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CDS INDEX OPTIONS IN MARKOV CHAIN MODELS

ALEXANDER HERBERTSSON

Abstract. We study CDS index options in a credit risk model where the defaults times
have intensities which are driven by a finite-state Markov chain representing the underlying
economy. In this setting we derive compact computationally tractable formulas for the CDS
index spread and the price of a CDS index option. In particular, the evaluation of the
CDS index option is handled by translating the Cox-framework into a bivariate Markov
chain. Due to the potentially very large, but extremely sparse matrices obtained in this
reformulating, special treatment is needed to efficiently compute the matrix exponential
arising from the Kolmogorov Equation. We provide details of these computational methods
as well as numerical results. The finite-state Markov chain model is calibrated to data with
perfect fits, and several numerical studies are performed. In particular we show that under
same exogenous circumstances, the CDS index options prices in the Markov chain framework
can be close to or sometimes larger than prices in models which assume that the CDS index
spreads follows a log-normal process. We also study the different default risk components in
the option prices generated by the Markov model, an investigation which is difficult to do in
models where the CDS index spreads follows a log-normal process.

Keywords: Credit risk; CDS index; CDS index options; intensity-based models; depen-
dence modelling; Markov chains; matrix-analytical methods, numerical methods

JEL Classification: G33; G13; C02; C63; G32.

1. Introduction

The development of liquid markets for synthetic credit index products such as CDS index
swaps has led to the creation of derivatives on these products, most notably credit index
options, sometimes also denoted CDS index options. Essentially the owner of such an option
has the right to enter at the maturity date of the option into a protection buyer position in
a swap on the underlying CDS index at a prespecified spread; moreover, upon exercise he
obtains the cumulative loss of the index portfolio up to the maturity of the option. Credit
index options have gained a lot interest the last turbulent years since they allow investors to
hedge themselves against broad movements of CDS index spreads or to trade credit volatility.

To date the pricing and the hedging of these options is largely an unresolved problem.
In practice this contract is priced by a fairly ad hoc approach: it is assumed that the loss-
adjusted spread of the CDS index at the maturity of the option is lognormally distributed
under a martingale measure corresponding to a suitable numeraire, and the price of the
option is then computed via the Black formula. Details are described for instance in Morini
& Brigo (2011) or Rutkowski & Armstrong (2009). However, beyond convenience there is
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no justification for the lognormality assumption in the literature. In particular, it is unclear
if a dynamic model for the evolution of spreads and credit losses can be constructed that
supports the lognormality assumption and the use of the Black formula, and there is no
empirical justification for this assumption either.

In this paper we study CDS index options in a credit risk model where the defaults times
have intensities that are functions of a finite-state Markov chain representing the underlying
economy. Such models have previously been studied in e.g. Graziano & Rogers (2009) where
the authors consider CDOs and CDSs. However, when pricing CDS index options other
probabilistic and numerical methods must be used than those in Graziano & Rogers (2009).
The methods proposed in this paper are for some sections close to the corresponding methods
in Herbertsson & Frey (2018) where the authors apply nonlinear filtering techniques of Frey
& Schmidt (2012). More specific, Frey & Schmidt (2012) uses the innovations approach to
nonlinear filtering and derive the Kushner-Stratonovich SDE describing the dynamics of the
filtering probabilities. The approach in Herbertsson & Frey (2018) creates CDS index spreads
that allow for diffusion, drift and jumps which is important for mimicking realistic pricing.
The benefit of Herbertsson & Frey (2018) is that this model allow for diffusion, with very few
states of the underlying economy. The drawback of Herbertsson & Frey (2018) is that we have
to solve for the filtering probabilities by numerical simulations of the Kushner-Stratonovich
SDE in order to find Monte Carlo approximations for the price of CDS index options.

In this paper, on contrary to Herbertsson & Frey (2018), the true state of the economy
is observable without noise to the market participants and we are thus back in a standard
intensity based credit risk model where the default intensities are driven by a Cox-process
just as in Lando (1998). In this setting we derive compact computational tractal formulas for
the CDS index spreads and CDS index options. Due to the very large, but extremely sparse
matrices obtained in this reformulating, special treatment is needed to efficiently compute
the matrix exponential arising from the Kolmogorov Equation. We provide details of these
computational methods as well as numerical results. The finite-state Markov chain model is
calibrated to data with perfect fits, and several numerical studies are performed. In particular
we show that under same exogenous circumstances, the CDS index options prices in the
Markov chain framework can be close to or sometimes larger than prices in models which
assume that the CDS index spreads follows a log-normal process. We also study the different
default risk components in the option prices generated by the Markov model, an investigation
which is difficult to do in models where the CDS index spreads follows a log-normal process.

Options on a CDS index have been studied in for example Pedersen (2003), Jackson (2005),
Liu & Jäckel (2005), Doctor & Goulden (2007), Rutkowski & Armstrong (2009), Morini &
Brigo (2011), Flesaker, Nayakkankuppam & Shkurko (2011) and Martin (2012). In all of
these papers it is assumed that either the CDS index spread or the so called loss-adjusted
CDS index spread at the maturity of the option is lognormally distributed under a martingale
measure corresponding to a suitable numeraire, and the price of the option is then computed
via the Black formula. For a nice and compact overview of some of the above mentioned
papers, see pp.577-579 in Morini & Brigo (2011).

The rest of the paper is organized as follows. First, in Section 2 we give a brief introduction
to how a CDS index works and then present a model independent expression for the so called
CDS index spread. Section 2 also introduces options on the CDS index and provides a formula
for the payoff such an option which holds for any framework modelling the dynamics of the
default times in the underlying credit portfolio. Then, in Section 3 we briefly describe the
model used in this paper, originally presented in Graziano & Rogers (2009) and we provide the
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main building blocks that will be necessary to find formulas for portfolio credit derivatives such
as e.g. the CDS index as well as credit index options. Examples of such building blocks are
the conditional survival distribution, the conditional number of defaults and the conditional
loss distribution. In Section 4 we use the results from Section 3 to derive computational
tractable formulas for the CDS index in the model presented in Section 3. This will be done
in a homogeneous portfolio. Continuing, in Section 5 we derive practical formula for the price
of a CDS index option in the Markovian modell.

Finally, in Section 6 we discuss how to estimate or calibrate the parameters in the Markov-
ian model introduced in Section 3 and also calibrate our model and present different numerical
results for prices of options on a CDS index. More specific, the Markov model is calibrated to
data with perfect fits, and several numerical studies are performed. For example, we show that
under same exogenous circumstances, the CDS index options prices in the finite-state Markov
chain setting can be several hundred percent bigger compared with models which assume that
the CDS index spreads follows a log-normal process. We also compare the Markovian prices
with the corresponding prices in the nonlinear filtering model used in Herbertsson & Frey
(2018).

2. The CDS index and credit index options

In this section we will discuss the CDS index and options on this index. First, Subsection
2.1 gives a brief introduction to how a CDS index works. Then, in Subsection 2.2 we outline
model independent expression for the CDS index spread. Finally, Subsection 2.3 introduces
options on the CDS index, sometimes denoted by credit index options, and uses the result
form Subsection 2.2 to provide a formula for the payoff such an option which holds for any
framework modelling the dynamics of the default times in the underlying credit portfolio.

2.1. Structure of a CDS index. Consider a portfolio consisting of m equally weighted
obligors. An index Credit Default Swap (often denoted CDS index or index CDS ) for a
portfolio of m obligors, entered at time t with maturity T , is a financial contract between
a protection buyer A and protection seller B with the following structure. The CDS index
gives A protection against all credit losses among the m obligors in the portfolio up to time
T where t < T . Typically, T = t+ T̄ for T̄ = 3, 5, 7, 10 years. More specific, at each default
in the portfolio during the period [t, T ], B pays A the credit suffered loss due to the default.
Thus, the accumulated value payed by B to A in the period [t, T ] is the total credit loss in the
portfolio during the period from t to time T . As a compensation for this A pays B a fixed fee
S(t, T ) multiplied what is left in the portfolio at each payment time which are done quarterly
in the period [t, T ]. The fee S(t, T ) is set so expected discounted cash-flows between A and
B is equal at time t and S(t, T ) is called the CDS index spread with maturity T − t. For
t = 0 (i.e. ”today”) so that T = T̄ we sometimes denote S(0, T ) by S(T ) and the quantity
S(T ) can be observed on a daily basis for standard CDS indexes such as iTraxx Europe and
the CDX.NA.IG index, for maturities T = 3, 5, 7, 10 years. The quarterly payments from
B to A are done on the IMM dates 20th of March, 20th of June, 20th of September and
20th of December. Standardized indices such as iTraxx are updated twice a year on so called
”index-rolls” which takes place on the two IMM dates 20th of March and 20th of September.
The most recent rolled CDS index is referred to the ”on-the-run-index”. Indices rolled on
previous dates are refereed to as ”off-the-run-indices”. A T̄ -year on-the-run index issued on
20th of March a given year will mature on 20th of June T̄ years later. Similarly, a T̄ -year
on-the-run index issued on 20th of September a given year will mature on 20th of December
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T̄ years later. Thus, the effective protection period will be somewhere between T̄ − 0.25 and
T̄ − 0.25 years. For example, a 5-year on-the-run CDS index entered on 20th of March will
have a maturity of 5.25 years but if it is entered on the 16th of September the same year it
will have a maturity of around 4.75 years. As we will see later, these maturity details will
play an important role when pricing options on CDS indices. For more on practical details
regarding the CDS index, see e.g Markit (2016) or O’Kane (2008).

In order to give a more explicit description of the CDS index spread S(t, T ) we need to
introduce some further notations and concepts which is done in the next subsection.

2.2. The CDS index spread. In this subsection we give a quantitative description of the
CDS index spread. First we need to introduce some notation. Let (Ω,G,Q) be the underlying
probability space assumed in the rest of this paper. We set Q to be a risk neutral probability
measure which exist (under rather mild condition) if arbitrage possibilities are ruled out.
Furthermore, let F = (Ft)t≥0 be a filtration representing the full market information at
each time point t. Consider a portfolio consisting of m equally weighted obligors with default
times τ1, τ2 . . . , τm adapted to the filtration (Ft)t≥0 and let ℓ1, ℓ2, . . . , ℓm be the corresponding
individual credit losses at each default time. Typically ℓi = (1−φi)/m where φi is a constant
representing the recovery rate for obligor i. The credit loss for this portfolio at time t is then
defined as

∑m
i=1 ℓi1{τi≤t}. Similarly, the number of defaults in the portfolio up to time t,

denoted by Nt, is Nt =
∑m

i=1 1{τi≤t}. Note that if the individual loss is constant and identical
for all obligors so that ℓ = ℓ1 = ℓ2 = . . . = ℓm then the normalized credit loss Lt is given by
Lt =

ℓ
m
Nt. In the rest of this paper we will assume that the individual loss is constant and

identical for all obligors where 1− φ = ℓ = ℓ1 = ℓ2 = . . . = ℓm and we therefore have that

Lt =
1− φ

m
Nt where Nt =

m∑

i=1

1{τi≤t}. (2.2.1)

Finally, for t < u we let B(t, u) denote the discount factor between t and u, that isB(t, u) = Bt

Bu

where Bt is the risk free savings account. Unless explicitly stated, we will assume that the
risk free interest rate is constant and given by r so that Bt = ert and B(t, u) = e−r(u−t).

Let T > t and consider an CDS index entered at time t with maturity T on the portfolio
with loss process Lt. In view of the above notation we can now define the (stochastic)
discounted payments VD(t, T ) from A to B during the period [t, T ], and VP (t, T ) from B to
A in the timespan [t, T ], as follows

VD(t, T ) =

∫ T

t

B(t, s)dLs and VP (t, T ) =
1

4

⌈4T ⌉∑

n=nt

B(t, tn)

(
1− Ntn

m

)
(2.2.2)

where nt denotes nt = ⌈4t⌉ + 1 and tn = n
4 . Recall that it typically holds T = t + T̄ for

T̄ = 3, 5, 7, 10 years. We here emphasize that we have dropped the accrued term in VP (t, T )
and also ignored the accrued premium up to the first payment date in VP (t, T ). The expected
value of the default and premium legs, conditional on the market information Ft are given by

DL(t, T ) = E [VD(t, T ) | Ft] and PV (t, T ) = E [VP (t, T ) | Ft] (2.2.3)

that is

DL(t, T ) = E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
(2.2.4)



CDS INDEX OPTIONS IN MARKOV CHAIN MODELS 5

and

PV (t, T ) =
1

4

⌈4T ⌉∑

n=nt

B(t, tn)

(
1− 1

m
E [Ntn | Ft]

)
. (2.2.5)

In view of structure of a CDS index described in Subsection 2.1, the CDS index spread S(t, T )
at time t with maturity T is defined as

S(t, T ) =
DL(t, T )

PV (t, T )
(2.2.6)

or more explicit, using (2.2.4) and (2.2.5)

S(t, T ) =
E

[∫ T

t
B(t, s)dLs

∣∣∣Ft

]

1
4

∑⌈4T ⌉
n=nt

B(t, tn)
(
1− 1

m
E [Ntn | Ft]

) . (2.2.7)

The definition of S(t, T ) in (2.2.6) is done assuming that not all obligors have defaulted in
the portfolio at time t, that is S(t, T ) is defined on the event {Nt < m}. In the event of a
so-called armageddon scenario at time t where Nt = m (i.e. all obligors in the portfolio have
defaulted up to time t), we see that the premium leg VP (t, T ) in (2.2.2) is zero at time t,
which obviously makes the definition of the spread S(t, T ) invalid. Note that for t = 0 (i.e.
today) the quantity S(0, T ) can be observed on a daily basis for standard CDS indexes such
as iTraxx Europe and the CDX.NA.IG index, for maturities T = 3, 5, 7, 10 years.

We here remark that the outline for the CDS index spread presented in this subsection
holds for any framework modelling the dynamics of the default times in the underlying credit
portfolio. Consequently, the filtration Ft used in this subsection can be generated by any
credit portfolio model.

2.3. The CDS index option. In this subsection we introduce options on the CDS index and
discuss how they work. Then we use the result form Subsection 2 in order to provide a formula
for the payoff of such an option, which holds for any framework modelling the dynamics of
the default times in the underlying credit portfolio. First, let us give the definition of a payer

CDS index option, which is the same as Definition 2.3 in Morini & Brigo (2011) and Definition
2.4 in Rutkowski & Armstrong (2009).

Definition 2.1. A payer CDS index option (sometimes called a put CDS index option)
with strike κ and exercise date t written on a CDS index with maturity T is a financial
derivative which gives the protection buyer A the right but not the obligation to enter the
CDS index with the protection seller B at time t with a fixed spread κ and protection period
T − t. Moreover, at the exercise date t, the protection seller B also pays A the accumulated
credit loss occurred during the period from the inception time of the option (at time 0, i.e.
”today”) to the exercise date t, that is B pays A the loss Lt at time t, which is referred to as
the front end protection.

The payoff Π(t, T ;κ) at the exercise time t for a payer CDS index option seen from the
protection buyer A’s point of view, is given by

Π(t, T ;κ) =
(
PV (t, T ) (S(t, T )− κ) 1{Nt<m} + Lt

)+
(2.3.1)

where PV (t, T ) is defined as in (2.2.5). For an analogues expression of (2.3.1), see e.g.
Equation (2.18) on p.1045 in Rutkowski & Armstrong (2009) or Equation (2.3) on p.577
in Morini & Brigo (2011). Note that the CDS index at time t is entered only if there are
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any nondefaulted obligors left in the portfolio at time t, which explains the presence of the
indicator function of the event {Nt < m} in the expression for the payoff Π(t, T ;κ) in (2.3.1).
However, the front end protection Lt will be paid out by A at time t even if the event
{Nt = m} occurs. From (2.2.6) we have that

PV (t, T ) (S(t, T )− κ) 1{Nt<m} = DL(t, T )1{Nt<m} − κPV (t, T )1{Nt<m}. (2.3.2)

However, since Nt is a non-decreasing process where Nt ≤ m almost surely for all t ≥ 0, we
have from the definitions in (2.2.4) and (2.2.5) that

DL(t, T )1{Nt=m} = E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
1{Nt=m} = 0 and PV (t, T )1{Nt=m} = 0

(2.3.3)
so we can use (2.3.3) to simplify (2.3.2) according to

PV (t, T ) (S(t, T )− κ) 1{Nt<m} = DL(t, T )− κPV (t, T ). (2.3.4)

We here remark that the observations (2.3.3) and (2.3.4) has also been done in Rutkowski &
Armstrong (2009) and Morini & Brigo (2011), see e.g Equation (2.6) on p. 1040 in Rutkowski
& Armstrong (2009) and Proposition 3.7 on p. 582 in Morini & Brigo (2011). By using (2.3.4)
we can rewrite the payoff Π(t, T ;κ) in (2.3.1) as

Π(t, T ;κ) = (DL(t, T )− κPV (t, T ) + Lt)
+ . (2.3.5)

The model outline for payer CDS index option presented in this subsection holds for any
framework modelling the dynamics of the default times in the underlying credit portfolio.
Consequently, the filtration Ft used in this subsection can be generated by any credit portfolio
model.

Before ending this section we briefly discuss some properties of CDS index options that are
not shared with e.g. standard equity options. First, we note that (2.3.1) or (2.3.5) implies
that

lim
κ→∞

Π(t, T ;κ)1{Nt<m} = 0. (2.3.6)

Secondly, since the individual loss 1 − φ is constant and identical for all obligors and since

Lt = (1−φ)Nt

m
, we have Lt1{Nt=m} = (1 − φ)1{Nt=m} which in (2.3.5) together with (2.3.3)

implies that

Π(t, T ;κ)1{Nt=m} = Lt1{Nt=m} = (1− φ)1{Nt=m} for all κ (2.3.7)

(see also Equation (2.24) on p.1047 in Rutkowski & Armstrong (2009)) and consequently

lim
κ→∞

Π(t, T ;κ)1{Nt=m} = Lt1{Nt=m} = (1− φ)1{Nt=m}. (2.3.8)

So combining (2.3.6) and (2.3.8) renders

lim
κ→∞

Π(t, T ;κ) = (1− φ)1{Nt=m} a.s. (2.3.9)

For s ≤ t, the price Cs(t, T ;κ) of a payer CDS index option at time s with strike κ and
exercise date t written on a CDS index with maturity T , is due to standard risk neutral
pricing theory given by

Cs(t, T ;κ) = e−r(t−s)E [Π(t, T ;κ) | Fs] . (2.3.10)

Furthermore, since

Π(t, T ;κ) = Π(t, T ;κ)1{Nt<m} +Π(t, T ;κ)1{Nt=m} = Π(t, T ;κ)1{Nt<m} + (1− φ)1{Nt=m}
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then for s ≤ t, the price Cs(t, T ;κ) can be expressed as

Cs(t, T ;κ) = e−r(t−s)E
[
Π(t, T ;κ)1{Nt<m}

∣∣Fs

]
+ (1− φ)e−r(t−s)Q [Nt = m | Fs] . (2.3.11)

From (2.3.6) and (2.3.8) together with the dominated convergence theorem, we conclude that
if s ≤ t then

lim
κ→∞

Cs(t, T ;κ) = (1− φ)e−r(t−s)Q [Nt = m | Fs] (2.3.12)

which is in line with the results in (2.3.9). Also note that the results in this section holds for
any framework modelling the dynamics of the default times in the underlying credit portfolio.
In this paper our numerical examples will be performed for s = 0 which in (2.3.12) implies
that

lim
κ→∞

C0(t, T ;κ) = (1− φ)e−rtQ [Nt = m] (2.3.13)

Recall that in the standard Black-Scholes model the call option price converges to zero as
the strike price converges to infinity but due to the front end protection this will not hold for
payer CDS index option, as is clearly seen in Equation (2.3.11), (2.3.12) and (2.3.13).

2.4. Some previous models for the CDS index option. In this subsection we will discuss
some previously studied models and one of these models will be used as a benchmark to the
framework developed in this paper.

Options on a CDS index have been studied in for example Pedersen (2003), Jackson (2005),
Liu & Jäckel (2005), Doctor & Goulden (2007), Rutkowski & Armstrong (2009), Morini &
Brigo (2011), Flesaker et al. (2011) and Martin (2012). In all of these papers it is assumed
that either the CDS index spread or the so called loss-adjusted CDS index spread at the
maturity of the option is lognormally distributed under a martingale measure corresponding
to a suitable numeraire, and the price of the option is then computed via the Black formula.
For a nice and compact overview of some of the above mentioned papers, see pp.577-579 in
Morini & Brigo (2011).

We will here give a very brief review of the results in some of these papers since these
will introduce formulas that we will use as a comparison when benchmarking with our model
presented in Section 5.

As discussed in Morini & Brigo (2011), in the initial market approach for pricing CDS
index options, the price CIM

s (t, T ;κ) at time s ≤ t of a payer CDS index option with strike
κ and exercise date t written on a CDS index with maturity T , is modelled as (see also e.g.
Equation (2.4) in Morini & Brigo (2011)))

CIM
s (t, T ;κ) = e−r(t−s)E [VP (t, T ) | Fs]C

B (S(s, T ), κ, t, σ) + e−r(t−s)E [Lt | Fs] (2.4.1)

where we have used the same notation as in Subsection 2.3 and where CB (S,K, T, σ) is the
Black-formula, i.e.

CB (S,K, T, σ) = SN(d1)−KN(d2)

d1 =
ln(S/K) + 1

2σ
2T

σ
√
T

, d2 = d1 − σ
√
T

(2.4.2)

and N(x) is the distribution function for a standard normal random variable. As pointed
out by Pedersen (2003), and also emphasized in Morini & Brigo (2011), the formula (2.4.1)
does not incorporate the front end protection in a correct way given the payoff expression in
Equation (2.3.1). To overcome the problem of a wrong inclusions of the front end protection in
the option formula, several papers proposed an improvement of the Black-framework, see for
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example Doctor & Goulden (2007). The idea is to introduce a so called loss-adjusted market
index spread defined, see e.g. Equation (2.6) in Morini & Brigo (2011)). More specific, let t
be the exercise date for a CDS index option and for u < t < T let DLt(u, T ) and PVt(u, T )
denote

DLt(u, T ) = E [B(u, t)VD(t, T ) | Fu] and PVt(u, T ) = E [B(u, t)VP (t, T ) | Fu] (2.4.3)

where VD(t, T ) and VP (t, T ) are given by (2.2.2). Next, define loss-adjusted market index

spread S̃t(u, T ) for u ≤ t ≤ T as

S̃t(u, T ) =
DLt(u, T ) + E [B(u, t)Lt | Fu]

PVt(u, T )
. (2.4.4)

Note that if u = t then B(t, t) = 1, PVt(t, T ) = PV (t, T ) due to (2.2.3) and since Lt is

Ft-measurable S̃t(t, T ) in (2.4.4) then reduces to

S̃t(t, T ) =
DL(t, T ) + Lt

PV (t, T )
= S(t, T ) +

Lt

PV (t, T )
(2.4.5)

where S(t, T ) is defined as in (2.2.6). Also, if t = 0 then L0 = 0 a.s. so (2.4.5) then gives

S̃0(0, T ) = S(0, T ) (2.4.6)

which makes perfect sense. The benefit with using the loss-adjusted market index spread
S̃t(u, T ) in (2.4.4) is that payoff Π(t, T ;κ) at the exercise time t > 0 for a payer CDS index
option as given in (2.3.5) can via (2.4.5) be rewritten as

Π(t, T ;κ) = PV (t, T )
(
S̃t(t, T )− κ

)+
. (2.4.7)

Hence, by using PVt(u, T ) as a numeraire for u ≤ t ≤ T and assuming that S̃t(u, T ) is
lognormally distributed under a martingale measure corresponding to the chosen numeraire,
one can for s ≤ t, price a payer CDS index option with exercise time t via (2.4.7) and the
Black formula according to

C̃s(t, T ;κ) = e−r(t−s)E [VP (t, T ) | Fs]C
B
(
S̃t(s, T ), κ, t, σ̃

)
(2.4.8)

where we assumed a constant interest rate r. Furthermore, σ̃ is the constant volatility of the
loss-adjusted market index spread S̃t(u, T ) and the quantity CB (S,K, T, σ) is the same as in
(2.4.2), see also e.g. Equation (2.8) on p.578 in Morini & Brigo (2011).

Remark 2.2. As pointed out on pp.578-579 in Morini & Brigo (2011), there are three main
problems with the formula (2.4.8) and the definition of the loss-adjusted market index spread

in (2.4.4). The first problem is that loss-adjusted market index spread S̃t(u, T ) in (2.4.4)
is not defined when PVt(u, T ) = 0, i.e. when Nu = m. The second problem is that when
PVt(u, T ) = 0, the formula (2.4.8) is undefined and will not be consistent with the expression
in (2.3.12) which must holds for any framework modelling the dynamics of the default times
in the underlying credit portfolio for the CDS index. The third problem with (2.4.4) is that
since PVt(u, T ) = 0 on {Nu = m} and if Q [Nu = m] > 0 (which is true for most standard
portfolio credit models when u > 0), then PVt(u, T ) will not be strictly positive a.s. and will
therefore as a numeraire not lead to a pricing measure that is equivalent with the risk-neutral
pricing measure Q.
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Rutkowski & Armstrong (2009) and Morini & Brigo (2011) have independently developed
an approach which overcomes the three problems stated in Remark 2.2 connected to the the
loss-adjusted market index spread in (2.4.4) and the pricing formula (2.4.8). The main ideas in
Rutkowski & Armstrong (2009) and Morini & Brigo (2011) work as follows (following mainly

the notation of Morini & Brigo (2011)). Let τ (1) ≤ τ (2) ≤ . . . ≤ τ (m) be the ordering of the
default times τ1, τ2 . . . , τm in the underlying credit portfolio that creates the CDS index. For
example, τ (m) is the maximum of {τi}, that is

τ̂ := τ (m) = max (τ1, τ2 . . . , τm) (2.4.9)

where we for notational convenience denote τ (m) by τ̂ . So with Nt defined as in previous
sections, i.e. Nt =

∑m
i=1 1{τi≤t} we immediately see that

{τ̂ > t} = {Nt < m} and {τ̂ ≤ t} = {Nt = m} . (2.4.10)

Next, both Rutkowski & Armstrong (2009) and Morini & Brigo (2011) assumes the exis-

tence of an auxiliary filtration Ĥt such that underlying full market information Ft can be
decomposed as

Ft = Ĵt ∨ Ĥt (2.4.11)

Ĵt = σ (τ̂ ≤ s; s ≤ t) (2.4.12)

where τ̂ is not a Ĥt-stopping time. Rutkowski & Armstrong (2009) and Morini & Brigo

(2011) remarks that one possible construction of (2.4.11)-(2.4.12) is to let Ĥt be given by

Ĥt = Gt ∨m−1
k=1 J (k)

t (2.4.13)

where for each k the filtration J (k)
t is defined as

J (k)
t = σ

(
τ (k) ≤ s; s ≤ t

)
(2.4.14)

and Gt in (2.4.13) is a filtration excluding default information, i.e Gt is the ”default free”
information. Typically Gt is a sigma-algebra generated by a d-dimensional stochastic process
(Xt)t≥0 so GX

t = σ(Xs; s ≤ t) where Xt = (Xt,1,Xt,2, . . . ,Xt,d) do not contain the random
variables τ1, τ2 . . . , τm in their dynamics. Such constructions are standard in conditional
independent dynamic portfolio credit models, see e.g in Lando (2004) or McNeil, Frey &

Embrechts (2005). From the construction in (2.4.11)-(2.4.13) it is clear that τ̂ is not a Ĥt-
stopping time. In Remark 3.5 on p.580 in Morini & Brigo (2011) the authors point out that
the construction in (2.4.11)-(2.4.12) may under certain, not unreasonable model assumptions,

not be possible to construct. Now, for u < t < T let D̂Lt(u, T ) and P̂ V t(u, T ) denote

D̂Lt(u, T ) = E

[
B(u, t)VD(t, T ) | Ĥu

]
and P̂ V t(u, T ) = E

[
B(u, t)VP (t, T ) | Ĥu

]

(2.4.15)

where VD(t, T ) and VP (t, T ) are given by (2.2.2). Next, define Ŝt(u, T ) as (see Definition 3.8
on p.583 in Morini & Brigo (2011) or in Rutkowski & Armstrong (2009))

Ŝt(u, T ) =
D̂Lt(u, T ) + E

[
1{τ̂>t}B(u, t)Lt

∣∣ Ĥu

]

P̂ V t(u, T )
(2.4.16)
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where t typically is the exercise date for a CDS index option. Furthermore, Morini & Brigo
(2011) assumes that

Q

[
τ̂ > s | Ĥs

]
> 0 a.s. for any s > 0 (2.4.17)

and Rutkowski & Armstrong (2009) makes a similar assumption but on a bounded interval
for s. The reason for the assumption (2.4.17) is that in the derivations of the formulas for
the CDS-index spreads presented in Morini & Brigo (2011) and Rutkowski & Armstrong

(2009) the quantity Q

[
τ̂ > s | Ĥs

]
will emerge in the denominator of several expressions.

More specific, the choice (2.4.11)-(2.4.12) together with (2.4.17) will for s ≤ t make the

quantity P̂ V t(u, T ) = E

[
B(u, t)VP (t, T ) | Ĥu

]
to be strictly positive a.s. (see e.g. p.581

in Morini & Brigo (2011)) and can thus be used as a numeraire, which was observed both
in Rutkowski & Armstrong (2009) and Morini & Brigo (2011) independently of each other.
Furthermore, Morini & Brigo (2011) and Rutkowski & Armstrong (2009) also shows that

under the condition (2.4.17) the spread Ŝt(u, T ) in (2.4.16) is well defined which thus solves
the first and third problem specified in Remark 2.2. By using assumption (2.4.17) together

with the assumption that Ŝ(u, T ) in (2.4.16) follows a lognormal distribution under a measure

defined via P̂ V t(u, T ), Morini & Brigo (2011) and Rutkowski & Armstrong (2009) prove that
for s ≤ t the price for a payer CDS index option at time s with exercise date t via (2.4.7) is
given by

Ĉs(t, T ;κ) = 1{τ̂>s}e
−r(t−s)E [VP (t, T ) | Fs]C

B
(
Ŝt(s, T ), κ, t, σ̂

)

+
1{τ̂>s}

Q

[
τ̂ > s | Ĥs

]E
[
1{s<τ̂≤t}e

r(t−s)(1− φ)
∣∣∣ Ĥs

]
+ 1{τ̂≤s}(1− φ)e−r(t−s) (2.4.18)

where σ̂ is the volatility of Ŝt(u, T ) under a suitable measure (see e.g. Proposition 4.1,
Theorem 4.2 and Corollary 4.3 in Morini & Brigo (2011)). The quantity CB (S,K, T, σ) in
(2.4.18) is the same as in (2.4.2). We assumed a constant interest rate r while Morini & Brigo
(2011) and Rutkowski & Armstrong (2009) allows for a stochastic discount factor in (2.4.18),
see e.g. Equation (2.29) in Rutkowski & Armstrong (2009) and Equation (4.1) and (4.4) in
Morini & Brigo (2011). We note that if s > 0, then the second term in (2.4.18) is nontrivial

to compute in practice. However, an important practical case is to compute Ĉs(t, T ;κ) when

s = 0, i.e. Ĉ0(t, T ;κ) (the numerical examples in Morini & Brigo (2011) are only done for the
case s = 0 while Rutkowski & Armstrong (2009) do not provide any numerical examples of

their formulas). So letting s = 0 in (2.4.18) implies that Ĉ0(t, T ;κ) is given by the following
expression

Ĉ0(t, T ;κ) = e−rtE [VP (t, T )]C
B
(
Ŝt(0, T ), κ, t, σ̂

)
+ e−rt(1 − φ)Q [Nt = m] (2.4.19)

where we used that {τ̂ ≤ t} = {Nt = m}. So we clearly see that formula (2.4.19) is consistent
with (2.3.13) which must holds for any framework modelling the dynamics of the default times
in the underlying credit portfolio for the CDS index. Hence, this solves the second problem
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pointed out in Remark 2.2. Also note that Ŝt(0, T ) will via (2.4.16) simplify to

Ŝt(0, T ) =
D̂Lt(0, T ) + E

[
1{τ̂>t}B(0, t)Lt

]

P̂ V t(0, T )

=
DLt(0, T ) + E

[
1{τ̂>t}B(0, t)Lt

]

PVt(0, T )

=
DLt(0, T ) + E [B(0, t)Lt]− E

[
1{τ̂≤t}B(0, t)Lt

]

PVt(0, T )

=
DLt(0, T ) + E [B(0, t)Lt]

PVt(0, T )
−

E
[
1{τ̂≤t}B(0, t)Lt

]

PVt(0, T )

= S̃t(0, T ) −
(1− φ)E

[
B(0, t)1{Nt=m}

]

PVt(0, T )

(2.4.20)

where the second equality follows from (2.4.3) and (2.4.15) with u = 0 and last equality is

due to the definition of S̃t(u, T ) in (2.4.4) and the fact that 1{τ̂≤t}Lt = (1− φ)1{Nt=m}. Also
note that if t = 0 then 1{N0=m} = 0 a.s. which together with (2.4.5) gives

Ŝt(0, T ) = S̃0(0, T ) = S(0, T ) (2.4.21)

which makes perfect sense. Furthermore, if we assume that the interest rate is deterministic
we can rewrite (2.4.20) as

Ŝt(0, T ) = S̃t(0, T ) −
(1− φ)Q [Nt = m]

E [VP (t, T )]
(2.4.22)

where VP (t, T ) is defined in (2.2.2).
There are several numerical issues to be considered in (2.4.19). First, as pointed out

on p.1051 in Rutkowski & Armstrong (2009), since the loss adjusted spread Ŝt(u, T ) is not
directly observable on the market at any time point u ≥ 0, it is quite challenging to estimate
the volatility σ̂ of Ŝt(u, T ) where σ̂ is used in the Black-formula present in (2.4.19). Secondly,
computing the quantity Q [Nt = m] for large m (for example, m = 125 both in the iTraxx
Europe and CDX NAG index) is numerically nontrivial and requires special attention even in
simple standard portfolio credit models such as the one-factor Gaussian copula model. Note
that if the interest rate is deterministic, then Q [Nt = m] emerges both in the second term of

(2.4.19) aswell as in Ŝt(0, T ) used in the Black-formula given by (2.4.19), as seen in (2.4.22).
While Rutkowski & Armstrong (2009) do not provide any numerical examples, Morini &
Brigo (2011) use a one-factor Gaussian copula model but do not specify which numerical
method they use to compute Q [Nt = m]. In conditional independent models such as copula
models, there exists many methods for computing Q [Nt = k], 0 ≤ k ≤ m, see for example in
Gregory & Laurent (2003) and Gregory & Laurent (2005).

In order to numerically benchmark the CDS index model presented in Section 3-5 against
Morini & Brigo (2011), we will also implement the model in Morini & Brigo (2011) using a
one-factor Gaussian copula model just as Morini & Brigo (2011) do. Our choice of numerical
method when computing Q [Nt = m] in (2.4.19) and (2.4.22) will be based on the normal ap-
proximation of the mixed binomial distribution, similar to the method in Frey, Popp & Weber
(2008). To be more specific, for any integer 1 ≤ k ≤ m we use the following approximation



12 ALEXANDER HERBERTSSON

for Q [Nt ≤ k] in the one-factor Gaussian copula model

Q [Nt ≤ k] ≈
∫ ∞

−∞
N

(
k + 0.5−mpt(z)√
mpt(z)(1 − pt(z)

)
1√
2π

e−
z
2

2 dz for k ≤ m (2.4.23)

where pt(z) is given by

pt(z) = N

(
N−1 (Q [τ ≤ t])−√

ρz√
1− ρ

)
(2.4.24)

and N(x) is the distribution function for a standard normal random variable, ρ is the cor-
relation parameters and τ has the same distribution as the exchangeable default times {τi}
in the underlying credit portfolio, see e.g. Corollary 2.5 in Frey et al. (2008). The term 0.5
in (2.4.23) is a so-called ”half-correction” which seem to produce better approximations that
the ordinary normal approximation of a binomial distribution. Next, since

Q [Nt = m] = Q [Nt ≤ m]−Q [Nt ≤ m− 1] (2.4.25)

we use (2.4.23) with k = m − 1 and k = m in the right hand side of (2.4.25) to retrieve
an approximation to the quantity Q [Nt = m] in (2.4.19) and (2.4.22). Next we need to find
an expression for Q [τ ≤ t] used in (2.4.23) via (2.4.24). A standard assumption made in
the homogeneous portfolio credit risk one-factor Gaussian copula model is that the default
times {τi} have constant default intensity λ, that is they are exponentially distributed with
parameter λ, i.e. if τ has the same distribution as {τi} then

Q [τ ≤ t] = 1− e−λt (2.4.26)

where λ is given by

λ =
SM(T̄ )

1− φ
(2.4.27)

and SM(T̄ ) is the market quote for the T̄ -year CDS-index spread today and φ is the recovery
rate. The relation (2.4.27) is the so-called credit triangle, frequently used among market
practitioners assuming a ”flat” CDS term structure, i.e. assuming that the default intensity
will be constant for all time points after t.

A derivation of the relation (2.4.27) in the case with quarterly payments is given in Propo-
sition B.1 in Appendix B, since the existing proofs of (2.4.27) found in the litterature are
only done in the unrealistic case when the CDS index premium is paid continuously, see
e.g pp.70-71 in Brigo, Morini & Pallavicini (2013). In practice the CDS premiums are paid
quarterly.

Furthermore, note that we have used the CDS index spread SM(T̄ ) in (2.4.27) because this
spread will in a homogeneous credit portfolio be identical to the the individual CDS spread
for an obligor in the reference portfolio, see e.g. Proposition Lemma 6.1 in Herbertsson, Jang
& Schmidt (2011). This ends the specification of how we compute Q [Nt = m]. In Figure 1
we plot Q [Nt = m] for t = 9 months and m = 125 as function of the correlation parameter ρ
where we used (2.4.23)-(2.4.27) to compute Q [Nt = m] with φ = 40% and SM(5) = 200 bps.
As can be seen in Figure 1, the effect of ρ on Q [Nt = m] will only come in to play when ρ
is bigger than 85% and for smaller ρ, the armageddon probability Q [Nt = m] will in practice
be neglible, see also Figure 5.1 in Morini & Brigo (2011)
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Figure 1. The Armageddon probabilityQ [N0.75 = 125] as function of the correlation
ρ = where S(0, 5) = 200 and φ = 40% bp.

So what is left to compute in (2.4.19) is Ŝt(0, T ). This is done in the following proposition.

Proposition 2.3. Consider a CDS index with maturity T on a homogeneous credit portfolio

where the obligors have constant default intensity λ. Then, with notation as above

Ŝt(0, T ) = 4(1−φ)e−rt
(
1− e−

(r+λ)
4

)
(

λ
λ+r

ert
(
e−(r+λ)t − e−(r+λ)T

)
+ 1− e−λt −Q [Nt = m]

)

e−
(r+λ)nt

4 − e−
(r+λ)(⌈4T⌉+1)

4

(2.4.28)
where nt = ⌈4t⌉+ 1.

Proof. From (2.4.22) we have

Ŝt(0, T ) = S̃t(0, T ) −
(1− φ)Q [Nt = m]

E [VP (t, T )]
(2.4.29)

so we need explicit expressions for the quantities E [VP (t, T )] and S̃t(0, T ). First, to find
E [VP (t, T )] we use the exchangeability of the default times {τi} all having the same distri-
bution as in (2.4.26), which in the definition of VP (t, T ) given by (2.2.2) with properties for
geometric series and some computations yields

E [VP (t, T )] =
ert
(
e−

(r+λ)nt

4 − e−
(r+λ)(⌈4T⌉+1)

4

)

4
(
1− e−

(r+λ)
4

) (2.4.30)
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where nt denotes nt = ⌈4t⌉ + 1 as in (2.2.2). Next, we provide an explicit expression for

S̃t(0, T ) given by (2.4.4) with u = 0 and constant interest rate r, that is

S̃t(0, T ) =
DLt(0, T ) + e−rtE [Lt]

PVt(0, T )

=
DLt(0, T ) + e−rt(1− φ)Q [τ ≤ t]

PVt(0, T )

=
E [VD(t, T )]

E [VP (t, T )]
+

(1− φ)Q [τ ≤ t]

E [VP (t, T )]

=
ertE

[∫ T

t
e−rsdLs

]

E [VP (t, T )]
+

(1− φ)Q [τ ≤ t]

E [VP (t, T )]

=
(1− φ)ert

∫ T

t
e−rsfτ (s)ds

E [VP (t, T )]
+

(1− φ)Q [τ ≤ t]

E [VP (t, T )]

(2.4.31)

where the second equality follows the definition of the loss Lt in (2.2.1) together with the
exchangeability of the default times {τi} all having the same distribution as τ and the third
equality comes from the definition of DLt(u, T ) and PVt(u, T ) in (2.4.3) with u = 0 using
that the interest rate is constant, given by r. The fourth equality is due to the expected value
of VD(t, T ) in (2.2.3) together with (2.2.4) and that B(t, s) = er(s−t) since the interest rate
is constant. The last equality in (2.4.31) follows from Equation (6.3.3) in Lemma 6.1, p.1203
in Herbertsson et al. (2011) where fτ (s) is the density of the default time τ . So plugging

(2.4.31) into (2.4.29) we get that Ŝt(0, T ) can be rewritten as

Ŝt(0, T ) =
1− φ

E [VP (t, T )]

(
ert
∫ T

t

e−rsfτ (s)ds +Q [τ ≤ t]−Q [Nt = m]

)
. (2.4.32)

Note that (2.4.32) holds for any distribution of τ , and to make Ŝt(0, T ) more explicit we use
that τ in this paper (as in most articles treating homogeneous one-factor Gaussian copula
models applied to portfolio credit risk) has constant default intensity λ, i.e. τ is exponentially
distributed with parameter λ as in (2.4.26) which implies

∫ T

t

e−rsfτ (s)ds =

∫ T

t

λe−(r+λ)sds =
λ

λ+ r

(
e−(r+λ)t − e−(r+λ)T

)
. (2.4.33)

So (2.4.26), (2.4.30) and (2.4.33) in (2.4.32) renders an explicit formula for Ŝt(0, T ) given by

Ŝt(0, T ) = 4(1−φ)e−rt
(
1− e−

(r+λ)
4

)
(

λ
λ+r

ert
(
e−(r+λ)t − e−(r+λ)T

)
+ 1− e−λt −Q [Nt = m]

)

e−
(r+λ)nt

4 − e−
(r+λ)(⌈4T⌉+1)

4

which concludes the proposition. �

The quantity Q [Nt = m] used in Ŝt(0, T ) given by (2.4.28) will in this paper be computed
via the equations (2.4.23)-(2.4.27) where λ is given by (2.4.27).

In Subsection 6.2 we will use Ĉ0(t, T ;κ) given by (2.4.19), Ŝt(0, T ) in (2.4.28) and the
method (2.4.23)-(2.4.27) for computing Q [Nt = m], as a benchmark against the model devel-
oped in the next sections.

We here remark that Morini & Brigo (2011) do not provide any explicit expression of

Ŝt(0, T ) given on the form (2.4.28), see e.g. the equation under Table 5.1 on p.589 in Morini
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& Brigo (2011). But as will be seen in Subsection 6.2, our numerical values for (2.4.19),
roughly coincide with those presented in Table 5.1-5.2 in Morini & Brigo (2011). We have
not done any numerical benchmark against Rutkowski & Armstrong (2009) since there are
no numerical results presented in Rutkowski & Armstrong (2009).

Furthermore, we will also show that the finite-state Markov chain modell presented in this
paper will for the same CDS index spread S(0, T ) create CDS index option prices that can
be several hundred percent, or even several thousands percent bigger (depending on the value
of ρ and t and the strike κ) than those given by (2.4.19) with the same CDS index spread
S(0, T ), and at the same time it will hold that Q [Nt = m] = 0 in the finite-state Markov
chain model while Q [Nt = m] > 0 in the one-factor Gaussian copula as used in Morini &
Brigo (2011).

3. Credit portfolio models using Markov chains

In this section we shortly recapitulate the model of Graziano & Rogers (2009) and also
introduce some notation needed for later on. Then we describe the main building blocks
that will be necessary to find formulas for portfolio credit derivatives such as e.g. the CDS
index and CDS index options. Examples of such building blocks are the conditional survival
distribution, the conditional number of defaults and the conditional loss distribution.

3.1. The main building blocks. Let (Ω,G,P) be the underlying probability space assumed
in the rest of this paper.

LetXt be a finite state continuous time Markov chain on the state space SX = {1, 2, . . . ,K}
with generator Q. Let FX

t = σ(Xs; s ≤ t) be the filtration generated by the factor process
X. Consider m obligors with default times τ1, τ2 . . . , τm and let the mappings λ1, λ2 . . . , λm

be the corresponding FX
t default intensities, where λi : S

X 7→ R+ for each obligor i. This
means that each default time τi is modeled as the first jump of a Cox-process, with intensity
λi(Xt). It is well known (see e.g. Lando (1998)) that given an i.i.d sequence {Ei} where Ei

is exponentially distributed with parameter one, such that all {Ei} are independent of FX
∞,

then

τi = inf

{
t > 0 :

∫ t

0
λi(Xs)ds ≥ Ei

}
. (3.1.1)

Hence, for any T ≥ t we have

Q
[
τi > t | FX

T

]
= exp

(
−
∫ t

0
λi(Xs)ds

)
(3.1.2)

and thus

Q [τi > t] = E

[
exp

(
−
∫ t

0
λi(Xs)ds

)]
. (3.1.3)

Note that the default times are conditionally independent, given FX
∞.

The states in SX = {1, 2, . . . ,K} are ordered so that state 1 represents the best state and
K represents the worst state of the economy. Consequently, the mappings λi(·) are chosen to
be strictly increasing in k ∈ {1, 2, . . . ,K}, that is λi(k) < λi(k+1) for all k ∈ {1, 2, . . . ,K−1}
and for every obligor in the portfolio.

Let Yt,i denote the random variable Yt,i = 1{τi≤t} and Yt be the vector Yt = (Yt,1, . . . , Yt,m).

The filtration FY
t = σ(Ys; s ≤ t) represents the default portfolio information at time t,

generated by the process (Ys)s≥0.
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We set the full information F = (Ft)t≥0 to be the biggest filtration containing all other
filtrations with G = F∞. We can for example let Ft be given by

Ft = FX
t ∨ FY

t . (3.1.4)

Next, recall from (2.2.1) that Nt and Lt are given by

Nt =

m∑

i=1

Yt,i =

m∑

i=1

1{τi≤t} and Lt =
1− φ

m
Nt (3.1.5)

where φi is the recovery rate for obligor i.
Figure 2 and Figure ?? visualizes a simulated path of Xt and Nt in an example where

K = 5 and m = 125 in a homogeneous model where λi(Xt) = λ(Xt), using fictive parameters
for Q and λ. The first and second subfigures in Figure 2 - ?? shows the corresponding
trajectories for Xt and Nt. Note how the defaults presented by Nt cluster as Xt switches to
higher states, representing the worse economic state among {1, 2, . . . , 5} since λ(k) < λ(k+1)
for all k ∈ {1, 2, . . . , 4} and for every obligor in the portfolio.
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Figure 2. A simulated trajectory of Xt and Nt where K = 5 and m = 125.
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Our main task in the rest of this section is to find the following quantities

Q [τi > T | Ft] , E [NT | Ft] and E [LT | Ft]

where T > t. These expressions will be useful when deriving formulas for the CDS index
spread S(t, T ) as well as the CDS index option discussed in Section 4.

3.2. The conditional survival distribution. In this subsection we study the conditional
survival distribution Q [τi > T | Ft] for T > t in the finite state Markov chain model. To
do this we need to introduce some notation. If Xt is a finite state Markov jump process on
SX = {1, 2, . . . ,K} with generator Q, then, for a function λ(x) : SX 7→ R we denote the
matrix Qλ = Q− Iλ where Iλ is a diagonal-matrix such that (Iλ)k,k = λ(k).

Furthermore, let ek ∈ Rm be a row vector where the entry at position k is 1 and the other
entries are zero and let 1 be a column vector in RK where all entries are 1. The following
proposition is an important result, which also can be found in modified version in Graziano
& Rogers (2009) originally coming from a result on pp.273-274 in Rogers & Williams (2000).
We state the result here since it introduces notation needed in the rest of this paper and also
uses a slightly different version than Graziano & Rogers (2009).

Proposition 3.1. Consider a credit portfolio specified as in Section 3 and let λi(Xt) be the

FX
t -intensity for obligor i. If T ≥ t then, with notation as above

Q [τi > T | Ft] = 1{τi>t}eXt
eQλ(T−t)1 (3.2.1)

where eXt
=
∑K

k=1 1{Xt=k}ek =
(
1{Xt=1}, . . . , 1{Xt=K}

)
is a row vector in Rm and where the

matrix Qλi
= Q− Iλi

is defined as above.

Proof. Since T > t, then

E
[
1{τi>T}

∣∣Ft

]
= E

[
1{τi>T}

∣∣FX
t ∨ FYi

t

]
= 1{τi>t}E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
(3.2.2)

where the first equality is due to the fact that conditionally on X, then τi is independent of
τj for j 6= i. The second equality follows from a standard result for the first jump time of a
Cox-process, see e.g. p.102 in Lando (1998), Corollary 9.1 in McNeil et al. (2005) or Corollary
6.4.2 in Bielecki & Rutkowski (2001). Since T > t and due to the Markov property of X we

can rewrite the quantity E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
as

E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
= E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt

]
=

K∑

k=1

E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt = k
]
1{Xt=k}

(3.2.3)

and by using Theorem A.1 in Appendix A we have that

E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt = k
]
= eke

Qλi
(T−t)

1 (3.2.4)

where the matrix Qλi
is defined as previously. So (3.2.4) in (3.2.3) and (3.2.2) yields

Q [τi > T | Ft] = 1{τi≥t}

K∑

k=1

1{Xt=k}eke
Qλ(T−t)1 = 1{τi≥t}eXt

eQλ(T−t)1 (3.2.5)

where eXt
=
∑K

k=1 1{Xt=k}ek =
(
1{Xt=1}, . . . , 1{Xt=K}

)
is a row vector in Rm. Inserting

(3.2.5) into XX proves the theorem.
�
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Theorem 3.1 allows us to state credit related derivatives quantizes in very compact and
computational convenient formulas, as will seen later in this paper. We also remark that a
version Theorem 3.1 for a nonlinear filtering model can also be found in Herbertsson & Frey
(2018) and this filtering version has previously also been successfully used in Herbertsson &
Frey (2014).

3.3. The conditional number of defaults. In this subsection we derive practical expres-
sions for E

[
Nt | FM

t

]
. We consider an homogeneous credit portfolios where λi(Xt) = λ(Xt)

so that Qλi
= Qλ for each obligor i. Recall that Nt =

∑m
i=1 1{τi≤t}. The main message of

this subsection is the following proposition.

Proposition 3.2. Consider an exchangeable credit portfolio with m obligors in a model spec-

ified as in Section 3. Then, for T ≥ t and with notation as above

E [NT | Ft] = m− (m−Nt)eXt
eQλ(T−t)1. (3.3.1)

Proof. Let T > t and first note that

E [NT | Ft] = m−
m∑

i=1

E
[
1{τi>T}

∣∣Ft

]
= m−

m∑

i=1

1{τi>t}E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
(3.3.2)

where the last equality is due to Equation (3.2.2) in Theorem 3.1. Furthermore, in a homo-
geneous portfolio we have λi(Xs) = λ(Xs) for all obligors i and this in (3.3.2) implies that

E [NT | Ft] = m− (m−Nt)E
[
e−

∫
T

t
λ(Xs)ds

∣∣∣FX
t

]
. Thus, by using (3.2.3) and (3.2.4) and the

notation eXt
=
∑K

k=1 1{Xt=k}ek in Theorem 3.1 with λi(Xs) = λ(Xs) for all obligors, we

conclude that E [NT | Ft] = m− (m−Nt)eXt
eQλ(T−t)1 which proves the proposition. �

A similar proof can be found for inhomogeneous portfolios.

3.4. The conditional portfolio loss: The case with constant recovery. This is trivial
for homogeneous portfolios, given the results from Subsection 3.3. To see this, recall thatNt =∑m

i=1 1{τi≤t} and Lt =
1
m

∑m
i=1(1 − φi)1{τi≤t} where φi are constants and in a homogeneous

portfolio we have φ1 = φ2 = . . . = φm = φ so that Lt =
(1−φ)
m

Nt. Thus,

E [LT | Ft] =
(1− φ)

m
E [NT | Ft] (3.4.1)

where E [NT | Ft] is explicitly given in Subsection 3.3 for homogeneous portfolios. To be more
specific, (3.4.1) with Proposition 3.2 yields

E [LT | Ft] = (1− φ)

(
1−

(
1− Nt

m

)
eXt

eQλ(T−t)1

)
. (3.4.2)

Similar results can also be obtained in an inhomogeneous portfolio both with identical or
different recoveries.

3.5. Auxiliary computational tools. In this subsection we outline some auxiliary tools
that will be utilized when pricing CDS index options in the Markovian model specified in the
Subsection 3.1 - 3.4. To be more specific, the pricing of CDS index options in the Markovian
model needs the probabilities Q [Xt = k,Nt = j] and Q [Nt = j] in the previous subsections.
We will also use these tools in our numerical studies in later sections of this paper.
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Consider a bivariate Markov process Ht on a state space SH defined as

SH = {1, . . . ,K} × {0, 1, . . . ,m} (3.5.1)

where |SH | = K(m + 1). So each state j ∈ SH can be written as a pair j = (k, j) where k
and j are integers such that 1 ≤ k ≤ K and 0 ≤ j ≤ m. The first component of Ht belongs
to {1, . . . ,K} while the second component of Ht is defined on {1, . . . ,m}. The intuitive idea
behind the bivariate Markov process Ht is of course that the first component of Ht should
”mimic” the factor process Xt defined in Subsection 3.1 while the second component of Ht

should represent Nt, i.e. the number of defaulted obligors in the portfolio at time t, as defined
in previous sections. More specific, for any pair (k, j) ∈ SH and for any time point t ≥ 0, we
want that the events {Ht = (k, j)} and {Xt = k,Nt = j} should have the same probability
under the risk-neutral measure Q, that is

Q [Ht = (k, j)] = Q [Xt = k,Nt = j] where (k, j) ∈ SH and t ≥ 0. (3.5.2)

In view of the above description of the bivariate Markov process Ht we now specify the
generator QH for Ht on SH . For a fixed value k of the first component of Ht we can treat
the second component of Ht as a pure death process on {0, 1, . . . ,m}, i.e. a process which
counts the number of defaulted obligors in the portfolio given that the underlying economy is
in state k, that is Xt = k. Therefore, for any j = 0, 1, . . . ,m−1 the process Ht can jump from
(k, j) to (k, j + 1) with intensity (m− j)λ(k) where the mapping λ(·) is the default intensity
same for all obligors, see also in Subsection 3.3. Recall that λ(k) is the individual default
intensity when the factor process is in state k, i.e. Xt = k. Next, for a fixed value j of the
second component of Ht (i.e. the number of defaulted obligors at time t are j) consider two
distinct states k and k′ in {1, . . . ,K}. Then, inspired by the construction of the underlying
factor process Xt with generator Q, we let the bivariate process Ht jump from (k, j) to (k′, j)
with intensity Qk,k′ where k 6= k′. These are the only allowed transitions for Ht. Hence, the
generator QH for Ht is then given by

(QH)(k,j),(k,j+1) = (m− j)λ(k) 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K

(QH)(k,j),(k′,j) = Qk,k′ 0 ≤ j ≤ m, 1 ≤ k, k′ ≤ K k 6= k′
(3.5.3)

and for each pair k, j we also have that

(QH)(k,j),(k,j) = −
∑

(k′,j′)∈SH ,k′ 6=k,j′ 6=j

(QH)(k,j),(k′,j′) . (3.5.4)

where the other entries in QH are zero. In view of this construction one can show that, see
e.g. Proposition 2.3 in Mandjes & Spreij (2016),

Q [Ht = (k, j)] = Q [Xt = k,Nt = j] where (k, j) ∈ SH and t ≥ 0. (3.5.5)

Let αH ∈ RK(m+1) be the initial distribution of the Markov process Ht on the state space
SH with generator QH and consider j ∈ SH . From Markov theory we know that

Q [Ht = j] = αHeQHtej , (3.5.6)

where ej ∈ RK(m+1) is a column vector where the entry at position j is 1 and the other entries

are zero. Furthermore, eQHt is the matrix exponential which has a closed form expression in
terms of the eigenvalue decomposition of QH . Thus, in view of (3.5.5) and (3.5.6) we have
for any j = (k, j) ∈ SH and t ≥ 0 that

Q [Xt = k,Nt = j] = αHeQHte(k,j). (3.5.7)



20 ALEXANDER HERBERTSSON

So (3.5.7) provides us with an efficient way to compute the probabilities Q [Xt = k,Nt = j]
for any t ≥ 0 and any pair j = (k, j) where k and j are integers such that 1 ≤ k ≤ K and
0 ≤ j ≤ m. Note that there exist over 20 different ways to compute the matrix exponential,
for more on this see e.g in Moeler & Loan (1978) and Moeler & Loan (2003).

Since Q [Nt = j] =
∑K

k=1Q [Xt = k,Nt = j] we retrieve that

Q [Nt = j] = αHeQH t

K∑

k=1

e(k,j) = αHeQH te(·,j) (3.5.8)

where e(·,j) ∈ RK(m+1) is a column vector defined as e(·,j) =
∑K

k=1 e(k,j). Finally, let us specify

the the initial distribution αH ∈ RK(m+1) of the Markov process Ht on the state space SH ,
defined as in (3.5.1). First, let α be the initial distribution of the process Xt defined in
Subsection 3.1. Then αk = Q [X0 = k] and given the row vector α ∈ RK we now specify the

initial distribution αH ∈ RK(m+1). We assume that all obligors in the portfolio are ”alive”
(non-defaulted) at time t = 0, i.e. today, which implies that the second component must be
zero for all states of the economy background process modelled by the first component of the
bivariate Markov process. Hence, it must hold that

K∑

k=1

(αH)(k,0) = 1 and (αH)(k,j) = 0 for j = 1, 2, . . . ,m (3.5.9)

which in turn guarantees that the sum of the entries in αH are one.
As we will see later, by using the formulas (3.5.7), (5.12) and (3.5.9) we can efficiently

compute numerical values for CDS index options in a Markovian model specified in the
previous Subsections 3.1 - 3.4.

Since typically m and K are allowed to be large, especially m, we will in general deal with
very high dimensional state spaces of size (m+1)×K, which requires special treatment when
numerically dealing with the matrix exponential of the generator for Ht. Just computing
the matrix exponential with standard algorithms will make the implementation slow and also
inaccurate. Instead we will rely on the so-called uniformization method which has successfully
been utilized in high-dimensional state space applications of portfolio credit risk, see e.g. in
Herbertsson (2007), Herbertsson & Rootzén (2008), Herbertsson (2011), Bielecki, Crépey &
Herbertsson (2011) and Lando (2004). In our case we will also exploit the sparseness of the
transition matrices for Ht which makes the running times even quicker. With the help of Ht

we will also display the loss distribution Q [Nt = k] for k = 0, 1, . . . ,m and in particular the
armageddon probabilities Q [Nt = m] for some calibrated examples in the Markov chain model
outlined in Section 3 - 5. Finally, we have also performed robustness testes in order to increase
the reliability of the implemented code. For example, we have checked that Q [Xt = k] is the
same via Q and QH .

Figure 3 displays the probabilities Q [Xt = k,Nt = j] for all states (k, j) computed via
(3.5.6) with QH constructed from Q given by a birth-death process Xt with K = 100. The
number of obligors are m = 125. The lower subplot in Figure 3 is in logscale. Furthermore,
Figure 4 shows the nonzero entries in the matrix QH used in Figure 3.
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Figure 3. The probabilities Q [Xt = k,Nt = j] for all states (k, j) computed via
(3.5.6) with QH constructed from Q given by a birth-death process Xt

with K = 100. The number of obligors are m = 125. The lower subplot
is in logscale.
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Figure 4. The nonzero entries in the matrixQ
H

used in Figure 3. Q
H

is constructed
from Q given by a birth-death process Xt with K = 100. The number of
obligors are m = 125.

4. The CDS index in the Markov chain model

In this section we apply the results from Section 3 together with Subsection 2 to find
formulas for the CDS index spreads in the models introduced in Section 3. This will be done
in a homogeneous portfolio. We will assume that the risk free interest rate is constant and
given by r and for t < s we let B(t, s) denote B(t, s) = e−r(s−t). We can now state the
following theorem.

Theorem 4.1. Consider a CDS index in the finite state Markov chain model outlined in

Section 3 to ??. Then, with notation as above

DL(t, T ) = E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
=

(
1− Nt

m

)
eXt

A(t, T )1 (4.1)

and

PV (t, T ) = E [VP (t, T ) | Ft] =

(
1− Nt

m

)
eXt

B(t, T )1 (4.2)



CDS INDEX OPTIONS IN MARKOV CHAIN MODELS 23

where A(t, T ) and B(t, T ) are defined as

A(t, T ) = (1− φ)

[
I − eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) + r (Qλ − rI)−1

]
(4.3)

B(t, T ) =
1

4

⌈4T ⌉∑

n=nt

eQλ(tn−t)e−r(tn−t) (4.4)

and if Qλ − rI has distinct eigenvalues or is symmetric then

B(t, T ) =
1

4

(
e(Qλ−rI) 1

4 − I
)−1 (

e(Qλ−rI)(
⌈4T⌉−4t+1

4
) − e(Qλ−rI)(

nt

4
−t)
)
. (4.5)

Furthermore, if Nt < m we have

S(t, T ) =
eXt

A(t, T )1

eXt
B(t, T )1

=

K∑

k=1

1{Xt=k}
ekA(t, T )1

ekB(t, T )1
(4.6)

Proof. First we recall the definitions of DL(t, T ), PV (t, T ) and S(t, T ) from (2.2.3), (2.2.4),

(2.2.5) and (2.2.6). Next, the term
∫ T

t
B(t, s)dLs used in DL(t, T ) can be rewritten in a more

practical form using integration by parts (see e.g. Theorem 3.36, p.107 in Folland (1999)),

so that
∫ T

t
B(t, s)dLs = B(t, T )LT −Lt +

∫ T

t
rB(t, s)Lsds and by applying Fubini-Tonelli on

this expressions then renders

E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
= B(t, T )E [LT | Ft]− Lt +

∫ T

t

rB(t, s)E [Ls | Ft] ds. (4.7)

Furthermore, if s > t then (3.4.2) gives

E [Ls | Ft] = (1− φ)

(
1−

(
1− Nt

m

)
eXt

eQλ(s−t)1

)

so using this in (4.7) and recalling that B(t, s) = e−r(s−t) for s > t, we get

E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
= B(t, T )E [LT | Ft]− Lt +

∫ T

t

rB(t, s)E [Ls | Ft] ds

= e−r(T−t)(1− φ)

(
1−

(
1− Nt

m

)
eXt

eQλ(T−t)1

)
− (1− φ)

m
Nt

+

∫ T

t

re−r(s−t)(1− φ)

(
1−

(
1− Nt

m

)
eXt

eQλ(s−t)1

)
ds.

(4.8)

The integral in the RHS of (4.8) can be simplified according to
∫ T

t

re−r(s−t)(1− φ)

(
1−

(
1− Nt

m

)
eXt

eQλ(s−t)1

)
ds

= (1− φ)
(
1− e−r(T−t)

)

− r(1− φ)

(
1− Nt

m

)
eXt

(
eQλ(T−t)e−r(T−t) − I

)
(Qλ − rI)−1

1

(4.9)

where the last equality in (4.9) is due to the fact that
∫ T

t

e−r(s−t)eQλ(s−t)ds =

∫ T

t

e(Qλ−rI)(s−t)ds =
(
eQλ(T−t)e−r(T−t) − I

)
(Qλ − rI)−1 .
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Note that (Qλ − rI)−1 exists since Qλ − rI by construction is a diagonal dominant matrix,
implying that det (Qλ − rI) 6= 0 by the Levy-Desplanques Theorem. By plugging (4.9) into
(4.8) and performing some trivial but tedious computations we get

E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]

= (1− φ)

(
1− Nt

m

)(
1− eXt

(
eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) − r (Qλ − rI)−1

)
1
)

= (1− φ)

(
1− Nt

m

)
eXt

[
I − eQλ

(T−t)
(
I + r (Qλ − rI)−1

)
e−r(T−t) + r (Qλ − rI)−1

]
1

=

(
1− Nt

m

)
eXt

A(t, T )1

where we in the second equality used that 1 = eXt
1 = eXt

I1 and where A(t, T ) in the final
equality is given by

A(t, T ) = (1− φ)

[
I − eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) + r (Qλ − rI)−1

]

which proves (4.1) and (4.3). To derive the expression for the premium leg we use (3.3.1)

in Proposition 3.2 with s > t and obtain 1 − 1
m
E [Ns | Ft] =

(
1− Nt

m

)
eXt

eQλ(s−t)1 which in
Equation (2.2.5) then renders that

PV (t, T ) =
1

4

⌈4T ⌉∑

n=nt

B(t, tn)

(
1− 1

m
E [Ntn | Ft]

)
=

1

4

(
1− Nt

m

) ⌈4T ⌉∑

n=nt

eXt
eQλ(tn−t)1e−r(tn−t)

=

(
1− Nt

m

)
eXt

B(t, T )1

where B(t, T ) = 1
4

∑⌈4T ⌉
n=nt

eQλ(tn−t)e−r(tn−t) and this proves (4.2) and (4.4).
Next, some elementary computations with the fact tn = n

4 gives us

1

4

⌈4T ⌉∑

n=nt

eQλ(tn−t)e−r(tn−t) =
1

4




⌈4T ⌉∑

n=nt

e(Qλ−rI)tn


 e(Qλ−rI)t

=
1

4




⌈4T ⌉∑

n=nt

e(Qλ−rI)n
4


 e(Qλ−rI)t

=
1

4




⌈4T ⌉−nt∑

n=0

e(Qλ−rI)n
4


 e(Qλ−rI)(nt

4
−t).

(4.10)

If assume that the matrix (Qλ − rI) 1
4 has distinct eigenvalues or is symmetric then from

Lemma B2 in Appendix of Herbertsson (2017) we know that

⌈4T ⌉−nt∑

n=0

e(Qλ−rI)n
4 =

(
e(Qλ−rI) 1

4 − I
)−1 (

e(Qλ−rI)(
⌈4T⌉−nt+1

4
) − I

)
(4.11)
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so combining (4.10) and (4.11) with some simple computations finally implies that if Qλ− rI
has distinct eigenvalues or is symmetric, then

B(t, T ) =
1

4

(
e(Qλ−rI) 1

4 − I
)−1 (

e(Qλ−rI)(
⌈4T⌉−4t+1

4
) − e(Qλ−rI)(

nt

4
−t)
)
.

which proves (4.5).
Finally, (4.6) follows from the definition in (2.2.6) together with the expressions for the

default leg and premium leg in (4.1) and (4.2). �

Note that Equation (4.5) in Theorem 4.1 is very useful from a computational point of
view since the sum in the right hand side of (4.4) requires the computation of ⌈4T ⌉ − nt + 1
different matrix exponentials while the right hand side in (4.5) only requires the computation
of three different matrix exponentials and one matrix inversion. For large ⌈4T ⌉ − nt + 1
or/and large matrices Qλ this will substantially reduce the computational time when finding
the sum in in the right hand side of Equation (4.4). Recall that computations of the matrix
exponential eT for large matrices T can be very time consuming and is often also numerically
challenging, see e.g. in Moeler & Loan (1978), Moeler & Loan (2003), Sidje & Stewart (1999)
and for credit risk applications see also e.g. in Herbertsson (2007), Herbertsson & Rootzén
(2008), Herbertsson (2008b), Herbertsson (2008a), Herbertsson (2011), Bielecki et al. (2011)
and Lando (2004).

Remark 4.2. At t = 0 one can assume that X0 is not observable. This is the case in Graziano
& Rogers (2009), see Remark 2.3 on p.49 in Graziano & Rogers (2009). Since X0 is not
observable then F0 is not the trivial sigma algebra but rather σ (X0). Thus, since N0 = 0,
then for t = 0 the relations (4.1), (4.2) and (4.6) reduces to

DL(0, T ) = E

[∫ T

0
B(0, s)dLs

∣∣∣∣X0

]
= eX0A(0, T )1 (4.12)

and

PV (0, T ) = E [VP (0, T ) |X0] = eX0B(0, T )1 (4.13)

so that

S(0, T ) =
K∑

k=1

1{X0=k}
ekA(0, T )1

ekB(0, T )1
. (4.14)

Furthermore, if α is the initial distribution of the process Xt so that αk = Q [X0 = k] then
E [S(0, T )] will be our proxy to the observed CDS index spread on the market at time t = 0
where E [S(0, T )] thus is given by

E [S(0, T )] =
K∑

k=1

αk

ekA(0, T )1

ekB(0, T )1
. (4.15)

So when calibration the Markov model CDS index spread at time t = 0 against the corre-
sponding observed market spread we will use the formula (4.15).

Note that in the case when we don’t now the state X0, the model can be seen as special
case of a hidden Markov model.

Remark 4.3. Sometimes it is from a financial point of view more convenient to assume that
X0 is known with 100% so that the model spread S(0, T ) also will be known for sure at time
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t = 0, i.e. ”today” which is the calibration date. Compare for example with the Black-
Scholes model for stock prices where the spot stock price S0 in the model will coincide with
the observed market price.

Thus, in the Markov model this means that α = ek∗ for some k∗ = X0. In this paper the
exact state will be obtained/relieved after the calibration. Let us briefly discuss this how k∗

then are found. From Equation (4.6) imply that we can write the CDS index spread as

S(t, T ) =
K∑

k=1

1{Xt=k}Sk(t, T ) (4.16)

where

Sk(t, T ) =
ekA(t, T )1

ekB(t, T )1
for k = 1, . . . ,K (4.17)

In particular, for t = 0 we will for any transition matrix Q and intensity vector λ be able to
compute the ”state-space” spreads S1(0, T ), S2(0, T ) . . . , SK(0, T ) as in (4.17). For a given
observed market spread SM(T ) we could then calibrate the model parameters for Q and λ

so that one of the values Sk(0, T ), say Sk∗(0, T ), is as close as possible to the corresponding
market spread SM(T ). We will come back to this discussion in Section 6.1.

Remark 4.4. Our numerical studies in Subsection 6.1 for the CDS index options will be based
on examples where Xt is a birth-death process. Note that if a Markov chain Xt is a birth-
death process with same up and down transition intensities, then the generator Q to Xt will
be a symmetric matrix, and thus Qλ−rI will also be symmetric. Hence, if Xt is a birth-death
process then Equation (4.5) in Theorem 4.1 can be used.

Note that the term 1 − Nt/m in the right hand side of both (4.1) and (4.2) implies that
the conditional expectations of the default and premium legs will be zero for the armageddon
event Nt = m. This fact is in line with the conclusion in (2.3.3) which holds for any model of
the default times τ1, . . . , τm. Furthermore, note that the right hand side in (4.6) is still well
defined when Nt = m.

From Theorem 4.1 we conclude that given the vector eXt
, then the formulas for the default

and premium leg in the Markov model as well as the CDS index spread S(t, T ) are compact
and computationally tractable closed-form expressions in terms of eXt

and Qλ. Furthermore,
Theorem 4.1 will also help us to find tractable formulas for the payoff of more exotic derivatives
with the CDS index as a underlyer. Example of such derivatives are call options on the CDS
index, which we will treat in the next section.

5. CDS index options in the Markovian model

In this section we apply the results from Section 4 and Subsection 2.3 to present a highly
computationally tractable formula for the payoff of a so called CDS index option in the model
presented in Section 3.

By inserting the explicit expressions for the default and premium legs for the index-CDS
spread given by (4.1) and (4.2) in Theorem 4.1 into the expression of the payoff Π(t, T ;κ) for
the CDS index option in Equation (2.3.5), that is

Π(t, T ;κ) = (DL(t, T )− κPV (t, T ) + Lt)
+ .

we immediately make the payoff Π(t, T ;κ) very explicit in terms of eXt
, Nt, A(t, T ) and

B(t, T ), as summarized in the following lemma.
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Lemma 5.1. Consider a CDS index portfolio in the Markov chain model. Then, the payoff

Π(t, T ;κ) for an CDS index option with strike κ, exercise date t and maturity T for the

underlying CDS index, is given by

Π(t, T ;κ) =

(
eXt

[
A(t, T )− κB(t, T )

]
1

(
1− Nt

m

)
+

(1− φ)Nt

m

)+

(5.1)

where A(t, T ) and B(t, T ) are defined as in Theorem 4.1.

Note that on the event {Nt = m}, the right-hand side in (5.1) reduces to the random
variable (1− φ)1{Nt=m} for any strike spread κ, which is consistent with Equation (2.3.7).

In view of Lemma 5.1 and since the price of the CDS index option C0(t, T ;κ) at time 0
(i.e. today) is given by C0(t, T ;κ) = E

[
e−rtΠ(t, T ;κ)

]
we therefore get

C0(t, T ;κ) = e−rtE

[(
eXt

[
A(t, T )− κB(t, T )

]
1

(
1− Nt

m

)
+

(1− φ)Nt

m

)+]
. (5.2)

Next we derive analytical expressions for the formulas in the RHS of Equation (5.2).

Proposition 5.2. Let C0(t, T ;κ) be the price today of an CDS index option with strike κ,
exercise date t and maturity T . Then, with notation as above,

C0(t, T ;κ) = e−rtαHeQHth(Π)(t, T ;κ) (5.3)

where

h(Π)(t, T ;κ) =

m−1∑

j=0

h(Π)(t, T ;κ, j) + (1− φ)e(·,m) (5.4)

with

h(Π)(t, T ;κ, j) =

K∑

k=1

(
pk(t, T ;κ)

(
1− j

m

)
+

(1− φ) j

m

)+

e(k,j). (5.5)

and

pk(t, T ;κ) = ek
[
A(t, T )− κB(t, T )

]
1 (5.6)

for A(t, T ) and B(t, T ) defined as in Theorem 4.1. Furthermore, QH is the generator to

a bivariate Markov chain Ht defined on SH = {1, . . . ,K} × {0, 1, . . . ,m} as in Subsection

3.5 and αH is the initial distribution of Ht. The column vectors e(k,j) ∈ RK(m+1) and

e(·,m) ∈ RK(m+1) are defined as in Subsection 3.5.

Proof. From Equation (2.3.11) we have

C0(t, T ;κ) = e−rtE
[
Π(t, T ;κ)1{Nt<m}

]
+ (1− φ)e−rtQ [Nt = m] (5.7)

and note that E
[
Π(t, T ;κ)1{Nt<m}

]
can be rewritten as

E
[
Π(t, T ;κ)1{Nt<m}

]
=

m−1∑

j=0

E
[
Π(t, T ;κ)1{Nt=j}

]
. (5.8)

We will now derive an exact expression for the quantity E
[
Π(t, T ;κ)1{Nt=j}

]
and for this

we need some more notation. For each state k in the state space of the underlying process
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Xt defined in Section 3, let pk(t, T ;κ) denote the k-th component in the vector
[
A(t, T ) −

κB(t, T )
]
1, that is

pk(t, T ;κ) = ek
[
A(t, T )− κB(t, T )

]
1. (5.9)

Hence, this observation together with Equation (5.1) then implies that we can rewrite the
quantity E

[
Π(t, T ;κ)1{Nt=j}

]
as follows

E
[
Π(t, T ;κ)1{Nt=j}

]
= E

[(
eXt

[
A(t, T )− κB(t, T )

]
1

(
1− j

m

)
+

(1− φ) j

m

)+

1{Nt=j}

]

=
K∑

k=1

(
ek

[
A(t, T )− κB(t, T )

]
1

(
1− j

m

)
+

(1− φ) j

m

)+

E
[
1{Xt=k}1{Nt=j}

]

=

K∑

k=1

(
pk(t, T ;κ)

(
1− j

m

)
+

(1− φ) j

m

)+

Q [Xt = k,Nt = j]

=

K∑

k=1

(
pk(t, T ;κ)

(
1− j

m

)
+

(1− φ) j

m

)+

αHeQHte(k,j)

= αHeQHt

K∑

k=1

(
pk(t, T ;κ)

(
1− j

m

)
+

(1− φ) j

m

)+

e(k,j)

= αHeQHth(Π)(t, T ;κ, j)
(5.10)

where the third equality in (5.10) follows from (5.9). The fourth equality in (5.10) is due
to relation (3.5.7) and the construction of a bivariate Markov chain Ht defined on SH =
{1, . . . ,K} × {0, 1, . . . ,m} with generator QH given by (3.5.3)-(3.5.4) and αH is the initial

distribution of Ht. Here, e(k,j) ∈ RK(m+1) is a column vector where the entry at position

(k, j) ∈ SH is 1 and the other entries are zero. Furthermore, h(Π)(t, T ;κ, j) ∈ RK(m+1) is a
column vector defined as

h(Π)(t, T ;κ, j) =

K∑

k=1

(
pk(t, T ;κ)

(
1− j

m

)
+

(1− φ) j

m

)+

e(k,j). (5.11)

From (5.12) we have that

Q [Nt = m] = αHeQH te(·,m) (5.12)

where e(·,m) ∈ RK(m+1) is a column vector defined as e(·,m) =
∑K

k=1 e(k,m). So combing (5.10)
and (5.12) we get

C0(t, T ;κ) = e−rtαHeQH t

m−1∑

j=0

h(Π)(t, T ;κ, j) + (1− φ)e−rtαHeQH te(·,m)

= e−rtαHeQH th(Π)(t, T ;κ)

where

h(Π)(t, T ;κ) =

m−1∑

j=0

h(Π)(t, T ;κ, j) + (1− φ)e(·,m)

which proves (5.3)-(5.5) and concludes the proposition.
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�

Thus, Proposition 5.2 establish a an exact formula for the option price C0(t, T ;κ) as func-
tion of the probabilities Q [Xt = k,Nt = j] and Q [Nt = j] for each state k and j = 0, 1, . . . ,m.

Remark 5.3. Note that CDS index options typically has short exercise maturities between 3
to 6 months, see e.g Exhibit 2, 6 and 8 in, Chapter 2 of Mahadevan, Musfeldt & Naraparaju
(2011) , p.6 in Jackson (2005) or p.1043 in Rutkowski & Armstrong (2009). In fact, also
very short maturities such as 1, 1.5 and 2 months are common, see Exhibit 2 in Chapter 2
of Mahadevan et al. (2011) or p.7 in Flesaker et al. (2011). Note that a CDS index option
on a standardized index such as e.g. iTraxx Europe, CDX IG or iTraxx Xover, with a
maturity longer than 6 months would mean that the underlying index for the option would
become an off-the-run series. This, since all standardized indices are updated on the roll-
dates of March 20th and September 20th every year. Hence, having an CDS index option on
a standardized index with a maturity longer than 6 months would therefore in practice mean
that the underlying portfolio would change. This also motivates exercise maturities between
1 to 6 months. We will in our numerical studies consider maturities of 1, 3 and 6 months.
However, in the numerical examples of Morini & Brigo (2011) only maturities of 9 months
are considered. Thus, in order to benchmark our model to the one in Morini & Brigo (2011)
we will also consider maturities of 9 months, even though this in practice would mean that
the underlying index would become an off-the-run series.

6. Numerical studies

In this section we perform various numerical studies of the CDS index spread and CDS
index option prices presented in Section 4 and 5, which in turn are based on the model
outlined in Section 3. The numerical studies are performed by calibration all parameters to
market data

First, in Subsection 6.1 we gives a detailed outline of how the matrix Q and vector λ

are chosen and then discuss how to estimate/calibrate the parameters θ = (Q,λ) in the
finite-state Markov chain model introduced in Section 3 - 5.

Next, in Subsection 6.2 we use the results of Subsection 6.1 to calibrate, compute and
display the CDS index option prices as well as the lower bounds for these prices as functions
of varies parameters such as the strike, the maturity and the spot-spread. We also calibrate
the benchmark model 2.4.19 to the same spot CDS index spread. After this we compare the
Markov chain prices, their lower bound prices and the benchmark prises for different values of
ρ and σ̂. In particular, a numerical study is performed where we show that the lower bound
in our model can be several hundred percent bigger compared with models which assume that
the CDS-spreads follows a log-normal process. Also a systematic study is done in order to
understand the impact of various model parameters on CDS index options (and on the index
itself)

6.1. Specifying the parameters and calibrating the Markov chain model. In this
section we discuss how to estimate/calibrate the parameters θ = (Q,λ) in the Markovian
model introduced in Section 3.

There are many ways to estimate/calibrate the parameters θ = (Q,λ,α) in the Markov
chain model. First of all, we can parameterize Q,λ,α in different ways. Secondly, we can use
observable values for different credit derivatives, financial instruments and other quantities
when calibrating the model.
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Regarding parametrization of θ = (Q,λ,α) we will here use the setup in Remark 4.3, that
is we proceed as follows. For λ = (λ(1), . . . , λ(K)) we will use the following piecewise linear
parametrization of the mapping λ(k) for the individual default intensity,

λ(k) = b+ βk (6.1.1)

where β and b are constants such that β > 0 and b > 0. We here remind the reader that
the states in SX = {1, 2, . . . ,K} are ordered so that state 1 represents the best state and K
represents the worst state of the economy. Consequently, the mapping λ(·) is chosen to be
strictly increasing in k ∈ {1, 2, . . . ,K}.

The parametrization of λ(k) in (6.1.1) is convenient in the sense that it describes the
function λ(k) with only two parameters β and b, regardless of the number of states K.

Next, we will assume that the finite state continuous time Markov chain Xt on the state
space SX = {1, 2, . . . ,K} is a birth-death process with identical up and down transition
intensities given by q. Hence, the generator Q will satisfy

Qi,j =





q if i = j − 1 or i = j + 1
−2q if 2 ≤ i = j ≤ K − 1
−q if i = j = 1 or i = j = K
0 otherwise

(6.1.2)

where q > 0. So (6.1.2) gives us only one parameter describing the generator Q regardless of
the number of states K.

Hence, given the parametrization of Q,λ in (6.1.1)-(6.1.2), the parameters to be esti-
mated/calibrated are then θ = (b, β, q). In this paper we will estimate θ = (b, β, q) by
calibrating the model spot CDS-index spread S(0, 5) towards the corresponding observed
market spread by using Equation (4.6) for t = 0.

Recall from Remark 4.2 in general the finite-state Markov chain model X0 is not observable
at time t = 0 so S(0, 5) is random according to Equation (4.14). In such a case one would
calibrate E [S(0, T )] given by (4.15) against the corresponding observed market spread and
this means that we also need to find theK values of α = (α1, . . . , αK) where αk = Q [X0 = k].
So the parameters to be estimated are then θ = (b, β, q,α).

Let SM(T ) be observed market value for T -year CDS-index spread today. Let S(E)(T ;θ)
denote the T -year model CDS index spread in the Markov model, so

S(E)(T ;θ) = E [S(0, T )] =

K∑

k=1

αk

ekA(0, T )1

ekB(0, T )1
.

Let SM(T ) be the observed market quote for the T -year CDS-index spread today, i.e. at

time t = 0. Furthermore, let S(E)(T ;θ) denote the T -year model CDS-index spread in the
finite-state Markov model. Then, by using (4.15) with α we have

S(E)(T ;θ) = E [S(0, T )] =

K∑

k=1

αk

ekA(0, T )1

ekB(0, T )1
. (6.1.3)

So when calibration the Markov chain model CDS-index spread at time t = 0 against the
corresponding observed market spread we will use the formula (6.1.3) and θ = (b, β, q,α) is
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then calibrated via the following minimization routine

min
θ

(
S(E)(T ;θ)− SM(T )

SM(T

)2

subject to

α1 = 1

0 ≤ αk ≤ 1 for k = 1, . . . ,K

β > 1, b > 0, q > 0

(6.1.4)

where SM(T ) is the market quote for the T -year CDS-index spread today, i.e. at time t = 0

and S(E)(T ;θ) is given by (6.1.3). The calibration of the parameters θ = (b, β, q,α) is thus a
constrained nonlinear optimization problem and such routines are mostly solved numerically
using standard mathematical software packages such as e.g. matlab. Numerical optimization
routines typically requires the user to provide an initial guess θ0 =

(
b0, β0, q0,α

(0)
)
before

running the scheme.
Note that if K is large, and in order to keep the number of parameters in θ = (b, β, q,α)

small, we can parameterize the entries in the initial distribution α = (α1, . . . , αK) where
αk = Q [X0 = k], just as we did for the vector λ = (λ(1), . . . , λ(K)). One can consider several
different parameterizations of αk = Q [X0 = k]. One example (which is a bit unrealstic) is to
use a uniform distribution on a subset of 1, 2, . . . ,K and thus specify αk as

αk =

{
1
hα

if k = kL, kL + 1, . . . , kL + hα
0 otherwise

(6.1.5)

Hence, αk in (6.1.5) is uniformly distributed over the interval k = kL, kL + 1, . . . , kL + hα.
The parametrization in (6.1.5) is thus described by the two integers hα and kL where kL is
where the uniform distribution start and hα is the ”length” of the uniform distribution. Note
that hα and kL are integers that must satisfy

1 ≤ kL + hα ≤ K and kL, hα are positive integers. (6.1.6)

Thus, when using the parameterization (6.1.5) we also add the integer constraint (6.1.6) to
the optimization problem (6.1.4) used to find the parameters θ = (b, β, q, kL, hα). Another
options is simply to specify the parameters hα and kL and calibrate over θ = (b, β, q) in
(6.1.4).

A third option to find is to way to calibrate the
As already mentioned in Remark 4.3, it is sometimes from a financial point of view more

convenient to assume that X0 is known with 100% probability so that the model spread
S(0, T ) also will be known for sure at time t = 0, i.e. ”today” which is the calibration date.
Compare for example with the Black-Scholes model for stock prices where the spot stock price
S0 in the model will coincide with the observed market price.

Thus, in the Markov model this means that α = ek∗ for some k∗ = X0. In this paper the
exact state will be obtained/relieved after the calibration. Let us briefly discuss this how k∗

then are found. From Equation (4.6) imply that we can write the CDS index spread as

S(t, T ) =
K∑

k=1

1{Xt=k}Sk(t, T ) (6.1.7)
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where

Sk(t, T ) =
ekA(t, T )1

ekB(t, T )1
for k = 1, . . . ,K (6.1.8)

In particular, for t = 0 we will for any transition matrix Q and intensity vector λ be able to
compute the ”state-space” spreads S1(0, T ), S2(0, T ) . . . , SK(0, T ) as in (6.1.8). For a given
observed market spread SM(T ) we could then calibrate the model parameters for Q and λ

so that one of the values Sk(0, T ), say Sk∗(0, T ), is as close as possible to the corresponding
market spread SM(T ). The parameters θ = (b, β, q, ) are thus calibrated via the following
minimization routine

min
θ

(
Sk∗(0, T ) − SM(T )

SM(T

)2

subject to

S1(0, T ) ≤ Smin, SK(0, T ) ≥ Smax

β > 0, b > 0, q > 0 for some integer k∗ = 1, 2 . . . ,K

(6.1.9)

where SM(T ) is the market quote for the T -year CDS-index spread today, i.e. at time t = 0
and Smin and Smax are specified bounds. The constraints S1(0, T ) ≤ Smin, SK(0, T ) ≥ Smax will
for exogenously given bounds Smin and Smax make sure that the ”distribution” {Sk(0, T )} will
be spread out properly. Hence, in the estimation (6.1.9) the initial state X0 = k∗ is obtained
as a ”bi-product” from the calibration.

We here remark that we can extend the above calibration routine by including market
CDS-index spreads {SM (T̄ )}T∈T for a several maturities such as e.g. T̄ ∈ T = {3, 5, 7, 10}.
In such a case the objective function in (6.1.4) is then replaced with

∑

T̄∈T

(
S(E)(T̄ ;θ)− SM(T̄ )

SM(T̄ )

)2

and analogously for (6.1.9). We will in this paper only use one maturity T̄ = 5 which histor-
ically has been the most liquidly quoted CDS-index spread, in particular for the individual
entries in the index.

The calibration of the parameters θ = (b, β, q,α) is thus a constrained nonlinear optimiza-
tion problem and such routines are mostly solved numerically using standard mathematical
software packages such as e.g. matlab. Numerical optimization routines typically requires
the user to provide an initial guess θ0 =

(
b0, β0, q0,α

(0)
)
before running the scheme. In our

initial guess θ0 we let α
(0)
k = 1

K
for each k.

6.2. Computing prices of options on the CDS index in the Markovian model and

comparing with lognormal model prices. In this subsection we use the results of Sub-
section 6.1 to calibrate, compute and display the CDS index option prices as functions of
varies parameters such as the strike, the maturity and the spot-spread. We also calibrate the
benchmark model (2.4.19) to the same spot CDS index spread.

We will use the calibration (6.1.9) with the parametrization for θ = (Q,λ) given by (6.1.1)
and (6.1.2). Hence, θ = (Q,λ) is described by the three variables β, b, q. Furthermore, the
initial state X0 is obtained from (6.1.9).

We will compare this Markov chain model with the benchmark model given by Equation
(2.4.19), that is, the model developed in Morini & Brigo (2011), and also in Rutkowski &
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Armstrong (2009). Note that the model in Equation (2.4.19) with Ŝt(0, T ) given by Proposi-
tion (2.3) and Q [Nt = m] computed in a one-factor Gaussian copula model via the equations
(2.4.23), (2.4.24) and (2.4.25). Thus, this model is described by three variables: σ̂, λ, ρ. Also
note that σ̂ is the volatility of a unobservable quantity, and ρ is also nontrivial to estimate.
We use iTraxx Europe Main, 5 year, m = 125 obligors. The market data was sampled
on July 5th, 2018 where market CDS index spread is 73 bp and retrieved via Bloomberg.
The Markov model renders perfect calibration against market CDS index spread and we use
K = 100 states. The parameters are displayed in Table 2.

In the benchmark model (Morini-Brigo model), the λ is perfectly fit to the spread via
the credit triangle given by (2.4.27) or via Equation (B.9). Furthermore, since ρ difficult
to estimate lacking liquidly traded portfolio instruments such as CDO tranches, we use a
conservative value ρ = 0.45 (which is quite high!).

Table 1. The calibrated parameters for model (6.1.1)-(6.1.2) where k∗ is the ob-
tained/calibrated initial state for Xt at t = 0, and Sk∗(0, 5) is the corre-
sponding model spread. The market spread SM(5) is SM(5) = 73 bps.

q b β k∗ Sk∗(0, 5)
20 4.09662e-18 0.000436025 28 73.5244

Given the parameters in Table 2 we can also compute the implied 5-year default probability
and the 9 months armageddon probabilities in the Markov model. We do the same for the
Morini-Brigo model with ρ = 0.45 and compare the probabilities against each other, which
are displayed in Table

Table 2. The implied 5-year default probability and the 9 months armageddon prob-
abilities in the Markov model and Morini-Brigo model. The parameters in
the Markov model are given by Table .

Model Q [τi ≤ 5] Q [N0.75 = 125]
Markov chain 5.920% 0
Morini-Brigo 5.902 2.82414e-07 %

So the 5-year default probabilities are quite close, but not the 9 months armageddon prob-
abilities. Note that for the Morini-Brigo model the above values do not need the volatility
σ̂.
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Figure 5. Implied volatilities of the 5 year CDS index Itraxx Europe main, series 29,
retrieved from Bloomberg via the Bloomberg function OMON and pricing
source: BVOL/CBBT, sampled at July 5th, 2018.

The parameter σ̂ is not possible to calibrate directly. Instead we set σ̂ to be higher than
all implied volatilities with strike 110% for the CDS index option on iTraxx Europe Main (5
year), obtained from Bloomberg on July 5th, 2018, via the Bloomberg function OMON and
pricing source: BVOL/CBBT, see in Figure 5. We then price CDS index options in both
models with the above parameters for different maturities and compare prices and do other
numerical studies.
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Figure 6. The Markov chain option prices and the Morini-Brigo prices for t = 1
month and t = 3 months where market spot spread is 73 bps. The pa-
rameters in the Markov model are given by Table 2 and σ̂ = 58% and
ρ = 45% are used in the Morini-Brigo formula.
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Figure 7. The Markov chain option prices and the Morini-Brigo prices for t = 6
month and t = 9 months where market spot spread is 73 bps. The pa-
rameters in the Markov model are given by Table 2 and σ̂ = 58% and
ρ = 45% are used in the Morini-Brigo formula.

From Figure 6 and Figure 7 we see that the CDS-index option prices in the Markovian
modell are able to produce prices that sometimes are quite close to the prices obtained in the
log-normal model of Morini & Brigo (2011). However, recall that beyond convenience there is
no justification for the lognormality assumption for the CDS-index spread. In particular, it is
unclear if a dynamic model for the evolution of spreads and credit losses can be constructed
that supports the lognormality assumption and the use of the Black formula, and there is no
empirical justification for this assumption either.

It is of course interesting to find the implied volatilies of Markov prices via Morini-Brigo
formula for the maturities studied in the above Figure 6 and Figure 7. More specific, given all
other equal in the Markov chain model and the Morini-Brigo model (for a fixed correlation ρ),
what volatility σ̂imp should we plug in the Morini-Brigo formula (2.4.19) in order to make the
option prices agree in the two different models. The answer to this question is displayed in
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Figure ?? and Figure 9. For example, in the case with t = 1 month we see in Figure ?? that
the implied volatitiliy σ̂imp should range between 40% to 250% in the Morini-Brigo model to
obtain the corresponding option prices in the Markov chain. For t = 3 months σ̂imp must
lie between 20% to 120%. We also note that if we would decrease ρ all the values of σ̂imp

would increase even more. Comparing the values of σ̂imp in Figure ?? and Figure 9 with the
historical volatilities (10 days, 30 days ,60 days, and 90 days) on iTraxx Europe main 5 years
retrieved from Bloomberg on July 5, 2018 via the Bloomberg built in function for historical
volatilities, we see that the implied volatilities σ̂imp are sometimes several factors bigger that
the historical volatilities, even for the case t = 6, t = 9 months, see e.g. in Figure 10.
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Figure 8. Implied volatilies of Markov prices via Morini-Brigo formula for t = 1
month and t = 3 months with the same parameters as in Figure 6.
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Figure 9. Implied volatilies of Markov prices via Morini-Brigo formula for t = 6 and
t = 9 months with the same parameters as in Figure 6.
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Figure 10. Historical volatilities (10 days, 30 days ,60 days, and 90 days) on iTraxx
Europe main 5 years retrieved from Bloomberg on July 5, 2018 via the
Bloomberg built in function for historical volatilities and source CBBT.

Recall that

C0(t, T ;κ) = e−rtE
[
Π(t, T ;κ)1{Nt<m}

]
+ (1− φ)e−rtQ [Nt = m]

and E
[
Π(t, T ;κ)1{Nt<m}

]
=
∑m−1

j=0 E
[
Π(t, T ;κ)1{Nt=j}

]
. In Figure 11 we plot e−rtE

[
Π(t, T ;κ)1{Nt=j}

]

for j = 0, 1, 2, . . . , 7 as well as the Morini-Brigo prices. The parameters used to generate Fig-
ure 11 are given by Table 2 and thus the same as in Figure 6 and 7.
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Figure 11. Markov option prices componentwise vs Morini-Brigo price where param-
eters for the Markov model is given Table 2 and parameters for Morini-
Brigo are same as in Figure 6

6.3. Other quantities in the Markovian model. Given our calibrated Markov model
with parameters specified as in Table 2 we can study the model in more detail. This might
help us to understand the option prices etc. displayed in the previous subsection.

First, Figure 12 displays the outcomes for the ”state-space” spreads {Sk(t, T )} for t =
0, 1, 3, 6, and t = 9 months when computed as in (6.1.8) with parameters given by by Table
2. As seen in Figure 12 {Sk(t, T )} is spread out nicely covering a reasonable interval given
historical outcomes for CDS index spreads on iTraxx Europe main.

Furthermore, Figure 13 shows the distribution Q [Xt = k] for the Markov chain Xt for same
t values as used in Figure 6.

Finally, we can combine the probabilities Q [Xt = k] and the outcomes {Sk(t, T )} in order
to get the probability distribution for {Sk(t, T )} at t = 1, 3, 6, and t = 9 months, which
is displayed in Figure 14. Note that the values of the horizontal bars in Figure 14 are the
same as in Figure 13 while the values on the x-axes in Figure 14 are given by Figure 12 for
proper choices of t. From Figure 14 we clearly see that the probability of having spread values
{Sk(t, T )} larger than e.g. 110 bps for t = 1, 3, 6, or t = 9 months is essentially zero. This
might explain the lower option prices for the Markov model (compared with the Morini-Brigo
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model) which are displayed in Figure 6 and 7. Finally, Figure 15 shows the individual default
intensities λ(k) as function of the state space variable k (lower plot) as well as the spot CDS
index Sk(0, T ) (upper plot) as function of k.
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Figure 12. The ”state-space” spreads {Sk(t, T )} for t = 0, 1, 3, 6, and t = 9 months
for the Markov model with parameters given by Table 2.
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Figure 13. The distribution Q [Xt = k] for t = 1, 3, 6, and t = 9 months for the
Markov model with parameters given by Table 2.
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Figure 14. The distribution for the spreads {Sk(t, T )} at t = 1, 3, 6, and t = 9
months for the Markov model with parameters given by Table 2.
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Appendix A. Feyman-Kac formulas for finite-state Markov chains

The purpose of this section is to introduce some useful formulas, that will be used through-
out this paper. We first introduce some notation. Let SX = {1, 2, . . . ,K} and consider a
functions f(x) : SX 7→ R, then we denote f a RK-column vector with f j = f(j) for j ∈ SX .

Next, let Xt be a finite state Markov jump process on SX = {1, 2, . . . ,K} with generator
Q. Then, for a function λ(x) : SX 7→ R we denote the matrix Qλ = Q − Iλ where Iλ is a
diagonal-matrix such that (Iλ)k,k = λ(k) and ex is a row vector in RK where the entry at
position x is 1 and the others entries are zero.

We now state with the following result.

Theorem A.1. Let Xt be a finite state Markov jump process on SX = {1, 2, . . . ,K} with

generator Q. Consider functions λ(x), f(x) : SX 7→ R. Then, with notation as above

E

[
e−

∫
t

0
λ(Xs)dsf(Xt)

∣∣∣X0 = x
]
= exe

Qλ(T−t)f . (A.1)

A proof of Proposition A.1 can be found on pp.273-274 in Rogers & Williams (2000). It is
easy to extend Theorem A.1 to yield the following equality, for T ≥ t

E

[
e−

∫
T

t
λ(XT )dsf(XT )

∣∣∣Xt = x
]
= exe

Qλ(T−t)f (A.2)

where the rest of the notation are as in Theorem A.1. The main point in Theorem A.1 is
that given the matrix Qλ, then the left-hand side in Equation (A.1) (and Equation (A.2) is
straightforward to implement using standard mathematical software.

We note that Theorem A.1 does not hold if the functions λ, f also depend on time t, i.e
λ(t, x), f(t, x) : [0,∞)× SX 7→ R. In such cases, one generally has to rely on numerical ODE

method in order to find the quantity E

[
e−

∫
t

0
λ(s,Xs)dsf(t,Xt)

∣∣∣X0 = x
]
.

Appendix B. Derivation of the credit triangle

The purpose of this section is to derive the relation

λ =
S(T̄ )

1− φ
(B.1)

where S(T̄ ) is the T̄ -year CDS index spread for a homogeneous credit portfolio where the
default times {τi} have constant default intensity λ which means that they are exponentially
distributed with parameter λ, i.e. if τ has the same distribution as {τi} then

Q [τ ≤ t] = 1− e−λt. (B.2)
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The existing proofs of (B.1) found in the credit literature are only done for the unrealistic
case when the CDS premium is paid continuously. In practice the CDS premiums are done
quarterly. Furthermore, formula (B.1) is used repeatedly in portfolio credit risk, see e.g.
Equation (9.11) on p.404 in McNeil et al. (2005). Below, we will for notational convenience
write T instead of T̄ .

Proposition B.1. Consider a CDS index with maturity T on a homogeneous credit portfolio

where the obligors have constant default intensity λ and where the interest rate is r. Then,

S(T ) = 4(1 − φ)
(
1− e−

(r+λ)
4

) λ

λ+ r

1− e−(r+λ)T

e−
r+λ

4 − e−
(r+λ)(⌈4T⌉+1)

4

(B.3)

and if r + λ is small it holds that

λ ≈ S(T )

1− φ
. (B.4)

Proof. First recall that S(T ) is shorthand notation for S(0, T ) and using the definition of
S(0, T ) in Equation (2.2.6) we have that

S(T ) = S(0, T ) =
DL(0, T )

PV (0, T )
(B.5)

where

DL(0, T ) = E

[∫ T

0
e−rsdLs

]
= (1− φ)

∫ T

0
e−rsfτ (s)ds =

(1− φ)λ

λ+ r

(
1− e−(r+λ)T

)
(B.6)

and the last two equations in (B.6) follows from (B.2) and similar computations as in Equation
(2.4.31) and (2.4.33) in Propositon 2.3 with t = 0. Furthermore, (2.2.5) implies that

PV (0, T ) =
1

4

⌈4T ⌉∑

n=1

e−rtn

(
1− 1

m
E [Ntn ]

)
(B.7)

where tn = n
4 and which after identical computations as in (2.4.30) with t = 0, renders that

PV (0, T ) =
e−

(r+λ)
4 − e−

(r+λ)(⌈4T⌉+1)
4

4
(
1− e−

(r+λ)
4

) . (B.8)

Hence, (B.6) and (B.8) in (B.5) then gives

S(T ) = 4(1 − φ)
(
1− e−

(r+λ)
4

) λ

λ+ r

1− e−(r+λ)T

e−
r+λ

4 − e−
(r+λ)(⌈4T⌉+1)

4

(B.9)

which proves (B.3). Next, if r and λ are small we can use the following first order Taylor
expansion

e−
r+λ

4 ≈ 1− r + λ

4
(B.10)

which renders

4(1 − φ)
(
1− e−

r+λ

4

) λ

λ+ r
≈ (1− φ)λ (B.11)

and
1− e−(r+λ)T

e−
r+λ

4 − e−
(r+λ)(⌈4T⌉+1)

4

≈ 1− e−(r+λ)T

1− e−
(r+λ)(⌈4T⌉+1)

4 − r+λ
4

≈ 1 (B.12)
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since ⌈4T ⌉+1
4 ≈ T and r+λ

4 is small compared to 1− e−
(r+λ)(⌈4T⌉+1)

4 when T is larger (typically
T = 5 or T = 10). Hence, under (B.10) the approximations (B.11)-(B.12) inserted in (B.9)
then imply that

S(T ) ≈ (1− φ)λ

that is

λ =
S(T )

1− φ
which proves (B.4). �

We here remark that if one in the single-name CDS spread assumes that the default payment
in the default leg is postponed to the end of the quarter in which the default happens, then,
assuming (B.2), one can prove (B.4) for a general interest rate which not necessary have to
be constant. By Lemma 6.1, p.1203 in Herbertsson et al. (2011) this will therefore also hold
for a CDS-index.

In a perfectly calibrated model we have by definition that SM(T ) = S(0, T ) which in (B.4)
can be used to find a numerical value for λ given that the recovery φ is known.
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