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Abstract 

Atmospheric aerosols influence our climate and air quality. Aerosol particles in the 
atmosphere are transformed through many different physical and chemical reactions. A 
substantial fraction of the particles in the atmosphere are of secondary origin, formed as a 
result of gas to particle conversion. The formation process of secondary organic aerosols 
(SOA) from oxidation of volatile organic compounds (VOC) is currently not fully understood. 
The objective of this thesis is to contribute to the understanding of factors important for 
secondary particle formation by simulating certain atmospheric processes in a flow reactor 
and by measurements of organic compounds in the ambient atmosphere. This work focuses on 
the formation of secondary organic particles via gas to particle conversion, their chemical 
composition and the volatility of the compounds. These factors are important for 
understanding the formation and evolution of secondary particles in the atmosphere, which in 
turn is important for making predictions about our future climate. 

The chemical composition of SOA was studied using a chemical ionization high-resolution 
time-of-flight mass spectrometer connected to a Filter Inlet for Gases and Aerosols 
(FIGAERO-ToF-CIMS).  The analysis was performed on samples from three sites: a boreal 
forest in Europe, a temperate forest in North America and a semi-urban location near a major 
city in Asia.  

In order to model SOA and thus be able to predict its impact on society, in particular relating 
to climate change and health issues, accurate models for SOA formation are needed. The basis 
for such models includes understanding gas to particle partitioning and the factors that 
influence this partitioning. In addition, knowledge of the compounds in the particles is 
needed. The work revealed ways in which anthropogenic pollution could affect the 
partitioning and consequently the formation of SOA. It was shown that equilibrium phase 
partitioning behaves as predicted under some circumstances, such as when the air was not 
affected by anthropogenic pollution. However, when the air masses were affected by 
anthropogenic pollution, equilibrium phase partitioning does not behave as expected, due to 
restrictions in uptake and the aerosol not being in equilibrium. This effect was especially seen 
for highly oxygenated compounds. 

Keywords: gas to particle conversion, volatility, secondary organic aerosols, FIGAERO, 
CIMS, monoterpenes, isoprene, SOA, BVOC. 
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Sammanfattning 
 

 

Aerosoler i atmosfären påverkar vår luftkvalitet och vårt klimat. Aerosol-partiklarna påverkas 
av flera kemiska och fysikaliska processer i atmosfären. En stor andel av partiklarna i 
atmosfären är sekundära. Sekundära Organiska Aerosoler (SOA) bildas när flyktiga organiska 
ämnen (VOC) oxideras i atmosfären och det råder osäkerhet kring detaljerna kring hur detta 
går till. Målet med denna avhandling är att öka kunskapen om SOA och vilka faktorer som 
påverkar deras bildning. Detta har gjorts genom att simulera specifika atmosfäriska processer 
i ett flödesrör samt genom att mäta organiska ämnen i atmosfären. Fokus för denna 
avhandling är att studera hur gas till partikelomvandlingen som skapar SOA går till, vilka 
kemiska sammansättningar SOA har samt mäta SOA-partiklarnas flyktighet. 

 

Den kemiska sammansättningen av SOA studerades med en masspektrometer som använder 
kemisk jonisering för att mäta organiska ämnen i gas- och partikelfas (FIGAERO-ToF-
CIMS). Analyserna av aerosoler utomhus gjordes på tre mätstationer: en boreal skog i Europa, 
en skog i tempererat klimat i Nordamerika och i utkanten av en stor stad i Asien.  

 

För att kunna modellera SOA, och därmed hur SOA påverkar vårt klimat och vår hälsa, 
behövs tillförlitliga modeller. Grunden för modellernas tillförlitlighet innefattar detaljerad 
kännedom om gas till partikelomvandling. Utöver det behövs kunskap om partiklarnas 
kemiska sammansättning. I denna avhandling klargörs även hur mänskliga utsläpp påverkar 
fasfördelningen och därmed bildningen av SOA. Resultaten visar att jämvikten i fasfördelning 
mellan gas- och partikelfas går att förutsäga under vissa omständigheter, exempelvis när 
luften i atmosfären inte är påverkad av människor. När luften däremot är påverkad av 
mänskliga utsläpp går det inte att på samma sätt förutsäga fasfördelningen eftersom 
partiklarnas upptagningsförmåga av organiska ämnen som är mycket oxiderade, d.v.s. de 
ämnen som i hög grad bidrar till bildning av partiklar i atmosfären ändrats och att aerosolerna 
inte är i jämvikt.  

 

Nyckelord: Gas till partikelomvandling, flyktighet, sekundära organiska aerosoler, 
FIGAERO, CIMS, monoterpener, isopren, biogena ämnen, mänsklig påverkan, SOA. 
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1.  Setting the scene 

Aerosols influence our life in various ways. The air we breathe is an aerosol and clouds in the 

sky are aerosols. Aerosols are formed when waves break and when a combustion engine is 

started. Complex chemical reactions in the atmosphere create aerosols. The particle phase of 

aerosols largely impact our climate by absorbing and scattering light (Stocker 2013). Aerosols 

adversely affect human health by increasing the risk of cardiovascular diseases, asthma 

attacks, cancer and premature death (Kim et al. 2015). Among the environmental health risks 

for humans, poor air quality is ranked as the highest (Shiraiwa et al. 2017). 

 

An aerosol comprises solid or liquid particles suspended in a gas. To be defined as an aerosol, 

the particles have to be stable for some time. In the lower troposphere particles normally have 

a lifetime on the timescale of one day to a couple of weeks. However, if they reach the 

stratosphere they can stay for a long time, up to a year or more (Hinds 1998). Particles can 

originate from both natural and anthropogenic sources, and once they are in the air the sources 

can be difficult to distinguish from each other. Natural sources of particles include sea spray, 

dust and volatile organic compounds (VOC) emitted by vegetation. Combustion caused by 

humans, biomass burning and car exhaust fumes are examples of anthropogenic sources. 

 

Secondary organic aerosols (SOA) is formed from oxidation of VOC in the atmosphere and 

they contribute significantly to the organic aerosol budget. VOCs can be biogenic or 

anthropogenic in their origin. The largest global contribution of VOCs comes from natural 

sources such as plants and trees (Hallquist et al. 2009). In many climate models, the sources 

of SOA are greatly simplified, if considered at all, resulting in considerable uncertainty about 

how SOA affect our climate (Tsigaridis et al. 2014). Therefore, it is important to determine 

how SOA is formed and how it is affected by anthropogenic pollution (Shrivastava et al. 

2017).   

 

More knowledge about SOA and its properties is needed to prevent further deterioration in 

human health, to make predictions about how our climate will change, and to take the 

appropriate remedial actions in these matters. The objective of this thesis is to contribute to 

the understanding of factors that play an important part in secondary particle formation, the 

chemical composition of secondary particles, and how the volatility of a compound influences 

its particle formation potential. 
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2. Organic compounds in the atmosphere 

Oxidation of organic compounds is a fundamental process in atmospheric chemistry. It is 

estimated that only 10 000 to 100 000 organic compounds (Goldstein and Galbally 2007) of 

the potentially millions of organic compounds in an average 200 nm particle (Donahue et al. 

2011) have been measured in the atmosphere. The atmosphere contains oxidizing species, 

creating new compounds via oxidation. Upon oxidation, some of the organic compounds will 

form products that are more prone to contribute to particle formation.    

 

2.1 Classification of particles in the atmosphere 

Atmospheric particles consist of several chemical compounds and these particles vary widely 

in size, from a few nanometers to almost 100μm, as illustrated in Figure 2.1. 

 

 
Figure 2.1 Classification of aerosol sizes, and sources and sinks of aerosols. Graphic design by Eva 
Emanuelsson. Printed with permission. 
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The smallest atmospheric particles, described by the nucleation and Aitken modes, are 

derived from high temperature combustion or atmospheric oxidation. They have a short 

lifetime, minutes to hours, and are removed by coagulation. Such small particles make a 

significant contribution to particle number, but little to particle mass (PM). The particles in 

the accumulation mode are still small enough to stay suspended in the air but also large 

enough not to coagulate, giving them a long lifetime of around 1-2 weeks. They are removed 

from the atmosphere via rainout or washout. Rainout is the process in which water condenses 

on a particle, forming a cloud, the particle eventually being removed by the next rainfall. 

Washout occurs when a particle is absorbed by a raindrop. Coarse mode particles, being 1 μm 

and larger, are primarily produced by mechanical processes. They are relatively heavy and 

their lifetime is short due to sedimentation. They make a significant contribution to PM, but 

little to particle number. Much of the legislation regarding particles is based on PM rather 

than particle number. Examples of this are PM2.5 and PM10, representing the mass of all 

particles smaller than 2.5 and 10 μm, respectively. 

 

2.2 Gaseous organic compounds in the atmosphere  

Volatile organic compounds (VOC) are gaseous organic compounds in the atmosphere. The 

greatest global contribution to VOC originates from plants, i.e. biogenic sources (BVOC). 

The amount of BVOC released from plants depends on sunlight intensity and leaf temperature 

(Guenther 1997). Plants may also emit BVOC when they are stressed by factors such as high 

temperatures or ozone levels (Niinemets 2010). These compounds protect the plants from 

outside attack (Loreto et al. 2014). BVOC also serve as a means of communication between 

plants and their pollinators (Loreto et al. 2014). It is estimated that 1000 Tg of BVOC are 

emitted to the atmosphere every year, the main constituent of which is isoprene, followed by 

methanol, ethanol, acetaldehyde, acetone, α-pinene, β-pinene, t-β-ocimene and limonene 

(Guenther et al. 2012). Atmospheric VOC from anthropogenic sources (AVOC), are emitted 

from many sources, such as combustion processes in the transport sector and by industry. In 

urban areas, AVOC may dominate over natural emissions (Borbon et al. 2013). Examples of 

common AVOC are aromatic hydrocarbons such as benzene, toluene, and p-xylene 

(Emanuelsson et al. 2013a).  
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2.3 Oxidation of organic compounds 

Once VOC have been emitted into the atmosphere their usual fate is to become oxidized 

(Atkinson and Arey 2003). The relative importance of each oxidant depends on its 

concentration and the structure of its precursor. The most important oxidizing agents in the 

atmosphere are O3, OH and NO3. Oxidation by chlorine is mainly important in marine and 

some urban areas but will not be further discussed in this work. 

 

2.3.1 Oxidants in the atmosphere 

In rural areas the hydroxyl radical, OH, is primarily formed from photolysis of O3, forming 

O(1D), which in turn reacts with water via the following reactions (R2.1 and R2.2b). 

 

 O3 + hν (λ ≤ 336nm) → O(1D) + O2 (R2.1) 

 O(1D) + M → O(3P) (R2.2a) 

 O(1D) + H2O → 2OH (R2.2b) 

 

The most common fate for excited oxygen, O(1D), is to collide with another molecule, M, 

return to its ground state O(3P), see R2.2a, and consequently regenerate ozone through R2.7. 

In urban areas, however, OH is also formed from photolysis of gaseous nitrous oxide, HONO, 

and hydrogen peroxide, H2O2 (R2.3 and R2.4) 

 

 HONO + hν (λ < 400nm) → OH + NO (R2.3) 

 H2O2 + hν (λ < 370nm) → 2OH (R2.4) 

 

When the concentration of nitric oxide, NO, is high, as it is in polluted areas, it can react with 

the hydroperoxyl radical, HO2 (R.2.5) 

 

 HO2 + NO → OH + NO2 (R2.5) 

 

This reaction also converts other peroxy radicals into OH. OH being much more reactive thus 

R.2.5 catalyze reactions leading to smog formation in areas polluted by NOx (George et al. 

2015) 
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Reactions R2.1, R2.3 and R2.4 require sunlight, and OH is therefore often referred to as a 

daytime oxidant. OH is also formed during ozonolysis of alkenes, and this is the major OH 

production pathway at night. 

Ozone is important for oxidation of unsaturated compounds during both day and night. The 

major formation pathway of tropospheric ozone is photolysis of NO2, (see R2.6 and R2.7).  

NO2 + hν (λ ≤ 420nm) → NO + O(3P) (R2.6) 

O(3P) + O2 + M → O3 (R2.7) 

The primary source of NOx is high temperature combustion, but it is also formed naturally in 

small quantities (e.g. from forest fires). Although the volume of NOx from anthropogenic 

sources has decreased substantially in recent decades, due to the introduction of regulations 

and catalysts, some areas still suffer from high ozone levels due to the lack of control of NOx 

emissions (Lefohn et al. 2010). 

The nitrate radical, NO3, is formed from the reaction of NO2 with O3, (R2.8). 

NO2 + O3  → NO3 + O2 (R2.8)

However, during the day the NO3 concentration is low since NO3 is photo-dissociated. 

NO3 + hν → NO2 + O(3P) (R2.9) 

For this reason, NO3 is often considered a night time oxidant. 

2.3.2 Oxidation of VOC 

An important oxidation pathway for VOC is ozonolysis, which requires a double bond in the 

precursor VOC. The oxidation is initiated by the addition of O3 to the double bond, resulting 

in the formation of a primary ozonoide (POZ). It is unstable and may decompose in two ways, 

as shown in Figure 2.2, both pathways will form a carbonyl compound and a biradical, i.e. an 

excited Criegee Intermediate (CI*) (Finlaysson-Pitts 2000). 
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The branching ratio between the two scission pathways shown in Figure 2.2 depends on the 

structure of the R-groups, R being the abbreviation of any hydrocarbon structure. In the 

special case of a cyclic alkene the carbonyl group will be retained in the CI*. The CI* is in an 

excited state and can either be collisionally stabilized, forming a stabilized Criegee 

Intermediate (SCI), or decompose to an ester, acid, or hydroperoxide, alternatively the SCI 

dissociate to a carbonyl and a O(3P) (Finlaysson-Pitts 2000). 

 

POZ

POZ

1

1

2

2

3

3

4

4

O3

a b

1 2

c

1

3

2

4

2

1

3

a

3

b

4

4

c

*

*

 
Figure 2.2 Schematic of the ozone reaction with a double bond, forming a primary ozonoide (POZ) 
that decomposes either by scission of a and c or of b and c, forming a carbonyl compound and a 
Criegee Intermediate. R is the abbreviation of any hydrocarbon structure.  
 

The most likely fate for many VOC during daytime is reaction with OH. The OH either 

abstracts one hydrogen from the VOC and forms water or is added to the double bond. Both 

cases yield an alkyl radical, R. The only reaction pathway important for R in the atmosphere 

is the addition of O2, forming an alkylperoxy radical, RO2. Figure 2.3 shows the possible 

reaction pathways for RO2, with NO, HO2 and self reaction with RO2 being the most 

important pathways. Under low NOx conditions, such as rural sites or chamber studies with no 

additon of NOx, two reaction pathways compete: RO2 can either react with itself, or with other 

RO2 radicals, forming an alcohol, a carbonyl compound or an RO.  
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The other possibility is for RO2 to react with 

HO2, forming a hydroperoxide. The preferred 

reaction pathway depends on the structure of the 

R-group. The reaction proceeds via a tetroxide 

intermediate, R1OOOOR2, and the reaction rate 

is faster the more stabile the intermediate, that is 

for larger R-groups. For small R-groups the HO2 

pathway is faster due to another reaction path 

being suggested, H-migration from HO2 towards 

the RO2 terminal oxygen (Vereecken and 

Francisco 2012). Under low NOx conditions, 

products such as hydroperoxides, carbonyls, 

hydroxycarbonyls and alcohols are formed, 

shown on the left in Figure 2.3. At high NOx 

levels, conversion from RO2 to RO through the reaction with NO is the dominant pathway. 

The continued reaction of RO depends on the R-group, i.e. the parent compound. For larger 

R-groups the RO2 can also react with NO to form organic nitrates, RONO2. In addition, RO2 

can react with NO2 forming peroxy nitrates, RO2NO2. Under high NOx levels, the oxidation 

products of VOC are dominated by carbonyls, hydroxycarbonyls and organic nitrates, shown 

on the right in Figure 2.3 (Hallquist et al. 2009). 

 

The Nitrate radical, NO3, reacts with alkenes, primarily via addition to the double bond, as 

illustrated in Figure 2.4. The more substituted the alkene is, the faster the reaction rate 

(Finlaysson-Pitts 2000). This reaction leads to the formation of organic nitrates (ON), i.e. 

organic compounds containing a covalently bound –ONO2 group. These nitrates affect air 

quality by acting as a reservoir of NOx (NO and NO2). Models estimate that isoprene reacting 

with NO3 forming ON is responsible for removing 8% (Horowitz et al. 1998) to 30% (Liang 

et al. 1998) of anthropogenic NOx from the boundary layer in the USA. 

 

1 2

3 4

NO3 1 2

3 4

ONO2

 
Figure 2.4 Nitrate radical reaction with an alkene forming an organic nitrate. 
  

Figure 2.3 Schematic of OH-initiated VOC
oxidation. Printed with permission (Hallquist
et al. 2009). 
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Like OH, NO3 can also abstract a proton from the precursor to form nitric acid, (R2.10). This 

reaction is generally slow and not as important as the double bond reaction, although it 

contributes to the removal of NOx from the atmosphere, by deposition of HNO3 (Finlaysson-

Pitts 2000). 

 

 NO3 + RH → HNO3 + R∙ (R2.10) 

 

In both NO3 reactions, the formed radical (R) reacts with molecular oxygen (O2) to form a 

peroxyradical, RO2.  

 

It was recently discovered that oxidation of monoterpenes leads to the formation of highly 

oxidized multifunctional organic compounds (HOM) (Ehn et al. 2012; Ehn et al. 2014; 

Jokinen et al. 2015). Very low volatile HOM are sometimes referred to as extremely low-

volatility organic compounds (ELVOC). However, many HOM do not have sufficiently low 

volatility to be defined as ELVOC (Kurten et al. 2016). HOM are produced on the timescale 

of seconds from rapid auto-oxidation of RO2 radicals. RO2 radicals are produced in the initial 

oxidation steps of VOC. The mechanism is suggested to go through H-shifts, followed by O2 

addition (Ehn et al. 2014). The resulting RO2 can then undergo a new H-shift followed by 

oxygen addition. In each step a hydroperoxide is formed, and an O2 is added to the 

hydroperoxide, resulting in a peroxy radical group on the carbon where the hydrogen 

abstraction started (Ehn et al. 2014), as shown in Figure 2.5. 

 

.

.H-shift

.

O2

 
Figure 2.5 Hydrogen abstraction from RO2 and concurrent O2 addition. Mechanism suggested by Ehn 
et al. (2014). The newly formed RO2 from the reaction can in turn undergo another H-shift followed 
by oxygen addition. 
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The fate of low volatility RO2 is the same as for any RO2 radical, i.e. reaction with HO2, RO2 

or NO (Figure 2.3). The result of any of these reactions can be HOM and ELVOC formation, 

the precursor VOC and the relative abundance of oxidants determines how much of each 

species is formed (Ehn et al. 2014).  

 

There is no strict definition of HOM, Trostl et al. (2016) define a HOM as CxHyOz with x = 8–

10, y = 12–16 and z = 6–12 for monomers, and dimers as CxHyOz with x = 17–20, y = 26–32 

and z = 8–18. The level of oxygenation of molecules in an organic aerosol is commonly used 

to describe the aerosol’s characteristics and volatility. One measure of this is the molecules’ 

oxygen to carbon ration O/C; another popular method is to use the average oxidation state, 

OSC   (Kroll et al. 2011), defined to be 

 

 ܱܵ஼ = 2 ∗ ܱ ൗܥ − ܪ ൗܥ  (Eq 2.1) 

 

where H/C is the hydrogen to carbon ratio. The larger the value of OSC, the more oxygenated 

the compound is. Compounds having an O/C ratio greater than or equal to 0.6 or an average 

oxidation state greater than or equal to 0 are often used as the lower limits for a HOM, see e.g. 

(Mutzel et al. 2015; Tu et al. 2016), although these measures should be used with care since 

CO2 would also qualify as a HOM if they were used as definitions. 

 

2.4 Secondary organic aerosol formation 

A large fraction of atmospheric aerosols are of organic origin (Jimenez et al. 2009). Oxidation 

of BVOC leads to SOA formation, the oxidation agents can be natural or influenced by 

anthropogenic emissions (such as NOx, R2.6 and R2.7). When a VOC is oxidized, many 

products will form, making atmospheric composition even more complex to model since each 

product will have different tendency to partition to the particle phase (Hallquist et al. 2009). 

SOA is estimated to contribute between 13–121Tg/year (Tsigaridis et al. 2014) to the total 

organic aerosol budget. Primary organic aerosols (POA) are estimated to contribute between 

34–144 Tg/year (Tsigaridis et al. 2014). However, models often underestimate the SOA 

burden compared with what is measured in the atmosphere (Volkamer et al. 2006).  In order 

to improve these models, more knowledge about the formation and gas to particle partitioning 

of SOA is needed. 
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2.4.1 Saturation vapour pressure 

The saturation vapour pressure, ps, often referred to as the vapour pressure, is the pressure 

required to maintain mass equilibrium for one compound between gas and particle phase over 

a flat surface. When the partial pressure of a gas equals the ps, no net mass will be transferred 

between the gas and solid/liquid phase. The lower the ps of a compound, the larger the 

fraction will be found in the particle phase. In addition, the ps is temperature-dependent, with 

lower temperatures yielding lower ps. The saturation ratio, SR, Eq 2.2, is defined as the partial 

pressure, p, of a compound divided by the ps for the temperature of the system. A gas is 

saturated when its partial pressure is equal to the ps (i.e., SR = 1), and supersaturated when SR 

> 1. 

 

 ܵோ = ௣௣ೞ (Eq 2.2) 

 

The definition of ps is for a flat surface. For nanometer sized particles, having a curved 

surface, the assumption that the surface is flat is not a good approximation. For those cases, 

the Kelvin effect has to be taken into account. The partial pressure, pd, around the particle 

must be higher than ps to maintain the diameter Dp and is defined to be 

  

௣൯ܦௗ൫݌  = ௦݌ ∗ ݌ݔ݁ ସ஢୑ఘோ்஽೛ (Eq 2.3)  

 

where σ is the surface tension, M the molecular weight, ρ the density, R the common gas 

constant and T the temperature. The smaller the size of the particle, the higher the partial 

pressure over the particle has to be to maintain the particle diameter.   

The ps of a compound is a key property in describing how a compound partitions between gas 

and particle phase. It is one property that can be incorporated in models used to predict our 

future climate. For models to be accurate, a proper description of partitioning is necessary. 

Therefore considerable effort has been devoted to measuring the ps of oxidation products from 

various VOC (Bilde et al. 2015; Bilde and Pandis 2001; Salo et al. 2010). Nevertheless, 

enormous discrepancies still exist between actual measurements of saturation vapour pressure 

and values predicted by these models (Donahue et al. 2011; Kurten et al. 2016).  
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If the structure of a molecule is known, the ps can be derived using computational chemistry. 

Group contribution methods are a common way to accomplish this. They include calculations 

of the contribution of a structurally dependent parameter and the properties are established 

from the sum of the products of the frequency of each structural feature and its contribution. 

This method assumes that the effect of each molecular group is additive (Nannoolal et al. 

2004). For example, a straight chain alkane acquires a lower ps the more C-atoms are attached 

to it. At the same time, a branched alkane has a higher ps than a straight one with the same 

number of C-atoms. In addition to this, functional groups in the molecule also affect the ps. 

Several group contribution models for estimating ps have been developed (Compernolle et al. 

2011; Myrdal and Yalkowsky 1997; Nannoolal et al. 2008). However, these methods require 

that the structure of the organic aerosol constituent is known.  

 

An organic aerosol is a complex mixture of various organic compounds, containing 5-10 

million individual compounds in low concentration (Donahue et al. 2011). Currently 

knowledge of these compounds’ identities is limited. Instruments that measure the molecular 

composition of the particles have been developed over the last decades. However, these 

methods do not reveal the chemical structure of the compounds, meaning the group 

contribution methods cannot be used. To overcome this problem Donahue et al. (2011) 

created a model that predicts the average ps based on the numbers of C, O and H in the 

constituents. Donahue et al. (2011) use the term saturation mass concentration Co (μg/m3) 

instead of ps in order to relate it to mass concentration, which is commonly used in 

atmospheric science. This makes it possible to estimate more easily and quickly the fraction 

of the compound in the particle phase, Fp. 

 

௣,௜ܨ  = [୧]೛ೌೝ೟೔೎೗೐[୧]೛ೌೝ೟೔೎೗೐ା[௜]೒ೌೞ (Eq 2.4) 

     

[i]particle and [i]gas are the concentrations of compound i in the particle phase and gas phase. 

For example, consider the simplest possible case of an organic aerosol that consists of one 

compound, Y, and suppose the organic aerosol concentration is 1 μg/m3, the ps of Y at 298K 

is 1.4*10-5 Pa, and the molecular weight of Y is 180 g/mol. This does not tell us what fraction 

of Y is in the gas phase. If the ps instead is expressed as saturation concentration, in this case 

of 1 μg/m3 for compound Y it is easy to calculate the fraction of material in the particle phase. 

In this case approximately 50% of the material is in the particle phase with an organic aerosol 



13 
 

concentration of 1 μg/m3. If however the organic aerosol concentration were to increase to 2 

μg/m3, then approximately 66% of Y would be in the particle phase.  

  

As was discussed earlier, the structure of a compound is important in describing its ps, or 

saturation concentration. In work described in this thesis, a mass spectrometer that provides 

the exact mass, and thus the constituents’ atoms, and not the structure of the molecules, has 

been used. In order to predict the simplified average saturation concentration, based on the 

atoms in a molecule, one first needs detailed information of known saturation concentrations.  

 

Under VOC oxidation some compound classes are more likely to form than others. Figure 2.6 

displays seven organic compound classes, important for SOA formation. Figure 2.7 displays 

experimentally obtained logarithmic saturation concentrations, plotted versus the number of 

carbons for the compound classes 

mentioned in Figure 2.6. Each class has a 

different functionality and varies only in the 

length of its carbon chain. Each carbon 

decreases the logarithmic saturation 

concentration by 0.475 (Donahue et al. 

2011), indicated by the solid parallel lines 

for each class. The functionalization is 

shown by deviation from the hydrocarbon 

line. The oxygen functionality is not as 

straightforward: how the oxygen is bound 

to the carbon affects the change in saturation concentration. An oxygen which is double 

bonded to a carbon, i.e. carbonyls, decreases log10Co by 1, while alcohol decreases log10Co 

even more, by about 2.3 (Donahue et al. 2011). It is impossible to determine how oxygen is 

bound using mass spectrometer data. To overcome this issue, Donahue et al. (2011) use an 

estimation method based on proxies for the distribution of functional groups and the use of 

only elemental composition as input. 

 

Nitrate radical oxidation also forms compounds of lower saturation concentration. The 

addition of a nitrate group (-ONO2) lowers the saturation concentration even more than 

oxygen does, approximately by 2.5 orders of magnitude (Donahue et al. 2011).  

Figure 2.6 From the top left structures of:
aldehyde, ketone, alcohol, carboxylic acid, diol
and dicarboxylic acid. 
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Figure 2.7 Logarithmic saturation concentration (log10Co (/ug m-3)) plotted against carbon number for 
seven organic compound classes. Each class has the functionality indicated by its color and varies only 
in the number of carbons it has. The slope of each line represents the effect of increasing the number 
of  C-atoms, while deviation from the hydrocarbon line shows the functionalization. The dashed lines 
indicate the average decrease in log10Co, 1.7 per O atom. Printed with permission (Donahue et al. 
2011).  
 

Co can thus be estimated based on molecular information that does not require information 

about the explicit molecular structure. In the work described in this thesis, an updated version 

of the Donahue et al. (2011) method was implemented, based on saturation concentrations for 

HOM, detected by Trostl et al. (2016), and calculated as 

݋݈  ଵ݃଴ܥ௜௢ =  (݊଴ − ݊஼ሻܾ஼ − (݊ை − 3݊ேሻܾை − ቀ (௡ೀିଷ௡ಿሻ௡಴(௡಴ା௡ೀିଷ௡ಿሻቁ ܾ஼ை − ݊ேܾே (Eq 2.5) 

 

where n0 = 25, corresponding to the number of carbon atoms in a straight alkene having the 

saturation concentration of 1μg/m3; bC is the carbon-carbon interaction term, set to= 0.475, 

which is the value each carbon atom lowers ݈݋ ଵ݃଴ܥ௜௢; bO is the oxygen-oxygen interaction 
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term, set to 2.0, representing how much each oxygen lowers the ݈݋ ଵ݃଴ܥ௜௢; and bCO is the 

carbon-oxygen non-ideality, which is set to -0.9, correcting for the non-linearity in Figure 2.7. 

The nitrogen-nitrogen interaction term bN = 2.5, nC, nO and nN are the numbers of carbons, 

oxygen and nitrogen atoms in the compound, respectively (Donahue et al. 2011). The update 

to the model is necessary since HOM have a slightly higher saturation concentration than 

previously predicted (Trostl et al. 2016). The reason for the under-prediction is the structure 

of HOM, which form via auto oxidation, is now known to incorporate a –OOH functional 

group, lowering the saturation concentration less than the functional groups that had been 

assumed previously (–OH and =O). 

 

2.4.2 Particle formation 

For a particle to form, a nucleus onto which the vapor condenses must exist. The nucleus can 

be formed either by homogeneous nucleation or by heterogeneous nucleation. In all gases, 

molecular clusters will form due to attractive forces between the molecules. The clusters are 

unstable and will disintegrate, but when a supersaturated vapor is formed more frequent 

collisions between clusters will occur. This will in turn lead to the formation of agglomerates. 

Some of these agglomerates will exceed a critical size, called the Kelvin diameter, d*, 

creating a nucleus large enough to be stable, see Eq 2.3. When a supersaturated gas condenses 

on a nucleus of this type, it is called homogeneous nucleation. This type of nucleation occurs 

in the atmosphere for compounds with very low ps. In the laboratory, however, homogenous 

nucleation can occur for compounds of higher ps by creating a supersaturated vapour from 

high concentrations of the compound.    

 

Heterogeneous nucleation, or nucleated condensation, is the process of particle formation 

when there is a pre-existing nucleus onto which the gas condenses. This is the process that 

makes it possible for compounds of higher ps to form particles since much lower saturation 

ratios are needed for this kind of condensation.  

 

2.4.3 Partitioning 

Partitioning, in this context, is the physical process that describes how a species is distributed 

between the gas phase and the particle phase. To allow modelling of partitioning between gas 
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and particle phase, the model suggested by (Pankow 1994) that builds upon Raoult’s law is 

used. The partitioning coefficient Ki is computed using the following formula 

 

௜ܭ  = [୧]೛ೌೝ೟೔೎೗೐[୧]೒ೌೞ∗ெ೚ೝ೒ = ோ்ெௐ೚೘തതതതതതതതതఊ೔∗௣೔బ (Eq 2.6) 

 

where Morg is the aerosol organic mass concentration, in this work measured by a High 

Resolution Time of Flight Aerosol Mass Spectrometer (hereafter referred to as AMS); [i]particle 

and [i]gas are the concentrations of compound i in the particle phase and gas phase, 

respectively; ݌௜଴ is the ps of i; ߛ௜ is the activity coefficient; ܯ ௢ܹ௠തതതതതതതത is the mean molecular mass 

of the particle constituents; R is the gas constant; and T is the temperature. The activity 

coefficient, ߛ௜, accounts for deviations from ideal behavior for a compound in a mixture of 

chemical substances.  

 

Another way to express the partitioning between gas and particle phase is in terms of 

saturation concentration, C*, which is the inverse of Ki. The difference between Co and C* is 

that Co is the saturation concentration over a pure liquid whereas C* takes the activity 

coefficient into account, thereby allowing for the non-ideality present in the particle matrix. 

C* is equivalent to 1/Ki, thus C* can be calculated in terms of Eq 2.6. Alternatively, the 

gas/particle ratio can be expressed in terms of Eq. 2.4.    

 

௢ܥ  ∗ = ߛ ∗ܥ = ௢௥௚ܯ ∗ ൬ ଵி೛,೔ − 1൰ = ௢௥௚ܯ ∗ [௜]೒ೌೞ[୧]೛ೌೝ೟೔೎೗೐ (Eq 2.7) 

 

Thus the saturation concentration of a compound can be calculated if the concentration of the 

organic mass, the concentration of the compound in particle phase and the concentration of 

the gas phase are known.   
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3. Studying partitioning and volatility 

In order to study aerosol formation and partitioning between the gas and particle phase, 

studies in both the lab and the ambient atmosphere are needed. Laboratory studies allow 

several parameters to be controlled and detailed knowledge and understanding obtained. The 

results of such studies can be incorporated in models used to predict our climate or air quality. 

To test such models, real-world measurements taken in the atmosphere are crucial.     

3.1 G-FROST 

The Göteborg Flow Reactor for Oxidation Studies at low Temperature (G-FROST) was used 

in papers I and II to study oxidation of VOC. G-FROST is a vertical laminar flow reactor in 

the form of a 191 cm glass tube with an inner diameter of 10 cm, located in a temperature- 

controlled chamber, as illustrated in Figure 3.1. The setup has been explained in detail 

elsewhere (Jonsson et al. 2006). In short, VOCs and an oxidant, e.g. ozone, are introduced 

through separate ports to the reactor. The oxidant 

and the VOC are mixed in an injector and particles 

are formed in the tube as the reactants are oxidized. 

Compounds of lower volatility will form as the 

oxidant and VOC travel through the tube. The gases 

are continuously led through the reactor at a constant 

rate, thus the age of the aerosol at the sampling 

location is always the same. Measurement 

instruments are connected to the sampling ports at 

the end of the tube. When using G-FROST, 

compounds are oxidized under controlled 

conditions, which provides an advantage over many 

other so-called static reactors, where the conditions 

change during the experiment. Relative humidity 

(RH), pressure and temperature are controlled 

during the experiments and the gas flow is set by 

mass flow controllers. Since the aerosol age can be 

kept stable at the point of measurement, instruments 

with low time resolution can be used.   

Figure 3.1 The principle of G-FROST.
The oxidant and reactant are delivered
to the reactor with a constant flow.
They are mixed in an injector (shown in
yellow) and particles form in the tube.
At the sampling port, aerosol of the
same age is formed. Design by Eva
Emanuelsson. Printed with permission.
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When monoterpenes are oxidized by ozone, OH-radicals are formed. An OH-scavenger reacts 

with OH-radicals, making it possible to solely study oxidation by ozone without influence of 

OH. In G-FROST an OH-scavenger can be introduced into the system. An additional effect of 

using an OH-scavenger is that the HO2/RO2 ratio is altered. This leads to different product 

distributions, and provides important information regarding the chemistry of the radicals. 

When 2-butanol is used, more HO2 will form leading to a higher HO2/RO2 ratio. The addition 

of cyclohexane as an OH scavenger decreases the HO2 concentration, thus decreasing the 

HO2/RO2. 

3.2 Ambient measurements 

This thesis will present results from field measurements from three different locations (papers 

III - V): a rural site in Hyytiälä, Finland, a rural site affected by anthropogenic emissions in 

Centreville, Alabama, USA, and a semi-urban site in Beijing, China. 

The Station for Measuring Forest Ecosystem Atmosphere Relations (SMEAR II), is situated 

in Hyytiälä, Finland, 220 km north-west from Helsinki. The measurement station has been 

described in detail previously (Hari and Kulmala 2005). The station is situated in a boreal 

forest that consists of Scots Pine, which is representative of the boreal coniferous forests that 

cover 8% of the Earth’s surface. The nearest city, Tampere, having 200 000 inhabitants, is 

located 60 km south-west from the site, making the site a remote measurement station (Hari 

and Kulmala 2005). The measurements were performed during spring (April-May 2013), the 

time of year when the concentration of α-pinene dominates the VOC budget (Hari and 

Kulmala 2005). 

The measurement campaign Southern Oxidant and Aerosol Study (SOAS) was deployed near 

Centreville, USA, in June-July 2013; a detailed description of the campaign has been 

provided by Xu et al. (2015) and Carlton et al. (2018). The location is 50 km south-east of 

Tuscaloosa, having 95 000 inhabitants, and 80 km southwest of Birmingham, having a 

population of 210 000. The station was situated in a temperate forest consisting of mixed 

deciduous trees (oak-hickory) and loblolly pine (Hansen et al. 2003). The dominating VOC 

emitted is isoprene, but monoterpenes also make some contribution. In addition, the site is 

influenced by anthropogenic pollution, such as NOx and SO2 (Fisher et al. 2016). The 

temperature has increased in most locations in the world due to global warming (Stocker 
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2013). However, the southeast United States has not warmed during the last century, despite 

high rates of anthropogenic pollution. The reason for this is not clear, but it has been 

suggested that sulfur dioxide emissions react with naturally occurring VOC to form SOA 

(Carlton et al. 2018). The SOA in turn reflects the incoming light, resulting in no net heating. 

Therefore, the southeast United States is an ideal place to investigate fundamental 

atmospheric processes, such as how biogenic emissions and anthropogenic pollution interact, 

and how they affect atmospheric chemistry and consequently air quality and climate. This 

knowledge is crucial to learning how the effects of climate change might be mitigated or 

reduced (Carlton et al. 2018). 

 

In Beijing, measurements were performed 40km north-east of Beijing close to Changping 

town in May and June 2016 (Le Breton et al. 2018). The measurement campaign was 

conducted with a focus on pollution episodes in north-eastern China. Pollution episodes, 

defined as periods of high PM1 concentration, were observed with a maximum PM1 

concentration reaching 115 μg/m3. During the episodes, concentrations of organic, sulfate and 

nitrate aerosols were high, although the fractions were not correlated (Le Breton et al. 2018). 

 

3.3 VTDMA 

A Volatility Tandem Differential Mobility Analyzer (VTDMA) measures the difference in 

particle diameter before and after heating. This gives a measure of the aerosol volatility and 

has been described in detail by Jonsson et al. (2007). The VTDMA consists of two 

Differential Mobility Analyzers (DMAs) with several ovens in between. After the second 

DMA there is a Condensational Particle Counter (CPC), as shown in Figure 3.2. In the first 

DMA one size of the poly-disperse particles from the aerosol is selected. The resulting 

monodisperse particles are then heated stepwise from 25˚C to 330˚C in the eight oven units, 

each oven having a different temperature range. After heating, the particles’ diameters are 

measured in the second DMA and their number concentration is measured by the CPC. Before 

the aerosol enters the first DMA, a Nafion® dryer can be connected to dry the aerosol. This 

ensures that the difference in particle diameter is due to evaporation of organic compounds 

and not of water from the particles’ surface. 
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Figure 3.2 The VTDMA. In DMA 1, one size of the poly-disperse particles is selected. The 
monodisperse particles are heated in a selected oven unit. The resulting diameter is measured in DMA 
2 and the number concentration measured by the CPC. Before the aerosol enters the first DMA, a 
Nafion® dryer dries the aerosol. Design by Eva Emanuelsson. Printed with permission. 
 

Volume Fraction Remaining at an evaporation temperature T, VFRT, is derived from the the 

mode of the particles’ diameter (Dp) at an evaporation temperature, T, to evaluate the 

volatility of the particles. The diameter is normalized to the the reference diameter (DpRef) 

selected by the first DMA and cubed. 

 

்ܴܨܸ  = ൬ ஽೛஽೛ೃ೐೑൰ଷ
                                                        (Eq 3.1) 

 

In order to obtain the full evaporation profile, the result of several such measurements can be 

plotted versus the evaporation temperature, generating a thermogram, as illustrated in Figure 

3.3. There the VFR for the pure component 

pinonic acid is compared with that of β-pinene 

SOA. β-pinene clearly has a different desorption 

profile to pinonic acid, although the temperature 

where 50% of the particles’ volume has 

evaporated, TVFR0.5, is roughly the same, 

underlining the importance of including the 

steepness of the function. The shape of each 

thermogram is best fit by a sigmoidal function of 

the form given in Eq 3.2. The sigmoidal fits 

provide consistency and the ability to compare 

thermograms. 
Figure 3.3 Thermograms from pure pinonic 
acid and β-pinene SOA.
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VFRT=VFRmin+ (VFRmax-VFRmin)

1+൬Tposition
T ൰SVFR                                      (Eq 3.2) 

 

The expression includes both the steepness, SVFR, of the thermogram and its mid-position, 

Tposition. The free parameters VFRmax and VFRmin define the boundaries of the highest and 

lowest VFRs, respectively. In order to more strictly define the most volatile and the non-

volatile fraction, the equation can be used to derive specific VFRs at 298K and 523K, (VFR298 

and VFR523). In addition, TVFR0.5, the temperature where half of the particles’ volume is 

evaporated, can be calculated. TVFR0.5 is a general measure of the volatility, whereas SVFR is a 

measure of the distribution of the volatilities of the major components of the particles. 

 

3.4 FIGAERO-ToF-CIMS 

Mass spectrometry is a method to separate ions in the gas phase, based on their mass to 

charge ratio (m/z), and requires the molecules of interest to be ionized. The chemical 

ionization high-resolution time-of-flight mass spectrometer (ToF-CIMS, Aerodyne Research, 

Inc., USA) ionizes target molecules by soft ionization and enables measurement of the gas 

phase composition. Soft chemical ionization minimizes fragmentation and facilitates 

identification of the parent molecule in ionic form, as opposed to hard ionization where the 

parent molecule is ionized through fragmentation. The mass spectrometer has a high 

resolution with a mass resolving power of >5000 (M/ΔM). The mass resolving power, R, 

describes the separation of two mass peaks, given by  

 

 ܴ = ெ௱ெ (Eq 3.3) 

 

where M is the mass of the singly charged ion in the mass spectrum and ΔM is the width of 

the peak at full width half maximum. The higher the value of R, the better the two peaks in 

the spectrum (and thus the ions) can be separated. High resolution power is a prerequisite for 

performing high resolution peak fitting, meaning that two or more compounds of the same 

nominal mass can be separated. 

 

Chemical ionization may be performed with various compounds as reagent ions, depending 

on the nature of the target molecule. Chemical ionization performed in this work used acetate 
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and iodide as reagents. Furthermore, two different ionization mechanisms – a radioactive 

alpha particle emitter and an X-ray source – were used to ionize the reagent ion. In Hyytiälä 

2013 and SOAS 2013 (papers III and IV) acetate was used as the reagent ion, with polonium 

(210Po) as the ionizer, resulting in the generation of negative ions. Thus, the mass spectrometer 

operated in negative ion mode. The acetate ion, CH3COO-, is produced by passing acetic 

anhydride, (CH3CO)2O with dry, pure, nitrogen through a  (210Po), radioactive alpha source. 

The resulting CH3COO- ion abstracts a proton from the target molecule, producing negative 

ions. The acetate ion has low gas phase acidity and so does not abstract protons from VOCs 

with high pKa such as alcohols, ketones, and aldehydes. It does extract protons from 

carboxylic acids, making it an ideal selective reagent ion for carboxylic acid detection (Veres 

et al. 2008). In China (paper V) methyl iodide was used as the reagent ion, and a Tofwerk X-

ray source (type P, operated at 9.5 kV and 150 µA) was used to produce I-, the reagent ion, 

which is good at forming adducts (Lee et al. 2014). In both ionization schemes, the chemical 

ionization takes place in the Ion Molecule Reaction (IMR) chamber, shown in Figure 3.4, kept 

at approximately 100 mbar for acetate, and 500 mbar for iodide. After being ionized, the 

target molecules are guided and focused by two quadrupoles, the small segmented quadrupole 

(SSQ) where the collisional dissociation occurs, and then focused by the big segmented 

quadrupole (BSQ). The ion optics focuses and accelerates the ion before it enters the Time of 

Flight (ToF) using high frequency pulses. In the ToF region, the ions travelling time, i.e. the 

“time of flight”, is measured before they are detected on a multi-channel plate (MCP). The 

MCP measures the molecular mass to charge ratio (m/z) of the ions with high accuracy. The 

intensity of the signal is proportional to the concentration of the compounds.  

 

 
Figure 3.4 Schematics of the high-resolution time-of-flight chemical ionization mass spectrometer 
(ToF-CIMS). Graphic design by (Sanchez et al. 2016). Printed with permission. 
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The data from ToF-CIMS was analyzed with tofTools, a MATLAB toolbox 

(http://www.junninen.net/tofTools) an open source project developed by the department of 

physics at University of Helsinki. The raw data in the ToF-CIMS was recorded every second. 

In order to save computational time and increase the signal-to-noise-ratio, the data was 

averaged over a 30-second period before analysis. Mass calibration was performed on each 

averaged spectrum. The mass spectrometer has to be calibrated to specify which peak 

corresponds to which mass. For mass calibration, several species can be used, but only the 

mass calibrants with the best signals are used in each calibration. This means that different 

masses may be used when calibrating different spectra. This feature is very useful when any 

of the calibrants have a poor signal in a subset of the data. An average peak shape is 

calculated. The peak shape is based on all peak shapes of the spectra and the ones having the 

greatest resolution are used to calculate an average peak shape for each mass. The averaged 

peak shape is used to assign one or more compounds to each unit resolution peak in the 

spectra.  

The ToF-CIMS is limited to measurements of compounds in the gas phase. To retrieve 

information about the compounds in the particle phase, a new inlet named the Filter Inlet for 

Gases and Aerosols (FIGAERO), was developed (Lopez-Hilfiker et al. 2014). It is connected 

to the ToF-CIMS, henceforth referred to as FIGAERO-ToF-CIMS. The FIGAERO inlet, 

Figure 3.5, allows for quasi-simultaneous measurements of compounds in particle and gas 

phase. It operates in two modes: 1) sampling of the gas phase and simultaneous collection of 

particles on a filter, and 2) desorption of particles from the filter with temperature-controlled, 

heated, high-purity nitrogen gas, where the volatilized particles are directly introduced into 

the ionization region and measured in the gas phase (Lopez-Hilfiker et al. 2014).  
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Figure 3.5 Schematic of the FIGAERO. A) Overview. The main manifold (green) and the movable 
tray (red) are made from Teflon. The manifold connects the FIGAERO with the CI-HR-ToF-MS. The 
movable tray switches between collection mode and desorption of particles. B) Gas measurement and 
particle collection mode. In this mode, the desorption port is blocked by the tray. C) Desorption mode. 
The tray has moved the filter to the position under the heating tube, and heated N2 passes over the 
filter. The N2 gas is heated to desorb the components on the filter. The resulting vapors are analyzed in 
the mass spectrometer. Graphic design by Lopez-Hilfiker et al. 2014. Printed with permission.  
 

In order to analyze particle composition, the particles are desorbed thermally by increasing 

the temperature of the N2 from ambient (~25oC) to 200°C in Hyytiälä and at SOAS (paper III 

and IV) and to 250°C in China (paper V). The temperature was maintained at the highest 

temperature for several minutes in order to ensure that all material was desorbed. The particle 

phase data were then analyzed with tofTools, with some additional analysis. A desorption 

profile (thermogram) is obtained, as the particles evaporate from the filter, detected in the gas 

phase, as shown in Figure 3.6 This type of thermogram differs from the one obtained using 

VTDMA. In the FIGAERO thermogram, the signal for each ion is plotted against 

temperature, rather than the VFR. The temperature at which most of a given compound 

evaporates, i.e. when the number of ion counts is at a maximum, is referred to as the 

compound’s Tmax. The thermograms were analyzed in detail in paper III.  
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It has been observed that it is common for a desorption profile to be bimodal (Lopez-Hilfiker 

et al. 2015), as can be seen in Figure 3.6. This has been attributed to either the presence of 

isomers having different ps or, more likely, thermally decomposed compounds of higher 

molecular weight, since the peaks are relatively well separated (Lopez-Hilfiker et al. 2015). In 

order to address this, all desorptions are analyzed with a custom nonlinear least-squares peak-

fitting routine that finds the maximum of all peaks. First, desorptions with one maximum (i.e. 

Tmax) were fitted to obtain a representative desorption peak shape. The remaining desorptions 

were then fitted using this peak shape. The numbers of peaks per desorption were allowed to 

vary from one to a maximum of three, in order to reduce over-fitting. The thermogram was 

fitted with software originally developed by the Department of Atmospheric Sciences, 

University of Washington and then further developed as part of this work. The program is 

based on an iterative algorithm (Levenberg–Marquardt) using nonlinear least squares to find 

the best fit. For a pure compound, the desorption peak shape can vary by up to 30% (Lopez-

Hilfiker et al. 2015), therefore the standardized peak shape was allowed to vary by the same 

percentage. In order to receive the signal of each compounds’ contribution to the thermogram, 

each peak in a multimodal thermogram was integrated separately.  

 

 
Figure 3.6 Two desorption profiles from the C9H13O4

- fragment taken at different times. Two Tmax are 
obtained for all thermograms of this ion. The temperature at which most of a particular compound 
evaporates, i.e. when the number of ion counts is at a maximum, is derived from the temperature at 
that specific time, and is referred to as Tmax. For fitting purposes the thermograms are fitted versus 
time instead of temperature, since the highest temperature are held constant for several minutes. The 
time is then converted to temperature. The heating regime differs slightly in each case, hence the 
difference in time for the obtained maximum signals (this does not affect the Tmax). 
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4. Results and discussion

The objective of this thesis is to contribute to the understanding of factors that are important 

for secondary organic particle formation, the chemical composition of these organic particles, 

and how a compound’s volatility affects the compound’s potential for particle formation. 

Papers I and II focus on controlled lab studies of β-pinene and α-pinene, which were 

undertaken to gain a better understanding of the fundamentals of oxidation of VOC. In 

addition, field studies were conducted in three different locations: a remote boreal forest in 

Europe, a semi remote forest in the USA, and one urban area in Asia. The results of these 

studies are presented in papers III, IV and V   

4.1 Oxidation of VOC in a controlled environment 

In paper I, the effect of relative humidity, temperature and radical chemistry on ozonolysis of 

β-pinene was investigated using the G-FROST facility. Figure 4.1 shows the major β-pinene 

ozonolysis pathways. As can be seen in R3a, water is important for the formation of the 

highly volatile compound nopinone. Upon β-pinene ozonolysis, both particle number and 

mass concentration decrease as humidity increases. In earlier studies with the monoterpenes, 

limonene, α-pinene and Δ3-carene, particle mass was seen to increase with increased humidity 

(Jonsson et al. 2006; Jonsson et al. 2008; Jonsson et al. 2007). In these earlier studies, the 

effect of relative humidity on number concentration also depended on other parameters such 

as temperature and whether a scavenger was used or not. 

The difference between β-pinene and the other monoterpenes can be explained by the 

structures of the molecules. β-pinene differs from limonene, α-pinene and Δ3-carene by 

having an exocyclic double bond, i.e. the double bond is outside the ring. α-pinene and Δ3-

carene have endocyclic double bonds, and limonene has both an endo- and an exocyclic 

double bond. In limonene, the ozone reacts preferentially with the endocyclic double bond 

(Maksymiuk et al. 2009; Pathak et al. 2012). 
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Figure 4.1 Schematic of the major pathways in β-pinene ozonolysis. The routes and yields are from 
(Nguyen et al. 2009), omitting pathways with yields below 1%. Reactions 3a and 3b are suggested by 
(Winterhalter et al. 2000). 
 

When ozone is attached to the exocyclic bond in β-pinene, forming a primary ozonoide (POZ) 

the ring structure remains intact, shown in Figure 4.1 (R1a and R1b). This results in 

compounds with high ps, relative to compounds in which the ring structure is broken. When 

ozone attaches to an endocyclic double bond, ring opening will occur and all carbons will be 

retained in the molecule, leading to oxygenated compounds with lower ps, as illustrated in 

Figure 4.2.  

 

α-pinene SCI

*

POZ

.
.

carboxylic acid

hydroperoxide

 
Figure 4.2 Simplified representation of proposed reaction responsible for the formation of 
hydroperoxide from paper II. The stabilized Crigee Intermediate, formed from α-pinene ozonolysis, 
reacts with a carboxylic acid, in this case pinic acid.  
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There are two possible pathways for the POZ from β-pinene: the dominant pathway is 

formation of a C9-CI* and formaldehyde; the volatile compound nopinone and a C1-CI* will 

also form, but to a much lower extent (5%) (Nguyen et al. 2009). The C9-CI* is in an excited 

state and has four possible pathways: collisional stabilization, ester channel, hydroperoxide 

channel or opening of the inner ring.  

 

Previous work has established that SOA particle formation increases with increased humidity 

(Docherty et al. 2005; Jonsson et al. 2008; Keywood et al. 2004). The differences in the effect 

of humidity for α-pinene and β-pinene were attributed to the difference in position of the 

double bond, arguing that an exocyclic double bond would increase the HO2/RO2 ratio, 

leading to more highly volatile compounds and thus less SOA (Docherty et al. 2005; 

Keywood et al. 2004). In paper I, decreased SOA production was observed as the HO2/RO2 

ratio increased. Here cyclohexane and 2-butanol were used as OH-scavengers, the particle 

mass and number concentration decreased in the following order: no scavenger >> 

cyclohexane > 2-butanol. However, a high relative humidity would also lead to a decrease in 

the HO2/RO2 ratio, via the water dependence on the HO2 self-reaction. This provides an 

inconsistency in attributing our observations of the ozonolysis of β-pinene to a direct water 

effect on HO2/RO2, as previously suggested by Docherty et al. (2005) and Keywood et al. 

(2004). The volatility of the particles in paper I were monitored by keeping the evaporative 

temperature in the VTDMA oven at 383K and then calculating the VFR as the parameter 

VFR383. In all experiments, VFR383 decreased with increased humidity, meaning an increase 

in volatility. This effect was especially pronounced in the low temperature cases. Generally, 

more volatile particles were produced when 2-butanol was used as OH-scavenger than when 

cyclohexane was used. Cyclohexane gave more volatile particles than the no scavenger 

experiments and this was manifested by a decrease in VFR383. 

 

The thermal properties of particles in paper I were also affected by changes in relative 

humidity and radical chemistry for β-pinene. As expected from Raoult's law, the lower 

temperature experiments favoured nucleation. Furthermore VFR383 decreased with increasing 

temperature in G-FROST. The negative temperature effect on particle mass was slightly 

stronger in the high humidity experiments than in the low humidity ones. In general the 

volatility increased with increased relative humidity, demonstrating the important role 

humidity plays in product distribution (Figure 4.1, R3a). In theory, for the low humidity 

experiments, more of the low volatile secondary ozonoide (R3b) could be formed with the 
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reaction of a carbonyl, e.g. by the formation of nopinone via R1a. However Docherty and 

Ziemann (2003) have shown this pathway does not contribute to SOA formation. 

The inconsistencies in β-pinene ozonolysis may be explained by an alternative reaction 

pathway. In paper I, we suggest that the C9-SCI (R2a) can rearrange into a hydroperoxide, 

something previously suggested by (Drozd and Donahue 2011; Nguyen et al. 2009; Zhang 

and Zhang 2005). This would favour the hydroperoxide channel, illustrated in Figure 4.3. This 

pathway explains the scavenger effect, producing more volatile particles under high HO2/RO2 

ratios, as the radical chain can be terminated by HO2. It also explains the relative humidity 

effect, since it would compete with the reaction between C9-SCI and water (R3a) forming the 

highly volatile compound nopinone.   

isom.O2

decomp.

pinalic-3-acid

RO2 or HO2RO2 or HO2

RO2O2

HO2

RO2

Hydroperoxide 

pinic acid

 OH

Figure 4.3 Formation of multifunctional oxygenated products by a sequence of radical reactions of β-
pinene, starting with the alkyl radical from the hydroperoxide channel shown in Figure 4.1. 

In paper II, the formation of dimer esters from the oxidation of α-pinene, generated in G-

FROST, was studied using Ultra-High-Performance Liquid Chromatography/Mass 

Spectrometry (UHPLC/MS). The results elucidated the effects of ozone and OH-initiated 

oxidation, humidity and radical chemistry on α-pinene dimer formation. The concentration of 

dimer esters from α-pinene in the particle phase were much higher during ozonolysis 

experiments with 2-butanol present as an OH scavenger, than in OH oxidation, indicating that 

ozone is required for the initial formation of dimer esters. The initial steps of ozonolysis by α-

pinene suggested in paper II are similar to those in β-pinene, consisting of gas-phase reactions 

forming a SCI. The SCI in turn reacts with oxygenated organics, resulting in the formation of 

dimer esters, as shown in Figure 4.2. 
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The dimer esters considered in paper II, having a low ps, contributed significantly (∼5−16%) 

to SOA formed from α-pinene oxidation. The dimer esters were not detected in the gas phase, 

probably due to their low volatility and therefore low concentration in the gas phase. Mohr et 

al. (2017) have since detected dimers in the gas phase in Hyytiälä with a FIGAERO- ToF-

CIMS and their presence has also been confirmed by lab studies (Zhang et al. 2017). This 

supports the hypothesis that the reactions take place in the gas phase. Moreover, some of the 

28 dimer esters detected in paper II were found in very high concentrations in the particle 

phase, in some cases even greater than some of the first-generation products from ozonolysis 

by α-pinene. This observation, combined with the short reaction times in G-FROST, indicates 

that dimer esters form quickly and are thus important for new particle formation.  

In paper II, the ozonolysis experiments with α-pinene under humid conditions yielded the 

highest fraction of dimer esters in SOA. In the presence of OH-scavenger, the fraction of 

dimer esters in SOA was a few percent higher than that for the experiments without a 

scavenger (under humid conditions). In the humid experiments with OH-scavenger, the eight 

most abundant dimer esters increase by 60% compared with the results for experiments that 

did not use a scavenger. The majority of the other dimer esters (20 of 28) were more abundant 

in SOA under humid conditions when no OH-scavenger was present, indicating the scavenger 

suppressed formation of those dimer esters. For the experiments under dry conditions, the 

presence of an OH-scavenger yielded fewer dimer esters than experiments without a 

scavenger. For both dry experiments, the same eight dimer esters as for the humid 

experiments were responsible for the majority (approximately 70-80%) of the dimer esters in 

SOA. For the dry experiment with scavenger, the same suppressing effect on the 20 dimers 

was observed.  

These results indicate that the formation of dimer esters requires ozonolysis for the initial 

oxidation steps of α-pinene. Furthermore, OH radicals enhance formation of some dimer 

esters, possibly via the RO2 self-reaction. The results also indicate that both O3 and OH 

oxidation is important for the formation of dimers in the atmosphere once the initial oxidation 

steps are finished. Similar results have been obtained in ambient air (Mohr et al. 2017). In 

addition, 15 of the 28 dimer esters found in the G-FROST experiments were also detected in 

Hyytiälä. The dimer esters from α-pinene comprised 1% of the total PM1 in Hyytiäla. The 

dimer esters detected in Hyytiälä are from oxidation from α-pinene, suggesting the total 

fraction of dimer esters could be much higher since monoterpenes other than α-pinene and 
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and sesquiterpenes, have been detected in Hyytiälä (Hakola et al. 2012). Thus, This was later 

confirmed by Mohr et al. (2017) who found that up to 5% of the particle mass for particles 

smaller than 60nm in Hyytiäla were comprised of dimers, also demonstrating the importance 

of dimers during nucleation events. 

4.2 Observations under ambient conditions 

In order to better understand how particles behave in the atmosphere, three field studies were 

conducted. In Hyytiälä (paper III), at SOAS (paper IV) and Beijing (paper V), the gas and 

particle phases were continuously monitored. In Figure 4.4a the average gas signal (black) 

and particle signal (red) from one desorption in Hyytiälä are shown. The particle signal is 

shifted + 0.5amu in the interests of clarity. Detailed sections of the spectra are displayed in 

Figures 4.4b) and c). Figure 4.4b) displays some relevant acidic products from monoterpene 

oxidation, such as pinic acid (m/z  185) and pinonic acid (m/z 183). Figure 4.4c) displays 

highly oxidized acidic compounds. Figure 4.4 also shows that the ratio of the particle signal to 

gas signal increases with increasing molecular weight.  

For the majority of compounds detected in particle phase in Hyytiälä, more than one 

desorption peak was obtained, as exemplified in Figure 3.6. The desorption peak at the lowest 

temperature was selected and further analyzed. The second desorption peak typically had a 

Tmax between 20-100 K higher than the first one, leading to the conclusion that they were 

thermally decomposed products from larger molecules, rather than isomers (Lopez-Hilfiker et 

al. 2015). For the same reason, when the particle signal was calculated, only the first 

desorption peak was integrated and considered for the partitioning calculations. 
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Figure 4. 4 a) Example of a mass spectrum from Hyytiäla, Finland recorded with FIGAERO-ToF-
CIMS with acetate as the reagent ion. The average gas signal is displayed in black. The average 
particle signal for one desorption sampled at the same time is shown in red and shifted + 0.5amu in the 
interests of clarity. b) Important acidic products from α-pinene oxidation, such as pinic acid (m/z 185) 
and pinonic acid (m/z 183) and c) Highly oxidized acidic compounds.  
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The maximum desorption temperatures (Tmax) for each compound detected in Hyytiälä (paper 

III) were compared with the

theoretical saturation concentration – 

predicted by Donahue et al. (2011) 

and revised by Trostl et al. (2016), as 

described in Section 2.3 – using each 

compound’s chemical formula rather 

than its structure. There is an 

exponential correlation between the 

theoretical saturation concentration 

and Tmax, as shown in Figure 4.5 (log 

scale), suggesting Tmax can indeed be 

used as a proxy for the theoretical 

saturation concentration.  

Another interesting approach is to find a relationship between Tmax and the ps of a series of 

polyethylene glycols (H−(O−CH2−CH2)n−OH) which covers ps over a large range (10-1–10-7 

Pa) (Bannan et al. 2018). This enables the measured Tmax for unknown compounds to be 

calibrated and so estimate a saturation vapor pressure. Unfortunately the equation developed 

by Bannan et al. (2018) could not be used in this work as a FIGAERO inlet of different 

design, and therefore different heat losses, was used. Understanding the relationship between 

Tmax and ps for the FIGAERO used in this work is outside the scope of this thesis but could be 

performed in the future. 

The FIGAERO was deployed in the field for the first time during the measurements in 

Hyytiälä 2013, and its performance was evaluated by taking measurements of compounds 

previously detected in Hyytiälä. More extensive tests of the performance of FIGAERO were 

conducted in the lab, such as gas transmission, particle collection efficiency, and gas 

adsorption to the filter, described by Lopez-Hilfiker et al. (2014). Since pinic and pinonic acid 

are expected to be the major oxidation products from monoterpenes (Kristensen et al. 2016; 

Yatavelli et al. 2014; Zhang et al. 2010), it was assumed that the ions C10H15O3- and C9H13O4- 

were pinonic and pinic acid, respectively. These two oxidation products were investigated in 

detail in order to evaluate the accuracy of the FIGAERO- ToF-CIMS. Bilde and Pandis 

Figure 4.5 Median Tmax compared with the theoretical
logarithmic saturation concentration (Donahue et al.
2011, Trostl et al. 2016) 
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(2001) established that pinic acid has a lower ps than pinonic acid, in line with our results, 

where the fraction of pinonic acid in the particle phase is much lower than the fraction of 

pinic acid, as shown in Figure 1 of paper III.  A previous study, measuring pinic and pinonic 

acid in Hyytiälä in both gas and particle phase obtained higher gas phase concentrations and 

lower particle phase concentrations (Kristensen et al. 2016). The difference in concentrations 

was attributed to the two sets of measurements being performed at different times of the year 

(resulting in lower ambient temperatures when our measurements were recorded), yielding 

different emission patterns of the precursors (Hakola et al. 2003). However, both studies 

measured a higher fraction of pinic acid in the particle phase, compared with pinonic acid, 

illustrating the effect of ps on partitioning. 

The simultaneous gas and particle phase measurements were conducted every 1 to 2 hours, 

which is relatively frequent in comparison with other methods, which normally have a much 

longer time resolution and detect only a few compounds. An analysis of the results obtained 

in Hyytiälä (paper III) showed that partitioning between compounds by the ideal partitioning 

theory, i.e. Raoult’s law, can be applied in the ambient atmosphere under some conditions. 

Partitioning coefficients for over 640 organic acids were obtained with the FIGAERO-CIMS 

in Hyytiälä. However, whenever there is anthropogenic influence, as indicated by high SO42- 

concentrations in the particle phase, the calculated partitioning coefficient deviates 

significantly for the most and least volatile compounds.  

From equation 2.1, Ki is predicted to increase as ps decreases: i.e. more of each compound 

will be found in the particle phase when the ps decreases. Figure 4.5 shows a linear correlation 

between the saturation concentration and median Tmax in Hyytiälä, illustrating that Tmax can be 

used as a proxy for the ps in the field as well as in the lab (Bannan et al. 2018). From the 

correlation with Tmax, the partitioning coefficient, Ki, is expected to increase with increasing 

Tmax, since a larger Ki corresponds to more material in the particle phase. However, this 

correlation was not observed in the data from Hyytiälä nor from the similar data from Beijing. 

Here Ki for each compound was calculated from the derived slope of the curve obtained for 

gas to particle ratio versus organic mass, from the whole measurement campaign. The quality 

of each linear fit was determined by the coefficient of determination (R2), as exemplified in 

Figure 4.6. 
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Figure 4.6 Examples of particle to gas signal ratios plotted against organic mass from Hyytiälä. 
Circles: all data, filled circles: low sulfate concentration (SO4

2- < 0.4 μg/m3). Left: Pinonic acid. Right: 
The dimer, C16H21O6

-, identified by Mohr et al, 2017. The solid line is the linear fit to the data with 
low sulfate concentration (SO4

2-< 0.4ug/m3). The dashed line is the linear fit for data with high sulfate 
concentration (SO4

2- ≥ 0.4 μg/m3).  

Figure 4.6 reveals that the correlation between the particle/gas signal ratio to Morg (aerosol 

organic mass concentration) is rather low. Further investigation showed that the correlation 

did not improve by correlating the particle/gas signal ratio to particle size distributions, new 

particle formation events, relative humidity, ambient temperature, nitrate or ammonium 

content in PM2.5. However, in Hyytiälä for clean air masses, defined as air masses with low 

sulfate particle concentration (SO42-< 0.4ug/m3), the value of R2 was considerably higher than 

for episodes affected by anthropogenic and aged air masses (SO42->0.4ug/m3). A similar 

sulfate effect was also seen in Beijing, although the increase in the value of R2 occurred at 

somewhat higher sulfate concentrations, and was not as pronounced, as illustrated in Figure 

4.7. In Hyytiäla, the SO42- concentration range was 0.1–1.6 μg/m3, and the organic mass range 

was 0.2–2.0 μg/m3. The SO42-concentration range in Beijing was 0.25–16.0 μg/m3 and organic 

mass range was 0.6–26.0 μg/m3. In Hyytiälä, when the sulfate concentration was low, Ki 

increased with increasing Tmax in accordance with equation 2.1. The effect of the origin of the 

air mass on Ki was especially pronounced for compounds with high and low Tmax, i.e. higher 

and lower volatility compounds. Ki was not influenced by the ambient relative humidity, 

therefore it is unlikely that it is the concentration of sulfate, which is highly dependent on 

humidity, that causes a change in Ki. The effect on Ki is more likely to be linked to other 

properties of the aerosol that change during high sulfate episodes. One possible explanation 
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for this could be that the activity coefficient, γ, is larger during high SO42- episodes. For the 

periods of high sulfate, Ki is generally lower for larger compounds. This could be because 

some larger compounds, such as larger acids, are known to have a higher activity coefficient 

(Cappa et al. 2008). Another factor that may affect the partitioning is viscosity. If the SOA are 

in an amorphous solid state or highly viscous, there would be kinetic limitations of diffusion 

to the bulk of the particles (Virtanen et al. 2010). This could be the result of higher viscosity 

in the particle phase during high levels of SO42-. 

Figure 4.7 Coefficient of determination, R2, for particle/gas signal versus organic particle mass. R2 
increases as the data points having high SO4

2- are removed, as indicated by the threshold. The 
maximum sulfate concentration was 1.6 μg/m3 in Hyytiälä and 16 μg/m3 in Beijing. 

For the Hyytiälä data, all the compounds for which there was a statistically significant 

relationship (p < 0.05) between their particle/gas ratio and Morg during the low sulfate 

conditions were analyzed further in order to elucidate the relationship between Ki and Tmax. 

The compounds fulfilling this criterion are displayed in the Kendrick mass defect plot in 

Figure 4.8. The Kendrick mass defect plot is a useful tool to find compounds that differ by a 

base unit, in this case CH2, in a high resolution mass spectrum (Kendrick 1963). The plot 

displays the Kendrick mass on the X-axis, defined as the IUPAC mass multiplied by 

14.00000/14.01565, and, on the Y-axis, the Kendrick mass defect, calculated as the Kendrick 

mass subtracted from the integer mass (Kendrick 1963). In Figure 4.8, the circles represent 

the measured compounds and the color code represents the median Tmax for each compound. The 

dotted lines are examples of where different molecules would appear. The magenta line 
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corresponds to a straight chain carboxylic acid, the red line to a straight line dicarboxylic acid 

and the black line to a dicarboxylic acid where each carbon outside the functional group is 

bound to oxygen. This plot shows that the majority of the compounds are more oxygenated 

than a carboxylic acid. In addition, some compounds, having one double bound oxygen 

molecule per carbon in a straight chained dicarboxylic acid, are shown as the dashed black 

line. The red dashed line shows where dicarboxylic acids with an alcohol (OH-group) bound 

to each carbon atom would end up. According to the definition by Tu et al. (2016) many of 

the compounds detected in Hyytiälä are HOM, as indicated by the area above the green 

dashed line in Figure 4.8, showing compounds with OSC  ≥  0. 

Figure 4.8 Kendrick mass defect plot for the compounds with p-values < 0.05 during low sulfate 
conditions. The circles are the measured compounds. The color code represents the median Tmax for 
each compound. The lines are examples of where molecules would lie. The magenta line corresponds 
to a straight chain carboxylic acid, the red line to a straight line dicarboxylic acid, the black to a 
dicarboxylic acid for which each carbon outside the acid functional group is a carbonyl (C=O) and the 
green line represents a molecule having a OSC = 0.    

In China, severe pollution in the large cities is a major threat to the health of their inhabitants. 

The pollution also threatens the economy and the government strives to reduce primary 

emissions. How this will affect secondary pollutants is unclear. For example the London 

smog, which occurred during winter due to a combination of cold weather and increased coal 

burning, was caused by sulfur dioxide and soot being trapped by temperature inversion. 

Summertime smog – as occurs in e.g. Los Angeles – is caused by VOCs and nitrogen oxides 

reacting with sun light, i.e. photochemical smog. Both these types of smog occur in China, 
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including pollution of ozone, soot, sulfur dioxide, VOCs, NOx and organic particles. Thus 

actions to reduce pollution in China cannot be based solely on what has been done to improve 

air quality in the US and Europe (Hallquist et al. 2016).  

The conditions in Changping, near Beijing, were very different from Hyytiälä. The sulfate 

effect on partitioning is seen in Figure 4.7, but here the sulfate concentration in the particles is 

much higher. The much lower correlation coefficients in Changping are most likely partly due 

to the signal to noise ratio in Changing being much lower than it was in Hyytiälä. The reason 

for this was not being able to use 210Po to produce the reagent ion in China. Instead, an X-ray 

source was used for ionizing in the production of the reagent ion, which, unfortunately, 

yielded a much lower total ion-count. The air in Changping was always affected by 

anthropogenic influence as the wind direction always came from the southerly sectors (90-

270°). Two distinct regimes of air pollution were discovered: one when the wind came from 

the south-east, where Beijing is located; the other when the wind came from the south-west, 

which was more influenced by forest and farming emissions. 

Figure 4.9 displays core data from the campaign in Changping. The anthropogenic tracer 

SO42- in the particle phase comes mainly from the south-east. The majority of the organic 

mass also comes from the south-east, meaning that it is highly influenced by industry and 

traffic, as is seen from the wind rose for benzene. In the air masses from the south-west, being 

from more forested areas, isoprene occurred in the largest concentration. In addition, the 

maximum winds speed from the south-east was 3 m/s and 6 m/s from the south-west, 

suggesting a short range transport and hence local contribution. The lower signal to noise ratio 

for the ToF-CIMS measurements taken in Changping, in combination with the lack of 

northerly winds bringing in cleaner air masses, complicated the interpretation of this dataset 

in relation to the Hyttiälä data. Thus, in order to further understand gas to particle partitioning 

in Changping, one would need more data, especially from the cleaner sector in the north 

where the air masses are more influenced by biogenic emissions.  
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Figure 4.9 Frequency of counts by wind direction, for organic mass and sulfate in particles, and 
for benzene and isoprene in gas phase. 

However, the high sulfate concentrations in Beijing were used to study the behavior of dimers 

in particle phase in Changping. In Hyytiälä, a larger effect of sulfate was observed for 

compounds with higher Tmax, indicative of dimeres being more affected by sulfate than other 

compounds (Figure 4.7). The dimer particle signal in Changping was ordered by mass ranges, 

since no Tmax could be extracted, and normalised to total particle signal. It was evident from 

these data that the number of dimers observed in the particle phase relative to the total particle 

signal decreased at higher sulfate concentrations. This reduction in signal relative to the total 

particle signal with increased sulfate is similar to other observations by Riva et al. (2019) in 

Hyytiälä for a smaller range in sulfate. This was also the case for another site in China, 

Dezhou, included to emphasise this effect also at high sulfate concentration. We could also 

observe a sulfate effect on dimer concentration for the two Chinese sites and thus confirm the 

recent findings by Riva et al. (2019). Riva et al. (2019) also noticed an increase in compounds 
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having high molecular weight (greater than approximately 600 g/mol) with increasing sulfate 

concentration. In Changping no higher molecular weight (HMW) compounds could be 

measured due to the poor signal. The increase in HMW compounds indicates that the 

chemistry in the particles is changed with increased acidity, which is indicated by sulfate 

concentration. Oligomers have previously been observed to form in the particle phase (Hall 

and Johnston 2012). However, the fact that the measured monomer concentration in the 

particle phase did not increase with increased monomer gas concentration suggests that the 

formation of oligomers is driven by reactive uptake in the particle phase rather than by 

equilibrium partitioning (Hall and Johnston 2012). 

During the SOAS campaign in Centreville, Alabama (paper IV), 88 organic nitrates (ON) 

were identified in the particle phase. During the day (12:00–16:00) they contributed 3%, on 

average, to the total organic mass measured by the AMS, while during the night (22:00–

05:00) they contributed 8%, on average. The measurements of particle organic nitrates (pON) 

using FIGAERO-ToF-CIMS agreed well with measurements taken using two AMS 

instruments operating in parallel. The measurements obtained from a thermal dissociation 

laser induced fluorescence (TD-LIF) instrument followed the same trends as our 

measurements, but were around a factor of 5 higher in concentration. However, all 

instruments displayed a diurnal pattern with higher concentrations of pON during the night 

than the day.  

In order to investigate the effect of monoterpenes (C10) and isoprene (C5) precursors on pON, 

the pON were divided into two groups having 5 and 10 carbon atoms, respectively. The 

fraction of pONs with 10 and 5 carbons over the sum of pONs with C10 and C5 groups, show 

an opposite diurnal trend, consistent with the average levels of their precursors, isoprene and 

monoterpenes, as shown by Figure 4.10. The fraction of C5 pON follows the same pattern as 

isoprene, and the diurnal patterns for C10 pON follow the same pattern as the monoterpenes. 

This strongly suggests that the pON processes occur on a timescale of a few hours. A 

potential reason for such a fast gas phase reaction followed by loss to particle phase could be 

oxidation by OH (George and Abbatt 2010). 
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Figure 4.10 Particle organic nitrates (pON) and their precursors. Left: Fraction of pON originating 
from C10 and C5, over the sum of the C10 and C5 groups. Middle: Sum of monoterpenes varying over 
the day. Right: Diurnal isoprene pattern.  

The dominant molecular composition of the pON discussed in paper IV is of monoterpenes 

and isoprene that were more oxygenated than previously reported, with each pON having 

between 4-11 oxygens. The number of oxygens in a compound lowers the ps, meaning that the 

compound will partition to the particle phase to a larger extent. Previously, highly oxygenated 

molecules were detected in the laboratory (Ehn et al. 2014; Jokinen et al. 2015). In paper IV, 

we report the first observations in the field of highly oxidised pON. The pON contributed 3%, 

on average, to the organic mass, but the measurements from the TD-LIF, suggests the fraction 

of pON in organic aerosols could be even higher.  
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5. Atmospheric implications

In the ambient atmosphere a myriad of reactions take place simultaneously. Predicting future 

SOA concentrations and composition of aerosols in a warmer climate is challenging: SOA 

formation is affected by increased temperature in several different ways, including higher 

VOC emissions, faster reaction rates and decreased partitioning from gas into particle phase 

(Tsigaridis and Kanakidou 2007). In addition, oligomerization/accreation processes of 

compounds within particles, predicted to occur when the aerosol particles are more acidic 

(Riva et al. 2019), makes the particles less volatile and therefore affects their lifetime 

(Shrivastava et al. 2017).  

The work described in this thesis investigated partitioning between gas and particles, particle 

volatility and particle composition in detail. In papers I and II, the formation of SOA was 

studied in a controlled laboratory environment. The results revealed that β-pinene produces 

fewer particles as humidity increases. The paper also suggests a new mechanistic pathway 

explaining the effect on relative humidity. For α-pinene, ozonolysis, not OH, is important for 

the initial step in dimer ester formation. These findings make an important contribution to the 

understanding of the underlying chemical reactions and improve our ability to predict the 

influence of SOA on the climate and air quality in the future (Burkholder et al. 2017). 

Partitioning between gas and particle phase in the atmosphere, in some cases, can be 

described by Raoult’s law, as shown in papers III and V. The level of anthropogenic influence 

is a key factor in this partitioning. In order to model the mass of SOA and predict the impact 

SOA will have on society, accurate models of SOA formation are needed. The basis for such 

models includes knowledge of gas to particle partitioning and the factors that influence this 

partitioning. In addition, knowledge of the compounds in the particles is needed. 

Traditionally, volatility has been assumed to be the parameter that governs partitioning 

(Donahue et al. 2011), but partitioning between gas and particle phases is also affected by 

other processes, which new models of organic aerosol formation should consider. Examples 

of such processes are reactions in the bulk of the particles, the formation of high molecular 

weight compounds from oligomers which is affected by the inorganic composition or acidity 

(Riva et al. 2019). Presumably, new models should also take particle-phase processing and the 

(previously underestimated) importance of inorganic components in SOA formation into 

account. 
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Paper IV demonstrated that highly oxidized pON are formed from oxidation of BVOCs when 

NOx is present. Thus, pON formation can enhance gas to particle partitioning for compounds 

of intermediate volatility in regions with elevated concentrations of NOx via their contribution 

to increased organic mass (Ng et al. 2007). In addition, ON formed from isoprene are 

estimated to remove 8–30% of the anthropogenic NOx in the USA (Horowitz et al. 1998; 

Liang et al. 1998), meaning a change in gas to particle partitioning could affect the amount of 

gaseous NOx in those areas significantly. 

To conclude, the work described in this thesis has improved the understanding of the chemical 

composition and gas to particle partitioning of SOA. The FIGAERO- ToF-CIMS was used to 

elucidate the composition of an aerosol in the particle and gas phases, making it possible to 

learn more about gas to particle partitioning. It was revealed that Raoult’s law can be used to 

predict gas to particle partitioning in cases when the anthropogenic pollution is low. It was 

also revealed that volatility is not the sole component that drives partitioning; the inorganic 

content or the acidity, or potentially both, of the particles are also important.  
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