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Spectral properties of elliptic operators in singular settings
and applications

Medet Nursultanov

Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

Abstract

The present thesis is focused on the investigation of the spectral properties of
the linear elliptic operators in the presence of singularities. It is divided into three
chapters.

In the first chapter, we consider geometric singularities. We construct the heat
kernel on surfaces with corners for Dirichlet, Neumann, and Robin boundary condi-
tions as well as mixed problems. We compute the short time asymptotic expansion
of the heat trace and apply this expansion to demonstrate a collection of results
showing that corners are spectral invariants.

The second chapter deals with linear elliptic second-order partial differential op-
erators with bounded real-valued measurable coefficients. We emphasize that no
smoothness assumptions are made on the coefficients. In the first half of this chap-
ter, we study a time-harmonic electromagnetic and acoustic waveguide, modeled by
an infinite cylinder with a non-smooth cross section. We introduce an infinitesi-
mal generator for the wave evolution along the cylinder and prove estimates of the
functional calculi of these first order non-self adjoint differential operators with non-
smooth coefficients. Applying our new functional calculus, we obtain a one-to-one
correspondence between polynomially bounded time-harmonic waves and functions
in appropriate spectral subspaces. In the second half, we derive Weyl’s law for the
weighted Laplace equation on Riemannian manifolds with rough metric. Key ingre-
dients in the proofs were demonstrated by Birman and Solomyak nearly fifty years
ago in their seminal work on eigenvalue asymptotics.

In the last chapter, we investigate spectral properties of Sturm-Liouville opera-
tors with singular potentials. We consider different types of singularities. We find
asymptotic formulas for the eigenvalues of the Sturm-Liouville operator on the finite
interval, with potentials having a strong negative singularity at one endpoint. We
establish that, unlike the case of an infinite interval, the asymptotics for positive
eigenvalues does not depend on the potential, and it is the same as in the regular
case. The asymptotics of the negative eigenvalues may depend on the potential
quite strongly. Next, we study the perturbation of the generalized anharmonic oscil-
lator. We consider a piecewise Hölder continuous perturbation and investigate how
the Hölder constant can affect the eigenvalues. Finally, for the the Sturm-Liouville
operator with δ-interactions, two-sided estimates of the distribution function of the
eigenvalues and a criterion for the discreteness of the spectrum in terms of the Otel-
baev function are obtained.

Keywords: Elliptic operators, spectrum, heat kernel, Sturm-Liouville operators,
asymptotic of eigenvalues.
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Introduction

Due to numerous applications, the linear elliptic partial differential equations of
second order form important class of equations in mathematical physics. A second
order linear elliptic partial differential equation can be written in the form

(1) Lu =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xi

)
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f, x ∈ Ω,

where Ω is a geometric object (domain in Euclidean space or manifold) and aij(x),
bi(x), c(x) are given functions such that

∑n
i,j=1 aij(x)ξiξj �= 0 for all x ∈ Ω and

ξ ∈ Cn. An operator L is called elliptic.
If Ω is bounded with smooth boundary and all coefficients (aji, bj, c) are smooth

and bounded, the investigation of such operators becomes comparably easy. How-
ever, for an actual real world problem the smoothness and boundedness are not
necessarily guarantied, so that one has to consider different singularities, which pro-
duce some difficulties.

The present thesis is focused on the investigation of the spectral properties of the
elliptic operators in the presence of singularities. It is divided into three chapters.
In the first chapter, we consider geometric singularities. More precisely, we consider
the Laplace operator on surfaces with non-smooth boundary, in particular with
corners. We are interested in heat kernels for Dirichlet, Neumann, Robin, and
mixed boundary conditions. The second chapter deals with linear elliptic second-
order partial differential operators with bounded real-valued measurable coefficients.
We emphasize that no smoothness assumptions are made on the coefficients. We
will consider two physical models where such operators arise. We also generalize the
Weyl’s law of the Laplacian to compact Riemannian manifolds with rough metric.
In the last chapter, we investigate the spectral properties of the Sturm-Liouville
operators with singular potentials.
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The heat kernel and geometric spectral invariants on

surfaces with corners (Papers I and II)

Let M be a smooth, n-dimensional topological manifold with smooth boundary,
∂M , such that the closure, M = M ∪ ∂M , is compact. If M is equipped with a
smooth Riemannian metric, g, then there is a naturally associated Laplace operator,
which in local coordinates is

(2) Δg = − 1√
det(g)

n∑
i,j=1

∂

∂xi

(
gij
√

det(g)
∂

∂xj

)
.

This is a second order elliptic operator with smooth coefficients, inherited from
the smoothness of the Riemannian metric. It is well known in this setting that the
Laplacian, Δg, has a discrete, non-negative set of eigenvalues which accumulate only
at ∞. A natural question arise: if two compact Riemannian manifolds (M, g) and
(M ′, g′) have the same Laplace spectrum, then are they isometric? No, they are
not. However, isospectrality does imply that M and M ′ are of the same dimension,
n. Moreover, they must also have the same n-dimensional volume. Thus, both
dimension and volume are spectral invariants, in the sense that they are determined
by the spectrum. This fact follows from Weyl’s law, see [60],

(3) lim
λ→∞

N(λ)

λn/2
=
ωnVol(M)

(2π)n
.

Above, N(λ) is the number of eigenvalues of the Laplacian, counted with multiplicity,
which do not exceed λ, ωn is the volume of the unit ball in R

n, and Vol(M) is
the volume of M . It is natural to ask, what other geometric features are spectral
invariants?

The next geometric spectral invariant was discovered by Pleijel [51] some forty
years after Weyl’s law. For an n-dimensional manifold with smooth boundary, the
n− 1 dimensional volume of the boundary is a spectral invariant. About ten years
later, McKean and Singer [45] proved that certain curvature integrals are also spec-
tral invariants. For smooth surfaces and smoothly bounded planar domains, McKean
& Singer [45] and independently M. Kac [31] proved that the Euler characteristic
is a spectral invariant. In both approaches, they used the existence of a short time
asymptotic expansion for the heat trace, together with the calculation of the coeffi-
cients in this expansion.

Here, we are interested in the heat kernel on surfaces with non-smooth boundary,
in particular, with corners. This includes curvilinear polygonal domains in the plane,
as well as more exotic non-planar examples. We are interested in the heat kernel for
such surfaces because it may allow us to determine new geometric spectral invariants.
Indeed, we show that in general, the presence or lack of corners is a spectral invariant
for Dirichlet, Neumann, Robin, and mixed boundary conditions. Moreover, we shall
see that a jump in boundary condition from Dirichlet to Neumann is also a spectral
invariant.

Let us specify what is meant by a surface with corners.

Definition 0.1. We say that Ω is a curvilinear polygonal domain if it is a subdomain
of a smooth Riemannian surface (M, g) with piecewise smooth boundary and a vertex
at each non-smooth point of ∂Ω. A vertex is a point p on the boundary of Ω at which
the following are satisfied.
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(1) The boundary in a neighborhood of p is defined by a continuous curve γ(t) :
(−a, a) → M for a > 0 with γ(0) = p. We require that γ is smooth on
(−a, 0] and [0, a), with ||γ̇(t)|| = 1 for all t ∈ (−a, a), and such that

lim
t↑0

γ̇(t) = v1, lim
t↓0

γ̇(t) = v2,

for some vectors v1, v2 ∈ TpM , with −v1 �= v2.
(2) The interior angle at the point p is the interior angle at that corner, which

is the angle between the vectors −v1 and v2.

Note that requiring −v1 and v2 to be distinct means that the interior angle will be
an element of (0, 2π), which rules out inward and outward pointing cusps. An angle
of π, corresponding to a phantom vertex, is allowed.

There is some substantial work in the literature on heat trace expansions for
certain surfaces with corners. The heat trace expansion for a polygonal domain in
the plane, with the Dirichlet boundary condition, has been known since at least the
1960s; see for example [24], [23], [31]. Its most simplified form and calculation can be
found in a paper of van den Berg and Srisatkunarajah [58], although the expression
there is originally due to unpublished work of Ray. However, this result applies only
to exact polygons. Although it has been widely assumed that an analogous result
holds for curvilinear polygons, a rigorous proof was not given until [42]. Similar
results hold for Neumann boundary conditions, see [43]. Although Robin conditions
have been studied on manifolds with boundary [61], to our knowledge there is no
work in the literature about heat trace expansions with Robin conditions in the
presence of corners, even in the plane. For certain corner angles, however, we refer
to the physical approach of [7]. Outside the planar case, or even in the planar case
with mixed boundary conditions, less is known.

Our result allows us to handle the general case of compact surfaces with corners,
with any combination of Dirichlet, Neumann, and/or Robin boundary conditions on
the various smooth boundary components. Throughout, we consider the Laplacian
on such a surface defined as in (2) with n = 2. Our convention for the Robin
boundary condition on any portion of the boundary is:

∂u

∂ν

∣∣∣∣
∂Ω

= κu|∂Ω .

Here, the derivative on the left is the inward pointing normal derivative, and there-
fore, on the right, κ is a positive function. Under this condition the spectrum is
non-negative. We assume throughout, for simplicity, that κ is smooth.

Our main result is:

Theorem 0.2. Let Ω be a curvilinear polygonal domain in a smooth surface with
finitely many vertices V1, . . . , Vn of angles α1, . . . , αn. Define its edges E1, . . . , En
by letting Ej be the segment of the boundary between Vj−1 and Vj, with subscripts
taken mod n. Let ED, EN , and ER be three disjoint sets whose union is {1, . . . , n}.
For each j ∈ ED, EN , and ER, we impose Dirichlet, Neumann, and Robin conditions
with parameter κj(x), respectively, along Ej. Assume that all functions κj(x) are
positive and smooth.

Let V= be the set of j for which vertex Vj has either zero or two Dirichlet edges
adjacent to it, i.e. either both j and j+1 ∈ ED or neither are. Conversely, let V �= be

6



the set of j for which Vj has exactly one adjacent Dirichlet edge. Also let K(z) and
kg(x) be the Gauss curvature and geodesic/mean curvature of Ω and ∂Ω respectively.
Then the heat trace TrHΩ(t) for the Laplacian with those boundary conditions has

a complete polyhomogeneous conormal expansion in t as t → 0. Moreover, the first
few terms of this expansion have the form

TrHΩ(t) = a−1t
−1 + a−1/2t

−1/2 + a0 +O(t1/2 log t),

where:

a−1 =
A(Ω)

4π
;(4)

a−1/2 =
1

8
√
π
(
∑
j /∈ED

�(Ej)−
∑
j∈ED

�(Ej));(5)

a0 =
1

12π

ˆ
Ω

K(z) dz +
1

12π

ˆ
∂Ω

kg(x) dx+
1

2π

∑
j∈ER

ˆ
Ej

κj(x) dx(6)

+
∑
j∈V=

π2 − α2
j

24παj
+
∑
j∈V �=

−π2 − 2α2
j

48παj
.(7)

The proof of this result contains several ingredients which may be of independent
interest. The main strategy is to use geometric microlocal analysis to construct the
heat kernel on a heat space created by blowing up Ω × Ω × [0,∞) along various
p-submanifolds. On this heat space we show that the heat kernel has a polyhomo-
geneous conormal expansion at every boundary hypersurface, and indeed the heat
kernel is constructed by solving suitable model problems at the various boundary
hypersurfaces. This gives a full description of the heat kernel on a surface with
corners in all asymptotic regimes, and as such is useful for any application in which
fine structure information about the heat kernel near t = 0 is needed.
A major advantage of this method is that a complete asymptotic description of the

heat kernel, rather than just its trace, is obtained. This allows precise asymptotic
analysis for expressions such as the gradient of the heat kernel and is likely of interest
for future work.
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Elliptic second-order PDEs with bounded real-valued

measurable coefficients (Papers III and IV)

In this chapter, we consider elliptic second-order partial differential equations
with bounded real-valued measurable coefficients. Such operators naturally arise in
physics. In the first part, we investigate two physical models, namely, we explore
time-harmonic electromagnetic and acoustic waves along waveguides. Another rea-
son to study operators with bounded measurable coefficients is that a pullback of a
smooth metric by lipeomorphism is only guaranteed to have such regularity. Such a
transformation allows for objects with singularities to be studied more simply. This
leads one to consider the notions rough metric and rough Riemannian manifold de-
fined by Bandara in [14]. In the second part, we establish eigenvalue asymptotics
for weighted Laplace equation on rough Riemannian manifolds.

2.1. Here we study time-harmonic electromagnetic and acoustic waves along
waveguides. We begin by considering the classical boundary value problems for a
divergence form second order elliptic equation

(8) div(t,x)A(x)∇(t,x)u(t, x) = 0

for functions on the upper half space R1+n := {(t, x) ∈ R × R2; t > 0}, with
boundary data in L2(R

n). Here A is t-independent bounded and accretive in the
sense that A ∈ L∞(Rn;L(C1+n)) and there exists C > 0 such that

Re

ˆ
Rn

(A(x)f(x), f(x))dx ≥ C

ˆ
Rn

|f(x)|2dx

for all f ∈ L2(R
n; C1+n). In [12], Auscher, Axelsson and McIntosh present an

interesting approach to investigate such equations. They express equation (8) as
a vector-valued ordinary differential equation. For more detailed explanation write
v ∈ C1+n as v = (v⊥, v‖), where v⊥ ∈ C and v‖ ∈ Cn. They obtain the equivalence
between equation (8) and the following equation

(9) ∂tf +DBf = 0

with constraint curlxf = 0, where B is a bounded uniformly accretive multiplication
operator formed pointwise from A, and D is the self-adjoint differential operator

D :=

[
0 div

−∇ 0

]

in L2(R
n; C1+n). By equivalence, it is meant that the equation (8) for u implies that

f := ((A∇xu)⊥,∇xu) solves (9), and conversely, if f solves (9), then there exists a
unique solution (up to a constant) u to (8) such that f = ((A∇xu)⊥,∇xu).

It was proved that T := DB is an ω-bisectorial operator on H := R(D), i.e.

σ(T ) ⊂ Sω := {ζ ∈ C : | arg ζ| < ω or | arg(−ζ)| < ω}
and for all μ ∈ (ω, π

2
), there exists Cμ > 0 such that ‖(λ − T )−1‖ ≤ Cμ/|λ| for

all λ /∈ Sω. Moreover, it is proved by Axelsson, Keith and McIntosh [13], that T
satisfies the quadratic estimate

(10)

ˆ ∞

0

‖tT (I + t2T 2)−1u‖dt
t
≤ C‖u‖2, u ∈ H.
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Bisectoriality of operator T and the quadratic estimate (10) allow one to construct
the H∞(S0

μ) (where S
0
μ := Sμ\{0}) functional calculus designed by McIntosh in [44],

i.e. there is an algebra homomorphism

ΦT : H∞(S0
μ) := {f : S0

μ → C : f holomorphic , ‖f‖∞ < C} → L(H),

which satisfies the following conditions

(1) There exists C > 0 such that ΦT (f) ≤ C‖f‖∞ for all f ∈ H∞(S0
μ).

(2) If g(z) = 1 for all z ∈ S0
μ, then ΦT (g) = I on H.

(3) If λ /∈ Sμ and f(z) = (λ− z)−1 for all z ∈ S0
μ, then ΦT (f) = (λ− T )−1.

(4) If {fn}∞n=1 is a sequence in H∞(S0
μ) that converges uniformly on compact

subsets of S0
μ to f ∈ H∞(S0

μ), then ΦT (fn) converges to ΦT (f) in H.

These properties are useful tools to investigate (9), and hence (8). The goal of this
section is to derive such tools to investigate Helmholtz’s equation and the Maxwell’s
system of equations.

Let us look at a waveguide along straight pipe R×Ω. For simplicity of explanation
we assume that the cross section Ω ⊂ Rn is bounded and has smooth boundary ∂Ω
with outward normal n. However, in our work Ω is a bounded Lipschitz domain.

Suppose we consider an electromagnetic waveguide (n = 2) with permittivity ε,
permeability μ and conductivity σ. Define ε∗ := ε+ iσ/ω, where ω is the frequency.

Then the time-harmonic electric and magnetic fields, Ẽ(s, x, t) = E(s, x)e−iωt and
H̃(s, x, t) = H(s, x)e−iωt, satisfy Maxwell’s equations

(11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
div(s,x)μH = 0,

−iωH + curl(s,x)E = 0,

−iωε∗E − curl(s,x)H = 0,

div(s,x)ε∗H = 0,

with boundary condition E × n = 0 and μH · n = 0 on ∂Ω, where (s, x) ∈ R × Ω
and t is time. (Note that in Paper III we do not use a time variable and we use
t as a special variable along the waveguide instead of s. Also we skip notation
∗ for ε∗, so that ε is not permittivity but rather the combination of permittivity
and conductivity.) We assume that μ, ε∗ ∈ L∞(Ω;L(C3)) are uniformly strictly
accretive and s-independent, i.e. the properties of material do not change along the
waveguide. By uniformly strictly accretivety, we mean that there exist C > 0 such
that Re(μ(x)ζ, ζ) > C|ζ|2 for all x ∈ Ω and all ζ ∈ C3.

Further on, suppose we study an acoustic waveguide(n ≥ 1) with wave number k.
Then we need to consider the Helmholtz equation, or reduced wave equation

(12)
[
div(s,x) k

]
A(x)

[∇(s,x)

k

]
u = 0

with Dirichlet boundary condition u(s, ·) = 0 on ∂Ω for all s ∈ R. We also assume
that A ∈ L∞ (Rn;L (Cn+2)) is s-independent uniformly strictly accretive, so that
properties of matter do not change along the waveguide.

In both cases, we express the Helmholtz equation (12) and the Maxwell’s system
of equations (11) as a vector valued ordinary differential equation

(13) ∂sf +DBf = 0
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as in [12], where B is a bounded uniformly accretive matrix formed from μ, ε∗ or A,
and D is an operator, which is equal to

DH :=

⎡
⎣ 0 div k
−∇0 0 0
−k 0 0

⎤
⎦

in Helmholtz’s case and

DM :=

⎡
⎢⎢⎣

0 div0 0 0
−∇ 0 0 iωJ
0 0 0 div
0 −iωJ −∇0 0

⎤
⎥⎥⎦ , where J :=

[
0 −1
1 0

]

in Maxwell’s case. Here ∇, ∇0, div and div0 denote gradient and divergence opera-
tors on H1(Ω), H1

0 (Ω), Hdiv(Ω; C
n) and H0

div(Ω; C
n) respectively.

The main difference from divergence form equations, we mentioned before, is that
D is not self-adjoint, and hence T := DB|R(D) is not necessary a bisectorial operator.
This leads us to modify the functional calculus we discussed above. Observing that
D is the perturbation of a self-adjoint operator by a bounded operator, we prove
that T is ”close” to the bisectorial operator in the sense that there exist τ > 0 and
ω ∈ (0, π

2
) such that

σ(T ) ⊂ Sω,τ := {x+ iy ∈ C : |y| < |x| tanω + τ}
and there exists a constant C > 0 such that for any λ /∈ Sω,τ ,

(14) ‖(λ−DB)−1‖ ≤ C

dist(λ, Sω,0)
, u ∈ H := R(D).

Anther difference is the boundedness of Ω. This implies that operator T has purely
discrete spectrum with only accumulation point at infinity and each eigenvalue has
finite algebraic multiplicity.

Discreteness of the spectrum allows us to separate the eigenvalues on regions
{Reλ < 0}, {Reλ = 0}, and {Reλ > 0} by appropriate curves. A finiteness of
algebraic multiplicities of the eigenvalues, together with resolvent bounds (14) and
quadratic estimate (10), give us necessary inequalities to build a functional calcu-
lus. Applying our new functional calculus, we prove that all polynomial bounded
time-harmonic waves in the semi-infinite or bi-infinite waveguide have representa-
tion in R(Π0) or R(Π0) ⊕ R(Π+), where Π−, Π0 and Π+ are spectral projections
corresponding to the spectrum on the left-half plane, imaginary axis, and on the
right-half plane.

2.2 In Chapter I, we briefly discussed Weyl’s law. This law has both geometric
generalizations, in which the underlying domain or manifold is no longer smooth;
as well as analytic generalizations, in which the Laplace operator is replaced by a
different, but typically Laplace-like operator. Here we simultaneously consider both
a geometric generalization as well as an analytic generalization. We are inspired
by the work of the Soviet mathematicians, Birman and Solomyak [19], who made
a fundamental contribution to the study of the eigenvalue asymptotics for elliptic
operators with non-smooth coefficients nearly fifty years ago.

We consider compact manifolds with a smooth differentiable structure and allow
the possibility that such manifolds also carry a smooth boundary. However, the
Riemannian-like metric in our setting, known as a rough metric, is only assumed to
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be measurable. Such a rough metric is only required to be bounded above in an L∞

sense, and essentially bounded below. A smooth topological manifold, M , equipped
with a rough Riemannian metric, g, is henceforth dubbed a rough Riemannian man-
ifold.

Definition 0.3 (Rough metric). We say that a symmetric (2, 0) measurable tensor-
field g is a rough metric if it satisfies the following local comparability condition: for
each x ∈ M , there exists a chart (Ux, ψx) containing x and a constant C(Ux) ≥ 1
such that

C(Ux)
−1|u|ψ∗

xδ(y) ≤ |u|g(y) ≤ C(Ux)|u|ψ∗
xδ(y)

for almost-every y ∈ Ux, for all u ∈ TyM . Above, ψ∗
xδ is the pullback to Ux of the

R
n scalar product inside ψ(Ux).

Remark 0.4. As a consequence of the compactness ofM , we note that the compat-
ibility condition is equivalent to demanding that there exists a smooth Riemannian
metric, h, on M such that

C(Ux)
−1|u|h ≤ |u|g ≤ C(Ux)|u|h

for almost-every y ∈ Ux, where Ux, u, and C(Ux) are as in Definition 0.3.

Due to the regularity of the coefficients of a general rough metric g, it is unclear
how to associate a canonical distance structure to g. However, the expression√

det g(x) dψ∗
xL,

for almost-every x ∈ Ux inside a compatible a chart (Ux, ψx), can readily be checked
to transform consistently under a change of coordinates. This yields a Radon mea-
sure that is independent of coordinates, which we denote by μg. Therefore we may
define Lk(T (p,q)M, dμg) spaces in the usual way.
Now, let us state the problem we want to solve. Let M be a compact manifold

with a smooth differential structure and smooth boundary. We consider the Laplace
operator with admissible boundary condition, that is the operator, Δg,W , associated
with the form

Eg,W [u, v] = (∇u,∇v)L2(T ∗M, dμg), u, v ∈ D(Eg,W) := W ,

where W is a closed subspace of the Sobolev space H1(M) containing H1
0 (M). Let

β > n
2
and ρ ∈ Lβ(M, dμg) is a real-valued function such that

´
M
ρ dμg �= 0. We

aim to investigate the eigenvalue problem for the weighted Laplace equation

(15) Δg,Wu = λρu.

We understand this eigenvalue problem in the following way. Consider the subspace:

Z(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
W if Eg,W generates the norm in W ,

which is equivalent to H1 norm ,

{
u ∈ W :

´
M
ρu dμg = 0

}
otherwise.

We show that Z(ρ) ⊂ W closed in H1 norm, and that Eg,W [·, ·] is equivalent to
H1 norm. Therefore, Z(ρ), equipped with the norm Eg,W [·, ·], is a Hilbert space,
(Z(ρ), Eg,W). In this space, the form

ρ[u, v] :=

ˆ
M

ρuv dμg, D(ρ) = Z(ρ)

12



is completely continuous, hence the eigenvalue problem

(16) ρ[u, v] = λEg,W [u, v], u, v ∈ (Z(ρ), Eg,W)

is well defined. Finally, we note that if λ is solution for (16), the 1/λ is solution for
(15), and visa versa. The main result of this paper is

Theorem 0.5. Let M be a smooth compact manifold of dimension ≥ 2 with smooth
boundary, and let g be a rough metric on M . Then, the eigenvalues of (16) are
discrete with finite dimensional eigenspaces with positive and negative eigenvalues,
{−λ−j (W);λ+j (W)}∞j=1, such that

−λ−1 (W) ≤ −λ−2 (W) ≤ . . . < 0 < . . . ≤ λ+2 (W) ≤ λ+1 (W).

Moreover, they satisfy the Weyl asymptotic formula

lim
k→∞

λ±k (W)k
2
n =

(
ωn

(2π)n

) 2
n
(ˆ

M±
|ρ(x)|n2 dμg

) 2
n

=

(
ωn

(2π)n

) 2
n

‖ρ‖
L

n
2 (M+, dμg)

.

Above, M± := {x ∈M : ±ρ(x) > 0}.
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Spectral properties of the Sturm-Liouville operators

with singular potentials (Papers V, VI , and VII)

Spectral properties of the Sturm-Liouville operators have been studied for more
than a century due to numerous applications. One of the best studied topics in this
theory is the eigenvalue asymptotics. There are many publications in this field; we
mention only the books [37, 39, 40,49,57].

Sturm-Liouville spectral problems are naturally divided into two classes. The
problem

(17) Hy ≡ −y′′ + q(x)y = λy, x ∈ I = (x0, x1),

with certain boundary conditions at the endpoints x0, x1 was initially called regular
if the interval I is finite and the ”potential” q is continuous on Ī, otherwise the
problem used to be called singular. In the regular case, the spectral theory can be
usually reduced to some problems in complex analysis and algebra. The singular
problems are much more complicated and they require some hard analysis. Here we
consider the following three problems:

(1) The problem on I = (0, 1) with q(x) behaving like −x−α, α > 2 near zero;

(2) The problem on I = R with q(x) = |x|α + V (x), α > 0 and V is τ -Hölder;

(3) The problem on I = (0,∞) with q(x) =
∑
ciδ(x− ti), ck > 0.

These problems are significantly different from each other. Therefore we use different
approaches in order to investigate these problems.

3.1 The study of the asymptotic behavior of eigenvalues of the Sturm-Liouville
operator on (0,∞), with q(x) bounded near zero and tending to −∞ at infinity
sufficiently fast, so that the limit circle at infinity takes place, started in 1954,
see [28]. The specifics of the problem required a new approach. The operator
is not semi-bounded, so the variational method, very efficient for semi-bounded
operators, could not be applied. Bookkeeping zeroes of solutions, also widely used
for semi-bounded problems (the number of the eigenfunction for a regular problem
is closely related to the quantity of its zeroes), could not be applied either, since all
solutions oscillate rapidly at infinity and have infinitely many zeroes. P. Heywood
found in [28] a modification of the zero-counting method. First, the problem on
the finite interval (0, b) was considered, with some boundary conditions set at the
point b. The corresponding operator is denoted Hb. For fixed λ > 0,−μ < 0, the
number of eigenvalues on (0, λ) and (−μ, 0), N(Hb; (0, λ)) and N(Hb; (−μ, 0)), are
studied. This is achieved by evaluating the number of zeroes n(b, s) of the solutions
of the equation (H − s)y = 0 on the interval (0, b) for s = 0, s = λ and s = −μ.
Although, as b → ∞, each of these quantities grows unboundedly, the differences
n(b, λ)− n(b, 0) and n(b, 0)− n(b,−μ) turn out to be bounded, uniformly in b, and,
moreover, they admit an explicit expression, not depending on b, with an error term,
uniformly bounded in b. This information on the zeroes produces the expressions
for N(Hb; (0, λ)) and N(Hb; (−μ, 0)). The final step consists in proving that these
expressions converge, as b → ∞, to the corresponding counting functions for the
operator on the semiaxis.

This result in [28] differs drastically from the ones for the semibounded case. Some
regularity conditions, to be specified later on, are imposed, the first one being the
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(eventual) monotonicity of the potential q(x), and the asymptotic formulas, with
h(p(μ)) = μ, are

N(H, (0, λ)) = π−1

∞̂

0

[(λ+ h(x))
1
2 − h(x)

1
2 ]dx+O(1), λ > 0,(18)

N(H, (−μ, 0)) = π−1

p(μ)ˆ

0

h(x)
1
2dx+ π−1

∞̂

p(μ)

[h(x)
1
2 − (h(x)− μ)

1
2 ]dx+O(1).(19)

Much later, in 1974, without (initially) knowing about [28], the problem of the
eigenvalue asymptotics for the case q(x) → −∞ was considered by Belogrud and
Kostuchenko, [16]. Actually, a short note, without proofs, appeared in [16], but
a more detailed exposition was published in (now inaccessible) [15], with the final
presentation filling chapters 5 and 9 in the book [37].

Further activities in this topic concentrated on improving the asymptotic es-
timates. This is impossible to do in the terms of the counting function: since
N(H, (λ1, λ2)) is an integer, a remainder estimate better than O(1) is impossible.
On the other hand, if a formula is found, expressing the eigenvalues themselves in an
implicit form as solutions of some equations, such results can give improved asymp-
totic formulas for the eigenvalues, with a higher order of accuracy. The first result
of this kind was obtained by Alenitsyn in [6]. By finding an asymptotic expression,
with several terms, of solutions of the equation, using the WKB method, Alenitsyn
derived two-term equations (for the positive and for the negative spectrum) deter-
mining the eigenvalues in an implicit form. An important feature of this sharpening
is that one can trace the dependence of the eigenvalue asymptotics on the parame-
ter fixing the self-adjoint extension by setting the boundary conditions at infinity -
which was impossible by the previously used methods.

Some years later, a series of papers by Atkinson and Fulton appeared; see [9–11].
In the seminal paper [9] a new approach to non-semibounded problems is presented,
based upon a modified Prüfer transform, reducing the second order linear equation
to a system of first order nonlinear equations, for which the asymptotic analysis
becomes more feasible. Besides deriving an improved Heywood formula, in Alenitsyn
style, and demonstrating a number of interesting examples and consequences, the
authors in [9] announce subsequent papers, [8, 10, 11], where the approach would
be developed further, in order to give algorithmically arbitrary many higher order
terms in the implicit expression for the eigenvalues. The three cases announced are:

(1) The problem on (0,∞) with q(x) tending to −∞ faster than −x2 at infinity;
(2) The problem on (0, 1) with q(x) behaving like Cx−α, α ∈ [1, 2) near zero;
(3) The problem on (0, 1) with q(x) behaving like −x−α, α > 2 near zero.

The papers [10,11], containing the analysis of the cases (1) and (2), have appeared.
However, the paper [8], although announced several times, was never published.

A rather complete spectral analysis of the singular non-semibounded Sturm-
Liouville operator on the semi-axis with singularity at infinity was performed long
ago, while for the complementing case, the potential tending rapidly to −∞ at the
finite endpoint remains completely unresolved.

This part is devoted to filling this gap. We modify the approach initiated by
Heywood and find the asymptotic formulas for the eigenvalue counting functions.
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The main part of the paper is devoted to finding the asymptotic formulas for
eigenvalues. These formulas show, in particular, the presence of a new effect, not
existing for the limit-circle problem at infinity, considered previously. Namely, it
turns out that the asymptotics for the positive eigenvalues, according to the formula
obtained, is the same, at least in the leading term, for all potentials subject to
the regularity conditions, in particular, the same as for the regular problem. On
the other hand, the asymptotics for the negative eigenvalues depends essentially on
the potential. Moreover, it turns out that, asymptotically, there are fewer negative
eigenvalues than positive ones, on intervals of the same length.

3.2. In the second part of this chapter, we consider a perturbation of the gener-
alized anharmonic oscillator

H ≡ − d2

dx2
+ |x|α + V (x), x ∈ R, α > 0.

Due to some important applications in physics, this class of operators are well stud-
ied. Especially the harmonic oscillator (α = 2 and V = 0). Its eigenvalues equal
λn = 2n− 1 (n ∈ N) and the corresponding normalized eigenfunctions are explicitly
expressed in terms of the Chebyshev-Hermite polynomials; see for instance [39]. In
the general setting, perturbed anharmonic oscillator cannot be solved analytically,
and one has resort to the asymptotic solutions. Under rather mild conditions on V ,
the main term of the spectral asymptotics of such operators are well known; see for
instance [57]. It is more difficult to obtain further terms of the asymptotics. We
mention works concerning the spectral asymptotics of the perturbed anharmonic
oscillator: [1, 20–22,25–27,33,36,52,53].
In most works concerning the spectral properties of perturbed anharmonic oscilla-

tor, the perturbations are smooth. For an actual real-world potential smoothness is
not necessarily guaranteed. For this reason, we want to reduce the smoothness and
explore how this will affect the eigenvalues, we require V (x) to be only piecewise
Hölder-continuous:

Theorem 0.6. Let H be the self-adjoint operator in L2(R), generated by

(20) − d2

dx2
+ |x|α + V (x),

where α > 0, and V (x) is a bounded, real-valued, compactly supported, piecewise
Hölder continuous function with an exponent τ > 0. Then the sequence of eigenval-
ues {λn}∞n=1 of H satisfies the following asymptotic formula

λn = C
− 2α

α+2

1 (2n− 1)
2α
α+2

+
2α

α + 2
C0C

−α+4
α+2

1 (2n− 1)−
2

α+2

+
2α

α + 2

1

4π
C

−α+4
α+2

1 (2n− 1)−
2

α+2

ˆ ∞

−∞
V (s) cos

(
2C

− α
α+2

1 (2n− 1)
α

α+2 s
)
ds

+
2α

α + 2
C2C

−α+6
α+2

1 (2n− 1)−
4

α+2 +O
(
n−1

)
,

(21)

where

C1 =
4Γ

(
3
2

)
Γ
(
1
α

)
απΓ

(
3
2
+ 1

α

) , C0 =
1

π

ˆ ∞

−∞
V (s)ds, C2 =

α− 1

12π(2 + α)
cot

(π
α

)
C−1

1 ,
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and Γ(·) is the gamma function.

Theorem 0.6 shows that the perturbation, V (x), does not affect the first term.
However, it appears in the second term, while the regularity, the parameter τ , affects
only the third term. Indeed, in case V (x) being smooth and compactly supported,
the third term would decay rapidly. When V (x) is Hölder continuous with an ex-

ponent τ > 0, we can say only that the third term is O(n−ατ+2
α+2 ). In order to

demonstrate more explicitly the effect of the smoothness, we construct an example.
There we consider the operator H from Theorem 0.6 for α = 2 and V (x) being the
Weierstrass nowhere differentiable function. Then we find the subsequence of the
eigenvalues {λnk

}∞k=1 such that

λnk
= 2nk − 1 + n

− 1
2

k

1

4
√
2

ˆ π

−π
V (s)ds+ n

− 1+τ
2

k 2−
5+3τ

2 +O(n−1
k ).

3.3. The last part of this chapter concerns Sturm-Liouville operator with the
potential being a sum of delta functions

(22) Hy ≡ −y′′ +
∑
ti∈I

ciδ(x− ti)y = λy x ∈ I = (x0, x1),

where ci is a coupling constant attached to the point source located at ti, and δ is
Dirac δ-function(i.e. the unit measure concentrated at 0).

Models of this type have already been discussed extensively, particularly in the
physical literature concerned with problems in atomic, nuclear, and solid state
physics. They occur in the literature under various names, like ”point interaction
models”, ”zero-range potential models”, ”delta interaction models”, ”Fermi pseu-
dopotential models”, and ”contact interaction potential”.

Historically, the first influential paper on this models of (22) was that by Kronig
and Penney [38], in 1931, who treated the case {tk}∞k=−∞ = Z with ck = c indepen-
dent of tk. This ”Kronig-Penney” has become a standard reference model in solid
state physics, see for instance [32], [59]. It provides a simple model for a nonrelativis-
tic electron moving in a fixed crystal lattice. A few years later, Bethe and Peierls
[18] and Thomas [56] started to discus models of three dimensional generalization
−Δ + q(x) with only one interaction at 0. Such models also arise in the theory
of sound and electromagnetic wave prorogation in dielectric media, where the role
of the point interactions is replaced by boundary conditions at suitable geometric
configurations. Such relations have been pointed out and exploited in the work by
Heisenberg, Jost [30], Lieb and Koppe [41], Nussenzveig [50], and others.

Subsequent studies aimed at the clarification of this state of affairs led in particular
to the first rigorous mathematical work by Berezin and Faddeev [17] in 1961 on the
definition of operator of type (22)(in three dimensional case) as self-adjoint operators
in L2(R

3). For more details see [4].
A correct definition of the Sturm-Liouville operator whose potential q(x) is a

distribution(not only delta potential) of first order is given by Savchuk and Shkalikov
in [54]. Also we mention relatively modern papers [2, 3, 5, 29, 34, 35,46, 47,55].

In this paper we consider a case, when I = [0,∞), {ck}∞k=1 is a sequence of positive
numbers and T = {tk}∞k=1 ⊂ I is an increasing sequence, which tends to ∞. We
understand the operator H in the following way. Let H0 be the one-dimensional
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Laplace operator with domain

D(H0) =
{
y ∈ W 1

2 (R
+) ∩W 2

2 (R
+\T ) : y′(0) = 0,

+∞∑
j=1

cj|y(tj)|2 <∞,

y′(tj + 0)− y′(tj − 0) = cjy(tj), j ∈ N

}
.

Then, by operator H, we mean the self-adjoint extension of H0. The reason we
associate this extension with (22) is that formally, for u, v ∈ D(H0), we compute

(H0u, v) = ‖y′‖2 +
∞∑
k=1

ck|y(tk)|2 =
〈
−y′′ +

∑
ckδ(x− tk)y, y

〉
.

The main result of this work is two-sided estimates of the distribution function
of the eigenvalues, which are given in terms of the regularized function q∗ of q
(averaging of q in some literature)

q∗(x) := inf
d>0

⎧⎨
⎩d−2 :

∑
tk∈Δ(d,x)

ck ≤ d−1

⎫⎬
⎭

where Δ(d, x) = [x − d/2, x + d/2] for x ∈ I. Different versions of such functions
appear in [37], [48] and later papers by the authors of [48]. The result we mentioned
above states√

λ

2
√
π2 + 1

mes

{
q∗(x) ≤ λ

16(π2 + 1)

}
< N(H, (0, λ)) < π

√
λmes{q∗(x) ≤ π2λ}.

To prove the upper bound we use localization method, i.e. we divide I to the intervals
{Δk} in appropriate way and estimate N(H, (0, λ)) by sum of N(HΔk

, (0, λ)). To
prove the lower bound we use variational methods.

As a consequence, we prove a criteria for discretness of the spectrum in terms
of the function q∗. We also establish s criterion for the resolvent to belong to the
Schatten class Sp.
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