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ABSTRACT 

RHO family proteins and other intracellular proteins are prenylated with a 20-

carbon lipid—a product of the cholesterol synthesis pathway—by protein 

geranylgeranyltransferase type I (GGTase-I). Prenylation is widely believed to 

target proteins to membranes where they encounter effector molecules that 

stimulate GTP-binding and activation. However, my host group found that 

knockout of GGTase-I in mouse macrophages (Pggt1bΔ/Δ) actually increases GTP-

loading of RHO proteins such as RAC1, RHOA, and CDC42, and also increases 

proinflammatory signaling and cytokine production, and induces severe rheumatoid 

arthritis. These results suggest that prenylation may inhibit rather than stimulate 

RHO protein function. The mechanisms underlying increased GTP-loading and 

exaggerated innate immune responses in the absence of GGTase-I are not known. 

During my PhD, I have addressed these issues in two independent but 

interconnected projects. 

In project 1, we found that there is an imbalance between inflammatory and anti-

inflammatory cytokines produced by Pggt1bΔ/Δ macrophages. We also found that 

knockout of GGTase-I prevents the interaction between KRAS and PI3K catalytic 

subunit p110δ and that this reduces signalling through the PI3K-AKT-GSK3β 

pathway. Moreover, Pggt1bΔ/Δ macrophages exhibit increased caspase-1 activity 

that is directly responsible for the production of active interleukin IL-1β, and that 

this effect requires the MEFV (pyrin) inflammasome. Thus, we conclude that 

GGTase-I promotes an association between KRAS and p110δ and thereby controls 

major inflammatory pathways in macrophages. 

In project 2, we tested the importance of RHO proteins in the development of 

arthritis in Pggt1bΔ/Δ mice. We found that knockout of Rac1 (i.e., in 

Pggt1bΔ/ΔRac1Δ/+ mice), but not Rhoa and Cdc42, markedly reduced inflammatory 

cytokine production and arthritis in Pggt1bΔ/Δ mice. We also found that non-

prenylated RAC1 bound more strongly to the RAS GTPase-activating-like protein 

1 (IQGAP1) – which facilitated RAC1 GTP-loading and activation. Knockout of 

Iqgap1 in Pggt1bΔ/Δ mice abolished cellular phenotypes in vitro and inhibited 

arthritis in vivo. Thus, we conclude that blocking prenylation stimulates RAC1 

effector interactions and activates wide-spread pro-inflammatory signaling. Thus, 

prenylation normally restrains innate immune responses by inhibiting RAC1 

effector interactions. 

Keywords: CAAX proteins, GGTase-I, RAC1. ISBN: 978-91-7833-233-5 



 

 

  



 

 

SAMMANFATTNING 
 

Enzymet geranylgeranyltransferas typ I (GGTase-I) kopplar på en fettmolekyl på ett 100-tal 

proteiner inne i celler i en process som kallas prenylering. En klass proteiner som prenyleras heter 

RHO-proteiner. RHO-proteiner är viktiga för funktionen hos inflammatoriska celler som aktiveras 

vid infektioner och skador. Man har länge tänkt att prenylering gör att RHO-proteinerna lättare kan 

binda till membran i cellen där de kommer i kontakt med proteiner som aktiverar RHO-proteinerna. 

När vi först studerade detta fann vi att om man knockar ut genen som kodar för GGTase-I i 

makrofager hos möss så hindras modifieringen av RHO-proteiner, som förväntat, men istället för att 

inaktiveras så ansamlade sig RHO-proteinerna i sin aktiva form; och makrofagerna blev hyperaktiva 

och orsakade inflammation och ledgångsreumatism. Vi är också intresserade av hur de 

kolesterolsänkande statinerna kan aktivera RHO-proteiner och stimulera produktion av 

inflammatoriska substanser. När statinerna hämmar kolesterolsyntesen så hämmas också 

produktionen av den fettmolekyl som kopplas på RHO-proteinerna. I denna avhandling har jag 

försökt svara på dessa frågor. 

I det första projektet, fann vi att i makrofager som saknar GGTase-I aktiverar pyrin-inflammasomen 

och caspas-1 som leder till produktion av en inflammationsdrivande substans som heter interleukin 

1-beta (IL-1β). I det andra projektet fann vi att RHO-proteinet RAC1 ensamt ansvarar för 

utvecklingen av inflammation och reumatism i mössen. Vi fann vidare att när RAC1 inte prenyleras, 

så blir det hyperaktivt på grund av att det får en kraftigt ökad förmåga att binda till proteinerna 

TIAM1 och IQGAP1 vilka stimulerar signalering till proteinerna NF-kB och som tidigare, till 

inflammasomen och caspas-1. För att bevisa inblandningen av RAC1 och IQGAP1 så knockade vi 

först ut genen för RAC1 och fann att inflammationen och reumatismen så gott som försvann; och 

när vi knockade ut genen för IQGAP1 fann vi att RAC1 (och övriga RHO-proteiner) återfick normal-

aktivitet och att inflammationen och reumatismen botades. Vi fann också att statiner hämmar 

prenylering av RAC1 och ökar produktionen av IL-1β och att denna effekt beror av IQGAP1. Från 

dessa studier kan vi dra slutsatsen att när prenylering hämmas, så binder RAC1 till IQGAP1 och 

TIAM1, blir hyperaktivt och orsakar sen massiv inflammation. Detta betyder i sin tur att prenylering 

normalt sett fungerar som en broms för immunförsvaret genom att hämma RAC1-aktivering. I ett 

bredare perspektiv leder våra resultat till en ökad förståelse för prenylering i sig, men vi identifierar 

också IQGAP1, och till viss mån även RAC1, som nya potentiella måltavlor för läkemedel som kan 

användas för behandling av en ovanlig men allvarlig autoinflammatorisk sjukdom som heter 

mevalonate kinase deficiency (MKD). 
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2 INTRODUCTION 

CAAX-PROTEINS 
CAAX proteins are a group of proteins that contain 

a CAAX sequence at the carboxyl-terminal end 

where C is a cysteine; A are aliphatic amino acids; 

and X can vary. CAAX proteins undergo a three-

step post-translational modification process: First, 

the CAAX-motif of a protein is recognized by 

either of two enzymes called 

geranylgeranyltransferase-I (GGTase-I) or 

farnesyltransferase (FTase) which are responsible 

for transferring a C20 geranylgeranyl lipid or a C15 

farnesyl lipid (prenyl group) to the cysteine 

residue of the CAAX-motif, respectively. This 

process is collectively called protein prenylation. 

Second, the endoprotease RAS-converting 

enzyme (RCE1) cleaves off the terminal –AAX 

sequence. And third, the newly-exposed 

isoprenylcysteine residue is methyl-esterified by 

isoprenylcysteine carboxyl methyltransferase 

(ICMT) (Fig. 1). Prenylation is believed to be 

essential for proper function of CAAX proteins 

because it stimulates membrane targeting, 

interaction with effector proteins, and activation 

(1). Moreover, these modifications help to decide 

the localisation of proteins to specific parts of the 

cell, improving protein-protein interactions and 

modulating protein stability. 

In the last three decades, prenylation has generated a broad interest in the research 

community due to the involvement of CAAX proteins in the pathophysiology of 

various diseases. Progeria is a well-known example of one such disease, where the 

toxic accumulation of prenylated prelamin-A drives the disease (2, 3), and where 

inhibitors of FTase and recently also ICMT are tested as therapeutic options. Cancer 

is another example; it has been found that prenylated RAS proteins are involved in 

the pathogenesis of at least 30% human cancers. Lots of research has focused on 

inhibiting CAAX protein processing enzymes as a strategy to block the activity of 

oncogenic RAS (4).  

Fig. 1. Posttranslational modification 

of CAAX proteins. The cysteine residue 

of the CAAX box is prenylated by 

GGTase-I or FTase; the –AAX tripeptide 

is cleaved off by RCE1, and the newly-

formed prenylcysteine residue is 

methylated by ICMT. (Picutre: Emil 

Ivarsson) 
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The history of protein prenylation 

In the genome, there are several hundred proteins that terminate with a CAAX 

sequence. At least 100 of those are predicted to be farnesylated or 

geranylgeranylated (5-8). The first evidence of protein prenylation was discovered 

in the late 1970s, when the fungal mating factor rhodotorucine A was found to 

contain a farnesyl lipid attached to a cysteine residue close to the carboxyl terminus 

(9). More evidence of protein prenylation emerged in studies on statins, a group of 

drugs that inhibit HMG-CoA (3-hydroxy-3-methyl-glutaryl-Coenzyme A) 

reductase—the enzyme which catalyzes the committed step in cholesterol 

biosynthesis (10). A key finding came in a study where statin-induced proliferation 

arrest was not rescued by addition of sterols, which suggested that some 

intermediary by-products in the cholesterol pathway are involved in controlling cell 

proliferation (11, 12). In support of that, further evidence emerged in 3H-

mevalonate-labelling experiments in cells lacking HMG-COA reductase, in which 

researchers found incorporation of 3H-mevalonate in cellular proteins, suggesting 

that these proteins were prenylated (13). Later, a nuclear protein Lamin B (a nuclear 

lamina protein) was discovered as the first prenylated protein in mammals, but it 

was not known at the time which prenyl moiety was attached (14). Finally, the 

interest in protein prenylation began to attract worldwide attention when it was 

discovered that RAS proteins are farnesylated, and that farnesylation was essential 

for the ability of mutant RAS to localize to the plasma membrane, interact with 

RAF and transform cells (15-17). Due to this finding, an intense race to develop 

farnesyltransferase inhibitors started.  

Prenylation by GGTase-I and FTase-I 

As outlined earlier, the isoprenoids used by GGTase-I and FTase are the cholesterol 

biosynthetic intermediates farnesyl pyrophosphate (FPP, 15 carbons) and 

geranylgeranyl pyrophosphate (GGPP, 20 carbons) produced from isopentenyl 

diphosphate. FTase and GGTase-I enzymatic activity involves attaching an FPP or 

a GGPP molecule, respectively, to the cysteine residue of the CAAX motif. The 

attachment is made with a thioether linkage (18). Both FTase and GGTase-I are 

comprised of heterodimers, and they reside in the cytosol. They share a common 

alpha subunit (encoded by the gene FNTA) but have distinct catalytic beta subunits 
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(encoded by FNTB and PGGT1B), which are vital to performing their functions 

(19-21). 

The question of what factors determine whether a CAAX protein will undergo 

farnesylation or geranylgeranylation, received much attention in the early nineties. 

The research led up to the understanding that it is the `X` residue in the CAAX motif 

that dictates if the protein is farnesylated or geranylgeranylated (22-25). More 

specifically, CAAX proteins become farnesylated if the X residue is Methionine (M), 

Serine (S), Glutamine (Q), or Alanine (A); whereas proteins become 

geranylgeranylated by GGTase-I if `X` is either Leucine (L) or phenylalanine (F) 

(25). HRAS, KRAS, NRAS, prelamin A, and lamin B are the most studied 

substrates for FTase, whereas small GTP-binding proteins like RAS homolog gene 

family, member A (RHOA), Ras-related C3 botulinum toxin substrate 1 (RAC1), 

and Cell division control protein 42 homolog (CDC42) are the most studied 

substrates for GGTase-I (5, 23, 26). Although both enzymes are highly specific 

towards their target proteins, in some cases they compensate each other via cross-

prenylation or alternative prenylation. Examples of this are KRAS and NRAS, two 

well-known isoforms of RAS are normally farnesylated, but studies found that 

those two isoforms are geranylgeranylated by GGTase-I in cells where FTase is 

inhibited (27). This cross prenylation phenomenon has been proposed as an 

explanation of how RAS-driven cancers manage to deal with farnesyltransferase 

inhibitor (FTI) treatment (28). This idea was also proven with genetic experiments 

in mouse models (29, 30).  

The regulation of prenylation is not fully understood, but recent studies have 

identified interesting mechanisms that regulate prenylation through splice variants 

of SmgGDS (small G-protein dissociation stimulator), which is a nucleotide 

exchange factors specific for CAAX proteins that contain carboxyl-terminal 

polybasic region. They have been found to regulate the entrance and passage of 

CAAX proteins through the prenylation pathway (31).  SmgGDS-558 and SmgGDS-

607 are two splice variants that are involved in the regulation of prenylation by 

recognizing the CAAX sequence. SmgGDS-558 forms a complex with 

geranylgeranylated CAAX proteins that are processed by GGTase-I, while 

SmgGDS-607 associates with unprenylated CAAX proteins that eventually become 

geranylgeranylated by GGTase-I. These two then regulate trafficking of the CAAX 
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proteins to the plasma membrane (31, 32). This novel mechanism depicts one facet 

of how prenylation regulates the handling and trafficking of CAAX proteins to the 

plasma membrane.  

Post-Prenylation processing by RCE1 and ICMT 

After prenylation, the CAAX proteins are further modified by RAS converting 

enzyme (RCE1), an endoprotease that clips off the -AAX tripeptide sequence from 

CAAX box. RCE1 was first found in a yeast screen designed to identify genes 

involved in RAS protein processing. Subsequently, mammalian RCE1 was 

identified based on homology to the yeast RCE1 and is believed to proteolyze most 

isoprenylated CAAX proteins (33, 34). Further studies led to the discovery of 

another yeast protease, sterile24 (Ste24), which is responsible for proteolysis of the 

–AAX sequence from yeast a-factor (Ste24 also cleaves a-factor upstream of the 

fully processed farnesylmethylcysteine). Ste24 was identified in the late 90ies at 

UC Berkeley (35-37). The mammalian orthologue was subsequently given the 

cumbersome name zinc metalloproteinase Ste24 homologue (ZMPSTE24). The 

only mammalian substrate for ZMPSTE24 identified thus far is prelamin A which 

is an intermediate filament protein of the nuclear lamin (37, 38). 

The final enzymatic processing step in the posttranslational maturation of CAAX 

proteins is carboxyl methylation of the isoprenylcysteine residue. The enzyme 

responsible for this step was also identified in yeast and named Ste24 (39). Its 

mammalian orthologue, isoprenylcysteine carboxyl methyltransferase (ICMT) was 

identified later (40, 41). This final processing step, together with prenylation, 

renders the carboxyl-terminal end of the protein hydrophobic and prone to associate 

with membranes (42, 43). Both RCE1 and ICMT resides in the endoplasmic 

reticulum that is responsible for the trafficking of farnesylated and 

geranylgeranylated proteins to the plasma membrane. Furthermore, RCE1 and 

ICMT have been explored as potential drug targets as they both process all the main 

RAS isoforms, and both the farnesylated and geranylgeranylated forms (44).   
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Importance of protein prenylation  

Membrane targeting 
The trafficking of CAAX proteins to their target location on membranes is controlled 

and tightly regulated by specific cytosolic proteins and chaperones. RHO protein 

GDP dissociation inhibitors (RHOGDIs) and 14-3-3 proteins, for instance, bind to 

geranylgeranylated forms of RHO family proteins and RND subfamily of RHO 

proteins, respectively (45, 46). Recent structural studies of these proteins have 

revealed the presence of hydrophobic pockets that can accommodate the prenyl 

moieties of CAAX proteins. For example, RHO-GDI1 has a pocket in which the 

geranylgeranyl group of RHOA fits perfectly (47). But interestingly, in GGTase-I-

knockout cells, where RHOA is not prenylated, RHOA binds just as strongly as in 

wild-type cells (48). These pockets strengthen the association between them and 

help to restrict the release of CAAX proteins to further signaling (45, 49). Similar to 

the above, phosphodiesterase-δ (PDEδ) forms a complex with farnesylated RAS 

and restricts the release of RAS to oncogenic signaling (50, 51).  

Cellular roles of prenylation 
Farnesylation is required for RAS activation, and this phenomenon has caught the 

attention of the scientific community because 30% of human cancers have an 

activating mutation is a RAS gene. Thus, inhibiting farnesylation seemed in the 

early nineties to be the key to combat RAS-induced cancers, many of which have a 

high mortality rate (i.e., pancreatic, lung, and colon cancer). A race between 

academic laboratories and pharmaceutical companies ensued and several FTIs were 

developed. The FTIs inhibited HRAS-driven cancers quite effectively in mouse 

models and several FTIs produced anti-proliferative effects in different types of 

cancer cells via cell cycle arrest in the G1 or G2/M phase of the cell cycle (52). 

These preclinical studies raised the hope in the field that FTIs might indeed be used 

to stop RAS induced cancers in its tracks. 

Contrary to expectations, clinical trials with FTIs showed no beneficial effect in the 

treatment of cancer. It was quickly discovered that when FTase is inhibited KRAS 

and NRAS can become geranylgeranylated by GGTase-I and continue to function 

normally. This was troubling as most RAS-mutant cancers involve mutations in 

KRAS and NRAS. HRAS mutations, which the preclinical studies relied on, is 

exclusively farnesylated. Moreover, the observed antiproliferative effects with FTIs 

could not be solely attributed to the inhibit activation of RAS, which indicates the 
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possible involvement of other CAAX proteins in the control of cell proliferation (26, 

52). This argument was supported by genetic studies in our own laboratory: 

Knockout of Fntb caused cell proliferation arrest in both KRAS and HRAS mutant 

cells and improved survival in mice with KRAS-induced lung cancer—despite the 

fact that KRAS was geranylgeranylated and fully functional (29).  

Further research revealed that centromere-associated protein E and F (CENP-E and 

CENP-F), whose activation are dependent on farnesylation, are involved in the 

control of cell cycle progression at metaphase (53, 54). Later, it was discovered that 

the nuclear proteins Lamin B1 and Lamin B2 are farnesylated proteins that are also 

involved in regulation of cell proliferation and senescence (55, 56).  In addition to 

that, the lamin A (LMNA) precursor, prelamin A is involved in the progression of 

Hutchinson-Gilford progeria syndrome (HGPS), a rare ageing disorder caused by 

mutations in LMNA (2). Researchers have also identified two other important 

farnesylated proteins, RHEB GTPases and liver kinase B (LKB), that play a central 

role in cellular energy metabolism through mammalian target of rapamycin 

(mTOR) and AMP activated protein kinase (AMPK) signaling (57, 58). Taken 

together, it is hypothesized that inhibition of FTase may block other prenylated 

proteins (CENP-E, CENP-F, lamin A/C, lamin B, RHEB GTPases, and LKB) along 

with RAS to exert anti-proliferative effects. 

The disappointing lack of progress with FTIs in clinical trials, cross prenylation of 

RAS, and the involvement of geranylgeranylated proteins (RALA, RALB, RHOC, 

RAC1 and CDC42) cancer progression, shifted the focus to GGTase-I as a potential 

target to combat cancer (28, 59-65). Unlike FTase, GGTase-I is essential for 

modification of many CAAX proteins, and thus blocking GGTase-I activity could 

potentially inhibit the function of many CAAX proteins at once. Similar to FTIs, 

GGTase-I inhibitors (GGTIs) cause cell cycle arrest, but here primarily at G0 and 

G1 phase and those effects might be mediated by downstream signaling of RHO 

proteins (66). Our lab has shown supporting evidence of this in a study where 

genetic inactivation of GGTase-I reduces KRAS-induced lung cancer and 

myeloproliferative disease (MPD) (29, 30).   

Importantly, many CAAX proteins, including the RHO family proteins, are involved 

in multiple functions of inflammatory cells. During my PhD, I have focused on the 
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importance of GGTase-I-mediated geranylgeranylation of RHO family proteins and 

the impact of inhibiting this enzyme for the progression of inflammatory diseases. 

RHO proteins 

RHO family proteins are a subcategory of CAAX proteins that are low-molecular-

weight (~21 kDa) GTP-binding proteins that act like molecular switches and cycle 

between inactive GDP (guanosine diphosphate) bound and active GTP (guanosine 

triphosphate) bound forms (Fig. 2) (2). Conversion of GDP to GTP (activation) is 

catalyzed by guanine nucleotide exchange factors (GEFs); GTP hydrolysis to GDP 

(inactivation) is stimulated by GTPase-activating proteins (GAPs). RHO protein 

GDP dissociation inhibitors (RHO-GDIs) are key regulatory enzymes that form 

complexes with the inactive GDP-bound form of RHO proteins and keep them 

sequestered in the cytosol (67). Different external signals and growth factors induce 

dissociation of RHO proteins from the RHO-GDI complex, which leads to the 

availability of RHO proteins for membrane targeting, GTP-binding, activation and 

further signaling. 

Furthermore, other types of proteins stabilizes RHO proteins in their active GTP-

bound form, e.g. RAS GTPase-activating like proteins IQGAP1 (IQGAP1) and 

RAS GTPase-activating like proteins IQGAP2 (IQGAP2) (68, 69). Balancing 

between active and inactive forms of RHO proteins is very important in order to 

regulate specific cellular functions such as actin cytoskeleton remodeling, cell cycle 

progression, proliferation, migration, production of growth factors, and cytokine 

release (70-72). Inappropriate signaling of RHO family GTPases contributes to the 

pathogenesis of cancer (73-75), inflammation (76), and cardiovascular diseases 

(77).  
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Fig. 2. Activation and inactivation of the RHO family protein RAC1. Prenylation is important 

for the interaction between RAC1 and RHO-GDI. RHO family proteins (including RAC1) form 

complexes with RHO-GDI in the cytosol in their inactive GDP-bound forms. RAC1-GEFs and 

RAC1-GAPs stimulate GTP binding and GTP hydrolysis, respectively, and thereby activate and 

inactivate RAC1. Growth factors and extracellular signals result in the release of RAC1-GDP from 

the RAC1-GDP-RHOGDI complex. RAC1 then transfers to the plasma membrane and is 

subsequently converted into its active GTP-bound form through the action of a GEF. Once RAC1 is 

activated, it interacts with different kinds of effectors (e.g., IQGAP1, IQGAP2) to signal 

downstream to control cell proliferation, migration, and morphology. Eventually, GAPs assist in the 

hydrolysis of the GTP and RAC1 is inactivated. (Picture: Emil Ivarsson)  

To date, 22 mammalian members of RHO family proteins have been identified, and 

they further subdivided into RAC subfamily GTPases, CDC42 subfamily GTPases, 

RHOA subfamily GTPases and other RHO GTPases (78). Among them, RAS-

related C3 botulinum toxin substrate 1 (RAC1), RAS homolog gene family, 

member A (RHOA), and Cell division control protein 42 homolog (CDC42) are the 

most well-studied members of this group (78). The section below describes key 

molecular biology events involved in activation of RHO family proteins and their 

roles in the progression of inflammatory diseases.  
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RAC1 

The RAC subfamily of GTP binding proteins consists of RAC1, RAC2, RAC3 and 

RHOG. RAC1 is the most well-studied among them due to its critical involvement 

in the regulation of a wide range of cellular functions, such as cytoskeletal 

modifications—especially lamellipodia formation—migration and invasion; 

generation of reactive oxygen species (ROS) through NADPH oxidase; and 

initiation of the inflammatory response (79-81). RAC1 is expressed ubiquitously in 

most cells in the body, while RAC2 and RAC3 expression are limited to 

hematopoietic cells and neural cells, respectively (82-84). 

Similar to other RHO family proteins, RAC1 acts as a tightly controlled molecular 

switch between inactive GDP bound state, and active GTP bound state. TIAM1 (T-

cell lymphoma invasion and metastasis-inducing protein-1), VAV1 (Proto-

oncogene VAV), VAV2 (Proto-oncogene vav) and β-pix (RHO guanine nucleotide 

exchange factor 7) are the most commonly known GEFs, which catalyze the release 

of GDP and recruitment of GTP in RAC1 leading to RAC1 activation (85). RAC-

GAP1, cdGAP, and RICS are GAPs involved in GTP hydrolysis (86-88). In 

addition, some proteins induce stability to the GTP form of RAC1, including 

IQGAP1 (89, 90).  

Several transmembrane receptors with the help of their ligands can stimulate the 

conversion of active RAC1 and then transmit signals to effectors that trigger a wide 

range of physiological outcomes. P21 activating kinase (PAK1) is the canonical 

effector downstream of RAC1 that transmits RAC1 downstream signals. Activated 

RAC1 binds to PAK and then stimulates PAK kinase activity, which in turn 

regulates cytoskeleton remodeling, adhesions, gene transcription via control of 

different signaling cascades like c-JUN N-terminal kinase (JNK), nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-B), and canonical JNK 

regulated WNT signaling (91-96). RAC1 plays an essential role in activation of 

NADPH oxidase complex in immune cells including macrophages. Incorporation 

of activated RAC1 into NADPH complex is an essential requirement to generate 

ROS, and then it stimulates superoxide production to provide an immune response 

against invading pathogens (97, 98). Furthermore, RAC1 is required for 

immunoglobulin receptor–mediated phagocytosis to promote inflammatory 
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response via activation of MAPK (mitogen-activated protein kinase) and JNK (99). 

Overexpression of the active form of RAC1 has also been identified in many tumor 

types, and RAC1 is sometimes required for oncogene-induced transformation, 

including by RAS and TIAM1 (100-105).  

Aberrant signaling of RAC-family GTPases, especially RAC1, is found in the 

progression of several inflammatory diseases including osteoarthritis (106, 107), 

Crohn´s disease (108), psoriasis (109) and mevalonate kinase deficiency (110). 

Active RAC1 plays an important role in eliciting an immune response against 

infection. ROS production (79, 111), and NF-B activation (111, 112), are two key 

signaling pathways involved in RAC1-mediated inflammatory disease progression. 

Activated RAC1 uses those signaling pathways to trigger production of several 

inflammatory mediators, including interleukins (e.g., IL-6 and TNF-α) (113) and 

matrix metalloproteinase (MMP13) (106, 114) that drive disease progression. A 

few studies suggested that blocking RAC1 might be a strategy to treat inflammatory 

disorders such as arthritis and autoimmune disorders (115, 116). 

RHOA 

RHOA is a ubiquitously expressed RHO family GTPase protein involved in 

regulation of different cellular events including cytoskeleton modification, 

formation of stress fibers, focal adhesions, and cell to cell adhesions, cell to matrix 

adhesions and cell migration (117-119). RHOA-triggered cellular responses are 

mediated by a RHOA effector called RHO associated coiled-coil-containing protein 

kinase (ROCK). The ROCK inhibitor Y27632 is often used to block RHO mediated 

cellular responses. These include the inhibition of RAS-induced oncogene 

transformation (120), NFB-dependent cytokine production in experimental colitis 

(121), MCP-1-induced chemotaxis (122), vasoconstriction (123), and cardiac 

hypertrophy (124, 125). Fasudil is the only ROCK inhibitor approved for clinical 

use, and is used to treat cerebral vasospasm due to its potent vasodilation effects 

(126). 

Mounting evidence shows that increased RHOA signaling is a hallmark in 

pathogenesis of inflammatory diseases, including inflammatory Crohn’s disease 

(121), ulcerative colitis (127), cardiac hypertrophy (128) and asthma (129). Statins, 

the drugs that lower cholesterol by blocking HMG-CoA reductase activity, display 
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beneficial cardiovascular effects that have been linked to reduced prenylation of 

RHOA. Blocking RHOA protects mice from cardiac hypertrophy-induced ischemia 

(130). Subsequently, a strategy was proposed to block RHO proteins signaling by 

statins or GGTIs to prevent progression of inflammatory diseases such as 

atherosclerosis. However, research in our lab showed that this was not accurate. We 

find that blocking RHOA prenylation, by knocking out GGTase-I, markedly 

increases RHOA-GTP levels and activity, increases macrophage reverse cholesterol 

transport which markedly reduced atherosclerosis in GGTase-I knockout mice 

(131). Another study showed that blocking RHOA signaling by reduced prenylation 

triggered intestinal inflammation in intestinal epithelial cells isolated from 

inflammatory bowel disease patients (132). Furthermore, one study showed that 

inactivation of RHOA triggers production of mature IL-1β via activation of pyrin 

inflammasome (MEFV) in Hyper-IgD syndrome (HIDS) patients (133).  This 

overproduction of IL-1β is a major driving force for main pathological 

abnormalities in HIDS patients. As outlined in Paper 2, we believe the mechanism 

of hyperinflammation is related to RAC1 and not RHOA. Altogether these 

conflicting results needs clarification. On one hand active RHOA contributes 

regression of atherosclerosis, and on other side, inactivation of RHOA promotes 

inflammation in IBD and HIDS patients. These studies stresses the importance of 

exploring the biology of RHOA in specific tissues and cell types in more detail 

before proposing targeting RHOA or RHOA signaling in disease therapy. 

CDC42 

CDC42 is a ubiquitously expressed RHO family GTPase protein involved in the 

regulation of cytoskeleton remodeling and membrane trafficking that controls a 

wide range of physiological functions, including the formation of filopodia, cell 

motility, polarity, growth and cytokinesis (134, 135). Similar to RAC1, activated 

CDC42 is associated with several effectors, mainly PAK1, and IQGAP1. The 

majority of these effectors contain either a CDC42-RAC interacting (CRIB) domain 

or a p21-binding domain (PBD) in their structure that allows binding of 

CDC42GTP (136). Overexpression of CDC42 has been observed in lung cancer 

and melanoma, and this phenomenon is sometimes required for RAS-induced 

transformation (137). However, very few studies have described the role of CDC42 

in inflammation, particularly in endothelial cell-associated inflammatory diseases. 
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CDC42 is responsible for senescence-associated inflammation in endothelial cells, 

via activation of the p53/p21 pathway, and can thereby promote plaque formation 

in atherosclerosis in APOE–/– mice (138). In addition, CDC42 is required for 

promoting endothelial cell function and regeneration, which are important during 

vascular repair in acute lung injury and acute respiratory distress syndrome (139).   

IQ motif containing GTPase activating protein 1 (IQGAP1) 

IQGAP1 does not belong to a –CAAX protein family or RHO family, but it is the 

common effector for the RHO family proteins, most importantly RAC1, RHOA and 

CDC42. IQGAP1 is a 190 kDa ubiquitously expressed scaffolding protein that 

plays an important role in cytoskeletal rearrangement (140), the mitogen-activated 

protein kinase pathway (141, 142), and in β-catenin-mediated transcription (143). 

IQGAP1 is originally named due to its sequence containing isoleucine (I)-

glutamine (Q) domains (IQD) and a GTPase activation protein-related domain 

(GRD). In addition to that, it also contains a calponin homology domain (CHD), a 

coiled-coil domain (CCD), a tryptophan-tryptophan domain (WWD), and RAS 

GAP carboxyl-terminal domains (RGCTD). Several protein recognition motifs 

present in the multi-domain composition are responsible for wide array of IQGAP1 

interactions (144). Although the structure of IQGAP1 contains a GRD, it is unable 

to execute GTP hydrolysis; instead, it is thought to stabilize GTP-bound proteins 

(145-147).  

Even though IQGAP1 interacts with several proteins, no developmental or 

physiological defects were found in Iqgap1-knockout mice. The only phenotype 

observed was late-onset of gastric hyperplasia (148). Since IQGAP1 engages in 

interaction with multiple protein partners, it might be a clinically important target 

to combat diseases including cancer. For example, earlier studies reported that 

IQGAP1 is required for RAS-induced tumorigenesis via association with ERK1/2 

and phosphoinositol-3-kinase (PI3K), and thereby activating scaffold-induced 

MAPK pathways responsible for tumorigenesis (149, 150). Disrupting or blocking 

IQGAP1-ERK1/2 or IQGAP1-PI3K interactions is considered a promising strategy 

to inhibit tumor progression. Elevated levels of IQGAP1 has been noticed in many 

different cancers, and this facilitates the formation of complexes with the GTP-

bound forms of RAC1 and CDC42, which drive tumor progression (147). Earlier 
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studies reported that IQGAP1 is an attractive target against bacterial infections, 

because of the ability of bacteria to use IQGAP1 to modify cytoskeleton dynamics 

and form F-actin pedestals that are required for the entry of Salmonella 

typhimurium and Escheria Coli into the host cell (151-154). All of these results put 

together suggest that IQGAP1 is an attractive target to treat cancer, bacterial 

infections, asthma and several other diseases. 

When I began my studies, dogma held that prenylation is required for the membrane 

targeting or RHO family proteins and for the ability of RHO proteins to interact 

with GEFs, GAPs, and IQGAP1. In particular, the activation of RHO proteins was 

believed to require prenylation. However, some studies had shown, paradoxically, 

that statins, which reduce GGPP production, actually increases levels of GTP-

bound RHO proteins, but the mechanisms underlying this effect was not known. 

Statins 

Statins are potent inhibitors of the cholesterol biosynthesis pathway by reversibly 

inhibiting key regulatory enzyme HMG-CoA (3-Hydroxy-3-methylglutaryl-CoA) 

reductase (Figure 3) (155). Due to their structural resemblance to the HMG-CoA 

moiety, statins occupy the HMG-CoA binding site in the reductase enzyme (it has 

a higher affinity for binding than HMG-CoA) and thereby inhibit its enzymatic 

activity (155). Statins are one of the most widely-prescribed drugs in the world, and 

it is used primarily to reduce serum cholesterol levels in response to 

hypercholesterolemia and thereby reduce the risk of future cardiovascular disease 

(156).  Furthermore, statins possess some cholesterol-independent effects, also 

known as pleiotropic effects. These pleiotropic effects have in clinical trials been 

shown to be independent of cholesterol lowering and to include anti-inflammatory 

(157), antioxidant (158), anti-thrombogenic effects (159), and improved endothelial 

function effects (160).  Statin pleiotropic effects have been noted in several clinical 

trials: MIRACL (161), PROVE-IT (162) CARE (163), PRINCE (164), HPS (165) 

and ASCOT (166). In these clinical trials, statin-treated individuals had a reduced 

risk of heart disease and increased survival rate despite the fact that the statins did 

not reduce cholesterol levels in a significant fashion (167).  
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Fig 3: Biosynthesis of cholesterol and isoprenoid intermediates: Statins inhibit HMG-CoA 

reductase, a key enzyme in cholesterol biosynthesis regulation, by blocking synthesis of L-

mevalonate in the mevalonate pathway. L-Mevalonate is converted to isopentenyl pyrophosphate 

(Isopentenyl-PP) by mevalonate kinase and phosphomevalonate kinase, respectively. Isopentenyl 

pyrophosphate is subsequently converted to geranyl pyrophosphate (Geranyl-PP) and farnesyl 

pyrophosphate (Farnesyl-PP) by farnesyl diphosphate synthase. Furthermore, farnesyl-PP is 

converted to geranylgeranyl pyrophosphate (GGPP) by geranylgeranyl diphosphate synthase. 

Finally, geranylgeranyltransferase-I (GGTase-I) uses GGPP to initiate lipid modifications of CAAX 

family proteins. Statin therapy reduces the synthesis of GGPP and thereby inhibit lipid modifications 

of CAAX proteins.    

Several studies have cemented the view that pleiotropic statin effects—independent 

of cholesterol reduction—are mechanistically important. For example, statins 
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improve vascular endothelial function before significantly affecting serum 

cholesterol levels (160, 168, 169). The mechanism behind statins vasoprotective 

function is mainly due to the upregulation of endothelial nitrous oxide synthase 

activity (eNOS), which leads to increased synthesis and release of endothelial-

derived nitrous oxide (NO) (170, 171). These vasoprotective effects of statins are 

absent in eNOS–/– mice, which indicates that endothelial-derived nitrous oxide 

production mediates at least some parts of the beneficial effects of statins on 

endothelial function (172). The antioxidant effect of statins is another potential 

mechanism to restore endothelial cell function. Statins reduce the generation of 

ROS via down regulation of the angiotensin type1 (AT1) receptor and NAD(P)H 

oxidized subunit p22Phox (173).  

Some studies have reported that statins had a beneficial effect on other 

inflammatory diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA) 

dementia, atherosclerosis, and systemic lupus erythematosus (SLE) (174-177). 

Statins reduce levels of high-sensitivity C-reactive protein (hs-CRP), a clinical 

marker for inflammation usually elevated in individuals with high cardiovascular 

risk (157, 178, 179). Most of the pleiotropic effects of statins are believed to be 

caused by reduced synthesis of the isoprenoid intermediates FPP and GGPP, which 

are used in the prenylation reactions (180) (Figure 1). Thus, statins are—in light of 

the aforementioned dogma—thought to prevent sub-cellular localization, 

membrane targeting, and activation of RHO family proteins. 

Until recently, several studies have reported on different pleiotropic effects of 

statins. Many of the pleiotropic effects observed in cell cultures were restored by 

adding of GGPP to the culture medium but not by adding FPP or LDL-cholesterol, 

suggesting that geranylgeranylation of RHO proteins, such as RAC1 and RHOA 

underlies the effects. One example of this is the statin-induced vasoprotective 

effects, which are reversed by addition of GGPP but not FPP or ox-LDL, suggesting 

that inhibition of geranylgeranylation of RHO proteins is responsible for the 

vasoprotective mechanisms (171, 181, 182). However, geranylgeranylation is also 

important for a large class of RAB proteins, which are prenylated by GGTase-II in 

a pathway that is entirely distinct from that mediated by GGTase-I. RAB proteins 

coat membranes of vesicles and are important for their correct targeting within the 
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cell. These findings indicate that RHO proteins or RAB proteins might be involved 

in mediating the beneficial effects of statin treatment.  

However, despite having these beneficial side effects, statins can also cause some 

serious complications. A large proportion of statin-treated patients experience some 

form of muscle pain (myalgia) symptoms, which can range from mild to severe. In 

severe cases statins can cause rhabdomyolysis, which has been reported to occur in 

0.44-0.54 cases per 10 000 person-years. Rhabdomyolysis is a disease in which 

skeletal muscle starts to break down, which in turn can cause kidney failure and 

death (95, 96). Cerivastatin was the first drug to be discontinued in the United States 

due to high rates of fatal rhabdomyolysis (183). The exact cause of statin induced 

myalgia and rhabdomyolysis remains elusive, but in light of findings in our group, 

we have hypothesized that statin-induced inhibition of prenylation of RHO family 

GTPases underlies both positive and negative pleiotropic effects. 

Targeting GGTase-I in diseases 

Cancer  
RAS is one of the most well-studied oncogenes and is a notorious driver of 

progression in as much as 30% human cancers. Direct targeting of RAS has been 

extremely difficult due to its high affinity for the active GTP-bound state and the 

structural similarities with other GTPase proteins (184).  Thus a strategy developed 

to use FTIs to combat RAS-induced cancers. As outlined earlier, clinical trials with 

FTIs failed due to alternative prenylation of KRAS and NRAS. GGTase-I inhibitors 

in combination with FTIs could have been an effective strategy but researchers 

tested GGTIs and also dual-prenylation inhibitors as potential anti-cancer drugs 

(185).  In our lab, we have earlier shown that knockout of both FTase and GGTase-

I completely blocked KRAS prenylation, rendered the protein soluble, and 

incapable of causing cancer (30). So far one GGTI (GGTI-248) went through 

clinical trials (26). But overall, the strategy of targeting both prenyltransferases in 

cancer therapy is likely to be too toxic as no cells can proliferate in the absence of 

these enzymes. Some cells clearly survive in the absence of both enzymes, such as 

macrophages and type II pneumocytes in the lung (29). 
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Inflammation 

Explaining the importance of prenylation in the development of inflammatory 

diseases is particularly complicated due to a surprising discovery in our group. 

According to current dogma, one would expect that blocking prenylation would 

inhibit RHO protein activity and that this, in turn, would protect against 

inflammatory symptoms caused by RHO protein signaling. Surprisingly, however, 

we found that knockout of GGTase-I in macrophages hyperactivates RHO proteins, 

stimulates pro-inflammatory signaling pathways, enhances cytokine production in 

response to lipopolysaccharide (LPS) stimulation, and causes mice to develop 

severe erosive arthritis in all of their joints (48). This result not only challenges the 

long-held assumption that prenylation is required for CAAX protein function but 

suggests that prenylation might a negative regulator of RHO-GTPase activation. 

Furthermore, our lab showed that knockout of GGTase-I in macrophages increases 

active RHOA and that this mediates an increase in reverse cholesterol transport and 

a 60% reduction in atherosclerosis in LDL receptor-deficient mice (131). These 

discoveries not only challenge the widely-held view that prenylation is required for 

activation but they also shed light on the paradoxical findings of increased GTP-

loading and cytokine production in statin-treated cells and provides an impetus for 

studying this further. How do RHO family proteins become GTP-bound when they 

are not prenylated? Which GGTase-I substrate drives inflammation in GGTase-I-

deficient mice? Or are other mechanisms in place? What is the importance of RHO 

protein prenylation? There are many questions that need answers. 

The current thesis focuses on defining the importance of GGTase-I in macrophage-

induced innate immunity. Macrophages are crucial mediators for immune sensing. 

Macrophages migrate into damaged tissues and recruit other inflammatory cells, 

trigger inflammatory cytokine production, generate ROS, contribute to 

phagocytosis, pathogen killing, and remove apoptotic cells from the site of infection 

(186). These events altogether contribute to primary defence mechanisms for 

humans via unleashing a wide range of innate immune responses against infections 

(186). All these immune responses are responsible for controlling the signalling 

events of inflammation.   
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Innate immune system 

The innate immune system is a first-line defence mechanism that protects the host 

from pathogens such as fungi, bacteria, and insects. The primary function of the 

innate immune system is to recruit immune cells to the site of infection. This results 

in the release of chemical mediators such as pro- and anti-inflammatory cytokines, 

activation of the complement cascade, and formation of antibody complexes. These 

factors contribute to a proper and well-balanced immune response against harmful 

pathogens (187). 

Inflammation is a key protective mechanism in innate immune response driven by 

the recruitment of immune cells at the site of infection by harmful pathogens. Well-

controlled inflammation protects the host from infection. However, a less well-

controlled response, in particular an excessive one, is at the root of many chronic 

inflammatory and autoimmune diseases. Immune cells contain a special group of 

receptors on their cell membranes called pathogen recognized receptors (PRRs). 

The amount of innate immune response depends primarily on how fast the PRRs 

recognize pathogen-associated molecular patterns (PAMPs) generated in response 

to harmful pathogens and also how fast he PRRs recognize danger-associated 

molecular patterns (DAMPs) which generated in response to endogenous host stress 

(188). Activation of PRRs stimulates inflammatory signaling cascades that result in 

the production and secretion of chemical mediators such as interferons, pro-

inflammatory and anti-inflammatory cytokines (189). 

The inflammasome is a multi-domain complex which contains one or more 

caspases in their structure, and it is essential for the activation of inflammatory 

responses. Inflammasomes are expressed mainly in myeloid cells and act as 

immune sensors (receptors) controlling the activation of caspase-1 that further 

results in the production of the highly immune-active cytokines IL-1β and IL-18.  

To date, researchers have identified five receptors responsible for inflammasome 

formation. They are NACHT, LRR and PYD domains-containing protein 1 

(NLRP1), NLRP3, NLR family CARD domain-containing protein 4 (NLRC4), 

absent in melanoma 2 (AIM2) and pyrin (MEFV) (190). Activation of 

inflammasome is a key event, mediated by innate immune response and; in the 

progression of several auto-inflammatory diseases (191). Interleukin-1 beta (IL-1β) 
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is an important inflammatory cytokine expressed in myeloid cells like macrophages 

and monocytes at the site of infection or injury.  

Many cells produced IL-1β in response to bacterial toxins (lipopolysaccharide) via 

TLR4 signaling pathway. But, LPS alone is not enough to stimulate activation and 

release of IL-1β (192). These results led to emergence of two signal model for 

maturation and release of IL-1β in cells. In Signal I, LPS stimulate the synthesis of 

pro-IL-1β, whereas signal II is required for conversion of pro-IL1beta to its active 

form (P17). The exact mechanism for signal II is not clearly understood but earlier 

research shown that second signal mediated through activation of caspase-1 (193).  

This cytokine, and also IL-18, is secreted via a non-classical secretory pathway that 

doesn’t involve the ER-golgi-plasma membrane vesicular transport machinery 

(194). Several bacterial toxins (e.g. lipopolysaccharide, LPS) can activate caspase-

1 mediated signaling that triggers production of active IL-1β (195). Recent studies 

showed that activation of RHOA in response to bacterial toxins is essential to inhibit 

caspase-I mediated pyrin (one of the components of the inflammasome, MEFV) 

inflammasome signaling in macrophages (196).  

Rheumatoid arthritis (RA) 

RA is a chronic inflammatory autoimmune disease caused by progressive 

destruction of joints in the body (Fig. 4). RA is believed to originate from losing 

self-tolerance against immunogens which leads to inappropriate activation of 

immune reactions that affect structural cells and building blocks of bone, cartilage, 

and connective tissue in the joints (197, 198). RA is characterized by severe pain, 

stiffness and swelling of joints. RA affects 1% of the population globally, but the 

exact cause of RA remains unclear (199). Earlier studies reported that formation of 

immune complexes that activate immune cells, production of self-reactive 

antibodies (anti-citrullinated protein antibodies and C-reactive protein antibodies), 

infiltration of immune cells (lymphocytes and macrophages) into the synovium are 

key regulatory events that underlie the initiation and progression of disease (200). 

These effects lead to the aggressive development of synovium hyperplasia and 

subsequent damage of cartilage present in periarticular bone. Synovium is a single 

thin translucent membrane layer present in non-articular surfaces of the joint but, 

during RA, immune cells infiltrate inside the joint cavity, form immune complexes 
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to activate immune cells to produce cytokines, self-reactive antibodies and matrix 

metalloproteases (MMPs), causing the synovium to expand and this process goes 

hand-in-hand with to joint destruction (198).  

    

Fig 4: Photos of normal mouse joint and joint from mouse with arthritis: Hematoxylin and 

Eosin–stained sections of joints from 12-week-old mice. S, synovium;B, bone. Note thickened 

synovium in the square at right. 

 

Among lymphocytes, T-lymphocytes, particularly, CD4+, CD8+ and effector T-

lymphocytes are involved in the pathogenesis of RA (201). CD4+ T-lymphocytes 

also called regulatory T-lymphocytes (Tregs), help to maintain self-tolerance by 

inhibiting pathological immune responses against immunogens (201). Defects in 

Tregs are often noticed in RA patients. Tregs isolated from RA patients produce 

high levels of inflammatory cytokines and suppress proliferation of effector T-

lymphocytes that are responsible for the production of anti-inflammatory cytokines 

like TGF-β and IL-10 (202).  Earlier studies found evidence that depletion of CD4+ 

T cells reduced the severity of disease in peptidoglycan aggrecan (PG)-immunized 

mouse model (203). 

Further evidence came from multiple studies showing that CD4+ T-lymphocytes 

form complexes with aggressive forms of disease-contributing proteins encoded by 

Hla-drb1, a gene involved in the progression of inherited arthritis (204). Hla-drb1 

encodes proteins that are components of human leukocyte antigen-DR1 (HLA-

DR1). HLA-DR1 is expressed by antigen-presenting cells (APCs) such as 

macrophages and acts as a ligand to activate CD4+ T-lymphocytes and thereby 

trigger wide array of inflammatory responses (204). Several clinical studies 
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reported that targeting T-lymphocytes and their products have shown significant 

benefit in treating RA (205-207). 

Monocytes/Macrophages also play a central role in the pathogenesis of RA. 

Typically, monocytes in blood infiltrate into the synovial membrane and 

differentiate into macrophages that increase the production of inflammatory 

mediators. The hypersecretion of inflammatory mediators such as cytokines and 

MMPs, leads to the destruction of extracellular matrix proteins which breaks down 

vital joint components. Earlier studies have shown that a population of CD4+CD25+ 

monocytes is elevated in RA patients (208). Also, activated monocytes promote 

bone resorption by differentiating into osteoclasts, which are only cells in the body 

that can perform the task of bone resorption (209). Depletion of monocyte 

populations has shown great benefit in treating inflammation in mice (210, 211). 

Macrophages act as APCs and present immunogenic peptides to CD4+ T-

lymphocytes to activate them and then trigger inflammatory responses as described 

above. In addition to that, earlier studies showed that ROS produced by 

macrophages and neutrophils contribute to cartilage destruction. ROS also 

promotes signaling pathways that contribute to inflammation (212). 

There is no curative therapy for RA patients. Current therapies and drugs are mainly 

focused on reducing cytokine productions to alleviate joint pain but not on reversing 

cartilage function. This is a problem that needs further research to find better 

molecular targets or predictive biomarkers that can lead to treatment at an earlier 

stage to more effectively combat the disease. 

Mevalonate kinase deficiency (MKD) 

Mevalonate pathway—synonymous with the cholesterol biosynthetic pathway— is 

a key metabolic pathway responsible for the synthesis of cholesterol (180). 

Inhibiting the first step of this pathway with statins leads to reduced production of 

cholesterol. A few steps down in the pathway is where mevalonate kinase (MK) 

operates. MK is responsible for conversion of mevalonate to phosphomevalonate 

(180). Patients carrying loss of function mutations in the gene encoding the MK 

enzyme are prone to developing a host of inflammatory phenotypes including 

recurrent fever attacks, lymphadenopathy, arthralgia, skin lesions, and diarrhoea 

(213). Hyperimmunoglobulinemia D syndrome (HIDS), and mevalonate aciduria 
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(MA) are two rare hereditary diseases that occur due to the deficiency of MK (213). 

Collectively these disorders are called MK deficiency (MKD). Until now, less than 

300 MKD cases have been detected globally (214). Increased serum levels of 

Immunoglobulin D (IgD), and increased excretion of mevalonate serve as specific 

biomarkers to identify MKD. In addition, increased levels of inflammatory markers 

such as C-reactive protein (CRP) and serum amyloid A (SAA) can frequently be 

detected in the patient's serum (215). Current therapies available for MKD patients 

are mainly focused on reducing IL-1β levels using IL-1β receptor antagonists such 

as Anakinra (216). However, what are the precise mechanisms underlying this 

disease?  

Excessive production of IL-1β is a dominant force in the progression of MKD. 

Activation of NFβ signaling is mainly involved in the production of IL-1β in MKD 

monocytes, and the conversion of pro-IL-1β to mature IL-1β is carried out via the 

inflammasome-dependent activation of caspase-1 (217). The exact molecular 

mechanisms for the development of inflammatory phenotypes are not clearly 

understood. However, it is thought that reduction of prenylation of RHO family 

proteins is involved in the development of MKD cellular phenotypes. This is 

because MKD leads not only to reduce cholesterol synthesis but also to the reduce 

production of GGPP and FPP. Moreover, incubating macrophages with statins—to 

inhibit HMG-CoA reductase upstream of MK—recapitulates the in vitro cellular 

phenotype observed in monocytes of MKD patients (218). The same study showed 

that aberrant signaling of RAC1 causes caspase-1 dependent maturation of IL-1β 

production (218). Importantly, targeting RAC1 blunts cytokine production induced 

by statins (218). In support of the notion that these effects are caused by reduced 

prenylation, the increased IL-1β production was rescued by addition of GGPP. The 

rescue of increased cytokine production with GGPP suggests that defective RHO 

protein prenylation might be involved in the progression of MKD (219, 220). Some 

studies report that increased caspase-1-dependent IL-1β production was due to 

inactivation of RHOA signaling by statins (221). However, researchers failed to 

address how increased RAC1 activation and inactivation of RHOA communicated 

with each other in the development of MKD. 



 

23 

 

Until now, no studies have proposed a convincing model for how statins and MKD 

leads to increased cytokine production. And many other questions remain: Why do 

mice lacking GGTase-I in macrophages develop hyperinflammation and arthritis? 

Why do RHO family proteins become GTP-bound in cells with inhibited GGTase-

I or cells treated with statins? Is one or many of GGTase-I’s 60+ substrates involved 

in arthritis development? In this thesis I have addressed these questions and 

provided clear answers to a few of them. 
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3 EXPERIMENTAL STRATEGY 

In this section, I describe the transgenic mouse models that were used to uncover 

the cellular and molecular mechanisms behind the hyperinflammation and erosive 

arthritis in mice lacking GGTase-I in macrophages. I will also provide a rationale 

for the use of mice in research and describe techniques used to manipulate its genes. 

Transgenic Mice 

The mouse (Mus musculus) is one of the most popular biomedical research tools 

that has been used to understand both basic biology and pathogenesis of human 

diseases. This due to the close similarity between mice and humans in terms of 

molecular behaviour compared to other model systems, e.g. rats and flies (222). The 

main reasons for using mouse models include anatomy and physiology similarity 

to humans, easy handling, short breeding cycle (three weeks) and early sexual 

maturity (five weeks) (223, 224). From the last three decades, the use of mouse 

models has dramatically increased due to the emergence of recombinant DNA 

technology. Advances in the field have given researchers more opportunities to 

introduce foreign DNA elements (transgene) into the mouse genome (225). These 

transgenic mice give us sophisticated tools to study the effect of deletions or 

mutations of specific genes in the whole mouse or in specific tissues and the 

opportunity to evaluate their role in health and disease development. For example, 

mice lacking low-density lipoprotein receptor (LDLr) are used to study the 

development of atherosclerosis (226). A common way to generate transgenic mice 

is by pronuclear microinjection of a transgene into the zygote. Unfortunately, the 

method has an increased risk of random incorporation of foreign DNA elements 

into the host genome. To overcome that, a method based on the targeted 

manipulation of embryonic stem cells (ESCs) to more reliably produce transgenics 

with correct insertions/substitutions. In this method, the transgene is inserted by 

homologous recombination into a specific locus of a predetermined target DNA 

region. Upon successful integration, the manipulated ESCs are injected into 

blastocysts, and the embryos are implanted into a pseudopregnant female. The 

resulting pups are called chimaeras. This particular method allows us to delete or 

inactivate the desired gene, i.e., create a knockout (225). 
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Cre-loxP techniques 

The Cre-LoxP technique allows for the excision of an engineered DNA sequence 

from genomic DNA. This tool uses Cre recombinase, an enzyme derived from P1 

bacteriophages that recognises loxP sites present in the inserted engineered DNA. 

P1 plasmids contain sequences called loxP (locus of X-over P1 bacteriophage), 

consisting of a 34-bp DNA sequence, that includes 13 symmetric base pair 

sequences in both ends and 8 asymmetric base pairs sequences at the center. The 

Cre recombinase identifies an engineered sequence that is flanked by loxP sites (this 

sequence is chosen to be an essential or important part of the activity of target gene) 

and executes excision of DNA sequence between the loxP sites (Fig. 5) (227).  

 

Fig. 5. Critical DNA sequence, which is vital for target gene activity was flanked by LoxP sites. 

Cre recombinase recognize and then bind to the LoxP sites. Once Cre recombinase binds to LoxP 

sites, it cuts out the target gene sequence present between the LoxP sites resulting in inactivation of 

the target gene. 

There are several ways to express Cre recombinase in cells. First, it is common to 

simply transfect a plasmid encoding the recombinase, another way is by using a 

virus to introduce Cre recombinase in cells or animals, and a third is to engineer 

transgenic mice harbouring Cre recombinase driven by a specific promoter (228, 

229). This promoter is expressed in either ubiquitously or is constrained to a specific 

cell type/tissue. The main advantage of using these mouse models is the ability to 

recapitulate human disease conditions in mice by introducing transgene mutations 

and thus find targets that are responsible for disease progression. For example, mice 

expressing mutant KRASG12D are used to study the development of different 

cancers including lung, skin and pancreatic cancers (230).   



 

26 

 

In the present study, we used the Cre-loxP technique to inactivate GGTase-I, RAC1, 

RHOA and CDC42 in mice macrophages; and we used a conventional 

knockout/null allele for IQGAP1. 

Macrophage-specific knockout of GGTase-I and RHO proteins 

To generate a macrophage-specific knockout mouse for GGTase-I (Pggt1bΔ/Δ), we 

first generated a conditional Pggt1b allele (Pggt1bfl/fl) by inserting loxP sites 

flanking exon 7. Exon 7 encodes amino acids that are essential for the catalytic 

activity of the beta subunit of GGTase-I. The Pggt1bfl/fl mice were bred with 

transgenic mice expressing Cre recombinase under the control of Lysozyme-M-

promoter (LysM-Cre). The resultant heterozygous offspring lack 50% GGTase-I 

activity in myeloid cells, which is enough to effectively prenylate RHO family 

proteins in myeloid cells (heterozygous GGTase-I knockout mice are 

indistinguishable from WT). We further intercrossed these mice to get 100% 

deletion of GGTase-I in macrophages. These mice were termed as Pggt1bΔ/Δ mice 

(30) (= D = deleted) 

In Paper I, using these mice, we studied general cellular and molecular mechanisms 

underlying inflammation in Pggt1bΔ/Δ mice and found that GGTase-I-deficiency 

activates the pyrin inflammasome, caspase-1, and IL-1 production.  

In Paper II, we studied the hypothesis that one of the main GGTase-I targets RAC1, 

RHOA, and CDC42 become hyperactivated in the absence of prenylation and 

underlie the increased cytokine production in vitro and arthritis in vivo in Pggt1bΔ/Δ 

mice (mice harbouring conditional knockout alleles for Rac1 (231), Rhoa (232) and 

Cdc42 (233) were generated as described). To accomplish this, we knocked out one 

copy of Rac1, Rhoa or Cdc42 genes in Pggt1bΔ/Δ mice in the same way we 

generated Pggt1bΔ/Δ mice (Figure 6). These mice were designated 

Rac1Δ/+Pggt1bΔ/Δ, RhoaΔ/+Pggt1bΔ/Δ, and Cdc42Δ/+Pggt1bΔ/Δ. We also evaluated 

mechanisms underlying the accumulation of RAC1, RHOA, and CDC42 in the 

active GTP-bound state in Pggt1bΔ/Δ macrophages. As outlined in Paper II, we 

found that non-prenylated RAC1 binds strongly to IQGAP1. We also tested the role 

of IQGAP1 in the increased inflammation in Pggt1bΔ/Δ mice. For that, we knocked 

out of IQGAP1 (Iqgap1–/–) (148) by breeding Iqgap1–/– mice with Pggt1bΔ/Δ mice. 

These mice were designated Iqgap1–/–Pggt1bΔ/Δ (Fig. 6). 
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Fig. 6. Generation of macrophage-specific knockout of GGTase-I and RhoGTPases in mice. 
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4 BACKGROUND AND PREVIOUS RESULTS 

Several studies have reported that RHO family proteins are important for tumor cell 

metastasis, so targeting RHO family proteins has been considered a potential 

strategy to treat cancer. Furthermore, some studies have found that RHO family 

proteins, most importantly RAC1, RHOA, and CDC42 are important for immune 

cells to perform their functions (234, 235). RHO family proteins are important in 

innate immunity functions such as the response to bacterial toxins.  

As outlined earlier, RHO family proteins are substrates of GGTase-I during their 

maturation process, and geranylgeranylation has been widely assumed to be 

essential for RHO-protein activity. Therefore, targeting GGTase-I, to prevent 

prenylation of RHO proteins, has been proposed as a potential strategy to treat 

inflammatory diseases such as atherosclerosis and multiple sclerosis (236). To 

evaluate this hypothesis, our lab has mice with a conditional knockout allele for 

Pggt1b, the gene encoding the essential beta-subunit of GGTase-I, and then 

inactivated the enzyme in macrophages (48). 

The knockout of macrophage GGTase-I clearly blocked the prenylation of RHO 

family proteins. However, contrary to expectations, the mice developed severe, 

spontaneous, and chronic joint inflammation, which resembles erosive arthritis in 

humans (Fig. 7A) (48). Even more surprisingly, GGTase-I-deficient macrophages 

had increased levels of RHO proteins in their active GTP-bound form compared to 

controls (Fig. 7B), and they also produced higher amounts of pro-inflammatory 

cytokines, such as IL-1β, IL-6, and TNF-α (Fig. 7C). Moreover, non-prenylated 

RAC1 still interacted well with the plasma membrane. Inhibition of RAC1 

signaling with a small-molecule inhibitor or knocking down RAC1 expression with 

shRNAs in GGTase-I-deficient macrophages reduced the secretion of pro-

inflammatory cytokines. These results suggest the interesting but at the time 

farfetched, possibility that a single GGTase-I substrate (out of many dozens) may 

be responsible for the inflammatory phenotype. But we had not performed similar 

experiments with RHOA and CDC42. 
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Fig. 7. Knockout of GGTase-I results in erosive arthritis in mice. (A). Synovitis (S) and Erosion 

(E) in bone metatarsal joint inflammation in control and knockout mice. (B). Accumulation of GTP-

bound form of non-prenylated RHO proteins in GGTase-I knock macrophages. (C). Increased 

production of inflammatory cytokine IL-1β, IL-6 and TNF-α in response to LPS in knockout 

macrophages and wild-type control macrophages treated with GGTI-298.    
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5 AIMS 

Our long-term goals are to define the biochemical and medical importance of the 

posttranslational processing of CAAX proteins. The aim of my PhD thesis was to 

define cellular and molecular mechanisms underlying inflammation and arthritis in 

mice lacking GGTase-I in macrophages. 

Specific Aims 

Project I: To define the molecular mechanisms involved in the excessive innate 

immune responses of GGTase-I-knockout macrophages. 

Project II: To test the hypothesis that RAC1, RHOA, or CDC42 is responsible for 

inflammation and arthritis in GGTase-I knockout mice, and to define the 

mechanism behind the increased GTP-loading of non-prenylated RHO family 

proteins.  

Knockout of GGTase-I in mouse macrophages causes inflammation and erosive 

arthritis. GGTase-I-deficient macrophages contain increased levels of RHO 

proteins in their active GTP-bound form, and they secreted higher amounts of pro-

inflammatory cytokines in two different pathways: an NFB-mediated pathway 

resulting in IL-6 and TNF secretion, and an inflammasome-mediated pathway 

resulting in IL-1maturation. However, there are many gaps in our understanding 

of the biochemical and physiologic consequences of blocking prenylation. For 

example, is the increased signaling triggered by specific Toll-like receptors (TLR)? 

Which pathways are essential for the pro-inflammatory responses? Is the 

inflammasome activated in Pggt1bΔ/Δ macrophages and if so, which part? By what 

mechanism does non-prenylated RHO proteins become constitutively GTP bound? 

In my PhD studies, I have addressed these questions and present the results in two 

manuscripts. 
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6 SUMMARY OF RESULTS 

Project I 

To define the molecular mechanisms involved in the excessive innate immune 
responses of GGTase-I-knockout macrophages (237). 

Pggt1b is important for cytokine production in macrophages 

 

Fig. 8. Knockout of Pggt1b altered the balance between inflammatory and anti-inflammatory 

cytokine production. (A―D) Semi-quantification of IL-1β, TNF-α, IFN-1β, IL-10 cytokines by 

ELISA shows in control and GGTase-I knockout macrophages supernatants stimulated with TLR 

ligands for 8 h. Data are from three different experiments.  

Toll-like receptors (TLRs), a class of pattern recognition receptors (PRRs), detect 

and mount responses to pathogen-associated molecular patterns (PAMPs) that are 

generated by invading pathogens at a site of infection (238). To find out more about 

the role of Pggt1b in the regulation of TLR-induced cytokine production, we 

incubated bone marrow-derived macrophages with the TLR4-agonist 

lipopolysaccharide (LPS), TLR9-agonist CpG, TLR2-agonist Pam3CSK4, TLR3-
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agonist poly (I:C), and TLR7-agonist R848. Pggt1bΔ/Δ macrophages showed 

increased production of pro-inflammatory cytokines (Fig. 8A & 8B) and reduced 

production of anti-inflammatory cytokines in response to TLR agonists (Fig. 8C & 

8D). Altered balance between pro-inflammatory and anti-inflammatory cytokines 

in Pggt1bΔ/Δ macrophages suggests that GGTase-I has a central role in the 

regulation of cytokine production. 

Pggt1b is important for activation of PI(3)K signaling in macrophages 

 

 

Fig. 9. Knockout of Pggt1b reduced signaling of the PI3K-AKT-GSK3β pathway. Western blot 

analysis of phospho-AKTS473, phospho-GSK3β, phospho-RELAS536, phospho-c-junT239 and p70-

S6K in bone marrow-derived macrophages stimulated with LPS (10 ng/ml) for 0, 5, 10, 15, 30, 60 

and 120 Min. 

Next, we investigated which signalling pathway was responsible for the altered 

balance of cytokine production in Pggt1bΔ/Δ macrophages. Pggt1bΔ/Δ macrophages 

exhibited the reduced activity of pAKTS473 and increased the activity of GSK3β in 

response to LPS treatment compared to the controls used in this project. Two well-

known targets of GSK3β, RELA and c-JUN, had increased levels of phosphorylated 

S536 and Thr239 respectively in Pggt1bΔ/Δ macrophages, which further confirms 
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increased GSK3β activity (Fig. 9). Furthermore, reduced activity of P70S6K, one 

important downstream target of mTORC1 (Fig. 9), suggests that GGTase-I controls 

the signaling of the mTORC1-pAKT-GSK3β pathway or the PI3K-AKT pathway. 

Pggt1b enzyme increases association of KRAS and P110δ and thereby controls 

cytokine productions 

 

 

Fig. 10. Knockout of Pggt1b increased KRAS-p110δ dissociation and thereby increased 

inflammatory cytokine production. (A) IL1β ELISA levels from control and Pi3kcd–/– macrophage 

supernatants after stimulation with different concentrations of LPS for 8hrs. (B). ELISA levels of 

IL1β from the macrophages after transfection with active p100δ, p110wt and Pggt1b in Pggt1bΔ/Δ 

macrophages. (C). Immunoblots showing interaction levels of KRAS with different PI3K catalytic 

subunits from the lysates collected from macrophages after stimulation with LPS for 0, 5, 10, 15 and 

30 min. NS (not significant), **** P < 0.0001. 

As stated above, Pggt1bΔ/Δ macrophages showed deregulation of PI(3)K-AKT-

GSK3β pathway in response to LPS treatment. Recent results have shown that 
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inactivation of p110δ, a class-1 PI3K catalytic subunit, makes mice more prone to 

LPS-induced endotoxin death (239). Moreover, Pik3cd–/– (p110δ knockout) 

macrophages produced more IL-1β (Fig. 10A), which pheno-copied Pggt1bΔ/Δ 

macrophages. Forced expression of active p110δ in Pggt1b knockout macrophages 

normalized the levels of pro-inflammatory cytokine secretion, suggesting that 

deregulation of p110δ signaling contributes to the inflammatory cytokine 

production (Fig. 10B). We found a disturbance in the interaction between KRAS 

and P110δ (Fig. 10C) in Pggt1bΔ/Δ macrophages. LPS stimulation made this 

interaction stronger for a short time (5 min), but the effect is not sustained for a 

longer period. 

Pyrin (MEFV) is responsible for the increased inflammasome in Pggt1b 

knockout macrophages  

 

Fig. 11. Knockout of Pggt1b caused increased activation of the pyrin-dependent 

inflammasome. (A) Immunoblot analysis for mature IL-1β and Caspase-1 in supernatants, and pro-

IL-1β and pro-Caspase-1 in lysates of LPS-stimulated BM macrophages. (B) Immunoblot analysis 

for mature IL-1β and Caspase-1 in supernatants, and pro-IL-1β and pro-Caspase-1 in lysates of 

macrophages incubated with siRNAs targeted against Aim2, Mefv and Nlrc4. 

Many of the inflammatory cytokines are regulated through inflammasome activity 

by activating caspase1 signaling (240). We therefore examined the role of 

inflammasome activation in Pggt1bΔ/Δ macrophages in response to LPS. Increase 

in inflammasome activity contributes to the production of more IL-1β cytokines. 
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Pggt1bΔ/Δ macrophages produced more active IL-1β and had increased activation 

of caspase-1 signaling, which indicates that caspase-1 is important for active IL-1β 

production in the GGTase-I-deficient cells (Fig. 11A). We further examined which 

inflammasome receptor responsible for the increased caspase1 activity in Pggt1bΔ/Δ 

macrophages. We found that knockdown of pyrin (Mefv) but not Aim2 and Nlrc4 

in Pggt1bΔ/Δ macrophages reduced IL-1β production and Caspase-1 signaling (Fig. 

11B).   

Conclusion 

Knockout of GGTase-I results in an impaired PI3K signaling pathway that caused 

increased inflammatory signaling in macrophages. Impaired PI3K signaling 

contributed to the increased production of inflammatory cytokines and increased 

activation of pyrin-dependent inflammasome signaling in Pggt1bΔ/Δ macrophages. 
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Project II 

To test the hypothesis that RAC1, RHOA, or CDC42 is responsible for 

inflammation and arthritis in GGTase-I knockout mice, and to define the 

mechanism behind the increased GTP-loading of non-prenylated RHO family 

proteins (Submitted manuscript).  

RAC1 mediated erosive arthritis in Pggt1bΔ/Δ mice (Manuscript) 

 

Fig. 12. Knockout of RAC1 in Pggt1bΔ/Δ mice reduced erosive arthritis, inflammasome 

activation and inflammatory cytokine production. (A―B) Synovitis and erosion scores from 

joints of Pggt1bΔ/+ (n = 4), Pggt1bΔ/Δ (n = 12), and Rac1Δ/+ Pggt1bΔ/Δ (n = 9) mice at 12 week age. 

(C) Immunoblots showing levels of mature IL-1β and Caspase-1 in supernatants (Sup), and pro-IL-

1β and pro-Caspase-1 in lysates (Lys) of LPS-stimulated BM macrophages; Beta-Tubulin was used 

as a loading control. Nigericin (NGR) was used as a positive control to induce inflammasome-

mediated Caspase-1 activation and IL-1β production. (D) ELISA cytokine levels of IL-1β, IL-6 and 

TNF-α on bone marrow-derived macrophage supernatants from Pggt1bΔ/+ (n = 3), Pggt1bΔ/Δ (n = 

4) and Rac1Δ/+ Pggt1bΔ/Δ (n = 3). n.s not significant, ** P < 0.01, *** P < 0.001. 

Next, we examined the role of three CAAX proteins in the development of arthritis 

in Pggt1bΔ/Δ mice. For that, we knocked out one copy of Rac1 (Rac1Δ/+Pggt1bΔ/Δ), 

one copy of Rhoa (RhoAΔ/+Pggt1bΔ/Δ) and one copy of Cdc42 (Cdc42Δ/+Pggt1bΔ/Δ) 
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in Pggt1bΔ/Δ mice. Histological analysis on joints revealed that knocking out of one 

copy Rac1 reduced synovitis and erosion scores in Pggt1bΔ/Δ mice at 12 weeks age 

(Fig. 12A & 12B). 

We further asked whether knocking out one copy of Rac1 was enough to reduce 

caspase-1 mediated mature IL-1β production in the absence of Pggt1b in 

macrophages (Fig. 12C). Deletion of one copy of RAC1 significantly reduced the 

production of pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6 (Fig. 

12D) in Pggt1bΔ/Δ macrophages in response to LPS, while knocking out one copy 

Rhoa and Cdc42 did not have any effect on cytokine secretion. From the above 

results, we conclude that RAC1 mediates the production of cytokines which lead to 

the development of erosive arthritis in Pggt1bΔ/Δ mice. 

Non-prenylated RAC1 bound strongly to IQGAP1 which contributed to GTP 

loading and inflammatory signaling 

            

Fig. 13. Non-prenylated RAC1 associated strongly with IQGAP1 and contributed to TLR-

induced pro-inflammatory cytokine secretion. (A) Immunoprecipitation analysis showing RAC1 

interaction with IQGAP1 in Pggt1bΔ/+ and Pggt1bΔ/Δ macrophage lysates. (B) Synovitis and erosion 

scores from joints of the Pggt1bΔ/+ (n = 4), Pggt1bΔ/Δ (n = 9), Iqgap1–/– Pggt1bΔ/Δ (n = 7) mice at 

12 weeks of age. (C) Immunoblots showing levels of RAC1-GTP, RAC1, IQGAP1 from Pggt1bΔ//+ 

and Pggt1bΔ/Δ and Iqgap1–/– Pggt1bΔ/Δ macrophage lysates. Actin was used as loading control, and 

np-RAP1 was used as a marker for the absence of GGTase-I. (D)  IL-1β, IL-6 and TNFα cytokine 

levels in supernatants of bone marrow-derived macrophages from Pggt1bΔ/+ (n = 3), Pggt1bΔ/Δ (n = 
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3) and Iqgap1–/– Pggt1bΔ/Δ (n = 3) mice after stimulation with LPS (10ng/ml) for 8 hrs.  * P < 0.05, 

** P < 0.01, *** P < 0.001. 

Next, we investigated possible reasons for the conversion of non-prenylated RAC1 

into its active GTP-bound form in Pggt1bΔ/Δ macrophages. In order to do so, we 

used mass spectroscopy to find RAC1-specific GAPs in GGTase-I knockout 

macrophages. We identified a list of 717 proteins, whose levels were significantly 

different in GGTase-I knockout macrophages compared to control macrophages 

(Table 3). Out of 717 proteins, five of them were specific GAPs for RAC1 and the 

top hit was RAS GTPase activating-like protein 1 (IQGAP1). Instead of exhibiting 

conventional GAP activity, IQGAP1 is known to stabilize RAC1 in its GTP-bound 

conformation. We further corroborated this finding with IP-western blots and found 

an increased association between non-prenylated RAC1 and IQGAP1 (Fig. 13A).  

To determine the role of IQGAP1 in inflammation, we knocked out Iqgap1 in 

GGTase-I knockout mice. Knockout of Iqgap1 markedly reduced inflammation in 

mouse joints (Fig. 13B), and essentially normalized the levels of RAC1-GTP (Fig. 

13C) along with a significant reduction of inflammatory cytokine production (Fig. 

13D). We can therefore conclude from the results presented above that IQGAP1 is 

required for the increased RAC1-GTP levels, the high inflammatory signaling 

cascade, and the arthritis of in Pggt1bΔ/Δ macrophages. 

TIAM1 contributes to increased RAC1-GTP loading and cytokine production 

of GGTase-I-deficient macrophages 

Because IQGAP1 does not have GEF or GAP activity, we next assessed whether 

another RAC1-specific GEF is involved. We found that non-prenylated RAC1 

binds more strongly with T-cell Lymphoma and metastasis 1 (TIAM1), a known 

guanine exchange factor (GEF) which converts RAC1 to its GTP-bound form (Fig. 

14A). Furthermore, we investigated the functional importance of this increased 

interaction. Knockdown of TIAM1 expression with small-interfering RNAs 

(siRNAs) reduced RAC1-GTP levels (Fig. 14B) and also reduced IL-1β cytokine 

production in GGTase-I knockout macrophages (Fig. 14C). We also demonstrate 

that TIAM1 binds to IQGAP1 and that this interaction was increased in Pggt1bΔ/Δ 

macrophages (Fig. 14D). 
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Fig. 14. TIAM1 associated strongly with np-RAC1 and IQGAP1 in GGTase-I knockout 

macrophages and then contributed to RAC1-GTP loading and cytokine production (A) 

Immunoprecipitation analysis showing RAC1 interaction with TIAM1 in Pggt1bΔ/+ and Pggt1bΔ/Δ 

macrophage lysates. (B) Immunoblots showing the levels of RAC1-GTP from Pggt1bΔ//+ and 

Pggt1bΔ/Δ and TIAM1 knockdown Pggt1bΔ/Δ macrophage lysates. Actin was used as loading control, 

and np-RAC1 was used as a marker to indicate the absence of GGTase-I in macrophages. (C) IL-1β 

cytokine levels, after 8 hours of stimulation with LPS, from supernatants of Pggt1bΔ/+, Pggt1bΔ/Δ 

and Tiam1 knockdown Pggt1bΔ/Δ bone marrow-derived macrophages. (D) Immunoprecipitation 

analysis showing TIAM1 interaction with IQGAP1 in Pggt1bΔ/+ and Pggt1bΔ/Δ macrophage lysates.  

* P < 0.05, ** P < 0.01, *** P < 0.001. 

Conclusion 
Hyperactive RAC1 mediated both pro-inflammatory signaling in vitro and 

inflammation and arthritis in mice lacking Pggt1b in macrophages in vivo. Non-

prenylated RAC1 became GTP-bound through an increased interaction with 

IQGAP1 and TIAM1. The results suggest that IQGAP1 and RAC1 could drive 

inflammatory processes in conditions where prenylation is inhibited and raise the 

possibility that inflammatory disorders, such as MKD, that exhibit high levels of 

activated RAC1, could be treated with IQGAP1 or RAC1 inhibitors. 
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Statistics 

Values are represented to mean and SEM. Significance difference between the 

groups are analyzed by student t-test or one-way ANOVA with Tukey´s post hoc 

test. Significance difference less than 0.05 are considered as significant. * P < 0.05, 

** P < 0.01, *** P < 0.001. 
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7 DISCUSSION 

In paper I, we showed the underlying molecular mechanisms involved in the control 

and regulation of excessive innate immune responses in GGTase-I-deficient 

macrophages. In paper II, we showed the importance of RAC1 in inflammatory 

phenotypes in mice lacking GGTase-I in macrophages and also investigated 

potential mechanisms on how non-prenylated RHO proteins become GTP-bound. 

These studies increase our understanding of the biochemical and medical 

importance of GGTase-I-mediated prenylation. Our data suggested that one role of 

prenylation in macrophages is to restrain innate immune reactions by limiting 

RAC1 effector interactions.  

The role of GGTase-I in macrophages for innate immunity 

Macrophages are considered as crucial mediators to trigger innate immune 

responses (186). In the first part of my PhD, I evaluated the importance of 

macrophage-specific GGTase-I in innate immune responses. The PI(3)K-Akt-

Gsk3β and mTOR signaling pathways are important contributors for TLR-induced 

immune responses via productions of inflammatory mediators, and they emerged 

as crucial regulators in sensing of immune cells (241-243). However, the underlying 

molecular mechanisms behind inflammatory signaling of PI3K-AKT-GSK3β and 

mTOR kinase cascades are not clearly understood.  Previous studies identified B-

cell adaptor protein for PI3K (BCAP) required for activation of PI3K signaling 

triggered by Myd88-dependent TLRs (TLR4, TLR7 and TLR9) (244, 245). It is 

unclear whether TLR3 follows similar mechanisms to activate PI3K signaling. 

TLR3 directly recruits PI3K to its cytoplasmic tails via specific phosphorylation of 

tyrosine residues present in cytoplasmic domain of TLR3 (246). We found that 

there is an altered balance between the production of inflammatory cytokines (IL-

1β, IL-6 and TNFα) and anti-inflammatory cytokines (IL-10 and IFN-β) in response 

to TLR ligands (LPS and Poly:IC) in GGTase-I knockout macrophages. We further 

noticed impaired signaling of PI3K-AKT-GSK3β, mTOR kinase cascades in 

response to TLR ligands in GGTase-I knockout macrophages. These results are 

consistent with previous published data, in which PI3K is essential for production 

of IFN-β  via reduced activation of GSK3β (247-249). These results suggested that 

GGTase-I is required for PI3K signaling and for the maintenance of the balance 
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between inflammatory and anti-inflammatory cytokine production via Myd88- 

dependent and -independent signaling. 

Previous studies have shown that RAS, an oncogene, can directly interact with RBD 

(Ras-binding domain) of PI3K and this interaction is essential for normal and 

malignant cell growth (250, 251). In addition to that, a few studies reported that 

RAS and PI3K interaction is responsible for both physiological and pathological 

consequences of PI3Ks (251). However, it is unclear yet, how this interaction 

contributes to TLR induced innate immune responses. Three decades ago, the 

finding that farnesylation of RAS is required for RAS oncogenic transformation 

caught much attention in scientific world and led to the development of FTIs as 

discussed earlier. By contrast, clinical trials with FTIs showed no promise against 

treating cancers and it mainly due to change in prenylation status of KRAS when 

cells lack FTase I. (59, 252, 253). In this study, we found that reduced RAS 

activation of PI3K could explain the reduced AKT activation and increased 

inflammasome activation in GGTase-I-deficient macrophages. And one potential 

explanation for that could be that a specific pool of geranylgeranylated KRAS 

normally stimulates PI3K-AKT signaling in macrophages and that this pool in 

inactivated in GGTase-I-deficient macrophages. Previously, our lab showed that 

knockout FTase-I in myeloid cells had no effect on KRAS functional activity (29), 

and more importantly lack of FTase-I had no aberrant effect on immune cell 

function (48). Our lab showed myeloid cell-specific knockout of both FTase-I and 

GGTase-I in mice had inflammatory phenotype similar to GGTase-I knockout in 

macrophages (48). Together with the above results and our data indicated that 

GGTase-I controls the interaction between KRAS and p110δ and this interaction 

responsible for controlling signaling cascades responsible for inflammation.  

Previous research has shown that defects in LPS induced internalization and 

subcellular trafficking of TLR4 in dendritic cells lacking p110δ (244).  We found that 

no such defects in GGTase-I deficient macrophages even though PI3K-AKT 

signaling was impaired in GGTase-I-deficient macrophages and this mainly due to 

difference in cell types that we examined. Moreover, p110δ-knockout macrophages 

produced high amounts of inflammatory cytokines and lower amounts of IFN-β, 

suggesting that those macrophages phenocopy GGTase-I knockout macrophages. 

We noticed similar results of increased inflammatory cytokine productions in 
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statin-treated macrophages suggested that the role of unprenylated proteins in 

increased inflammatory cytokine productions.   

We noticed that increased basal activity of IBα in GGTase-I-deficient 

macrophages indicating increased NFB activity via increased activity of RELA. 

Furthermore, increased GSK3β activity in GGTase-I-deficient macrophages 

supports activation of NFB via reduced activation of AKT signaling. The PI3K-

AKT-GSK3β and mTOR signaling pathways are pivotal for normal cellular 

functions that includes proliferation, survival and metabolism. Aberrant signaling 

of PI3K are noticed in several human diseases, and our data shed at least some light 

on the importance of the mevalonate pathway in these signaling pathways. 

The main criticism of this paper is that we provide no conclusive evidence that 

KRAS is geranylgeranylated under normal circumstances. Moreover, there is no 

solid evidence in the literature of KRAS geranylgeranylation, other than in FTI-

treated cells. And although absence of evidence is not evidence of absence; clearly, 

more studies are required to understand the role of p110δ, KRAS, and AKT-

signaling for the inflammatory phenotypes of GGTase-I-deficient macrophages.  

RAC1 contributes to erosive arthritis in GGTase-I knockout mice 

During the second part of my PhD, we set out to identify the cellular mechanisms 

behind erosive arthritis in mice lacking GGTase-I in macrophages. Our data 

revealed new insights of physiological and biochemical consequences of blocking 

GGTase-I in immune cells. GGTase-I prenylates several dozen CAAX proteins 

(perhaps more than 60) and our data revealed that only one of them, RAC1, is 

responsible for the main phenotypes. Even though arthritis was significantly 

reduced in RAC1 knockout mice (to a level that was actually statistically 

indistinguishable from wild-type controls), it was not eliminated completely, 

indicating that other RAC isoforms, such as RAC2, might be involved in the 

residual inflammation. 

Prenylation is believed to be important for RHO family protein function such as 

membrane trafficking, activation of RHO proteins, and their interactions with 

effectors (1). Many studies supported the argument that prenylation is required for 
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RHO family function. Contrary to that, our study identified several important things 

on how unprenylated proteins behave in cells that goes against previous arguments.   

First, in our earlier studies non-prenylated RAC1 was hyperactive, and its 

membrane targeting was functional in GGTase-I knockout macrophages (and we 

proved with metabolic labeling that RAC1 was not prenylated) (48). In support of 

that, we found in the current study that RAC1 is hyperactive and targeted to 

membranes in HEK cells harbouring nonprenylated RAC1 mutations in the 

presence of normal GGTase-I activity. The only main deviation in cellular 

localization is that we consistently find RAC1 in the nucleus of normal 

macrophages, but in multiple studies, we see that endogenous nonprenylated RAC1 

is excluded from the nucleus. This finding goes against a wide-spread belief that 

non-prenylated RAC1 accumulates in the nucleus, a result that comes from 

expressing GFP-tagged exogenous forms of the protein (254).  

Second, consistent with previous results, we showed that non-prenylated RAC1 

accumulate in its active GTP-bound form in GGTase-I knockout macrophages; and 

in the present study, we add that total levels of RAC1 are consistently reduced – 

which leads to a marked increase in RAC1 specific activity. The reduction of total 

RAC1 is likely due to increased ubiquitin-mediated degradation of RAC1-GTP in 

GGTase-I knockout macrophages, an effect that was controlled by IQGAP1.   

Third, our studies showed that increased levels of GTP-bound and total 

nonprenylated RHOA and CDC42, even though these proteins did not appear to 

contribute to the inflammatory phenotype in GGTase-I knockout mice. These 

results suggested that blocking geranylgeranylation differentially regulates 

degradation of RHO proteins; the precise mechanisms underlying stabilization of 

total levels of RHOA and CDC42 needs to be investigated further, but again we 

found clear evidence that it is regulated by IQGAP1. It is possible that IQGAP1 can 

target some GTP-bound RHO proteins to degradation and protect others.  

Fourth, our studies showed that blocking prenylation leads to sustained activation 

of RAC1. Activation of RAC1 triggered production of inflammatory cytokines 

activated pyrin and caspase-1-dependent inflammasome signaling (Figure 14).  

These increased inflammasome signaling clearly underlies the increased production 
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of mature IL1β. Altogether, our data suggest that blocking RAC1 

geranylgeranylation leads to inflammatory phenotypes in GGTase-I knockout mice.  

Previous studies reported a reduced association between nonprenylated RAC1 and 

RHOGDI1 (48). Another earlier study showed that RAC1-GTP levels are increased 

in cells where RHOGDI1 expression was suppressed by siRNAs (255). This raises 

the possibility that RAC1 in GGTase-I-deficient cells interacts less with RHOGDI1 

and that this explains the increased GTP-loading. We tested this possibility in great 

detail in three different macrophage cell lines by both siRNAs and CRISPR/CAS9-

mediated knockout of RHOGDI1. We found that knockdown of RHOGDI1 

increased RAC1-GTP in one of the three cell lines and that this led to increased 

production of IL-6 and TNFα in response to LPS, but IL1 was not produced. Thus, 

we concluded that RHOGDI1 is likely not involved in the main phenotypes of 

GGTase-I deficiency. Instead, the phenotypes are explained by an increased 

association between RAC1, IQGAP1, and TIAM1.  

Previous studies reported that IQGAP1 preferentially binds and stabilize to RAC1 

in its GTP form (147) (256). We found that IQGAP1 binds stronger to non-

prenylated RAC1 and that TIAM1 is the main GEF involved. We also found that 

IQGAP1 is essential for development of inflammatory phenotypes in macrophage-

specific GGTase-I knockout mice. Indeed, knockout of IQGAP1 reduced 

inflammatory phenotypes; reduced levels of GTP-bound RHO proteins; and 

normalized total levels of RHO proteins in GGTase-I knockout macrophages. 
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Fig. 15. The mevalonate pathway controls the innate immune response through 

geranylgeranylation of RAC. Geranylgeranyl pyrophosphate is an important intermediate 

produced by the mevalonate pathway. GGTase-I uses GGPP for prenylation of RHO family proteins. 

GGTase-I limits RAC1signaling (RAC1-p38-Nf-KB) to control cytokine production and Mefv 

inflammasome formation. 
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Nonprenylated RAC1 had a high affinity for IQGAP1, and this interaction was 

essential for in vitro and in vivo phenotypes. This raises the interesting possibility 

that targeting IQGAP1 might be an effective strategy to treat auto-inflammatory 

disorders like HIDS and MKD in which there is evidence of reduced prenylation. 

Earlier research suggests RAC1 inhibitors might be useful in the treatment of MKD 

patients but knockout of RAC1 is lethal, and it causes several cellular phenotypes 

in mice. Thus, we propose that IQGAP1 might be worthwhile testing. IQGAP1 is 

not essential for mouse development and in our studies, we find that cytokine 

production by IQGAP1-deficient macrophages was normal (Figure S5). 

Statin treatment of macrophages consistently produced similar phenotypes as 

GGTase-I deficiency in our experiments. Some of those statin effects have been 

observed in earlier studies, but no clear mechanism has been established (218, 257). 

Here we clearly link statin effects to IQGAP1 because statin effects were blunted 

or abolished in Iqgap1-deficient cells. Most studies conclude that statins have anti-

inflammatory rather than pro-inflammatory effects. We discuss this issue in the 

Paper II and propose that statins anti-inflammatory effects might be caused by 

blocking prenylation in lymphocytes rather than macrophages. Moreover, we 

propose that side-effects of statin therapy might be caused by reduced prenylation 

and hyperactivation of RHO family proteins. Side effects are observed in more than 

10% of people treated with statins (i.e., many hundred thousand patients) and range 

from muscle pain (myositis, common) to rhabdomyolysis (rare) and death.  

The main criticism of this study is that we didn’t reveal whether RAC1 becomes 

GTP-bound before or after binding to IQGAP1. On one hand, RAC1 could be GTP-

loaded by TIAM1 immediately after synthesis and then become bound to IQGAP1. 

On the other hand, RAC1 could first be recruited to IQGAP1, encounter TIAM1 

and then become GTP-bound. Our results do not clearly distinguish between those 

possibilities. It would also be interesting to create a RAC1 mutant that is incapable 

of binding IQGAP1 (or vice versa) and determines if this would still lead to 

increased RAC1-GTP loading and pro-inflammatory signaling. It would be 

informative to analyze mice expressing constitutively active RAC1 in macrophages 

(or ubiquitously) and determine if increased RAC1-GTP levels are sufficient to 

produce arthritis or if RAC1 also has to be unprenylated.  
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8 FUTURE DIRECTIONS 

Previously, we reported that mice lacking Pggt1b in macrophages develop erosive 

arthritis; and now we have shown that knockout of one copy of Rac1 significantly 

reduces disease symptoms in joints of Pggt1bΔ/Δ mice.  

One of the most prominent hallmarks of Pggt1b-deficient macrophages is the 

accumulation of non-prenylated proteins such as RAC1, RHOA and CDC42 in the 

active GTP-bound form; and the associated TLR-agonist-induced production of 

pro-inflammatory cytokines. To further determine if RAC1 alone mediates 

inflammation, we need to eliminate the possibility that any one of the other 50-100 

GGTase-I substrates (that also accumulates in the non-prenylated form in the cells) 

are not involved. To accomplish this, we will engineer an endogenous CAAX-

mutant form of Rac1 and express it ubiquitously in mice or only in macrophages or 

lymphocytes. For this, we will use CRISPR/CAS9 or conventional gene-targeting 

in ES cells to create a mutation in the Rac1 gene that will lead to the production of 

RAC1C190S and RAC1C190Δ which will not be prenylated. If such “Rac1-SLLL” 

mice develop arthritis, we would have proven this point. If they don’t, we need to 

understand why. 

We also need to address an important unanswered question relating to Paper I: how 

could the absence of GGTase-I reduce the interaction between KRAS and p110δ 

given that neither of these two proteins should be affected by the absence of 

GGTase-I? Although KRAS can be geranylgeranylated by GGTase-I, it is a better 

substrate for FTase. One theory, proposed from Paper I, is that there is a pool of 

KRAS that is normally exclusively prenylated by GGTase-I and that this pool 

becomes non-prenylated in the GGTase-I-deficient macrophages—and that non-

prenylated KRAS interacts poorly with p110δ. Another theory would be that 

hyperactive RAC1 influences the KRAS-p110δ interaction in the absence of 

GGTase-I. In the future, we plan to address these issues in a definitive fashion and 

further increase our understanding of the role of CAAX protein prenylation in 

mammalian cells. 
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