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Abstract
 

Introduction: Epilepsy and Parkinson’s disease (PD) are conditions 
where management would benefit greatly from monitoring symptoms 
over longer time periods in natural everyday environments instead of 
only intermittent assessments at clinics. Wearable technology with 
built-in sensors such as accelerometers and gyroscopes, could allow 
continuous and objective long-term monitoring of movement pat-
terns. 

Aim: The overall aim of this thesis was to explore and evaluate how 
wearable sensors can be used in clinical applications with continu-
ously monitored movement related variables in epilepsy and PD.  

Methods: The studies in the thesis involved both qualitative and 
quantitative research methods. Perceptions regarding the use of wear-
able technology in disease monitoring and management as reported 
by individuals with epilepsy and PD as well as health professionals 
working with these patient groups were explored using focus group 
discussions (Paper I). Wrist-worn sensors were used to detect tonic-
clonic seizures in epilepsy (Paper II) and to quantify motor levodopa 
responses in PD (Paper III). The effects of individual dose adjustment 
based on information derived from wearable sensors were further 
investigated (Paper IV). The performance of sensor-based algorithms 
for seizure detection and motor state recognition was evaluated 
against clinical standard evaluations including video-EEG in epilepsy 
and clinical assessment scales for PD motor and non-motor symp-
toms. Adherence and missing data were examined to explore feasibil-
ity of using wearables (Paper II-IV).  
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Results: End users saw possible benefits for improved treatment ef-
fects with the use of wearable sensors and valued this benefit more 
than the possible inconvenience of wearing the sensors (Paper I). 
However, they were concerned about unclear information and incon-
clusive recordings and some fears about personal integrity were at 
odds with the expectations on interactivity (Paper I). Wearable sen-
sors showed a high sensitivity and a low false positive rate in detect-
ing tonic-clonic seizures in epilepsy (Paper II). Wearable sensors are 
useful for automated quantification of PD motor states using instru-
mental testing as well as passive monitoring (Paper III-IV). The PD 
motor and non-motor symptoms, disease-specific quality of life and 
wearing-off symptoms improved after dose titration based on the in-
formation provided by a wrist-worn sensor (Paper IV). Adherence to 
using wearables was high across the studies and missing data was 
mainly attributed to sensor malfunction.    

Conclusions and clinical implications: The use of wearable sensors 
for detecting seizures or quantifying PD motor states showed clinical 
utility as tools for ascertaining tonic-clonic seizure frequency and 
monitoring treatment effects in PD outside of hospital. The infor-
mation provided by sensor monitoring was effective for supporting 
clinical decision making in PD, indicating that treatment individuali-
zation based on wearable sensors is feasible.  

Keywords 

Epilepsy, Parkinson’s disease, wearable sensors, continuous and objective 
monitoring, end users’ perceptions, qualitative content analysis, machine 
learning algorithms, tonic-clonic seizure detection, dose titration, motor state 
recognition 



 

Sammanfattning på svenska 
 

Epilepsi och Parkinsons sjukdom är tillstånd där behandlingen skulle 
gynnas av att kunna följa förekomsten av sjukdomssymptom under 
längre tidsperioder i naturliga och vardagliga miljöer istället för vid 
glesa bedömningar på vårdinrättningar. Bärbar teknik med inbyggda 
sensorer som accelerometrar och gyroskop skulle kunna användas för 
kontinuerlig långtidsmonitorering av rörelsemönster. 

Syfte: Det övergripande syftet med denna avhandling var att utforska 
och utvärdera hur bärbara sensorer kan användas kliniskt för att kon-
tinuerligt mäta rörelserelaterade variabler vid epilepsi och Parkinsons 
sjukdom. 

Metod: Studierna som ingår i avhandlingen innefattar både kvalita-
tiva och kvantitativa forskningsmetoder. Fokusgruppintervjuer an-
vändes för att undersöka vilka uppfattningar individer med epilepsi 
eller Parkinsons sjukdom, liksom sjukvårdspersonal, har om att an-
vända bärbar teknologi (delarbete I). Handledsburna sensorer använ-
des för att detektera tonisk-kloniska anfall vid epilepsi (delarbete II), 
eller för att kvantifiera motoriska symptom vid Parkinsons sjukdom 
(delarbete III). Dessutom undersöktes effekten av att individuellt ju-
stera läkemedelsdoser baserat på information från bärbara sensorer 
(delarbete IV). Prestandan hos sensorbaserade algoritmer för detekt-
ion av anfall och igenkänning av motoriska symptom jämfördes med 
kliniska standardutvärderingar, inklusive video-EEG vid epilepsi och 
kliniska utvärderingsskalor för motoriska och icke-motoriska symp-
tom vid Parkinsons sjukdom (delarbete IV). Följsamhet till att bära 
sensorer och andelen förlorade mätdata undersöktes också för att ut-
forska genomförbarheten med att använda bärbara sensorer (delarbete 
II-IV). 

Resultat: Tilltänkta användare såg möjliga fördelar genom förbätt-
rade behandlingseffekter med användning av bärbara sensorer. De 
värderade denna möjliga fördel högre än det möjliga besväret att bära 
sensorerna (delarbete I). De uttryckte dock viss oro angående oklar 
information och att registreringarna inte skulle vara konklusiva, lik-
som vissa farhågor gällande personlig integritet vilket dock var i kon-
flikt med förväntningarna på interaktivitet (delarbete I). 
Användningen av rörelsesensorer visade hög sensitivitet och ett lågt 
falskt positivt värde för detektion av tonisk-kloniska anfall vid epi-
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lepsi (delarbete II). Rörelsesensorer är användbara för automatisk 
kvantifiering av motoriska symptom och medicineringsberoende 
fluktuationer vid Parkinsons sjukdom under instrumental testning så 
väl som vid passiv rörelsemätning (delarbete III och IV). De moto-
riska och icke-motoriska symptomen vid Parkinsons sjukdom, hälso-
relaterad livskvalitet samt upplevda symptom på grund av dosglapp 
förbättrades efter dostitrering baserad på information från en hand-
ledsburen sensor (delarbete IV). Följsamhet till att använda bärbara 
sensorer var hög i studierna och förlust av mätdata berodde huvud-
sakligen på bristande funktion i hanteringssystemet. 

Slutsatser och klinisk betydelse: Bärbara sensorer visade klinisk 
avändbarhet för att detektera tonisk-kloniska anfall vid epilepsi eller 
kvantifiera motoriska symptom och läkemedelsrelaterade fluktuation-
er vid Parkinsons sjukdom utanför sjukhusmiljö. Den information 
man får från rörelsemätning med bärbara sensorer var användbar för 
att stödja kliniskt beslutsfattande avseende justering av läkemedels-
doser vid Parkinsons sjukdom. Det är möjligt att använda bärbara 
sensorer för att individualisera behandling.  
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Abbreviations 
AEDs     Antiepileptic drugs 
BKS    Bradykinesia scores 
COMT   Catechol-O-methyltransferase 
DKS    Dyskinesia scores 
ECG    Electrocardiography 
EDA    Electrodermal activity  
EQ-5D-5L  EuroQoL 5-dimension with five responses 
FDS    Fluctuation and dyskinesia score 
FP     False positive 
HP     Health professional 
HRV    Heart rate variability  
H&Y     Hoehn and Yahr stage 
KNN    K-nearest neighbors  
MADRS-S  Montgomery Åsberg Depression Rating Scale 
MAO-B   Monoamine oxidase B 
MDS-UPDRS   The Movement Disorder Society-Sponsored Revision of the  
                          Unified Parkinson’s Disease Rating Scale 
NMS    Non-Motor Symptoms in Parkinson’s disease 
NMS-Quest  Non-Motor Symptoms Questionnaire 
PD     Parkinson’s disease 
PDQ-8   8-item Parkinson’s disease questionnaire quality of life 
PKG    The Parkinson Kinetigraph data logger 
PPG    Photoplethysmography 
PTT    Pulse transit time 
PwE    Persons with epilepsy 
PwPD    Persons with Parkinson’s disease 
QoL    Quality of life 
RF     Random forest 
RMSE   Root mean square error 
SUDEP   Sudden unexpected death in epilepsy 
SVM    Support vector machine 
TCS    Tonic-clonic seizure 
TP     True positive 
TRIS    Treatment Response Index from Sensors 
TRS    Treatment Response Scale 
UPDRS   Unified Parkinson’s Disease Rating Scale 
Video-EEG  Video electroencephalography 
WOQ-19   19-item Wearing-Off Questionnaire 
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 Introduction 
 

Neurological disorders, such as epilepsy and Parkinson’s disease (PD), 
are a major cause of disability and mortality worldwide.1 Rising life ex-
pectancy and population growth globally in past decades lead to an in-
creased prevalence of neurological diseases, which requires large 
resource allocations to health care. 

Wearable technology with built-in sensors can be used to monitor move-
ments and various physiological variables in an objective and continuous 
fashion. Advances in sensor technology and machine learning algorithms 
capable of identifying patterns from large, complex and heterogeneous 
data, have heightened clinical interest in applying these techniques in 
research and clinical care. The emergence of this new innovative tech-
nology might be effective and fulfil the need of both patients and health 
professionals to achieve better symptom monitoring. 

Epilepsy and PD are two neurological conditions where objective signs 
include motor symptoms as well as changes in other physiological varia-
bles. Disease status in individuals with epilepsy or PD is followed by re-
peated visits at clinics, with long intervals, which can only provide 
discrete snapshots of symptoms. The monitoring of motor and physiolog-
ical variables in a natural setting would give a more accurate picture of 
symptoms and could greatly benefit the disease management in epilepsy 
and PD. 

Wearables are increasingly being applied for detection of epileptic sei-
zures and PD motor symptom monitoring.2  Clinical evaluation of weara-
bles in the context of neurological disease monitoring is vital to ascertain 
if these techniques can be used to address clinical needs of both patients 
and health professionals. This thesis presents four studies where the clin-
ical application of wearable sensors in epilepsy and PD were evaluated in 
three aspects involving end users’ perspectives, feasibility of using wear-
able sensors from practical experiences and clinical evaluation of algo-
rithm performance to its clinical effectiveness. 
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Epilepsy 
Epilepsy affects individuals irrespective of age, gender, ethnic back-
ground and geographic location.3 It is the most common chronic neuro-
logical disorder with a life-time prevalence of 7.6 per 1,000 persons.4 
There is currently no cure or prevention for epilepsy and 30% of affected 
persons do not achieve seizure control with pharmacological treatment.5 
In Sweden around 65,000 children and adults have epilepsy and despite 
adequate drug treatment more than 20,000 of them have uncontrolled 
seizures.6 

Epilepsy is characterized by recurrent epileptic seizures caused by uncon-
trolled, abnormal excessive electrical discharges of brain nerve cells. Sei-
zures are often accompanied with variations in heart rhythm,7 most often 
tachycardia but sometimes bradycardia, and may affect oxygen satura-
tion.8 The hallmark of seizures is their unpredictability, which is stressful 
as well as potentially dangerous for persons with epilepsy (PwE). 
 

Classification of the epilepsies 
The International League Against Epilepsy (ILAE) has recently presented 
a comprehensive classification system for the epilepsies which reflects 
the gain in knowledge and understanding since the last ratified classifica-
tion from 1989.9,10 This classification comprises three levels of diagnosis: 
seizure type, epilepsy type (focal, generalized, combined generalized and 
focal, unknown) and epilepsy syndrome.9 At all levels of diagnosis the 
aim should be to identify the etiology of the patient’s epilepsy. A range 
of etiologic groups have been recognized: structural, genetic, infectious, 
metabolic, immune and unknown.4 A patient’s epilepsy may be classified 
into more than one etiologic category.  

The classification of seizure type is operational, mainly based on clinical 
seizure manifestations. The basic classification divides seizures into 
those with focal onset, those with generalized onset and those with un-
known onset. Level of awareness is usually included in the seizure type, 
which in varying detail includes other classifiers e.g. motor and non-
motor onset symptoms. A special seizure type which actually reflects a 
propagation pattern of a seizure is the focal to bilateral tonic-clonic (cor-
responding to partial seizure with secondary generalization in the 1981 
classification) which is distinguished from tonic-clonic seizures with 
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generalized onset. Focal seizures may rapidly engage bilateral networks, 
whereas classification is based on unilateral onset.  

Regardless of whether a tonic-clonic seizure (TCS) has a focal or gener-
alized onset, the further seizure evolution consists of two consecutive 
motor phases. The first and shortest is the tonic phase with stiffening of 
all limbs and the second is the clonic phase with rapid rhythmic jerking 
of limbs and face. 

Sudden unexpected death in epilepsy - SUDEP 
Mortality is increased in the epilepsy population and the leading cause of 
death is sudden unexpected death in epilepsy – SUDEP.11 The risk is es-
pecially high in epilepsy patients with a high frequency of TCSs.12,13 
SUDEP is the leading cause of epilepsy-related mortality, representing 
the second-leading neurological cause of lost patient life-years after 
stroke (up to 30% of all deaths in an epilepsy population).14 Increased 
heart rate variability (HRV), vagal hypertonia and central hypoventilation 
might be relevant mechanisms for SUDEP and studies in epilepsy moni-
toring units have found peri-ictal apnoea with oxygen desaturation.15 
Apart from TCS, male gender and nocturnal seizures are among the risk 
factors for SUDEP.16 There is increasing evidence that preventing sei-
zures prevents SUDEP. No pharmacological therapy except for antiepi-
leptic drugs reduces SUDEP risk.  
  

Treatment of epilepsy 

Pharmacological treatment with antiepileptic drugs (AEDs) is the main-
stay of epilepsy treatment. The mechanism of action of AEDs has not yet 
been fully understood, but in general they act by decreasing neuronal ex-
citation or increasing neuronal inhibition. The choice of drug depends on 
a number of different aspects including seizure type, epilepsy type, age, 
gender and possible adverse effects.17,18 AED treatment is symptomatic: 
when it is successful seizures may be abolished but AEDs do not cure the 
epilepsy. An individual treatment strategy with careful clinical monitor-
ing might minimize the adverse effects of AEDs while optimizing seizure 
management. For many PwE the seizures are easy to treat with low doses 
of one appropriately chosen drug (monotherapy). For the approximately 
30% of PwE who do not become seizure-free but have a drug resistant 
epilepsy,5 many different AEDs may be tested in increasing doses as well 
as in combination (polytherapy). AED side effects increase with the in-
creasing drug burden and adverse effects of medication have been shown 
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to be a far more important determinant of health-related quality of life in 
patients with drug resistant epilepsy than seizures themselves.19-23  

There are also a number of non-pharmacological treatment options for 
epilepsy. Among several surgical possibilities the most common is re-
sective epilepsy surgery where the seizure onset zone is identified 
through advanced neuroimaging and seizure monitoring methods. Other 
treatments include neuromodulation and the ketogenic diet.  

Diagnosis and follow-up 
The diagnosis of epilepsy is mainly based on a carefully taken history 
from the patients and whenever possible also from a witness. The diagno-
sis therefore to a large extent relies on the clinical experience of the phy-
sician as well as on the quality of the information provided by the 
patients and the witnesses. Several studies have focused on the shortcom-
ings of such clinical diagnoses.24-31 

In patients with drug resistant epilepsy or in patients where the epilepsy 
diagnosis is questioned, simultaneous video and electroencephalography 
(video-EEG) are potent diagnostic tools. The availability is limited 
though, and the resource is mainly used for presurgical seizure monitor-
ing. This difficulty to ascertain patients’ seizure situation is therefore a 
major issue not only complicating the optimization of treatment in gen-
eral, but it may risk patients’ lives, since it is not possible to optimize 
treatment for patients at risk for SUDEP if nocturnal TCSs pass unno-
ticed. This is a strong motivator for implementing new medical devices 
which could make it possible to monitor seizures objectively. Several 
such systems are presently being developed.32-34 
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Parkinson’s disease 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that 
affects approximately 20,000 individuals in Sweden.35 It is a common 
neurodegenerative disorder second in incidence only to Alzheimer’s dis-
ease. The number of individuals with PD is projected to increase by more 
than 50% worldwide by 2030.36 The risk of developing idiopathic PD is 
usually multifactorial. Male gender and older age are among the risk fac-
tors.37-39  

PD is characterized by symptoms related to the loss of dopaminergic neu-
rons in the substantia nigra pars compacta. The dopamine deficiency 
within the basal ganglia leads to an inability to maintain the speed and 
amplitude of self-paced alternating movements, which results in the 
mandatory motor sign, bradykinesia. As PD progresses, disability often 
worsens and can have a very significant negative impact on daily activi-
ties, quality of life and in a longer perspective, result in an increased need 
of assistance from caregivers.  
 

Motor and non-motor symptoms 

When the cardinal motor symptom bradykinesia is observed together 
with rigidity and/or resting tremor (and sometimes postural instability) 
the syndrome diagnosis Parkinsonism can be made. The initial manifesta-
tion of bradykinesia often includes difficulties in performing activities of 
daily living that require fine motor control (e.g. using cutlery or doing up 
buttons on clothes). Resting tremor occurs in some patients and can be 
observed when the affected body part is in a rest position and disappears 
with action and during sleep. Rigidity refers to expressed as an increased 
muscular resistance to a passive movement of a joint.  

Non-motor symptoms (NMSs) include autonomic dysfunction, sleep be-
havior disorders, sensory abnormalities and neuropsychiatric disturb-
ances. NMSs occur throughout the disease from early on to a later stage 
of PD and can manifest many years prior to the presence of motor symp-
toms.40 NMSs might be connected to non-dopaminergic-cell dysfunction 
as a reflection of deficits in various functions of the central nerve system 
and the autonomic nervous system. The development of NMSs can be the 
dominant clinical presentation at the later stage of PD.41,42 NMSs are usu-
ally less well recognized and often undeclared by persons with PD 
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(PwPD),43 and cause more burden than motor symptoms as a major de-
terminant of health-related quality of life.44    
 

Symptoms fluctuation 
The current pharmacological treatments are symptomatic and include 
dopaminergic drugs like levodopa and dopamine agonists, as well as 
some drugs which act on other receptor systems (like anticholinergic 
agents and amantadine). Levodopa remains the most effective sympto-
matic treatment of PD. After an initial honeymoon period, the response to 
treatment changes and the therapeutic window becomes narrower as a 
result of decreased storage capacity of the dopaminergic neurons.45-47 The 
duration of efficacy of levodopa shortens from initially 5 hours to 1-3 
hours.48 

After 3-5 years of treatment, up to 80% of patients have motor fluctua-
tions.49,50 Motor fluctuations can include excessive voluntary movements, 
dyskinesia and may co-exist with non-motor fluctuations. Motor fluctua-
tions and dyskinesia can be very disabling and increase the need for a 
more individualized treatment regime to achieve a balance between 
pharmacological benefits and motor complications.48,51  
 

Management of motor complications  

To reduce the frequency of “off” time without inducing dyskinesia,52,53 
levodopa dosing schedules are gradually adjusted. Dose fractionation is a 
strategy where the daily oral dose of levodopa is divided into many 
smaller doses to stabilize the brain dopamine concentrations as much as 
possible. However, the published evidence for the efficacy of this strate-
gy is scarce. The clinical argument is mainly based upon pharmacokinet-
ic knowledge and clinical experience of dose fractionation. An increase 
in dose frequency can have the negative effect of reduced medication 
compliance and the need for fractioning must therefore be balanced 
against the trouble of adhering to a complicated schedule. The options for 
fine-tuning levodopa dosage with traditional oral tablets was previously 
limited to dose adjustments of 25 mg levodopa per dose, but recently a 
microtablet formulation of levodopa-carbidopa 5/1.25 mg (Flexilev®, 
Sensidose AB, Sollentuna, Sweden), was introduced.54  

Clinical assessments of PD symptoms 
In everyday practice much of the clinical assessment is performed as in-
formal interviews and limited clinical examination. Clinical rating scales 
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can be used for assisting physicians in assessing PD-related disability and 
impairment. As PD symptoms and disease progression encompass large 
intra- and inter individual variations, a number of rating scales have been 
developed in the attempts to better recognize under reported elements of 
PD impairment and disability. Most clinical instruments require trained 
raters and can be too time consuming to perform in a standard clinical 
visit. The clinical instruments are therefore mainly used to address re-
search needs of a standardized process in clinical trials to assess relevant 
outcomes. 

The best established rating scales for assessing global PD symptoms are 
the Unified Parkinson’s Disease Rating Scale (UPDRS) and The Move-
ment Disorder Society-Sponsored Revision of the Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS), which both require 20 to 30 
minutes to conduct. The most frequently used scale for assessing non-
motor symptoms are the Non-Motor Symptoms Scale and the self-
assessed questionnaire Non-motor symptoms Questionnaire (NMS-
Quest).55 Individually experienced NMS symptoms can be diverse among 
PwPD. Several instruments were also developed to assess particular 
NMS.41,56    

The evaluation of symptom fluctuation is based on a retrospective and 
comprehensive history taken by the physician. PwPD can be asked to 
keep a detailed diary to carefully record symptoms and treatment effects 
in relation to dose and duration, such as to recording complete “off”, par-
tial “off”, complete “on” and “on” with dyskinesia states. To achieve sta-
ble assessments and reliable therapeutic decisions, patients might have to 
keep records every 30 minutes for up to 10 days.57 The widely used in-
strument is the 19-item Wearing Off Questionnaire (WOQ-19)58 which is 
a self-assessed questionnaire for assessing the occurrence of medication 
intake related to variations in motor and non-motor symptoms. 
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Shared issues of disease management in 
epilepsy and PD 

Epilepsy and PD are two neurological diseases that share some similar 
challenges in disease management.  Objective and quantitative monitor-
ing of epilepsy and PD over time in the patients’ natural environments 
can provide more detailed and specific data on seizure frequency as well 
as PD symptoms. There are two shared issues of disease management in 
epilepsy and PD: limitations of self-report and limitations of clinical as-
sessments.  
 

Limitations of self-report 
Monitoring of seizure frequency in epilepsy or PD symptoms is mostly 
done through self-reporting. Self-reported diaries are subjective and ret-
rospective in nature and are prone to recall-and emotional bias.  
 
In epilepsy, although most PwE are highly motivated to track their sei-
zures, several studies have shown that self-reporting of seizure frequency 
and severity is highly unreliable, especially for temporal lobe seizures 
and nocturnal seizures.26,28,31,59,60 One study showed that 62% of day time 
seizure accounts were well-documented but only 35% of nocturnal sei-
zures were recorded.61  Most neurologists underline self-reporting as im-
portant when they determine the best course of AED treatments while 
they are also well aware of a considerable disagreement between the ac-
tual seizure frequency and the self-reported data.33   

In PD, limitation of self-report is related to low adherence to diaries and 
diary fatigue that occurs in PwPD.62,63 Also, patients might have difficul-
ty recognizing different functional states (e.g. problems differing between 
dyskinesia and tremor), and difficulty understanding terminologies that 
are used by clinicians may hinder patients to correctly describing symp-
toms. Eventually, this can result in difficulties interpreting the diaries and 
insufficient information for making treatment decisions. To keep a de-
tailed diary for documenting a variety of symptoms in relation to medica-
tion intake times makes the method untenable for many patients.   

Limitations of clinical assessments 
In epilepsy, the accessibility of the gold standard, video-EEG, is mainly 
limited to hospitals. Video-EEG is a diagnostic procedure which often 



WEARABLE SENSORS FOR MONITORING EPILEPSY AND PARKINSON’S DISEASE 

 
INTRODUCTION 

21 

requires AED reduction and provides little information about the seizure 
frequency in patient’s daily life. Seizure detection based on scalp-EEG 
signals are sensitive to artifacts64 and most patients expressed that they 
would not wear scalp EEG electrodes on a long-term basis.65  

In PD, most clinical scales contain a few ordinal levels to score individu-
al PD symptoms and they assess a rather abstract “average of symptoms 
experienced during the past week”, rather than day-to-day or hour-to-
hour variations. The validated rating scales that are available for clinical 
assessments focus on efficacy whereas effect duration is usually evaluat-
ed based on patient recall at intermittent hospital visits. Assessors are 
easily influenced by global symptoms to score a clinical rating because of 
the limitation of human eyes. The minute changes in fine motor perfor-
mance, such as finger tapping, are difficult to assess through clinical ob-
servations.  



 
 
D O N G N I  J O H A N S S O N  B U V A R P   

DONGNI JOHANSSON BUVARP  

22 

    Wearables 
Wearables is the common term for devices integrated in garments or de-
signed as wearable accessories. Wearables with built-in sensors such as 
accelerometers, gyroscopes and optical sensors allow continuous long-
term monitoring of movement and physiological variables.  

Inertial sensors 
 

Inertial measurement units commonly consist of a 3-axial accelerometer 
and a 3-axial gyroscope, which measure linear acceleration and angular 
velocity vector components along three orthogonal axes, respectively. 
Inertial sensors are useful for measuring body movements and tracking 
body positions in different environments. Inertial sensors are increasingly 
being applied to quantify gait related activities,66 posture, physical activi-
ty,67 fall risk,68,69 arm movements and energy expenditure.70  

Machine learning algorithms 
 

Machine learning algorithms are methods that allow autonomous analysis 
to uncover patterns in large quantities of data. The development of ma-
chine learning algorithms can be supervised or unsupervised. Unsuper-
vised machine learning does not rely on a classified data set but uses the 
input data to identify patterns, clusters, inherent to the input data set. Ex-
amples include hierarchical clustering and k-mean. Supervised machine 
learning algorithms, like linear and logistic regression, support vector 
machine (SVM), K-nearest neighbors (KNN) or random forest (RF), uses 
a classified data set where the outcome is mapped on a known target. Ex-
amples of where supervised machine learning has been used include im-
age classification e.g. if it is an apple or a pear, and targeted commercials 
on Facebook or Youtube based on age, gender and web history.  

Wearables for monitoring epilepsy and PD 
Tonic-clonic seizure (TCS) detection is clinically urgent as a high fre-
quency of TCSs has been shown to be associated with sudden unexpected 
death in epilepsy (SUDEP).12,13 Accelerometry-based sensors, worn on 
wrists or upper arms, can detect seizures involving motor phenomena71-75 
including TCSs. The sensitivity of TCS detection varies depending on if 
one modality or more modalities (e.g. accelerometry,75-79  electromyogra-
phy80-83 or heart rate84) are used and the false positive rates are an 
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issue.81,85-87 Standardized evaluation of wearables for detecting TCSs is 
desirable to ensure the performance of detection algorithms.88,89    

In PD, sensors have mainly been used to measure motor symptoms and 
motor complications.2 Bradykinesia, tremor and dyskinesia are measura-
ble symptoms that reflect changes in dopamine transmission.90 The ob-
jective measurements of these symptoms would provide more granular 
information than traditional assessments about dose adjustment in PD. It 
remains to be determined if the use of wearables for monitoring PD mo-
tor symptoms will improve clinically relevant outcomes. 91  
 
End users’ acceptance and preferences are critical perspectives of usabil-
ity and feasibility.92 A qualitative synthesis based on interviews and focus 
groups studies showed that individuals with neurological disease are in 
general positive toward using wearables in their daily environment.2 The 
potential stigmatization from wearing a “disease indicator” has to be con-
sidered in the design of wearable devices.2 The knowledge of the main 
facilitators and barriers regarding wearables from end users’ perspectives 
explored in qualitative research (e.g. interviews or focus group discus-
sions) may facilitate implementation of wearables in clinical reality.93,94  
 
Adherence to using wearables can be heavily influenced by poor design, 
e.g. a design that makes it difficult to start and stop measurements or ne-
cessitates frequent battery recharge. Missing data attributable to technical 
errors and/or human factors has been reported to be in the range of 4 to 
22% when monitoring neurological diseases.2 Technical failures such as 
synchronization failure and data storage problems are common reasons 
for missing data. However, in the majority of studies of wearables the 
amount of missing data is not well reported.2  
 
There is consequently a need to evaluate whether wearable sensors can 
meet the needs of both the patients and the health professionals and if 
they can effectively measure disease indicators in a way that leads to 
clinically relevant improvements in outcomes. Both qualitative and quan-
titative knowledge are vital to explore the possible clinical applications of 
wearables for monitoring epilepsy and PD.   
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Aims 
 

 
The overall aim of this thesis was to explore and evaluate how wearable 
sensors can be used in clinical applications for continuous monitoring of 
epilepsy and PD. 

The aims of the individual studies were to: 

I. Explore perceptions regarding the use of wearable technology in 
disease monitoring and management as reported by individuals 
with epilepsy and PD as well as health professionals working 
with these patient groups (Paper I). 
 

II. Evaluate the performance of classification algorithms to detect 
tonic-clonic seizures using accelerometry data (Paper II). 
 

III. Evaluate the performance of a previously developed accelerome-
try-based algorithm for recognizing PD motor states (Paper III). 

IV. Evaluate the effect of using objective free-living motor symptom 
monitoring to support dose adjustments with a levodopa mi-
crotablet dose dispenser in PwPD (Paper IV). 
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Methods  
 

 
Study design and population  

The studies involved both qualitative and quantitative methods. Qualita-
tive analysis was used to explore perceptions regarding the use of weara-
bles from end users’ perspectives, and quantitative studies were 
conducted to evaluate the performance of wearable devices for detecting 
TCSs in epilepsy and monitoring motor states in PD. Overview of the 
studies is presented in Figure 1 and study populations, designs, recruit-
ment and data analyses are presented in Table 1. 

 

 
Ethics 

All study participants were recruited from the Sahlgrenska University 
Hospital, Gothenburg, Sweden. Study protocols were approved by The 
Regional ethical review board in Gothenburg, Sweden. The studies were 
conducted in accordance with the Declaration of Helsinki and written 
informed consent was obtained from all participants.  

Figure 1. Overview of Paper I-IV 
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Data and statistical analysis 
 
Qualitative content analysis was conducted in Paper I. Statistical analyses 
in Paper II-IV were performed using IBM SPSS Statistics 22 (IBM Corp., 
Armonk, NY) or SAS 9.2 (SAS Institute, Cary, NC). Significance was 
defined as P<0.05. Bonferroni adjustment for multiple comparisons was 
used in Paper IV. Signal processing of sensor data and algorithm devel-
opment in Paper II-IV were conducted in MATLAB 2016b (MathWorks, 
USA) or R 3.3.0 (R Foundation for Statistical Computing, Austria). De-
tails of data and statistical analyses are provided in Table 2. 
 
 
 
 

 Paper I Paper II Paper III Paper IV 
Study popula-
tion 

PwE = 10 
PwPD = 15 
HP-E =7 
HP-PD = 8 

PwE = 75 PwPD = 25a PwPD = 28a,b 

Study design Qualitative 
exploratory 

Prospective  Cross-
sectional 

Longitudinal 
observational 

and open-label 
Recruitment Convenient 

purposeful 
sample 

Consecutive 
inclusion 

Convenient 
sample 

Convenient 
sample 

Data analysis Exploration of 
end users’ 

perceptions 

Analysis of 
accuracy 

Analysis of 
relationship 

Analysis of  
outcomes 

change over 
time 

  Table 1. Overview of study population, design, recruitment and data analysis.           
 

a Paper III and IV both involved the same study population of 25 participants. 
b Twenty-eight participants conducted assessments at baseline and 24 participants 
completed the study. 
 
PwE, persons with epilepsy; PwPD, persons with Parkinson’s disease; HP-E, 
health professionals working with epilepsy; HP-PD, health professionals working 
with Parkinson’ disease. 
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Table 2. Details of data and statistical analyses in Paper I-IV. 

 Paper 
I 

Paper 
II 

Paper 
III 

Paper 
IV 

Analysis      
Qualitative content analysis √    
Statistical analysis  √ √ √ 
Descriptive statistics  √ √ √ √ 
Analysis of accuracy     

Sensitivity and false positive  √   
Analysis of relationships     

Spearman rank-order correlation   √  
Analysis of changes over time     

Paired t-test   √ √ 
Wilcoxon’s signed ranks test   √ √ 

Repeated measures analysis of variance    √ 
Friedman test    √ 

Effect size (Partial Eta squared, ŋ)    √ 
 

Qualitative study (Paper I) 
 

Focus group discussions 

Focus group methodology shares basic assumptions with social construc-
tivism in the sense that the individual’s knowledge is constructed and 
developed through the interaction with others.95  A focus group is con-
ducted with people from the target group based on commonality and 
shared experiences to discuss a defined area of interest. The aim is to ob-
serve group interactions in order to generate rich narrative descriptions, 
by increasing awareness of different aspects to the topic.96 Each group 
discussion is usually conducted with 5 to 10 people and led by an experi-
enced moderator who ensures that the discussion is focused on the topic. 
An assistant moderator can also be needed to observe and note partici-
pants’ body language and expressions to achieve a higher interpretation 
level.97  

In Paper I there were eight focus groups with 40 participants, including 
PwE, PwPD, and health professionals (HPs). The participants were asked 
to describe their perceptions regarding the use of wearable technology 
including sensors as well as a garment with multiple integrated sensors. 
Both the sensors and the garment were presented during the focus group 
discussions. A purposeful sampling was achieved based on homogeneity 
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and heterogeneity in each group discussion.97,98 Homogeneity in each 
patient focus group was based on gender and diagnosis to allow partici-
pants to discuss freely regarding their perceptions, and in each health pro-
fessional group homogeneity was based on working with either epilepsy 
or PD. Heterogeneity in each focus group was based on age, previous 
experience of wearables and in patients also functioning levels. Details of 
demographics and other characteristics of participants are provided in 
Paper I, Table 1.   

Qualitative content analysis 

A qualitative content analysis with an inductive approach was used to 
analyze data with the purpose to descriptively examine variations in per-
ceptions regarding the use of wearable technology.99  Qualitative content 
analysis focuses on subject and context, and emphasizes differences be-
tween and similarities within parts of the text while it deals with manifest 
and latent content in the text.99 Manifest content refers to the visible and 
obvious content that can be categorized with little interpretation while 
latent content is more interpretative of the underlying meaning of the 
text. 99   

Figure 2. Illustration of a qualitative content analysis process. Examples of citations, con-
densed units, codes, subcategories and categories are shown. More examples of dialogue 
citations from focus group discussions are presented in Paper I, Table 2. 
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The text from all focus groups in Paper I was regarded as a text unit. The 
text was divided into meaning units, focusing on the manifest content 
close to the text. The meaning units were condensed into codes which 
were sorted and abstracted into subcategories based on similarities and 
differences. The subcategories were then abstracted to categories. The 
analytic process contained a back and forth movement between the origi-
nal text and its parts. An example of analytic process is illustrated in Fig-
ure 2.  

Quantitative studies (Paper II-IV) 
 

Participants 

Paper II was conducted with adult epilepsy surgery candidates who un-
derwent scalp or invasive video-EEG recordings at the Epilepsy Monitor-
ing Unit at Sahlgrenska University Hospital. No preselection of patients 
was applied in this prospective study and there was no specific protocol 
regarding antiepileptic drug reduction during video-EEG monitoring.  
The demographic data is presented in Paper II Table 1.    

Paper III and IV were conducted with patients who had a diagnosis of 
idiopathic PD according to the UK Parkinson Disease Society Brain 
Bank Criteria, and were older than 18 years. Medical prescription records 
of participants were reviewed to assess eligibility. Participants were eli-
gible for the study if they had stable levodopa medications at intervals of 
up to 4 hours for at least four weeks before the start of the study. All con-
comitant PD treatments including catechol-O-methyl transferase inhibi-
tors, monoamine oxidase B inhibitors, and dopamine agonists were 
allowed. Details of inclusion and exclusion criteria are presented in Paper 
IV Supplementary Figure 1. 

Procedures and data acquisition 
Wearable devices 

Signals from sensors worn uni- or bilaterally were used in Paper II-IV. 
Shimmer sensors (Shimmer3, Shimmer Research, Ireland) were used for 
both Paper II (later phase) and III to collect data from individuals with 
epilepsy and PD. Shimmer3 are inertial sensors consisting of a tri-axial 
accelerometer and a tri-axial gyroscope. Another accelerometer (in-house 
developed sensor, RISE Acreo, Sweden) was used in the early phase of 
Paper II data collection. An ambulatory monitoring and accelerometry-
based device, the Parkinson KinetiGraph (PKG, Global Kinetics Corpo-
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ration, Australia), was used in Paper IV. Details of sampling frequency 
and measurement range are presented in Table 3. 

In Paper II the participants wore one accelerometry sensor on each wrist. 
In Paper III the participants wore one sensor on the dorsum of each wrist 
and the lateral aspect of each ankle, but only the wrist sensor signals were 
used for data analysis. In Paper IV the participants wore the PKG at the 
most affected wrist (Figure 3). 
 
The PKG is a small, portable, wrist-worn watch-like device for quantify-
ing tremor, bradykinesia, dyskinesia and immobility in a free-living envi-
ronment over a 6-day period.100 The PKG has recently been approved by 
the US Food and Drug Administration and has a CE marking. The PKG 
data is analyzed with proprietary algorithms that generate a bradykinesia 
score (BKS) and a dyskinesia score (DKS) in 2-minute bins.100,101 An 
objective fluctuation and dyskinesia score (FDS) is further derived from 
the interquartile range of BKS and DKS.101  
 
Table 3. Overview of measurement range, sampling rate, sensor location and algorithm 
used in Paper II-IV 

 Paper II Paper III Paper IV 
Signal Accelerometry Accelerometry and 

gyroscope 
Accelerometry 

Measure-
ment range 

±3g Acreo 
±8g Shimmer3 

Accelerometer ±16g 
Gyroscope ±2000 dps 

±4g 

Sampling 
frequency 

50 Hz Acreo 
102.4 Hz Shimmer3 

102.4 Hz 50 Hz 

Sensor loca-
tion 

Bilateral wrists Bilateral wrists Wrist-worn on the 
most affected side 

Algorithm Classification algo-
rithms 

Classification algo-
rithms 

Commercial proprie-
tary algorithms 

Algorithm 
development 
and evalua-

tion 

Training sets: sev-
eral algorithms 

Test sets: 
KNN,SVM and RF 

Initial population: 
several algorithms 

New population: SVM 

Fuzzy logic 

Parameters Time-frequency 
domain features 

Eighty-eight spatio-
temporal features 

Lower acceleration 
and amplitude and 

with longer intervals 
between movements 
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In addition to the objective monitoring device (PKG) used in Paper IV, a 
microtablets dose dispenser device (MyFID®, Sensidose AB, Sollentuna, 
Sweden)  was used for fine tuning levodopa dose (Figure 4a and 4b). A 
microtablet formulation of levodopa-carbidopa (Flexilev®, Sensidose 
AB, Sollentuna, Sweden) has recently been approved by medical prod-
ucts agencies in 14 European countries. The 5/1.25 mg levodopa-
carbidopa microtablets offer possibilities to fine-tune and individualize 
dosage,102 which can lead to a more stable levodopa plasma concentra-
tion.54 The MyFID device also reminds the patient to take doses and 
keeps track of adherence. An example of a programmed dosing schedule 
is presented in Figure 4c. 

 
Tonic-clonic detection in epilepsy (Paper II) 

 
In this prospective, video-EEG controlled study, patients were confined 
to the ward room but could move freely between the bed and an arm-
chair. In this setting, there were no specific movement restrictions. Sei-
zure timing, duration and types of TCSs (e.g. focal, generalized or 
unknown) recorded during video-EEG were reviewed and annotated by 
an experienced epileptologist. The epileptologist was blinded to the sen-
sor data during video-EEG inspection and seizure labelling. The estimat-
ed seizure onset and duration for each TCS, according to the annotation, 
was manually labelled on the accelerometer data. If there were any uncer-
tainties regarding seizure semiology, onset or duration, additional consul-
tation and review of the video-EEG was conducted.  

Figure 4. Microtablets dosing system. (a) Dose dispenser device. (b) Levodopa-
carbidopa microtablets, 5/1.25 mg. (c) An example of programmed dose schedules.  
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 Motor state rating and individualized treatments in PD   
 (Paper III and IV) 

 
Paper III and IV both involved the same study population of 25 partici-
pants. The designs for data collection of Paper III and IV are presented in 
Figure 5. 

Instrumental testing 

Paper III has a cross-sectional design and was conducted during a levo-
dopa challenge test. The purpose was to use inertial sensors to detect 
changes in instrumental test performance reflecting the individual re-
sponse to levodopa intake from a practically defined off state (off levo-
dopa for at least 12 hours) to best mobility and/or evoked dyskinesia and 
back to the off state. The instrumental tests included hand pronation-
supination movements, finger and foot tapping, standing up from sitting, 
walking across the room and reading a text. These motor tasks were re-
peated at predetermined time points and all tasks were video recorded for 
later clinical rating.  

Figure 5. The data collection process for Paper III and IV.  
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An accelerometry derived treatment-response index (TRIS) was previ-
ously developed in an initial PD sample population. TRIS uses signals 
from wrist-worn sensors during a pronation-supination movement to 
score each patient’s motor status in term of bradykinesia and dyskinesia 
at the time of the pronation-supination test.103,104 TRIS is a continuous 
index ranging from -3 (severe Parkinsonism) to +3 (dyskinesia), and was 
developed and mapped on the clinical Treatment Response Scale 
(TRS).104 The measurement properties of TRIS with regard to levodopa 
plasma levels and pharmacodynamic effects were examined in a previous 
study.103 In the original population TRIS had a good correlation to clini-
cal assessments of motor state, both TRS and selected items of the uni-
fied Parkinson’s disease rating scale (UPDRS) part III.104   

In Paper III TRIS was evaluated against clinical ratings in a new inde-
pendent PD population. Clinical ratings included TRS and items selected 
from the UPDRS part III: finger tapping (item 23), rapid alternating 
movement of hands (item 25), leg agility (item 26), arising from chair 
(item 27), gait (item 29) as well as body bradykinesia and hypokinesia 
(item 31). Each item was scored on a 5-level ordinal scale (0=normal and 
4=can barely perform the task).105,106 The maximum level of UPDRS 
scores of the selected items is 24 points and corresponds to severe Par-
kinsonism. Dyskinesia was assessed using the definitions of the Dyskine-
sia Rating Scale also with a 5-point ordinal scale (0=absent, 4= violent 
dyskinesias, incompatible with any normal motor tasks).107 The clinical 
global response to medication was assessed using the TRS. The TRS in-
terval -1 to +1 was defined as functional “on”,  the interval -3 to -2 indi-
cates severe to moderate Parkinsonism and the interval +2 to+3 indicates 
“on” with moderate to severe dyskinesia.108 Best on was defined as the 
maximum TRS value that occurred between > -3 and ≤ +1 during the test, 
and was used to evaluate the maximum motor improvement after the ad-
ministered levodopa dose.  

Passive monitoring and dose titration (Paper IV) 

Paper IV is a four-week open label observational study. Participants used 
the levodopa-carbidopa microtablets dose dispenser to replace their regu-
lar dosing schedule after translating their levodopa preparation to levo-
dopa-carbidopa microtablets, 5/1.25 mg. The medication schedules were 
adjusted after the first two weeks of using the microtablets dose dispenser 
with the patient’s regular dosing schedule (Figure 5). The individual dose 
adjustment was based on objective information that was generated from a 
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week long objective measurement (PKG) after confirming the content in 
a short clinical interview. Different outcome measures in terms of PD 
motor and non-motor symptoms and quality of life were assessed at base-
line, as well as before the medication adjustment, and two weeks after 
medication adjustment.  

Clinical assessments and self-reported questionnaires were used to assess 
the clinical effects of adjusting microtablet dose schedules based on pas-
sive accelerometry monitoring. The global PD symptoms were assessed 
using MDS-UPDRS. The MDS-UPDRS includes four parts with in total 
65 items: Part I (Non-motor Experiences of Daily Living), Part II (Motor 
Experiences of Daily Living), Part III (Motor Examination) and Part IV 
(Motor Complications).109 Each item consists of 5 ordinal responses 
(0=normal to 4=severe).  

Non-motor PD symptoms were assessed using the non-motor symptoms 
self-assessed questionnaire.41  Health related quality of life was assessed 
with the 8-item patient rated Parkinson’s disease questionnaire (PDQ-8) 
quality-of-life.110 For the same purpose, EuroQoL 5-dimension with five 
responses (EQ-5D-5L) was also used.111 Furthermore, Montgomery Ås-
berg Depression Rating Scale self-reported questionnaire (MADRS-S) is 
a 9-item scale ranging from 0 to 6 (higher is more severe) for measuring 
depressive symptoms.112,113 

Algorithm development and evaluations 
Tonic-clonic seizure detection (Paper II) 

Algorithm detection performance was evaluated in term of sensitivity and 
false positive rates. High frequency and/or large amplitude movements 
during normal activities, which may be mistaken for seizure activity in 
sensor data (e.g. brushing teeth and washing dishes), were also included 
in the algorithm training data set to evaluate the detection performance 
against false positives. During the model development phase,114 the train-
ing set data was used to evaluate several classification algorithms includ-
ing linear regressions, K-nearest neighbors (KNN), support vector 
machine (SVM), quadratic discriminant analysis and random forest (RF) 
to optimize the feature set.  The binary outcome, i.e. seizure (1) and non-
seizure (0), is provided by the classification algorithms. A strict separa-
tion of the training data sets for the development phase and the testing 
data sets for the evaluation phase was carried out to avoid overestimation 
of the algorithm performance.   
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The classification algorithms that performed best in terms of sensitivity 
and false positive rate in the training data set, were KNN with 5 neigh-
bors, SVM with linear kernel and RF with 30 trees. These three classifi-
cation algorithms were further evaluated in the test data set (unseen data). 
In Paper II a true positive (TP) detection was considered if the time win-
dow contributing to the detection, contained at least one time instance 
labelled as a seizure (Paper II, Figure 2). Otherwise the detection was 
considered to be a false positive (FP). Seizures which generated no detec-
tion events were considered to be false negatives (FN). Sensitivity is cal-
culated for an entire testing set by taking all patient data sets into account 
as an entity. Examples of true positive and false positive events are 
shown in Figure 6.   

PD motor state recognition (Paper III-IV) 

The developed SVM model from the initial population sample was ap-
plied in Paper III to produce the TRIS index using the same features and 
principal components. In total 88 features were extracted and analyzed 
based on signals from each wrist sensor in the initial population sample 
to optimize the predictive performance of different classification algo-
rithms. The SVM non-linear performed best in the initial population.104 
Two movement disorder specialists who rated clinical ratings in the ini-
tial study also rated patients in Paper III.103  

The PKG objective summary scores BKS, DKS, FDS and percent time 
with tremor (09:00 – 18:00) that generated over the entire measurement 
period, were used to evaluate the effect of dose titration on objective 
measures in Paper IV. The PKG report contains a graphical representa-
tion of a median BKS and DKS over 6-day period, and it facilitates the 
detection of predictable motor fluctuations in relation to medication 
times. The report also contains graphical representations of the occur-
rence of tremor episodes and episodes of sleep-like immobility as well as 
a summary of time when the PKG is off-wrist.100  

Blinded evaluation based on visual assessments of PKG graphs was con-
ducted by two experienced movement disorder specialists to identify the 
presence of motor fluctuations in Paper III. The movement disorder spe-
cialists also assessed if there was a meaningful difference between PKG 
recordings before and after dose adjustment (Paper IV).   
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Clinically relevant outcomes (Paper IV) 
The primary outcome of Paper IV was the change in global PD symp-
toms/signs as assessed by MDS-UPDRS subscale scores at the final visits 
compared to baseline. The secondary outcomes were the changes in the 
self-reported questionnaire including quality of life assessed using PDQ-
8 and EQ-5D-5L, depression symptoms assessed using MADRS-S, non-
motor symptoms assessed using NMS-Quest and wearing-off symptoms 
assessed using WOQ-19 from baseline to the final visit. The tertiary effi-
cacy outcomes were the changes in self-reported questionnaires between 
baseline and the second visit and between the second and final visit, as 
well as the changes in objective scores derived from PKG recordings be-
fore and after dose adjustment. 

 
Missing data and non-adherence 

 
Missing data and non-adherence of using sensors were summarized from 
Paper II-IV. Reasons for missing data were also explored with respect to 
technical errors or human related factors. The non-adherence data in Pa-
per IV were extracted based on off-wrist time from the PKG reports. The 
first and last day of off-wrist time were excluded because the exact start-
ing or finish time could not be determined. The percent of participants 
that were non-adherent was defined as the number of participants who 
removed the sensors more than 30% of at least one day divided by the 
total number of participants. The percent of non-adherence time was de-
fined as the off-sensor time divided by the scheduled monitoring time.   
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Results 
 

End users’ perceptions (Paper I) 
Four categories emerged regarding perceptions towards the use of weara-
ble technology based on the qualitative content analysis from focus group 
discussions: facilitators of sensor monitoring, barriers to monitoring, fa-
cilitators of usability and barriers to usability. Four categories and nine 
subcategories are presented in Table 4.  

Objective monitoring 
The participants perceived potential benefits of using wearables where 
the information may facilitate the diagnostic process and disease treat-
ment while being cost effective and decreasing the number of hospital 
visits. The participants considered that benefits gained from registration 
outweigh the possible inconvenience of use. They also emphasized the 
importance of interactive communication between patients and HPs be-
fore, during, and after monitoring.  

The participants thought that unclear information might generate unnec-
essary questions, uncertainty and suspicion. The participants feared a 
lack of integrity and were worried about what information will be record-
ed and how and by whom this information will be used and interpreted. 
The participants were concerned about recordings with insufficient and 
invalid information or if the selected placement on the body was ade-
quate for the purpose and whether enough variables were measured.  

Usability 
The participants also described their perceived facilitators and barriers 
for using wearable technology in terms of design (e.g. color and material) 
and management (e.g. recharging batteries or taking the wearable on and 
off).  
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Table 4. Overview of categories and subcategories regarding sensor monitoring and usabil-
ity. 

 
Clinical evaluations (Paper II-IV) 

 
Tonic-clonic detection (Paper II) 

In the training set, the K-nearest neighbors algorithm (KNN), support 
vector machine (SVM) and random forest (RF) all achieved 100% sensi-
tivity and 0 false positive (FP) in detecting 27 TCSs in three patients. In 
the test set, the KNN detection algorithm detected all 10 TCSs in eight 
patients with 26 FPs (100% sensitivity, 0.05 FP/h, Figure 7). The SVM 
algorithm detected 9 out of 10 TCSs with 11 FPs (90% sensitivity, 0.02 

 Categories Subcategories 

Objective 
monitoring 

Facilitators of monitoring 
Perceiving diagnostic and treatment 

benefits 
Valuing interactive information 

Barriers to monitoring 
Perceiving unclear information 

Fearing lack of integrity 
Worrying about inconclusive recording 

Usability 
Facilitators of usability Design that simplifies 

Management that simplifies 

Barriers to usability Design that hinders 
Management that hinders 

Figure 7. Performance of the three classification algorithms in detecting TCS in patients 
of the test set. (A) Number of TCS detected by the three algorithms. (B) The average 
false positive rate per hour in each of the three classification algorithms. From research 
Paper II, with permission from the publisher. 
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FP/h, Figure 7), while the lowest false positive rate was obtained for the 
RF algorithm which also detected 9 out of 10 TCSs and only generated 6 
FPs (90% sensitivity, 0.01 FP/h, Figure 7). Details of each classification 
algorithm performance for each individual in the test set are presented in 
Paper II, Supplementary Table 2. 

PD motor state recognition (Paper III-IV)  
Instrumental testing (Paper III) 

Overall, the correlations between TRIS, TRS and UPDRS III items were 
decreased in Paper III when compared to the original study104. Compared 
to that, a lower correlation and higher root mean square error (rs=0.23, 
P<0.001, root mean square error RMSE=1.33) was found between TRIS 
and TRS in Paper III. A stronger and medium strength correlation be-
tween TRIS and TRS was found for participants who responded positive-
ly to a levodopa test dose and had unequivocal objective motor 
fluctuations (n=17, rs= 0.38 [medium strength 0.3 to 0.49],115 P<0.001, 
RMSE= 1.29). Spearman correlation coefficients between TRIS, TRS 
and UPDRS III items were provided in Paper III Figure 1. 

There were significant changes in clinical ratings and TRIS from practi-
cally defined off to best on state. TRIS was increased 0.32 from practical-
ly defined off to best on state (P=0.024). TRS was also increased from a 
median of -2 to +1 when patients went from practically defined off to best 
on (P=0.001). A median improvement of 3 points in UPDRS sum scores 
was found (P=0.001).  

Motor fluctuations based on PKG recordings 

The two movement disorder specialists agreed on 20 out of 25 patients 
including both with and without motor fluctuations. In five participants 
motor fluctuations were not detected in the PKG report. 

Individual dose titration (Paper IV) 
 

The mean levodopa-carbidopa dose was increased by 112 mg/day after 
dose adjustment (15%, P=0.001) and the dose intervals were shortened 
from a mean of 173 to 151 minutes (12%).  The introduction of LC-5 
microtablets followed by a PKG-aided dose titration resulted in im-
provements in motor experiences of daily living (Part II) and motor ex-
amination (Part III) assessed using MDS-UPDRS (Paper IV, Figure 3). 
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There were no significant changes in non-motor experiences of daily liv-
ing (part I) and motor complication (part IV) parts assessed using MDS-
UPDRS. Health-related quality of life (measured by PDQ-8) significantly 
improved from baseline to the final visit. Self-reported symptoms includ-
ed the number of non-motor symptoms (NMS Quest), the number of 
wearing-off symptoms (WOQ-19) as well as the number of depressive 
symptoms (MADRS-S), which were significantly decreased from base-
line to the final visit. There was no significant change in the number of 
symptoms improving after the next dose in WOQ-19. Generic quality of 
life, as measured by EQ-5D-5L scores, did not change over the study pe-
riod (Paper IV, Table 3). There were no significant changes in PKG ob-
jective summary scores in BKG, DKS, FDS and percent daytime with 
tremor from the first measurement period to the second period (Paper IV, 
Table 3).  

Blinded clinical evaluations of PKG 

PKG reports from 20 patients had sufficient data for evaluation by the 
specialists before and after dose adjustments. Of these 20 patients, 12 
patients (60%) showed improvement of bradykinesia without appearance 
of pronounced dyskinesia after dose adjustment, three patients did not 
change and in five patients (25%) the PKG-recordings indicated deterio-
rated motor features. An example of a patient’s PKG reports before and 
after dose adjustment is shown in Figure 8. 



W
EA

R
A

B
LE

 S
E

N
SO

R
S 

FO
R

 M
O

N
IT

O
R

IN
G

 E
P

IL
EP

SY
 A

N
D

 P
A

R
K

IN
SO

N
’S

 D
IS

E
A

S
E 

 

R
E

S
U

LT
S
 

43
 

 

Be
fo

re
 d

os
e a

dj
us

tm
en

t 
Af

te
r d

os
e a

dj
us

tm
en

t 
Fi

gu
re

 8
. A

n 
ex

am
pl

e 
of

 e
vi

de
nt

 w
ea

rin
g-

of
f p

he
no

m
en

a 
sh

ow
n 

in
 th

e 
P

KG
 g

ra
ph

 b
ef

or
e 

do
se

 a
dj

us
tm

en
t. 

Th
e 

bo
ld

 b
lu

e 
lin

e 
re

pr
es

en
ts

 th
e 

m
ed

i-
an

 o
f b

ra
dy

ki
ne

si
a 

sc
or

es
 a

nd
 th

e 
bo

ld
 g

re
en

 li
ne

 re
pr

es
en

ts
 d

ys
ki

ne
si

a 
sc

or
es

 fo
r e

ve
ry

 2
 m

in
 o

f t
he

 6
-d

ay
 p

er
io

d 
of

 th
e 

PK
G

 m
ea

su
re

m
en

t. 
Th

e 
th

in
 b

lu
e 

lin
es

 in
di

ca
te

 th
e 

25
th
 a

nd
 7

5th
 p

er
ce

nt
ile

s 
of

 b
ra

dy
ki

ne
si

a 
sc

or
es

. T
he

 th
in

 g
re

en
 li

ne
 re

pr
es

en
ts

 2
5th

 a
nd

 7
5th

 p
er

ce
nt

ile
s 

of
 d

ys
ki

ne
si

a 
sc

or
es

. T
he

 v
er

tic
al

 re
dl

in
es

 in
di

ca
te

 p
re

sc
rib

ed
 d

os
e 

in
ta

ke
 ti

m
es

. T
he

 b
la

ck
 ra

st
er

 p
at

te
rn

s 
re

pr
es

en
t t

he
 ti

m
in

g 
of

 tr
em

or
 e

pi
so

de
s.

 T
he

 m
ed

ia
n 

of
 b

ra
dy

ki
ne

si
a 

sc
or

e 
w

as
 im

pr
ov

ed
 (s

m
oo

th
er

 in
 th

e 
bl

ue
 li

ne
) w

ith
ou

t i
nc

re
as

in
g 

th
e 

m
ed

ia
n 

of
 d

ys
ki

ne
si

a 
(th

e 
gr

ee
n 

lin
e)

 a
fte

r d
os

e 
ad

ju
st

m
en

t. 
Fr

om
 re

se
ar

ch
 P

ap
er

 IV
, w

ith
 p

er
m

is
si

on
 fr

om
 th

e 
pu

bl
is

he
r. 



 
 
D O N G N I  J O H A N S S O N  B U V A R P   

DONGNI JOHANSSON BUVARP  

44 

a There were 25 participants who completed two periods of PKG monitoring and 24 
participants completed the study.  
 
b Scheduled monitoring time, due to the difficulty to determine when participants start 
or stop the measurements. 

 
Missing data and non-adherence (Paper II-IV) 

 
Missing data attributed to either technical errors or human factors (e.g. 
incorrectly starting the sensors) are presented in Table 5. Non-adherence 
to wearables has been reported in Paper II and IV. There were three PwE 
(4%) who took off the sensors due to discomfort (Paper II). Eleven 
PwPD (44%) took off the PKG device for more than 30% of the time in 
one day during two monitoring periods (Paper IV). The median percent-
age of non-adherence time during the sensor monitoring among PwE 
those who took off the sensors (n=3) was 49.7%, and for PwPD (n=11) 
was 14% for both periods.  

  Table 5. Overview of missing data in each corresponding setting for Paper II-IV. 

 Paper II 
n=75 

Paper III 
n=25 

Paper IV 
n=25a 

Setting Hospital Lab Free-living 
Wearables Shimmers3 Shimmers3 PKG 
Total monitoring time, 
hours 

8933 104.3 6912b 

Missing data, hours (%) 1952 (22) 3.7 (3.5) 331 (4.8) 
Technical errors Synchronization 

between sensors, 
battery failure or 

data storage prob-
lems 

Synchronization 
between sen-

sors 

NA 

Other reasons Sensors were not 
correctly started 

None Off-wrist 

Percent of total adher-
ence time, % 

97.9 100 95.2 

Percent of participants 
with non-adherence 

   

Female n (%) 
Male n (%) 

3 (6) 
0 (0) 

0 (0) 
0 (0) 

2 (20) 
9 (60) 

Percent of non-
adherence time, %  

   

Median (range) 49.7 (49-50) 0 (0) First period 
14 (7-78) 

Second period 
14 (7-60)  
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Discussion 
 

This thesis covers several aspects of the possible use of wearables in clin-
ical applications for monitoring epilepsy and PD, namely perspectives 
from end users, feasibility from practical experiences and clinical evalua-
tion of algorithm performance as well as early attempts to assess clinical 
effects of monitoring using wearables.  

The description and identification of barriers and facilitators adds to the 
knowledge of clinical implementation of wearables to enable long-term 
use from both patients and health professionals’ perspectives (Paper I). 
The proposed algorithm in detecting TCS achieved a high sensitivity and 
a low false positive rate (Paper II). Wearable sensors can be used to 
quantify motor states in PD both in instrumental testing (Paper III) and in 
passive movement monitoring (Paper IV). Wearables can be applied as 
tools to ascertain seizure frequency in epilepsy and to monitor treatment 
effects in PD. The information provided by the commercial proprietary 
algorithm is feasible for individual dose titration in PD (Paper IV). The 
PD motor and non-motor symptoms, disease specific quality of life, 
number of wearing-off symptoms as well as depression symptoms im-
proved after dose titration. The adherence to using wearables is high. 
Technical stability requires further improvement due to missing data at-
tributable to technical errors (Paper II-III).  

The methodological considerations 
End users’ perceptions 

The involvement of end users increases their engagement in using weara-
bles by having an influence on the design of their own devices. The main 
advantage of focus groups is to gather large amounts of data through the 
dynamic group interaction on a specific topic of interest within a limited 
time.116 Focus groups make it possible for the participants to explore and 
clarify their views that might be left underdeveloped in an interview.117 
Homogeneity and heterogeneity sampling in age, gender, functioning 
level, and previous experience of wearables allow a rich source of data to 
ensure credibility and also facilitate transferability to a larger context. 
The trustworthiness of categories and subcategories was strengthened by 
continued discussion among all authors of Paper I.99  
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Individuals with severe epilepsy or PD were not included in Paper I. 
People with severe epilepsy or PD may experience more difficulties with 
usage. However, they are a group that may gain more benefits from using 
objective monitoring. Individual interviews can be conducted with people 
with severe epilepsy or PD to further identify specific problems or diffi-
culties with use.  

Tonic-clonic seizure detection 
Paper II showed comparable sensitivity and false positive rate (RF 90% 
sensitivity, 0.01 FP/h) with an algorithm based on only one accelerome-
try modality, compared to multimodal systems for TCS detection (Figure 
9). F-score has previously been proposed as an appropriate approach to 
compare different seizure reporting technologies and is the weighted 
mean between sensitivity and precision.33 F-scores of different TCS de-
tection devices are presented in Figure 9.  

There are two accelerometry-based commercially available devices re-
porting similar sensitivity (around 90%) and false positive rate (around 
0.01/h) for TCS detection. One is a wrist-worn device (EpiLert, Israel) 
which detected 20 out of 22 seizures including tonic and tonic-clonic sei-
zures in 15 patients (sensitivity 91%, 0.005 FP/h).79 In that study79 pa-
tients with seizure-like movements were excluded (e.g. patients with 
dystonic posturing, subtle behavioral automatisms and suspected psycho-
genic non-epileptic seizures). Another accelerometry-based device de-
tected 35 out of 39 TCSs in 20 patients (sensitivity 90%, 0.008 FP/h).78 
In that study78 patients were instructed to refrain from performing repeti-
tive daily movements that could be mischaracterized as a seizure (such as 
brushing teeth using the hand that had a sensor attached). The algorithm 
development was not described in detail in these two studies.  

The algorithm performance in Paper II was achieved without inclusion 
bias. Inclusion bias refers to the use of training and test data sets from the 
same patients in the algorithm development. This definition of inclusion 
bias has recently been proposed in a review118 where it was emphasized 
that a strict separation of training and test populations is necessary for 
unbiased performance evaluation. Inclusion bias may lead to potential 
overfitting in that the algorithm obtaining a good performance in the 
training data set fails to generalize to a test data set (i.e. unseen data). The 
training and test data must be stratified, which means that the entire data 
set recorded for any one patient (including all the seizures recorded for 
that individual) should be assigned either to the training or test set.
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Among the studies in Figure 9, only a few84,87 had a separate training and 
test population used for algorithm developments and evaluations, and 
most proprietary algorithms were not presented in detail in the studies. A 
multimodal system (Nightwatch, Netherlands) based on the combination 
of accelerometry and heart rate for detecting all convulsive seizures 
achieved a comparable sensitivity of 86% with 0.004 FP/h, without inclu-
sion bias.87  

PD motor state recognition and dose titration 
Weaker but significant correlations between the objective sensor index 
TRIS and clinical ratings were found in the new independent population 
(Paper III). It is common that correlations are weaker when an algorithm 
that is trained on a specific population is tested in a new population. The 
reason can be over- or under training of the algorithm, but a difference 
between the populations can also contribute. The decreased correlation 
was therefore expected. The algorithm performance is nevertheless ro-
bust in the sense that it describes motor symptom features that are re-
sponsive to levodopa in the new population.  

Several studies119-122 demonstrated a high correlation (r= 0.73 to 0.9) be-
tween sensor-based objective measures and the corresponding UPDRS III 
sub-scores (e.g. finger tapping) for assessing bradykinesia during a single 
instrumental task. The TRIS was developed to map on the TRS scale that 
incorporates the global motor response rather than any single or sum of 
UPDRS items. The attempt of developing the sensor-based index is to 
provide more objective measures for detecting different PD motor states 
and use it for constructing individual dose-response models rather than to 
replace existing clinical rating scales or develop a sensor-based version 
of clinical ratings. Therefore, a “perfect” correlation between objective 
measures and clinical ratings is not necessary for a simple quantitative 
agreement and subjective ratings.123  

Dose adjustments based on PKG recordings resulted in significant im-
provements in motor and non-motor PD symptoms without increased 
dyskinesia in short term. Although the value of the finding is somewhat 
limited by the open-label observational design, the use of wrist-worn sen-
sors is feasible to adjust treatment through monitoring movement pro-
files. Overall, 12 out of 20 patients showed a better motor profile after 
dose titration based on PKG measurements, but none of the PKG sum-
mary scores showed significant improvement. It appears that clinical in-
terpretation of PKG reports is more sensitive to change than PKG 
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summary scores. The responsiveness of PKG objective scores remains to 
be examined.  

Instrumental testing versus passive monitoring in PD 
Both Paper III and IV used an accelerometry-based device to quantify 
bradykinesia and dyskinesia. Paper III used features based on a repeated 
pronation-supination movement conducted in a laboratory and Paper IV 
used movement monitoring in a natural everyday environment. The in-
strumental testing with a single motor task might be sufficient enough to 
capture changes in motor dynamics that reflect different motor states. 
However, the requirement for patients to conduct repeated tests can gen-
erate compliance issues whereas passive monitoring requires fewer or no 
inputs from patients. Also, one potential drawback for instrumental test-
ing is that most patients tend to perform better during clinical assess-
ments than in their daily environment, which can make it difficult to 
evaluate if the results from the instrumental testing will actually reflect 
their treatment effects. Passive monitoring, such as the PKG device, can 
provide the day-to-day variations of movement.  

Machine learning algorithms for monitoring epilepsy and PD 
The implementation of machine learning in clinical care is not straight 
forward. Challenges regarding data quality, large data management and 
the clinical and biological relevance of the algorithm models124 are also 
found in other medical disciplines where machine learning is applied e.g. 
myocardial infarction diagnosis125,126 or image classification in radiolo-
gy.127   

Large data sets can lead to difficulty in condensing the collected infor-
mation and extracting the relevant target parameters.91 Although machine 
learning algorithms are robust enough to handle large-scale data,128,129 the 
algorithms generally don’t supply explanatory power.130 With high-
dimensional wearable data, there is limited utility to fully understand the 
behavior of the black boxes.130 When an algorithm is to be used to pro-
duce a substitute measure for medical decision support it is imperative 
that the logical connection between the phenomenon and the algorithm 
outcome is transparent.130 The understanding probably needs to precede 
data collection, by determining what will be the most clinically relevant 
and measurable features. Therefore, communication between health pro-
fessionals, engineers and patients is important to address unresolved clin-
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ical issues and choose the clinically most prioritized parameters to be 
measured in wearables. 

The challenge when developing algorithms usually involves the difficulty 
to obtain a good-fit model without overfitting or underfitting.130 Overfit-
ting is more common and is usually due to the complexity of the model 
or too much noise in the training data. To some extent, a tradeoff be-
tween the model complexity and the possibility of overfitting needs to be 
considered. When the number of training samples is low a complex mod-
el is likely to result in overfitting and poor generalization. In Paper III  
the initial training sample was dominated by TRS -2 to +1 values and in 
the new test sample a large proportion of the observations was observed 
at the more extreme TRS values (i.e. severe Parkinsonism or “on” with 
moderate to severe dyskinesia). As only few extreme TRS values were 
present in the training sample, the algorithm cannot make accurate pre-
dictions in the extremes of the TRS and the algorithm therefore underes-
timated Parkinsonism when TRS values were lower than or equal to -2. 
More data with a higher prevalence of severe Parkinsonism and severe 
dyskinesia would help to re-train the predictive algorithm and would be 
useful to improve its generalizability.  

For tonic-clonic seizure detection, a variation in the number of FPs was 
noted between individuals in relation to heterogeneous motor phenomena 
of TCSs (Paper II). To improve the algorithm performance and reduce 
FPs, patient-specific algorithms are suggested.131 More data from each 
patient is also required to construct a reliable patient-specific algorithm. 
Although the present system is not primarily focused on real-time analy-
sis, the SVM model is expected to be the most computationally inexpen-
sive for commercializing wearables. The generalization to multimodal 
systems may also be more suitable in some of the proposed algorithm 
models than others. However, more data is still needed to propose the 
future strategy for development of wearables.    

Limited data is a common issue in the field.130,132 Data sharing between 
different projects that are working in the same direction would enable 
algorithm development to move forward regarding clinical use in epilep-
sy and PD. Sampling methods, feature extraction and validation methods 
should be provided in study reports. Releasing the associated code for the 
model building in the public domains would allow reproduction in con-
firming studies. For example, in clinical applications of machine learning 
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in cardiovascular disease, the continued development and refinement of 
algorithms was largely attributed to public ECG databases.124  

Missing data and non-adherence 

One main technical problem occurring in our studies is missing data. Five 
TCSs were unrecorded by sensors in Paper II due to technical errors and 
the missing data was mainly attributable to technical failure. The amount 
of missing data needs to be kept in mind even in the development phase, 
especially as it may have an impact on the performance when the system 
is converted to real-time seizure detection. PD motor symptoms involve 
movement characteristics that change progressively over time, and a real-
time system continuously measuring relevant features over one to two 
weeks might be less sensitive to missing data. Apart from technical prob-
lems of the sensors, there were several practical issues, such as a compli-
cated process to start and stop the sensor monitoring. This led to 
difficulties for health professionals who were not familiar with the tech-
nical instruments and also reflects that the system is not yet mature. It 
indirectly led to missing data attributed to human factors. The system 
needs to be simple to operate and adapt to a level where technical 
knowledge should not be unnecessarily demanding. It is important that 
health professionals and technicians work closely together to address 
technical difficulties and clinical needs to improve the usability.   

Limitations 
One limitation of using focus group discussions (Paper I) is that it might 
hinder the expression of opposed viewpoints during the group discus-
sions. The high dynamic of interaction might also suppress the develop-
ment of alternative ideas from individuals who were not actively 
participating. The moderator and the assistant moderator ensured a re-
laxed and open environment to allow different expressions from all par-
ticipants during the group discussions.   

One limitation across Paper II-IV was that the number of participants was 
relatively low. However, as proof-of-concept studies, it is reasonable that 
a small number of participants but saturated data, is needed prior to larger 
clinical trials to test and develop the design of the algorithms. Paper IV 
was an observation open-label design with a limited follow up time and 
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no comparison group. A placebo effect is likely to contribute to some 
extent to the study findings in Paper IV.  

Clinical implications 
Tonic-clonic seizure detection 

Paper II achieved a low FP rate using only one modality. Using one mo-
dality requires less power than a multimodal system. An increase of the 
expected battery life facilitates long-term use of the proposed accelerom-
etry-based system for TCS detection. Including high frequency move-
ments of normal daily activities in the training algorithm may help to 
reduce FP rates and thereby achieve a more robust system for measuring 
TCS frequency also in a natural setting.   

Most non-invasive seizure detection devices have achieved false positive 
rates around 0.2 FP/24 hours which is too high for clinical use. A majori-
ty of patients would nonetheless accept false positives as long as they are 
fewer in number than the correct detections.65 An acceptable rate (i.e. 1 
FP for every 3 TP133) is dependent on the seizure frequency in a given 
individual, and it cannot be directly translated into FP/h rate of the detec-
tion algorithm. Reducing FP/h of TCS detection can provide a more reli-
able seizure count and reduce anxiety for patients and caregivers 
regarding seizures they are unaware of. FP reduction could make seizure 
alarm systems more robust. Reliable information on TCS seizure counts 
is needed to optimize pharmacological treatment so that the seizures can 
be prevented or reduced and eventually lead to a normal lifestyle being 
maintained in PwE.118  

Individual dose-response models and dosing suggestions in PD 

The development of treatment related motor complications is a major 
clinical problem in PD. Paper III demonstrated that, in the new popula-
tion, the previously developed algorithm performed best in PD patients 
with a positive response to levodopa and clear motor fluctuations. The 
population in Paper III was selected based on prescription records, not on 
the reported occurrence of symptom fluctuations. It confirms the clinical 
usefulness of applying the method to the specific group of patients with 
undeniable levodopa response and short effect duration.  
 
Individual dose-response models based on TRIS were developed for 
providing individual dosing suggestions in terms of the maintenance dose 
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and morning dose.104,134 In Paper III individual dose-response models 
could be fitted to 76% of the study population. Dosing suggestions based 
on TRIS were found to be significantly correlated with the dose adjust-
ments chosen by the responsible physician in Paper IV.135 Automated 
objective interpretation of sensor-based measurements and individualized 
dose suggestions could, in the long run, improve PD symptoms and 
thereby improve quality of life in PwPD. If integrated with other remote 
platforms (e.g. web or mobile), it will allow remote assessments when 
patients are in their home environment, and it may be possible to de-
crease the amount of hospital visits. This would be helpful for PwPD 
who live in rural areas.136,137   

Objective measurements are the most valuable when there is a therapy 
that  influences the measured disease indicator.90 Paper IV showed a fea-
sible approach to optimization of oral levodopa medication for short term 
pharmacological management of PD and improved disease-related quali-
ty of life in PwPD. The passive monitoring facilitates an early detection 
of untreated bradykinesia and unrecognized motor complications when 
patients are not aware of them themselves or find them difficult to de-
scribe. Early detection of motor fluctuations may facilitate stabilization 
of the treatment and improve clinical outcomes.  

Most PwPD in Paper IV showed a need for dose adjustments based on 
PKG recordings, but some of the patients did not experience any burden-
some symptoms due to undermedication according to their self-
descriptions. PKG recordings could both underestimate and overestimate 
symptoms and symptom fluctuations. It is therefore necessary to confirm 
the results in clinical interviews. This is a problem shared with probably 
all home or free-living assessments, including long term ECG and dia-
ries. In Paper IV the impressions of dose effect duration and dose effica-
cies derived from the PKG were discussed with the patients in the same 
way that the PKG-information is used in clinical practice, i.e. as an in-
formation tool and a pedagogical tool.  

Wearables with integrated reminders may also facilitate adherence to 
medication intake. This may mitigate the difficulty to manage multiple 
doses per day and help avoid motor fluctuations due to poor medication 
compliance. The medication adherence in Paper IV is very high in almost 
all participants compared to other previous studies.138,139  

While wearables can be useful to quantify treatment effects in PD, they 
can also facilitate the identification of PwPD who may require adjusting 
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treatments like deep brain stimulation (DBS). The presence of dyskinesia 
or the onset of motor fluctuations sensed by wearables might be used to 
inform an adaptive DBS device which adjusts the stimulation based on 
the sensor data. Such feedback closed-loop stimulation might improve 
the efficacy of DBS and decrease the battery consumption. However, the 
performance of wearables for measuring PD motor symptoms has to im-
prove substantially in order to be feasible for such application.  

Wearable system considerations 
Adherence to wearables 

Adherence to wearables was high across Papers II-IV. The high adher-
ence reflects a positive acceptance towards the use of wearables, as per-
ceived by the end users who saw possible benefits and valued the benefits 
more than the possible inconveniences (Paper I). Although there were 11 
participants who took off the PKG device for more than 30% of the time 
in one day with only one sensor used, the total adherence time (95.2 %) 
of two monitoring periods remains high. The adherence time in Paper IV 
was in line with a study that reported 7-day adherence to wearables in 
PwPD.140 The reason for non-adherence could be that the participants had 
to manage other technical devices in parallel during the study (Paper IV). 
Three PwE took off the sensors due to discomfort (Paper II), and that 
non-adherence might be related to the design of the sensors.  

Is a single wrist-worn sensor enough? 

A single wrist-worn sensor is easier to use for patients from a practical 
perspective. Signals from one wrist-worn sensor are probably sufficient 
in detecting TCSs in epilepsy and monitoring motor symptoms in PD. 
However, one single sensor might not be satisfactory in detecting other 
seizure types, for example hypermotor seizures.141  Also, the use of a sin-
gle sensor could be difficult when the motor manifestation is unclear as 
to which wrist is predominant, or to classify activities that could be mis-
taken for disease related features. The use of bilateral sensors has some 
potential advantages to avoid misinterpretation of daily activities, e.g. 
brushing teeth or whipping cream with the hand that the sensor is at-
tached to which might be misclassified as a seizure.78  
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Integrity issues 

The concerns of privacy regarding the gathering of information using 
technology have been raised in the past decades. PwE and PwPD stressed 
that the privacy of the data must be ensured and only relevant profession-
als should have access to the data (Paper I). Most participants were con-
cerned if their daily activities could be discerned from the data collected 
by wearables (Paper I). The possible privacy issues can be more chal-
lenging when patients have cognitive impairment or if they are particular-
ly suspicious which might be a side effect of the medication in PD.2 A 
recent review suggested that the data collected by wearables should be 
secured by regulatory means through legal obligations.91 The recently 
released GDPR legislation addresses similar privacy concerns by ensur-
ing that personal data belongs to the person under legal obligations. The 
regulation facilitates the protection of privacy on collected data being 
used by a third party.  

An “all-in-one” device or one size fits no one? 

The portrayed perceptions from Paper I call for an “all-in-one” device. 
The participants perceived that wearables can be used to detect disease 
symptoms including non-convulsive seizures and PD non-motor symp-
toms while retaining the feature of being easy to use. Technically realistic 
solutions and these perceptions may be difficult to match. The use of a 
multimodal system can detect more variables than accelerometry, but it 
substantially increases the power consumption and data management. A 
more burdensome battery might then have to be used. A multimodal sys-
tem may not be necessary for every patient, e.g. for persons who have 
dominant PD motor symptoms without reported non-motor symptoms 
after screening, it will be effective to use only one accelerometry modali-
ty in monitoring motor symptoms to improve treatment effects. Also, 
there are related ethical issues for collecting data that actually will not be 
used.  

A conflict in perception emerged from the focus group discussions. The 
participants perceived the use of wearables as a cost-effective tool to 
monitor disease symptoms as well as to improve disease management 
while information exchange between patients and health professionals 
was expected to be sufficient. Information exchange before, during and 
after monitoring or even a wish for rapid and immediate feedback from 
sensors was emphasized by both patient groups. The perception of requir-
ing intensive information exchange might be caused by concerns and 
worries of using a new wearable technology where patients need confir-
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mation and support during use. In a recent review,2 experiences of using 
wearable technology in epilepsy, PD and stroke were synthesized, and 
the lack of confidence in handling the new wearable technology emerged 
as a main theme. The desired information exchange requires extra human 
resources to communicate and deliver sufficient feedback and support, 
which is still an unmet need when it comes to responsibility for how to 
provide real-time feedback while avoiding an extra burden for both pa-
tients and health professionals. In reality, the use of wearable sensors 
might not be as cost-effective as hoped for, since substantial resources for 
technical development and clinical validation are needed in its’ initial 
stage. Using wearables for symptom monitoring in a clinical context 
implies both opportunities and challenges.  

 Opportunities 
 

Continuous and objective monitoring 
Feasible in home environment for long term use 
Potential to follow-up treatment effects and support decision 
making through monitoring related variables of epilepsy and 
PD 
Further applications incorporated with other platforms, e.g. 
web-application, closed-loop feedback system 
Monitoring individual variability in a standardized approach 
High user acceptance  

 Challenges 
 

Large resources are demanded in the initial stage of develop-
ing the technology 
Privacy concerns 
Demands for battery consumption 
Large data management 
Technical requirements for multimodal system 
Data quality issues 
Clinimetric validations in a large sample population 
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Conclusions 
 

 
• The use of wearables as an objective tool to improve disease 

management in patients with epilepsy and PD showed both op-
portunities and challenges.  
 

• Facilitators and barriers perceived by end users are important to 
consider in the design of wearables to facilitate long term use. 
 

• The developed algorithms performed well for tonic-clonic sei-
zure detection in epilepsy and motor state recognition in PD us-
ing wearable sensors. 
 

• The use of wearable-derived information for individual dose ad-
justment in PwPD improved PD motor and non-motor symptoms 
as well as health-related quality of life in the short term.  
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Ongoing studies and future 
perspectives 

 

The knowledge provided by these studies will be the basis for further 
work to develop a multimodal system by incorporating more physiologi-
cal measures to improve detection performance for monitoring epilepsy 
and PD.    

In epilepsy the monitoring of heart rate and oxygen saturation has previ-
ously shown to be useful in detecting tonic-clonic seizures 
(TCSs).84,142,143 The monitoring of movement and more physiological 
variables using the multimodal garment may further reduce the number 
of FPs and improve the TCS detection performance. A multimodal sys-
tem carries the potential to register physiological events that precede 
TCSs and also to record postictal physiological changes. This is a prereq-
uisite for identifying PwE who might be at risk for sudden unexpected 
death in epilepsy (SUDEP) and develop interventions which might pre-
vent SUDEP and eventually be lifesaving.144  

Non-motor fluctuations might be visible through monitoring of one or 
more physiological variables. A majority of PwPD will develop dysauto-
nomia as the disease progresses. Orthostatic hypotension is a common 
non-motor symptom resulting from cardiac dysautonomia which occurs 
during a change of position from sitting or lying down to standing and it 
can potentially lead to falls in PwPD.145 The monitoring of blood pressure 
using continuous and objective measurements has a potential to detect 
cardiac dysautonomia by providing more subtle measures than traditional 
intermittent methods of measuring blood pressure.146,147 The clinical ap-
plication of using pulse transit time (PTT) to evaluate changes in blood 
pressure in PwPD will be examined. The relationship between PTT and 
non-motor symptoms that is self-assessed by PwPD using a mobile appli-
cation in relation to the medication intake time is further explored.   

Further integration – a multimodal integrated garment 

The multidisciplinary wearITmed consortium is a platform for collabora-
tion of researchers from medicine, engineering, textile and material sci-
ence aiming to develop garment integrated multimodal sensors that can 
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be applied for clinical use in epilepsy, PD and stroke.92 The multidisci-
plinary approach allows cross-scientific knowledge to be involved at an 
early stage to develop a clinically relevant system that fulfills the need of 
end users while sustaining realistic technical and practical solutions for 
long-term use. The use of the garment with integrated multiple sensors 
aims to measure movement and physiological variables like heart rate 
variability, electrodermal activity, changes in blood pressure and oxygen 
saturation.92 These variables were considered the most clinically relevant 
for symptom monitoring.  

The multimodal integrated garment contains three sensor zones, and each 
zone incorporates an SD memory card to store data for off-line analysis. 
Illustration of the garment with integrated multiple sensors is shown in 
Figure 10. Inertial sensors include three-axis accelerometers and three-
axis gyroscopes integrated in all three zones. Optical sensors like photo-

Figure 10. An example of a 3D-model of the garment design and different compo-
nents integrated in the garment. Reprinted with permission of  BioMed Central from 
“An upper body garment with integrated sensors for people with neurological disor-
ders – early development and evaluation.” by M. Alt Murphy, F. Bergquist and B. 
Hagström et al., 2019, BMC Biomedical Engineering,1:3. © by Springer Nature, Swit-
zerland AG 2019, Alt Murphy et al,92 Fig.2   
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plethysmorgraphy (PPG) are integrated in both forearm sensor units and 
two textile silver coated electrodes for heart rate registration are integrat-
ed in the trunk sensor zone.  

Physiological measures 
Photoplethysmograph (PPG) is an optical technology that measures blood 
volume changes in the peripheral circulation through light transmission 
or reflection. PPG can be used to measure pulses radiating to the periph-
ery with each hearbeat.148 A pulse oximeter with a built-in PPG sensor 
measures oxygen saturation based on the theory of different spectral 
properties of Hb and HbO2.149 Pulse rate variability detected from PPG is 
significantly correlated with the HRV derived from an electrocardiograph 
(ECG).150,151  
 
Pulse transit time (PTT) is usually calculated as the time interval from the 
R-wave peak on the ECG to the arrival of the maximum peak of the pulse 
wave in the PPG signal to measure pulse velocity in a continuous fashion. 
The PTT reflects the time taken for the pulse pressure wave, created by 
the blood ejected from the heart to the aorta, to travel to the periphery.152 
Factors that influence PTT include blood pressure and the autonomic 
regulation of the vascular wall tension, which modulates the stiffness of 
the arteries. The pulse wave travels faster in a stiff vessel resulting in a 
shorter PTT.153 In theory PTT should be inversely proportional to the 
blood pressure. However, different studies show heterogeneous results 
regarding the correlation between beat-to-beat PTT and systolic blood 

Figure 11. An example of PPG signal and ECG signal (the red line) collected from a mul-
timodal sensor garment. PTT is calculated as the interval between R wave peaks and the 
maximum peaks of PPG. The blue line indicates the PPG signal collected from the left 
optical sensor. The yellow line indicates the PPG signal collected from the right optical 
sensor.  



WEARABLE SENSORS FOR MONITORING EPILEPSY AND PARKINSON’S DISEASE 

 
ONGOING STUDIES AND FUTURE PERSPECTIVES 

61 

pressure as well as diastolic blood pressure measured by a cuff-based 
blood pressure monitor.154,155 The relationship between PTT and blood 
pressure may highly vary among individuals. PTT is also influenced by 
other factors such as oxygen saturation and thoracic pressure. PTT has 
been used as an indirect marker reflecting autonomic imbalance in ob-
structive sleep apnoea syndrome and cardiovascular reactivity predicting 
cardiovascular disease.156-158 An illustration of PTT is shown in Figure 
11. Examples of pulse transit time and heart rate based on ECG and PPG 
signals derived from the garment during sitting, walking and running ac-
tivities are shown in Figure 12.  

 
 
Figure 12. Examples of continuous measurements of pulse transit time and heart rate
derived from the garment with integrated multiple sensors during sitting, walking and
running. The black lines indicate the continuous measurement of PTT. The blue lines
indicate heart rate derived from the ECG signal, and the red lines represent heart rate
derived from the PPG signal.    
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Evaluation of the garment integrated multimodal sensors 

The development of the garment has a strong focus on the end users’ 
needs and preferences. The results obtained from the focus group study 
(Paper I) were incorporated into the garment design. An evaluation of 
each prototype is also conducted with individual interviews and ques-
tionnaires and the feedback from individual experiences was further inte-
grated into the development of the next prototype. PwE or PwPD might 
find it easier to manage one garment with integrated multimodal sensors 
compare to multiple separate sensor units. The daily impact on the quali-
ty of life in long-term use of wearables will also be explored along with if 
the use of wearables improves user engagement in disease monitoring.   

All integrated electronics are washable except for the battery to facilitate 
the usability for long-term use. Battery recharge is required one time per 
24 hours. The technical tolerability for long-term use is desirable to be 
followed.  

The algorithm performance for detecting motor seizures in epilepsy and 
motor states in PD is evaluated in parallel with the garment development 
and evaluation. The algorithm development in epilepsy will also focus on 
the detection of other motor seizure types such as hypermotor seizures or 
psychogenic non-epileptic seizures. An automated algorithm for analyz-
ing PTT and heart rate variability measured by the multimodal garment 
will be developed. Generalized algorithms may be further developed to 
adapt to a multimodal system for monitoring epilepsy and PD. 

Overall, large sample sizes and data are needed. The external validity for 
translating the algorithm performance of seizure detection from a hospital 
to a free-living environment needs to be further explored. Randomized 
controlled studies may eventually be possible when wearables have been 
proven “good enough” to provide clinically relevant information in epi-
lepsy and PD. Interventional studies over a longer period are desirable to 
confirm that the objectively measured indicator can support therapeutic 
effects in epilepsy and PD.  
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