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HABITUATION AND ASSOCIATIVE LEARNING IN RANDOM MIXTURES OF

DETERMINISTIC AUTOMATA

Helge Malmgren

Malmgren, Ho Habituation and associative learning in random 
mixtures of deterministic automata. Göteborg Psychological 
Reports, 1984, 14, No. 2» - Random systems, in the sense of 
random mixtures of finite deterministic automata, are non- 
Markov stochastic processes which may be involved in non- 
associative and associative learning. Random systems might be 
approximately realized in the form of collections of randomly 
structured nerve cell modules. It is shown that, given a 
suitable mechanism for registering and summation of state 
changes, such a system will show habituation to repeated 
stimuli. Simulation evidence is also presented to the effect 
that random systems learn associatively when exposed to a 
stimulus pattern which is related to the paradigm of classical 
conditioning. The results point towards the possibility that 
one might explain several kinds of learning phenomena solely by 
reference to such a random composition of parts of the nervous 
system, without presupposing either a built-in specific plasti­
city on the unit level or a pre-formed reinforcement mechanism.

Key wordss Automata, conditioning, habituation, learning, 
stochastic processes

In this paper, the author outlines some basic properties of random mixtures of 
finite deterministic automata, and investigates certain aspects of such systems 
in relation to learning processes such as adaptation, habituation and associa­
tive learning. The idea that a major part of the brain should be regarded as 
composed of a large number of subunits which are similar in structure, but 
which show a certain inherent variability, has often been evoked in attempts to 
explain the phenomenon of associative learning (cf. e.g. Edelman 1979, Skinner 
1981). Of course, if the central nervous system contains a separate selection 
device which "reinforces" those units which respond appropriately to a certain



stimulus, the need for a specific plastic mechanism on the intraunit level 
disappears. However, it can be shown that a "multi-unit" brain will exhibit 
learning without such preformed reinforcement mechanisms and without specific 
unit plasticity. The multiunit model, as such, offers a simple explanation of 
the phenomenon of habituation. After having discussed some very general 
properties of randomly composed systems, I will outline such an explanation. In 
the final part of the paper I discuss whether such systems can learn 
associatively without having to rely on specific unit plasticity or on a 
preformed reinforcing (selective) mechanism. Evidence for an affirmative answer 
to this question is presented.

Definitions

By an "automaton" is here meant a finite-state deterministic automaton with
input, i.e. any device which can occupy only a finite number of states and
receive a finite number of inputs, which has a discrete time and which is such
that its state a(t) at any moment (except the first) is completely determined
by the immediately previous state a(t-1) plus the previous input b(t-1) (see
e.g. Ashby 1956). An automaton with n states a.,...,an and m inputs b^,...,b^
is representable by an n x m matrix where a^j is the state which results from
state a. with input b.. One of the a.:s is selected as a(0). The abstract 
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automaton which is given by such a matrix can be realized in many different 
ways. It should be noted that in most applications, the finite-state model is 
an approximation. I do not intend to discuss here the limits of the model as 
applied to the brain. It should, however, be noted that the results given below 
could be generalized to much larger classes of automata; the present limitation 
is dictated by computational and pedagogical convenience.

By a "random system" (R.S.) is here meant the stochastic entity which results 
if the numbers in the matrix for an n x m automaton (n>2) are chosen randomly, 
such that the probability that a. . : a, is : 1/n for k = 1,.,.,nj all choices 
are made independently of each other. If not otherwise stated, the initial 
state is chosen in the same way. Think of the random n x m system as a 
collection of all possible specific n x m automata (uniformly mixed). There are 
of course other possible kinds of "random" systems in which, for example, not 
all transitions are equally probable; but again the present construction is 
chosen for the sake of simplicity.



2i3

In the following, we will study the behaviour of the R.S. and some similar 
entities under a number of different input conditions for the deterministic 
automata from which they are constructed » We will limit ourselves to such 
input conditions as are assigned to the different automata independently of 
the process of constructing theirtransition matrices and independently of 
their states „ One important such condition is defined stochasticallyi by a 
"random system with random input" (R.S.R.I.) is here meant a random system 
where for each sub-automaton, and for any moment t, the probability that b(t) 
s is s 1/m for k = all choices independent. Think of the R.S.R.I.
as the uniform supermixture of all possible automata given all possible input 
sequences.

Basic memory properties

The R.S., given any specified kind of input, is formally a discrete stochastic 
process. The state probabilities (for a moment t) of this process are the 
frequencies of those specific automata in the mixture which, at t, are in 
the different possible states; the transition probability a. (t) -+ a .(t+1 ) is
the proportion of the automata being in a. at t which go to a. at t+1.

Jo J

It is important to note that the R.S. is not under any (independently assigned) 
input condition a Harkov process, because its transition probilities are not 
independent of earlier states. Certainly, because of the symmetrical initial
distribution, all state probabilities always remain = 1/n. It is also true 
that the R.S. behaves like a symmetrical Markov chain (with all transition
probabilities = 1/n) for a finite number k of first steps, presupposed that 
for each specific automaton the first k inputs are all different from each 
other. However, choose any determinate input sequence, give it to all automata 
in the mixture and look at the behaviour of the R.S. under this condition. 
At some point of time T the random system (i.e., all specific automata in 
the mixture) will experience the first recurrence of an earlier input b. Let 
us denote the time of b!s previous occurrence T'. Suppose first that T!+1 
i T.
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Figure 1. First recurrent stimulus.

Now exactly 1 out of n of the automata in the collection will be in the same
state at T as at T', i.e. for the whole stochastic entity, P(a(T) = a(T' ))
= 1/n. All specific automata for which a(T) = a(T') will - because they are
deterministic » go to the same state at T+1 as at T'+1. Consider the rest
(i.e. n-1 out of n in the collection). Since the choice of state to which
they will go is not bound by previous choices, the probability that they will
go to the same state at T+1 as at T'+1 is 1/n. For the whole collection, then,
P(a(T+1) = a(T’+1)) = 1/n x 1 + (n-1)/n x 1/li = (2n-1)/n^. The case of T' +1

2= T is similar; here P(a(T+1) = a(T')) = (2n-1)/n . This means that although
the probability of the system's being in any given state a. at T+1 is = 1/n,2 Kthis probability is raised to (2n-1)/n by our knowledge that it was in a^ 
at T'+1 (or at T!, respectively). This property is evidently incompatible 
with the supposition that the system still behaves as a Markov chain with 
transition probabilities = 1/n all over.

In the same way one can show that the probability of a^ at T+1, given a^ at 
T, depends on whether the automaton was in a^ at T' +1. (If T = T’+1, it will 
depend on the state at T'.) Suppose T £ T'+1. Then P(a(T+1) = a^ |a(T) = a^, 
a(T'+1) - a. ) = 1/n x 1 [if a(T') = a, ] + (n-1)/n x 1/n [if a(T') / a. ] =c« K K
(2n-1)/n , while P(a(T+1) = a^|a(T) = ak,a(T'+1) £ a^) = (n-1)/n x 1/n. The
case of T = T'+1 is similar. Hence, the system is not Markov at all under 
the chosen input sequence.

The same result holds for every possible random system with independently 
assigned input, e.g., for the random system with random input, since for each 
such construction there will be a first moment at which the probability of 
recurrent input is > 0. For all such constructions it will be true that the 
transition probabilities from this moment on will be influenced by suppositions 
about éarlier states. The influence will be in the direction of conservation 
of past states. In a sense, then, the random system under any independently 
assigned input condition remembers more than the immediately previous state, 
although this does not hold for the deterministic automata which form the 
basis of our constructions.
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Constant input sequences

Let us study the R.S. under the same input condition of repetitive stimuli 
for all component automata, e.g. "11111..." (we use this abbreviation to stand 
for b^ ,b,j,.. o ). The asymptotic behaviour under this condition is, for every 
specific automaton, that it goes into a stationary behaviour akakak„..) or 

into a circular behaviour (a. a. ,,.a. a. a. .A set of states to which
11 x2 xp *1 2

an automaton is finally confined, given a certain input, is called a "basin" 
under this input. Let us first ask, what is the probability that the initial 
state a(0) will be contained in the final basin under constant input? One 

can visualize the "basin-forming" process like this?

P=2/n P=3/n

P=1/n

a.

Figure 2. The basin-forming process.

In step k, the probability that process will come to an end (i.e. that the 
automaton will for the first time return to a previous state) is k/n, pre­

supposed that it has not come to and end before*, the probability that it will 
continue is (n-k)/n. The conditional probability that a(0) will be "hit" in 
step k is 1/n. So the total probability of a(0) being included is

1
n * Z 

1<k<n

a!.
(n-k)!fi^ (1)

The probability that a(0) will be included in a basin of length k is given by 
the k:th term in this sum. In this case a(Q) will recur at every k:th step ad 
infinitum. Hence, for any moment of time t (t > n), the probability of the 

system's state being a(0) at T is

P(a(t) = a(0)) 1n •• £

k jt 
1<k<n

(n-k)!n
(2)
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For t prime, this probability will be = 1/n, else it will be > 1/n. From this

it can be seen that there is no proper asymptotic probability distribution
of states relative to the supposition that one starts in a certain state a .

P
However, one can define a "long run" distribution as

P°°(a(0) ) 1n n!
1<k<n (n-k)!kn

(3)

Let us now instead look the distribution of basin sizes, and especially at 
the question, what is the probability of basin size = 1?. It is intuitively 
clear (cf fig. 2 above) that smaller basins have more opportunities than longer 

basins to get formed in the process. The probability that a randomly chosen 
automaton will be caught in a stationary state can be seen to be the same 
as the probability of a(0) belonging to the final basin, since the only dif­

ference is that the process depicted in fig. 2 has to "hit" the last element
reached (a. ) instead of the first. As the process goes on, the probability 

Jk
that a stationary state has been reached in step t or earlier will therefore 
grow stepwise according to Eq. (4):

P(a(t) r a(t-D) = 1 . i .. nl—r ' (4)
Ki<t (n-1)*1"1

In the following table, we have represented this process for n = 2, 3 and 
5; however, we have inverted the figures so that they now show the proportion 
of automata which change their state in step t:

Table 1

Probability of state change under constant input.

t=1 2 3 4 5

n=2 .500 .250 .250 .250 .250

iic .667 .444 .370 .370 .370

n=5 .800 .640 .544 .501 .498



Suppose that the random system is approximatively realized as a collection of 

determinate automata. Suppose also that for every single automaton there is a 
device which compares the state of any moment with the immediately previous 

state* with a "yes" answer for a detected difference, and that the "yes" 
responses of all these comparators are summed. Evidently this sum response will 

show a gradual adaptation to sequences of identical stimuli, similar to that 
represented in Table 1. Note that the adaptation will be rapid for n=2 and more 
gradual for larger n.

This explanation of adaptation in complex system makes use of the assumption of 

a comparator mechanism. This might seem to prejudge the issue since such a 

comparator does involve a kind of memory. It is, however, important to note 

that this memory does not reach beyond the immediately past moment. By means of 
the theory of random systems one can also explain why the early parts of the 

sequence of identical stimuli can continue to influence the degree of 

adaptation. (Note also that a kind of comparator may be built into our ordinary 
measures of "overall activity".)

Habituation proper

The proposed model holds only for a close sequence of identical inputs, while 
habituation proper is a phenomenon which occurs if a certain stimulus is 

presented several times separated by other (preferably constant) stimuli. 
However, there are reasons to believe that random systems will adapt in a 

similar way to such conditions. Suppose that (each specific automaton in) the 
R.S. is given a stimulus sequence;

11... 11... 112111...11211...1121...
****--J=^*œ=*zx^ Vgafctjÿ»IIim.nn-n.il 1.11^ ..... u„a M ________ _____ ______ __ _______

n k1 t k2 ist

T1 T2 T3

Figure 3. Stimulus sequence in habituation experiment.

where is each time determined as a random number uniformly distributed on an 

interval (n^, 02). This is similar to the situation when an organism, familiar 
with environment "1", suddenly begins to experience "2" with random intervals. 
The probability that a certain automaton will stay in the same state when given 
"2" for the first time is 1/n. If it does, then in a certain proportion p of 

cases this very state will recur at the end of next "1" period. A lower limit 
of p is set by Eq. (4) (p. 6) (with i=n), since all automata which were already
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in a stationary state when "2" occurred for the first time will of course 
continue in this condition under 111... in case it is not disrupted by "2". 
However, also these automata which happen to have a basin length (relative to 
111...) which is a factor in k^ will benefit from such a non-disruption, to the 

effect that the same state will recur again at the end of next "1" period (cf 
Eq. (2), p.5). This means that non-disruption tends to reinforce itself, since 
it will raise the probability that there is no disruption next time "2" occurs. 
Remains to consider the cases of disruption. If the first "2" changes the state 
of the automaton, the probability q that the state which the automaton came 
from vill recur at the end of next "1" period is evidently less than p, since 
we have now missed, among other things, the possibility to keep any previous 
steady state going. Hence, disruption will not reinforce itself to the same 
degree as nondisruption. Since the case of recurrence is the only one which 
makes a difference, we can describe the situation by means of a matrix of 
transition probabilities from "ND” (non-disruption) to "D" (disruption) at the 

first and second occurrences of "2", respectively:

Table 2

Reinforcement matrix for non-disruption and disruption.

ND D

ND p' 1-P’
-

D 1 -q ' q'

*

where p' > q'. A transition according to such a matrix raises the probability 
of ND if this probability initially is which is the case here. The total
result will be that there is less disruption at the second occurrence of "2" 
than at the first. For n>2, a similar argument can surely be made concerning 
later occurrences of "2". For example, among those automata that did not enter 
a steady state at the second ”2", a certain proportion will do so for the first 
time at the third "2" (cf the simpler process in fig. 2). So, we can expect a 
steadily growing proportion of automata not changing their state at the "2" 
stimuli.

The process described above was simulated for n = 2, 3 and 5 with n. = 6, N„ = 
1 ) ! z

17 . The estimated probabilities of state change at the successive occurrences
of "2" are presented in the following table. Again the effect is more gradual
for larger n.



Table 3

Result of habituation experiments estimated probabilities of 
state change.

5 - . . . 6.-.1Q (mean).

n=2

N=20,000 .507 .442 .442 .442 .444 .445

n=3

N=3Q,000

; .'I 0

„669 .617 .616 .609 .608 .609

n=5

N=50.000

/ -•

e 800

Ù '

.764 .756 .754 .754 . .753

The magnitude of the observed effects certainly suggests that some kind of 

general amplifying mechanism is needed if one wants to account for real 
habituation in terms of random systems. However, I do not think that this 
detracts much from the value of such an account.

It should also be noted that the process described above cannot directly 

represent (even approximately) „hat happens when one organism - i.e. one 
collection of deterministic automata - receives a single sequence of inputs 
constructed according to Fig. 3. In the latter case, the different automata in 
the collection are given the same input sequence which, of course, does not 

correctly "represent" the whole spectrum of possible Input sequences. Since, in 
this single input sequence, it may well happen that periods with a length 
favourable for non-disruption alternate with periods with an unfavourable 
length (e.g. large prime numbers), the probabilities of state change in the 

single collection will tend to fluctuate. Table 3 can, that is, only represent
the sum of a number of experiments with organisms given different input

sequences.

To estimate the size of the fluctuations, another simulation was performed as 
follows: 100 collections of N "randomly" chosen deterministic automata (for the 
values of N, see below) were constructed? 100 input sequences of the proper 
form were constructed and presentadlo the collections of automata (one 

sequence to each collection)? for each collection the probability of state 
change at the different presentations of "2" was estimated, and for each



presentation it was noted whether this probability was less than at the 
previous presentation of "2" for the same collection. The number of collections 
in which this was the case were counted for each presentation of "2". These 
numbers are given in Table 4. (If a collection had the same frequency of state 
change at two successive presentations, ' the value | was assigned.)

Table 4

Habituation in collections: percentage of collections showing 
response decrement.

T=2 3 4 5 6-10- (mean)

n=2 N-800 70 54 48 53 49.0

IIC N=1200 79 62 58.5 56 54.2

n=5 N=2000 77.5 62 53 60 • 53 -1.........

v
It can be seen that, according to the model, single habituation sequences will 
be smoother for n = 3 or 5 than for n = 2.

Associative behaviour

From the collection which forms the random system, select that subset of 
machines for which the input b^ carries state a^ into itself. This is the 
random system with an unconditioned response a^ to input b^ (R.S.U.R.). The 
condition mentioned guarantees that the system, if given à long sequence of 
b^:s, will tend to go to the steady state a^ with a probability p such that 1/n 
< p < 1. (We could have chosen the latter condition as a more general 
definition of the concept of an unconditioned response, but the definition 
given is simpler.) If the output of a collection which realizes an R.S.U.R. is 
organized so that the most common state determines the final outcome, then the 
whole collection will have a characteristic gross unconditioned response on b^- 
sequences. For theoretical purposes, this response can be identified with in 
an "effector" state space. The response wi,!! be more and more specific the 
longer the sequence of b^:s given, since the automata are then given more and 
more chances to converge on the basin a^. (Cf. temporal summation and the 
"microgenesis" of percepts.)
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222«.«22122« «22122«« « «22122«.

k1 t k2 t k3 t
T 1 T2 T3

Figure 4. Stimulus sequence in conditioning experiment.

This input condition corresponds to classical (Pavlovian) conditioning, except 
that the inter-trial interval is itself taken as the conditioned stimulus. Will 
the R.S.U.R. show a conditioned response? By means of an argument similar to 
that given for habituation proper, I will try to make such a supposition 
plausible.

Jhe R.S.U.R. ^is uniformly random except for the response a^ a^ on . This
means that there is an initial probability 1/n that the automaton will go to a^
on the last b„ in the first sequence (T.). If it does, then it will remain in 

Z !
a^ at T^+1, and there will be a probability p, considerable higher than 1/n, 
that a^ will recur at the end of next b2“Sequence (T^) since its first 
occurrence proves that there was a basin (relative to 222...) containing in 
the automaton in question. If, on the other hand, an automaton does not go to 
a, at T. but to a, , k/1, then this behaviour is not reinforced, i.e. the state 

is not automatically conserved at time T^+1. Therefore the transition 
probability q from response at T^ to response at T2 will be lower than p. 
For n > 2, a similar argument will hold for later T?s and so we get another 
cumulative probability? a conditioned response.

In the described set-up, there is to be expected an effect which is not 
conditioning, but which depends only on the fact that b2?s occur after b^?s. 
Look at the alternative set-up where in each inter-trial interval a new input 
is given?

33...33144.».44155...

Figure 5. Stimulus sequence in pseudo-conditioning experiment.
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Because of the fact that the basic U.R. condition leads to a preponderance of
a^-reponses to , and the fact that constant input sequences tend to conserve
initial states, there will occur a pseudo-learning effect. The fundamental
difference between this process and the above-described one is that in the
conditioning set-up, past achievements in the "222..." sequences tend to be
conserved for more than one period ‘ of time. The problem is that past failures
also can be conserved (if, e.g. the automaton goes into an basin relative
to both and b^), and at present I cannot offer any strict proof that the
random automaton really will perform better in the conditioning context than on
the alternative procedure. However, in the absence of a strict proof I have
some simulation evidence to offer. In the’ following table, the results of
feeding the R.S.U.R. (i) with the conditioning condition, and (ii) with the
alternative condition (broken lines, figures within parenthesis) are presen- 

2)ted . In this first simulation, each single automaton was given its own pair 
of input sequences. The figures represent the estimated probabilities of state 
a^ at the different T^ss multiplied by n.

Table 5

Results of conditioning and pseudo-conditioning experiments:
t

estimated probabilities of a(T)=a/j, multiplied by n. C=con- 
ditioning; PC=pseudo-conditioning.

T= 1 2 3 4 5 . 6-1Ö (mean)
n=2 C 1.00 1.13 1.14 1.12 1.12 1.12
NslO.OOO PC 1.00 1.13 1.13 1.14 1.13 1.12

V6 V11

n=3 C 0.99 1.17 1.18. 1.18 1.18 1.18
Nr15.000 PC 0.99 1.13 1.15 1.14 1.14 1.15
n^=6 n2=11

n=5 c 0.99 1.18 1.20 1.23 1.23 1.23
N-25.000 PC 1.00 1.13 1.14 1.13 1.16 1.13
n^ =12 n2=23

n=10 c 1.01 1.18 1.22 1.24 1.27 1.26
N=50.000 PC 0.99 ■ 1.09 1.10 1.09 1.09 1.09
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As can be seen from this Diagram, for n >L 3 there is a clear positive 
difference, which grows with n, between the two processes. There is also a 
tendency towards decreasing steepness of the learning curve for larger n.

Another simulation was performed in the same way as in the case of habituation°f 

i.e., 100 collections of N automata were constructed, and all automata in a 
collection were given the same sequence of stimuli. Since, according to the 
model, there is supposed to exist a mechanism which extracts the most common 
response, it was calculated for each collection whether a1 was more common than 
other responses at the end of b2»sequences. A corresponding calculation was 
done for the pseudoconditioning condition. In addition, the proportion of 
collections which, at the different points of time, performed better under 
"conditioning" than under "pseudo-conditioning" ;was calculated. The results are 
summarized in the following tables.

Table 6

Percentage of conditioned collections with single most common 

response = a.

T= 1 2 3 ' • 4 • ' • • 5 • • 6-TO

n=2 46 77 73 . 73 74 70.8 (N=800) "

ns3 31 73 75 78 79 74.8 (N=1200)

n=5 20 68 73 ■ 76 74 79.0 (N-2000Í

n=10 7 65 .76 . . . . 69 . .73 . 72.8 (N=4000)

n.=6
n'=17

a. =11
n¿=22



Table 7

Percentage of pseudo-conditioned collections with single most 
common response = a^

Tr 1 2 3 4 5 6-10 (mean)

n=2 56 72 77 77 76 73.8

n=3 36 81 75 84 78 73.2

n=5 26 70 70 70 69 73.2

n=10 9 53 58 48 61 55.4

> Table 8

Percentage of
ditioning than

collections with higher a^ 
under pseudo-conditioning

-frequence unde

T= 1 2 3 4 5 6-10 (mean)

n=2 48 42 55 45.5 45 48.2

n=3 57.5 57 68.5. 67 66 66.1

n=5 43.5 72.5 78.5 76 80 80.8

n=10 42.5 72 78 79 90 85.5

It can again be seen that with larger n, the performance under condi­
tioning becomes distinctly better than under pseudo-conditioning. Altogether 
it seems worthwhile to investigate further the possibilities of associative 
learning in random systems.
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I have profited much from helpful criticism by Bo Berntsson, Björn Haglund, 
Peter Jagers» Peter Lundberg and Olof dstensson. Peter Lundberg has also 
made it possible to realize the more complex simulation experiments by 
putting computer time at my disposal at the Department of Oceanography.
The simulations were run on a TRS-80 personal computer or a HP-8926 desk­
top computer. Details are supplied on request. Authors present address: 
Dept, of Philosphy, Avenyen 10-21» S-431 36 Göteborg, Sweden.
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