ai be the minimum nonzero entry in the matrix.
Merge the pair of objects and/or clusters with distance ai, to create a new
cluster ci, of value ai.

Step 3. Recalculate a new similarity function (distance matrix) for new cluster ci as
follow;
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– if xi and xj are clustered in ci, and not in ci−1, the distance from the
cluster {xi, xj} to any third object or cluster xz is

d([xi, xj], xz) = min[d(xi, xz), d(xj, xz)]

– if xi and xj are objects and/or clusters in ci−1, and not clustered in ci,
their distance d(xi, xj) remains the same.

Step 4. Steps 2 and 3 is repeated until finally obtaining the strong clustering cm,
then the clustering is finished.

In the third step of the above explained algorithm, a minimum method was used–
a method where the minimum distance is chosen. If we want to use a maximum
method, we adjust the distance matrix calculation in step 3 to

d([xi, xj], xz) = max[d(xi, xz), d(xj, xz)]

Figure 2.10 illustrates hierarchical clustering algorithm in a simpler way.

Figure 2.10: This flow chart illustrates agglomerative hierarchical clustering algorithm.

21



2. Background

To be able to say how close two clusters are a similarity measurement d need to
be calculated. As mentioned in step 2, the decision of merging pairs of clusters is
taken on the basis of finding the minimum nonzero entry in the matrix. But this
is not the only approach. There are multiple ones, such as:

• Ward clustering: minimize the sum of squared error or variance.
• Single-link clustering: minimize distance between clusters.
• Complete-link clustering: maximize distance between clusters.

2.7.1.1 Ward Variance Minimization Method

Ward’s method considers the distance between two clusters as how much the sum of
squares (or variance) will increase when we merge them. In hierarchical clustering,
the sum of squares starts out at zero, since every point is a cluster, and then grows
as we merge clusters. The goal of ward variance minimization method is finding
the pair of clusters that leads to minimum increase in total within-cluster sum of
squares (variance) after merging [23, 24].
To achieve this goal, ward’s method calculates a merging cost function, which
measures the change in total sum of squares resulting from merging clusters, and
chooses the clusters that minimize this cost function. The merging cost equation
is:

∆(s, t) =
∑

i∈s∪t

‖~xi − ~µs∪t‖2 −
∑
i∈s

‖~xi − ~µs‖2 −
∑
i∈t

‖~xi − ~µt‖2 (2.1)

= nsnt

ns + nt

‖~µs − ~µt‖2 (2.2)

where s and t are two clusters, µ represents the mean of a cluster (center of cluster),
and n represents the number of objects in a cluster. From the equation we can
notice that not only the distance between clusters’ centers affects the merging
decision, but also the number of points in the clusters. Thus, when two pairs of
clusters have equal means (same distance away), ward’s method prefers to merge
the pair with small number of points.
After deciding which clusters to merge, the distance matrix is updated to reflect
the distance of the newly formed cluster with the remaining clusters in the forest.
In this project, the following updating formula is used:

d(U, V ) =
√
|V |+ |s|

T
d(V, s)2 + |V |+ |t|

T
d(V, t)2 − |V |

T
d(s, t)2 (2.3)

where U is the newly formed cluster consisting of clusters s and t, and V is one
of the remaining clusters in the forest. T is the sum of each cluster cardinality
T = |V |+ |s|+ |t|, and d is a distance function, e.g., Euclidean distance.
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As mentioned in section 1.2, we want to make pooling studies easier by providing
data-driven pooling suggestions. To achieve the former, we will start by visualizing
studies’ datasets and variables using a directed graph to see how variables are
connected to different datasets.
After understanding the data better, we will build a graph database to migrate the
studies’ meta-data from the current CDI relational database. We start by modeling
the database, then implementing the model using Protégé. Finally, we group
similar studies according to their variables by applying hierarchical clustering.

3.1 Extracting Studies
Within AstraZeneca there is data available from around 20,000 clinical trials. Us-
ing expert knowledge, we identified around 377 out of them that have complete
data in the CDI RDB, and are of interest to scientists. Each clinical trial has a
unique ID to identify it in the CDI RDB, called AstraZeneca Trial ID (AZT_ID)
[6], which was used to query the RDB and extract the data. Python script was
written to query the RDB, and the records library1 was used to perform the query.
According to its developers, "records is a very simple, but powerful, library for
making raw SQL queries to most relational databases"2. In addition, it is easy
to transform the query output into a pandas DataFrame3 and Comma Separated
Values (CSV) file format, which was the main reason we chose it instead of other
SQL libraries.
Since we were comparing 377 clinical trials AZT_ID against 20,000 studies in the
query, and extracting data from millions of records, it was not possible to perform
one query to extract the 377 studies’ data. We ran into a memory error, due to
shortage of memory. After a couple of trial and error attempts, we found that
dividing the 377 AZT_ID into multiple lists, each one containing ten AZT_ID,

1https://github.com/kennethreitz/records/
2https://github.com/kennethreitz/records/
3https://pandas.pydata.org/

23



3. Implementation

and looping over the lists to pass each list to a query, was the best practice for the
available hardware we had. Afterward, the query results were saved into CSV files
for each clinical trial. By the end of this step, we had 377 CSV files for desired
clinical trial meta-data.

3.2 Data Visualization

Before we build a graph database, we need to understand our data to overcome
problems already existing in current RDB, like redundant data. We learned from
AstraZeneca data scientists that there are variables that occur in multiple datasets.
These are the ones that identify the study and participant subject. However, we
were not sure if there are other variables nor their percentage. To answer questions
about the data, such as "were there variables reported in multiple datasets?", three
representative studies were chosen according to their size to plot.

Directed graph structure was chosen to plot the studies’ datasets and variables
because it is more intuitive to understand and reflects the natural representation
of relation between datasets and variables. The NetworkX library was used to
plot graphs [25], which is "a Python package for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks and graphs"4.
A Python script was written to create the directed graph (DiGraph) by adding
datasets and variables names as nodes, and the relation between them as edges.
Directed edges were added from the datasets to their variables, and from the
AZT_ID for a study to its datasets. Figure 3.1 shows one of the clinical trials
data in terms of DiGraph. The blue node represents the clinical trial, and the
red nodes represent its datasets. The green nodes are the clinical trial variables.
Figure 3.2 shows another clinical trial in terms of DiGraph but has a bigger size
than the previous one.

4https://networkx.github.io/documentation/stable/index.html/
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Figure 3.1: This DiGraph shows the meta-data of a clinical trial in form of a directed
graph. The blue node represents the clinical trial, the red nodes represent its datasets, and the
green nodes are the clinical trial variables. There are two types of edges; from a clinical trial
represented by its AZT_ID to its datasets, and from a dataset to its variables. The number of
edges in this graph is 280, and the number of nodes is 162.
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Figure 3.2: This DiGraph shows the meta-data of a clinical trial in form of a directed
graph. The blue node represents the clinical trial, the red nodes represent its datasets, and the
green nodes are the clinical trial variables. There are two types of edges; from a clinical trial
represented by its AZT_ID to its datasets, and from a dataset to its variables. The number of
edges in this graph is 5426, and the number of nodes is 1730.

3.3 Database Modeling
Currently there is not a well defined methodology for graph database design. It is
mostly based on best practices and guidelines related to specific use cases. Some
of these guidelines start directly with creation of a graph database without sketch-
ing its schema. Even though NOSQL databases are famous for being schemaless,
it does not imply the absence of business requirements or the modeling of these
requirements. After reviewing multiple guidelines, we decided to choose a combina-
tion of two methods [26, 27] since both of them stress the importance of creating
a graph database schema. It is proposed to start with a traditional relational
database design method, construction of conceptual representation by creating
entity–relationship diagram (ERD), then mapping the ERD into a graph database
schema.
We performed two steps to create our database model; requirements gathering and
creating conceptual model. In the following sections we describe them.

3.3.1 Database Requirements Gathering
In this project, we are migrating data from multiple sources; clinical trial meta-
data from the CDI RDB, and other clinical trials information, such as clinical
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trial phase, countries it is being conducted in, etc. This information is stored in
different Excel files in multiple data systems. With this clinical trial data scattered
in different RDB and systems, we need to identify which data to migrate into our
new graph database model. We started defining our graph database model by
extracting the business requirements that the current data management systems
have failed to meet. We decided to use Jim Gray "20 queries” proposed approach
for tackling data engineering challenges related to large-scale scientific datasets
[28].
As mentioned in [28], Jim Gray came up with the heuristic rule of “20 queries”. On
each project he was involved with, he asked for the 20 most important questions
the researchers wanted the data management system to answer. He said that five
questions are not enough to see a broader pattern, and a hundred questions would
result in a shortage of focus.
After discussions with different stakeholders at AstraZeneca, we identified only ten
questions that we want our graph database to be able to answer. We decided to
start with ten questions instead of 20 as this graph database is a proof of concept.
The ten questions are:

• Which studies (for product X) have investigated (LabCode Y)? (This will
help identifying potential studies to reuse their datasets to better understand
BioMarker related to LabCode)

• Which studies across products (X,Y) were run in the time frame (Date1-
Date2)?

• Have we measured (X level) for studies that have been conducted in (X, Y)
countries?

• Have studies conducted in (X,Y,Z) countries collected same datasets? (This
and the previous question will help in finding if different countries followed
same standards)

• How many studies between (Date1-Date2) have collected (X,Y,Z) datasets?
(This will help in mapping studies with standards issued at specified dura-
tion)

• How many of (the product X) studies have investigated (Y) compound?
• Which studies have (X Datasets) and have investigated (Y levels)?
• How many studies in (X,Y) focus area measured (X level)?
• In which countries has (X,Y,Z) indications been conducted?
• Which studies investigated (X) compound have reported (Y level)?

3.3.2 Conceptual Model
After formulating the above questions and analysing them, we were able to identify
the main information entities to sketch preliminary entity–relationship diagram
(ERD) representing the conceptual view. The preliminary ERD was discussed
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with multiple stakeholders and iteratively modified until reaching a final version.
It was decided to make the center of the design is the clinical trial.
Figure 3.3 shows the final version of ERD, containing three information entities.
These entities are:

• Clinical_trial entity: it represents clinical trial study and its properties:
– AZT_ID: AstraZeneca unique study ID, and it is going to be used as

unique identifier for clinical trial node (URI).
– Study_title.
– Acronym: some studies have a short popular name in the company.
– Study_focus_area: the scientific focus area of the study, e.g., respi-

ratory and inflammation, cardiovascular, oncology, gastrointestinal.
– Chemical_compound: is an official generic and non-proprietary name

given to a pharmaceutical drug or an active ingredient, and it provides
a unique standard name for each active ingredient.

– AZ_product_ID: the commercial name for the drug investigated or
developed in the study.

– Countries: name of countries that the study has been conducted in.
– FSI_Date: first subject in, which indicates the beginning of collecting

the study’s data.
– LSLV_Date: last subject last visit, which indicates the end of collect-

ing the study’s data.
– Study_phase: a stage in the conduct of a clinical trial, which are

generally categorized into four (sometimes five) phases.
– URI: study URI where original clinical trial data is stored in one of

AstraZeneca’s database systems.
– Indications: a sign, symptom, or medical condition that leads to the

study, e.g., breast cancer, asthma, depression and anxiety disorders.
• Dataset entity: it represents the clinical trial dataset and its properties:

– Name: dataset name, e.g. DM dataset.
– File_Path: the file path where the dataset is stored in one of As-

traZeneca’s database systems.
• Variable entity: it represents the dataset collected variable and its prop-

erties:
– Name: variable name, e.g., USUBJID.
– Label: the full format of the abbreviated variable name, e.g., USUBJID

label is unique subject identifier.
– File_Path: the file path where the dataset of this variable is stored in

one of AstraZeneca’s database systems.
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Figure 3.3: This figure shows the Entity–relationship diagram (ERD) that represents the
information entities and their properties which answers the proposed modeling questions. Un-
derline properties mean unique values, while properties with (O) means optional, meaning not all
clinical trials might have this property. Double circle around a property means it is multi-valued.

3.4 Implementing Graph Database
To implement a graph database, two steps were taken. We started by mapping the
former ERD into a graph database schema, then loading the extracted meta-data
into the graph database. Resource description framework (RDF) or triple stores
was chosen as a graph database type. In the following sections the process of
creating graph database will be explained.

3.4.1 Creating Graph Database Schema
Graph databases are schema-less. Nevertheless, providing schema information as
additional descriptions of resources in the database is important to describes the
relation between the different entities and their properties.
Based on the work of the authors in paper [26], mapping the ERD into RDF
schema (RDFS) was done in two steps.
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Step 1. Each information entity in the ERD is mapped to a node and the entity’s
properties become the node’s properties.

Step 2. Each relationship between entities is mapped to an edge connecting the re-
spective nodes.

Protégé was used to create the RDFS using OWL2 language, and we chose an
XML/RDF format as syntax. Each entity was translated into a class, and their
properties were mapped as data properties. Relationships between entities were
mapped as object properties. Although there is no strict naming convention for
properties, we used the recommended schema by the authors of the Protégé guide
[29]. It is recommended that properties’ names are prefixed with the word ‘has’,
or the word ‘is’, and the properties’ names start with a lower case letter, have no
spaces and have the remaining words capitalized.

Figure 3.4 shows the resulted RDFS. There are three classes; MedicalTrial, Dataset,
and Variable. There are two object properties (predicates); hasDataset, and has-
Variable. Predicate hasDataset subject is MedicalTrial and its object is Dataset.
Predicate hasVariable subject is Dataset and its object is Variable. For each
datatype property, its range type was defined using W3 XML standards5 e.g.,
string, date, etc. The whole script for creating the RDFS can be found in ap-
pendix A in XML/RDF format.

To standardize used class vocabulary, we used schema.org definitions for Medical-
Trial as this class URI6. For now there is no official definition for class Dataset
and Variable on schema.org, so we created our own URIs.

5https://www.w3.org/TR/xmlschema11-2/
6http://schema.org/MedicalTrial/
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Figure 3.4: This figure shows the result of mapping the ERD into RDFS. Classes are
represented as blue circles. Datatype properties are represented as green rectangles. Datatype
properties’ ranges are yellow rectangles. Object properties are represented as directed arrows
from a node to another.

3.4.2 Loading Data into The Graph Database

The Cellfie feature7 in Protégé was used to load the data from CSV file into
created RDFS. This feature requires identifying rules to load data from CSV file,
by mapping the spreadsheet columns to their respective classes, and datatype
properties.

Listing 3.1: Transformation rules to load spreadsheet data into RDFS
I nd i v i dua l : @B*
Types: schema:MedicalTrial
Facts: hasAZTID @B∗ ,

ha sC l in i ca lTr ia lURI @C∗ ,
hasAcronym @D∗ (mm:ProcessIfEmptyLocation ),
hasTitle @E* (mm:ProcessI fEmptyLocat ion ) ,
ha s Ind i c a t i on s @F∗ (mm:ProcessIfEmptyLocation),
hasAZProductID @G* (mm:ProcessI fEmptyLocat ion ) ,
hasChemicalCompound @H∗ (mm:ProcessIfEmptyLocation),
hasStudyFocusArea @I* (mm:ProcessI fEmptyLocat ion ) ,
hasPhase @J∗ (mm:ProcessIfEmptyLocation),
hasFSIDate @K* (mm:ProcessI fEmptyLocat ion xsd:date),
hasLSLVDate @L* (mm:ProcessI fEmptyLocat ion xsd:date),

7https://github.com/protegeproject/cellfie-plugin/wiki/
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hasCountries @BH* (mm:ProcessI fEmptyLocat ion )

Listing 3.1 shows an example of extraction rules for loading data into the Medical-
Trial class from the CSV file. Each data property was mapped to its corresponding
spreadsheet column, e.g., hasTitle data property is mapped to column E that holds
studies’ titles. AZT_ID was used to identify each instance in the MedicalTrial
class.

3.5 Clustering Clinical Trial
As mentioned in 1.2, we want to find different groups of clinical trials to make it
faster to judge how easy or difficult it is to pool clinical trials. Having clinical trials
with similar study structure (same datasets and collected variables) can make it
easier to pool studies. In this section, we will cluster clinical trials according to
their collected variables.

3.5.1 Creating Feature Vectors
To find similar studies and cluster them, Python script was written where clini-
cal trials’ AZT_ID and their variables were read using pandas DataFrame from
the previous extracted CSV files. A dictionary for all studies was created where
clinical trials were represented by AZT_ID as keys. The list of variables for each
clinical trial was considered as a corpus, and saved as a value in the dictionary for
its respective AZT_ID. Data pre-processing was done by changing all variables’
text to lower case.
A vector for each study was created using CountVectorizer from scikit-learn li-
brary8. Each vector contained all variables in the clinical trials represented as 1 or
0, depending on the trial. 1 indicates that a variable is present in a dataset, and
0 indicates that a variable is not present in a dataset
To understand this vectorization, we need to define the following process:

• V is the set of all clinical trials variables, where V = {v1, v2, ..., vn}, and n
is the total number of variables in the selected clinical trials (the 377 trials).

• VA is the set of trial A variables, where VA = {v1, v2, ..., vm}.
• FA is clinical trial A feature vector, where FA = {f1, f2, ..., fn}, and n is the

total number of variables in the selected clinical trials.
• In this vectorization, the value of fi is defined as follow:

– If vi ⊂ VA, then its corresponding entry is fi = 1.
– If vi 6⊂ VA, then its corresponding entry isfi = 0.

8https://scikit-learn.org/stable/modules/generated/sklearn.featureextraction.text.CountV ectorizer.html/
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Figure 3.5: This figure shows a heat map for CountVectorizer generated array. Each row in
the heat map is a clinical trial’s feature vector. Blue represents a variable existence in a clinical
trial and yellow represents it does not. Only a percentage of variables are shown in this plot.

After the above process was applied for all clinical trials, an array was generated
with variables as columns and clinical trials’ feature vectors as rows. The resulting
array had 377 rows, corresponding to the number of clinical trials, and 153,288
columns corresponding to the total number of variables in the 377 trials.

The resulting array was represented as a heat map, and only a percentage of the
variables were selected to include in the plot. This percentage was chosen as follow;
if a variable occurred in X% of the trials or more, it was chosen to include in the
plot, otherwise it was dropped. After a number of iterations to make the heat
map informative, we chose that a variable has to occur in 40% of the clinical trials
or more. Figure 3.5 shows the resulting heat map, where blue represents 1 and
yellow represents 0. Each row in this array can be considered as a feature vector
for a clinical trial.
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3.5.2 Hierarchical Clustering
To cluster clinical trials, hierarchical clustering with the ward variance minimiza-
tion algorithm was applied, using the Linkage library 9.
The generated feature vectors array was given as an input to the hierarchical
clustering algorithm explained in 2.7.1. The output of the algorithm is presented
in figure 3.6 as dendrogram. We can see how similar clinical trials are grouped
together, and they are illustrated as blocks in the heat map. The Clustermap
library10 was used to produce this plot.
To have a better view of clinical trial clusters, the clinical trials dendrogram was
extracted and condensed to have a more informative plot. Figure 3.7 shows a con-
dense clinical trials dendrogram. The height of each branch represents the distance
at which the clusters merged. The further apart branches represent clusters that
are well defined.

9https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html/
10https://seaborn.pydata.org/generated/seaborn.clustermap.html
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Figure 3.6: .
This figure shows a heat map with double dendrograms for clinical trials’ clusters according to

their variables.
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Figure 3.7: This figure shows a condense dendrogram for clinical trials’ clusters. Numbers
at the end of dendrogram leaves are number of objects in a cluster.
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Results

The results from chapter 3 will be discussed in the following sections.

4.1 Data Visualization
As mentioned in 3.2, we learned from data experts that there are two variables
occurring in almost every dataset. Figure 3.1 shows that more than two variables
occur in multiple datasets. This is illustrated as a green node (variable) having
multiple incoming edges, represented by multiple arrows, from multiple red nodes
(datasets).
To investigate further, we extracted these variables from each study and calcu-
lated for each study the percentage of these variables against the total number of
variables in a study. By taking the average of all clinical trials, 53% of variables
were reported in multiple datasets in a clinical trial.
The most common variables across the 377 clinical trials were extracted. Table 4.1
shows these common variables that appear in multiple datasets across all selected
studies. Variables identifying the study and participating subjects can be seen
in the table (STUDY_CODE, PATIENT), in addition to other general variables,
like HEIGHT and WEIGHT. In general, we can summarize that the variables,
occurring in multiple datasets across one study, are either identifying a record
in a dataset as unique (STUDY_CODE, PATIENT, VISIT, SUBJECT), or im-
portant information about participating subjects and trial (HEIGHT, WEIGHT,
SEX, DRUGNAME, DRUG, TYPE).
Having the same variables recorded in multiple datasets is a consequence of the
data management systems that is used currently in AstraZeneca. Clinical trial data
is stored in disparate datasets’ files, resulting in the same variable being reported
in multiple datasets’ files. Then, when clinical trials meta-data were extracted
from SAS datasets’ files, the same happened due to relational database structure
of tables. As mentioned in section 2.2.1, graph databases have the advantage of
keeping all information and relationships about an entity in a single node. Thus,
using a graph database for clinical trial data is a good choice, that solves the
previous problem of having redundant variables in multiple datasets.

37



4. Results

Variable Variable label
STUDY_CODE Study code
PATIENT Randomization Code
SUBJECT Enrolment Code
VISIT Visit Number
HEIGHT Height
WEIGHT Weight
SEX Sex
DRUGNAME Medication CRF Text
DRUG Name of drug
TYPE Type of format

Table 4.1: Common variables between 377 selected clinical trials that appears in multiple
datasets.

The data visualizing in section 3.2 was informative. It helped in communicating
AstraZeneca data scientists’ intuitions about the data. However, we noticed that
the bigger the study’s size, the harder it became to find insights, which can be seen
in figure 3.2. Furthermore, we could not extract any additional information, since
extracting new meaning from visualizations of clinical trial data would require
extensive expert knowledge about the domain.

4.2 Implementing Graph Database
In section 3.4.2, we loaded extracted data into the created RDFS. Protégé offers
a querying feature called DL Query1 to query created ontology. Before querying,
an automatic reasoner needs to verify the imported instances into classes and
properties. We ran the automatic reasoner, which returned in an error of matching
data types for dates loaded into hasFSIDate and hasLSLVDate. The error stated
that hasFSIDate and hasLSLVDate datatype range is date, while the imported
instances are string.
After investigating this error, we found that the CSV file, used to store instances,
uses UNIX timestamp to represent the raw date/time data, which Cellfie detects
as a string format. Unfortunately, there was not an intuitive fix for this problem,
and this error did not allow us to query the data in Protégé. We started working
on Neo4j2 graph database, but due to shortage of time we decided to skip.
One of the lessons learned is to distinguish between an ontology editor software and

1https://protegewiki.stanford.edu/wiki/DLQueryTab
2https://neo4j.com/
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a graph database software. Eventhough Protégé provides multiple features that
resemble features in a database software, it is an ontology editor with limitations.
Since the main goal of creating a graph database was finding similar clinical trials
to make pooling data faster, and have a higher success rate, we decided to choose
a different approach to accomplish this goal. We decided to cluster clinical trials
using their collected variables, which is explained in section 3.5.

4.3 Clustering Clinical Trials
In section 3.5, the output of the hierarchical clustering was presented as a dendro-
gram. To find the number of clusters, an exploratory approach was implemented,
where a horizontal line is drawn on the dendrogram. To define the number of
clusters, this line needs to transverse the maximum distance vertically without
intersecting any cluster. The number of clusters is the number of vertical lines
in this dendrogram cut. Figure 4.1 shows the hierarchical clustering dendrogram
with the horizontal line to identify the number of clusters. By observing the den-
drogram, we were able to identify four clusters. This result can be observed as
well in the heat map 3.6, where four blocks can be observed.
To evaluate the resulting clusters, the cophenetic correlation coefficient was cal-
culated. This measurement is usually used to evaluate how well the hierarchical
structure from the dendrogram represents the actual distances. It correlates the
actual pairwise distances of all our objects to those implied by the hierarchical
clustering. The closer the value is to 1, the better the clustering preserves the
original distances. For our clustering the Cophenetic correlation coefficient is 0.92,
which we considered a satisfying result.
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Figure 4.1: This figure shows a condense dendrogram for clinical trials’ clusters. The
numbers at the end of dendrogram leaves are the numbers of objects in a cluster. The yellow
line is the drawn horizontal line to find the number of clusters.
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5
Conclusion

The aim of this thesis is to find similar clinical trials. This work can be considered
as one of the steps needed to make clinical trials pooling faster and more efficient.
To achieve the former, two methods were investigated; migrating clinical trials
data into graph database, and clustering clinical trials according to their collected
variables.
Our work started by visualizing the clinical trials meta-data using directed graphs.
The results of visualization gave a quick inspection of the data. Visualization
helped in understanding the data structure and the connection between datasets
and variables.
Next, we began the creation of the graph database, using a combination of [26,
27] suggested approaches. Ten database design questions were identified that we
wanted our database to be able to answer. These questions were mapped into infor-
mation entities to create an ERD. The resulting ERD represented the conceptual
model of the database. Using the suggested approach by the authors of [26], the
resulted ERD was mapped into an RDF schema. The RDFS was created using
OWL2 language. The choice of the language resulted in creating an ontology. Af-
terward, data were loaded into the ontology as instances of classes and properties.
To evaluate the created ontology, we wanted to query the ten proposed questions in
the design step. Because of the software used to create the ontology (Protégé), an
automatic reasoner needed to verify if the imported instances matches the created
schema. However, an error was reported by the reasoner. The imported instances
into datatype properties did not match the properties’ ranges. This error was
raised because of the file format storing the instances. Thus, we could not query
the ontology using Protégé. Since we could not verify if our created ontology can
help in finding similar trials, and due to shortage of time, another method was
investigated to find similar clinical trials.
The other method was clustering clinical trials using their collected variables With
a hierarchical clustering algorithm. The output of the clustering was represented
as a dendrogram, and an exploratory approach was applied to find the number
of clusters. By observing the dendrogram, we identified four clusters. Each one
of the four clusters contains a group of clinical trials, that are similar in terms of
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their collected variables.
As a conclusion we can say, that we succeeded in our goal to find similar clinical
trials from data structure aspect, using a clustering method. Unfortunately, we
can not say the same about the graph database method. However, the created
graph schema and the lessons learned can be used in a future work.
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Appendix 1

Listing A.1: RDFS XML script
1<?xml version=" 1 .0 " ?>
2<rdf:RDF xmlns= " h t tp : //www. semanticweb . org /kggt458/ on t o l o g i e s

/2019/3/ unt i t l ed−ontology−7"
3 xml:base=" ht tp : //www. semanticweb . org /kggt458/ on t o l o g i e s

/2019/3/ unt i t l ed−ontology−7"
4 xmlns:owl= " h t tp : //www.w3 . org /2002/07/ owl#"
5 xmlns:rdf=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#"
6 xmlns:xml= " h t tp : //www.w3 . org /XML/1998/namespace "
7 xmlns:xsd=" ht tp : //www.w3 . org /2001/XMLSchema#"
8 xmlns:rdfs= " h t tp : //www.w3 . org /2000/01/ rdf−schema#"
9 xmlns:pharma=" ht tp : //www. semanticweb . org /pharma/ ">

10 <owl:Ontology rdf:about=" ht tp : //www. semanticweb . org / on t o l o g i e s
/2019/AZ−t h e s i s−onto logy " />

11

12 <!−−
13 /////////////////////////////////////////////////////////////
14 // Datatypes
15

16 /////////////////////////////////////////////////////////////
17 −−>
18

19 <!−− http://www.w3.org/2001/XMLSchema#date -->
20

21 <rdfs:Datatype rdf:about=" ht tp : //www.w3 . org /2001/XMLSchema#
date " />

22

23

24 <!−−
25 /////////////////////////////////////////////////////////////
26 // Object Prope r t i e s
27 /////////////////////////////////////////////////////////////
28 −−>
29

30 <!−− http://www.semanticweb.org/kggt458/ontologies/2019/3/
untitled -ontology -7#hasDataset -->
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31

32 <owl:ObjectProperty rdf:about=" ht tp : //www. semanticweb . org /
on t o l o g i e s /2019/AZ−t h e s i s−onto logy#hasDataset ">

33 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

34 <rdfs:range rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Dataset " />

35 </owl:ObjectProperty >
36

37

38 <!−− http://www.semanticweb.org/kggt458/ontologies/2019/3/
untitled -ontology -7#hasVariable -->

39

40 <owl:ObjectProperty rdf:about=" ht tp : //www. semanticweb . org /
on t o l o g i e s /2019/AZ−t h e s i s−onto logy#hasVar iab le ">

41 <rdfs:domain rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Dataset " />

42 <rdfs:range rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Var iab le " />

43 </owl:ObjectProperty >
44

45

46 <!−−
47 /////////////////////////////////////////////////////////////
48 // Data p r op e r t i e s
49

50 /////////////////////////////////////////////////////////////
51 −−>
52

53 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasAZProductID -->

54

55 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasAZProductID ">

56 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

57 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

58 </owl:DatatypeProperty >
59

60

61 <!−− http://www.semanticweb.org/PharmaClinicalTrial#hasAZTID
-->

62

63 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasAZTID">

64 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>
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65 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

66 </owl:DatatypeProperty >
67

68

69 <!−− http://www.semanticweb.org/PharmaClinicalTrial#hasAcronym
-->

70

71 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasAcronym ">

72 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

73 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

74 </owl:DatatypeProperty >
75

76

77 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasChemicalCompound -->

78

79 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasChemicalCompound ">

80 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

81 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

82 </owl:DatatypeProperty >
83

84

85 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasClinicalTrialURI -->

86

87 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasCl in i ca lTr ia lURI ">

88 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

89 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#anyURI " />

90 </owl:DatatypeProperty >
91

92

93 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasCountries -->

94

95 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasCountr ies ">

96 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>
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97 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

98 </owl:DatatypeProperty >
99

100

101 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasDatasetName -->

102

103 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasDatasetName ">

104 <rdfs:domain rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Dataset " />

105 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

106 </owl:DatatypeProperty >
107

108

109 <!−− http://www.semanticweb.org/PharmaClinicalTrial#hasFSIDate
-->

110

111 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasFSIDate ">

112 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

113 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#date " />

114 </owl:DatatypeProperty >
115

116

117 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasFilePath -->

118

119 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasFi lePath ">

120 <rdfs:domain rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Dataset " />

121 <rdfs:domain rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Var iab le " />

122 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#anyURI " />

123 </owl:DatatypeProperty >
124

125

126 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasIndication -->

127

128 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#has Ind i ca t i on ">
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129 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

130 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

131 </owl:DatatypeProperty >
132

133

134 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasLSLVDate -->

135

136 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasLSLVDate ">

137 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

138 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#date " />

139 </owl:DatatypeProperty >
140

141

142 <!−− http://www.semanticweb.org/PharmaClinicalTrial#hasLabel
-->

143

144 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasLabel ">

145 <rdfs:domain rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Var iab le " />

146 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

147 </owl:DatatypeProperty >
148

149

150 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasStudyFocusArea -->

151

152 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasStudyFocusArea ">

153 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

154 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

155 </owl:DatatypeProperty >
156

157

158 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasStudyPhase -->

159

160 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasStudyPhase ">
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161 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

162 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

163 </owl:DatatypeProperty >
164

165

166 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasStudyTitle -->

167

168 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasStudyTit le ">

169 <rdfs:domain rdf:resource=" ht tp : //schema . org /Medica lTr ia l "
/>

170 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

171 </owl:DatatypeProperty >
172

173

174 <!−− http://www.semanticweb.org/PharmaClinicalTrial#
hasVariableName -->

175

176 <owl:DatatypeProperty rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#hasVariableName ">

177 <rdfs:domain rdf:resource=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Var iab le " />

178 <rdfs:range rdf:resource=" ht tp : //www.w3 . org /2001/XMLSchema
#s t r i n g " />

179 </owl:DatatypeProperty >
180

181

182 <!−−
183 ////////////////////////////////////////////////////////
184 // C la s s e s
185 //////////////////////////////////////////////////////////
186 −−>
187

188 <!−− http://schema.org/MedicalTrial -->
189

190 <owl:Class rdf:about=" ht tp : //schema . org /Medica lTr ia l " />
191

192

193

194 <!−− http://www.semanticweb.org/PharmaClinicalTrial#Dataset
-->

195

196 <owl:Class rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Dataset ">
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197 <owl:disjointWith rdf:resource=" ht tp : //www. semanticweb . org
/PharmaCl in ica lTr ia l#Var iab le " />

198 </owl:Class >
199

200

201 <!−− http://www.semanticweb.org/PharmaClinicalTrial#Variable
-->

202

203 <owl:Class rdf:about=" ht tp : //www. semanticweb . org /
PharmaCl in ica lTr ia l#Var iab le " />

204

205

206 <!−−
207 /////////////////////////////////////////////////////////////
208 // General axioms
209 /////////////////////////////////////////////////////////////
210 −−>
211

212 <rdf:Description >
213 <rdf:type rdf:resource=" ht tp : //www.w3 . org /2002/07/ owl#

A l lD i s j o i n tC l a s s e s " />
214 <owl:members rdf:parseType=" Co l l e c t i on ">
215 <rdf:Description rdf:about=" ht tp : //schema . org /

Medica lTr ia l " />
216 <rdf:Description rdf:about=" ht tp : //www. semanticweb . org

/PharmaCl in ica lTr ia l#Dataset " />
217 <rdf:Description rdf:about=" ht tp : //www. semanticweb . org

/PharmaCl in ica lTr ia l#Var iab le " />
218 </owl:members >
219 </rdf:Description >
220</rdf:RDF>
221

222

223<!−− Generated by the OWL API (version 4.5.9.2019−02−01T07:24:44Z)
https://github.com/owlcs/owlapi -->

VII
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