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Abstract

Central counterparties (CCPs) are �nancial intermediaries consisting of clearing members trading
�nancial derivatives between each other. In a �nancial network, CCPs become the buyer to every
seller and the seller to every buyer. After the 2007-2008 �nancial crisis, so called central counterparties
have become fundamental �nancial institutions worldwide. Nahai-Williamson et al. (2013) develop an
expected loss function for clearing members to investigate and �nd the optimal quantities of central
counterparties �nancial resources, i.e. initial margin and default fund, which are safety contributions to
the CCP to absorb potential future losses in case of one or several member's defaults. Nahai-Williamson
et al. (2013) assume exogenous and independent individual default probabilities, which are uncorrelated
with the underlying prices of assets cleared through the CCP. In this thesis, we extend the Nahai-
Williamson et al. (2013) model by using a Merton mixed binomial model, which allows for realistic
dependencies among default probabilities and lets the prices be correlated with default probabilities
themselves. We de�ne a new expected loss function for clearing members, which is minimized with
respect to initial margin and default fund and obtains new optimal quantities for CCP's �nancial
resources in our extended model. The new framework with default and price dependencies will change
the optimal quantities of sources: initial margin and default fund contributions will be di�erent and
higher than previous optimal quantities in Nahai-Williamson et al. (2013). In some cases, our default
fund contributions will be 200%, 300% and even 1500% larger than optimal contributions found by
Nahai-Williamson et al. (2013). Moreover, the balance between CCP's initial margin and default fund
will tend more to the default fund rather than any other �nancial source. Although it does not concern
optimal �nancial resources, we also �nd that in the Merton-extended version the expected loss function
itself is sometimes 22% and 55% higher than the one de�ned by Nahai-Williamson et al. (2013) in the
same conditions. The economic interpretation of this result is that higher default dependence leads to
higher losses, which should be better covered by higher mutualization between clearing members.

Keywords: Central Counterparties,Risk Management, Merton Model, Mixed Binomial Model,
Merton Mixed Binomial Model, Initial Margin, Default Fund.
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Chapter 1

Introduction

In the last century, �nancial markets have become the central place to exchange, sell and buy commodi-
ties, stocks, bonds and any other �nancial contract. Across time, �nancial markets have become more
structured and complex, starting with derivatives at the end of '70s up to very articulated contracts
still renewing everyday on the market. However, the baseline of any �nancial network is still the same:
di�erent agents (individuals, companies, institutions, etc.) meet to trade contracts in order to invest,
pro�t, make insurances and so on. These agents have di�erent accesses to information, they are free to
choose where to spend their money and they all respect a �ner and �ner group of laws and regulations
stated by national and international institutions.

Financial derivatives are very structured �nancial contracts whose result is a�ected by an underlying
asset (commodities, indexes, prices and so on). Derivatives can be traded in-the-counter (ITC), on
o�cially controlled stock exchanges, or over-the-counter (OTC), in a bilateral relation between two
private agents. As stated in Ghamami (2015), OTC derivatives played a crucial role in 2007-2008
�nancial crisis and this is the reason why the 2009 G-20 mandate gave central counterparties a major
role in modern derivatives trading. Usually, all �nancial network agents used to trade derivatives
between themselves, often over-the-counter: this means that every agent has an open position with
every other agent in the market, facing the possibility of other members' incapability to pay back their
obligations. A central counterparty (CCP) is an institution that intermediates between all these agents
in the network: the CCP becomes the buyer to every seller and the seller to every buyer. In this new
framework, agents have just one open position on the market, the one dealing with the CCP, and the
clearing house checks the condition of every member's position, it pays o� when their positions are
positive, it requires to be paid when these positions are negative.

CCPs play a crucial role in contemporary �nancial network, this is why it has become so important
to implement a model to de�ne its �nancial sources paid by the members. The CCP is a central in-
stitution that clears all agents' positions. However clearing houses are not public institutions: Pirrong
(2011) claims that they are pro�t companies, they have to manage their fundings and they can experi-
ment bankruptcy, which would be extremely dangerous given their delicate quali�cation. Among many
models provided to �nd the optimal sources in a CCP, this thesis will focus on and extend the one
implemented by Nahai-Williamson et al. (2013), where the authors provide the framework in which the
CCP operates assuming some circumstances on the environment, the network and the administration.
Then, Nahai-Williamson et al. (2013) de�ne an expected loss function for CCP's members, considering
all the possibilities of multiple defaults and also the CCP's default. This expected loss function for
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each clearing members contains all the parameters a�ecting the clearing activity, so it embeds also the
�nancial resources of the CCP. Once the expected loss function is found, the authors minimize this
function in terms of CCP's �nancial resources: they �nd the optimal quantities of �nancial sources that
clearing houses have to conserve to be able to reduce the expected loss as much as possible. Essentially,
Nahai-Williamson et al. (2013) provide a model to know the numerical quantities of �nancial resources
in order to make the CCP work as e�ciently as possible.

In this thesis, we replicate and then extend the model by Nahai-Williamson et al. (2013), so that
it includes default dependencies among clearing members and the prices of underlying assets to be
correlated with the default probabilities. In Nahai-Williamson et al. (2013), the authors make two
important assumptions:

� The individual default probabilities of each agent clearing through the CCP is exogenous and
independent from anything else; it means that the probability of default is a number given and
assumed by the authors;

� The underlying price that is responsible for the changes in every position (because price variations
are re�ected by derivatives variations) is uncorrelated with default probabilities.

Individual default probabilities are not independent and exogenous: the probability to default de-
pends on many factors, like eventual losses, other agents' defaults, the possibility of losses to spread
in the trading network. Moreover, prices are highly a�ected by the whole economic environment in
multiple ways, they are not untied from the rest of the world. In this thesis, we relax the above
unrealistic assumptions and by using static credit risk modelling, more speci�cally a Merton mixed
binomial model, we build a modelling framework in which individual default probabilities and under-
lying prices are dependent and in�uenced by economic background factors. With this new and more
realistic framework with dependent default probabilities and prices, we repeat the same procedure as
in Nahai-Williamson et al. (2013): there is an expected loss function (which will be di�erent) and it
will be minimized with respect to CCP's �nancial sources. The optimal quantities of CCP's �nancial
resources in our extended framework will di�er from Nahai-Williamson et al. (2013) previous results
and will be generally higher than in Nahai-Williamson et al. (2013). Moreover, the balance between
di�erent types of CCP's �nancial resources will be diverse: the optimal quantities of sources will tend
on one kind of CCP's �nancial resource rather than how it was predicted by Nahai-Williamson et al.
(2013). More speci�cally, in our framework, default fund contributions are up to 200%, 300% and even
1500% larger than the ones found by Nahai-Williamson et al. (2013) in similar parameter settings.
Hence, CCPs need even �fteen times the amount of default fund resources stated by previous authors.
Although the expected loss function itself does not have direct relevance here (because we investigate
the optimal quantities of initial margin and default fund that minimize the function), we believe it
is worth to mention that in our extended version the expected loss function itself is 22% and even
55% larger than the one found by Nahai-Williamson et al. (2013) in the same setting. As soon as
we have dependencies both in default probabilities and underlying prices, the initial margin becomes
an ine�cient resource to respond to members' losses: higher dependencies bring to higher predicted
losses, which are better covered through the sharing mechanism of default fund rather than individual
collateral, i.e. initial margin.

The rest of the thesis will be structured as follows: Chapter 2 provides a general and extensive
introduction to central clearing and central counterparties, what are the CCPs, which are their �nancial
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resources and the main international regulation on the theme. Chapter 3 will present a literature review
on the topic of central counterparties and their risk management. Chapter 4 will explain in detail our
implementation of the model developed by Nahai-Williamson et al. (2013) and results. Chapter 5
will provide a clear outline of the static credit risk modelling, more speci�cally, of a Merton mixed
binomial model, which allows to construct a framework in which default probabilities and prices are
dependent and more realistic. Finally, Chapter 6 will embed the new Merton framework with dependent
probabilities and prices in the expected loss for CCPs' members and it will present the new results.
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Chapter 2

Central counterparties

Central counterparties are intermediate institutions in �nancial network grouping together all agents'
positions, to be able to net their gains and losses more e�ciently and to make the whole market
structure more transparent. This chapter contains an overall review of all the basic concepts and issues
about central counterparties and their networks: these themes are necessary to be able to understand
the model by Nahai-Williamson et al. (2013) and our extension of their model. Hence, the Section 1
begins with the de�nition of risk, credit risk and its components; Section 2 explains what are central
counterparties; Section 3 raises all the issues with CCPs resources and their risk management; Section
4 provides a brief sum of al the international regulations regarding central clearing and CCPs.

2.1 Financial risk

In this section very general concepts as �nancial risk and risk management are explained: �nancial risk
is what drives the whole modelling around �nancial markets, to be able to analyse, forecast and prevent
losses. This general de�nition of risk is usually divided in many components, in attempt to optimize
risk management and resources. These de�nitions mainly come from the writings by Herbertsson
(2018) and Farago (2018).

2.1.1 Financial risk components

Financial risk is the general risk that occurs whenever managing a portfolio or an investment in any
�nancial market: it is the uncertainty linked to decisions. It is of extreme importance to manage
portfolios and investments to meet certain risk criteria, whether decided internally in the institution or
externally by regulatory agencies. According to Farago (2018), �nancial risk can be divided in multiple
components to better understand its nature and management:

� Market risk is the one arising by changes in market prices: by holding any type of �nancial
contract, everyone su�ers continuous movements in prices of assets, interest rates, exchange
rates and so on;

� Operational risk is the risk of losses resulting from failure or errors in internal processes, people
and systems surrounding the whole �nancial institution; it is observed whenever any external
event has a negative impact on �nancial sources management;

4



� Liquidity risk results from any lack of marketability of any investment; it may happen �nancial
contracts cannot be bought or sold quickly enough to prevent losses or to respect payments and
so on; factors like quantity of goods and investment size can make a product very illiquid;

� Model risk is the one faced by researchers and analysts and is the risk of using an improper
model: the model could be wrong, not su�ciently tested or not statistically signi�cant.

2.1.2 Credit risk

Credit risk is the risk of losses whenever a debtor does not honour its payments to a creditor. Debtors
can be of any kind: companies that borrow money from banks in the form of loans, companies that issue
bonds, companies or individuals that open a mortgage, anyone who is obliged to pay back someone or
some institution can be a debtor. Naturally, many events could happen in between the life of these
bilateral contracts: at the end, it is possible that the debtor is not willing to pay or cannot pay because
of shortage of �nancial sources. A default occurs anytime the debtor cannot honour his payments: the
debtor declares bankruptcy and then the administration and liquidation of its remains are practised
following bankruptcy laws, in order to satisfy each creditor. Defaults are extreme by de�nition and
credit risk modelling is the theory that tries to model these events and their probabilities.

According to Schönbucher (2003), credit risk can be itself decomposed in di�erent components:

� Arrival risk is the risk connected to whether or not a default will happen in a limited time period;

� Timing risk is the uncertainty connected to the precise moment in time in which arrival risk will
occur;

� Recovery risk describes the uncertainty of the exact amount of losses to face if default really
occurs;

� Default dependency risk invokes several obligors to jointly default during one speci�c time period;
this concept fades in the de�nition of systemic risk in the next subsection.

Credit risk is a crucial component of �nancial risk and it includes the so called counterparty risk,
which is the risk that a counterparty in a derivatives transaction will default and therefore make no
required payment. Acharya and Richardson (2009) studied the role of counterparty risk in 2007-2008
�nancial crisis and they found that trading derivatives OTC without any public regulation was the
reason for a complex network of risk exposures that imploded in 2008. Counterparty risk has become
more regulated since then and it is one of the main reasons for the existence of central clearing and
the importance of their �nancial resources (see Section 2.3).

2.1.3 Systemic risk

In �nancial markets, systemic risk happens when one or several �nancial investors default and create
a domino e�ect among the entire �nancial network. One default makes one network member insolvent,
then it is possible that those who had to receive the payment become insolvent themselves and this
type of events spreads throughout the whole system, eventually causing a threat for local, national or
even global �nancial system. Systemic risk could arise from a loss in one company or institution that
spreads through a sort of chain reaction, this is called a contagion. More speci�cally, Pirrong (2011)
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divides between a so called distress contagion and a default contagion: the former describes the spread
of some limited losses in the network, while the latter de�nes a domino e�ect of bankruptcies.

Central counterparties are crucial when preventing systemic risk and default contagion. On one
side, the main purpose of CCPs is decreasing counterparty risk thanks to a new and more e�cient
allocation of risk, but on the other hand, another role of central clearing is avoiding and contain
systemic risk. CCPs will hopefully ensure that contagion and default chain reactions do not occur in
a �nancial network. In order to prevent contagion, CCPs have to manage their own risk and therefore
be decisive on their �nancial resources: this thesis is one way to de�ne the optimal quantities of these
resources to make the CCP stick to its duty.

2.2 What is a CCP?

The current section gives a more extensive description of a central counterparty as well as discussing
its functions and methods to reallocate counterparty risk and minimize �nancial contagion. Large
part of our description of CCPs comes from Pirrong (2011). Central counterparties are organizations
that are intended to reduce counterparty risk and systemic risk. Practically, CCPs operate to make
it more likely that promised payments will be made. In a general �nancial network without CCPs,
every investor has an open position with many other network members: it means that every one is
responsible for his own positions, payments and settlements. Central clearing means that one single
organization becomes seller to every buyer and buyer to every seller : every single investor has only one
relation and one open position, the one with the CCP, already reducing uncertainty and risk exposure.
The CCP clears every position daily, or even intra-daily, taking in consideration all positions for one
client. What was a complex multilateral network where you had to constantly control every �nancial
contract has now become an easier bilateral relation between one investor and the CCP.

There is a possibility that a debtor is not able to meet his obligations: in this case, the CCP is still
obliged to pay the creditor as nothing happened to the obligor and then it has to deal with the loss
in alternative ways, that will be examined in Section 2.3. Du�e and Zhu (2011) investigate whether
the CCP reduces counterparty risk or not: it may be that counterparty risk reduces thanks to the
more solid structure of a central part, but the CCP coul also be the channel for contagion. However,
as stated in Pirrong (2011), risk is never eliminated, because it is not possible, it is just reallocated
more e�ciently. Every single company/investor that was a node in the old �nancial network is now a
clearing member with one bilateral relation with the CCP. Thereby, central counterparties have two
main purposes: reducing counterparty risk and avoiding cascades of losses throughout the �nancial
network. To do that, CCPs a�ect and reallocate default losses in di�erent methods and these include
netting, collateralization, mutualization, equity and eventual insurances.

Netting

Clearing members enter the CCP network with positions on assets and derivatives and all these
contracts compensate with equal but opposite positions for some other member. Replacing the buyer
to every seller and the seller to every buyer in a process called novation (Pirrong, 2011), the CCP
knows all these positions and can net out all these o�setting transactions, as it is shown by Figure
2.1. For example, A sells a contract, B buys this contract and sells it again to C and C simply buys
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this contract. In a multilateral network, if B fails and its position remains open, the other two could
be harmed by this default, because both of them would not see their contract exercised. But if all
is cleared by a CCP, B's contract would be netted out, because one "positive" position nets out a
"negative" one and B's obligations would be extinguished. In general, gains are netted with losses for
every single member, this is the �rst way to limit risk exposures.

Figure 2.1: Netting without and with a CCP, taken from Domanski et al. (2015)

Collateralization

Value of derivatives and assets varies continuously with market conditions, which make each �-
nancial contract an asset for one part and a liability for the other. Hence, in case of default, one of
the parties will face the risk of a loss. Parties can reduce this risk by posting collateral, which means
that the party su�ering losses can partially recover with what was initially posted. Pirrong (2011)
states that the CCP always requires collateral to all members, more speci�cally it requires two types
of collateral: the initial margin (IM) is an amount of money asked at the beginning of the contract, as
soon as a node becomes a clearing member; CCPs also observe continuously all the variations of prices
and derivatives: whenever they observe a change they ask to compensate with collateral, i.e. margin
call, and they charge a variation margin. Thus, central counterparties compute gains and losses of
every portfolio: those whose contracts are now liabilities must pay the CCP for that change in value,
and those whose contracts are now gains are always paid by the CCP. One of the main elements of
risk management is how to �x the initial margin IM: this is one of the resources Nahai-Williamson
et al. (2013) and our thesis investigate. We will �nd the optimal quantities of collateral to minimize
the expected loss function for CCP's members.

Mutualization

CCPs always require members to make an initial contribution to a common fund, called default
fund (DF) (Pirrong, 2011). Variation margin and initial margin are the �rst resources to absorb default
loss, but in case these are not enough, then the common default fund can be recalled. In this way,
even if the defaulter's collateral is not enough, every single member still remains untouched, because
the common default fund can absorb the excess losses: this is a form of loss mutualization.
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Equity

As pointed out by Pirrong (2011), central counterparties are not public companies or non-pro�t
agencies, they are standard pro�t companies, so they have shareholders who founded the organization
and they have equity. Equity can be used to absorb default losses.

In their networks, central counterparties ensure �nancial stability: they facilitate a more e�cient
and coordinated replacement of default positions and they reduce the counterparty risk by reallocating
it among members and communities. However, Du�e and Zhu (2011) stated that CCPs can either
create or reduce systemic risk: collateral and margin calls protect against default, but they can also
have a destabilizing e�ect among traders, �rms that have to respect huge margin calls can face liquidity
problems and exacerbate their positions. Moreover, severe conditions and defaults can threaten CCPs
solvency and make them default as well.

2.3 Risk management

This section describes all the �nancial resources available for central counterparties and their manage-
ment. Given the function of the CCP, absorbency of losses, reallocation of counterparty risk and so
on, its sources become crucial to be able to ful�ll its obligations: decisions and organization of these
sources are called risk management. This section will provide a clear and extensive explanation about
CCP's resources and how they work.

First of all, CCPs must commit resources to engage a variety of risk measures, because these
sources are the primary instrument to implement their functions. Pirrong (2011) notes that CCP risk
management interests include:

� Initial margin IM setting: CCPs must decide and periodically review the initial margins levels,
that are usually �xed considering the nature of cleared products (riskiness, volatility, liquidity
and so on); monitoring market data and backtesting their performance are the most common
methodologies;

� Default fund DF calculation: similarly, CCPs must �x and periodically review individual default
fund contributions;

� Monitoring members' positions traded through the CCP.

In reality, central counterparties �nancial resources are more complex than just margins, default
fund and equity: Pirrong (2011) describes also additional calls, i.e. capped additional contributions
that CCPs ask to their members, and insurances against default losses. However, these extra �nancial
resources are not considered both in Nahai-Williamson et al. (2013) and in our model.

2.3.1 CCP's �nancial resources

Central counterparties can count on di�erent �nancial resources, respectively: variation margin, initial
margin IM, default fund DF and equity.
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Variation margin

Central counterparties operate daily and intra-daily valuations of every position, to identify any
variation in prices and values and to be able to de�ne who has to pay and who has to be paid in that
speci�c moment: an operation known as mark-to-market. Variation margin is the amount asked to
every member whenever there is a change in value on their positions. Our work about minimizing the
expected loss for clearing members to �nd the optimal quantities of collateral will not consider the
variation margin: this is a payment asked in that moment as soon as position value changes, it is not
an amount that the CCP has to decide a priori.

Thus, if CCPs ask for a variation margin as soon as there is a change in prices and members pay
this amount, how is it possible that CCPs incur in losses? Clearing members pay variation margins
anytime it is asked by the CCP, but when one clearing member defaults, there is a time gap between
the last variation margin payment and the close-out moment of that position: in this time interval, in
case of severe market conditions, prices could continue changing, which is why the CCP has to cover
additional losses with respect to the obtained variation margin. The real losses CCPs have to cover
are the ones arising from price movements between the default time and the close-out, which is called
replacement cost and is one of the main purposes of the CCP.

Figure 2.2: How variation margin, initial margin and other sources are used to cover losses, taken from
Nahai-Williamson et al. (2013)

Figure 2.2 by Nahai-Williamson et al. (2013) explains this process. For example, a clearing member
has an open position, then the CCP asks for variation margin as soon as its position becomes a liability;
at time t, this clearing member pays its last variation margin based on the last price movement in t
and then defaults, but the CCP closes its position only in t + 1. Up to time t, any loss is covered by
the variation margin only, but further movements in price could happen between t and t+ 1, these are
further losses the CCP has to cover with other �nancial resources.

Initial margin
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Central counteparties always collect an initial margin (IM), which is comparable to an initial fee
clearing members have to pay when their relation with the CCP starts. Pirrong (2011) notes that CCPs
do not vary their initial margin based on creditworthiness and credit quality, because it would be too
costly to monitor members' nature, indeed they decide initial margins based on riskiness and volatility
of cleared products. Initial margins are conventionally calculated so that the probability that prices
will move enough to generate losses is su�ciently small. This methodology computes the likelihood
that variation margin is exhausted and sets the IM amount to make this event happen with a small
probability. In other words, initial margin is computed as a Value-at-Risk (VaR). CCPs choose the
amount that, given the variation margin up to the estimated default time, can cover additional losses
with a con�dence interval of 95%, 99% and so on. In this thesis, we will not provide an analytical model
with a VaR to compute the initial margin contribution each clearing member has to post. Instead,
the individual initial margin contribution (IM) will be one of the optimal quantities determined by the
minimization of the expected loss function with respect to initial margin (IM) and default fund (DF)
contributions.

Default fund

Clearing members are also obliged to pay a default fund contribution (DF) that will converge in
one common fund managed by the CCP. The default fund contribution is the instrument that allows
more e�cient reallocation of counterparty risk and loss mutualization. If variation and initial margins
are not su�cient to cover losses, the CCP starts eroding the default fund. First, the CCP uses the
defaulter's contribution to default fund and then the rest of the common account. The default fund is
the real characteristic of a CCP, because losses are shared in attempt to avoid contagion and default
chain reactions that would lead to systemic risk situations.

Methodologies to compute default fund contribution are various and complex. This thesis will
provide one of these methods, which is to minimize the expected loss function for clearing members to
determine the optimal pledgeable quantities of initial margin and default fund contributions. Other
common models to quantify default fund contributions DF are often based on stress tests, a sort of
worst case scenario analysis to check how the CCP responds to extreme, but not unlikely, market
conditions.

Equity

Recall that CCPs are pro�t companies with shareholders that invested an initial capital in the �rm
which constitutes the CCP. It means that the CCP has also its own equity to count on as a �nancial
resource.

2.3.2 Default waterfall

In previous subsections, �nancial resources were consciously ordered, �rst variation margin, then the
initial margin IM, after the default fund DF and �nally the CCP's equity: this is because the claim on
one source rather than another is wisely decided sticking to the so called default waterfall. The waterfall
orders CCP's �nancial resources and decides which ones have to be used before others. Generally, CCPs
mark to market positions with variation margin obtained by clearing members; if default happens, they
�rst rely on defaulter's initial margin IM and then defaulter's contribution DF to default fund; if this
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is not enough, they also use the common default fund; if losses are still exceeding, then they claim
additional contributions to all clearing members; then, further losses can also be absorbed by CCP's
equity; if all these resources are still insu�cient, then the CCP itself defaults. Figure 2.3 inspired by
Nahai-Williamson et al. (2013) gives a general example of �nancial waterfall for a central counteparty.

Figure 2.3: Typical default waterfall for CCPs, inspired by Nahai-Williamson et al. (2013)

The elements ins the waterfall can be ordered in a variety of ways depending on the CCP's policy
and this order will profoundly a�ect CCP's risk management. For example, if the CCP does not use
any additional call except for the default fund contribution and decides to use equity as the third
resource, then the governance will have more incentives to control risk and not to under-collateralize
positions, because CCP's own capital could be eroded earlier.

2.4 Regulation

This section clari�es the overall regulation that was developed towards central counterparties, more
speci�cally the regulation before and after 2007-2008 �nancial crisis and the one in force nowadays.

Prior to 1988, regulation was di�erent among nations, this obstacle and the rise of derivatives
markets brought to Basel I in 1988. The main focus was to make it mandatory for banks to keep
a certain percentage of capital according to its risky assets. For example, cash had a risk weight of
zero, investments in other OECD banks weighted 20%, mortgages without any collateral weighted
50% and so on. This �rst agreement had one weakness: it could not discriminate conforming to credit
ratings and credit quality. Enrichments to this common international regulation brought to Basel II,
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proposed in 1999, but implemented only after 2007. As stated by Hull (2012), regulations started
considering also credit quality as evaluated by rating companies. Again, Basel II became obsolete as
soon as the 2007-2008 �nancial crisis happened, which led to new regulation. After the crisis, Basel
III was proposed in 2009 and implemented in 2010. This regulatory statements imposed dramatically
higher capital requirements and liquidity requirements. Up to 2014, new rules were uploaded in this
regulation, and the concept of Quali�ed CCP (QCCP) was born: a QCCP is one that keeps itself
updated with the regulations and publish all information that clearing members need to be able to
align with capital requirements. The incentive behind this new mechanisms is the di�erent risk weight
that investors su�er if their positions are cleared by a QCCP: when �nancial institutions deal with a
QCCP, they will receive preferential treatment on capital requirements. These last interventions were
implemented after December 2017 and some referred to them as "Basel IV", but then new modi�cations
were operated last year, with an implementation date expected for 1st January 2022. In accordance to
Poppensieker et al. (2018) for McKinsey & Co., these new parts include: revised approaches for credit
risk, rating-based �oors, operational risk and market risk and many others.

In the US, the Dodd-Frank Act was adopted by President Obama in 2010 in response to the
necessity of central clearing and �nancial crisis and it's still in force. Following Ejvegård and Romaniello
(2016), this regulation required all the OTC derivatives to be cleared by central counterparties. Risk
managements standards were established for all intermediaries including CCPs, regulatory agencies
were given power to oversight CCPs and US Federal Reserve became a lender of last resort for all these
organizations.

The CPSS-IOSCO Principles for Financail Market Infrastructure were published in 2012 by the
Committee on Payment and Settlement Systems in the Bank for International Settlements and by the
International Organization of Securities Commission. Principle 4 requires that CCPs set up collateral
taking into account speci�c risks inherent to their cleared products. Then, Principle 6 requires that
the initial margin should meet a single-tailed con�dence level of 99% with respect to the loss exposure,
in order to cover losses in the interval between the last variation margin and the position close-out (see
Figure 2.2).

European Market Infrastructures Regulation (EMIR) is a body of legislation enacted in 2013 by
the European Commission in response to 2007-2008 �nancial crisis. These laws are based on three
main duties for �nancial intermediaries:

� Obligation to clear: for old OTC derivatives, it became mandatory to take part in a network
with a CCP and centrally clear every transaction, at least if a certain threshold in the invested
amount is reached;

� Obligation to mitigate risk: some measure to be able to better manage systemic risk became
inevitable; counterparties had to con�rm the acceptance of any �nancial contract, the marking
to market activity with daily and intra-daily updates of open positions was subscribed, resolution
of limited disputes was up to the intermediary and so on;

� Obligation to report: all data regarding derivatives must be collected and reported to trade
repositories respecting some information standards.
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The European Securities and Markets Authority (2019) sent a public statement in March 2019:
some modi�cations has been made to the original text since 2013 and this statement declares a new
regime to determine when �nancial and non-�nancial counterparties are subject to clearing obligations.
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Chapter 3

Related Literature

This chapter provides a short review of the previous CCP literature. Studies about general �nancial
networks and their advantages started at the end of the '90s, but the broad and extensive literature
that is observable today is mainly due to 2007-2008 worldwide �nancial crisis: a stream of studies
and researches followed since then. Section 1 gathers all about central clearing, CCPs and contagion;
Section 2 pools together all the papers on CCP's risk management and their optimal resources.

3.1 Contagion and central clearing

Several papers developed mathematical models to describe, analyse and prevent contagion in �nancial
networks. In this area, the �rst pivotal work was made by Eisenberg and Noe (2001): this paper aims
to compute how an initial loss cascades through the system. Afterwards, many contagion models were
just additions or extensions of Eisenberg and Noe (2001). Glasserman and Young (2015), for example,
�nd that individual quantities like asset size, leverage ad �nancial connectivity can be used as factors
to measure the magnitude of contagion. For contagion models, it is also worth mentioning Battiston
et al. (2012), Bardoscia et al. (2017) and Watts (2002).

As it regards the relation between CCPs and contagion, a more speci�c part of the literature
tries to discern to what extent the presence of a CCP can reduce contagion and loss spread. In this
sense, another primary work is Du�e and Zhu (2011). Two main results follow their research: �rst,
introducing a CCP for a particular set of derivatives reduces the average counterparty risk if and only
if the number of clearing participants is su�ciently large; secondly, netting bene�ts in general exist
only if a clearing house nets across di�erent asset classes, while counterparty credit risk may arise
if the clearing process is fragmented across multiple CCPs for di�erent assets. Subsequent works by
Cont and Kokholm (2014) and Amini et al. (2016) also underline factors like number of members and
netting across multiple types of assets as central to the e�ectiveness of clearing. Another group of
papers analyse the disadvantages of central clearing and all the impacts of ine�ciency of CCPs in
�nancial networks, with the intention of providing possible solutions. Some of these works are Koeppl
and Monnet (2010), Koeppl et al. (2011), Biais et al. (2012) and Pirrong (2014).
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3.2 CCP's risk management

The importance of central counterparties has made the risk management of their �nancial sources
crucial for healthy �nancial networks. This �eld of studies about CCP's risk management can be
divided into three main areas:

� Some authors study the implications of transparency on CCP's risk management, as it was
required by the new regulation: this aspect is read in Acharya and Bisin (2014), Oehmke and
Zawadowski (2015) and Antinol� et al. (2016);

� An entire �eld of CCP's risk management papers concentrates on the real balance between CCP's
sources: they provide methods to �nd the equilibrium between default fund DF, initial margin IM
and equity, taking into account what is required by international regulation and laws on �nancial
intermediation. Here we mention some of those after the 2007-2008 �nancial crisis, like Amini
et al. (2015), Capponi et al. (2017), Ghamami and Glasserman (2017) and Menkveld (2017);

� This thesis is a contribution to the third �eld of risk management, the one investigating CCPs'
resources properties and values. There is a whole �eld of literature that models the expected
loss for clearing members and minimize it to �nd the optimal balance of initial margin, default
fund and equity. Di�erently from the previous authors, international regulatory requirements
are not considered in this thesis, to be able to reveal intrinsic properties and potentialities of
these sources. Some remarkable works in this sense are Ghamami (2015) and Haene et al. (2009).
Ghamami (2015) �nds that estabilishing a defaul fund is always optimal, and in some cases a
su�ciently large default fund is even all it takes. The use of margin requirements is recommended
only if the opportunity cost of collateral is lower than the probability of a particular member's
default. Then, Haene et al. (2009) �nd that the optimal default waterfall is composed by variation
margin, initial margin IM and default fund DF. Default fund is de�ned based on the credit loss
distribution of the CCP's portfolio of clearing members' portfolios.

Both the work by Nahai-Williamson et al. (2013) and the present thesis fall in the last path. Nahai-
Williamson et al. (2013) is the starting point of this thesis and we will give a detailed explanation in
the next chapter. However, it can be considered a sort of upgrade from Haene et al. (2009). Nahai-
Williamson et al. (2013) minimize the expected loss function for CCPs' members numerically to �nd
the optimal quantities of individual default fund and initial margin contributions, but the expected
loss is now way more sophisticated: it considers parameters like cost of capital, liquidation cost, capital
charges and many others, it separates in-the-money and out-of-the-money members in case of one's
default and so on. The present thesis wants to be a further enrichment to this last �eld of studies,
improving Nahai-Williamson et al. (2013) with dependent individual default probabilities and realistic
prices, to minimize again the expected loss function for CCPs' members and see if these dependencies
introduce large di�erences in the results.
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Chapter 4

Nahai-Williamson et al. (2013) model

The current chapter will present the model by Nahai-Williamson et al. (2013), where the authors
determine the optimal amount of initial margins and default fund contributions. Nahai-Williamson
et al. (2013) do not care about the real size of CCP's �nancial resources, because these are largely
a�ected by regulatory laws. Instead, the aim of the paper is to study whether the CCPs should have
some discretion over the balance between these two sources and how they can �nd an optimal amount.
Nahai-Williamson et al. (2013) create a model that studies the impact of numerous factors on clearing
members' expected losses to �nd the optimal composition between CCP's �nancial resources. They
model an expected loss function for a general surviving member in the CCP's network and minimize
this expected loss with respect to initial margin and default fund contributions. In practice, this means
a minimization of a two-dimensional function to �nd IM and DF optimal quantities simultaneously.

Section 1 will provide the theoretical framework of the model and all the considerations behind
it. In Nahai-Williamson et al. (2013), the authors perform comparative studies on CCP's �nancial
rsources, i.e. de�ne optimal quantities, and in Section 2 we replicate their �ndings as well as some
additional considerations. This model is more widely explained in the work by Nahai-Williamson et al.
(2013): this thesis wants to be an extension of their work and so this chapter represents a respectful
summary of their �ndings.

4.1 The model

In this section, we present the general outline of the model by Nahai-Williamson et al. (2013), such
as the assumptions, the rules, the optimization problem and theoretical framework behind the �nal
results about the optimal balance between initial margin IM and default fund DF contributions.

4.1.1 The CCP, its members and network

In Nahai-Williamson et al. (2013), the authors introduce a hypothetical CCP and its clearing network
and then apply a mathematical model for the CCP's members expected loss function. The network
around the central counterparty is made by n clearing members, which are also the owners of the CCP,
i.e. they are shareholders. Every member contribute with an equal amount of equity k to the total
amount of capital K possessed by the clearing house. In Nahai-Williamson et al. (2013), the CCP
has only direct members, which means that only CCP's members clear their position and there is no
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central clearing for agents that do not have the membership. In reality, there are indirect members,
institutions or companies that trade with clearing members through the CCP, but are not clearing
members themselves.

Each clearing member has a default probability p that is independent and exogenous. The as-
sumption of independent default probabilities is unrealistic and one of the main purposes of this thesis
is to extend Nahai-Williamson et al. (2013) model to allow for default dependencies among clearing
members. Our model will be discussed in Chapter 6.

Clearing members have evenly distributed long and short positions of equal size on an imaginary
portfolio with initial value of 1. Their positions change as soon as price H in the underlying market
changes: in this underlying market, prices ∆H are Normally distributed with mean zero and variance
σ, that is ∆H ∼ N(0, σ). Note that the initial price is assumed to be zero, so we can either talk of
prices H or price changes ∆H. The variance σ can be interpreted as market volatility. Now, evenly
distributed market positions of equal size on a portfolio with initial value of 1 imply that, at any
market move, n

2 members will be in-the-money (ITM) and the other n
2 members will be out-of-the-

money (OTM). In-the-money means that you actually gained something on your positions and you are
due to be paid, while out-of-the-money means the opposite (see also pages 20-22 in Nahai-Williamson
et al. (2013)).

Every member posts a collateral amount y as initial margin at the beginning of the contract with
the CCP and an individual default fund contribution z, that will �ow into the mutual default fund.
Posting collateral comes with an opportunity cost c > 0, that can be interpreted as the lost return of
that amount of collateral if invested somewhere else. Thus, each clearing member contributes to the
CCP's capital with an amount k, they post initial margin for y and take part in the default fund with
z, but there are still additional costs: if the CCP cannot cover default losses with its primary resources
in the default waterfall, the CCP defaults itself and there is an additional loss due to systemic risk,
which will be called s.

Finally, extra costs will a�ect clearing members in the form of regulatory capital charges: these
are capital charges applied to members' IM and DF by regulators, there will be one capital charge for
initial margin, dIM , and one capital charge for default fund contributions, dDF . Moreover, collateral
does not only have opportunity cost and capital charges, but it also has a further cost that will be
called cc, representing the cost to banks of holding capital in general.

4.1.2 Defaulting process

The model in Nahai-Williamson et al. (2013) de�nes a very simple default waterfall (see Subsection
2.3.2). As soon as there is a default loss, CCPs use defaulter's initial margin IM and default fund
contribution DF. If these funds do not cover all losses, then the CCP proceeds using the mutual
default fund made by all contributions. When default fund is exhausted, CCP's equity comes next and
if this source is still not su�cient, then the central counterparty goes bankruptcy.

Once the CCP defaults, a liquidation process starts, according to bankruptcy local laws, however
in Nahai-Williamson et al. (2013) this process is simpli�ed. In the liquidation process, managers
transfer funds from surviving OTM members to ITM members; it is assumed that all surviving OTM
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members ful�l their obligations, but liquidation has an administrative cost a ≥ 0. As soon as funds are
transferred from surviving OTM members to ITM members, bankruptcy administrators will subtract
this liquidation cost from those funds: this is the reason why, in case of CCP's liquidation, only ITM
members will su�er this cost.

4.1.3 Clearing member's expected loss function

The centre of the Nahai-Williamson et al. (2013) model is the surviving member's expected loss function
that is minimized with respect to y and z, IM and DF contributions. The expected loss function is
constructed as follows:

1. We build the individual loss function for both surviving OTM and ITM members;

2. We compute the expected value to �nd the surviving member's expected loss function for both
OTM and ITM members;

3. We aggregate the two expected loss functions for surviving OTM and ITM members and form a
�nal expected loss function by adding a linear part for the cost of collateral (opportunity cost c,
capital charges dIM and dDF , etc.). Then, we minimize this function with respect to individual
IM and DF contributions, y and z.

The �nal expected loss function will depend on both IM and DF contributions, making it possible
to �nd the optimal quantities of �nancial resources that the CCP has to ask to its members.

Individual clearing member's loss function

As soon as there is a market movement, given a certain volatility σ, n2 members will be ITM and
n
2 will be OTM. If one OTM member cannot pay its position to the CCP, this clearing member goes
bankruptcy. So, it is clear that the defaulter will always be an OTM member and that there will be
n
2 − 1 surviving OTM members and still n2 ITM members. If multiple OTM members default at the
same time, i members for example, then there will be n

2 − i surviving OTM members and still n2 ITM
members and so on. Figure 4.1 taken from Nahai-Williamson et al. (2013) explains how OTM and
ITM members face losses and how CCP's �nancial resources absorb these losses.
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Figure 4.1: Potential loss of ITM and OTM members for di�erent price moves ∆H (called p in Nahai-
Williamson et al. (2013) notation) and i defaulting members, taken from Nahai-Williamson et al.
(2013)

Note that in Figure 4.1 the prices are denoted by p, which is the notation used in Nahai-Williamson
et al. (2013) model, while we will denote prices by H. We start explaining the individual loss function
lossOTM (h, i) for OTM surviving members. The reading of Figure 4.1 will proceed from the left to the
right:

1. If there is no price move, ∆h = 0, all the evenly distributed positions of members stay the same
and no default can occur;

2. If i OTM members default and the price changes up to y + z, the defaulter's initial margin and
default fund contribution are able to absorb the loss, so all surviving members remain untouched
and do not face any loss. Hence, if losses are smaller than defaulter's initial margin and default
fund individual contribution, then all surviving members face no loss. This situation represents
the �rst �at region in Figure 4.1, so the individual loss function for surviving OTM member is
given by:

lossOTM (h, i) = 0 if h ≤ y + z. (4.1)

The intervals that de�ne the loss function lossOTM (h, i) are based on the price realization h.
Prices cannot be negative, i.e. h ≥ 0, that is why Figure 4.1 considers only the positive part
of the Normal distribution H ∼ N(0, σ). In our extended model in Chapter 6, the underlying
factor that creates default dependence will have both positive and negative realizations.
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3. When the price change generates a loss that is larger than y + z, then the CCP starts using
the common default fund: there are i defaulting members and n − i surviving members, so the
fraction of default fund the CCP uses is exactly i

n−i multiplied by the residual loss h − y − z
because individual y and z were already consumed. Note that this default fund is eroded more
quickly whenever the number of defaulting members i increases: if there is just one default, i = 1,
then the CCP can use the whole default fund to cover up that loss, it is easier, but whenever i
increases, obviously this resources run out faster. This is observed in Region A in Figure 4.1 and
means that the loss function lossOTM (h, i) is given by:

lossOTM (h, i) =
i

n− i
(h− y − z) if y + z < h ≤ y + z +

n− i
i

z. (4.2)

4. Once the default fund is exhausted, the clearing house starts using its equity n · k: defaulting
members are always i, but, as it regards the capital, all members gave this contribution (recall
that it was assumed that all clearing members are also the owners of the CCP, they are all
shareholders), so the fraction of this source for each member is now i

n . This further absorption
splits the loss h − y − z − n−i

i z in i
n parts, which explain Region B in Figure 4.1 showing

lossOTM (h, i) as:

lossOTM (h, i) =
i

n

(
h− y − z − n− i

i
z

)
if y+z+

n− i
i

z < h ≤ y+z+
n− i
i

z+
n

i
k. (4.3)

We believe that this part of the individual loss function lossOTM (h, i), as stated in Equation (1)
on page 23 in Nahai-Williamson et al. (2013), is not natural nor in line with the one displayed
in Figure 4.1, as it will be discussed later (see the end of this subsection).

5. In case default losses are not absorbed even by equity, then the CCP goes bankrupt: here we
observe two di�erent situations for surviving OTM and ITM members. Surviving OTM members
have lost both their individual default contribution z and their holding in capital k, because
everything has been eroded; moreover, they face further losses s due to contagion and systemic
risk. This is described by the �at function lossOTM (h, i) in Region C in Figure 4.1 given by:

lossOTM (h, i) = (z + k + s) if y + z +
n− i
i

z +
n

i
k < h. (4.4)

Besides, surviving ITM members also lose their default fund contribution z, their holding in
capital k and they face systemic cost s, but they lose more. ITM members are the ones that
gained from their positions, the larger the price movement h the higher their gain, but if the
CCP defaults, this gain becomes a loss, because they are not going to receive their payment:
they lose an extra amount h− y − z − n−i

i z −
n
i k if h > y + z + n−i

i z + n
i k. However, surviving

ITM members don't lose all this amount, they have to write down a fraction of their gains. In
other words, the liquidation cost a works as a recovery rate φ (see pages 61-62 on Herbertsson

(2018)). The recovery rate is φ = a
n
2
−1
n
2

and if a = 0, then the recovery rate φ = 0, then surviving

ITM members lose all of their promised payment. Here, the loss function lossITM (h, i) is the
increasing straight line in Region C in Figure 4.1, given by:
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lossITM (h, i) =

(
1− a

n
2 − i
n
2

)(
h− y − z − n− i

i
z − n

i
k

)
if y + z +

n− i
i

z +
n

i
k < h.

+ z + k + s

(4.5)

Figure 4.1 displays the loss function for one surviving member in case i members default. The plot
shows both OTM and ITM surviving member' loss functions, which are di�erent only in the last region
in case of CCP's default. As Figure 4.1 displays, the individual loss function is continuous in price
h. However, this continuity is not observed in the equations built by Nahai-Williamson et al. (2013).
Looking at Equation (4.2), we have:

lossOTM (h, i) =
i

n− i
(h− y − z) if y + z < h ≤ y + z +

n− i
i

z.

In the point h∗ = y + z + n−i
i z, this function gives:

lossOTM (h∗, i) =
i

n− i
(h− y − z)

=
i

n− i

(
y + z +

n− i
i

z − y − z
)

= z.

This is in line with our description of the individual loss function because in the turning point from
Region A to Region B in Figure 4.1 the CCP eroded the whole default fund, so the single clearing
members has lost his individual DF contribution z. On the other hand, Equation (4.3) states:

lossOTM (h, i) =
i

n

(
h− y − z − n− i

i
z

)
if y + z +

n− i
i

z < h ≤ y + z +
n− i
i

z +
n

i
k.

But, in the point h∗ = y + z + n−i
i z, this function gives:

lossOTM (h∗, i) =
i

n

(
h− y − z − n− i

i
z

)
=
i

n

(
y + z +

n− i
i

z − y − z − n− i
i

z

)
= 0.

The loss function jumps down to 0 and this is not displayed in Figure 4.1. In other words, the
individual loss function has a discontinuity in h∗, which is present in the equations but not in Figure
4.1. This discontinuity is not intuitive and to avoid this issue we assume that Equation (4.3) should
be:
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lossOTM (h, i) =
i

n

(
h− y − z − n− i

i
z

)
+ z if y + z +

n− i
i

z < h ≤ y + z +
n− i
i

z +
n

i
k. (4.6)

Similarly, Nahai-Williamson et al. (2013) assume a constant systemic cost s in case the CCP itself
defaults. This means that the individual loss function in Figure 4.1 should have a jump equal to s
in the turning point from Region B to Region C, which is not observed in the plot. We assume that
Nahai-Williamson et al. (2013) consider a constant systemic cost s in the equations, but not in Figure
4.1. However, this does not change neither the interpretation of Figure 4.1 or the results.

We repeated the implementations by Nahai-Williamson et al. (2013) in Section 4.2 and our op-
timizations in Section 6.2 by replacing Equation (4.3) with Equation (4.6) and there is not notable
numerical di�erence in the results. However, we will not proceed with the individual loss function in
Equation (4.6), although it looks more natural and intuitive. We continue using the one identi�ed by
Nahai-Williamson et al. (2013) from Equation (4.1) to (4.5) to be able to compare the optimal CCP's
�nancial resources and discuss the balance between IM and DF contributions.

Expected loss function for OTM member

The loss function has to re�ect the eventual loss for OTM members that is already described in
Figure 4.1 by Nahai-Williamson et al. (2013). We already de�ned the loss for a surviving OTM member
in all the di�erent regions of Figure 4.1 in Equations (4.1), (4.2), (4.3) and (4.4), so combining these
equations gives the complete loss function for the single OTM member:

lossOTM (h) =



0 if h ≤ y + z

i

n− i
(h− y − z) if y + z < h ≤ y + z +

n− i
i

z

i

n

(
h− y − z − n− i

i
z

)
if y + z +

n− i
i

z < h ≤ y + z +
n− i
i

z +
n

i
k

(z + k + s) if y + z +
n− i
i

z +
n

i
k < h.

(4.7)

LetN be the number of defaults among the n
2−1 OTMmembers. Then note that E[lossOTM (H,N)]

is given by:

E[lossOTM (H,N)] =

n
2
−1∑
i=0

E
[
lossOTM (H, i) · I{N=i}

]
=

n
2
−1∑
i=0

E[lossOTM (H, i)]P[N = i]

(4.8)

where the second equality is due to the fact that N and H are independent in the Nahai-Williamson
et al. (2013) model (this will be relaxed in our extended model in Chapter 6). Furthermore, since in
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Nahai-Williamson et al. (2013) all defaults are independent, we have that N is Binomially distributed
within n

2 − 1 OTM members with default probability p, so:

P[N = i] =

(n
2 − 1

i

)
pi(1− p)

n
2
−1−i. (4.9)

Recall that Nahai-Williamson et al. (2013) assume that only OTM members can default and that
at least one OTM member survives, that is why the maximum of N is equal to n

2 − 1. Also note that
the expected loss function E[lossOTM (H, i)] s given by:

E[lossOTM (H, i)] =

∫ +∞

−∞
lossOTM (h, i)fH(h)dh

=

∫ +∞

0
lossOTM (h, i)fH(h)dh

(4.10)

where the second equality is possible because Nahai-Williamson et al. (2013) consider only the
positive part of the Normally distributed price ∆H ∼ N(0, σ). In other words, lossOTM (h, i) = 0 for
h < 0, which is the reason for the integral lower bound. So, by using Equation (4.7) in Equation (4.10)
and then in Equation (4.8) together with Equation (4.9), we get that E[lossOTM (H,N)] is given by:

E[lossOTM (H,N ; y, z)] =

n
2
−1∑
i=0

{(n
2 − 1

i

)
pi(1− p)

n
2
−1−i ·

[∫ y+z

0
0 · fH(h)dh

+

∫ y+z+n−i
i
z

y+z

i

n− i
(h− y − z)fH(h)dh

+

∫ y+z+n−i
i
z+n

i
k

y+z+n−i
i
z

i

n

(
h− y − z − n− i

i
z

)
fH(h)dh

+

∫ +∞

y+z+n−i
i
z+n

i
k
(z + k + s)fH(h)dh

]}
.

(4.11)

In Equation (4.11), the sum of integrals is the expected value of the loss function, where every
loss realization is weighted for the probability of price h to fall in that region and make that kind of
loss happen. Always in Equation (4.11), the �rst term outside the brackets, computed as a Binomial
probability, considers the event of i members defaulting, which has a strong impact on how the �nancial
sources are used. Note that we have E[lossOTM (H,N)] = E[lossOTM (H,N ; y, z)] to emphasize that
the expected loss can be read as a function of y and z, which will be useful in the optimization.

Expected loss function for ITM member

The loss function for the ITM surviving member is almost identical to the one of the OTM member.
Recall that the individual loss function for the surviving ITM member in Figure 4.1 di�ers from OTM
members only for the last region. So, combining Equation (4.1), (4.2), (4.3) and (4.5), lossITM (h, i)
is given by:
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lossITM (h, i) =



0

i

n− i
(h− y − z)

i

n

(
h− y − z − n− i

i
z

)
(

1− a
n
2 − i
n
2

)(
h− y − z − n− i

i
z − n

i
k

)
+ z + k + s

(4.12)

where the intervals are de�ned as in Equation (4.7) and h is a realization of price random variable
H.

Note that also in this case we observe the same discontinuity in h∗ that we observed for lossOTM (h, i)
in Equation (4.3) above. For h∗ = y + z + n−i

i z, Equation (4.2) gives us lossITM (h∗, i) = z, while
Equation (4.3) gives us lossITM (h∗, i) = 0, which is not intuitive and not represented in Figure 4.1.
Again, we think that the natural loss function for Region B in Figure 4.1 should be equal to:

lossOTM (h, i) =
i

n

(
h− y − z − n− i

i
z

)
+ z if y + z +

n− i
i

z < h ≤ y + z +
n− i
i

z +
n

i
k

as already pointed out in Equation (4.6). However, we will continue using the same loss function
developed by Nahai-Williamson et al. (2013) both here and in our extended version in Chapter 6, in
order to compare results and discuss the balance between IM and DF contributions to CCPs.

The expected value of loss function lossITM (h, i), i.e. E[lossITM (H,N)], follows the same steps
showed for E[lossOTM (H,N)] in Equation (4.11), so:

E[lossITM (H,N ; y, z)] =

n
2∑
i=0

{(n
2

i

)
pi(1− p)

n
2
−i ·

[∫ y+z

0
0 · fH(h)dh

+

∫ y+z+n−i
i
z

y+z

i

n− i
(h− y − z)fH(h)dh

+

∫ y+z+n−i
i
z+n

i
k

y+z+n−i
i
z

i

n

(
h− y − z − n− i

i
z

)
fH(h)dh

+

∫ +∞

y+z+n−i
i
z+n

i
k

[(
1− a

n
2 − i
n
2

)(
h− y − z − n− i

i
z − n

i
k

)
+ z + k + s

]
fH(h)dh

]}
.

(4.13)

There are two di�erences with respect to the OTM member expected loss function: in case the
CCP defaults, i.e. h > y + z + n−i

i z + n
i k, the loss and the expected loss are di�erent as it was

described in Equation (4.5); secondly, the maximum number of surviving ITM members is now n
2 ,

because Nahai-Williamson et al. (2013) assume that only OTM members can survive, so all ITM can
survive. Again, note that we have E[lossITM (H,N)] = E[lossITM (H,N ; y, z)] to emphasize that the
expected loss can be read as a function of y and z.
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Total surviving member's expected loss

The next step is to de�ne the general surviving member's expected loss. This expected loss will be
minimized wit respect to initial margin y and default fund contribution z, to �nd the optimal quantities
of sources the CCP should require. The �nal expected loss function for a general surviving member
(despite OTM or ITM) is the sum of the two previous ones plus all the costs of pledging collateral in
terms of y and z (opportunity cost c, capital charges dIM and dDF and cost of holding capital decided
by banks cc). Hence, the �nal function to minimize with respect to y and z is given by:

E[lossOTM (H,N ; y, z)] + E[lossITM (H,N ; y, z)] + (c+ dIM · cc)y + (c+ dDF · cc)z (4.14)

and the optimization problem replicated from Nahai-Williamson et al. (2013) paper will be:

min
y,z
{E[lossOTM (H,N ; y, z)] + E[lossITM (H,N ; y, z)] + (c+ dIM · cc)y + (c+ dDF · cc)z} (4.15)

where E[lossOTM (H,N ; y, z)] is given by Equation (4.11) and E[lossITM (H,N ; y, z)] by Equation
(4.13). This optimization is not straightforward to solve analytically. The optimization will be solved
numerically and from a starting guess, the algorithm will compute the gradient and it will proceed from
that point in the direction suggested by the �rst derivative to �nd a minimum with gradient equal
or very close to zero. This function will be treated as a two-dimensional function whose minimum
characterizes the optimal amount of IM and DF contributions.

4.2 Optimizations and results

This section presents the numerical results and the main �ndings in our implementation of the studies
in Nahai-Williamson et al. (2013). These will be compared with the corresponding numerical studies in
our extended version of Nahai-Williamson et al. (2013) model in Chapter 6. The expected loss function
in Equation (4.14) is minimized with respect to IM contribution y and DF contribution z for di�erent
model parameters such as p, c, dIM and so on. More speci�cally, Nahai-Williamson et al. (2013)
perform comparative statistics, where there is a baseline of �xed parameters and then the authors
minimize the expected loss varying one parameter and keeping all the others �xed, �nding the optimal
quantities of IM and DF contributions in di�erent settings (see Table 4.1). We will use the CCP's
members expected loss in Equation (4.14) as in Nahai-Williamson et al. (2013) and replicate the same
optimizations with the same �xed and changing parameters.
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Variable Value when �xed Variation range when changing

p Individual default probability 5% and 25% 1% to 95%
n Number of members 20 -
σ Underlying price volatility 20% -
c Opportunity cost 50 bp 25 to 350 bp
k Equity contribution 0.1% -
a Liquidation cost 10% -
dIM IM Capital charge 0% and 0.16% 0% to 100%
dDF DF Capital charge 0% and 0.16% 0% to 100%
cc Bank cost of holding capital 10% -
s Systemic cost 0 0% to 100%

Table 4.1: Summary of variables used in our numerical studies for the �xed and the changing cases,
taken from Table A1 on page 25 in Nahai-Williamson et al. (2013)

The column "Value when �xed" in Table 4.1 displays the standard case of the numerical studies
in the Nahai-Williamson et al. (2013) model, that is the baseline values used for the variables when
"�xed". The column "Variation range when changing" in Table 4.1 shows the variation range of the
same variables in the changing case, which are the same intervals used in Nahai-Williamson et al.
(2013). The optimizations in Nahai-Williamson et al. (2013) work as follows: for example, the �rst
minimization with respect to y and z is repeated for all the values of default probability p from 0.01 to
0.95, keeping all the other parameters �xed as in the �rst column in Table 4.1, and so on. Note that
in the �rst column of Table 4.1 the individual default probability p, as well as capital charges dIM and
dDF , has two values. Following Nahai-Williamson et al. (2013), we repeat several optimizations for
the two values p = 5% and p = 25%, because it is considered fundamental to understand the relation
between the member's default probability and CCP's risk management.

Just as in Nahai-Williamson et al. (2013), the number of clearing members n, the cost paid to
banks to hold capital cc, the initial individual equity contribution k and the underlying price volatility
σ are always constant. Note also that both the research by Nahai-Williamson et al. (2013) and this
thesis do not report all the performed optimizations.

4.2.1 Varying default probability p

The �rst optimization studies the optimal IM and DF contributions as function of the individual
clearing member's default probability p, which in Nahai-Williamson et al. (2013) is exogenous and
independent between members. We replicate the minimization of Nahai-Williamson et al. (2013)
expected loss in Equation (4.14) with respect to y and z for di�erent values of default probability p.
Recall that, both in Nahai-Williamson et al. (2013) and in our replications, the nominal value of each
member portfolio was initially equal to 1, so this is how to read the results. For example, an optimal
quantity equal to 0.5 for the default fund contribution DF can be generalized as an amount equal to
the 50% of the original value of portfolio.
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Figure 4.2: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the default probability p

Figure 4.2 displays the results from our optimization in Equation (4.15) in the p range speci�cation
in Table 4.1, i.e. 1% to 95%. Nahai-Williamson et al. (2013) perform the same optimization in Figure
5 on page 11 in their paper. The numerical results are di�erent in some regions: in Nahai-Williamson
et al. (2013), the optimal DF contribution is equal to zero, z = 0, as soon as p > 40%, while in
our optimization in Figure 4.2 the DF contribution remains a solid part of CCP's sources balance up
to p ≈ 75%. However, in our optimization the relation between default probability p and optimal
resources is in line with the one in Fgure 5 in Nahai-Williamson et al. (2013). As the probability of
default increases, CCPs prefer to manage their risk and cover their losses via initial margin. More
speci�c, when the probability of default is really low, it is better to give a smaller contribution to a
common mutual fund than to pay a larger initial margin. As soon as the default probability increases,
the result is reversed, because there is a higher cost of mutualization: defaults are very likely and
clearing members do not know who will default as everyone has the same probability to default at the
beginning, so they prefer to pay a larger initial margin than contribute to a common fund, because
with the initial margin their collateral is safe, while the same collateral would be fully consumed in a
default fund.

Moreover, both Figure 5 on page 11 in Nahai-Williamson et al. (2013) and our Figure 4.2 show
that the optimal level of resources becomes more �at when p is su�ciently large, which reveals that
the marginal bene�t of holding more collateral for the CCP is decreasing in p. Nahai-Williamson et al.
(2013) also observe that when the default probability is zero, p = 0, members are risk-free entities,
then the perfect amount of resources is zero, because the CCP could o�er the clearing service without
incurring in losses.
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4.2.2 Varying opportunity cost c

The opportunity cost c will be interpreted in this model as the lost gain of the amount of money
spent in collateral, since clearing members have to post collateral, which is a cost. Intuitively, as the
opportunity cost c increases, it becomes more expensive for clearing members to post any kind of
collateral, including IM and DF contributions.

Figure 4.3 displays the results from our optimization in Equation (4.15) in the c variation range
in Table 6.1. In this subsection, the optimization of the expected loss in Equation 4.15 with varying
values of c will be done twice: once with an individual default probability p equal to 5% and once with
p = 25%.

(a) c ∈ [0.025, 0.35] (b) c ∈ [0.03, 0.055]

Figure 4.3: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the opportunity cost c, with p = 5%

The optimization in Figure 4.3 corresponds to our implemented version of Figure 8a on page
13 in Nahai-Williamson et al. (2013). The numerical results are di�erent: in our Figure 4.3a the
optimal amounts of IM contributions are much smaller than the ones identi�ed by Nahai-Williamson
et al. (2013), which are larger and more persistent as the opportunity cost c increases (in Nahai-
Williamson et al. (2013), IM contributions are optimal up to c = 0.15). However, the scaled Figure
4.3b shows that the relation between optimal resources and opportunity cost is the same found in
Nahai-Williamson et al. (2013). Intuitively, when the opportunity cost c increases, the amount of
total resources decreases as pledging collateral becomes generally more costly. However, also the total
�nancial sources composition changes. Both Figure 8a on page 13 in Nahai-Williamson et al. (2013)
and our Figure 4.3b show that when c overcomes a certain threshold, default fund DF becomes the
only optimal source for the CCP. The default fund covers more losses than a single initial margin, so
if every parameter is constant and the opportunity cost c alone is increasing, total resources decrease
and the default fund becomes the best choice to cover default losses.
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(a) c ∈ [0.025, 0.35] (b) c ∈ [0.025, 0.065]

Figure 4.4: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the opportunity cost c, with p = 25%

The optimization in Figure 4.4 corresponds to the one displayed in Figure 8b on page 13 in Nahai-
Williamson et al. (2013), which repeats the optimizations for varying opportunity cost c, but with
p = 25%. Again, the optimal quantities are di�erent: in Nahai-Williamson et al. (2013) the balance
between IM and DF contributions tends more on IM contributions than reported in our optimization
in Figure 4.4b. However, the trend behind the optimal �nancial resources is the same. In our Figure
4.4a, as collateral becomes more costly, the amount of total resources decreases, but not as much as in
the �rst case (see Figures 8a and 8b on page 13 in Nahai-Williamson et al. (2013) and our Figure 4.3a).
Now, it is more likely to observe a default (p = 25%), so even if collateral is costly, it is necessary
to have a coverage. Even if initial margin decreases also here, Figure 4.4a shows the pressure of a
larger default probability: it was shown from Subsection 4.2.1 that higher default probabilities bring
to more dependence on initial margins, this is the reason why here optimal IM contributions are more
persistent even if collateral becomes more expensive.

From the outline of Section 4.2, we know that almost every optimization is repeated for the two
values p = 0.05 and p = 0.25, but we will not report all the cases for p = 0.25. Figures 8a and 8b
on page 13 in Nahai-Williamson et al. (2013) and our Figures 4.3a and 4.4a explain what happens
when default probability p is higher. First, it is more likely that clearing members default, so there is
a general increase in total resources: IM and DF contributions are higher because CCPs need larger
collateral. Secondly, with a higher default probability p, IM contributions always increase: Subsection
4.2.1 showed that if defaults are more likely to happen, there is a higher cost of mutualization and
clearing members prefer to pay a larger initial margin than contributing to the common default fund.

4.2.3 Varying capital charges dIM and dDF

Opportunity cost c is not the only cost of pledging collateral in the CCP: posting collateral is expensive
also because of initial margin capital charge dIM , default fund capital charge dDF and cost of holding
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capital assigned by banks cc. In this subsection, we perform an optimization over IM and DF contri-
butions with changing values of capital charges dIM and dDF . Capital charges dIM and dDF are costs
of capital applied to both initial margin and default fund, so again we intuitively expect the optimal
total resources to decrease as these charges increase.

Figure 4.5: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the total capital charge dIM + dDF , with p = 5%

Figure 4.5 displays the optimal IM and DF contributions via Equation (4.15) on the changing
amount of total capital charge, i.e. dIM + dDF . Our Figure 4.5 corresponds to the optimization shown
in Figure 9a on page 13 in Nahai-Williamson et al. (2013). In our replication, the numerical results are
roughly the same as in Nahai-Williamson et al. (2013). In our Figure 4.5, the optimal IM contributions
disappear as soon as dIM + dDF ≈ 0.2, while in Nahai-Williamson et al. (2013) they are persistent up
to dIM + dDF ≈ 0.6. On the other hand, when dIM and dDF both increase, the e�ect of reducing the
amount of total resources is the same. As pledging more collateral becomes more expensive, clearing
members just post less collateral. Moreover, sources are only made by DF contributions as soon as
total capital charge dIM + dDF is su�ciently high.

More realistically, the optimization is repeated with only one capital charge among dIM and dDF
as the changing variable.
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(a) With dDF = 0 (b) With dDF = 0.16%

Figure 4.6: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the IM capital charge dIM , with p = 5%

The optimization in Equation (4.15) on the changing amount of IM capital charge dIM is repeated
for two values of DF capital charge, dDF = 0 and dDF = 0.16%, with p = 5%. The optimizations
in Figure 4.6 correspond to the same optimizations in Figures 10a and 10b on page 14 in Nahai-
Williamson et al. (2013). Note that Figures 10a and 10b on page 14 in Nahai-Williamson et al. (2013)
are zoomed to focus on the small amount of IM contributions, but the results are roughly the same in
our Figure 4.6. Consistently with Nahai-Williamson et al. (2013) and both Figures 4.6a and 4.6b, we
can say that when IM capital charge dIM increases, the only resource to manage risk consists almost
only of DF contributions. Collateral is necessary to the normal functioning of every CCP and it cannot
be eliminated, so applying an asymmetric modi�cation varying IM capital charge dIM makes all the
clearing members shift to the cheaper form of collateral. Initial margin is preferred just because of a
smaller cost of mutualization, otherwise it is less e�ective than default fund in terms of loss-absorption.
So, if initial margin is also more expensive, then it becomes the least attractive source of all.

In reverse, the next optimization is done via Equation (4.15) on the changing amount of DF capital
charge dDF , with dIM = 0 and p = 5%.
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Figure 4.7: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the DF capital charge dDF , with dIM = 0 and p = 5%

Figure 4.7 displays the result of the optimal quantities for IM and DF contributions on the changing
DF capital charge dDF . This optimization is also shown in Figure 11a on page 14 in Nahai-Williamson
et al. (2013) and the results are very similar to our Figure 4.7: the total amount of resources in
Nahai-Williamson et al. (2013) is ≈ 0.32, while in our optimization is ≈ 0.28, but the relation between
�nancial resources and dDF as well as the balance of sources are the same. According to both Figure
11a on page 14 in Nahai-Williamson et al. (2013) and our Figure 4.7, even with a very large DF capital
charge dDF , clearing members do not renounce giving DF contributions, because even if it bears a
mutualization cost, it can absorb more default losses, so it takes a much higher capital charge to erase
the bene�t of DF contributions. The case with dIM = 0.16% (not reported here), corresponding to
Figure 11b on page 14 in Nahai-Williamson et al. (2013), shows a similar equilibrium of sources: the
only di�erence is that optimal amounts of IM contributions are smaller because also IM contributions
are expensive.

The last optimizations in Figures 4.5, 4.6 and 4.7 show that capital charges have an extreme
impact on CCP's resources: they can change the CCPs resources composition almost completely.
Slight di�erences and modi�cations on capital charges dIM and dDF give totally di�erent numerical
results. Even if in reality CCPs do not choose their own capital charges (as they are mainly decided
by international laws), these forms of costs of collateral must be heavily considered when dealing with
CCPs risk management.
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4.2.4 Varying systemic cost s

The last relation to investigate is the one between optimal DF and IM contributions and the systemic
cost s, which represents a constant further loss occurring after CCP's default due to contagion e�ects.
This is a cost occurring only in case of CCP's default, so it is plausible to think that increasing s will
make total resources shift towards DF contributions, because default fund postpones defaulting events
more than any other collateral.

Figure 4.8: The optimal IM contributions y and DF contributions z obtained via Equation (4.15) as
functions of the systemic cost s, with p = 5%

Figure 4.8 portraits the results of the optimal quantities for IM and DF contributions on the
changing systemic cost s. The same optimization is displayed in Figure 13a on page 15 in Nahai-
Williamson et al. (2013): in Nahai-Williamson et al. (2013), the IM contribution equals zero as soon
as s ≈ 0.11, while in our Figure 4.8 IM contributions y decrease, but they never disappear; moreover,
Nahai-Williamson et al. (2013) optimal DF contribution is ≈ 0.25, while our optimal z is ≈ 0.16.
However, both in Figure 13a on page 15 in Nahai-Williamson et al. (2013) and in our Figure 4.8, the
optimal DF contribution is constant and the IM contribution decreases as the systemic cost s increases.
An increasing post-default cost makes clearing members want to postpone CCP's defaulting events, so
there is an incentive towards DF contributions, always due to its loss mutualization and absorbency.
Consistently with Figure 13b on page 15 in Nahai-Williamson et al. (2013), this optimization is re-
peated for p = 25%, showing that a larger individual default probability makes IM contributions more
persistent.
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4.3 Unrealistic assumptions

The model in Nahai-Williamson et al. (2013) makes some unrealistic assumptions about clearing mem-
bers, which will be now brie�y discussed:

1. In Nahai-Williamson et al. (2013), the individual probabilities of default are exogenous and
independent. In other words, the number of defaults N in Nahai-Williamson et al. (2013) model
follows a Binomial distribution, i.e. N ∼ Bin(n2 − 1, p) for lossOTM (h, i) in Equation (4.7)
and N ∼ Bin(n2 , p) for lossITM (h, i) in Equation (4.12). Such models have very light tails, i.e.
P[N > i] is very small for larger i, even if i ≤ n

2 − 1 or i ≤ n
2 , and this is not realistic compared

to what is observed in reality, especially in crises times. Moreover, several authors like McNeil
et al. (2015) and Lando (2004) agree that the assumption of independent default probabilities is
unrealistic;

2. In Nahai-Williamson et al. (2013), the underlying prices H and clearing members default prob-
abilities are uncorrelated.

The authors in Nahai-Williamson et al. (2013) minimize the expected loss function for di�erent
settings and they �nd optimal balances of default fund and initial margin individual contributions.
In this thesis, we will relax the two assumptions above introducing dependent default probabilities
and asset prices which are correlated with the default probabilities themselves. To be able to create a
framework in which default probabilities and prices are more realistic, we will use a static credit risk
modelling framework, which means a di�erent distribution for the number of defaulting members N
with a higher probability to observe a large number of defaults i, i.e. fatter tails. More speci�c, we
will use a Merton mixed binomial model, which will be presented in the next chapter.
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Chapter 5

Static credit risk modelling

In this chapter, we will build a framework in which individual default probabilities and prices become
dependent and thus more realistic. So, in this extended model, we create a new expected loss func-
tion for CCP's members and minimize it to �nd the optimal quantities of IM and DF contributions.
Schönbucher (2003) points out that credit risk can be divided in multiple components such as arrival
risk, timing risk, recovery risk and dependency risk or risk of contagion. Studying and modelling credit
risk can be done in multiple ways: for example, it is possible to study both the arrival risk and timing
risk, i.e. whether the default occurs or not and in which exact moment in time. Other analyses only
consider arrival risk and contagion risk, i.e. whether the default happens or not in a given time period
t ∈ [0, T ] and whether or not it a�ects other counterparties. Models that do not consider timing risk
are often called static credit risk models. To make probabilities and prices dependent, we will use one
of the most common models in static portfolio credit risk, the Merton mixed binomial model (see Frey
and McNeil (2001), Frey and McNeil (2003) and McNeil et al. (2015)). To be able to use the Merton
mixed binomial model, Section 1 will introduce the baseline of Merton model, Section 2 will explain
the mixed binomial model and Section 3 will mix these to have the Merton mixed binomial model,
which will be used to make default and price dependencies.

5.1 Merton model

This section explains the basic concepts and the functioning of Merton model, the most common and
largely used static credit risk model in the literature. The baseline follows previous reviews of Merton
model, mostly by Frey and McNeil (2001), Frey and McNeil (2003), Lando (2004) and Herbertsson
(2018).

5.1.1 Assumptions and setup

The main assumption in the Merton model is the Black-Scholes setting: it means that trading has no
e�ects on prices, there are no transaction costs, short selling is possible and borrowing and lending
are done at a risk-free rate r. Moreover, in the Black-Scholes setting, both equity and debt are priced
like derivatives with the stock price as the underlying asset. Consider a company C. The value of C's
assets at time t, denoted by Vt, follows a geometric Brownian motion according to:

dVt = µVtdt+ σVtdWt (5.1)
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where Wt is a standard Brownian motion, which is a stochastic process continuous in time with
the following properties:

� W0 = 0;

� Wt has a continuous path;

� Wt −Ws ∼ N(0, t− s), so Wt −Ws is Normally distributed with zero mean and variance t− s;

� Wt has independent increments, it means that, if t1 < t2 < t3 < t4, thenWt2−Wt1 is independent
from Wt4 −Wt3 .

By using Ito's lemma on Equation (5.1), one can show that the asset value Vt is given by:

Vt = V0e
(µ− 1

2
σ2)t+σWt (5.2)

where (µ− 1
2σ

2)t is a deterministic term and σWt is the stochastic term, depending on the standard
Brownian motion.

5.1.2 Total assets value, equity and debt claims

The company C issues two types of claims: debt and equity. The debt is issued in terms of zero coupon
bonds and, at the maturity T , C pays the amount D to debtholders. The value of the zero coupon
bond at any time t is Bt, while the value of equity at any time t is St. If these are the only claims
issued by the company, then the company total assets is de�ned as:

Vt = Bt + St (5.3)

Total asset value is only made up by debt claims and equity claims, so, at any time t ∈ [0, T ], it is
equal to the sum of zero coupon bond value Bt and the equity value St.

Now, two possible situations may arise at maturity T : either the total assets value VT exceeds the
amount D which will be paid to debtholders, or it does not. More speci�cally, at maturity T , these two
conditions lead to di�erent consequences. Whenever the total assets value is larger than the amount
D, i.e. VT > D, then the amount D is paid to debtoholders and the remaining VT −D is earned by the
equity owners. On the contrary, if the total assets value is lower than the amount D, i.e. VT < D, then
we can say that the company faces a default in T and the whole amount VT is paid to debtholders. So
the debthoders lose D − VT and the equity owners get nothing.

In the Merton model a default is only possible at maturity T and not before T . We need this
outline in order to merge it with the mixed binomial model to obtain a Merton mixed binomial model
and introduce dependencies between default probabilities and prices in the �nal expected loss function
for CCP's members.
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5.2 Mixed binomial model

This section reviews the so called mixed binomial model (see Frey and McNeil (2001), Frey and McNeil
(2003) and Lando (2004)). In Section 4.3, we pointed out that Nahai-Williamson et al. (2013) use a
binomial model to �nd the probability of multiple defaults. Hence, in Nahai-Williamson et al. (2013)
the default probabilities are independent, while the mixed binomial model we are going to introduce
randomizes the individual default probabilities and allows for a stronger dependence between them.
Again, the main source of this material comes from Lando (2004) and Herbertsson (2018).

5.2.1 Model outline

Consider a portfolio/network with m obligors, where each obligor can default up to time T . Let Xj be
a random variable such that Xj = 1 if obligor j defaults up to time T , otherwise Xj = 0. It is assumed
that X1, X2,..., Xm are all independent with identical distribution. Furthermore, let the unconditional
default probability be P[Xj = 1] = p and the unconditional survival probability be P[Xj = 0] = 1− p.

The mixed binomial model randomizes the individual default probabilities. More speci�c, the
individual default probability is a function of one common factor W that represents some common
economic background variable that a�ects all the obligors in the network at the same time. The
variableW can be interpreted di�erently for di�erent market models, but in this modelW is a random
variable modelling the economic background, a�ecting all the individuals and creating dependence and
correlation. So, W is a random variable with density fW (w) and the default probability is a function
of W , namely p(W ), given by:

p(W ) = P[Xj = 1 |W ]. (5.4)

It is clear that also p(W ) is a random variable and it represents the conditional default probability
P[Xj = 1 |W ]. More speci�cally, let p be given by:

p = E[p(W )] (5.5)

and note also that:

P[Xj = 1] = E[Xj ] = E[E[Xj |W ]] = E[p(W )] = p (5.6)

Var(Xj) = p(1− p) (5.7)

Cov(Xj1 , Xj2) = Var(p(W )). (5.8)

For more details on Equations (5.6), (5.7) and (5.8) see Chapter 9.2 on page 216 in Lando (2004).

5.2.2 Default probability

Let N be the number of defaults among m obligors. Then, N is given by:

N =

m∑
j=1

Xj .

Hence, we next need to study
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P[N = i]. (5.9)

which represents the probability to observe multiple defaults, more precisely, i simultaneous de-
faults.

The key point of the mixed binomial model is that individual variables describing the default X1,
X2,..., Xm are not independent anymore, they are only conditionally independent, as seen in Equations
(5.4) and (5.8). Having only conditional independence is what allows for dependence between the
agents, in our case, the clearing members: this common factor and the conditional probability as a
function of this common factor is what we will use to build dependencies between clearing members.
If these variables are only conditional independent, then the conditional probability of observing i
defaults can be computed through a Binomial:

P[N = i |W ] =

(
m

i

)
p(W )i(1− p(W ))m−i (5.10)

where i can be interpreted as the number of "successes" and m − i the number of failures in the
Binomial distribution: in this case, the "success case" is the default Xj = 1. Note that:

P[N = i] = E[P[N = i |W ]]. (5.11)

So combining Equation (5.10) with Equation (5.11):

P[N = i] = E
[(
m

i

)
p(W )i(1− p(W ))m−i

]
. (5.12)

Recall the general rule for the expected value of any function of random variables, E[A(X)] =∫ +∞
−∞ A(x)fX(x)dx, which implies that Equation (5.12) is given by:

P[N = i] =

∫ +∞

−∞

(
m

i

)
p(W )i(1− p(W ))m−ifW (w)dw. (5.13)

In a mixed binomial model, this is the analytical formula for the probability of observing exactly
i defaults. Mixed binomial models consist in a very general framework, the conditional default prob-
ability p(W ) can now be derived according to di�erent models: we will use the Merton model, but a
Beta distribution and a Logit-Normal distribution could also be used to �nd a closed formula for p(W )
(see McNeil et al. (2015) and Lando (2004)).

5.3 Merton mixed binomial model

This section merges the Merton model and the mixed binomial model. In our case, the mixed binomial
model is inserted in a Merton model framework, with all Merton assumptions and features seen in
Section 5.1. The baseline of our presentation in this section is taken from Frey and McNeil (2001),
Frey and McNeil (2003), Lando (2004) and Herbertsson (2018). The Merton mixed binomial model
leads to individual default probabilities, which are dependent as well as related with asset prices.
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5.3.1 Conditional default probability

Consider a portfolio/network with m obligors, each obligor is described by a Bernoullian random
variable Xj , which is either Xj = 1 whenever this individual defaults or Xj = 0 otherwise. X1, X2,...,
Xm will be only conditionally independent and identically distributed, as in every mixed binomial
model. But now, each obligor stays in a Merton framework. Hence, the j-obligor total assets follow
the dynamics:

dVt,j = µjVt,jdt+ σjVt,jdBt,j

where Bt,j is a stochastic process de�ned by:

Bt,j =
√
ρWt,0 +

√
1− ρWt,j (5.14)

and where Wt,0, Wt,1, Wt,2,..., Wt,m are independent standard Brownian motions. Even if we have
an additional transformation from the standard Brownian motions, i.e. through Bt,j , the total assets
value Vt,j is still a geometric Brownian motion. Applying Ito's lemma, it is possible to write:

Vt,j = V0,je
(µj− 1

2
σ2
j )t+σjBt,j .

As shown in Equation (5.14), total assets value for each obligor is driven by a common process
Wt,0, that is not j-indexed and a�ects every single obligor at the same time: this is the economic
environment. Then, Bt,j , and therefore Vt,j , is a�ected by an individual process Wt,j that is unique
for each obligor j. The assets will depend both on a systemic process and on an idiosyncratic process:
the common process will create dependence among individuals. Note that Equation (5.14) displays a
new variable ρ, the Merton correlation, which describes the correlation between members' total assets
returns. The derivation and the meaning of this variable are explained in Appendix A.

As stated in Subsection 5.1.2, in the Merton model, default can occur only at time T , depending
on whether the total assets of the company are enough to pay debtholders or not. Now, let Dj be the
individual amount that each j-obligor has to pay to its debtholders at time T , the bankruptcy occurs
if anf only if VT,j < Dj . Then default happens whenever:

V0,je
(µj− 1

2
σ2
j )T+σjBT,j < Dj .

Applying the logarithmic transformation f(x) = ln(x), the inequality still holds because it is a
strictly increasing function, so:

ln(V0,j)− ln(Dj) +

(
µj −

1

2
σ2j

)
T + σjBT,j < 0.

Substituting BT,j with what stated in Equation (5.14):

ln(V0,j)− ln(Dj) +

(
µj −

1

2
σ2j

)
T + σj(

√
ρWt,0 +

√
1− ρWt,j) < 0. (5.15)

In the standard Brownian motion, increments between t2 and t1 are independent and Normally
distributed with mean zero and variance (t2 − t1) and W0 = 0. So, in this case at time T :

WT,j −W0,j ∼ N(0, T − 0)
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⇒WT,j ∼ N(0, T ).

Now, if Yj ∼ N(0, 1), i.e. Yj is a standard Normal, then WT,j has the same distribution as
√
TYj ,

where Y1, Y2,..., Ym are also independent. After this transformation, the common background variable
WT,0 is now turned into

√
TY0: this is where the fusion between Merton model and mixed binomial

model happens, because we de�ne this new common variable Y0 as the common background factor W
in the mixed binomial model, that drives conditional default probabilities. Thus, Y0 = W , so the event
in Equation (5.15) has the same conditional probability (and thus same probability) as the event:

ln(V0,j)− ln(Dj) +

(
µj −

1

2
σ2j

)
T + σj(

√
ρ
√
TW +

√
1− ρ

√
TYj) < 0. (5.16)

By dividing with σj
√
T in Equation (5.16), we get:

ln(V0,j)− ln(Dj) +
(
µj − 1

2σ
2
j

)
T

σj
√
T

+
√
ρW +

√
1− ρYj < 0

and making the substitution

Cj =
ln(V0,j)− ln(Dj) +

(
µj − 1

2σ
2
j

)
T

σj
√
T

then Equation (5.16) is equivalent with the event:

Cj +
√
ρW +

√
1− ρYj < 0, (5.17)

that is

Yj <
−(Cj +

√
ρW )

√
1− ρ

. (5.18)

The result in Equation (5.18), which is equivalent with (5.15), says that the individual component of
risk, Yj has to be smaller than a certain amount to observe a default at time T . Default occurs whenever
individual riskiness falls before a certain threshold. This is very useful, because the above calculations
showed that the default event VT,j < Dj has the same probability (and conditional probability) as

Yj <
−(Cj+

√
ρW )√

1−ρ . Next, de�ne Xj as Xj = 1 when the j-obligor defaults and zero otherwise. Then,

the mixed binomial model then leads to:

p(W ) = P[Xj = 1 |W ]

= P
[
Yj <

−(Cj +
√
ρW )

√
1− ρ

|W
]

= N

(
−(Cj +

√
ρW )

√
1− ρ

) (5.19)

where last equality in Equation (5.19) is due to the fact that the Yis are independent and standard
Normal. So, conditional default probability becomes a realization of a standard Normal cumulative
distribution.
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Since the standard Brownian motionsWt,0,Wt,j1 andWt,j2 are independent, theW = Y0, Y1, Y2,...,
Ym are also independent. Now, assume that all the obligors in the model are identical, so V0,j = V0,
Dj = D, µj = µ, σj = σ and Cj = C, then:

p(W ) = P[Xj = 1 |W ] = N

(
−(C +

√
ρW )

√
1− ρ

)
. (5.20)

The function p(W ) gives us the conditional probability of default as function of the factor W . The
mixed binomial model considers the conditional default probability as a function of factor W and by
applying the Merton Model this function p(W ) becomes explicit, as seen in Equation (5.19) or (5.20).

Now, going back to the unconditional default probability and using Equation (5.17), we get that:

P[Xj = 1] = P[VT,j < D]

= P[C +
√
ρW +

√
1− ρYj < 0]

= P[
√
ρW +

√
1− ρYj < −C].

(5.21)

Furthermore, since W and Yj are both standard Normal, also a linear transformation like
√
ρW +√

1− ρYj remains a standard Normal, which in Equation (5.21) implies that:

P[Xj = 1] = P[
√
ρW +

√
1− ρYj < −C] = N(−C)

⇒ P[Xj = 1] = N(−C). (5.22)

From the outline of mixed binomial model, in Equation (5.6) we have P[Xj = 1] = E[p(W )] = p,
so Equation (5.22) implies:

p = N(−C)⇒ N−1(p) = −C ⇒ C = −N−1(p). (5.23)

Merging this result with Equation (5.20) we obtain a �nal closed formula for the individual condi-
tional default probability given by:

p(W ) = P[Xj = 1 |W ] = N

(
N−1(p)−√ρW
√

1− ρ

)
(5.24)

where p represent the unconditional default probability of clearing members and ρ is the Merton
correlation between members asset returns, which is illustrated in Appendix A.

5.3.2 The probability of i defaults

In a mixed binomial model inspired by the Merton model, the number of defaults N among m obligors
is given by:

N =

m∑
j=1

Xj .

Next, we derive an expression for P[N = i] and, according to Equation (5.10), P[N = i] is equal to:

41



P[N = i] = E[P[N = i] |W ]

= E
[(
m

i

)
p(W )i(1− p(W ))m−i

]
=

∫ +∞

−∞

(
m

i

)
p(w)i(1− p(w))m−ifW (w)dw.

(5.25)

The Merton model made the function p(W ) explicit in Equation (5.24), Equation (5.25) then yields
to:

P[N = i] =

∫ +∞

−∞

(
m

i

)
N

(
N−1(p)−√ρW
√

1− ρ

)i(
1−N

(
N−1(p)−√ρW
√

1− ρ

))m−i
1√
2π
e−

w2

2 dw.

(5.26)
So, we have derived an analytical formula to compute the probability to have i multiple members

defaulting.

Now we have all the instruments to extend the model by Nahai-Williamson et al. (2013) and realize
a more realistic framework. Thanks to the common background factor de�ned in this chapter in Merton
mixed binomial model, we will make individual default probabilities unconditionally independent and
we will build underlying prices as a function of the same background factor. This will be the key point
to be able to construct a new expected loss function for CCP's members and minimize it to �nd the
new optimal quantities of IM and DF contributions.
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Chapter 6

Introducing default and price
dependencies in Nahai-Williamson et al.
(2013)

This chapter presents the core of our thesis as well as our new contribution to central clearing risk
management literature. We implement an extension of Nahai-Williamson et al. (2013) model to a
more realistic setting, which allows for dependent default probabilities and relates the underlying
prices with the factor driving the individual defaults. The main purpose of this extension is to see
if this new framework introduces large di�erences with Nahai-Williamson et al. (2013) in terms of
optimal quantities of IM and DF contributions. The Merton mixed binomial model in Chapter 5 will
be used to model the new individual default probability and the same background factor will be used
to model prices.

The possibility of dependent default probabilities and more realistic prices changes the CCP's
framework, in particular the expected loss function for surviving clearing members. First, Section 1
builds the new expected loss function for CCP's surviving member. Secondly, Section 2 repeats all the
original optimizations (as done in Nahai-Williamson et al. (2013)) with the same �xed and varying
parameters, minimizing this new function to �nd the new optimal quantities for individual IM and DF
contributions.

6.1 Model and method

In the following section, we explain which assumptions in Nahai-Williamson et al. (2013) are relaxed
and how the new expected loss function for CCP's surviving member is constructed. We also discuss
how to integrate dependent default probabilities and realistic prices in the loss minimization and then
repeat the optimizations as done in Nahai-Williamson et al. (2013).

6.1.1 Relaxing assumptions

The model in Nahai-Williamson et al. (2013) is based on several assumptions, for example regarding the
�nancial network in which the CCP operates and the expected loss function of surviving members, as
discussed in Section 4.1. Among these assumptions, two are crucial: the individual default probability
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of each clearing member is exogenous and assumed to be independent from other members' default and
the economic environment. The second assumption is the price structure: underlying prices in market
are the values deciding which positions are in-the-money and out-of-the-money. Nahai-Williamson
et al. (2013) assume an initial price equal to zero and then use equivalently price H or price variation
∆H, assuming that ∆H ∼ N(0, σ).

It is unrealistic to assume that clearing members' individual default probabilities are exogenous and
independent. Default probability changes due to two main drivers: �rst, default probability is a�ected
by price movements in the market through many channels (companies' positions, their investments
value, their revenues and sales can be drastically di�erent and so on); second, default probability also
re�ects other members' losses and defaults. On the other hand, it is possible to assume that price
changes are Normally distributed with a variance equal to the estimated market volatility σ. Again,
the problem is that price H is not correlated with anything else, while obviously prices are a�ected by
the whole economic background as well as by defaults.

In this thesis, we will extend the model in Nahai-Williamson et al. (2013) relaxing the two assump-
tions above. Individual default probabilities will be modelled with a Merton mixed binomial model,
as presented in Chapter 5, and prices will become a function of the same underlying factor driving
the Merton mixed binomial model. The new parameters introduced in the extended model will con-
sequently a�ect the surviving members' expected loss function and optimal IM and DF quantities for
CCPs resources.

6.1.2 Underlying factor W

As discussed in Chapter 5, the Merton mixed binomial model uses a common underlying factor W to
de�ne both conditional default probability and, in this case, the market prices. It is not fundamental
to �nd the speci�c nature of this factor: it is open to interpretation, it could be the variation of any
microeconomic or macroeconomic value, index, commodity and so on. What is important is that the
factor W is distributed as a standard Normal, W ∼ N(0, 1), which is very plausible for any single
random variable whose realizations are continuous in time. Hence, the density to the factor W will be:

fW (w) =
1√
2π
e−

1
2
w2
.

As will be seen later, in the extended model the factor W drives both the individual conditional
default probability and the market price, which means both the probability and the price are functions
of W .

6.1.3 Individual conditional default probability p(W )

We will extend the version by Nahai-Williamson et al. (2013) with an adaptation to Merton mixed
binomial model to have dependent default probabilities. The default dependencies in our framework
are created via the common background factor W as speci�ed by Equation (5.24). The correlation
parameter ρ in the Merton model allows dependence between clearing members, whose total assets
value moves in relation to this parameter. Furthermore, dependence is also de�ned through default
correlation ρX , which ignites also a relation through clearing members' default random variables. See
Appendix A for more detail on Merton correlation ρ and default correlation ρX . Recall from Equation
(5.24) in Chapter 5 that:
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p(W ) = P[Xj = 1 |W ] = N

(
N−1(p)−√ρW )

√
1− ρ

)
(6.1)

where p is the unconditional default probability and ρ is the Merton correlation (see Appendix A).
Both unconditional probability p and Merton correlation ρ are the inputs of our extended model, while
in Nahai-Williamson et al. (2013) the exogenous input was the independent default probability p (see
Subsection 4.1.1). Here, Equation (6.1) states the relation between the common underlying factor W
and the conditional default probability p(W ). Also note that E[p(W )] = E[P[Xj = 1 | W ]] = p (see
Equations (5.4) and (5.5)).

(a) With p = 0.05, p = 0.15 and p = 0.25 (b) With ρ = 0.2, ρ = 0.4 and ρ = 0.6

Figure 6.1: Conditional default probability p(w) as function of factor w

Figure 6.1 shows that the individual conditional default probability p(W ) decreases as the underly-
ing factor W realizes in larger values. Hence, the Merton underlying factor W and the new conditional
default probability p(W ) are inversely proportional. Moreover, Figure 6.1a displays an intuitive result:
when the unconditional and exogenous default probability p is larger, then p(W ) will also be larger. On
the other hand, when Merton correlation ρ is larger, i.e. clearing members' asset move more similarly
in the market, the lower unpredictability makes p(W ) decrease.

From now on, we will use the conditional default probability in Equation (6.1) for clearing members
and their expected loss function. Recall that p represents the possibility of one company to default
as if it was alone and completely detached from its environment. The conditional probability p(W ) in
Equation (6.1) contains both the relation between default probability and the economic background,
because it is a function of factor W , but it also contains a link with other clearing members, due to
Merton correlation ρ (see Appendix A for more details).

In our extended model, Nahai-Williamson et al. (2013) individual default probability p is replaced
with Merton conditional probability p(W ). This brings new parameters on the table: there are now
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the common background factor W and the Merton correlation ρ, where the former explains the link
between default probabilities and the environment, while the latter shows how default probabilities are
linked to members' assets conditions.

6.1.4 Market price g(W )

In Nahai-Williamson et al. (2013), prices H are not correlated with the economic environment and they
are Normally distributed H ∼ N(0, σ). To be able to connect prices with the economical background,
we let prices be a function g(W ) of the same environmental factorW that drives the conditional default
probabilities. In other words, compared to prices H in Nahai-Williamson et al. (2013), now prices are
de�ned by H = g(W ). The next step is de�ning how this background factor W a�ects prices g(W ).
We let g(w) be given by:

g(w) = w2 · I{w>0} =

{
w2 if w > 0

0 if w < 0.
(6.2)

Recall that we need a function g(·) that links the background factor W to prices g(W ), in order
to have more realistic prices that move with the economic environment. In the choice of this function
g(·), some conditions must be respected: prices cannot be negative by de�nition, so there cannot be
a realized value w that gives us a realization g(w) smaller than zero (g(w) ≥ 0 should always hold).
Moreover, prices either increase or decrease as the factorW increases, this is again up to interpretation:
it depends on what is identi�ed as the factorW and which type of asset the price models. Our analysis
only wants to study the consequences of dependent prices on the �nal CCPs' �nancial resources, so
we can indistinctly use an increasing or decreasing function. In addition, the function g(·) relating
the common factor to prices should not be symmetrical: prices change with di�erent magnitude when
other factors increase rather than decreasing.

Note that if we set the Merton correlation equal to zero in Equation (6.1), i.e. ρ = 0, and let the
price be the positive linear function h = g(w) = w · I{w>0}, then we are back in the model by Nahai-
Williamson et al. (2013), where the number of defaults N is Binomially distributed with parameters
p, n

2 − 1 and n
2 , i.e. N ∼ Bin(n2 − 1, p) for OTM members and N ∼ Bin(n2 , p) for ITM members.

In this case, Equation (6.1) shows that the unconditional default probability p would be equal to the
conditional one p(W ), p = p(W ). So, the individual default probability would be exogenous and there
would not be any background factor W : it is exactly as modelled in Nahai-Williamson et al. (2013).

The function we chose in our thesis for g(w) in Equation (6.2) is plotted in Figure 6.2:
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Figure 6.2: Price g(w) as function of the background factor w

From Figure 6.2 we see that g(w) behaves like a parabola through the origin [0, 0], when w > 0,
and it is equal to zero otherwise. Note that every other function that is positive, asymmetrical and
strictly increasing or decreasing could have been used in place of g(w) in Equation (6.2). For example,
possible functions could have been both the exponentials g(w) = ew and g(w) = e−w, but also positive
linear functions like g(w) = max(|w|, 0) and g(w) = max(w, 0).

6.1.5 New expected loss function

The surviving members' expected loss function is di�erent: in our extended version of Nahai-Williamson
et al. (2013), the individual default probability p is substituted by conditional default probability p(W ),
while prices H are now a function g(W ) of the background factor W . The next step is proceeding
with the new expected loss function for the single surviving OTM member, to see how the model is
changed. The loss function LOTM for the single OTM members can be now written as a function of
both number of defaults N and factor W , that is:

LOTM = LOTM (N,W )

Next, note that:

E[LOTM (N,W )] = E[E[LOTM (N,W ) |W ]] (6.3)

where the last equation is due to law of iterated expectation. So, we now focus on LOTM (N,W )
and note that:

LOTM (N,W ) =

n
2
−1∑
i=0

LOTM (i,W ) · I{N=i} (6.4)

and Equation (6.4) then implies that
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E[LOTM (N,W ) |W ] = E

n
2
−1∑
i=0

LOTM (i,W ) · I{N=i} |W


=

n
2
−1∑
i=0

E[LOTM (i,W ) · I{N=i} |W ].

(6.5)

The conditional expected value inside the sum can be rewritten as:

E[LOTM (i,W ) · I{N=i} |W ] = E[LOTM (i,W ) |W ] · E[I{N=i} |W ]

= E[LOTM (i,W ) |W ] · P[N = i |W ]
(6.6)

where the �rst equality in Equation (6.6) is due to the fact that W and N are independent condi-
tionally on W . The second equality in Equation (6.6) shows that the expected value of an indicator
function I{A} is equal to the probability of the indicator function event A to happen. Recall that
the probability P[N = i | W ] in Equation (6.6) is the realization of a Binomially distributed random
variable that counts a number i of "successes" with probability p(W ), so:

P[N = i |W ] =

(n
2 − 1

i

)
p(W )i(1− p(W ))

n
2
−1−i. (6.7)

Next, the �rst term in Equation (6.6) can be rewritten as:

E[LOTM (i,W ) |W ] = LOTMi (W ) (6.8)

where LOTMi (w) is given by

LOTMi (w) =



0 if g(w) ≤ y + z

i

n− i
(g(w)− y − z) if y + z < g(w) ≤ y + z +

n− i
i

z

i

n

(
g(w)− y − z − n− i

i
z

)
if y + z +

n− i
i

z < g(w) ≤ y + z +
n− i
i

z +
n

i
k

(z + k + s) if y + z +
n− i
i

z +
n

i
k < g(w).

(6.9)

Equation (6.9) displays the loss function for any surviving OTM member. This is equal to the
loss function displayed by Equation (4.7) describing the same regions in Figure 4.1 in Chapter 4. The
only di�erence is that price realization is not de�ned as h, but as a realization g(w) of Equation (6.2).
Again, as long as default losses are absorbed by defaulter's IM and DF contributions, the loss is equal
to zero. When the defaulter's individual IM and DF contributions are not enough, each surviving
OTM member faces a fraction i

n−i of the extra losses. When default fund is also eroded, CCP starts
using equity (which was given by all clearing members), so extra losses are paid by each surviving
OTM member through a fraction equal to i

n . The, in case the CCP defaults, surviving OTM members
lose their default fund contribution z, their holding in capital k and systemic cost s. For more details
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on these regions, see Subsection 4.1.3. Note that in Equation (6.9) we took the same structure as in
Equation (4.3) for y + z + n−i

i z < g(w) ≤ y + z + n−i
i z + n

i k, in order to use the same structure as
in Nahai-Williamson et al. (2013) and not to lose comparison with their results. However, Equation
(4.3), as well the corresponding region in Equation (6.9), has the same discontinuity problem discussed
at the end of Subsection 4.1.3.

Now, combining Equation (6.5) and Equation (6.6), we get:

E[LOTM (N,W ) |W ] =

n
2
−1∑
i=0

E[LOTM (i,W ) |W ] · P[N = i |W ]

=

n
2
−1∑
i=0

LOTMi (W ) · P[N = i |W ]

(6.10)

and this result with Equation (6.3) stating the law of iterated expectation gives:

E[LOTM (N,W )] = E

n
2
−1∑
i=0

LOTMi (W ) · P[N = i |W ]


=

n
2
−1∑
i=0

E
[
LOTMi (W ) · P[N = i |W ]

]
.

(6.11)

Recall that for any function A(X) of a continuous random variable X with density fX(x) we have
that E[A(X)] =

∫ +∞
−∞ A(x)fX(x)dx, so:

E
[
LOTMi (W ) · P[N = i |W ]

]
=

∫ +∞

−∞
LOTMi (w) · P[N = i | w]fW (w)dw

and thus we have:

E[LOTM (N,W )] =

n
2
−1∑
i=0

∫ +∞

−∞
LOTMi (w) · P[N = i | w]fW (w)dw. (6.12)

Combining Equation (6.7) and Equation (6.12), we get:

E[LOTM (W ; y, z)] =

n
2
−1∑
i=0

∫ +∞

−∞
LOTMi (w) ·

(n
2 − 1

i

)
p(W )i(1− p(W ))

n
2
−1−ifW (w)dw (6.13)

where LOTMi (w) is given by Equation (6.9) and fW (w) is the density of a standard Normal distri-
bution. Note that E[LOTM (N,W )] = E[LOTM (W ; y, z)], where we have emphasized the dependence
on y and z, which will become useful in the optimization. Thus, Equation (6.13) gives the new uncon-
ditional expected loss for the single surviving OTM member in the new model. This is the �rst part
of the new expected loss function that will be minimized to �nd the optimal quantities of IM and DF
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contributions in the next optimizations. The di�erence with Nahai-Williamson et al. (2013) expected
loss function is straightforward: it is not possible to separate the expected losses and the probability
of observing i defaults, because these default probabilities are not independent any more.

We also need to de�ne the unconditional expected loss for any surviving ITM member. By using
the same arguments as above from Equation (6.3) to Equation (6.8), we see that the new expected loss
function for a single ITM survivor is given by:

E[LITM (W ; y, z)] =

n
2∑
i=0

∫ +∞

−∞
LITMi (w) ·

(n
2

i

)
p(W )i(1− p(W ))

n
2
−ifW (w)dw (6.14)

where LITMi (w) is de�ned as:

LITMi (w) =



0 if g(w) ≤ y + z

i

n− i
(g(w)− y − z) if y + z < g(w) ≤ y + z +

n− i
i

z

i

n

(
g(w)− y − z − n− i

i
z

)
if y + z +

n− i
i

z < g(w) ≤ y + z +
n− i
i

z +
n

i
k(

1− a
n
2 − i
n
2

)(
g(w)− y − z − n− i

i
z − n

i
k

)
+ z + k + s if y + z +

n− i
i

z +
n

i
k < g(w).

(6.15)
The composition and structure are identical to the loss function described in Equation (4.12) for

Figure 4.1 in Chapter 4. As stated in Subsection 4.1.4, the only di�erence with OTM members is
what happens in case of CCP's default: ITM members lose all the payments they should have received
from OTM members, but not the total amount, just a fraction considering the liquidation cost a
paid to administrators. Again, note that in Equation (6.14), we wrote E[LITM (W ; y, z)] to emphasize
that the expected loss function can be read as a function of y and z. In Equation (6.9) we took the
same structure as in Equation (4.3) for y + z + n−i

i z < g(w) ≤ y + z + n−i
i z + n

i k, but also here
we notice the discontinuity problem described in Subsection 4.1.3. We repeated the implementations
by Nahai-Williamson et al. (2013) in Section 4.2 and our optimizations in Section 6.2 by replacing
Equation (4.3) with the more intuitive Equation (4.6) and there is not notable numerical di�erence in
the results. However, we use the same expected loss composition as in Nahai-Williamson et al. (2013)
to be able to discuss our results.

The �nal expected loss function for a general surviving member has the same structure as in Nahai-
Williamson et al. (2013). The �nal expected loss to minimize with respect to IM and DF contribution
is:

E[LOTM (W ; y, z)] + E[LITM (W ; y, z)] + (c+ dIM · cc)y + (c+ dDF · cc)z. (6.16)

Again, the minimization problem faced in every optimization will be:

min
y,z
{E[LOTM (W ; y, z)] + E[LITM (W ; y, z)] + (c+ dIM · cc)y + (c+ dDF · cc)z} (6.17)

where:
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E[LOTM (W ; y, z)] =

n
2
−1∑
i=0

∫ +∞

−∞
LOTMi (w) ·

(n
2 − 1

i

)
p(W )i(1− p(W ))

n
2
−1−ifW (w)dw

E[LITM (W ; y, z)] =

n
2∑
i=0

∫ +∞

−∞
LITMi (w) ·

(n
2

i

)
p(W )i(1− p(W ))

n
2
−ifW (w)dw.

The minimization of this new function will lead to the optimal quantities of IM and DF contributions
taking into account dependent individual default probabilities and prices.

6.2 New optimizations and results

This section is dedicated to all the numerical results coming from the new expected loss function
minimizations. In Chapter 4, we replicated the same optimizations by Nahai-Williamson et al. (2013),
now we will repeat the optimizations with the new expected loss function, using the same values for
�xed and changing model parameters.

Variable Value when �xed Variation range when changing

p Unconditional default probability 5% and 25% 1% to 95%
n Number of members 20 -
c Opportunity cost 50 bp 25 to 350 bp
k Equity contribution 0.1% -
a Liquidation cost 10% -
dIM IM Capital charge 0% and 0.16% 0% to 100%
dDF DF Capital charge 0% and 0.16% 0% to 100%
cc Bank cost of holding capital 10% -
s Systemic cost 0 0% to 100%
ρ Merton correlation 20% 10% to 100%

Table 6.1: New summary of variables used in our numerical studies for the �xed and the changing
cases, inspired by Table A1 on page 25 in Nahai-Williamson et al. (2013)

The column "Value when �xed" in Table 6.1 displays the baseline of new optimizations: these are
the default values when they are �xed. Then, the column "Variation range when changing" in Table
6.1 shows the variation range of parameters when they are changing, which are the same intervals used
in Nahai-Williamson et al. (2013). So, the new optimizations work like this: for example, the �rst
minimization is repeated for all the values of unconditional default probability p from 0.01 to 0.95,
keeping all the other parameters �xed as in the �rst column in Table 6.1, and so on. Note that in the
�rst column of Table 6.1 the unconditional default probability p, as well as capital charges dIM and
dDF , has two values. Following Nahai-Williamson et al. (2013), we repeat several optimizations twice
for two di�erent default values of p, p = 5% and p = 25%.

Table 6.1 shows that some parameters are constant: the number of members in the �nancial network
n, the initial equity contribution k, the administration cost a and the cost of banks to hold capital cc.
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Moreover, the Merton mixed binomial model allows for a new parameter: Merton correlation ρ. This
correlation is discussed in the Appendix A and it will be the center of a new optimization displayed in
Subsection 6.2.5.

6.2.1 Varying unconditional default probability p

The �rst optimization studies the optimal IM and DF contributions as functions of the individual
unconditional default probability p. More numerical details on the optimization are shown in the
Appendix C.

(a) Via Equation (4.15) (b) Via Equation (6.17)

Figure 6.3: The optimal IM contributions y and DF contributions z as functions of the unconditional
default probability p

In Figure 6.3a, replicating the optimization by Nahai-Williamson et al. (2013) via Equation (4.15),
when default probability is extremely low, CCP's resources are made completely of DF contributions (if
no one can default, it is the most e�cient way to collect resources), but as soon as default probability
increases, initial margin IM becomes the only source CCP must collect. As stated in Subsection 4.2.1,
Nahai-Williamson et al. (2013) �nd that when the default probability is very high, i.e. it is likely
that someone defaults, there is a higher cost of mutualization, then clearing members prefer to post
initial margin IM, so that their sources will not be eroded in common funds to pay default losses. In
our optimization via Equation (6.17) in Figure 6.3b, note that the optimization has a shift around
p ≈ 0.9, where optimal IM and DF contributions switch values. However, the same result from Nahai-
Williamson et al. (2013) remains valid: the higher the individual unconditional default probability p,
the higher the optimal IM contribution.

To see the di�erence between the optimal quantities of IM and DF contributions in the Merton
mixed binomial framework via Equation (6.17) and the ones found by the minimization in Equation
(4.15), we compute a percentage relative di�erence RF between the IM and DF optimal contributions:
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RFIM =
IMnew − IMnahai

IMnahai
· 100 (6.18)

RFDF =
DFnew −DFnahai

DFnahai
· 100. (6.19)

Figure 6.4: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of the
unconditional default probability p

The optimization in Merton framework in Figure 6.3b and the optimal contributions relative dif-
ference in Figure 6.4 show two main results:

1. The total amount of �nancial resources, i.e. the sum of IM and DF optimal contributions, is
generally higher: Figure 6.3a inspired by Nahai-Williamson et al. (2013) displays a maximum
contribution of ≈ 0.5, while the new sum of total resources in Figure 6.3b almost reaches 1, i.e.
the total value of the cleared portfolio;

2. Figure 6.4 displays the relative di�erences RFIM and RFDF as stated in Equations (6.18) and
(6.19). The optimal DF contribution relative di�erence RFDF in Figure 6.4 is very large and
increasing. For smaller values of unconditional default probabilities, i.e. p ∈ [0, 30%], which are
the most observed in reality, Figure (6.4) shows that the new optimal DF contribution is almost
1500% bigger, that is more than �fteen times bigger than the one found via Equation (4.15) in
Figure 6.3a. For larger values of p, the di�erence gets even larger. Moreover, the balance between
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IM and DF contributions is di�erent: in Figure 6.3b DF contributions are more persistent (up to
p = 90%). Note that in our implemented version of the optimization by Nahai-Williamson et al.
(2013) in Figure 6.3a, the optimal IM and DF contributions are added on top of each other (for
p ≈ 30%, the optimal DF contribution is ≈ 0.06).

Hence, in our framework with dependent default probabilities and prices, when the unconditional
default probability p increases, the CCP needs more resources than how it was prevented by Nahai-
Williamson et al. (2013). Furthermore, central counterparties need to relate more on default fund
than initial margins, due to its loss-absorption capacity. However, for extreme default probabilities,
p > 90%, initial margin remains the best source, because cost of mutualization is too high to use a
common fund.

(a) p ∈ [0.01, 0.95] (b) p ∈ [0.01, 0.30]

Figure 6.5: The Nahai-Williamson et al. (2013) expected loss via Equation (4.14) and the expected
loss via Equation (6.16) as functions of the unconditional default probability p in di�erent regions

In Figure 6.5 the IM and DF contributions are �xed as the average values of the optimal quantities
coming from optimization in Figure 6.3b via Equation (6.17). Then, we compute the values of the
surviving member's expected loss function both in Nahai-Williamson et al. (2013) case in Equation
(4.14) and in our case in Equation (6.16). Figure 6.5 shows that, while Nahai-Williamson et al. (2013)
function in Equation (4.14) slightly increases, the new expected loss function in Equation (6.16) has
a much more steep increase: our expected loss function will in general be much higher and this will
be true for all our optimizations. Although it is not relevant up to the IM and DF optimal quantities
that minimize the expected loss function, we believe that it is worth to mention that the expected
loss function in our Merton-extended model is even 22% and 55% larger than the expected loss value
in Nahai-Williamson et al. (2013): in Figure 6.5b with p ∈ [0.01, 0.30], ≈ 0.011 and ≈ 0.014 against
≈ 0.009. As soon as we allow for dependence between default probabilities and assets prices, the
expected loss function for surviving clearing members increases: this is the reason behind our results.
If the expected loss function is higher, then we expect higher optimal quantities for both IM and DF
contributions as well as more default fund to cover wider losses.
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6.2.2 Varying opportunity cost c

The second optimization studies the optimal IM and DF contributions as functions of the opportunity
cost of collateral c (see Subsection 4.1.1). Further details on the optimization are displayed in the
Appendix C.

(a) Via Equation (4.15) (b) Via Equation (6.17)

Figure 6.6: The optimal IM contributions y and DF contributions z as functions of the opportunity
cost c, with p = 5%

Figure 6.6a replicating the optimization by Nahai-Williamson et al. (2013) via Equation (4.15)
shows that the optimal amount of total resources decreases, as the opportunity cost c increases, i.e.
collateral becomes more expensive (see Subsection 4.2.2). In the minimization via Equation (6.17) in
the Merton framework, Figure 6.6b displays the same result: when the opportunity cost c increases,
collateral (both IM and DF contributions) becomes more costly and thereby decreases. In both cases,
there is always an amount of optimal DF contribution, even when collateral is extremely costly, because
of default fund's property of mutualization. However, our optimal quantities in Figure 6.6b are larger:
optimal DF contribution has a maximum of ≈ 0.13, instead of ≈ 0.045 in Figure 6.6a.
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Figure 6.7: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of the
opportunity cost c, with p = 5%

Figure 6.7 shows the relative di�erences for the optimal quantities in Figure 6.6 as stated in Equa-
tions (6.18) and (6.19) as functions of the opportunity cost c. Note that the optimal quantities of
IM contributions in the extended model in Figure 6.6b are almost equal to zero, so relative di�erence
RFIM in Equation (6.18) gives a standard value of ≈ −100% (see Appendix B). On the contrary, the
relative di�erence RFDF in Figure 6.7 has a positive and decreasing path, which means that the new
DF optimal quantities in Figure 6.6b come closer and closer to the ones found by replicating Nahai-
Williamson et al. (2013) in Figure 6.6a. However, Figure 6.7 shows that in our extended model optimal
DF contributions are often 200%, 150% and 100% larger than in Nahai-Williamson et al. (2013) model.
The optimal quantities of DF contribution CCPs need to minimize surviving members' expected loss
are larger than the forecast made by Nahai-Williamson et al. (2013).

Recall that every optimization in Nahai-Williamson et al. (2013) is repeated for two independent
default probabilities, p = 5% and p = 25%, so in the extended model we will repeat the minimizations
for the two di�erent values p = 5% and p = 25%. For brevity, we will not report the optimization
results for the cases with p = 25%: we already know from Subsections 4.2.1, 4.2.2 and 6.2.1 that
increasing the individual unconditional default probability p has the only e�ect of increasing the need
for IM contributions. For example, in this case, repeating the optimization in Figure 6.6b via Equation
(6.17) we obtain optimal IM and DF contributions with the same path, but with slightly larger IM
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contributions.

Figure 6.8: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of the
opportunity cost c, with p = 25%

Figure 6.8 shows the percentage relative di�erences between the optimal IM and DF quantities
computed by Equation (4.15) as Nahai-Williamson et al. (2013) and the corresponding optimal quan-
tities in the extended Merton mixed binomial model with p = 25%. The optimal IM contributions are
still too close to zero to be displayed by RFIM in Equation (6.18) in Figure 6.8. However, the optimal
DF quantities in the Merton framework are larger than the original ones displayed in Figure 4.4 in
Chapter 4: in our case, optimal DF contributions gets 300%, 200% and 250% larger than the quantities
found replicating Nahai-Williamson et al. (2013) in Subsection 4.2.2. When Merton framework allows
for dependencies between default probabilities and asset prices, default fund's ability to mutualize and
share the losses becomes crucial and more e�cient.

6.2.3 Varying capital charges dIM and dDF

In this subsection, we display the third optimization that studies the optimal IM and DF contributions
as functions of the initial margin and default fund capital charges dIM and dDF (see Subsection 4.1.1).
More details about the optimization are explained in the Appendix C.
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(a) Via Equation (4.15) (b) Via Equation (6.17)

Figure 6.9: The optimal IM contributions y and DF contributions z as functions of the total capital
charge dIM + dDF , with p = 5%

Figure 6.9a displays the optimization via Equation (4.15) replicating Nahai-Williamson et al. (2013)
to see how optimal IM and DF contributions change when the total capital charge on collateral, i.e.
dIM +dDF , changes, with p = 5%. In Figure 6.9a the optimal quantities decrease as collateral becomes
more expensive. However, there is still a part of initial margin up to dIM + dDF ≈ 0.2 and the
maximum value of total resources is ≈ 0.16. In the extended model with Merton mixed binomial
model, Figure 6.9b displays the same optimization but via Equation (6.17). Figure 6.9b shows that
also in our extended model optimal quantities decrease as collateral becomes more costly. Nevertheless,
the maximum value of total resources is ≈ 0.19 and Figure B.1 in Appendix B shows that optimal DF
contributions are most of the time 200%/150% bigger than the ones pictured in Figure 6.9a. The same
optimization in Figure 6.9b is repeated for the case p = 25%: there is just a slight increase in optimal
IM contributions.

Following the same structure in Nahai-Williamson et al. (2013) and in Subsection 4.2.3, we proceed
with an optimization that studies the optimal IM and DF contributions as functions of the initial
margin capital charges dIM , �xing DF capital charge to dDF = 0 and dDF = 0.16%.
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(a) With dDF = 0 (b) With dDF = 0.16%

Figure 6.10: The optimal IM contributions y and DF contributions z via Equation (6.17) as functions
of the IM capital charge dIM , with p = 5%

Figure 6.10 shows our implementation via Equation (4.15) of the same optimization via Equation
(4.15) in Figure 4.6, which is the same as in Figures 10a and 10b on page 14 in Nahai-Williamson
et al. (2013). In both cases for dDF = 0 and dDF = 0.16%, the optimal resources were mainly made
of a constant optimal DF contribution, except for a slight portion of initial margin when dIM is close
to zero. In the extended model with dependencies between default probabilities and prices, Figure
6.10 shows the same optimization, but via Equation (6.17). As soon as IM capital charge increases,
clearing members shift to the cheaper form of collateral, DF contributions. In the case with dDF = 0,
Figure 6.10a shows that IM contributions are almost equal to zero, however the constant optimal DF
contribution is 20% higher than the one in Figure 4.6a in Subsection 4.2.3 (≈ 0.16 against ≈ 0.19, see
Figure B.2 in Appendix B for more details on RFDF ). In our more realistic environment with Merton
mixed binomial model, the expected loss function is larger, and it needs a wider amount of default
fund to be able to cover default losses. The same optimization is repeated in our extended model via
Equation (6.17) for the case dDF = 0.16% and p = 5%, so with an increment in DF capital charge.
Figure 6.10b shows that IM contributions are always avoided because they are more expensive, but the
constant optimal DF contribution is now lower, i.e. ≈ 0.17, due to the higher cost of DF. Nevertheless,
the optimal DF contribution in Figure 6.10b is still 25%/30% higher than the one found in Figure 4.6a
in Subsection 4.2.3 via Equation (4.15) (see Figure B.3 in Appendix B for more details).

Contrary to above, the next optimization studies the optimal IM and DF contributions as functions
of the default fund capital charges dDF , �xing IM capital charge to dIM = 0.

59



(a) Via Equation (4.15) (b) Via Equation (6.17)

Figure 6.11: The optimal IM contributions y and DF contributions z as functions of the DF capital
charge dDF , with dIM = 0 and p = 5%

Figure 6.11a shows the results from the optimization via Equation (4.15) replicating the one by
Nahai-Williamson et al. (2013) in Figure 11a on page 14 in their paper. Figure 6.11a displays that
when default fund becomes more expensive, IM contributions increase, but DF contributions never
disappear. Even with the highest cost dDF = 90%, DF contributions are still present in the balance
of sources, due to its e�ciency. Figure 6.11b describes the same optimization in our extended Merton
framework via Equation (6.17). Figure 6.11b shows that DF contributions decrease when default fund
becomes more costly. However, even if the cost dDF increases, the majority of �nancial resources is
made by DF contribution, which play a crucial role in the �nal balance for CCPs. When the default
fund capital charge is extreme, dDF ≈ 90%, then IM contributions start increasing again even in our
Figure 6.11b, but DF contributions are always higher. The optimal DF contributions in our extended
model in Figure 6.11b are even 600%, 700% and 800% bigger than the ones found in the replication of
Nahai-Williamson et al. (2013) via Equation (4.15) (see Figure B.4 in Appendix B for more details).

6.2.4 Varying systemic cost s

In this subsection, we display another optimization that studies the optimal IM and DF contributions
as functions of the systemic cost s (see Subsection 4.1.1), with p = 5%. Appendix C contains more
details on the optimization process.
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(a) Via Equation (4.15) (b) Via Equation (6.17)

Figure 6.12: The optimal IM contributions y and DF contributions z as functions of the systemic cost
s, p = 5%

Figure 6.12a shows the results from the optimization via Equation (4.15) replicating the one by
Nahai-Williamson et al. (2013) in Figure 13a on page 15 in their paper. Figure 6.12a displays a constant
optimal DF contribution and a decreasing IM contribution. Recall that the systemic cost s happens
only in case of CCP's default, so clearing members prefer default fund because it can procrastinate
CCP's default more than the initial margin can do. The same optimization is repeated in our Merton-
extended model via Equation (6.17). In Figure 6.12b the balance between optimal �nancial resources is
di�erent: optimal IM contributions are very close to zero, while the optimal DF contributions increase
when the systemic cost s gets larger. When a post-default cost like s increases, clearing members
need to retard CCP's default and DF contributions are the most e�cient way to absorb losses. This
behaviour is observed also in the optimization in Figure 6.12a via Equation (4.15), however our optimal
DF contributions in Figure 6.12b are 60%, 65% and even 70% bigger than the ones found in Figure
6.12a (see Figure B.5 in Appendix B for more details).

6.2.5 Varying Merton correlation ρ

Our extended model introducing dependencies among default probabilities and prices allows us to
perform an optimization that is not present either in Nahai-Williamson et al. (2013) or in our replication
of their model in Chapter 4. The Merton framework introduces a new parameter via Equation (5.14):
the Merton correlation ρ. In Appendix A we elaborate more on the role of ρ. Our last optimization
presented in Figure 6.13 studies the optimal IM and DF contributions as functions of the Merton
correlation ρ (see Section 5.3), with p = 5%.
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Figure 6.13: The optimal IM contributions y and DF contributions z via Equation (6.17) as functions
of the Merton correlation ρ, with p = 5%

Figure 6.13 displays the results from the optimization in our Merton framework via Equation (6.17).
Recall that Merton correlation ρ describes how much total assets values of clearing members are related
to each other and how much they move together on the markets (see Appendix A for more details). In
the extreme situation where ρ = 0, clearing members' assets values are completely detached and every
clearing member is independent from each other. Substituting ρ = 0 in Equation (6.1), the conditional
default probability p(W ) is equal to the exogenous unconditional probability p. In other words, if
ρ = 0 in the Merton model, we are back in a standard binomial model with independent defaults
just as in the Nahai-Williamson et al. (2013) model. On the other side, if the Merton correlation
realized in a theoretical situation like ρ = 1, then all clearing members' assets would be the same and
move together. In this case, the unpredictability of assets returns is extremely low and also clearing
members' default probability is the same and very low (recall that p = 5%), which is why Figure 6.13
displays optimal sources that are almost equal to zero in this case. However, for more plausible value
of Merton correlation ρ, i.e. ρ ∈ [0.2, 0.6], optimal DF contributions decrease as Merton correlation
becomes higher. Recall that from Equation (6.1) the conditional default probability p(W ) decreases
as Merton correlation ρ increases. Moreover, if p(W ) decreases, also the conditional probability of i
defaults, i.e. P[N = i | W ], in Equation (6.7) is negatively a�ected. The negative impact of Merton
correlation ρ on both conditional default probability p(W ) and probability P[N = i |W ] is the reason
behind the negative relation between ρ and the optimal contributions in Figure 6.13. As soon as
Merton correlation ρ increases, both p(W ) and P[N = i | W ] decrease, clearing members experience

62



less defaults and need less DF contributions.

Figure 6.14: The Nahai-Williamson et al. (2013) expected loss via Equation (4.14) and the expected
loss via Equation (6.16) as functions of the Merton correlation ρ, with p = 5%

In Figure 6.14 the IM and DF contributions are �xed as the average values of the optimal quantities
coming from optimization in Figure 6.13 via Equation (6.17). Then, we compute the values of the
surviving member's expected loss function both in Nahai-Williamson et al. (2013) case in Equation
(4.14) and in our case in Equation (6.16). Figure 6.14 shows that, while Nahai-Williamson et al.
(2013) function via Equation (4.14) is constant (there is no ρ in their model), the new expected loss
function via Equation (6.16) has a decreasing pattern. For smaller values of Merton correlation ρ, i.e.
ρ ∈ [0, 0.27], Figure 6.14 shows that the expected loss function in our Merton framework is higher than
the Nahai-Williamson et al. (2013) one. So, if we take in consideration the correlation between clearing
members' total assets, CCPs need a higher amount of �nancial resources when this correlation is low,
i.e. there is more unpredictability on the market. On the other hand, for larger values of Merton
correlation ρ, i.e. ρ ∈ [0.27, 1], Figure 6.14 shows that the expected loss function in the extended
model via Equation (6.16) is lower than the one observed via Equation (4.14). When ρ is larger, both
individual conditional default probability p(W ) and P[N = i |W ] are lower, which results in the only
case in our extended model where our expected loss function is lower than the one in Nahai-Williamson
et al. (2013).
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Chapter 7

Conclusion

Nahai-Williamson et al. (2013) develop a model to �nd the optimal quantities of default fund and
initial margin contributions. This is done by �nding an expected loss function for surviving CCP's
members, which is minimized with respect to members' IM and DF contributions. Nahai-Williamson
et al. (2013) assume that clearing members' default probabilities are exogenous and independent and
that prices are not related to the background economic environment. We relax these assumptions
with the help of the Merton mixed binomial model: the individual default probabilities and prices
are related via the common background factor W . Once this framework of more realistic probabilities
and prices is de�ned, we derive the new expected loss function for surviving clearing members and we
minimize it to �nd the new optimal quantities of IM and DF contributions.

Our results are presented in Section 6.2. Recall that we introduce dependencies between default
probabilities and prices to investigate if there is a di�erence in the optimal values of initial margin
and default fund contributions. Our results show that there are large di�erences between the optimal
�nancial resources in our Merton-extended model and the ones coming from our replication of Nahai-
Williamson et al. (2013) in Chapter 4.

In the optimizations of the CCP's Merton mixed binomial model, the numerical results for optimal
quantities of both IM and DF contributions are di�erent compared to the ones in the model by Nahai-
Williamson et al. (2013). Recall that these quantities must be read as percentages of portfolio values
asked to clearing members as collateral, so even a slight change can be a decisive amount of money.
Moreover, in our Merton-extended model, the value of total resources (IM and DF contributions
considered together) is always higher than in Nahai-Williamson et al. (2013) optimizations in Chapter
4.

The optimal default fund contributions are generally higher in the extended model compared to the
model in Nahai-Williamson et al. (2013). Once we allow for dependencies among default probabilities
and asset prices, we show that the optimal DF contributions are sometimes 200%, 300% or even 1500%
larger than the ones identi�ed in Chapter 4 through Nahai-Williamson et al. (2013). Moreover, in the
extended version through Merton mixed binomial model, results prove that the balance of CCP's
�nancial resources tends more to the default fund DF rather than initial margin IM. For example,
our optimizations in Figures 6.3b and 6.11b show that even when the individual default probability
or DF capital charge increase, IM always represents a lower part of the total CCP's resources. On
the contrary, the optimizations in Figures 6.10 and 6.12b in the extended CCP's Merton model show
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that, whenever DF contributions are more persistent, IM contributions almost disappear and default
fund becomes the only reliable source in the CCP's balance, due to its sharing mechanism of losses.
In Nahai-Williamson et al. (2013), the initial margin is preferable because clearing members at the
beginning do not know who will default and every one has the same independent default probability.
In a more realistic model where we allow for dependencies between default probabilities and prices,
defaults are not detached from the rest of the world and they are hardly covered only by defaulter's
initial margin. In the extended version where clearing members are related thanks to a Merton mixed
binomial model, the presence of Merton correlation ρ among members' assets and default correlation
ρX (see Appendix A) makes defaults more likely, which is the reason why the loss-absorption of default
fund is more e�cient.

In conclusion, as soon as we allow for a common background factor that makes default probabilities
and prices related with each other via the economic environment, then the optimal quantity of total
resources (IM and DF contributions together) will be generally higher compared to Nahai-Williamson
et al. (2013) model. Moreover, the balance of CCP's �nancial resources will be dominated by the
default fund form of collateral. The model developed by Nahai-Williamson et al. (2013) is probably too
prudent: in a more realistic framework, CCPs need larger and more unbalanced amounts of collateral.
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Appendix A

Clearing members' correlation

A.1 Default correlation ρX in mixed binomial models

Recall the de�nition of the correlation Corr(X,Y ) between two random variables X and Y :

Corr(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
. (A.1)

Correlation describes the dependence between two random variables. As stated in Subsection
5.2.1, consider a portfolio/network with m obligors, where each obligor can default up to time T . Let
Xj be a random variable such that Xj = 1 if obligor j defaults up to time T , otherwise Xj = 0.
According to Frey and McNeil (2001) and Frey and McNeil (2003), in all mixed binomial models as
the one in Section 5.2, it is possible to de�ne a default correlation which describes how members
default indicator functions Xj1 and Xj2 are related. In the mixed binomial model, we are interested in
ρX = Corr(Xj1 , Xj2), which would be the correlation between two individual default indicators. From
Equations (5.7) and (5.8), we know that:

Var(Xj) = p(1− p)
Cov(Xj1 , Xj2) = Var(p(W ))

where E[p(W )] = p as in Equation (5.5). Thus, the correlation in a mixed binomial model is given
by:

ρX =
Cov(Xj1 , Xj2)√

Var(Xj1)
√

Var(Xj2)
=

E[p(W )2]− p2

p(1− p)
=

Var(p(W ))

p(1− p)
(A.2)

where p is the unconditional default probability of each member. So, the correlation in (A.2)
describes the relation between the random variables representing the default status for each clearing
member.

A.2 Merton correlation ρ

Following Herbertsson (2018), the Merton model introduces a new variable, the correlation ρ in Equa-
tion (5.14), which weights how much of total assets value depends on the common economic environ-
ment Wt,0 and how much on the individual part Wt,j (see Subsection 5.3.1). The clearing members'
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assets returns, correlated through Equation (5.14), imply that Corr(Bt,j1 , Bt,j2) = ρ. To see this, note
that:

Cov(Bt,j1 , Bt,j2) = E[Bt,j1 , Bt,j2 ]− E[Bt,j1 ]E[Bt,j2 ]

= E[(
√
ρWt,0 +

√
1− ρWt,j1)(

√
ρWt,0 +

√
1− ρWt,j2 ]

= E[ρW 2
t,0] +

√
ρ
√

1− ρE[Wt,0Wt,j1 ] +
√
ρ
√

1− ρE[Wt,0Wt,j2 ] + (1− ρ)E[Wt,j1Wt,j2 ]

= ρE[W 2
t,0]

= ρt

(A.3)

where the �rst and the second equalities in (A.3) are due to the fact that the expected value of
a Brownian motion is zero. In the third equality in (A.3), the other elements disappear because the
standard Brownian motions Wt,0, Wt,j1 and Wt,j2 are independent. Then the last equality in (A.3)
follows because the second moment of a Brownian motion is equal to t, E[W 2

t ] = t. Furthermore:

Var(Bt,j) = Var(
√
ρWt,0 +

√
1− ρWt,j)

= ρVar(Wt,0) + (1− ρ)Var(Wt,j)

= ρt+ (1− ρ)t

= t.

(A.4)

Hence:

Corr(Bt,j1 , Bt,j2) =
Cov(Bt,j1 , Bt,j2)√

Var(Bt,j1)
√

Var(Bt,j2)
=

ρt√
t
√
t

= ρ. (A.5)

So, the Merton correlation ρ represents the mutual dependence among obligors assets returns
created by the macroeconomic latent common variable Wt,0. The higher the Merton correlation ρ, the
more members are correlated to each other (technically, their total assets values move altogether).

The Merton correlation ρ describes the dependence between the total assets values among agents.
Recall from Subsection 5.1.2 that in a Merton framework default happens if and only if VT,j < D, so
the zero-one random variable Xj describing the default of obligor j before time T can be written as:

Xj = I{VT,j<D}.

Since Xj also depends on total assets value VT,j , we know that Xj1 and Xj2 are dependent when-
ever Cov(Bt,j1 , Bt,j2) in Equation (A.3) is equal to ρt with ρ 6= 0. Brie�y, if ρ 6= 0, it holds that
Cov(Xj1 , Xj2) 6= 0, while if ρ = 0 then Cov(Xj1 , Xj2) 6= 0, that is:

Cov(Xj1 , Xj2) = 0 if ρ = 0

Cov(Xj1 , Xj2) 6= 0 if ρ 6= 0
(A.6)

where Cov(Xj1 , Xj2) is a measure of default dependence between the zero-one random variables Xj .
These are two di�erent concept of correlation. The Merton correlation ρ and Cov(Bt,j1 , Bt,j2) describe
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the dependence between clearing members' total assets values (the higher this correlation, the more
total assets values move in a similar path), while Cov(Xj1 , Xj2) describes the correlation between the
random variables Xj1 and Xj2 representing the default status for members j1 and j2. The latter is the
same correlation ρX described in Equation (A.2), a default dependence between all network members.
Equation (A.6) shows that default correlation ρX is a�ected by Merton correlation ρ via the quantity
E[p(W )2].

The Merton correlation ρ is a variable which is not present in the work by Nahai-Williamson et al.
(2013). This new correlation parameter ρ allows us to perform the optimization displayed in Subsection
6.2.5 to study the optimal IM and DF as functions of correlation ρ. Note that if either correlation ρ
or default correlation ρX are equal to zero, i.e. ρ = 0 or ρX = 0, the conditions in Section 6.1 that
allow for dependencies between default probabilities and asset prices are not valid any more and we
are back to a standard binomial model just as in Nahai-Williamson et al. (2013).
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Appendix B

Relative di�erences RFIM and RFDF

The percentage relative di�erence between the optimal IM and DF contributions in our replication of
the Nahai-Williamson et al. (2013) model (see Chapter 4) and our optimal quantities in the Merton-
extended version (see Chapter 6) is displayed in Section 6.2 only for the optimizations with varying
unconditional default probability p (see Figure 6.4) and with varying opportunity cost c (see Figures 6.7
and 6.8). In this appendix, we display all the other relative di�erences between the optimal quantities
from Chapter 4 through Nahai-Williamson et al. (2013) and the ones from our optimizations in the
extended version from Chapter 6. Recall from Equations (6.18) and (6.19) that the relative di�erences
RFIM and RFDF are given by:

RFIM =
IMnew − IMnahai

IMnahai
· 100

RFDF =
DFnew −DFnahai

DFnahai
· 100.

Note that in the Merton-extended model in Chapter 6 the optimal quantities of IM contributions
are generally almost equal to zero. Then, the value IMnew in Equation (6.18) is so close to zero
that Equation (6.18) gives a standard value approximately equal to −100%. Our results in Chapter 6
state that the optimal total resources (IM and DF together) are higher than the one found by Nahai-
Williamson et al. (2013) and that also the optimal DF contributions are larger. However, we never
convey conclusions on optimal IM contributions alone, which are actually bigger in Nahai-Williamson
et al. (2013) implementation.
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Figure B.1: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of total
capital charge dIM + dDF , with p = 5%

Figure B.1 shows the relative di�erences RFIM and RFDF between the optimal IM and DF con-
tributions found by replicating Nahai-Williamson et al. (2013) optimization via Equation (4.15) with
varying total capital charge dIM +dDF and the optimal quantities found repeating the same optimiza-
tion in the Merton-extended model via Equation (6.17) (see Subsection 6.2.3).

Figure B.2: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of IM
capital charge dIM , with dDF = 0 and p = 5%

Figure B.2 displays the relative di�erences RFIM and RFDF between the optimal IM and DF
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contributions found by replicating Nahai-Williamson et al. (2013) optimization via Equation (4.15)
with varying IM capital charge dIM and the optimal quantities found repeating the same optimization
in the Merton-extended model via Equation (6.17) (see Subsection 6.2.3). The optimal quantities
replicating Nahai-Williamson et al. (2013) in Figure 4.6a display almost a constant optimal value for
the DF contribution, except for very small values of dIM . For the interval dIM ∈ [0, 0.01], we observe
an optimal IM contribution and a higher DF contribution. This is the reason for the discontinuity in
Figure B.2: in our extended version, the optimal DF contributions are up to 100% and 50% larger
than the ones found in Figure 4.6a for dIM ∈ [0, 0.01].

Figure B.3: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of IM
capital charge dIM , with dDF = 0.16% and p = 5%

Figure B.3 shows the relative di�erences RFIM and RFDF between the optimal IM and DF con-
tributions found by replicating Nahai-Williamson et al. (2013) optimization via Equation (4.15) with
varying IM capital charge dIM and the optimal quantities found repeating the same optimization in
the Merton-extended model via Equation (6.17) (see Subsection 6.2.3). The optimal quantities repli-
cating Nahai-Williamson et al. (2013) in Figure 4.6b display almost a constant optimal value for the
DF contribution, except for very small values of dIM . For the interval dIM ∈ [0, 0.251], we observe
an optimal IM contribution and a higher DF contribution. As in Figure B.3, this is the reason for
the discontinuity in Figure B.3: in our extended version, the optimal DF contributions are even 300%,
250% and 200% larger than the ones found in Figure 4.6b for dIM ∈ [0, 0.025].

71



Figure B.4: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of IM
capital charge dDF , with dIM = 0 and p = 5%

Figure B.4 shows the relative di�erences RFIM and RFDF between the optimal IM and DF con-
tributions found by replicating Nahai-Williamson et al. (2013) optimization via Equation (4.15) with
varying DF capital charge dDF and the optimal quantities found repeating the same optimization in
the Merton-extended model via Equation (6.17) (see Subsection 6.2.3). Note that in Figure B.4 there
is a slight increase in the optimal IM relative di�erence RFIM for extremely high values of dDF . This
is coherent with our optimizations in Figure 6.11b, where optimal IM contributions start to increase
for the largest values of dDF .
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Figure B.5: The IM relative di�erence RFIM and the DF relative di�erence RFDF as functions of
systemic cost s, with p = 5%

Figure B.5 shows the relative di�erences RFIM and RFDF between the optimal IM and DF con-
tributions found by replicating Nahai-Williamson et al. (2013) optimization via Equation (4.15) with
varying systemic cost s and the optimal quantities found repeating the same optimization in the
Merton-extended model via Equation (6.17) (see Subsection 6.2.4).
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Appendix C

Numerical optimization

The results displayed in Chapter 6 come from a series of optimizations. As described in Table 6.1,
in each optimization one parameter is �oating while all the others are �xed. Recall the optimization
problem given by Equation (6.17), that is:

min
y,z
{E[LOTM (W ; y, z)] + E[LITM (W ; y, z)] + (c+ dIM · cc)y + (c+ dDF · cc)z}.

The optimizations are implemented using the software MATLAB®.

Figure C.1: Expected loss function in Equation (6.16) with parameters �xed as in the last column of
Table 6.1 and opportunity cost c = 0.025

Figure C.1 plots the surface of the expected loss function in the extended version of the Nahai-
Williamson et al. (2013) model adapted to a Merton framework as given in Equation (6.16) with
opportunity cost c = 0.025 and all the other parameters �xed as displayed in the �rst column of
Table 6.1. So, this is the �rst expected loss function that we minimize for the optimization results in
Subsection 6.2.2 in Figure 6.6b. Figure C.1 shows that this new expected loss function is smooth and
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has a global minimum, which is clear from Figure C.1. The expected loss function has this smooth
behaviour for each value of its parameters: so when we change opportunity cost c, for example, the
function can shift up, but it still has a global minimum.

Optimizations are usually done with the command fmincon, which uses the Levenberg�Marquardt
algorithm. However, when we minimize the expected loss function in Equation (6.16) in Section 6.2
with fmincon, the results are not regular, while minima for di�erent parameters should be smooth.

(a) With fmincon (b) With patternsearch

Figure C.2: Di�erent results for the same optimization in Merton-extended version in Subsection 6.2.2
using command fmincon and patternsearch

Figure C.2a shows the same optimization results as in Subsection 6.2.2, but using the command
fmincon. We cannot accept that irregular behaviour with jumps, because from Figure C.1 we know
that both the function and the series of minima are smooth. The irregular behaviour in Figure C.2a
is mainly due to numerical issues inside the command: the expected loss function is very complex
and requires a lot of iterations. Hence, we used a di�erent optimization routine in MATLAB®, called
patternsearch, to solve Equation (6.16). The command patternsearch provides a minimization
algorithm with more iterations and precision: Figure C.2b shows the right results for this minimization.

However, it would not be possible to compare our results with our implementations of Nahai-
Williamson et al. (2013) if the authors used the classic Levenberg�Marquardt algorithm. Figure C.3
shows that repeating Nahai-Williamson et al. (2013) optimizations with the new command patternsearch
brings to exactly the same results.
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(a) With fmincon (b) With patternsearch

Figure C.3: Our implemented versions of Nahai-Williamson et al. (2013) optimization in Subsection
4.2.1 using commands fmincon and patternsearch

Figure C.3 shows that the results are exactly the same in the implemented Nahai-Williamson et al.
(2013) using both commands fmincon and patternsearch. Thus, the comparison between our results
and Nahai-Williamson et al. (2013) remains valid.
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