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Abstract 

 Cerebrospinal fluid (CSF) biomarkers of neurodegenerative 

diseases have a wide scope of applications in diagnostics, prognosis 

assessment, disease staging, treatment evaluation and more. In this PhD 

project we aimed to expand the understanding of the properties of 

known CSF biomarkers of Alzheimer’s disease (AD) and other 

neurodegenerative diseases, including the most prevalent dementia 

disorders. 

 In study I, we explored CSF concentrations of three hallmark 

biomarkers of AD (amyloid β 1-42 [Aβ1-42], total tau [T-tau] and 

phosphorylated tau [P-tau]) in samples collected in clinical routine from 

5676 patients. We found that the most clear-cut AD-like biomarker 

pattern was found in patients diagnosed with AD, but that large 

proportions of patients with other dementia disorders also had an AD-

like profile. However, this was less often seen in the frontotemporal 

dementia (FTD) group. 

 In study II, we studied CSF concentrations of neurofilament light 

(NfL), a biomarker of general neurodegeneration, in 3356 patients with 

different dementia diagnoses. We found that CSF NfL is especially high 

in dementias with vascular engagement, but also in frontotemporal 

dementia. We also found that high CSF NfL concentrations are linked to 

short survival, which supports the notion that high CSF NfL indicates 

more aggressive disease processes. 



 In study III, the biomarkers T-tau and P-tau were evaluated as 

biomarkers of Creutzfeldt-Jakob disease (CJD), a rare rapid 

neurodegenerative disease. We could conclude that the combination of 

increased T-tau levels and increased T-tau/P-tau ratios in patients with 

CJD has a very high specificity against important differential diagnoses to 

CJD. We further concluded that CJD patients exhibit rising T-tau 

concentrations as the disease progresses.  

 In study IV, we developed a new strategy for analyzing data 

output from explorative mass spectrometry. We used a clustering 

algorithm to allow for higher efficiency and were able to prove the 

validity of this concept by identifying and validating a new biomarker of 

AD, a 16 amino acids long peptide from the protein pleiotrophin 

(PTN151-166). We concluded that quantification-driven proteomics aided 

by clustering is a viable way of hypothesis generation in biomarker 

discovery studies. We further concluded that PTN151-166 is a promising 

AD biomarker candidate that our data indicates to be AD specific and 

able to discriminate AD from other dementia pathologies at an early 

stage of disease. 

 In conclusion, the results from the studies in this thesis 

demonstrate the diagnostic, prognostic and investigative properties of 

CSF biomarkers. 
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Populärvetenskaplig 
sammanfattning 

Demenssjukdomar är vanliga och är på väg att bli ännu mer 

vanliga. Detta beror främst på att sociala, ekomomiska och medicinska 

framsteg har gjort att vi blir allt äldre. Denna utveckling är naturligtvis 

glädjande, men baksidan är att åldersrelaterade sjukdomar, såsom 

demenssjukdomar, blir vanligare. Stora resurser har lagts på att utveckla 

läkemedel mot demenssjukdomar under de senaste decennierna, men 

besvikelserna har varit många. Det finns ännu ingen bot eller effektiv 

behandling mot någon demenssjukdom. Studierna i denna avhandling är 

inriktade på att undersöka så kallade biomarkörer för demenssjukdomar. 

Biomarkörer är substanser eller egenskaper hos en individ som indikerar 

förekomst av ett tillstånd eller en sjukdom. Biomarkörer kan t.ex. 

användas i den kliniska vardagen för att avgöra om någon har en viss 

sjukdom, eller i en läkemedelsstudie för att avgöra om en nyutvecklad 

medicin har effekt på en sjukdom. Syftet med studierna i denna 

avhandling har varit att öka kunskapen om biomarkörer för 

demenssjukdomar.  

I de två första studierna i denna avhandling sammankopplade vi 

det svenska demensregistret (Svedem) med laboratoriedatabasen på 

Sahlgrenska sjukhuset. Genom detta kunde vi samla tusentals mätningar 

av biomarkörer relaterade till den vanligaste demenssjukdomen, 

Alzheimer’s sjukdom (Aβ1-42, T-tau och P-tau), och allmän nervcellsdöd 

(NfL). I den första studien fann vi i en population omfattande 5676 



individer att biomarkörerna Aβ1-42, T-tau och P-tau tillsammans utmärker 

Alzheimer’s sjukdom från andra demenser, men att förhöjda nivåer av 

dessa markörer ofta kan ses även i andra demenssjukdomar. I den andra 

studien, som innefattade en population om 3356 individer, såg vi att 

markören NfL är förhöjd i alla demenssjukdomar representerade i vårt 

material jämfört med friska kontroller, samt att patienter med höga 

nivåer av denna biomarkör hade kortare överlevnad. 

I den tredje studien undersökte vi två varianter av proteinet tau 

(T-tau och P-tau) som biomarkörer för den ovanliga och snabbt 

framskridande demensen Creutzfeldt-Jakobs sjukdom. Vi fann att 

patienter med denna sjukdom hade mycket höga nivåer av tau och att 

detta effektivt kunde skilja dem från patienter med andra 

demenssjukdomar. Vidare fann vi allt högre nivåer i patienter ju längre 

sjukdomen framskred, vilket tyder på att nervcellsdöden i Creutzfeldt-

Jakobs sjukdom accelerar med tiden, och att tau kan användas för att 

mäta sjukdomens intensitet. 

Den fjärde studien syftade till att leta nya biomarkörer för 

Alzheimer’s sjukdom. Vi utvecklade ett nytt sätt att analysera data från 

mass spektrometri. Mass spektrometri är en teknik som kan användas för 

att analysera protein-innehållet i t.ex. cerebrospinalvätskan, dvs den 

vätska som omger hjärnan. Med den nya metoden kunde vi ta vara på 

den stora mängd data som produceras vid en sådan analys på ett mycket 

effektivare sätt än vad som tidigare varit möjligt. Vi kunde även bevisa att 

den nya metoden fungerade genom att identifiera och validera en helt ny 

och tidigare okänd biomarkör för Alzheimer’s sjukdom, PTN151-166. 
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Abbreviations 

AChE Acetylcholineesterase 
AD  Alzheimer's disease 
ADAD Autosominal dominant Alzheimer’s disease 
ADAS-Cog Alzheimer's Disease Assessment Scale-cognitive subscale 
AICD APP intracellular domain 
APP Amyloid precursor protein 
AUC Area under the curve 
Aβ Amyloid β 
Aβ1-40 Amyloid β amino acid sequence 1-40 
Aβ1-42 Amyloid β amino acid sequence 1-42 
BBB Blood-brain-barrier 
bvFTD Behavioural variant FTD 
CBD Corticobasal degeneration 
CID Collision induced dissociation 
CJD Creutzfeldt-Jakob disease 
CNS Central nervous system 
CSF Cerebrospinal fluid 
DLB Dementia with Lewy bodies 
EAD  Early onset Alzheimer’s disease 
ELISA Enzyme linked immunosorbent array 
ESI Electrospray ionisation 
FDA Federal drugs administration 
FTLD Frontotemporal lobar degeneration 
FTD Frontotemporal dementia 
FTD-MND Frontotemporal dementia with motor neuron disease 
FTDP-17 Frontotemporal dementia and parkinsonism linked to chromosome 17 
FUS Fused in sarcoma 
HPLC High pressure/performance liquid chromatography 
HSV-1 Herpes simplex virus 1 
ICD-10 International Statistical Classification of Diseases and Related Health 
IWG International working group  
LAD Late onset Alzheimer’s disease 
LC Liquid chromatography 
LRP LDL receptor-related protein 
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LP Lumbar puncture 
m/z Mass-to-charge-ratio 
MALDI Matrix-assisted laser desorption/ionisation 
MAPT Microtubule-associated protein tau 
MCI Mild cognitive impairment 
MMSE Mini mental state examination 
MND Motor neuron disease 
MRI Magnetic resonance imaging 
MS Mass spectrometry 
MS/MS Tandem mass spectrometry 
Nf(L/M/H) Neurofilament [light/medium/heavy] chain 
NFT Neurofibrillary tangle 
nfvPPA Nonfluent variant primary progressive aphasia 
Ng Neurogranin 
NIA-AA US National Institute on Aging-Alzheimer’s Association 
ROC Receiver Operating Characteristics 
PD Parkinson's disease 
PDD Parkinson’s disease dementia 
PET Positron emission tomography 
PRM Parallel reaction monitoring 
PSP Progressive supranuclear palsy 
P-tau Total concentration of phosphorylated protein tau 
PTN Pleiotrophin 
PTN151-166 Pleiotrophin amino acid sequence 155-166 
PTPRZ Chondroitin sulfate proteoglycan receptor-type protein tyrosine 
SAD Sporadic Alzheimer’s disease 
SRM Single reaction monitoring 
SSRI Selective serotonin reuptake inhibitor 
sPDGFRβ Platelet-derived growth factor receptor-β 
SPECT Single photon emission computer tomography 
svPPA Semantic variant of primary progressive aphasia 
TBI Traumatic brain injury  
TDP-43 TAR DNA-binding protein 43 
TMT Tandem Mass Tag 
T-tau Total concentration of protein tau 
VaD Vascular dementia 
YKL-40 Chitinase-3-like protein 1 
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“Excessive reservations and paralyzing despondency have not helped the sciences to 
advance nor are they helping them to advance, but a healthy optimism that cheerfully 
searches for new ways to understand, as it is convinced that it will be possible to find 
them.” 

Alois Alzheimer 
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Introduction 

 

 

Neurodegenerative disease and dementia 

teady progress across several areas including medicine, 

technology and economy has helped increase living standards 

and life expectancies across the globe over the past 70 years [1-3]. 

This undeniably positive development has however brought new 

challenges as decreased mortality rates are followed by a growing elderly 

population, and a growing incidence of age-related disease [4]. One of 

the disease groups that have seen such an incidence surge is dementia, 

leading to the fear of a growing dementia epidemic being discussed in the 

field of dementia research around the world [5-7].  

Primary concepts 

Dementia is a syndrome and a general term describing a group of 

pathologic disorders with the common denominator of permanent 

S



decline in the patients’ cognitive and functional abilities [8]. Dementia 

symptoms may arise in a variety of different disorders characterized by 

many pathological processes. The most common symptom associated 

with dementia is short term memory loss, but dementia symptomatology 

is broad and can include many different cognitive, behavioral or 

emotional symptoms including impairment in communication, language 

and visual perception, focus and attention, difficulties with reasoning and 

judgment, anxiety and depression. The symptom spectra of the different 

dementia disorders vary greatly. Dementias result in severe suffering for 

the affected patient and relatives, and are generally progressive and lead 

to increasing disability and ultimately death. Alzheimer’s disease (AD), 

the most common dementia disorder, is often called a family disease due 

to the tremendous toll it takes on the relatives watching the personality 

of a spouse, parent, sister, brother or friend slowly fade away. 

Age is the most important risk factor for developing most 

dementia disorders [9]. Some studies suggest that the dementia risk might 

be decreasing among older adults due to a number of factors, such as 

better cardiovascular prevention and healthier lifestyles, leading to lower 

risks of developing vascular dementia and higher education levels 

generating better cognitive reserves [10-12]. However, the overall 

prevalence of dementia is still expected to grow rapidly in the ageing 

world population [4]. Additionally, there are currently no disease-

modifying treatments available for any of the most prevalent dementia 

disorders. In sum, dementia is a growing health concern and is projected 

to pose a great social and economic burden in the relatively near future 

[13, 14]. 
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Alzheimer’s disease (AD) 

Alzheimer’s disease is named after the German psychiatrist and 

neuropathologist Alois Alzheimer (1864-1915), who met a 51-year-old 

patient with memory-loss and behavioral symptoms at the Frankfurt 

asylum in 1901. Her name was Auguste Deter. He was intrigued by her 

symptoms and observed her over the following years. When she died 

five years later he had her brain neuropathologically examined. He found 

it atrophied and riddled with protein aggregates (later dubbed amyloid 

plaques and neurofibrillary tangles, collectively referred to as “AD 

pathology” below), and described his findings at meetings and in papers 

over the following years, although initially failing to spark much attention 

within the scientific community [15, 16]. However, interest slowly caught 

on in the following years and in 1910 his mentor Emil Kraepelin coined 

the name Alzheimer’s disease and described the syndrome in the 8th 

edition of his Handbook of psychiatry.  

AD is now known to be the most common form of dementia, 

accounting for approximately 60 – 70 % of all dementia cases [17]. AD is 

mainly a disease of the aging brain and has a marked increase in 

incidence with a doubling every fifth year after the age of 65. The 

approximate prevalence of AD in a population over 60 years old is 5 % 

[18]. AD pathology affects the cerebral cortex and certain subcortical 

regions. The entorhinal cortex and hippocampus are affected early on in 

the disease process leading to the most characteristic symptom of AD, 



short term memory loss. Though the majority of AD cases are sporadic 

and have a late onset, a small minority of AD patients have causative 

genetic mutations. This form of the disease is called autosomal dominant 

AD (ADAD) and often manifests clinically as early-onset AD (defined as 

AD with symptom onset before 65 year of age). Most AD patients lack 

such dominant mutations, and are therefore said to have a sporadic form 

of the disease (SAD). Most patients with SAD have late onset of 

symptoms, after 65 years of age, although SAD can also debut early, and 

most early-onset patients do not have ADAD.  

The amyloid cascade hypothesis  

AD pathology is characterized by an accumulation of 

extracellular plaques in the brain, containing the aggregated form of the 

amyloid β (Aβ) peptide, and intraneuronal neurofibrillary tangles (NFTs) 

consisting of aggregates of the hyperphosphorylated form of the tau 

protein [19, 20]. Following the identification of Aβ and the genetic 

variants linked to autosomal dominant forms of the disease (all in genes 

involved in Aβ metabolism), the amyloid cascade hypothesis was introduced 

stating that an imbalance in the production or clearance of Aβ is the 

instigating event in AD leading to subsequent formation of amyloid 

plaques, tau tangles, oxidative stress, and microglial activation resulting in 

neuronal death (figure 1) [21, 22]. While there are other hypotheses for 

the underlying pathological mechanisms of AD (discussed in a later 

section), the amyloid cascade hypothesis is the most prominent and one 

that has sparked extensive research into the cause of abnormal 

production and clearance of Aβ peptides, and especially the highly 
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aggregation prone and 

potentially toxic 42 amino 

acid long Aβ peptide (Aβ1-

42), and the development of 

drugs targeting the 

production, aggregation 

and clearance of Aβ 

peptides [23-25]. Aβ1-42 is 

the main component of 

amyloid plaques in AD. 

Different lengths of Aβ 

peptides are cleaved from the membrane embedded amyloid precursor 

protein (APP) by the enzymes β- and γ-secretase. In AD, shedding of Aβ 

is for unknown reasons shunted into more Aβ1-42 (rather than shorter 

isoforms including Aβ1-40), which appears to lead to amyloid plaque 

build-up [26]. Amyloid plaque accumulation precedes the formation of 

wide-spread NFTs in AD, but the link between the two remains to be 

explained. Unproven theories postulate that Aβ might induce 

phosphorylation of tau by directly altering the phosphorylation of tau,  

by interacting with APP or by inducing kinases to modify tau [27]. 

 

The amyloid cascade hypothesis is backed up by several lines of 

evidence. The brains of AD patients’ exhibit hallmark post-mortem 

signs: amyloid plaques, NFTs and atrophy. Studies of ADAD have 

shown that mutations in the amyloid precursor protein gene (APP), or in 

the presenilin-1 (PSEN1) and presenilin-2 genes (PSEN2), the key 

Figure 1. The amyloid cascade hypothesis schematic. 



catalytic subunits of –secretase, cause AD [28, 29]. Transgenic mice 

expressing familial human APP and PSEN mutations also develop 

syndromes that mirror certain aspects of AD [30]. But there are also 

challenges to the amyloid cascade hypothesis [31]: 

 At autopsy about 20-40% of cognitively intact elderly subjects 

meet some neuropathological criteria for AD, and in CSF 

biomarker or PET imaging studies in cognitively healthy 

individuals, biomarker signs of Aβ deposition increase with age 

and is particularly elevated in about 20% of adults aged 60 and 

over [32, 33]. This is not readily reconciled with the notion of Aβ 

aggregates as the instigating factor in AD [26, 34, 35].  

 Amyloid plaque and NFT burden and clinical measures of 

cognitive health does generally not correlate well [32, 35]. If 

amyloid and tangles are the sole cause of neurodegeneration in 

AD, this correlation should be clear. 

 Drug trials targeting the obvious culprit in the amyloid cascade 

paradigm, i.e. Aβ aggregates and associated proteins, have 

broadly failed. Although having in several cases successfully 

cleared Aβ plaques and shown signs of reversing AD symptoms 

in mice, these properties have not translated well into human 

treatments [36]. Some treatments have shown effects on Aβ 

pathology in humans but nonetheless been unsuccessful in 

stopping cognitive decline or neurodegeneration [37-39]. Roche’s 

anti Aβ antibody gantenerumab removed Aβ plaques in patients 

to mean levels below 24 centiloid (a radiological threshold for 

evidence of Aβ pathology) in 1-2 years, but still failed to halt 



21  
 

cognitive decline [40]. When writing this, the news of another 

failed drug trial has just been released. In 2016, study results from 

a phase 1B study were published that showed that aducanumab 

reduced Aβ plaque load and indicated better cognitive results in 

treated patients; but the subsequent phase III has now been shut 

down due to falling short of their primary endpoint [37, 41]. 

 Brainstem and medial temporal lobe NFTs are seen in subjects 

without Aβ depositions in all age categories, which don’t seem to 

support the idea of Aβ plaque formation as an upstream feature 

of AD pathogenesis [42, 43].  

 Aβ is expressed fairly equally throughout the AD brain, while 

neurodegeneration initially affects specific parts of the brain, 

namely the hippocampus and entorhinal cortex (figure 2) [44]. 

This phenomenon is not explained by the amyloid cascade 

hypothesis. 

 Although Aβ build up is clearly an important feature of AD-like 

pathology, the exact biochemical mechanisms for the 

propagation of the adverse effects of Aβ remain elusive [45].  

 Amyloid plaques and NFTs can occur alone in some disorders. 

NFTs develop without the presence of amyloid plaques in tangle-

only dementia, and amyloid plaques accumulate without 

subsequent NFTs in hereditary cerebral hemorrhage with 

amyloidosis of the Dutch type [46, 47]. While this doesn’t directly 

contradict the validity of the amyloid cascade hypothesis, it 

suggests a complex relationship between amyloid plaques and 

NFTs that remain to be elucidated. Further, transgenic mice 



harboring the APP or PSEN mutations develop Aβ plaques, but 

not NFTs [48]. 

 

 

Figure 2. Propagation of pathology in the brain of AD patients follows a defined pattern. Aβ 

plaque pathology (top row) engages cerebral regions relatively uniformly and subsequently 

propagates to deeper regions, while NFTs (bottom row) initially build up in the entorhinal cortex 

and from there spread to cerebral regions as the disease progresses. 

Alternative hypotheses of AD pathology 

 In spite of the above mentioned weaknesses, the amyloid cascade 

hypothesis might still be valid after some tweaking, or to explain 

heritable AD. Being designed after findings in animal models of ADAD, 

it might be the assumption that the hypothesis can be extrapolated onto 

all AD that is not accurate. This is the case in other diseases, for example 

skin blistering disorders, where early- and late-onset forms clinically 
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resemble each other but have different etiological bases. Early-onset 

forms (epidermolysis) have a genetic basis, while late-onset forms 

(pemphigoids) are autoimmune diseases, leaving widely different options 

for treatment of the two forms [49]. Diabetes type I and II are also 

examples of diseases with common symptomatology, but different 

etiology. 

 Alois Alzheimer noted another histopathological hallmark of AD 

that has not garnered nearly as much attention as the others: lipoid 

granules [50]. The identification of APOE as the strongest genetic risk 

factor of AD points to a link between lipid metabolism and AD, as 

APOE is a regulator of cholesterol metabolism in the CNS. 

Epidemiological studies also support a role of cholesterol in AD 

pathogenesis [51]. Statin treatment in animal models leads to decreased 

levels of Aβ, and retrospective epidemiological studies have suggested a 

reduced risk of AD in statin treated patients [52]. Physiological 

differences in plasma lipid metabolism could also explain the higher 

incidence of AD in women [53]. Lipids might regulate the pathogenic 

potential of other agents by regulating cell membrane integrity, and could 

also influence the aggregation of these agents. Growing evidence suggest 

that the amyloidogenic processing of APP occur mainly in so called lipid 

rafts, lipid rich membrane domains that cluster receptors and signaling 

molecules [54]. In a scenario where changes in lipid metabolism is the 

instigating factor in AD pathogenesis, Aβ-aggregation would merely be a 

side effect due to increased occurrence of lipid rafts in cell membranes, 

which in turn would explain the lack of success of drugs targeting Aβ-

plaques, BACE1 and Aβ oligomers. 



 Evidence have also been put fourth that support a major role of 

contagions in AD pathogenesis. Herpes simplex 1 (HSV-1) encephalitis 

primarily affects the entorhinal cortex and the hippocampus, the same 

anatomical regions where neurofibrillary tangles gain foothold [55]. 

Further, HSV-1 kinase has been implicated in tau hyperphosphorylation, 

and neuropathological studies have shown a strong correlation between 

the presence of HSV-1 DNA in human brains and the likelihood of AD 

[55, 56]. Reactivated HSV-1 in the brains of elderly and more susceptible 

brains could be the trigger factor in AD pathogenesis. In this theory, 

again, Aβ and tau aggregation would only be side effects of another 

pathological process. Other pathogens have also been implicated in AD 

pathogenesis. Recently, toxic proteases from the bacteria Porphyromonas 

gingivalis, a common oral pathogen, were identified in the brains of AD 

patients, and found to correlate with tau pathology, and P. gingivalis 

infection in mice resulted in increased production of intracerebral Aβ1-42 

[57]. 

Diagnosis and diagnostic challenges 

A definitive diagnosis of AD cannot be reached without post-

mortem neuropathological examination of the patients’ brain. Due to 

practical limitations to this method, diagnostic criteria and tools have 

been developed to aid diagnostics in clinical practice and research. 

According to ICD-10 criteria [58], AD is characterized by: 

A. The development of multiple cognitive deficits manifested by 

both: 
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1. Memory impairment 

2. One or more of: 

a) Aphasia 

b) Apraxia 

c) Agnosia 

d) Disturbance in executive functioning 

B. Cognitive deficits in A1 and A2 each cause significant 

impairment in social functioning. 

C. Symptoms appear with gradual onset and continuing decline. 

D. Symptoms in A1 and A2 cannot be explained by other 

diseases or substance-intake. 

E. Symptoms do not occur exclusively during delirium. 

F. Symptoms cannot be better be explained by depression, 

schizophrenia or similar conditions. 

The National Institute of Neurological and Communicative Disorders 

and Stroke and the Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA) criteria is also commonly used [59].  

In the research setting, The International Working Group (IWG) 

has put forward diagnostic criteria for AD, which were updated in 2014 

and dubbed the IWG-2 criteria [60, 61]. In the new revision 

neurochemical and neuroimaging diagnostic markers were introduced. 

Low concentrations of Aβ1-42 and high concentrations of total tau (T-tau) 

and phosphorylated tau (P-tau) in the cerebrospinal fluid (CSF) indicate 

plaque pathology and neuronal damage respectively. Increased tracer 

retention of amyloid PET is also considered in vivo evidence of AD 

pathology. The IWG-2 criteria are as of yet mainly recommended for 



research purposes and CSF and imaging biomarkers are thus not yet fully 

implemented in diagnostic criteria for the clinical setting. However, many 

European countries, including Germany, have recently issued 

recommendations to include CSF biomarkers as a supplement to clinical 

evaluation in dementia diagnostics [62, 63]. 

Diagnostics in AD and dementia in general can be challenging. 

Cognitive decline is a progressive and often slow process, and it can be 

difficult to distinguish specific traits in clinical presentations. Early 

diagnosis is especially challenging (and preclinical AD, prior to any 

symptoms, can by definition not be detected by clinical testing alone). 

Additionally, co-morbidities are common, blurring the lines between 

specific disorders. In post-mortem AD brains, Lewy body pathology 

associated with dementia with Lewy bodies (DLB) and Parkinson’s 

disease dementia (PDD) have been shown to occur in more than 50% of 

cases, and signs of vascular dementia might be even more common [64-

66]. Further, neither amyloid plaques nor neurofibrillary tangles are 

specific for AD [66-68]. NFTs are found in many other 

neurodegenerative diseases, such as prion disease, metabolic diseases, 

some brain tumors and also in cognitively normal aging subjects [42]. 

Amyloid plaques are, as previously mentioned, found in many cognitively 

intact elderly subjects, and are also prevalent in DLB and PDD [69]. 

Mixed pathologies and presence of subclinical pathologies in dementia 

lead to variations in both clinical presentation and uncertainties in 

biomarker read outs. 
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Current treatment of AD 

Despite the significant effort put into the search for disease 

modifying treatments of AD, none other than symptomatic treatments 

have as of yet been found [70]. There are two strategies of treating the 

symptoms of AD available today, the first being acetylcholineesterase 

(AChE) inhibitors like donepezil, galantamine or rivastigmine. By 

inhibiting the enzyme AChE, the rate of degradation of acetylcholine in 

the synaptic cleft is reduced, thus potentiating the level and duration of 

action of the neurotransmitter. The aim of this treatment is to slow 

cognitive decline and ease memory difficulties. Effects of the different 

agents in this group on the market are similar and generally considered 

moderate [70-72].  Response rates vary, and about one third of the 

patients experience no benefit, while one third doesn’t tolerate the 

treatment due to side effects [70]. 

The second strategy of AD treatment is to block NMDA 

receptors by NMDA receptor antagonists like memantine. The aim of 

this strategy is to hinder neuronal excitotoxicity and by that exert 

neuroprotection [73]. Memantine was first synthesized in the 60s and 

marketed as a potential diabetes treatment. The NMDA receptor 

blocking properties of the drug was first discovered and applied in AD 

treatment in the 1980s [74]. Memantine is generally better tolerated than 

AChE inhibitors and is especially used for treatment of AD patients that 

don’t tolerate or have contraindications for AChE inhibitor use, or 

patients with more than mild symptoms. Memantine might also have 

beneficial effects in combination with an AChE inhibitor [73]. However, 



although memantine therapy improve cognition and global function in 

AD, the efficacy is limited as is evidence of clinical benefit [75]. 

 

Vascular dementia (VaD) and mixed dementia 

VaD, the second most common dementia, accounts for about 10 

- 20% of all dementia cases. Subtypes of VaD include multi-infarct 

dementia, caused by series of minor ischemic or hemorrhagic strokes 

leading to stepwise cognitive decline; strategic infarct dementia, caused 

by ischemic lesions involving specific sites in the brain; and subcortical 

dementia, caused by small vessel disease leading to lacunar infarcts and 

diffuse white matter lesions [76, 77]. Symptoms of VaD vary depending 

of which regions of the brain are affected; Cortical lesions can cause 

aphasia, apraxia and epileptic seizures, while subcortical lesions lead to 

bradyphrenia, executive dysfunction, gait changes, urinary incontinence 

and parkinsonism [78]. VaD patients also often exhibit focal neurologic 

signs such as hemiparesis, bradykinesia or hyperreflexia. The clinical 

distinction between AD and VaD can be challenging, and AD and VaD 

pathologies often coexist in a condition called mixed dementia. 

Neuropathological studies indicate that this might be very common [79, 

80]. 

Management of VaD includes addressing risk factors of 

cardiovascular health, including tobacco use, hypertension, atrial 

fibrillation, diabetes and high cholesterol to provide protection against 

strokes and vascular pathology. As progress has been made in stroke and 
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vascular disease prevention over the last decades the incidence of VaD is 

declining [81]. 

 

Frontotemporal dementia (FTD) 

FTD is a group of clinical syndromes with a common feature of 

progressive neurodegeneration of mainly the frontal and anterior 

temporal lobes, leading to personality and behavioral changes or 

difficulties with language. FTD has a strong genetic component with 

about 40 % of cases having a family history of dementia, psychiatric 

disease or motor symptoms [82]. FTD also has an earlier onset than 

other dementias and symptoms usually occur in between ages 45 to 65 

[83].  FTD is commonly divided into three main subtypes: behavioral 

variant FTD (bvFTD) is the most common one accounting for about 

half of the FTD cases, while semantic variant of primary progressive 

aphasia (svPPA) and nonfluent variant primary progressive aphasia 

(nfvPPA) are rarer. BvFTD engage mainly the paralimbic areas including 

the medial frontal, orbital frontal, anterior cingulate and frontoinsular 

cortices [84]. Right hemisphere atrophy is associated more with behavior 

changes, and affected patients often display apathy, become socially 

withdrawn, rigid in their thinking and might behave socially 

inappropriate [85-87]. SvPPA and nfvPPA are characterized by anterior 

temporal lobe atrophy, and clinically feature language problems with loss 

of meaning of words in svPPA and problems with producing speech in 

nfvPPA [88, 89]. When the left temporal lobe is engaged, language 



functions are mostly impaired, and when the right temporal lobe is 

engaged the symptoms are mainly behavioral. Over time, both temporal 

lobes become affected, and subsequently also the frontal lobes leading to 

symptoms of bvFTD. Memory problems are not a key feature of FTD. 

There are also conditions that are considered closely related to FTD, and 

are collected under the frontotemporal lobar degeneration (FTLD) 

umbrella term, but engage partly different anatomical regions, including 

frontotemporal dementia with motor neuron disease (FTD-MND), 

progressive supranuclear palsy (PSP) and corticobasal degeneration 

(CBD). There is further a logopenic variant of PPA that has been 

correlated predominantly with AD pathology. 

As in AD, protein aggregation is a major pathological feature of 

FTD and FTLD. FTLD is sub classified according to 

immunohistochemical staining for specific protein accumulations into 

four main subtypes, each with several sub classifications of their own 

[90]. In FTLD-tau, like in AD, the protein tau is accumulated; although 

tau inclusions in FTLD-tau differ from AD in that they primarily contain 

one or two of the six tau isoforms and not all six. FTLD-tau can be 

divided into 4R tauopathies, including CBD, PSP, and 3R tauopathies, 

including Pick’s disease, depending on which isoform of tau is 

predominantly deposited. Pick’s disease clinically most commonly 

presents as bvFTD, but can sometimes also be seen as the nfvPPA or 

svPPA phenotypes [84]. Specific mutations in MAPT, the tau gene, cause 

dominantly inherited FTD and Parkinsonism linked to chromosome 17 

(FTDP-17) or familial FTLD-tau [91]. 



31  
 

FTLD-TDP is characterized by four types (A-D) of TAR DNA-

binding protein 43 (TDP-43) aggregation and related pathologic 

properties. TDP-43 is involved in mRNA processing, but its exact 

biological function is unknown. FTLD-TDP clinically typically presents 

as svPPA (type C), but bvFTD, nfvPPA and CBS can also be seen (type 

A, B). Aggregates of TDP-43 is also a main feature of motor neuron 

disease (MND), and mutations in the gene C90RF72 is the most 

common genetic cause of both FTD and MND [92]. Additionally, about 

10-15% of patients with FTD also subsequently develop MND (FTD-

MND) symptoms, and inversely about 50% of the patients that debut 

with MND later in the disease progression develop cognitive impairment 

and 15% meet criteria for FTD [93]. 

The third immunohistochemical sub classification of FTLD, 

FTLD-FET, account for 5-10 % of the total FTLD cases, a group that is 

both tau and TDP-43 negative. In 2009 links between the fused in 

sarcoma (FUS) gene and MND was found [94]. The known overlap of 

FTD and MND sparked an investigation of the relation between FTD 

and FUS, where FUS inclusions were found in FTD but mutations in 

FUS showed no link to FTD [95]. FUS is a member of the FET protein 

family, and an RNA/DNA binding protein just like TDP-43, implying 

abnormal RNA metabolism as an important event in FTLD-FET 

pathology. 

The fourth and last sub group of FTLD is FTLD-UPS, caused 

by a rare mutation in the CHMP2B gene found in a Danish family. 

FTLD-UPS exhibit inclusions of ubiquitin, but are negative for tau, 

TDP-43 and FET. 



There are no specific treatments of FTD, although symptoms 

might sometimes be relieved by antidepressants and antipsychotics [96]. 

The average survival time from diagnosis is between 3-12 years 

depending of which subpopulation of patients is studied; Patients with 

bvFTD and concomitant motor neuron disease average 3 years, while 

svPPA patients live 12 years from diagnosis on average [97]. 

  

Dementia with Lewy bodies (DLB) and Parkinson’s 

disease dementia (PDD) 

DLB and PDD are both characterized by the formation of α-

synuclein containing deposits in the brain and peripheral nervous system 

called Lewy bodies [69]. In both diseases Lewy bodies can be found in 

the frontal and temporal cortex, however, there is a higher cortical Lewy 

body load as well as more frequent and severe hippocampus and 

amygdala load in DLB [69]. There is also convergent influence of Aβ and 

tau pathology in both DLB and PDD, but higher degrees of Aβ and tau 

loads in the cortex and striatum can be seen in DLB [69].  

Both diseases feature impaired cognition, sleep disorders, visual 

hallucinations, depression and parkinsonism, i.e. muscular rigidity, 

bradykinesia, postural instability [98-101]. The distinguishing factor 

between the two disorders is the order in which symptoms appear. In 

PDD, a diagnosis of PD precedes the onset of cognitive decline, while in 

DLB cognitive symptoms debut simultaneously or before the symptoms 

of parkinsonism. Some studies suggest PDD and DLB are part of a 
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continuum and that it might be meaningful to separate them clinically 

but still recognize their common pathophysiological mechanisms in a 

research context [69, 102, 103]. 

There are no disease modifying treatments for DLB and PDD. 

Parkinsonism is treated with L-dopa just like in PD without dementia, 

and, like in AD, memory and attention deficits can be alleviated by 

AChE inhibitors like rivastigmine, galantamine and donezepil or NMDA 

receptor antagonists like memantine. Depressive symptoms can be 

managed by SSRI treatment, and hallucinations can be treated (very 

carefully and with low doses) with neuroleptics like quetiapine and 

clozapine. However, effective treatment of hallucinations in DLB and 

PDD is rare and adverse effects like worsened parkinsonism and 

increased risks of stroke and sudden cardiac death often outweigh the 

benefits [104].  

 

Creutzfeldt-Jakob disease (CJD) 

Sporadic CJD is a rare neurodegenerative disease that affects 

about 1/1 000 000 people per year worldwide, and is unlike the more 

common forms of dementias in that it is known to be transmittable 

[105]. CJD is caused by endogenous intracellularly misfolded proteins 

called prions, first discovered in the 1960s [106]. CJD is characterized by 

massive and escalating neuronal death, and the first symptom is usually 

rapidly progressive memory loss and dementia. Myoclonus, anxiety, 

depression and psychosis is also common but clinical presentations vary 



greatly [107]. While the sporadic forms of prion disease occur 

spontaneously, and are the most common forms accounting for about 

85% of all cases, there are also familial disorders caused by mutations in 

the PRNP gene encoding for the PrP protein, including familial CJD, 

fatal familial insomnia, Gerstmann-Sträussler-Scheinker syndrome and 

Kuru [108-110]. A small part of prion disease cases are also caused by 

infection from external sources such as transplants contaminated by 

prions or by ingestion of meat infected with prions [111, 112]. All known 

prion disease start with the conformational change of the endogenous 

membrane protein PrPC into the disease associated PrPSc. By this change 

PrPSc acquires protease resistance and the ability to induce 

transformation of other PrPC proteins into PrPSc. PrPSc is prone to 

aggregation and form neurodegenerative amyloid fibrils [113]. All prion 

disease is fatal and no disease modifying treatments exist. There are also 

several prion diseases affecting other mammals all involving the same 

well preserved PRNP gene and PrP protein. Scrapie in sheep, bovine 

spongiform encephalopathy in bovines and chronic wasting syndrome in 

deer and moose all stem from the same transformation of host genome 

encoded PrPC into PrPSc [114, 115]. 

The physiological function of PrPC is not clear, and initial reports 

of PrPC knockout mice revealed no apparent phenotype abnormalities. 

However, more recent studies reveal adult-onset demyelination of the 

peripheral nervous system (PNS) in PrPC knockout mice, and further 

studies have corroborated a role for PrPC in myelin maintenance and 

cellular differentiation [116].  PrPC reportedly also acts as an inhibitor of 
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BACE1, thereby reducing the amount of Aβ produced with a potential 

protective effect against AD pathology [117].  

Protein misfolding occurs in a number of other diseases: AD, 

PD, Huntington’s disease, MND and more all feature aggregation of 

different endogenous proteins. Analogies and similarities between prion 

disease and other conditions involving protein aggregation have been 

found. For instance, evidence suggests that both tau and Aβ pathology in 

AD, as well as α–synuclein in PD might propagate through prion like 

mechanisms [118, 119]. This concept is discussed further in chapter 2.2.5 

and 2.2.6. 

   

Figure 3. PRPC, the normal and non-pathological strain of PRP. 



 

Biomarkers of AD and neurodegeneration 

 

 

hile the clinical presentation in concert with cognitive, 

neurological and neuropsychological testing still forms 

the basis of the diagnostic process in dementia 

investigation, laboratory and radiological tests have been developed, and 

are increasingly used in clinical and research settings. In recent years, 

these tests have been included as recommended methods for supporting 

clinical evaluations in dementia diagnostics in several countries [62, 63]. 

 

The value of biomarkers 

The ability to readily identify and discern different causes of 

dementia as early as possible in the course of disease is essential in order 

to be able to provide optimal care and to enable administration of 

correct treatment. It is further important to identify means to be able to 

monitor disease progression and treatment effects. A host of drug trials 

aimed at treating AD have failed over the past few years. In fact, no new 

medications specifically aimed at treating AD have been approved by the 

FDA since 2003 (memantine being the latest). However, there is hope 

that this long dry spell may be nearing an end. In the most recent 

W 
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assessment there were 112 agents tested in 135 separate clinical trials 

underway, and in different stages of completion [38]. The principle focal 

points of drug development have sprung from the amyloid cascade 

hypothesis and aim at development and administration of antibodies 

targeting Aβ or related peptides to facilitate their removal, limit their 

production or hinder aggregation. An example of a highlight in this field 

is the antibody BAN2401, that binds to Aβ protofibrils and that has 

shown promising results in early phases or trial [120, 121]. A phase II 

clinical study on MCI patients who were administered BAN2401 was 

able to show not only dose-dependent reduction in amyloid plaques and 

slowed cognitive decline as measured by ADAS-Cog, but also increased 

CSF Aβ and reduced T-tau concentrations [122]. There is cause for 

optimism and keeping up hope that one of the many paths taken will one 

day lead to successful treatment of AD. 

Efficient biomarkers can provide aid in clinical trials by 

identifying suitable subjects for inclusion. It is likely that AD pathology 

must be targeted as early in the disease process as possible in order to 

prevent irreversible neuronal damage. It has been argued that the failure 

of some of the clinical trials in AD over the years can in part be 

attributed to treatment being administered to late in the course of the 

disease [36]. Signs of AD, including amyloid plaque build-up, have been 

shown to precede clinical symptoms by decades [34, 123, 124]. Using 

well characterized biomarkers can help find patients at an early enough 

stage of disease to be eligible for treatment, and help secure presence of 

AD pathology. Further, biomarkers can be used to monitor treatment 

effects in clinical studies. For instance, neurofilament light protein (NfL), 



the biomarker of interest in paper II of this thesis, can be considered a 

measure of rate of neurodegeneration in AD and other 

neurodegenerative diseases, and might be used to evaluate the efficacy of 

a given treatment or to compare dosages [125, 126].  

Another difficulty in treating dementia is the multifactorial nature 

of dementia disorders, and the difficulty in mapping out the disease 

processes present in the individual patient’s CNS [70]. Pure Alzheimer-

type pathology is rare, especially in the elderly [66]. There might also be 

as of yet unknown sub-classifications present in the spectrum of 

dementia disorders that have therapeutic significance. In the future, 

biomarkers might be used to obtain detailed information on the 

influence of different pathologies in the individual patient’s brains, and 

inform tailored treatment. 

There are several different modalities of biomarkers with a 

potential to allow for early and dependable diagnosis and prognosis as 

well as measures of rates of ongoing disease processes. 

 

Imaging biomarkers 

Structural magnetic resonance imaging (MRI) is the most widely 

used neuroimaging technique to investigate anatomical changes of 

neurodegeneration in vivo, and has contributed significantly to the 

understanding of different dementia disorders [127, 128].  In positron 

emission tomography (PET) and single photon emission CT (SPECT), 
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radioactive ligands are used to image structures, metabolism and 

perfusion of the brain, allowing for quantification of functional markers 

of neurodegeneration and specific neuropathological features of disease, 

such as amyloid plaques and neurofibrillary tangles in AD [128, 129]. 

PET and SPECT adds important information in the diagnostic process, 

and in the prognosis and management of dementia disorders in the 

clinical setting, and can reveal information on disease specific 

mechanisms of pathogenesis in the research setting [129]. The use of 

MRI in differential diagnosis is however limited due to lack of specificity 

for underlying pathology, as atrophy patterns might overlap across 

several dementia syndromes, and since the normal variability for 

structural measures is large [128]. Concordance between neuroimaging 

and CSF biomarkers of AD pathology is generally considered excellent 

[130-132].  

 

CSF biomarkers 

CSF - Function and characteristics 

The cerebrospinal fluid envelopes the brain and provides 

buoyancy and a buffer zone protecting the brain from physical trauma, 

while also removing metabolic waste by diffusing it out into the blood 

stream [133]. About 125-150 mL of CSF is in circulation at any given 

time, and the turnover rate is about 25 mL / hour [134]. Pathological 

processes in the brain leave traces in the CSF, which may thereby serve 



as a biochemical window into the brain and a valuable source of 

information for investigation of the biochemistry of the CNS. To use 

CSF biomarkers optimally a detailed understanding of their distribution 

and dynamics is required. Many different aspects might influence a 

biomarker’s concentration beside its relation to clinical pathology, such 

as age, sex, concomitant pathologies, genetic differences, rate of 

degradation of the analyte etc. AD is the most common and prominent 

dementia disorder and also the one where CSF biomarker research has 

been most fruitful. In this thesis we focus on exploring the large amount 

of data gathered in clinical routine, where assays for biomarkers in 

dementia have been available for several years. The biomarkers in our 

data include Aβ1-42, T-tau, P-tau, which all reflect different aspects of AD 

pathology, and NfL which is considered a more general biomarker of 

neuronal decay. 

Lumbar puncture 

CSF is sampled by means of a lumbar puncture (LP). An LP is 

performed by introducing a needle into the subarachnoid space of the 

lumbar spinal column below the termination of the spinal cord, usually 

between vertebrae L3/L4 or L4/L5 [134]. For dementia biomarker 

analysis a volume of about 12 mL of CSF is normally collected and put 

in polypropylene tubes before further processing. Lumbar puncture is a 

safe procedure with little side effects, the most commonly reported being 

post-LP headache, a benign condition that typically resolve within a week 

and that occur in about 10% of patients when atraumatic needles are 

used [134].  



41  
 

Biomarkers of AD pathology 

There are several established CSF biomarkers of AD correlating 

to different characteristics of AD pathology. A classical, but somewhat 

disputed, interpretation of the three major AD biomarkers are that low 

levels of Aβ1-42 correlate with senile plaque load, levels of T-tau increase 

with higher rates of neuronal death, and levels of P-tau correlate with 

neurofibrillary tangle pathology [135]. Various composite biomarkers has 

also been suggested and evaluated. For example, the P-tau/Aβ1-42 ratio 

has been shown to have particularly good discriminatory power in AD 

towards other dementias, presumably because it integrates information 

about amyloid and tau pathology, the core hallmarks of AD [136-138]. 

Another prominent composite biomarker is the Aβ1-42/Aβ1-40 ratio, where 

the dynamic of low Aβ1-42 concentrations in contrast to unchanged 

concentrations of the Aβ1-40 in AD is employed [139]. This ratio is 

probably superior since it adjusts for the between-person variability in 

overall amyloid peptide metabolism. In patients with a clinical AD like 

presentation (also in pre-dementia stages) a pattern of low levels of Aβ1-42 

in combination with elevated levels of T-tau and P-tau should strengthen 

the suspicion on AD. However, as previously discussed, other common 

dementia disorders might overlap both in clinical symptoms and CSF 

characteristics, and mixed pathologies are common [140-144]. 

  



Aβ1-42 

We use the term Aβ to refer to 

peptides that are derived from the 

amyloid precursor protein (APP). APP 

is a membrane bound protein that can 

be cleaved by three enzymes, α-, β-, and 

γ-secretase. Cleavage by γ- and β-

secretase (BACE1) sheds several Aβ-

isoforms, including Aβ1-40 and Aβ1-42, 40 and 42 amino acids long 

respectively. Aβ1-42 is produced by BACE1 and γ-secretase cleavage and 

prone to aggregation, while residues produced by α-secretase cleavage are 

not (figure 4). Aβ1-40 is also produced by BACE1 and γ-secretase cleavage 

but does not contribute to aggregation at the same rate as Aβ1-42. High 

concentrations of intracerebral 

Aβ1-42 or increased Aβ1-42/Aβ1-40 

ratios lead to amyloid plaque 

build-up. In sporadic AD, 

production of Aβ is thought to be 

shifted into higher rates of Aβ1-42, 

or alternatively the clearance of 

Aβ is reduced [145]. The 

physiological roles of APP and Aβ 

are also not clearly mapped out. 

APP knock-out mice exhibit 

growth and brain weight deficits, 

reduced grip strength, agenesis of Figure 4. APP processing by α-, β- and γ-secretase. 
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the corpus callosum and several other abnormal traits [146]. Mutations in 

APP at the BACE1 cleavage site in humans increase Aβ1-42 production 

and are associated with ADAD [147]. BACE1 knock out mice don’t 

produce Aβ1-42 and are healthy and fertile but exhibit memory and 

behavioral deficits [148]. Presenilin is the sub-component of γ-secretase 

that is responsible for APP cleavage. Mutations in the presenilin genes 

PSEN1 and PSEN2 are the most common causes of familiar early onset 

AD in humans [149]. Most mutations in presenilin do not increase the 

amounts of Aβ produced but shunts production into more Aβ1-42 at the 

cost of less Aβ1-40 [150, 151]. 

AD pathology leads to lower concentrations of Aβ1-42 in CSF as 

compared to healthy controls [135]. The most commonly accepted 

explanation for this is that intracerebral Aβ1-42 aggregation prohibits 

Aβ1-42 clearance into CSF. This has been corroborated by autopsy studies 

finding correlations between low Aβ1-42 in ventricular CSF and high 

numbers of amyloid plaques in the neocortex and hippocampus [152]. 

Cerebral Aβ aggregation is an early event in AD and might precede 

clinical symptoms by decades. 

Amyloid positivity in subjects with 

normal cognition has been shown 

to be associated with observable 

clinical symptoms 10-15 years 

before they emerge [153]. After it 

was concluded that the main 

component of amyloid plaques in 

AD was Aβ, and that Aβ was a Figure 5. Aggregated Aβ1-42 in AD 



soluble peptide secreted by a variety of cell types, the search for means 

of measuring Aβ in CSF begun [154]. The first ELISAs developed 

measured total Aβ levels and failed to discriminate different Aβ isoforms, 

and thus also AD patients from healthy controls [155]. It was later found 

that several different forms of Aβ existed and that Aβ1-42 was the 

predominating form deposited in amyloid plaques [156, 157]. In light of 

these discoveries immunoassays targeting Aβ1-42 were developed and 

shown to identify lower concentrations of CSF Aβ1-42 in AD patients as 

compared to healthy controls [155, 158, 159]. A commercial sandwich 

ELISA assay (INNOTEST® β-amyloid1-42) was used for CSF Aβ1-42 

measurements in paper I of this thesis. 

Amyloid plaques are not exclusive to AD. For instance, in DLB, 

amyloid plaque formation is an early feature, and PD patients who 

develop PDD also show heightened amyloid burden [160, 161]. These 

overlaps might indicate presence of Aβ in non-AD pathology, but might 

also indicate comorbidities. 

It has long been assumed that the insoluble amyloid plaques in 

AD are the instigating factor in AD pathogenesis [21].  However, this 

has been disputed by a growing body of evidence supporting the 

importance of the prefibrillar stage of amyloid plaques, soluble Aβ 

oligomers, in inducing synapse loss and neurotoxicity in AD [162]. 

Studies have shown Aβ oligomers to be more cytotoxic than fibrillary Aβ 

plaques in general and to inhibit long-term potentiation of synapses both 

in vivo and in in vitro [163, 164]. The so called Arctic mutation in the APP 

gene causes a form of ADAD, and was discovered in a Swedish family in 

the early 2000s [165]. However, the Arctic mutation cause increased 
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formation of large soluble Aβ oligomers and protofibrils, and the brains 

of diseased patients with the mutation don’t exhibit amyloid plaques in 

the classical sense. Interestingly, NFTs occur at the same rate as in 

sporadic AD, further supporting the idea of Aβ oligomers being 

important in AD pathology [166]. 

As previously mentioned, evidence has been put forth to support 

a prion like propagation of Aβ pathology. Several research groups have 

injected brain tissue from deceased AD patients into the brains of 

transgenic human APP mice and could then observe Aβ plaques develop 

and propagate from the injection site throughout the rodents’ brains 

[119, 167]. The degree of Aβ seeding in the mouse brain has been found 

to be in direct proportion to the concentration of the injected brain 

extract [168]. Evidence promotes a propagation of Aβ pathology through 

axonally connected brain areas, unlike PrPSc that spread to anatomically 

adjacent brain areas via the brain interstitial fluid [169, 170]. 

  



Tau 

Tau proteins are most 

abundant in neurons, but are also 

expressed in other cells in humans. 

Under normal conditions their main 

function is to stabilize microtubules 

and primarily do so in non-myelinated 

axons [155]. There are six isoforms of tau encoded by the same gene 

(MAPT) but results of alternative splicing. The tau isoforms are 

distinguished by their number of binding domains and their resulting 

performance in microtubule stabilization. Tau is a phosphoprotein with 

more than 30 potential phosphorylation sites and the tubule binding 

power of tau is regulated by a host of kinases [68]. Phosphorylated tau 

disrupts microtubule organization and leads to increased neurofibrillary 

plasticity or degeneration [171, 172]. Hyperphosphorylated tau of all 

isoforms have severely reduced affinity for microtubules and is prone to 

aggregation leading to formation of intracellular NFTs, thereby rendering 

a normally soluble protein resistant to degradation and clearance [173]. 

NFTs are neurotoxic and mediate neuronal death and cognitive decline 

in AD. Tau inclusions are not specific to AD, but key components of the 

pathology in a group of diseases called tauopathies, i.e. 

neurodegenerative diseases associated with neurofibrillary or glial 

fibrillary tangles. However, tau aggregates differ across tauopathies in 

their composition and locale. Astrocytic tufts form in PSP, astrocytic 

plaques in CBD and Pick bodies in FTD [174]. 
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The precise role of tau in AD and neurodegeneration is unclear 

and has been debated. Evidence suggests that tau is needed for Aβ 

neurotoxicity in AD, as neurons from tau knockout mice, unlike those 

from normal mice, are resistant to exposure to Aβ [175]. Tau dysfunction 

might cause neuronal damage in two different ways, by loss of function 

and by gain of cytotoxicity. Data indicates that increased levels of 

intracellular Aβ cause tau to hyperphosphorylate and detach from 

microtubules, impairing axonal transport and leading to synaptic 

dysfunction. Tau is then deposited in the neuron’s somatodendritic 

departments [176]. Hyperphosphorylated tau has a tendency to self-

aggregate into filaments that ultimately form NFTs, a classical 

neuropathological hallmark sign of AD pathology, and long considered 

neurotoxic. However, it could also be that the NFTs are the end-product 

of a process where an intermediary product is the neurotoxic agent, i.e. 

the NFTs themselves don’t propagate neurotoxicity. Some studies 

indicate that soluble, hyperphosphorylated tau is closer related to synapse 

loss and neuronal decay than NFTs by showing that these destructive 

events occur in cell models in the presence of mutated tau independent 

of NFT formation, indicating that NFTs are merely a side effect of 

neurodegeneration [177, 178]. 

 

 

Figure 6. Tau aggregations in a NFT in AD (left) and a narrow Pick filament in FTD (right). 

 



The T-tau concentration in CSF has historically been considered 

a biomarker of neurodegeneration. However, recent evidence suggests 

that the increase in CSF tau concentrations arise due to ramped up 

phosphorylation, and is released as a response to Aβ exposure [179]. In 

any case, T-tau is increased in AD and can effectively discriminate AD 

patients from healthy controls [180]. In some other tauopathies, 

including FTD, CBD, and PSP, CSF T-tau concentrations are 

surprisingly not distinguishable from healthy controls [181]. In most 

non-AD dementias, such as DLB, PDD and VaD, T-tau concentrations 

are also normal or close to normal [182]. However, T-tau concentrations 

are not exclusively increased in AD. The most dramatic increase in CSF 

T-tau concentrations can be seen in CJD, where nearly exponential 

increases can be seen as the neurodegeneration spread through-out the 

affected brain, as studied in paper III of this thesis [183]. In stroke and 

traumatic brain injury (TBI), CSF T-tau concentrations also increase 

[184]. In conclusion T-tau is a biomarker reflecting the intensity of 

neurodegeneration in several disorders, and is considered one of the 

hallmark biomarkers of AD, where elevated concentrations in CSF might 

be a response to Aβ exposure. 

Tau is encoded by a single gene, MAPT. No known MAPT 

mutations are known in AD, but rare familial cases of non-AD 

tauopathies have been linked to MAPT mutations. About 100 families 

with MAPT mutations have been reported. Mutated tau has reduced 

ability to bind to microtubules and lead to tauopathies like PSP, CBD, 

Pick’s disease (a form of FTD) and the rare autosomal dominant disease 



49  
 

frontotemporal dementia with parkinsonism linked to chromosome 17 

(FTDP-17)  [184]. 

As with Aβ accumulation, evidence have been put forth to 

support a prion-like propagation of tau aggregation. Defining features of 

prion-like behavior include a protein or protein aggregate gaining 

insolubility and protease resistance, neurotoxicity and the ability to 

propagate these traits to proteins in adjacent cells, inducing a wild fire 

like spread [185]. Mounting evidence suggest that tau might fulfill these 

criteria. As previously described tau aggregates are neurotoxic and 

insoluble. Studies have also shown uptake of tau by cells through specific 

mechanisms, notably by interaction with heparin sulfate proteoglycans 

that also interact with pleiotrophin, the subject of interest in paper IV of 

this thesis [186, 187]. In addition, studies have shown that tau pathology 

in AD do not distribute randomly but spread following neuronal 

networks throughout the brain, possibly implying connectivity as a key 

for propagation [188, 189]. Several studies have further shown seeding, 

i.e., the induction of aggregation of soluble tau by abnormal tau [190-

192]. Introduction of synthetic tau fibrils into the brains of mice induce 

build-up of NFT-like inclusions that propagate from the injection site 

into connected brain regions [118]. 

 

  



NfL 

Another CSF biomarker 

of importance in dementia and 

neurodegeneration in general is 

NfL, which is part of a family of 

proteins, neurofilaments, 

consisting of three members: 

neurofilament light, medium and 

heavy. NfL is predominantly expressed in large-caliber myelinated axons 

where it serves as a scaffolding protein, providing structural integrity to 

the axon. White matter lesions and other injuries to subcortical brain 

regions induce NfL release into CSF, and conditions that exhibit 

increased CSF NfL concentrations include dementias such as FTD, 

VaD, HIV-associated dementia and AD but also multiple sclerosis, 

stroke, traumatic brain injury (TBI) and neuroinfectious conditions [193-

197]. NfL has been less studied than Aβ1-42, T-tau and P-tau but has great 

potential for use in disease monitoring and prognosis in 

neurodegenerative conditions through its cross-disease biomarker 

properties, correlation to on-going neurodegeneration, and accessibility 

in being able to measure in serum and plasma as discussed below. 

 

Emerging biomarkers and the pursuit of prospects 

The amyloid cascade hypothesis, although not yet proven, might 

be considered the core model of the disease processes in AD, and the 
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biomarker triad of Aβ1-42, T-tau and P-tau each reflect the main 

components of this model. However, recent studies in AD biomarkers 

highlight several other important pathological changes and the molecules 

that reflect them.  

Neurogranin (Ng) is a protein involved in long term 

potentiation/depression of synapses, and can be used as a biomarker of 

synaptic loss and to predict rate of cognitive decline in AD [198, 199]. 

Portelius et al. has further shown that Ng can contribute to the 

diagnostic accuracy of the core AD biomarkers (Aβ1-42, T-tau and P-tau) 

and increase the discrimination of AD and other neurodegenerative 

disorders [200].  

The physiological role of YKL-40 is unclear, but it is known as a 

marker of activated astrocytes and microglia, and to be upregulated in 

several conditions and disorders characterized by inflammation 

including, but not limited to, inflammatory bowel disease, rheumatoid 

arthritis, scleroderma, certain infections and cancers like melanoma and 

myeloid leukemia. It has also been suggested as a biomarker for 

neurodegeneration in traumatic brain injury, multiple sclerosis and AD 

[201-203]. Data suggest that YKL-40 levels are elevated in AD but also 

in FTD and prion disease but not vascular dementia and PD [204]. 

The platelet-derived growth factor receptor-β (sPDGFRβ) is 

abundant in brain capillary pericytes and envelops capillary blood vessels 

in the brain [205]. When measured in CSF, sPDGFRβ is closely 

correlated with blood-brain-barrier dysfunction and was recently shown 



to be increased in individuals with incipient cognitive dysfunction in AD 

independent of other CSF biomarkers [206].  

In short, additional biomarkers can help provide a deeper 

understanding of the pathological mechanisms involved in AD, more 

nuanced and dynamic characterizations of processes contributing to 

neurodegeneration and might help tailor treatments for individual 

patients in the future. 

Pleiotrophin 

In paper IV, the 

discovery of a new potential 

biomarker of AD is laid out. 

Using a novel strategy for 

hypothesis generation through 

analysis of mass spectrometry 

data applied in a large sample of patients (n = 120), a peptide from the 

protein pleiotrophin, PTN151-166, was discovered as a new candidate 

biomarker of AD. Pleiotrophin is expressed in the CNS and PNS 

specifically during embryonic development, but also in non-neural 

tissues, including lung, kidney, gut and bone [207]. While previously not 

implicated in AD, pleiotrophin is abundantly expressed in the adult 

hippocampus and can be induced by ischemic insults or neuronal 

damage in the entorhinal cortex, areas of high interest in AD since tau 

pathology typically develops there early in the disease process [208-210].  
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PTN mainly exerts function by binding to the receptors heparan 

sulfate proteoglycan N-syndecan and chondroitin sulfate proteoglycan 

receptor-type protein tyrosine phosphatase ζ (PTPRZ), and evidence 

suggest that the C-terminal region of the protein, the peptide identified 

as a possible AD biomarker in paper IV, is vital to maintaining stable 

interactions with these receptors [211-214]. As previously mentioned, 

evidence has indicated that tau pathology might propagate in a prion-like 

fashion and more specifically by interactions with heparan sulfate 

proteoglycans [186, 187]. Binding of PTN to PTPRZ is thought to 

promote clustering and by that inhibiting its function [215]. A possible 

hypothesis for the role of PTN151-166 in AD could thus be that PTN 

binding to heparan sulfate proteoglycans such as PTPRZ is hampered by 

some unknown post translational processing of PTN where its active C-

terminal region, i.e. PTN151-166, is shed, increasing the concentration of 

PTN151-166 in CSF and facilitating axonal tau pathology spread through a 

disrupted inhibition of PTPRZ.  

Another known receptor of PTN, LDL receptor-related protein 

(LRP), is also a major receptor of APP and apoE, and has been 

genetically linked to AD [216, 217]. Evidence suggest PTN and midkine, 

another highly homologous protein, both bind and activate LRP, 

possibly by formation of a receptor complex [218].  LRP has several 

different functions and many of them are important in relation to AD 

pathology. Neurons need cholesterol to function and import cholesterol 

by apoE via LRP receptors. It has been proposed that decreased LRP 

leads to intracellular cholesterol deficiency, and studies have shown 

increased Aβ production correlate with cholesterol reduction [219]. LRP 



expression is reduced as a part of normal aging, providing a possible link 

to age related increase in Aβ build-up [220]. Further, LRP is involved in 

increasing Aβ production via processing of APP, but also clearance of 

Aβ by endocytosis of complexes formed by Aβ, apoE and lactoferrin 

[221]. LRP, as well as PTN, can be found deposited in amyloid plaques 

in AD brains [222-224].  

Further studies are needed to detail the true meaning of the 

PTN151-166 finding in paper IV, but the study stands on its own as a 

tantalizing hint at the potential fruitfulness of further hypothesis 

generating studies. 

Plasma and blood biomarkers 

Blood is a more accessible source of biomarker information than 

CSF. Medical care professionals in some countries oppose the 

invasiveness and time consuming nature of the lumbar puncture and 

might be more willing to perform the less intrusive and simple procedure 

of taking a blood sample, which would accelerate the implementation of 

biomarkers in clinical practice. Blood biomarkers might serve an 

important role as a screening tool at primary care units, mainly to exclude 

patients with memory complaints but no signs of biochemical AD 

pathology from referral. A blood biomarker with high sensitivity would 

be ideal for this purpose, even with low or modest specificity. Patients 

that test positive would be referred to a memory clinic for further and 

more costly investigations, including CSF, PET, MRI and neurocognitive 

examination.  
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Blood is in less close proximity to the CNS by virtue of the 

blood-brain-barrier, to different degrees hindering potential biomarkers 

from diffusing into the blood stream. New technological advances in 

recent years have yielded ultrasensitive measurement techniques able to 

detect the by orders of magnitude lower concentrations of brain-specific 

proteins in blood [225]. Plasma concentrations of NfL have been shown 

to correlate well with CSF concentrations and predict cognitive decline, 

and might be particularly suitable as a measure of longitudinal disease 

progression in clinical trials, but also as a tool in AD diagnostics where a 

receiver operating characteristics (ROC) area under the curve (AUC) of 

0.87 against healthy controls have been measured in the ADNI cohort 

[226-230]. A study of blood NfL in ADAD showed increased NfL levels 

before symptom onset and a correlation of NfL levels and time to 

symptom onset [126].  

Plasma tau correlates with higher CSF tau and lower CSF Aβ1-42, 

and has shown strong associations with AD in meta-analysis with 

average tau levels 1.95 times increased vs healthy controls [180]. A study 

of plasma tau in the ADNI cohort confirmed this result but showed a 

significant overlap between normal aging and AD [231]. Yet another 

study of plasma tau found a correlation of tau and cognitive decline 

independent of CSF Aβ, suggesting a non-disease specific 

neurodegeneration measuring property of plasma tau [232].  

ELISA studies of plasma Aβ1-42 and Aβ1-40 have shown both 

biomarkers to be unaltered in AD compared to healthy controls, while a 

single-molecule array (Simoa) study have shown both markers to be 

decreased in AD, as opposed to in CSF where Aβ1-42 concentrations are 



low, but Aβ1-40 normal [233]. However, while study results have been 

conflicting, recent studies have shown that very high performance in 

predicting brain amyloid-β burden can be achieved using plasma 

Aβ1-42/Aβ1-40 ratios measured using mass spectrometry [234]. 
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Aims 

 

 

he general aim of this PhD project was to study and expand 

the understanding of the properties of known CSF biomarkers 

of AD and neurodegeneration across a wide array of 

neurodegenerative diseases, including the most prevalent dementia 

disorders. 

 The specific aim of study I was to study the prevalence of AD-

like pathology in dementias besides AD, and the dynamics of the CSF 

biomarkers Aβ1-42, T-tau and P-tau in relation to clinical outcomes of 

disease severity across dementia disorders. We hypothesized that the 

most clear AD-like biomarker pattern would be found in AD, but that 

biomarker levels in other dementias also carry similarities to AD.  

 The specific aim of study II was to study the potential of CSF 

NfL as a biomarker of on-going axonal degeneration, and its association 

with clinical outcomes of survival and cognitive measures in the major 

dementia disorders. We hypothesized that CSF NfL concentrations 

T 



would be particularly high in diseases characterized by white matter loss 

and that CSF NfL concentrations would predict survival. 

 The specific aim of study III was to evaluate the performance of 

T-tau and the T-tau/P-tau ratio in diagnosis of CJD. We further aimed 

to study the longitudinal dynamics of the CSF T-tau concentrations in 

CJD and relations to survival. We hypothesized that CSF T-tau levels 

would distinguish CJD from important differential diagnoses, and that 

CSF T-tau would predict survival. 

 The specific aim of study IV was to develop and test the 

feasibility of a new strategy of analyzing LC MS/MS data to generate 

hypotheses for new biomarkers in AD. We hypothesized that the new 

strategy of data analysis would be fertile grounds for biomarker 

discovery. 
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Methods 

 

 

he first three studies included in this thesis compile data from 

clinical routine measurements of CSF biomarkers. These 

measurements were obtained by enzyme-linked 

immunosorbent assays (ELISAs) in clinical routine at the neurochemistry 

laboratory at the Mölndal site of the Sahlgrenska university hospital, 

which serves the whole of Sweden in CSF biomarker measurements. 

Paper IV explores the peptidome in AD in relation to MCI and healthy 

controls using mass spectrometry. The following chapter will provide a 

background to ELISA and mass spectrometry as the main techniques for 

biomarker measurements used in the production of the studies of this 

thesis. 

ELISA 

ELISA is a common technique used in both clinical and research 

settings for analyzing ligands, most commonly proteins, in liquids. It was 

developed in the 1970s and uses antibodies directed at the ligand to be 

T 



measured [235]. There are several types of ELISA tests where analytes 

and antibodies are used in different ways. In sandwich ELISA, which 

was used for all samples in the studies in this thesis, samples are 

introduced to a surface, usually the bottom of a well out of an array of 

wells on a plate, pre-coated with capture antibodies (figure 7). A second 

antibody directed at the ligand and conjugated with an enzyme, typically 

horseradish peroxidase, is added. The final step is to add a substance 

containing the enzyme’s substrate. When horseradish peroxidase is used, 

this leads to a detectable and quantifiable change in color where enzyme-

carrying antibodies are bound to ligands in turn bound to the antibody-

coated surface. Other enzyme/substrate combinations may be used that 

employ other mechanisms for quantification such as spectrophotometry, 

where transmission of specific wavelengths of light is measured [236]. 

 
Figure 7. The principle of sandwich ELISA. The targeted protein binds to antibodies attached to 
the well. Enzyme labeled antibodies are then added, and bind to the targeted protein. The enzyme 

substrate is subsequently added and the amount of color change is recorded.   
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Mass spectrometry 

Mass spectrometry (MS) is a technique to measure molecular 

mass that has found extensive use in biology and biomedicine for 

analysis of a broad range of biomolecules. In MS, the analyte molecules 

are transferred to the gas phase and ionized, after which electric and/or 

magnetic fields are used to separate them according to their mass-to-

charge ratio (m/z). The first steps on the road leading up to modern 

mass spectrometry trace all the way back to the late 19th century, and 

several key advances in the development of the techniques have yielded 

Nobel prizes to their inventors [237-239]. Today, MS is used widely in 

many different fields to study physical, chemical or biological properties 

of molecules. It is used by governments and regulatory services to secure 

the cleanliness of air, the purity of water, quality of food and absence of 

contamination in medical agents [240]. Athletic oversight committees use 

MS in their monitoring of illegal substance use in athletes [28]. 

Miniaturized mass spectrometers have even been sent to Mars, Venus, 

Jupiter and Saturn on board the Viking, Pioneer, Galileo and Cassini 

landers for the purpose of analyzing planetary atmospheres and soil [241, 

242].  

The spectrometry process is divided into three key stages: 

Ionization, analysis and detection. These three stages can individually be 

accomplished in many different ways, and many different instrument 

designs exist to suit the analytical task and the properties of the analyte 

molecules. MS was long inapplicable to the analysis of polypeptides; the 

energy required to transfer these high-mass molecules to the gas phase 



and ionize them led to their decomposition, prohibiting their mass 

analysis. That was changed by two major scientific breakthroughs in the 

field in the 1980s. The 

first was the discovery 

of matrix-assisted laser 

desorption/ionization 

(MALDI), an ionization 

technique where the 

crystallized analyte is 

mixed together with a 

matrix of relatively light-weight organic compound that strongly absorbs 

UV or IR light. The crystals are then irradiated by a pulsed laser (figure 

8). The matrix molecules absorb the major part of the energy, leading to 

desorption of a portion of the sample, bringing along the analyte 

molecules to the gas phase while simultaneously protecting them from 

decomposition. The produced analyte ions are then transferred into the 

mass analyzer and subsequently to the detector [243, 244]. 

The second breakthrough in biological MS was the invention of 

the electrospray injection (ESI), which was first described in the 

literature in by Yamashita and Fenn in 1984 [245]. Fenn was awarded the 

Nobel prize in 2002 for his contributions [237]. In ESI the liquid 

containing the analyte in aqueous/organic solvent is ejected through a 

thin needle positioned in front of the MS inlet. High voltage (2000-4000 

V) applied between the needle and the MS inlet causes the electrospray 

process to occur, resulting in an aerosol of charged droplets being 

infused into the mass spectrometer. The solvent evaporates due to heat 

Figure 8. MALDI principle, courtesy of Carson Szot, Antony 
Croxatto, Guy Prod’hom, Gilbert Greub under CC BY-SA 4.0 
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being applied, sometimes assisted by a nitrogen gas flow, leaving the 

analyte bare, carrying the charges each containing droplet confined. 

Using MALDI or ESI large molecules, like proteins and peptides, could 

now be studied. In this thesis, hybrid quadrupole Orbitrap mass 

spectrometers (Q-Exactive and Tribrid Fusion from Thermo Scientific) 

were used for ESI-MS in the fourth paper. 

 

Orbitrap 

 The Orbitrap mass 

analyzer was introduced in the 

early 21st century by Makarov et 

al. [246]. It provides unparalleled 

performance in resolution, mass 

accuracy, through-put and 

dynamic range  and have set the 

standard for high-resolution 

mass spectrometers in 

proteomics [247]. The Orbitrap 

exploits the oscillational behavior of ions around a central electrode in an 

electrostatic field to obtain precise m/z values (figure 9). The behavior is 

reminiscent of planetary bodies getting trapped in gravitational wells. 

Ions injected into the Orbitrap oscillate coherently along the central 

electrode with a frequency that is proportional to the m/z of the ion. The 

oscillating ions induce an image current that is picked up by the outer 

Figure 9. Schematic representation of an Orbitrap 
mass analyzer. Reprinted with permission from 

Thermo Scientific, copyright 2019. 



electrodes. The detected wave signal is transformed using Fourier 

transformation from the time domain into the frequency domain, and 

after calibration into m/z scale. This analyzer affords very high, i.e. sub-

ppm, mass accuracy [248]. 

 

Tandem mass spectrometry 

Another key concept in proteomic MS is tandem mass 

spectrometry, also known as MS/MS or MS2. While the general principle 

for MS is to measure the mass-to-charge ratio (m/z) of intact ions, 

tandem mass spectrometry involves a second isolation step of a selected 

ion and subsequent fragmentation of this ion. The m/z of the produced 

fragments is then measured, providing means for obtaining structural 

information on the analytes. The atomic bonds between amino acids in 

proteins and peptides vary in stability depending on the properties of the 

bound amino acids and the nearby chemical environment, resulting in 

partially predictable fragmentation characteristics [249]. Thus, the 

information obtained in a tandem mass spectrum can be used in several 

different ways. Databases exist, such as Mascot (Matrix Science) or 

SeQuest (Thermo), that facilitate the commonly used method of 

precursor ion fingerprinting. These databases list known precursor ion 

fingerprints, i.e. molecular weights and fragment patterns with 

corresponding source protein identity information. Detected m/z and 

fragment patterns are run against these databases to find their identities. 

Although efficient and well established, these databases cannot deliver 
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full coverage and identify all fragment spectra. However, peptides that 

are not recognized in database searches can still be identified. By 

exploiting the predictability of how amino acid sequences fragment in 

combination with the known molecular weights of the 20 amino acids 

coded for in the human genome, and possible fragment peptide weights 

calculated in silico, the peptide sequence of the fragmented peptide can be 

calculated. This process is called de-novo-sequencing and can be aided 

by software such as Peaks (Bioinformatics solutions Inc.). In short, de-

novo-sequencing is carried out by measuring the distance (in m/z) 

between peaks in the MS2 spectra, and matching the distances against 

amino acid weights, step by step constructing so called sequence tags and 

gradually working against revealing the identity of the peptide being 

sequenced [250]. 

 

Labeling techniques 

MS spectra can only be used to reach relative quantifications of 

abundances of peptides in a sample. This prohibits evaluation of most 

biomarkers as they typically need to be assessed in relation to reference 

ranges and cut-offs, most commonly derived from examinations on 

patients vs healthy controls. Stable isotope labelling can be used to 

nominally quantify the concentration of a specific compound in a 

solution. A peptide of interest is selected and artificially synthesized with 

the addition of a heavy isotope label. A known quantity of the heavy 

isotope peptide is then added to the sample before MS2 analysis. The 



ratio of the surface area under the heavy and the light (or endogenous) 

isotope peak can then be used to quantify the concentration of the light 

compound in the sample. 

In isobaric labeling by tandem mass tags (TMT), chemical labels 

designed to be identical in structure and molecular weight but vary in the 

distribution of heavy isotopes are introduced [251]. The labels react with 

primary amines in the samples to be analyzed, which can then be pooled 

together and analyzed in one run. When exposed to fragmentation 

energies the labels shed reporter ions that are unique in m/z, revealing 

the relative abundances of labeled peptides in the pooled samples. The 

isobaric labelling serves two purposes: it enables multiplexing, i.e. 

running analysis of several samples in one LC-MS run, and it improves 

the accuracy and robustness of quantitative MS by introducing a 

reference substance to relate intensities of measured ions to. In 10-plex 

TMT labeling, that was used in paper IV of this thesis, 10 samples are 

pre-prepared individually with one of the 10 TMT reagents, and 

subsequently pooled together before the LC-MS run.  

 

Shotgun proteomics 

Protocols for preparing protein samples for MS analysis vary 

widely depending on experimental goals and analytical methods to be 

applied. In hypothesis free experimentation, where the aim is to explore 

and map out a proteome as exhaustively as possible, shotgun proteomics 

is a common strategy. In shotgun proteomics proteins and peptides in 
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complex samples are first digested using a protease, most commonly 

trypsin, and the resulting peptides are then separated by liquid 

chromatography [252, 253]. By trypsination large proteins are truncated 

into smaller molecules that are easier to separate, ionize and fragment 

successfully. This approach allows for a wide scope of analysis, high 

through-put and good sensitivity.  

 

Registries 

Svedem – The Swedish dementia registry 

Svedem is a national registry that was started 2007. It collects 

data on patients with dementia diagnoses in Sweden by collecting reports 

filled out be the physicians following the patients. All memory clinics and 

77% of all primary care units in Sweden are connected to the Svedem 

network. Information on diagnosis, date of diagnosis, clinical 

characteristics of each patient, cognitive assessments and prescribed 

medications are recorded. [254] 

 

The Swedish mortality registry 

The Swedish mortality registry is a national registry managed by 

the Swedish national board of health and welfare. It provides data for the 

official statistical reports on rates and causes of death of Swedish 



citizens. It was started in 1961 and is updated yearly [255]. All deceased 

citizens are registered with personal information and information on 

date, time, place and cause of death coded according to ICD. A total of 

60 variables are recorded for each death. 

Statistics 

 Where distributions of quantitative measures were significantly 

skewed, non-parametric methods or log-transformed data was used 

throughout the papers in this thesis. Group differences of averages, 

medians and categorical parameters were analyzed by ANCOVA, median 

regression, chi-square analysis, Mann-Whitney U and Kruskal-Wallis 

analysis. Linear and multiple regression models were fitted for 

association testing between continuous variables, and log-

transformations were applied where appropriate. Association testing was 

also carried out using Spearman rank correlations and t-tests.  

ROC analysis was used to evaluate biomarker profiles and 

diagnostic performance, including sensitivity, specificity and predictive 

values. Survival analysis was conducted using Cox regression. 

 In paper I clustering of data was performed using the SPSS 

TwoStep algorithm, a variant of K-means clustering, where a preceding 

step determines to optimal number (k) of clusters to put into a K-means 

clustering run. 

 Statistical analysis was carried out in SPSS (IBM, Armonk, New 

York) and Stata (StataCorp, College Station, TX). 
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Ethics 

Clinical data on patients gathered from Svedem was used in 

paper I-III of this thesis. All patients in Svedem were informed about 

their participation in the registry, the potential use of their submitted data 

for research, and had the right to decline participation. Biomarker data 

was fetched from the clinical routine lab database at the Sahlgrenska 

university hospital, Sweden. Paper I-III of this thesis was approved by 

the regional ethical committee at the University of Gothenburg (dnr: 

752-12). 

In paper IV, CSF and clinical data from 120 patients from the 

Amsterdam Dementia Cohort was used for biomarker discovery. All 

subjects gave written consent for usage of their samples and clinical data 

for research purposes, and the study was approved by the local Medical 

Ethics Committee at VU University Medical Center, Amsterdam. 

Biomarker validation was performed in CSF samples assembled from the 

BioFINDER study at Skåne University hospital, Sweden. The study was 

approved by the Regional Ethics Committee in Lund, Sweden, and the 

patients and/or their relatives gave their informed consent for research. 
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Results  

 

 

Paper I – The core CSF AD biomarkers in the 

dementia spectrum 

 

 

aper I explores the core CSF biomarkers of AD, T-tau, P-tau 

and Aβ1-42 in all of the most prevalent dementia diagnoses. 

While the biomarkers in this study reflect different 

neuropathological aspects of AD, there is known to be a large overlap of 

these pathologies as well as clinical phenotypes in other dementias. By 

cross-referencing the lab database at the Sahlgrenska university hospital 

with Svedem, an in this context unparalleled amount of study subjects 

could be garnered (n = 5676).  

We found, as expected, the most clear AD-like biomarker pattern 

in patients with clinically diagnosed AD. However, large shares of 

P



patients with other clinical dementia diagnoses also exhibited a 

biomarker pattern indicating possible concomitant AD pathology. 

Pathologic Aβ1-42 concentrations were detected in more than 50% of 

VaD, DLB and PDD patients. This is consistent with previous findings, 

including post-mortem neuropathological examinations, and further 

demonstrates evidence of the widespread prevalence of AD-like disease 

processes in other dementia disorders [256, 257]. Evidence of tau-

pathology was less widespread than that of Aβ-pathology but still 45% of 

VaD, 44% of FTD, 32% of DLB and 29% of PDD patients had 

pathological levels of either T-tau or P-tau. This could indicate tau-

pathology, but could also be attributed to tau-leakage due to general 

neurodegeneration or normal variability in CSF tau concentrations. 

 Using cluster analysis, we were able to identify a natural 

classification of patients with regards to their AD biomarker CSF 

concentrations. Nearly half of the patients sorted into a cluster 

characterized by pathological AD biomarkers, indicating ongoing AD 

pathology. This cluster was dominated by the clinically diagnosed AD 

groups, while the other cluster contained a majority of the other 

dementias, corroborating the connection between the hallmark AD 

biomarker profile and the clinical phenotype of AD. 

The large number of study subjects in this study provided 

enough power to detect small variations in cognitive performance in 

relation to biomarker concentrations, an aspect previously relatively 

unexplored. In late onset AD (LAD), but not in the other diagnoses, 

negative trends of lower MMSE scores were correlated to higher CSF 
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concentrations of both T-tau and P-tau, and also lower concentrations of 

CSF Aβ1-42.  
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Paper II – CSF NfL and clinical outcomes in 

dementia 

 

 

eurofilament light has been described as a biomarker of 

general neurodegeneration, specifically reflecting damage to 

white matter structures, rich in myelinated axons where NfL 

is abundant [258]. Paper II aimed to test this characterization by 

comparing CSF NfL concentrations in the most common dementia 

disorders. As in study I, clinical routine measurements of NfL from the 

Sahlgrenska University hospital was collected and clinical information on 

all subjects was brought in from Svedem. However, in this study 

mortality information from the Swedish mortality registry was also linked 

in. The resulting dataset contained 3356 individuals in 10 different 

diagnostic groups (early onset AD [EAD], LAD, FTD, DLB, VaD, 

PDD, mixed AD/vascular dementia, dementia not otherwise specified, 

other dementias and healthy controls), whereof 478 had a registered date 

of death. 

 The highest CSF NfL concentrations were found in FTD, VaD 

and mixed AD and vascular dementia. This is in keeping with the idea of 

NfL as a biomarker of white matter loss as these diseases all cause 

damage to regions of the brain rich in myelinated axons. EAD had low 

N



concentrations in parity with healthy controls, while LAD patients had 

higher concentrations. The explanation for this could be that EAD 

patients are known to exhibit more clear AD pathology, while LAD 

patients often exhibit concomitant pathologies and vascular components. 

 In LAD and mixed AD and vascular dementia we could also 

identify correlations between high CSF NfL concentrations and disease 

progress with MMSE scores as a proxy, which also ties into the role of 

NfL as a correlate for ongoing neurodegeneration. The MMSE test is 

designed to specifically measure hippocampal function, which might 

explain the lack of correlation in non-AD-dementias. We could however 

detect a universal association of shorter survival time and higher NfL 

CSF concentrations. This was true in both patients with AD-like and 

non-AD-like biomarker patterns of Aβ1-42, T-tau and P-tau. These 

properties solidify the role of CSF NfL as a biomarker of general rate of 

neurodegeneration, and not a biomarker reflecting a disease specific 

pathologic mechanism or process. It also highlights the suitability of CSF 

NfL as an outcome marker in clinical trials of drugs aiming to limit or 

stop neurodegeneration, not only in AD but across the dementia 

spectrum. 
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Paper III – CSF Tau in CJD 

 

 

eutzfeldt-Jakob disease is the most aggressive 

neurodegenerative disease known, with time of survival from 

diagnosis seldom surpassing a year. Despite the fast 

progression, it can often be hard to clinically diagnose CJD and post-

mortem analysis of the brain is still the gold standard for a definitive 

diagnosis. CJD further stands out from the crowd of neurodegenerative 

diseases in that it is transmittable, and by that important to correctly 

identify. CSF T-tau concentrations have in previous studies been shown 

to be markedly elevated in CJD [259-261]. In study III we gathered 

clinical routine CSF T-tau and P-tau measurements from the lab database 

at the Sahlgrenska university hospital and brought in clinical and 

mortality data from the Swedish mortality registry. Information on 9765 

individual patients was collected, including 93 with CJD. 

 We could confirm that CJD patients exhibit considerably higher 

concentrations of CSF T-tau, as the CJD patients in our cohort had both 

mean and median levels of T-tau at more than 10-15 times those of non-

CJD patients. However, P-tau levels were not elevated in the CJD 

patients, corroborating the specificity of P-tau for AD pathology.  

C 



 Using the T-tau concentrations and T-tau/P-tau ratios of the 

patients in the study cohort, ROC analysis could discriminate CJD 

patients from controls and patients with AD and other dementias with 

very high performance (AUCs ranged from 0.949 - 0.984). The ROC 

analysis was calculated using the first biomarker measurement for those 

of the included patients with consecutive measurements. When relating 

T-tau concentrations to time of survival in our cohort a clear trend of 

rapidly rising T-tau concentrations closer to date of death could be seen 

(figure 10).  On further inspection, the same phenomenon could be seen 

in the sub-sample of patients in our cohort with repeated CSF T-tau 

measurements. In this group an exponential increase in T-tau 

concentrations could be observed as time to death diminished (figure 

11). This trend could not be observed in patients with AD or other 

dementias where both T-tau and P-tau concentrations remained stable in 

relation to survival. 

 

Figure 10. T-tau concentrations exponentially increase as date 
of death approaches. 
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Figure 11. The longitudinal measurements of CSF T-tau in CJD reveal an exponential increase as 
date of death approaches. 

 

This study demonstrates the diagnostic power of T-tau and the 

T-tau/P-tau ratio in CJD. It also highlights the violent nature of CJD 

through the unparalleled rise in T-tau concentrations as the disease 

progresses. This property has not been demonstrated through 

longitudinal data before and is most probably unique to CJD pathology, 

and might be utilized in the diagnostic process. A suspected but not 

verified case of CJD could or should be examined again to check for 

increased T-tau concentrations strengthening the diagnostic assessment.  
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Paper IV – Hypothesis generation with 

clustering in peptidomics and identification of 

PTN151-166 as a biomarker of AD. 

 

 

n paper IV we set aside prevailing paradigms in AD pathology 

theory, setting out to find new biomarker prospects and generate 

new hypotheses to hopefully further the field and deepen the 

understanding of AD pathology. To achieve this we developed a new 

way of analyzing the vast amount of data generated in TMT LC-MS/MS 

analysis of CSF samples. By applying this new strategy of analysis, we 

were able to mine valuable information from sections of data that would 

be discarded in conventional analysis work flows.  

To organize and make sense of the massive data output from TMT 

LC-MS/MS analysis, the generated data, basically consisting of gigabytes 

of lists of detected peptides, their precursor m/z and the peptide 

spectrum produced at fragmentation, is matched against protein 

sequence databases of known peptides and accompanying fragment 

spectra. Identification is achieved by utilizing the combination of the 

precursor m/z and the fragment spectra as a unique fingerprint and key 

to identification [262]. These databases work well in identifying tryptic 

peptides, where about 90% of detected peptides can usually be identified. 

I



However, the databases are far less complete when it comes to 

endogenous peptides. In an average endogenous peptide dataset about 

20-30% of peptides are identified. Another limitation of trypsination is 

that the enzyme digestion discards valuable information. Trypsin cleaves 

peptide chains at lysine or arginine, thus proteins and peptides rich in 

those amino acids might get chopped up into parts too small for 

identification, permanently obscuring parts of the proteome [263]. 

Further, the proteome is accompanied by a peptidome, i.e. naturally 

occurring protein fragments that are part biologically inactive traces of 

degradation of proteins, but also contain bioactive species that interact 

with receptors, transmitting, modulating or counteracting responses [264, 

265]. After trypsination, information on naturally occurring peptides and 

forms of proteins is partly lost, since it’s not always possible to determine 

if a peptide is naturally present in the peptidome or the result of 

enzymatic cleavage by trypsin. The peptidome is important. Examples of 

important bioactive endogenous peptides include: 

 Substance P, a neuropeptide that interacts with the neurokinin 

1 receptor and mediates vasodilation, inflammation and pain 

[266]. 

 Angiotensin I and II, peptide hormones that are involved in 

vasoconstriction and increased blood pressure through the 

renin-angiotensin system [267]. 

 Neuropeptide Y, a neuropeptide with several functions that is 

active both in the CNS and the peripheral nervous system. It is 

considered stress-relieving, anxiolytic and neuroprotective [268]. 
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There is also value in exploring the biologically inactive remains of 

protein degradation, as they might be traces and biomarkers of important 

upstream processes. A prominent example of this is Aβ1-42 [269]. 

Exploration of the peptidome is prohibited by pre-analytical digestion as 

there is no way of discerning what peptides have been cut by artificial 

means or not.  

In paper IV, we aimed to circumvent the limitations of 

trypsination and database searching and rearranged the work flow, 

skipping the database search and replacing it with a spectral clustering 

step. The spectral clustering uses an algorithm to sift through the data, 

clustering together spectra based on precursor m/z, charge state and 

fragment ion patterns [270]. The relative abundance of the peptides in 

the resulting clusters can then be mapped against individual patient 

samples by means of the TMT reporter ions. The resulting array of 

clusters can thus be used to identify potential biomarkers by quantifying 

the relative concentrations of the clustered peptide in healthy controls vs 

disease groups, and evaluating their performance in separating the 

groups of interest. When a biomarker candidate is identified, it is then a 

matter of manual labor to identify the peptide sequence. By this strategy 

we managed to tap into the unexplored realms of the endogenous 

peptidome in a discovery cohort consisting of 40 healthy controls, 40 

MCI patients and 40 patients with AD from the Amsterdam Dementia 

Cohort [271].   

The clustering algorithm generated a list of 220,869 clusters. The 

clusters where a quantifiable signal was detected for more than half of 

the patients in the study were selected and then subjected to individual 



ROC analysis. The AUCs of each cluster were then used to rank all 

clusters according to their performance in separating the AD patients 

from the healthy controls in our cohort. The top 20 clusters are detailed 

in table 1.  

Table 1. The top twenty clusters in the discovery set, ranked from their ability to separate 
patients with AD from cognitively normal controls using ROC analysis. 

Column descriptions from left to right: Cluster # (identifier); precursor m/z; detected charge-
state; the number of study subjects in which the cluster was quantified; the relative median 
difference in abundance between AD patients and cognitively healthy controls; calculated AUC 
(from ROC analysis); indication of successful identification of peptide sequence; the identified 
peptides’ protein of origin where applicable. 

Cluster 
# 

m/z Charge Subjects 
(n) 

Rel. diff. 
AD vs HC 

AUC - HC 
vs AD 

Peptide 
identified 

Protein 
affiliation 

7367 794.115 5 119 215%** 0.96* -  
69078 664.799 2 94 18%** 0.92* -  
32527 777.426 3 68 13%** 0.92* -  
78065 748.382 2 120 38%** 0.91* √ Osteopontin 
4243 696.457 5 59 103%* 0.91* -  
82223 794.885 2 111 28%** 0.90* √ Clusterin 
34935 810.044 3 58 16%** 0.9* -  
9084 836.597 5 86 47%** 0.87* -  
36033 823.45 3 120 18%** 0.87* √ ApoE 
61266 1380.71 3 70 -20%** 0.86* -  
1889 427.579 3 120 15%** 0.86* -  
33238 787.612 3 69 19%** 0.85* -  
25327 684.044 3 60 9%** 0.85* -  
13290 840.651 4 111 17%** 0.85* √ Secretogranin1 
10464 786.901 4 59 22%** 0.85 -  
71623 685.336 2 61 13%** 0.83* -  
12243 911.104 5 70 -28%** 0.82 -  
87816 848.511 2 69 16%** 0.8* -  
6405 690.794 4 60 13%* 0.79* -  
53204 1088.54 3 60 4%* 0.79* -  

 
** Indicates statistical significance (p < .001) 
* Indicates statistical significance (p < .05) 

 

 Cluster 7376 exhibited promising qualities as a biomarker 

candidate with an AUC of 0.96, i.e. a near perfect discrimination of AD 
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patients and controls, and a relative median abundance difference of 

215% between the same groups. On further inspection the peptide 

revealed more 

interesting properties.  

The relative abundance 

of cluster 7376 in the 

MCI patients was at 

intermediate levels 

between the controls 

and the AD patients, 

further indicating a 

relation to AD 

pathology. Further, the 

MCI patients who at 

follow-up had 

progressed to AD (MCI-AD) had high abundances, reaching for the 

same as the AD patients, while the patients who remained at the MCI-

stage at follow-up (MCI-S) had abundances comparable to the healthy 

controls (figure 12). This is a sought after feature in an AD biomarker as 

being able to distinguish the MCI-S from the MCI-AD patients is 

important but can be clinically challenging. Even further, the MCI 

patients who progressed to other dementia disorders exhibited low 

abundances of the cluster 7376 peptide, with a mean level 35% higher 

than the healthy controls and 50% lower than the MCI patients that 

progressed to AD. Although the number of patients in this group was 

very limited (n=4), this hints at a specificity for detecting AD pathology. 

Another positive finding when studying the details in the properties of 

Figure 12. Scatter plot of the relative abundances of cluster 7376 
in the sub groups of the study cohort. 



cluster 7376 was that the few MCI-S patients who had high abundances 

of the cluster 7376 peptide tended to be amyloid positive, indicating a 

high risk of developing AD [272]. All in all, cluster 7376 exhibited ideal 

properties for an AD biomarker and was selected as the first candidate 

for further analysis.  

The identity of the cluster 7376 peptide proved elusive. The 

sleuth-like process of deconvoluting the peptide sequence from a 

fragment pattern and the m/z,  de novo sequencing, requires input in the 

form of an as rich fragment pattern as possible [273]. The original 

fragment pattern of cluster 7376 revealed little information, and when 

increasing the collision energy to crack more peptide bonds, the whole 

peptide seemed to obliterate, leaving no traces to aid the identification 

process. The key eventually turned out to be to switch fragmentation 

method. The Thermo Fusion mass spectrometer used in this study 

allows for not only the standard higher-collisional energy dissociation 

(HCD) fragmentation technique, but also electron transfer dissociation 

(ETD) fragmentation that is particularly well suited for fragmenting 

peptides with charge states >2 (the cluster 7376 peptide had a charge 

state of 5). The peptide sequence of cluster 7376 was revealed as 

AESKKKKKEGKKQEKM, and identified as amino acids 151-166 

from the sequence of the protein pleiotrophin (PTN). PTN is described 

in the literature as being abundant in the hippocampus and entorhinal 

cortex, but with no specific link to AD [208, 209]. PTN is covered in 

detail in the CSF biomarkers chapter of this thesis.  
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After candidate 

selection and identification, 

PTN was validated in an 

independent secondary 

patient cohort, consisting 

of 15 healthy controls and 

15 of each of AD, PD and 

PSP patients. A targeted 

Orbitrap parallel reaction 

monitoring (PRM) approach was used for analysis. The AD patients 

were verified as having a higher abundance of PTN151-165 compared to 

controls, and the specificity for AD-pathology was further corroborated 

as the PD and PSP patients were indistinguishable from the healthy 

controls (figure 13).  

This study serves as a proof-of-concept of the utility of the novel 

spectral clustering work-flow as a hypothesis generating machine. It 

should be noted that the clustering algorithm used in this study was not 

specifically designed for this task and could likely be improved to better 

performance. It should further be noted that out of the twenty top 

biomarker candidates that emerged in the discovery cohort, only four 

were readily identifiable. Several tantalizing candidates still remain to be 

processed. For instance, cluster 4243 had an AUC of .91 and a relative 

abundance median difference of 103%. The identity of this peptide still 

remains to be discovered. The developed spectral clustering work-flow 

has yet to be applied to one large cohort, but is universally applicable to 

MS/MS data and has tremendous potential to reveal further secrets in 

Figure 13. Scatter plot of the relative abundances of 
PTN151-166 in the validation cohort- 



other disease groups, fluids (plasma? saliva? urine?) and in variations of 

pre analytical processing of samples and mass spectrometer settings. 

PTN151-166 is a promising biomarker candidate. The PRM method 

used in the validation cohort is not ideal for systematic PTN151-166 

assessment, but the development of a targeted assay has not yet 

succeeded. The unusual nature of PTN151-166 in terms of extreme 

hydrophobicity and charge to mass ratio has proven hard to overcome 

hurdles in the method development. However, a targeted method will 

likely improve the diagnostic performance of PTN151-166. When a targeted 

method is finalized, the doors are open for further studies to proceed in 

characterizing the relation and specificity of PTN151-166 to AD-pathology, 

its potential in AD staging, and its relation to other biomarkers of AD 

and neurodegeneration. Hopefully, apart from providing clues to the 

inner workings of AD pathology, PTN151-166 can add another tool to the 

AD biomarker toolbox complementary to Aβ1-42, T-tau, P-tau, Ng and 

NfL. Potential functions of PTN151-166 that need to be examined and that 

PTN151-166 might add include earlier, more specific and more reliable 

diagnostics, sub classification of AD pathology or dependable 

assessment of rate of on-going pathology.  
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Discussion 

 

 

he growing threat of dementia to global health has motivated 

extraordinary efforts to be put into research to understand the 

many facets of neurodegeneration and to find effective 

treatments. Despite these efforts several key issues remain to be resolved 

and no disease modifying treatments have been found. CSF biomarkers 

have several different applications in dementia research and can in 

several different ways be used to forward the field. The papers included 

in this thesis highlight several of them.  

 The results in paper I validate the value of the core AD 

biomarkers, Aβ1-42, T-tau and P-tau, in discriminating AD from other 

dementias. It also demonstrates the lack of clear clinical and pathological 

syndromes in dementia in the large amount of overlap and spread in 

biomarker concentrations between the clinical diagnoses, indicating and 

corroborating what many previous studies have shown, i.e. that presence 

of concomitant AD-like pathology is common in other dementias. The 

inverse is also true in many cases. It might even in some settings be more 

T 



appropriate to consider dementia as a spectrum of clinical phenotypes 

exhibiting symptoms of degeneration stemming from a set of 

pathological concomitant and often related processes. There is an 

important difference in the clinical phenotype and the neuropathological 

correlate. The complex relationships between clinical presentations and 

immunohistochemical classifications in FTLD and FTD demonstrate 

this. FTD patients often suffer from frontotemporal tau or TDP-43 

pathology, but TDP-43 aggregates can also be seen in MND, although in 

different anatomical regions. FTD is in itself an array of similar disorders 

with different clinical presentations dependent on varying anatomical 

focal points of neurodegeneration and varying degrees of influences of 

tau and TDP-43 aggregation. Tau pathology is also present in AD, but in 

different anatomical regions of the brain, and with different influence of 

tau isoforms. And further, TDP-43 pathology is present in as many as 

40% of AD patients, but in the hippocampus and the entorhinal cortex, 

as opposed to in the frontal regions in FTD. Aβ plaque accumulation is a 

hallmark feature of AD but can also be seen in abundance in DLB, a 

disorder that is recognized neuropathologically by a build-up of α-

synuclein containing Lewy bodies in the cortex and substantia nigra. And 

inversely, Lewy bodies are found in more than half of the brains of AD 

patients’ post-mortem. Further, DLB doesn’t differ from PDD in 

neuropathological terms, but are only distinguished in clinical 

presentations where parkinsonian symptoms precede dementia in PDD 

while the order is reversed in DLB. Effects of vascular pathology is also 

very common in the elderly and might in addition to the mentioned 

disease processes further color the clinical presentation and affect the 

neurodegenerative processes. A drug trial might thus benefit from 
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assessing not only signs of the particular disease that it is aimed to treat, 

but also amounts of concomitant neuropathological processes that might 

influence the clinical phenotype and outcome measures of the trial. 

Treatments could be considered to target pathological processes rather 

that dementia syndromes. Awareness of the intertwined nature of the 

pathological processes in dementia should also be taken into account in 

studies aiming to explore the underlying causes of neurodegenerative 

diseases. Well-characterized biomarkers could help identify and quantify 

influences of different pathological processes in a patient and to tailor 

future treatments based on that information. 

 

Figure 14. Venn diagram of related pathologies in Dementia. 

Well characterized biomarkers play important roles in drug trials, 

where a prerequisite to produce dependable results is to enroll well suited 

subjects. There are several challenges in this task. Timing is of the 

essence as the neurodegenerative aspects of AD and other dementia 



disorders lead to neuronal damage that is likely irreversible, making it 

urgent to stop disease processes before damage sufficient to render 

clinical symptoms have occurred. CSF biomarkers can help identify 

subjects in the subclinical stages of disease that are more likely to be 

eligible for treatment. Having pathological concentrations of the 

biomarkers covered in paper I, i.e. CSF Aβ1-42, T-tau or P-tau, while at 

the MCI stage has been shown to be associated with a heightened risk of 

developing AD [274]. CSF NfL concentrations have also been shown to 

predict a more rapid decline from MCI at baseline into dementia [275]. 

CSF concentrations of PTN, the candidate biomarker identified in paper 

IV, were markedly elevated in AD, but also in MCI patients that on 

follow-up progressed to AD and in MCI patients that on follow-up had 

not yet progressed but were Aβ-positive, i.e. likely to progress to AD at a 

later point in time [276]. These properties would be ideal to help identify 

MCI patients likely to progress to AD, but need to be validated in further 

studies. 

Another reason for the importance of timely administration of 

treatment could be that hindering an upstream event might be necessary 

to be able to stop the disease progression in dementia, again highlighting 

the need for early biomarkers. In CJD, prions propagate their destructive 

properties from cell to cell in an ever multiplying fashion. 

Neurodegeneration escalates at an exponential rate as demonstrated in 

paper III by the marked increases in T-tau as the affected patient 

approach death. A single unfortunate event in the misfolding of a PrP-

protein might be sufficient to spark this process, but a single misfolded 

PrP-protein left behind after a nearly complete PrPSc-eradication by a 
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fictional future drug might also re-ignite it. As previously discussed, 

evidence suggests that tau and Aβ-pathology might also propagate in a 

prion-like fashion. This might be one of the reasons drug trials in AD in 

humans have thus far been futile.  

Another important aspect of successful drug trials and feature of 

well-researched biomarkers is to properly assess the effects of the given 

treatment. In dementia, stopping neurodegenerative processes is a core 

focus and means to measure the dynamics of these processes is needed 

to set up a primary outcome. In paper II, CSF NfL was shown to be 

increased in several dementias and to be correlated to cognitive 

performance and survival time. Several other studies have also provided 

evidence for CSF NfL as a measure of on-going neurodegeneration, 

particularly in subcortical regions of the brain [258]. These properties 

make NfL a suitable primary outcome measure in drug trials in 

neurodegenerative disorders, including AD, vascular dementia and FTD. 

In paper III, the CSF T-tau concentrations in CJD patients were 

observed to increase with disease burden and in relation to survival. T-

tau could thus be a suitable candidate marker for the monitoring of 

disease modifying treatments in CJD.  

The lack of positive results in AD drug trials indicates that the 

amyloid cascade hypothesis has limitations. The BACE1-inhibitor 

Verubecestat was developed by Merck and showed promising results in 

phase 1/2 studies with CSF Aβ concentrations in treated patients 

reduced by as much as 90 %, and no serious adverse effects. However, 

the following phase 2/3 EPOCH study had to be aborted in February of 

2018 when it was discovered in an interim analysis that treated patients 



performed worse than the placebo group in CDR-SB and ADAS-Cog13 

[277]. Similar results came of the ELAN/Wyeth active vaccine trial 

where plaque removal was found at autopsy, despite continued clinical 

cognitive decline [278].  It might be that some unknown event or series 

of events lead up to the evolution of a self-replicating disease process, 

that can withstand targeting by, for instance, BACE1-inhibitors by no 

longer being dependent on Aβ1-42 shedding to advance. Another 

explanation for the failure of Aβ-targeting drugs could be that Aβ-

deposition is not the culprit in AD pathogenesis but merely a side-effect 

of other processes that cause neurodegeneration, or that Aβ is a 

physiological response to some other unknown pathological process 

[279]. Transgenic mice engineered to produce excess amounts of Aβ not 

generated from APP form Aβ plaques but exhibit no cognitive decline 

[280]. The Arctic familial mutation in APP lead to ADAD through more 

aggregation prone Aβ but does not show amyloid on PET, although 

diffuse plaques are present histopathologically, pointing to other forms 

of Aβ such as oligomers being important for the pathological processes 

in AD [281]. It has been pointed out that Aβ1-42 production always 

generate a complementary APP-product, the APP intracellular domain 

(AICD). Being intracellular, the AICD is better situated to instigate cell 

damage than Aβ plaques [282]. The AICD has, however, not yet been 

thoroughly investigated. Aβ, or some form of Aβ, might even be a 

protective agent, which would explain why the Verubecestat treated 

patients had a faster rate of progression than the placebo group. In any 

case, this highlights the need to further detail the pathological 

mechanisms in AD and dementia in general. 
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To deepen the understanding of the molecular processes leading 

up to the pathologies present in dementia, innovative and explorative 

studies are needed. Efficient hypothesis generation and testing, as 

demonstrated in paper IV of this thesis, might be an important tool to 

uncover missing links, unravel the complex biochemical pathways in 

dementia and to guide further studies into uncharted territory. In paper 

IV, a vast amount of peptides were found and tested for their properties 

as biomarkers of AD. It should be noted that only five of those 

promising biomarkers were sequenced and one chosen for further 

processing and validation. 15 more biomarkers that all separated AD 

from controls with an AUC of >0.75 and with p-values < .05 were left 

untouched. We recognize the problem of multiple testing in studies like 

this, but through further validation the false positives would readily be 

discovered. Further effort put into automatization and fine-tuning of the 

clustering, as well as the selection and identification processes would 

likely maximize output and limit the amount of manual labor needed to 

run further studies applying the spectral clustering work-flow described 

in paper IV.  

The neurodegeneration biomarker toolbox 

 The results of paper I-III of this thesis demonstrate the power of 

carefully mapping out the properties of biomarkers across and between 

disorders and stages of disease. By rigorous characterization of 

biomarkers by the many research groups in the field, a biomarker 

toolbox has been created, containing gear to address a plethora of 

important questions that arise in relation to neurodegeneration in both 



the clinical and research settings. Aβ1-42, T-tau and P-tau, can be used to 

identify AD pathology even at very early and preclinical stages of disease, 

providing insights into the pathological processes underlying the disease 

(figure 14). Being able to reliably identify the most common dementia 

disorder and discriminate it from important differential diagnoses aids 

the diagnostic process of dementia. CSF Aβ1-42, t-tau and p-tau might 

further be used to assess the efficacy of potential treatments of AD.  

 As demonstrated in paper III, T-tau, but not P-tau, is also a 

biomarker of CJD where even higher concentrations than in AD can be 

seen. A pattern of ever increasing concentrations is also a hallmark CJD 

sign, not seen in other diseases.  

 NfL can be used to assess rate of ongoing subcortical 

neurodegeneration across several dementias, and might be considered a 

biomarker of general neurodegeneration. It is also associated with 

survival, in that higher concentrations are linked to shorter life 

expectancy in AD, but also other dementias. Particularly high CSF NfL 

concentrations are seen in FTD that engage the frontal cortex, which is 

rich in myelinated axons, and can be used to strengthen the case for 

FTD in differential diagnostic inquiries. 

 PTN151-166, the new biomarker prospect identified in paper IV, is 

naturally a lot less well characterized than the other biomarkers described 

in this thesis. However, it has showed promising properties so far. The 

MCI patients in the discovery set had higher levels of PTN151-166 than the 

healthy controls, and at follow-up, the MCI patients with higher 

concentrations at baseline had more often progressed to AD than those 
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with low concentrations. As previously discussed, this is a central feature 

of any AD biomarker. Further studies are needed to more carefully 

establish at what stage of disease concentrations of PTN151-166 might start 

to change, and to relate these changes to detectable changes in other 

biomarkers and cognition, i.e. to fit it into the Jack-curve (figure 15). 

Further studies are also needed to identify the pathological significance 

of PTN151-166 to AD pathology, and its relation to disease processes in 

other diseases. 

 

 

These are only the CSF biomarkers covered in this thesis. Many 

other imaging and fluid biomarkers exist that all add utility to the 

biomarker toolbox. However, and as previously discussed, the need to 

further expand this toolbox is still high. No cure for any dementia yet 

exists, and proper equipment to tackle the task of finding one is in 

demand. 

 

Figure 15. The Jack-curve. A popular model of the order of events in 
AD. Image courtesy of Clifford Jack and Lancet Neurology. 
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Concluding remarks and outlook 

 

he findings presented in the studies of this thesis demonstrate 

the value of CSF biomarkers from several aspects. The 

diagnostic value of CSF biomarkers is shown in paper I, III 

and IV where AD and CJD were discriminated from healthy controls 

and important differential diagnoses with high accuracy. The prognostic 

value of CSF biomarkers were displayed in paper I, II, III and IV where 

clinical outcomes measured by conversion from MCI to AD, cognitive 

test scoring and time of survival where predicted. The investigative value 

of a CSF biomarker was exhibited in paper IV, where a peptide was 

shown to have a previously unknown association with AD pathology, 

leaving further investigation into the implications of this relationship to 

be addressed by further studies.  

 The hunt for disease modifying treatments of neurodegenerative 

diseases is on. While no clinical trials have been fruitful in recent years, 

many are sure still to come. All major experimental drugs tested in these 

clinical trials have been developed in models of ADAD, i.e. not in SAD, 

the most prominent and common type of the disease, and not the one 

that these drugs have been subjected to treat. This design flaw will 

T 



probably have to be remedied in future trials. Biomarkers will continue 

to aid these trials in patient recruitment and assessment of effectiveness. 

Hopefully, successful trials will soon yield effective treatments, and when 

that goal is reached, biomarkers will likely be needed to continuously 

identify patients eligible for treatment. Future studies into blood 

biomarkers will likely widen the scope of use of biomarkers in 

neurodegeneration.  

 Some tools are still missing in the biomarker toolbox. No 

effective biomarkers of PD or PDD exist today. A way of assessing α-

synuclein pathology would aid a difficult diagnostic process, which is 

today based on the clinical features of the patient, and would benefit 

patients, doctors and researchers alike. The same would be true of a 

biomarker of TDP-43 pathology in FTD, and different types of tau 

pathology in tauopathies. 

 The continued failure of drugs targeting the usual suspects as 

stated by the amyloid cascade hypothesis emphasizes the value in 

keeping an open mind to revising the model and to find new drug 

targets. Explorative studies like the one in paper IV might aid this 

process. Most certainly, there are still secrets to unveil that will shed light 

onto the inner workings of the pathologic processes in AD. 

  

  

 

 



101  
 

 

Acknowledgements 

 

 Thank you, Henrik Zetterberg, for being my main supervisor. 

You are a true inspiration and, for me, one of the biggest enigmas in AD. 

How can such an unmeasurable quantity of competence, positivity, 

humor and pure likability be fitted into one man? Further studies are 

needed to reveal the underlying causes of this syndrome, that if 

harnessed would surely solve many of the world’s problems. 

Thank you, Niklas Mattsson, for being my co-supervisor and for 

meeting me at a seminar at the BF2 course and mistakenly believing my 

knowledge in statistics was far greater than in reality, and thank you for 

not outing me when discovering otherwise. Thank you for all your 

efforts into correcting my many errors in manuscript writing and data 

analysis, and by that (sometimes painfully) hammering out the skillset I 

proudly have acquired during my time as a PhD student.    

Thank you, Kaj Blennow, the phenomenal scientist and the 

patriarch of the lab, for being my co-supervisor. Thank you for letting 

me be part of the well-oiled machinery that is the internationally 

renowned Blennow lab for a while, and thank you for lending an ear to 

my uninitiated questions on countless occasions over these years. 



Thank you, Johan Gobom, for being my mirror image in 

fascination of the unknown, nerdy, funny and generally cool, including, 

but not limited to, astronomy, physics, engrish, sci-fi, bad design, the 

singularity etc., etc.. Thank you for letting me participate in your 

exploration of the endogenous human peptidome and probably the most 

novel-worthy and exciting period of my professional career, the summer 

of 2014, when we applied clustering algorithms to huge amounts of 

unexplored MS/MS data, instilling a sense of “I see wonderful things” 

on many work days.  

Thank you to all my co-authors from the papers included in this 

thesis, as well as those that were not included. 

Thank you to my family. Thank you, Ellen, the love of my life, 

for supporting me through all the ups and downs over the years. 

Whatever our souls are made of, yours and mine are the same. Thank 

you little ones, Iris, Vera and Edith. I still have a hard time fathoming 

your mere existence and how lucky I am to be forever outnumbered by 

you. Thank you, mom, for giving me a much needed kick in the butt to 

actually start my university studies all those years ago. I’ll never forget the 

proud smile on your face when you told me that you had googled my 

name to look for my e-mail address and all these impressive looking and 

incomprehensible scientific articles appeared. I miss you every day. 

Thank you, dad, for your generosity and genuine kindness, and for 

promoting my interest in computers as a child, which has paid off so 

many times and led to me getting into both programming and science. 

Thank you, Sara and Cecilia, for being my sisters and my best friends at 



103  
 

the same time. I would be a whole different, and much worse, person 

without you. 

Thank you, Kerstin and Jonas, for being my second parents, for 

being almost as big fans of my kids as I am, and for providing much 

needed psychological counseling and support over the years. 

Thank you to all my friends. I can’t believe there’s so many of 

you despite my general weirdness. Thank you for being there for me! A 

special thanks to Calle and Henrik N for being my go-to sources of 

advice and support regarding relationships, parenting, and life in general. 

Thank you Henrik R and Erik W for providing an outlet for my nerdiest 

sides, while also being the funniest people I know. And thank you Olle 

for helping get through medical school, but also Braid, Trine, Limbo, 

The witness etc. at the same time. 

Thank you Hlin, Simon, Karl and Christoffer, my co-PhD-

students, for all great discussions over the years, both science- and GoT-

related (but mostly GoT-related). 

Thank you to all the wonderfully distinct characters at the lab. 

Thank you Gunnar and Ann, who are sharing a soul mate-ship that I feel 

somewhat part of by sharing Gunnar’s taste in music and Ann’s taste in 

TV series and all things nerdy. Thank you Celia, Erik P, Ulf, Staffan, Bob 

and Rahil for helping me out in various ways throughout my PhD 

studies. Thank you Marianne Wall, one very intelligent and very cool 

lady, who turned my prejudice of the Excel skills of women over 50 on 

end several times over. 



  



105  
 

References 

1. Global, regional, and national age-sex-specific mortality and life 
expectancy, 1950-2017: a systematic analysis for the Global Burden 
of Disease Study 2017. Lancet, 2018. 392(10159): p. 1684-1735. 

2. Preston, S.H., The changing relation between mortality and level of 
economic development. Population Studies, Vol. 29, No. 2, July 
1975. Int J Epidemiol, 2007. 36(3): p. 484-90. 

3. Gakidou, E., et al., Increased educational attainment and its effect 
on child mortality in 175 countries between 1970 and 2009: a 
systematic analysis. Lancet, 2010. 376(9745): p. 959-74. 

4. Larson, E.B., K. Yaffe, and K.M. Langa, New Insights into the 
Dementia Epidemic. N Engl J Med, 2013. 369(24): p. 2275-7. 

5. Prince, M., et al., Recent global trends in the prevalence and 
incidence of dementia, and survival with dementia. Alzheimers Res 
Ther, 2016. 8(1): p. 23. 

6. Richly, P., et al., Are medical doctors in Latin America prepared to 
deal with the dementia epidemic? Int Psychogeriatr, 2018: p. 1-2. 

7. Sathianathan, R. and S.J. Kantipudi, The dementia epidemic: Impact, 
prevention, and challenges for India. Indian J Psychiatry, 2018. 
60(2): p. 165-167. 

8. Association, A.P., Diagnostic and Statistical Manual of Mental 
Disorders (DSM–5). 2013. 

9. Kukull, W.A., et al., Dementia and Alzheimer disease incidence: a 
prospective cohort study. Arch Neurol, 2002. 59(11): p. 1737-46. 

10. Qiu, C., et al., Twenty-year changes in dementia occurrence suggest 
decreasing incidence in central Stockholm, Sweden. Neurology, 
2013. 80(20): p. 1888-94. 

11. Matthews, F.E., et al., A two-decade comparison of prevalence of 
dementia in individuals aged 65 years and older from three 
geographical areas of England: results of the Cognitive Function 
and Ageing Study I and II. Lancet, 2013. 382(9902): p. 1405-12. 

12. Schrijvers, E.M., et al., Is dementia incidence declining?: Trends in 
dementia incidence since 1990 in the Rotterdam Study. Neurology, 
2012. 78(19): p. 1456-63. 

13. Hickman, R.A., A. Faustin, and T. Wisniewski, Alzheimer Disease 
and Its Growing Epidemic: Risk Factors, Biomarkers, and the 
Urgent Need for Therapeutics. Neurol Clin, 2016. 34(4): p. 941-953. 



14. 2017 Alzheimer's disease facts and figures. Alzheimer's & 
Dementia: The Journal of the Alzheimer's Association, 2017. 13(4): 
p. 325-373. 

15. Alzheimer, A., H. Forstl, and R. Levy, On certain peculiar diseases 
of old age. Hist Psychiatry, 1991. 2(5 Pt 1): p. 71-101. 

16. Alzheimer, A., A Characteristic Disease of the Cerebral Cortex: 
Meeting of South-West Germany Psychiatrists Held in Tubingen on 
November 3rd and 4th, 1906. 1907. 

17. Burns, A. and S. Iliffe, Alzheimer's disease. Bmj, 2009. 338: p. 
b158. 

18. Mayeux, R. and Y. Stern, Epidemiology of Alzheimer disease. Cold 
Spring Harb Perspect Med, 2012. 2(8): p. 1-18. 

19. Masters, C.L., et al., Amyloid plaque core protein in Alzheimer 
disease and Down syndrome. Proc Natl Acad Sci U S A, 1985. 
82(12): p. 4245-4249. 

20. Grundke-Iqbal, I., et al., Abnormal phosphorylation of the 
microtubule-associated protein tau (tau) in Alzheimer cytoskeletal 
pathology. Proc Natl Acad Sci U S A, 1986. 83(13): p. 4913-7. 

21. Hardy, J.A. and G.A. Higgins, Alzheimer's disease: the amyloid 
cascade hypothesis. Science, 1992. 256(5054): p. 184-5. 

22. Glenner, G.G. and C.W. Wong, Alzheimer's disease: initial report of 
the purification and characterization of a novel cerebrovascular 
amyloid protein. Biochem Biophys Res Commun, 1984. 120(3): p. 
885-90. 

23. De Strooper, B., Lessons from a failed gamma-secretase Alzheimer 
trial. Cell, 2014. 159(4): p. 721-6. 

24. Mangialasche, F., et al., Alzheimer's disease: clinical trials and drug 
development. The Lancet Neurology, 2010. 9(7): p. 702-716. 

25. Citron, M., Alzheimer's disease: strategies for disease modification. 
Nat Rev Drug Discov, 2010. 9(5): p. 387-398. 

26. Stewart, K.L. and S.E. Radford, Amyloid plaques beyond Aβ: a 
survey of the diverse modulators of amyloid aggregation. Biophys 
Rev, 2017. 9(4): p. 405-419. 

27. Armstrong, R.A., A critical analysis of the 'amyloid cascade 
hypothesis'. Folia Neuropathol, 2014. 52(3): p. 211-25. 

28. Thevis, M., T. Kuuranne, and H. Geyer, Annual banned-substance 
review: Analytical approaches in human sports drug testing. Drug 
Test Anal, 2018. 

29. Shea, Y.F., et al., A systematic review of familial Alzheimer's 
disease: Differences in presentation of clinical features among three 
mutated genes and potential ethnic differences. J Formos Med 
Assoc, 2016. 115(2): p. 67-75. 



107  
 

30. Games, D., et al., Alzheimer-type neuropathology in transgenic mice 
overexpressing V717F beta-amyloid precursor protein. Nature, 
1995. 373(6514): p. 523-7. 

31. Kepp, K.P., Ten Challenges of the Amyloid Hypothesis of 
Alzheimer's Disease. J Alzheimers Dis, 2017. 55(2): p. 447-457. 

32. Price, J.L., et al., Neuropathology of nondemented aging: 
presumptive evidence for preclinical Alzheimer disease. Neurobiol 
Aging, 2009. 30(7): p. 1026-36. 

33. Rodrigue, K.M., et al., beta-Amyloid burden in healthy aging: 
regional distribution and cognitive consequences. Neurology, 2012. 
78(6): p. 387-95. 

34. Jack, C.R., Jr., et al., Hypothetical model of dynamic biomarkers of 
the Alzheimer's pathological cascade. Lancet Neurol, 2010. 9(1): p. 
119-28. 

35. Nelson, P.T., et al., Correlation of Alzheimer disease 
neuropathologic changes with cognitive status: a review of the 
literature. J Neuropathol Exp Neurol, 2012. 71(5): p. 362-81. 

36. Mehta, D., et al., Why do trials for Alzheimer's disease drugs keep 
failing? A discontinued drug perspective for 2010-2015. Expert Opin 
Investig Drugs, 2017. 26(6): p. 735-739. 

37. Sevigny, J., et al., The antibody aducanumab reduces Abeta plaques 
in Alzheimer's disease. Nature, 2016. 537(7618): p. 50-6. 

38. Cummings, J., et al., Alzheimer's disease drug development pipeline: 
2018. Alzheimers Dement (N Y), 2018. 4: p. 195-214. 

39. Salloway, S., et al., Two phase 3 trials of bapineuzumab in mild-to-
moderate Alzheimer's disease. N Engl J Med, 2014. 370(4): p. 322-
33. 

40. Scheltens, P., et al., Biomarker data from scarlet road: A global 
phase 3 study of gantenerumab in patients with prodromal 
Alzheimer's disease. Alzheimer's & Dementia: The Journal of the 
Alzheimer's Association, 2015. 11(7): p. P331. 

41. Alzforum.org, Aducanumab Overview. 2019. 
42. Bouras, C., et al., Regional distribution of neurofibrillary tangles 

and senile plaques in the cerebral cortex of elderly patients: a 
quantitative evaluation of a one-year autopsy population from a 
geriatric hospital. Cereb Cortex, 1994. 4(2): p. 138-50. 

43. Braak, H., et al., Stages of the pathologic process in Alzheimer 
disease: age categories from 1 to 100 years. J Neuropathol Exp 
Neurol, 2011. 70(11): p. 960-9. 

44. Schmitz, C., et al., Hippocampal neuron loss exceeds amyloid 
plaque load in a transgenic mouse model of Alzheimer's disease. Am 
J Pathol, 2004. 164(4): p. 1495-502. 



45. Mucke, L. and D.J. Selkoe, Neurotoxicity of amyloid β-protein: 
synaptic and network dysfunction. Cold Spring Harb Perspect Med, 
2012. 2(7): p. a006338. 

46. Jellinger, K.A. and C. Bancher, Senile dementia with tangles (tangle 
predominant form of senile dementia). Brain Pathol, 1998. 8(2): p. 
367-76. 

47. Kamp, J.A., et al., Amyloid beta in hereditary cerebral hemorrhage 
with amyloidosis-Dutch type. Rev Neurosci, 2014. 25(5): p. 641-51. 

48. Drummond, E. and T. Wisniewski, Alzheimer's disease: 
experimental models and reality. Acta Neuropathol, 2017. 133(2): p. 
155-175. 

49. VALESKI, J.E., et al., DIFFERENTIATION OF BULLOUS 
PEMPHIGOID FROM EPIDERMOLYSIS BULLOSA ACQUISITA 
ON FROZEN SKIN BIOPSIES. International Journal of 
Dermatology, 1992. 31(1): p. 37-41. 

50. Di Paolo, G. and T.-W. Kim, Linking lipids to Alzheimer&#39;s 
disease: cholesterol and beyond. Nature Reviews Neuroscience, 
2011. 12: p. 284. 

51. Kim, J., J.M. Basak, and D.M. Holtzman, The role of apolipoprotein 
E in Alzheimer's disease. Neuron, 2009. 63(3): p. 287-303. 

52. Wolozin, B., et al., Simvastatin is associated with a reduced 
incidence of dementia and Parkinson's disease. BMC Med, 2007. 5: 
p. 20. 

53. Rocca, W.A., et al., Sex and gender differences in the causes of 
dementia: a narrative review. Maturitas, 2014. 79(2): p. 196-201. 

54. Lingwood, D. and K. Simons, Lipid rafts as a membrane-organizing 
principle. Science, 2010. 327(5961): p. 46-50. 

55. Ball, M.J., et al., Intracerebral propagation of Alzheimer's disease: 
strengthening evidence of a herpes simplex virus etiology. 
Alzheimers Dement, 2013. 9(2): p. 169-75. 

56. Alvarez, G., et al., Herpes simplex virus type 1 induces nuclear 
accumulation of hyperphosphorylated tau in neuronal cells. J 
Neurosci Res, 2012. 90(5): p. 1020-9. 

57. Dominy, S.S., et al., <em>Porphyromonas gingivalis</em> in 
Alzheimer’s disease brains: Evidence for disease causation and 
treatment with small-molecule inhibitors. Science Advances, 2019. 
5(1): p. eaau3333. 

58. World Health Organization., The ICD-10 classification of mental 
and behavioural disorders : diagnostic criteria for research. 1993, 
Geneva: World Health Organization. xiii, 248 p. 

59. McKhann, G., et al., Clinical diagnosis of Alzheimer's disease: 
report of the NINCDS-ADRDA Work Group under the auspices of 



109  
 

Department of Health and Human Services Task Force on 
Alzheimer's Disease. Neurology, 1984. 34(7): p. 939-44. 

60. Dubois, B., et al., Preclinical Alzheimer's disease: Definition, 
natural history, and diagnostic criteria. Alzheimers Dement, 2016. 
12(3): p. 292-323. 

61. Dubois, B., et al., Advancing research diagnostic criteria for 
Alzheimer's disease: the IWG-2 criteria. Lancet Neurol, 2014. 13(6): 
p. 614-629. 

62. Sorbi, S., et al., EFNS-ENS Guidelines on the diagnosis and 
management of disorders associated with dementia. Eur J Neurol, 
2012. 19(9): p. 1159-79. 

63. Simonsen, A.H., et al., Recommendations for CSF AD biomarkers in 
the diagnostic evaluation of dementia. Alzheimers Dement, 2017. 
13(3): p. 274-284. 

64. Montine, T.J., et al., National Institute on Aging-Alzheimer's 
Association guidelines for the neuropathologic assessment of 
Alzheimer's disease: a practical approach. Acta Neuropathol, 2012. 
123(1): p. 1-11. 

65. Hamilton, R.L., Lewy bodies in Alzheimer's disease: a 
neuropathological review of 145 cases using alpha-synuclein 
immunohistochemistry. Brain Pathol, 2000. 10(3): p. 378-84. 

66. Jellinger, K.A. and J. Attems, Prevalence of dementia disorders in 
the oldest-old: an autopsy study. Acta Neuropathol, 2010. 119(4): p. 
421-33. 

67. Goedert, M., Tau protein and neurodegeneration. Semin Cell Dev 
Biol, 2004. 15(1): p. 45-9. 

68. Buee, L., et al., Tau protein isoforms, phosphorylation and role in 
neurodegenerative disorders. Brain Res Brain Res Rev, 2000. 33(1): 
p. 95-130. 

69. Jellinger, K.A. and A.D. Korczyn, Are dementia with Lewy bodies 
and Parkinson's disease dementia the same disease? BMC Med, 
2018. 16(1): p. 34. 

70. Briggs, R., S.P. Kennelly, and D. O'Neill, Drug treatments in 
Alzheimer's disease. Clin Med (Lond), 2016. 16(3): p. 247-53. 

71. Birks, J. and R.J. Harvey, Donepezil for dementia due to Alzheimer's 
disease. Cochrane Database Syst Rev, 2006(1): p. Cd001190. 

72. Olin, J. and L. Schneider, Galantamine for Alzheimer's disease. 
Cochrane Database Syst Rev, 2002(3): p. Cd001747. 

73. Kishi, T., et al., Memantine for Alzheimer's Disease: An Updated 
Systematic Review and Meta-analysis. J Alzheimers Dis, 2017. 
60(2): p. 401-425. 



74. Fleischhacker, W.W., A. Buchgeher, and H. Schubert, Memantine in 
the treatment of senile dementia of the Alzheimer type. Prog 
Neuropsychopharmacol Biol Psychiatry, 1986. 10(1): p. 87-93. 

75. Matsunaga, S., T. Kishi, and N. Iwata, Memantine monotherapy for 
Alzheimer's disease: a systematic review and meta-analysis. PLoS 
One, 2015. 10(4): p. e0123289. 

76. Iadecola, C., The pathobiology of vascular dementia. Neuron, 2013. 
80(4): p. 844-66. 

77. O'Brien, J.T. and A. Thomas, Vascular dementia. Lancet, 2015. 
386(10004): p. 1698-706. 

78. Korczyn, A.D., V. Vakhapova, and L.T. Grinberg, Vascular 
dementia. J Neurol Sci, 2012. 322(1-2): p. 2-10. 

79. Custodio, N., et al., Mixed dementia: A review of the evidence. 
Dement Neuropsychol, 2017. 11(4): p. 364-370. 

80. Jellinger, K.A. and J. Attems, Neuropathological evaluation of 
mixed dementia. J Neurol Sci, 2007. 257(1-2): p. 80-7. 

81. Skoog, I., et al., Decreasing prevalence of dementia in 85-year olds 
examined 22 years apart: the influence of education and stroke. Sci 
Rep, 2017. 7(1): p. 6136. 

82. Goldman, J.S., et al., Comparison of family histories in FTLD 
subtypes and related tauopathies. Neurology, 2005. 65(11): p. 1817-
9. 

83. Snowden, J.S., D. Neary, and D.M. Mann, Frontotemporal 
dementia. Br J Psychiatry, 2002. 180: p. 140-3. 

84. Olney, N.T., S. Spina, and B.L. Miller, Frontotemporal Dementia. 
Neurol Clin, 2017. 35(2): p. 339-374. 

85. Perri, R., et al., Alzheimer's disease and frontal variant of 
frontotemporal dementia-- a very brief battery for cognitive and 
behavioural distinction. J Neurol, 2005. 252(10): p. 1238-44. 

86. Rosen, H.J., et al., Utility of clinical criteria in differentiating 
frontotemporal lobar degeneration (FTLD) from AD. Neurology, 
2002. 58(11): p. 1608-15. 

87. Desmarais, P., et al., Social inappropriateness in neurodegenerative 
disorders. Int Psychogeriatr, 2018. 30(2): p. 197-207. 

88. Gorno-Tempini, M.L., et al., Classification of primary progressive 
aphasia and its variants. Neurology, 2011. 76(11): p. 1006-14. 

89. Young, J.J., et al., Frontotemporal dementia: latest evidence and 
clinical implications. Ther Adv Psychopharmacol, 2018. 8(1): p. 33-
48. 

90. Mackenzie, I.R., et al., Novel types of frontotemporal lobar 
degeneration: beyond tau and TDP-43. J Mol Neurosci, 2011. 45(3): 
p. 402-8. 



111  
 

91. Forrest, S.L., et al., Retiring the term FTDP-17 as MAPT mutations 
are genetic forms of sporadic frontotemporal tauopathies. Brain, 
2018. 141(2): p. 521-534. 

92. Andersen, P.M., ALS and FTD: two sides of the same coin? Lancet 
Neurol, 2013. 12(10): p. 937-8. 

93. Lillo, P. and J.R. Hodges, Frontotemporal dementia and motor 
neurone disease: overlapping clinic-pathological disorders. J Clin 
Neurosci, 2009. 16(9): p. 1131-5. 

94. Kwiatkowski, T.J., Jr., et al., Mutations in the FUS/TLS gene on 
chromosome 16 cause familial amyotrophic lateral sclerosis. 
Science, 2009. 323(5918): p. 1205-8. 

95. Mackenzie, I.R., R. Rademakers, and M. Neumann, TDP-43 and 
FUS in amyotrophic lateral sclerosis and frontotemporal dementia. 
Lancet Neurol, 2010. 9(10): p. 995-1007. 

96. Tsai, R.M. and A.L. Boxer, Treatment of frontotemporal dementia. 
Curr Treat Options Neurol, 2014. 16(11): p. 319. 

97. Bott, N.T., et al., Frontotemporal dementia: diagnosis, deficits and 
management. Neurodegener Dis Manag, 2014. 4(6): p. 439-54. 

98. Pezzoli, S., et al., Structural and Functional Neuroimaging of Visual 
Hallucinations in Lewy Body Disease: A Systematic Literature 
Review. Brain Sci, 2017. 7(7). 

99. St Louis, E.K., A.R. Boeve, and B.F. Boeve, REM Sleep Behavior 
Disorder in Parkinson's Disease and Other Synucleinopathies. Mov 
Disord, 2017. 32(5): p. 645-658. 

100. Jurek, L., et al., Behavioral and psychological symptoms in Lewy 
body disease: a review. Geriatr Psychol Neuropsychiatr Vieil, 2018. 
16(1): p. 87-95. 

101. Almeida, L., et al., Depressive Symptoms are Frequent in Atypical 
Parkinsonian Disorders. Mov Disord Clin Pract, 2017. 4(2): p. 191-
197. 

102. McKeith, I.G. and U.P. Mosimann, Dementia with Lewy bodies and 
Parkinson's disease. Parkinsonism Relat Disord, 2004. 10 Suppl 1: 
p. S15-8. 

103. Gomperts, S.N., Lewy Body Dementias: Dementia With Lewy Bodies 
and Parkinson Disease Dementia. Continuum (Minneap Minn), 
2016. 22(2 Dementia): p. 435-63. 

104. Boot, B.P., et al., Treatment of dementia with lewy bodies. Curr 
Treat Options Neurol, 2013. 15(6): p. 738-64. 

105. Johnson, R.T. and C.J. Gibbs, Jr., Creutzfeldt-Jakob disease and 
related transmissible spongiform encephalopathies. N Engl J Med, 
1998. 339(27): p. 1994-2004. 

106. Prusiner, S.B., The Nobel Prize in Physiology or Medicine. 1997. 



107. Brown, P., et al., Creutzfeldt-Jakob disease in France: II. Clinical 
characteristics of 124 consecutive verified cases during the decade 
1968--1977. Ann Neurol, 1979. 6(5): p. 430-7. 

108. Khan, Z. and P.C. Bollu, Insomnia, Fatal Familial, in StatPearls. 
2018, StatPearls Publishing 

StatPearls Publishing LLC.: Treasure Island (FL). 
109. Zigas, V. and D.C. Gajdusek, Kuru: clinical study of a new 

syndrome resembling paralysis agitans in natives of the Eastern 
Highlands of Australian New Guinea. Med J Aust, 1957. 44(21): p. 
745-54. 

110. Liberski, P.P., Gerstmann-Straussler-Scheinker disease. Adv Exp 
Med Biol, 2012. 724: p. 128-37. 

111. Lee, J., et al., Prion diseases as transmissible zoonotic diseases. 
Osong Public Health Res Perspect, 2013. 4(1): p. 57-66. 

112. Hamaguchi, T., et al., The risk of iatrogenic Creutzfeldt-Jakob 
disease through medical and surgical procedures. Neuropathology, 
2009. 29(5): p. 625-31. 

113. Kupfer, L., W. Hinrichs, and M.H. Groschup, Prion protein 
misfolding. Curr Mol Med, 2009. 9(7): p. 826-35. 

114. Vazquez-Fernandez, E., et al., The Structure of Mammalian Prions 
and Their Aggregates. Int Rev Cell Mol Biol, 2017. 329: p. 277-301. 

115. Takada, L.T., et al., Prion disease. Handb Clin Neurol, 2018. 148: p. 
441-464. 

116. Castle, A.R. and A.C. Gill, Physiological Functions of the Cellular 
Prion Protein. Front Mol Biosci, 2017. 4: p. 19. 

117. Whitehouse, I.J., et al., Prion protein is decreased in Alzheimer's 
brain and inversely correlates with BACE1 activity, amyloid-beta 
levels and Braak stage. PLoS One, 2013. 8(4): p. e59554. 

118. Iba, M., et al., Synthetic tau fibrils mediate transmission of 
neurofibrillary tangles in a transgenic mouse model of Alzheimer's-
like tauopathy. J Neurosci, 2013. 33(3): p. 1024-37. 

119. Morales, R., et al., De novo induction of amyloid-β deposition in 
vivo. Molecular Psychiatry, 2011. 17: p. 1347. 

120. Lannfelt, L., et al., Perspectives on future Alzheimer therapies: 
amyloid-beta protofibrils - a new target for immunotherapy with 
BAN2401 in Alzheimer's disease. Alzheimers Res Ther, 2014. 6(2): 
p. 16. 

121. Alzforum.org, BAN2401 Overview. 2019. 
122. Biogen, E.C., Ltd., Eisai and Biogen Announce Detailed Results of 

Phase II Clinical Study of BAN2401 in Early Alzheimer’s Disease at 



113  
 

Alzheimer’s Association International Conference (AAIC) 2018. 
2018. 

123. Bateman, R.J., et al., Clinical and biomarker changes in dominantly 
inherited Alzheimer's disease. N Engl J Med, 2012. 367(9): p. 795-
804. 

124. Fagan, A.M., et al., Longitudinal change in CSF biomarkers in 
autosomal-dominant Alzheimer's disease. Sci Transl Med, 2014. 
6(226): p. 226ra30. 

125. Preische, O., et al., Serum neurofilament dynamics predicts 
neurodegeneration and clinical progression in presymptomatic 
Alzheimer's disease. Nat Med, 2019. 

126. Weston, P.S.J., et al., Serum neurofilament light in familial 
Alzheimer disease: A marker of early neurodegeneration. 
Neurology, 2017. 89(21): p. 2167-2175. 

127. Risacher, S.L. and A.J. Saykin, Neuroimaging Biomarkers of 
Neurodegenerative Diseases and Dementia. Semin Neurol, 2013. 
33(4): p. 386-416. 

128. Bonifacio, G. and G. Zamboni, Brain imaging in dementia. 
Postgraduate Medical Journal, 2016. 92(1088): p. 333-340. 

129. Johnson, K.A., et al., Brain Imaging in Alzheimer Disease. Cold 
Spring Harb Perspect Med, 2012. 2(4). 

130. Rubi, S., et al., Concordance between brain (18)F-FDG PET and 
cerebrospinal fluid biomarkers in diagnosing Alzheimer's disease. 
Rev Esp Med Nucl Imagen Mol, 2018. 37(1): p. 3-8. 

131. Zwan, M., et al., Concordance between cerebrospinal fluid 
biomarkers and [11C]PIB PET in a memory clinic cohort. J 
Alzheimers Dis, 2014. 41(3): p. 801-7. 

132. Pannee, J., et al., Reference measurement procedure for CSF 
amyloid beta (Abeta)1-42 and the CSF Abeta1-42 /Abeta1-40 ratio - 
a cross-validation study against amyloid PET. J Neurochem, 2016. 
139(4): p. 651-658. 

133. Wright, B.L.C., J.T.F. Lai, and A.J. Sinclair, Cerebrospinal fluid 
and lumbar puncture: a practical review. Journal of Neurology, 
2012. 259(8): p. 1530-1545. 

134. Wright, B.L., J.T. Lai, and A.J. Sinclair, Cerebrospinal fluid and 
lumbar puncture: a practical review. J Neurol, 2012. 259(8): p. 
1530-45. 

135. Blennow, K., et al., Cerebrospinal fluid and plasma biomarkers in 
Alzheimer disease. Nat Rev Neurol, 2010. 6(3): p. 131-44. 

136. Maddalena, A., et al., Biochemical diagnosis of Alzheimer disease by 
measuring the cerebrospinal fluid ratio of phosphorylated tau 



protein to beta-amyloid peptide42. Arch Neurol, 2003. 60(9): p. 
1202-6. 

137. de Jong, D., et al., Cerebrospinal fluid amyloid 
beta42/phosphorylated tau ratio discriminates between Alzheimer's 
disease and vascular dementia. J Gerontol A Biol Sci Med Sci, 
2006. 61(7): p. 755-8. 

138. Hansson, O., et al., Association between CSF biomarkers and 
incipient Alzheimer's disease in patients with mild cognitive 
impairment: a follow-up study. Lancet Neurol, 2006. 5(3): p. 228-34. 

139. Lewczuk, P., et al., Amyloid-beta 42/40 cerebrospinal fluid 
concentration ratio in the diagnostics of Alzheimer's disease: 
validation of two novel assays. J Alzheimers Dis, 2015. 43(1): p. 
183-91. 

140. Schoonenboom, N.S., et al., Cerebrospinal fluid markers for 
differential dementia diagnosis in a large memory clinic cohort. 
Neurology, 2012. 78(1): p. 47-54. 

141. Rosen, C., et al., Fluid biomarkers in Alzheimer's disease - current 
concepts. Mol Neurodegener, 2013. 8: p. 20. 

142. Zekry, D., J.J. Hauw, and G. Gold, Mixed dementia: epidemiology, 
diagnosis, and treatment. J Am Geriatr Soc, 2002. 50(8): p. 1431-8. 

143. Forman, M.S., et al., Frontotemporal dementia: clinicopathological 
correlations. Ann Neurol, 2006. 59(6): p. 952-62. 

144. Kertesz, A., et al., The evolution and pathology of frontotemporal 
dementia. Brain, 2005. 128(Pt 9): p. 1996-2005. 

145. Mawuenyega, K.G., et al., Decreased clearance of CNS beta-
amyloid in Alzheimer's disease. Science, 2010. 330(6012): p. 1774. 

146. Ring, S., et al., The secreted beta-amyloid precursor protein 
ectodomain APPs alpha is sufficient to rescue the anatomical, 
behavioral, and electrophysiological abnormalities of APP-deficient 
mice. J Neurosci, 2007. 27(29): p. 7817-26. 

147. Rosenberg, R.N., et al., Genomics of Alzheimer Disease: A Review. 
JAMA Neurol, 2016. 73(7): p. 867-74. 

148. Willem, M., S. Lammich, and C. Haass, Function, regulation and 
therapeutic properties of beta-secretase (BACE1). Semin Cell Dev 
Biol, 2009. 20(2): p. 175-82. 

149. Moustafa, A.A., et al., Genetic underpinnings in Alzheimer's disease 
- a review. Rev Neurosci, 2018. 29(1): p. 21-38. 

150. Citron, M., et al., Mutant presenilins of Alzheimer's disease increase 
production of 42-residue amyloid beta-protein in both transfected 
cells and transgenic mice. Nat Med, 1997. 3(1): p. 67-72. 



115  
 

151. Arber, C., et al., Familial Alzheimer's disease patient-derived 
neurons reveal distinct mutation-specific effects on amyloid beta. 
Mol Psychiatry, 2019. 

152. Strozyk, D., et al., CSF Abeta 42 levels correlate with amyloid-
neuropathology in a population-based autopsy study. Neurology, 
2003. 60(4): p. 652-6. 

153. Jansen, W.J., et al., Association of Cerebral Amyloid-beta 
Aggregation With Cognitive Functioning in Persons Without 
Dementia. JAMA Psychiatry, 2018. 75(1): p. 84-95. 

154. Pawlowski, M., S.G. Meuth, and T. Duning, Cerebrospinal Fluid 
Biomarkers in Alzheimer's Disease-From Brain Starch to Bench and 
Bedside. Diagnostics (Basel), 2017. 7(3). 

155. Blennow, K., Cerebrospinal fluid protein biomarkers for 
Alzheimer's disease. NeuroRx, 2004. 1(2): p. 213-25. 

156. Iwatsubo, T., et al., Visualization of A beta 42(43) and A beta 40 in 
senile plaques with end-specific A beta monoclonals: evidence that 
an initially deposited species is A beta 42(43). Neuron, 1994. 13(1): 
p. 45-53. 

157. Miller, D.L., et al., Peptide compositions of the cerebrovascular and 
senile plaque core amyloid deposits of Alzheimer's disease. Arch 
Biochem Biophys, 1993. 301(1): p. 41-52. 

158. Motter, R., et al., Reduction of beta-amyloid peptide42 in the 
cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol, 
1995. 38(4): p. 643-8. 

159. Vanderstichele, H., et al., Development of a Specific Diagnostic Test 
for Measurement of β-Amyloid (1-42) [βA4(l-42)] in CSF, in 
Progress in Alzheimer’s and Parkinson’s Diseases, A. Fisher, I. 
Hanin, and M. Yoshida, Editors. 1998, Springer US: Boston, MA. p. 
773-778. 

160. Bousiges, O. and F. Blanc, Diagnostic value of cerebro-spinal fluid 
biomarkers in dementia with lewy bodies. Clin Chim Acta, 2019. 
490: p. 222-228. 

161. Gomperts, S.N., et al., Brain amyloid and cognition in Lewy body 
diseases. Mov Disord, 2012. 27(8): p. 965-73. 

162. Sakono, M. and T. Zako, Amyloid oligomers: formation and toxicity 
of Abeta oligomers. Febs j, 2010. 277(6): p. 1348-58. 

163. Lambert, M.P., et al., Diffusible, nonfibrillar ligands derived from 
Abeta1-42 are potent central nervous system neurotoxins. Proc Natl 
Acad Sci U S A, 1998. 95(11): p. 6448-53. 

164. Walsh, D.M., et al., Naturally secreted oligomers of amyloid beta 
protein potently inhibit hippocampal long-term potentiation in vivo. 
Nature, 2002. 416(6880): p. 535-9. 



165. Nilsberth, C., et al., The 'Arctic' APP mutation (E693G) causes 
Alzheimer's disease by enhanced Abeta protofibril formation. Nat 
Neurosci, 2001. 4(9): p. 887-93. 

166. Kalimo, H., et al., The Arctic AβPP mutation leads to Alzheimer's 
disease pathology with highly variable topographic deposition of 
differentially truncated Aβ. Acta Neuropathol Commun, 2013. 1: p. 
60. 

167. Walker, L.C. and M. Jucker, Neurodegenerative diseases: expanding 
the prion concept. Annu Rev Neurosci, 2015. 38: p. 87-103. 

168. Meyer-Luehmann, M., et al., Exogenous induction of cerebral beta-
amyloidogenesis is governed by agent and host. Science, 2006. 
313(5794): p. 1781-4. 

169. Rangel, A., et al., Distinct patterns of spread of prion infection in 
brains of mice expressing anchorless or anchored forms of prion 
protein. Acta Neuropathol Commun, 2014. 2: p. 8. 

170. Braak, H. and E. Braak, Staging of Alzheimer's disease-related 
neurofibrillary changes. Neurobiol Aging, 1995. 16(3): p. 271-8; 
discussion 278-84. 

171. Alonso, A.D., et al., Abnormal phosphorylation of tau and the 
mechanism of Alzheimer neurofibrillary degeneration: sequestration 
of microtubule-associated proteins 1 and 2 and the disassembly of 
microtubules by the abnormal tau. Proc Natl Acad Sci U S A, 1997. 
94(1): p. 298-303. 

172. Domise, M., et al., AMP-activated protein kinase modulates tau 
phosphorylation and tau pathology in vivo. Sci Rep, 2016. 6: p. 
26758. 

173. Sanabria-Castro, A., I. Alvarado-Echeverria, and C. Monge-Bonilla, 
Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann 
Neurosci, 2017. 24(1): p. 46-54. 

174. Kovacs, G.G., Molecular Pathological Classification of 
Neurodegenerative Diseases: Turning towards Precision Medicine. 
Int J Mol Sci, 2016. 17(2). 

175. Rapoport, M., et al., Tau is essential to beta -amyloid-induced 
neurotoxicity. Proc Natl Acad Sci U S A, 2002. 99(9): p. 6364-9. 

176. Zempel, H., et al., Aβ Oligomers Cause Localized 
Ca<sup>2+</sup> Elevation, Missorting of Endogenous Tau into 
Dendrites, Tau Phosphorylation, and Destruction of Microtubules 
and Spines. The Journal of Neuroscience, 2010. 30(36): p. 11938-
11950. 

177. Rocher, A.B., et al., Structural and functional changes in tau mutant 
mice neurons are not linked to the presence of NFTs. Exp Neurol, 
2010. 223(2): p. 385-93. 



117  
 

178. Santacruz, K., et al., Tau suppression in a neurodegenerative mouse 
model improves memory function. Science, 2005. 309(5733): p. 476-
81. 

179. Sato, C., et al., Tau Kinetics in Neurons and the Human Central 
Nervous System. Neuron, 2018. 97(6): p. 1284-1298.e7. 

180. Olsson, B., et al., CSF and blood biomarkers for the diagnosis of 
Alzheimer's disease: a systematic review and meta-analysis. Lancet 
Neurol, 2016. 15(7): p. 673-684. 

181. Zetterberg, H., Review: Tau in biofluids - relation to pathology, 
imaging and clinical features. Neuropathol Appl Neurobiol, 2017. 
43(3): p. 194-199. 

182. Kaerst, L., et al., Using cerebrospinal fluid marker profiles in 
clinical diagnosis of dementia with Lewy bodies, Parkinson's 
disease, and Alzheimer's disease. J Alzheimers Dis, 2014. 38(1): p. 
63-73. 

183. Ermann, N., et al., CSF nonphosphorylated Tau as a biomarker for 
the discrimination of AD from CJD. Ann Clin Transl Neurol, 2018. 
5(7): p. 883-887. 

184. Schraen-Maschke, S., et al., Tau as a biomarker of 
neurodegenerative diseases. Biomark Med, 2008. 2(4): p. 363-84. 

185. Mudher, A., et al., What is the evidence that tau pathology spreads 
through prion-like propagation? Acta Neuropathol Commun, 2017. 
5(1): p. 99. 

186. Falcon, B., et al., Conformation determines the seeding potencies of 
native and recombinant Tau aggregates. J Biol Chem, 2015. 290(2): 
p. 1049-65. 

187. Holmes, B.B., et al., Heparan sulfate proteoglycans mediate 
internalization and propagation of specific proteopathic seeds. Proc 
Natl Acad Sci U S A, 2013. 110(33): p. E3138-47. 

188. Seeley, W.W., et al., Neurodegenerative diseases target large-scale 
human brain networks. Neuron, 2009. 62(1): p. 42-52. 

189. Zhou, J., et al., Predicting regional neurodegeneration from the 
healthy brain functional connectome. Neuron, 2012. 73(6): p. 1216-
27. 

190. Frost, B., R.L. Jacks, and M.I. Diamond, Propagation of tau 
misfolding from the outside to the inside of a cell. J Biol Chem, 
2009. 284(19): p. 12845-52. 

191. Liu, L., et al., Trans-synaptic spread of tau pathology in vivo. PLoS 
One, 2012. 7(2): p. e31302. 

192. Guo, J.L. and V.M. Lee, Seeding of normal Tau by pathological Tau 
conformers drives pathogenesis of Alzheimer-like tangles. J Biol 
Chem, 2011. 286(17): p. 15317-31. 



193. Schlaepfer, W.W. and R.G. Lynch, Immunofluorescence studies of 
neurofilaments in the rat and human peripheral and central nervous 
system. J Cell Biol, 1977. 74(1): p. 241-50. 

194. Zetterberg, H., et al., Neurochemical aftermath of amateur boxing. 
Arch Neurol, 2006. 63(9): p. 1277-80. 

195. Lycke, J.N., et al., Neurofilament protein in cerebrospinal fluid: a 
potential marker of activity in multiple sclerosis. J Neurol Neurosurg 
Psychiatry, 1998. 64(3): p. 402-4. 

196. Zanier, E.R., et al., Neurofilament light chain levels in ventricular 
cerebrospinal fluid after acute aneurysmal subarachnoid 
haemorrhage. J Neurol Neurosurg Psychiatry, 2011. 82(2): p. 157-9. 

197. Zetterberg, H., Neurofilament Light: A Dynamic Cross-Disease 
Fluid Biomarker for Neurodegeneration. Neuron, 2016. 91(1): p. 1-
3. 

198. Kvartsberg, H., et al., Cerebrospinal fluid levels of the synaptic 
protein neurogranin correlates with cognitive decline in prodromal 
Alzheimer's disease. Alzheimers Dement, 2015. 11(10): p. 1180-90. 

199. Thorsell, A., et al., Neurogranin in cerebrospinal fluid as a marker 
of synaptic degeneration in Alzheimer's disease. Brain Res, 2010. 
1362: p. 13-22. 

200. Portelius, E., et al., Cerebrospinal fluid neurogranin concentration 
in neurodegeneration: relation to clinical phenotypes and 
neuropathology. Acta Neuropathol, 2018. 136(3): p. 363-376. 

201. Ober, C. and G.L. Chupp, The chitinase and chitinase-like proteins: 
a review of genetic and functional studies in asthma and immune-
mediated diseases. Curr Opin Allergy Clin Immunol, 2009. 9(5): p. 
401-8. 

202. Bonneh-Barkay, D., et al., YKL-40, a marker of simian 
immunodeficiency virus encephalitis, modulates the biological 
activity of basic fibroblast growth factor. Am J Pathol, 2008. 173(1): 
p. 130-43. 

203. Bonneh-Barkay, D., et al., In vivo CHI3L1 (YKL-40) expression in 
astrocytes in acute and chronic neurological diseases. J 
Neuroinflammation, 2010. 7: p. 34. 

204. Llorens, F., et al., YKL-40 in the brain and cerebrospinal fluid of 
neurodegenerative dementias. Mol Neurodegener, 2017. 12(1): p. 
83. 

205. Zetterberg, H. and J.M. Schott, Biomarkers for Alzheimer's disease 
beyond amyloid and tau. Nat Med, 2019. 25(2): p. 201-203. 

206. Nation, D.A., et al., Blood-brain barrier breakdown is an early 
biomarker of human cognitive dysfunction. Nat Med, 2019. 25(2): p. 
270-276. 



119  
 

207. Silos-Santiago, I., et al., Localization of pleiotrophin and its mRNA 
in subpopulations of neurons and their corresponding axonal tracts 
suggests important roles in neural-glial interactions during 
development and in maturity. J Neurobiol, 1996. 31(3): p. 283-96. 

208. Wanaka, A., S.L. Carroll, and J. Milbrandt, Developmentally 
regulated expression of pleiotrophin, a novel heparin binding 
growth factor, in the nervous system of the rat. Brain Res Dev Brain 
Res, 1993. 72(1): p. 133-44. 

209. Gonzalez-Castillo, C., et al., The absence of pleiotrophin modulates 
gene expression in the hippocampus in vivo and in cerebellar 
granule cells in vitro. Mol Cell Neurosci, 2016. 75: p. 113-21. 

210. Yeh, H.J., et al., Upregulation of pleiotrophin gene expression in 
developing microvasculature, macrophages, and astrocytes after 
acute ischemic brain injury. J Neurosci, 1998. 18(10): p. 3699-707. 

211. Maeda, N., et al., 6B4 proteoglycan/phosphacan, an extracellular 
variant of receptor-like protein-tyrosine phosphatase 
zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-
associated molecule (HB-GAM). J Biol Chem, 1996. 271(35): p. 
21446-52. 

212. Meng, K., et al., Pleiotrophin signals increased tyrosine 
phosphorylation of beta beta-catenin through inactivation of the 
intrinsic catalytic activity of the receptor-type protein tyrosine 
phosphatase beta/zeta. Proc Natl Acad Sci U S A, 2000. 97(6): p. 
2603-8. 

213. Ryan, E., D. Shen, and X. Wang, Structural studies reveal an 
important role for the pleiotrophin C-terminus in mediating 
interactions with chondroitin sulfate. Febs j, 2016. 283(8): p. 1488-
503. 

214. Bernard-Pierrot, I., et al., The lysine-rich C-terminal tail of heparin 
affin regulatory peptide is required for mitogenic and tumor 
formation activities. J Biol Chem, 2001. 276(15): p. 12228-34. 

215. Senis, Y.A. and A.J. Barr, Targeting Receptor-Type Protein 
Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better 
than Inside-Out? Molecules, 2018. 23(3): p. 569. 

216. Ulery, P.G. and D.K. Strickland, LRP in Alzheimer's disease: friend 
or foe? J Clin Invest, 2000. 106(9): p. 1077-9. 

217. Lambert, J.C., et al., Association at LRP gene locus with sporadic 
late-onset Alzheimer's disease. Lancet, 1998. 351(9118): p. 1787-8. 

218. Herradón, G. and C. Pérez-García, Targeting midkine and 
pleiotrophin signalling pathways in addiction and 
neurodegenerative disorders: recent progress and perspectives. Br J 
Pharmacol, 2014. 171(4): p. 837-48. 



219. Liu, Q., et al., Amyloid precursor protein regulates brain 
apolipoprotein E and cholesterol metabolism through lipoprotein 
receptor LRP1. Neuron, 2007. 56(1): p. 66-78. 

220. Shibata, M., et al., Clearance of Alzheimer's amyloid-ss(1-40) 
peptide from brain by LDL receptor-related protein-1 at the blood-
brain barrier. J Clin Invest, 2000. 106(12): p. 1489-99. 

221. Kadomatsu, K. and T. Muramatsu, Midkine and pleiotrophin in 
neural development and cancer. Cancer Lett, 2004. 204(2): p. 127-
43. 

222. Wisniewski, T., et al., HB-GAM is a cytokine present in Alzheimer's 
and Down's syndrome lesions. Neuroreport, 1996. 7(2): p. 667-71. 

223. Namba, Y., et al., Apolipoprotein E immunoreactivity in cerebral 
amyloid deposits and neurofibrillary tangles in Alzheimer's disease 
and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res, 
1991. 541(1): p. 163-6. 

224. Arelin, K., et al., LRP and senile plaques in Alzheimer's disease: 
colocalization with apolipoprotein E and with activated astrocytes. 
Brain Res Mol Brain Res, 2002. 104(1): p. 38-46. 

225. Blennow, K., A Review of Fluid Biomarkers for Alzheimer's 
Disease: Moving from CSF to Blood. Neurol Ther, 2017. 6(Suppl 1): 
p. 15-24. 

226. Khalil, M., et al., Neurofilaments as biomarkers in neurological 
disorders. Nat Rev Neurol, 2018. 14(10): p. 577-589. 

227. Gisslen, M., et al., Plasma Concentration of the Neurofilament Light 
Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A 
Cross-Sectional Study. EBioMedicine, 2016. 3: p. 135-140. 

228. Rissin, D.M., et al., Single-molecule enzyme-linked immunosorbent 
assay detects serum proteins at subfemtomolar concentrations. Nat 
Biotechnol, 2010. 28(6): p. 595-9. 

229. Shahim, P., et al., Serum neurofilament light as a biomarker for mild 
traumatic brain injury in contact sports. Neurology, 2017. 88(19): p. 
1788-1794. 

230. Mattsson, N., et al., Association of Plasma Neurofilament Light With 
Neurodegeneration in Patients With Alzheimer Disease. JAMA 
Neurol, 2017. 74(5): p. 557-566. 

231. Mattsson, N., et al., Plasma tau in Alzheimer disease. Neurology, 
2016. 87(17): p. 1827-1835. 

232. Mielke, M.M., et al., Association of Plasma Total Tau Level With 
Cognitive Decline and Risk of Mild Cognitive Impairment or 
Dementia in the Mayo Clinic Study on Aging. JAMA Neurol, 2017. 
74(9): p. 1073-1080. 



121  
 

233. Janelidze, S., et al., Plasma beta-amyloid in Alzheimer's disease and 
vascular disease. Sci Rep, 2016. 6: p. 26801. 

234. Nakamura, A., et al., High performance plasma amyloid-beta 
biomarkers for Alzheimer's disease. Nature, 2018. 554(7691): p. 
249-254. 

235. Weiland, G., [The enzyme-linked immunosorbent assay (ELISA)--a 
new serodiagnostic method for the detection of parasitic infections 
(author's transl)]. MMW Munch Med Wochenschr, 1978. 120(44): 
p. 1457-60. 

236. Aydin, S., A short history, principles, and types of ELISA, and our 
laboratory experience with peptide/protein analyses using ELISA. 
Peptides, 2015. 72: p. 4-15. 

237. Fenn, J.B., Electrospray wings for molecular elephants (Nobel 
lecture). Angew Chem Int Ed Engl, 2003. 42(33): p. 3871-94. 

238. Yoshida, T., ["Process of the research and development received 
Nobel Prize in Chemistry 2002"]. Rinsho Byori, 2004. 52(1): p. 35-
41. 

239. Foundation, T.N., The Nobel Prize in Physics 1989. 1989. 
240. Mittal, M., et al., ICP-MS: Analytical Method for Identification and 

Detection of Elemental Impurities. Curr Drug Discov Technol, 2017. 
14(2): p. 106-120. 

241. Palmer, P.T. and T.F. Limero, Mass spectrometry in the U.S. space 
program: past, present, and future. J Am Soc Mass Spectrom, 2001. 
12(6): p. 656-75. 

242. Navarro-Gonzalez, R., et al., The limitations on organic detection in 
Mars-like soils by thermal volatilization-gas chromatography-MS 
and their implications for the Viking results. Proc Natl Acad Sci U S 
A, 2006. 103(44): p. 16089-94. 

243. Hillenkamp, F. and M. Karas, Mass spectrometry of peptides and 
proteins by matrix-assisted ultraviolet laser desorption/ionization. 
Methods Enzymol, 1990. 193: p. 280-95. 

244. Hillenkamp, F., et al., Matrix-assisted laser desorption/ionization 
mass spectrometry of biopolymers. Anal Chem, 1991. 63(24): p. 
1193a-1203a. 

245. Yamashita, M. and J.B. Fenn, Electrospray ion source. Another 
variation on the free-jet theme. The Journal of Physical Chemistry, 
1984. 88(20): p. 4451-4459. 

246. Makarov, A., Electrostatic axially harmonic orbital trapping: a 
high-performance technique of mass analysis. Anal Chem, 2000. 
72(6): p. 1156-62. 



247. Eliuk, S. and A. Makarov, Evolution of Orbitrap Mass Spectrometry 
Instrumentation. Annu Rev Anal Chem (Palo Alto Calif), 2015. 8: p. 
61-80. 

248. Olsen, J.V., et al., Parts per million mass accuracy on an Orbitrap 
mass spectrometer via lock mass injection into a C-trap. Mol Cell 
Proteomics, 2005. 4(12): p. 2010-21. 

249. Steen, H. and M. Mann, The ABC's (and XYZ's) of peptide 
sequencing. Nat Rev Mol Cell Biol, 2004. 5(9): p. 699-711. 

250. Seidler, J., et al., De novo sequencing of peptides by MS/MS. 
Proteomics, 2010. 10(4): p. 634-49. 

251. Dayon, L. and J.C. Sanchez, Relative protein quantification by 
MS/MS using the tandem mass tag technology. Methods Mol Biol, 
2012. 893: p. 115-27. 

252. McDonald, W.H. and J.R. Yates, 3rd, Shotgun proteomics and 
biomarker discovery. Dis Markers, 2002. 18(2): p. 99-105. 

253. Zhang, Y., et al., Protein analysis by shotgun/bottom-up proteomics. 
Chem Rev, 2013. 113(4): p. 2343-94. 

254. Svedem. Svenska demensregistret - Årsrapport 2016. 2016; 
Available from: www.ucr.uu.se/svedem/om-
svedem/arsrapporter/svedem-arsrapport-2016/viewdocument. 

255. Socialstyrelsen. Dödsorsaksregistret 2018; Available from: 
www.socialstyrelsen.se/register/dodsorsaksregistret. 

256. Tsuboi, Y., H. Uchikado, and D.W. Dickson, Neuropathology of 
Parkinson's disease dementia and dementia with Lewy bodies with 
reference to striatal pathology. Parkinsonism Relat Disord, 2007. 13 
Suppl 3: p. S221-4. 

257. Bibl, M., et al., CSF amyloid-beta-peptides in Alzheimer's disease, 
dementia with Lewy bodies and Parkinson's disease dementia. Brain, 
2006. 129(Pt 5): p. 1177-87. 

258. Sjogren, M., et al., Neurofilament protein in cerebrospinal fluid: a 
marker of white matter changes. J Neurosci Res, 2001. 66(3): p. 
510-6. 

259. Blennow, K., A. Johansson, and H. Zetterberg, Diagnostic value of 
14-3-3beta immunoblot and T-tau/P-tau ratio in clinically suspected 
Creutzfeldt-Jakob disease. Int J Mol Med, 2005. 16(6): p. 1147-9. 

260. Skinningsrud, A., et al., Cerebrospinal fluid markers in Creutzfeldt-
Jakob disease. Cerebrospinal Fluid Res, 2008. 5: p. 14. 

261. Bahl, J.M., et al., The diagnostic efficiency of biomarkers in 
sporadic Creutzfeldt-Jakob disease compared to Alzheimer's 
disease. Neurobiol Aging, 2009. 30(11): p. 1834-41. 

262. Eng, J.K., A.L. McCormack, and J.R. Yates, An approach to 
correlate tandem mass spectral data of peptides with amino acid 



123  
 

sequences in a protein database. J Am Soc Mass Spectrom, 1994. 
5(11): p. 976-89. 

263. Tsiatsiani, L. and A.J. Heck, Proteomics beyond trypsin. Febs j, 
2015. 282(14): p. 2612-26. 

264. Hallberg, M., Neuropeptides: metabolism to bioactive fragments and 
the pharmacology of their receptors. Med Res Rev, 2015. 35(3): p. 
464-519. 

265. Romanova, E.V., S.E. Dowd, and J.V. Sweedler, Quantitation of 
endogenous peptides using mass spectrometry based methods. Curr 
Opin Chem Biol, 2013. 17(5): p. 801-8. 

266. Mashaghi, A., et al., Neuropeptide substance P and the immune 
response. Cell Mol Life Sci, 2016. 73(22): p. 4249-4264. 

267. Patel, S., et al., Renin-angiotensin-aldosterone (RAAS): The 
ubiquitous system for homeostasis and pathologies. Biomed 
Pharmacother, 2017. 94: p. 317-325. 

268. Reichmann, F. and P. Holzer, Neuropeptide Y: A stressful review. 
Neuropeptides, 2016. 55: p. 99-109. 

269. Rosa, M.I., et al., Accuracy of cerebrospinal fluid Abeta(1-42) for 
Alzheimer's disease diagnosis: a systematic review and meta-
analysis. J Alzheimers Dis, 2014. 40(2): p. 443-54. 

270. Wan, K.X., I. Vidavsky, and M.L. Gross, Comparing similar 
spectra: from similarity index to spectral contrast angle. J Am Soc 
Mass Spectrom, 2002. 13(1): p. 85-8. 

271. van der Flier, W.M., et al., Optimizing patient care and research: the 
Amsterdam Dementia Cohort. J Alzheimers Dis, 2014. 41(1): p. 
313-27. 

272. Blennow, K. and H. Hampel, CSF markers for incipient Alzheimer's 
disease. The Lancet Neurology, 2003. 2(10): p. 605-613. 

273. Ma, B., et al., PEAKS: powerful software for peptide de novo 
sequencing by tandem mass spectrometry. Rapid Communications in 
Mass Spectrometry, 2003. 17(20): p. 2337-2342. 

274. Mattsson, N., et al., CSF biomarkers and incipient Alzheimer disease 
in patients with mild cognitive impairment. JAMA, 2009. 302(4): p. 
385-93. 

275. Zetterberg, H., et al., Association of Cerebrospinal Fluid 
Neurofilament Light Concentration With Alzheimer Disease 
Progression. JAMA Neurol, 2016. 73(1): p. 60-7. 

276. Hansson, O., et al., Evaluation of plasma Abeta(40) and Abeta(42) 
as predictors of conversion to Alzheimer's disease in patients with 
mild cognitive impairment. Neurobiol Aging, 2010. 31(3): p. 357-67. 

277. Alzforum.org, Therapeutics - Verubecestat. 2019. 



278. Holmes, C., et al., Long-term effects of Abeta42 immunisation in 
Alzheimer's disease: follow-up of a randomised, placebo-controlled 
phase I trial. Lancet, 2008. 372(9634): p. 216-23. 

279. Gouras, G.K., T.T. Olsson, and O. Hansson, β-Amyloid peptides and 
amyloid plaques in Alzheimer's disease. Neurotherapeutics, 2015. 
12(1): p. 3-11. 

280. Kim, J., et al., Normal cognition in transgenic BRI2-Abeta mice. 
Mol Neurodegener, 2013. 8: p. 15. 

281. Scholl, M., et al., Low PiB PET retention in presence of pathologic 
CSF biomarkers in Arctic APP mutation carriers. Neurology, 2012. 
79(3): p. 229-36. 

282. Bukhari, H., et al., Small things matter: Implications of APP 
intracellular domain AICD nuclear signaling in the progression and 
pathogenesis of Alzheimer's disease. Prog Neurobiol, 2017. 156: p. 
189-213. 

 


