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Detecting security related code by using software architecture
PAULIUS URBONAS
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis looks into automatic detection of security related code in order to elim-
inate this problem. Since manual code detection is tiresome and introduces human
error we need a more efficient way of doing it. We explore code detection by using
software architecture and code metrics to extract information about the code and
then using this information with machine learning algorithms. By extracting code
metrics and combining them with Wirfs-Brocks class roles we show that it is possible
to detect security related code. We conclude that in order to achieve much better
detection accuracy we need to use different kind of methods. This could be software
architecture pattern detection to extract additional information.
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1
Introduction

In this chapter we provide a brief introduction to this thesis, what it is about, areas
relevant to it as well as some reasoning behind of why we chose this topic. We start
by providing some context then we explain why we believe there is a problem and
whats the purpose of this thesis.

1.1 Context
Every major software project starts out as an idea which then software engineers
transform into a more concrete vision and project [4]. All software projects tend
to grow over time and in some cases become extremely complex solutions even if
developers try to re-factor their code [5]. Despite size and complexity of various
software projects they are designed with certain features, characteristics and prop-
erties in mind. During initial design phase all of the planned features are taken into
account when deciding and designing software architecture and components. These
design decisions can later on propagate to actual source code and so they may be
traced back to software architecture. This information about software architecture
or alternatively about the source code can be used to gain better understanding
of the software and familiarize yourself about its architecture and functionality [6].
Additionally such architectural knowledge can help developers learn from each other
and improve their future endeavours [7] [8].

What if such architectural knowledge could be used to help developers to be
more efficient? What if software architecture could provide information necessary
for some more specific needs such as finding code with a specific type of functionality
or traits? A good example of this would be code related to security and sensitive (or
private) data handling. Code can be overlooked in larger components of the system
that are focused on different functionality. For example if we are interested in se-
curity related code in communication software we might miss it when, for example
encryption, would take place only once in a much more complex functionality essen-
tially blending it in with other code. It can be quite difficult to detect needed code
and this could be detrimental in cases such as patching vulnerabilities or updating
the code to certain regulations and standards. Manual code detection is one of the
solutions however on large software projects this would be almost impossible due to
the sheer size of the system and its components [9] [10].

1



1. Introduction

1.2 Problem statement
There’s no such thing as perfect software. All software projects have a bug or two
and sooner or later every piece of code ends up needing an update. In order to
fix bugs and update code we first need to find and locate parts of it that need to
be worked with. Finding such code with specific functionality or traits becomes a
lengthy and perhaps a complicated process when software size exceeds hundreds of
thousands of lines of code. The ability to locate code of interest with certain amount
of accuracy would certainly help to save effort and time, especially in larger software
projects.

Inefficient code location effects a range of parties from academia all the way to
companies and developers who’ve been contracted to solve specific issues. Students
and teachers may want to inspect, analyze and learn from specific software compo-
nents in the system to gain better understanding of how it works. Developers will
want to update software and fix bugs and vulnerabilities related to specific function-
ality. Any other individuals such as freelancers or just someone who is interested in
creating their own fork on GitHub may want to locate specific functionality without
having any documentation or understanding of the system at all. Having some kind
of tool or process which would help to understand the code and locate its features
would be beneficial to many and allow everyone to focus on actual work that they
need to do.

While smaller software projects may not benefit from quick code detection as
much as the large ones, being able to quickly detect needed code is still beneficial.
Even if code detection is not 100% accurate it could still reduce the amount of work
needed to find the code that you are looking for. At the very least there could be
an approach that provides some additional information about the system and it’s
features which would point you in the right direction and help to find what you are
looking for. In addition information gathered during code detection and location
could prove to be useful in other areas as well.

1.3 Purpose of the Thesis
The goal of this thesis is to focus on security and privacy related code detection
and to investigate whether code detection is possible if we use metrics and other
information extracted from software architecture. For this reason we look at the
case of the open source software project K9-Mail [1]. The primary focus is to find
out whether it is possible at all to use software architecture in a way where we
could extract useful information (that aids in security related code detection) from
it. Then the extracted information would be used together with software code
metrics in an attempt to detect and locate code of interest (in this case any security
related code). The information will be extracted from software architecture UML
diagrams, various relationships between classes as well as metrics and by using any
other methods that are deemed useful or may have potential in aiding with such
code detection. Using more than one method to extract information as well as using
different types of information about the source code allows comparison between
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1. Introduction

different techniques, their efficiency and usefulness at code detection and give much
clearer picture of what is actually feasible to achieve and what other potential areas
the extracted information could be used for. From this we formulate our research
questions:

1. Assumption: It is possible to identify security relevant code using informa-
tion from software design and its architecture.
(a) RQ1: Can software architecture provide any means to identify security

relevant code?
(b) RQ2: How useful are software metrics when used for security sensitive

code detection?
(c) RQ3: Can we improve our results by using additional features extracted

from software architecture?
(d) RQ4: How much of an effect do these additional features have?

From here on it is important to assume that we can use software architecture to
extract some code metrics and architecture features by using already existing tools.
Such assumption is needed to test hypothesis and derive potential methodology.
Certain experimental methods will be used with extracted metrics and informa-
tion in order to locate security related code. Another necessary assumption is that
information extracted from software architecture will be good enough to use with
machine learning algorithms. Additionally it is assumed that it will be possible
to use machine learning in order to detect security relevant code. Naturally these
assumptions will be tried and tested during experiments proving which ones are
correct if there are any.

3



2
Theory

In this chapter we introduce the most important concepts used in our experiments.
We also include explanations of certain definitions and assumptions that we make.
We start off by providing some definitions and explanations of our interpretations.
We then also introduce our running example and talk about some of the concepts
used in our later experiments. The second half of the chapter focuses on litera-
ture and related studies which includes some additional proofs of concept and some
research related to the concepts we mention earlier.

2.1 Background
In this section we introduce some of the definitions and explanations of expressions
used later on in the paper. We then introduce our running example followed by
some of the main concepts we use for our research.

2.1.1 Definitions
Here we provide the main definitions and their explanations that we use in this paper.
While some of them are straightforward we want to ensure that their meaning is
clear in how it is used in this papers context.

Software architecture - “Software architecture encompasses the set of signifi-
cant decisions about the organization of a software system including the selection
of the structural elements and their interfaces by which the system is composed;
behavior as specified in collaboration among those elements; composition of these
structural and behavioral elements into larger subsystems; and an architectural style
that guides this organization. Software architecture also involves functionality, us-
ability, resilience, performance, reuse, comprehensibility, economic and technology
constraints, trade-offs and aesthetic concerns” [11]

Design patterns are generic solutions or approaches for certain software func-
tionality or system design. Design patterns can be split into different categories that
work for certain range of generic and even more specific problems. In our case we
are interested in software design patterns related to privacy and security such as
authentication enforcer, message inspector or secure proxy patterns (note that these
are just example patterns). Design patterns allow software architects to create and
design software more efficiently by using a large variety of already tried and tested
solutions to their problems. These design patterns represent certain coding practices

4



2. Theory

and solutions which allow you to directly trace certain patterns from architecture
to the code and the other way around.

Function and/or method - depending on a programming language developers
might be used to saying function or method. Here we use both terms interchange-
ably. When we use these terms we refer to a part of functionality that encapsulates
some piece of code that’s set to perform a specific task (which may consist of smaller
sub-tasks and even call other methods).

Security and privacy related code - a piece of code, be it a single function or
an entire class that contains some sort of logic which could be attributed to either
security or privacy. One example of it would be encryption of a message (secrecy)
or providing log-in functionality (authentication and authorization). More obscure
examples of this would be accessing users profile to either read or alter informa-
tion (privacy related) or negotiating connection/communication setting (security
related). Below we show an example of code that we consider to be security related.

1 St r ing t ranspor tUr i = getTransportUr i ( ) ;
2 i f ( t r anspor tUr i != n u l l ) {
3 Uri u r i = Uri . parse ( t ranspor tUr i ) ;
4 l o ca lKeyStore . d e l e t e C e r t i f i c a t e ( u r i . getHost ( ) , u r i . getPort ( ) ) ;
5 }

Listing 2.1: Security related code example

In the above example the code handles functionality related to network connec-
tivity and certificate use. These certificates can be important in that they allow the
application to make certain connections and communicate with the outside world.
For this reason we consider code like this to be security related.

Another example below is of code that is not security related.

1 pub l i c c l a s s AccountStats implements S e r i a l i z a b l e {
2 pr i va t e s t a t i c f i n a l long ser ia lVers ionUID = −5706839923710842234L ;
3 pub l i c long s i z e = −1;
4 pub l i c i n t unreadMessageCount = 0 ;
5 pub l i c i n t f laggedMessageCount = 0 ;
6 pub l i c boolean a v a i l a b l e = true ;
7 }

Listing 2.2: Unrelated code example

In another example above we have a piece of code that acts as a simple object
that stores information. All of its variables are public with the only exception of an
ID variable. Furthermore this class has no other functionality (methods) and can
only store data. Since none of the variables in this class hold any private, sensitive
or security related data we consider this to be an unrelated piece of code.

Granularity - Granularity refers to the unit of size at which we have chosen to
analyze the code at. In this case we use .class files, or simply JAVA classes as our
unit and level of granularity. The reason for this decision is because classes are an
element of structure of design. Since we are trying to use software architecture as
our source of information, classes tend to be directly represented in the architecture
which makes it fairly easy to relate architectural information to classes and the other
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2. Theory

way around. Additionally classes have many more characteristics and information
that can be extracted from which makes them a solid starting point.

Feature or property - When we refer to a feature or a property (used inter-
changeably) when we address certain characteristic of the software architecture.
Features and properties can be qualitative as well as quantitative. For example we
may refer to the amount of classes as a feature of the architecture. Another such
example would be relationships between classes or even a simple count of lines of
code.

Prediction accuracy - In this paper we mention prediction accuracy or some-
times just accuracy. This refers to our results and machine learning algorithm ability
to classify the data. In other words prediction accuracy shows a percentage of cor-
rectly classified instances. For example, a prediction accuracy of 80% would mean
that machine algorithm in question managed to classify 180 out of 225 instances cor-
rectly. Alternatively the prediction accuracy depicts how many of the 225 classifiable
instances were predicted correctly.

F-measure (F1 score) - “The F measure (F1 score or F score) is a measure of a
test’s accuracy and is defined as the weighted harmonic mean of the precision and
recall of the test.” [12]

Matthews Correlation Coefficient (MCC) - “The Matthews Correlation Coef-
ficient (MCC) has a range of -1 to 1 where -1 indicates a completely wrong binary
classifier while 1 indicates a completely correct binary classifier. Using the MCC
allows one to gauge how well their classification model/function is performing.” [13]

2.1.2 The Running example
K9-mail is an open source android application that provides e-mail services and
allows users to use encryption such as OpenPGP. Since K9-mail is an android appli-
cation it is written in Java programming language and all of its documentation and
source code can be found on its GitHub repository. K9-mail project itself is split
into two major sections namely k9mail and k9mail-library where the former consists
of more front-end and the latter of back-end nature. In this thesis we focused our
attention on the k9mail source code portion of the application because it has more
varied code (in terms of back-end and front-end functionality). Another motivation
for choosing this part was because the ground truth we obtained is also based on
k9mail and not on k9mail-library.

Figure 2.2 shows a simplified overview of K9-Mail applications architecture
[14]. The overview shows how K9-Mail application is constructed. It is also possible
to relate this architecture overview to some of the K9-Mail source code directly. We
use this overview mostly to better familiarize ourselves with K9-Mail and how it
works.

The portion of K9 source code that we will be using for our experiments contain
225 Java .class files. 165 of these files have been classified as containing security
related code and 55 files that don’t contain anything that we consider to be security
or privacy related code. In those files we have 354 total JAVA classes and sub-classes
out of which 264 have been classified as security relevant and the remaining 90 classes

6



2. Theory

Figure 2.1: K9 Mail application user interface [1]

were deemed to be unrelated to security or privacy. This gives us approximately 3/4
security related and 1/4 of security unrelated files as well as classes to work with.

Figure 2.2: K9 Mail application architecture overview

2.1.3 Software Architecture, metrics & patterns
In this section we briefly describe software metrics and what software metrics we will
be using in our experiments. We also include short descriptions and explanations of
what these metrics represent.

7



2. Theory

Software metrics - Software metrics are a standard of measure. These metrics
provide a quantifiable value of a process or a property that the software posses.
Software metrics can refer to both qualitative and quantitative properties such as
robustness (qualitative) or lines of code (quantitative).

We use the following software metrics that were extracted by the SourceMonitor
tool:

• lines - total amount of lines in any given file (including code, comments, white-
spaces and anything else in between).

• statements - any bit of code that accomplishes some kind of action be it as-
signing a variable, calling another method or performing a calculation.

• branches - branches represent alternative paths that a program could take to
execute itself or assigned operation. Branching involves some kind of if-else
statements or similar logic.

• calls - number of total calls found. A call represents an execution of another
routine also known as function calls or method calls.

• comments - comments are parts of code which are not executed by the program
and are meant for documentation or explanation purposes.

• classes - “A class is nothing but a blueprint or a template for creating different
objects which defines its properties and behaviors” [15]. This metric counts A
total number of classes and their sub-classes within analyzed file.

• methods per class - this metric shows total amount of functions (or methods)
in the class.

• average statements per method - this metric compiles an average of statements
in each method within a given class.

• maximum and average complexities - this metric refers to cyclomatic com-
plexity that shows how many different independent execution paths a single
function or method can take. It shows either maximum or average complexity
for each file. Note that branching is very similar to complexity.

• maximum and average depth - depth (code nesting) represents the total amount
of loops within other looping statements such as multiple nested if-else state-
ments. Maximum depth shows the deepest found nest within a class while
average depth compiles an average of all nested statement depths.

2.1.4 Data-flow and Taint Analysis
Data-flow analysis is a technique that allows you to gather information about data
created and its flow in the program [16] [17]. For this purpose a control flow graph
(CFG) is used that helps to visualizes the flow and determines at what part of the
system changes occur. CFG is also able to show where the data propagates and
how it changes throughout its flow. CFG technique is useful for tracking data with
regards to optimization and more efficient code execution. CFG technique can also
be used to gather information about what kind of data is being generated in the
program and how it is being used. Such information can reveal whether there is any
sensitive information being transferred between certain points of program or where
such data ends up at among other things.

8



2. Theory

Similar to data-flow analysis, taint analysis also focuses on data flow within an
application [18] [19] [20] [21]. One major difference is that taint analysis focuses on
the way data is affected by other sources or factors, and how it can be changed in
different parts of the program. While data-flow analysis is more focused on efficiency
and flows, taint analysis looks at specific instances where this data can be changed
not only within the program but also in some instances by outside sources. Taint
analysis is heavily security oriented and provides a type of vulnerability detection
which points out which parts of the program are vulnerable and where data taints
can happen.

As with most analysis techniques both data-flow and taint analyses can be
done dynamically and statically. While dynamic analysis requires the code to be
run, static analysis can inspect either the entire source code or just specific instances
of it such as classes or certain libraries as well as code that may not be complete.

2.1.5 Machine Learning & Algorithms
Here we introduce the machine learning concept and explain what kind of machine
learning algorithms we will be using for our experiments. We also include short and
brief explanations of each algorithm that we intend to use.

Machine learning - “Machine learning studies computer algorithms for learning
to do stuff. We might, for instance, be interested in learning to complete a task, or
to make accurate predictions, or to behave intelligently. The learning that is being
done is always based on some sort of observations or data, such as examples (the
most common case in this course), direct experience, or instruction. So in general,
machine learning is about learning to do better in the future based on what was
experienced in the past.” [22]

In this thesis machine learning is used to analyze and predict which parts of
the system may contain security and privacy sensitive code. For this purpose we are
using machine learning tool WEKA and several of WEKAs provided algorithms:

• ZeroR - (found in the "rules" category) “ ZeroR is the simplest classification
method which relies on the target and ignores all predictors. ZeroR classifier
simply predicts the majority category (class)” [23].

• PART (Predictive ART or ARTMAP) - (found in the "rules" category) This
algorithm “ Autonomously learns to classify arbitrarily many, arbitrarily or-
dered vectors into recognition categories based on predictive success. This
supervised learning system is built up from a pair of Adaptive Resonance
Theory modules (ARTa and ARTb) that are capable of self-organizing stable
recognition categories in response to arbitrary sequences of input patterns. ”
[24]

• OneR - (found in the "rules" category) “OneR, short for "One Rule", is a
simple, yet accurate, classification algorithm that generates one rule for each
predictor in the data, then selects the rule with the smallest total error as its
"one rule". To create a rule for a predictor, we construct a frequency table
for each predictor against the target. It has been shown that OneR produces
rules only slightly less accurate than state-of-the-art classification algorithms
while producing rules that are simple for humans to interpret. ” [25]

9



2. Theory

• DecisionStump - (found in the "trees" category) “A decision stump is a Decision
Tree, which uses only a single attribute for splitting. For discrete attributes,
this typically means that the tree consists only of a single interior node (i.e.,
the root has only leaves as successor nodes). If the attribute is numerical, the
tree may be more complex.” [26]

• J48 - (found in the "trees" category. This algorithm is an implementation of
ID3 and is being developed by the WEKA developers. It is a decision tree
based algorithm that works by measuring information gain in each data set
and then using this to build a decision tree and classify the data.

• RandomForest - another classifier from the "trees" category. This algorithm
works by creating multiple decision trees during run-time and then outputs
the most often occurring (mode) result of these classifications.

• RandomTree - (found in the "trees" category) RandomTree algorithm works
essentially by building a decision tree based on random parameters and then
classifying data based on it. Unlike RandomForest algorithm it constructs
only a single decision tree as opposed to many.

• REPTree - (found in the "trees" category) This classifier builds a decision tree
based on information gain or variance and prunes it by using reduced-error
pruning.

• LogitBoost - (found in the "meta" category) This is a boosting classification
algorithm that performs an additive logistic regression.

• MultiClassClassifier - (found in under the "meta" category) This classifier
works by assuming that each classifiable instance can be assigned only one
single classification (label) at a given time.

• BayesNet - (found in the "bayes" category) “Probabilistic graphical model (a
type of statistical model) that represents a set of random variables and their
conditional dependencies via a directed acyclic graph (DAG)” [27]

• NaiveBayes - (found in the "bayes" category) “The Naive Bayesian classifier is
based on Bayes’ theorem with independence assumptions between predictors”
[28]

• Logistic - (found in the "functions" category) This algorithm performs logistic
regression for its classification.

• kStar - (found in the "lazy" category) “K* is an instance-based classifier, that
is the class of a test instance is based upon the class of those training instances
similar to it, as determined by some similarity function. It differs from other
instance-based learners in that it uses an entropy-based distance function.”
[29]
Most of these algorithms were selected at random from each provided category

(found in WEKA) in order to have some variation and see the differences and benefits
that each algorithm provided.

Machine learning can be split up into two distinct phases: learning and pre-
dicting. The learning phase consists of chosen algorithm analyzing the data in order
detect patterns and to create a rule set by which it could then make its own de-
cisions. This learning phase is extremely important for prediction accuracy in the
future and therefore quality of the data set used can play a big role in this. In our
case we will be using data sets containing software architecture features and code
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metrics. Therefore it is important that we are always consistent with our measure-
ments and values so that we can be certain that all of the patterns (identified by
the algorithms) in the data set actually represent that of the architecture.

The algorithm prediction phase is fairly simple compared to that of learning.
In a prediction phase algorithms analyze the provided data set and classify it based
on the rule sets derived from the learning stage. In cases where provided data does
not fit any of the existing rules, machine learning algorithms most of the time will
try to identify best matching rule although such behaviour depends on the algorithm
in use.

Algorithm learning and prediction can be done in several ways, however, we
will be using 2 different approaches: cross validation and specifying what portion of
data set should be used for training and predicting.

Cross validation - “In n-fold cross-validation, the original sample is randomly
partitioned into n sub-samples. Of the n sub-samples, a single sub-sample is retained
as the validation data for testing the model, and the remaining n - 1 sub-samples
are used as training data. The cross-validation process is then repeated n times (the
folds), with each of the n sub-samples used exactly once as the validation data. The
n results from the folds then can be averaged (or otherwise combined) to produce a
single estimation ” [30].

Unlike cross validation, percentage split allows you to specify exactly what
portion of the data set you want to use for which stage. Once the ratio is decided the
data set is randomly shuffled and new data sets produced for machine algorithms to
use. All of this is done only once and each experiment will be using slightly different
data sets due to random shuffle at the beginning of classification.

2.2 Related Work
In this section we discuss some of the related work. We start by introducing the
main concept of class roles. Then we continue by mentioning existing work related
to different analysis methods which we will be using in our experiments.

2.2.1 Class roles concept
One of the underlying concepts behind this thesis is that software architecture in-
herently provides information about the finished version of software and its code.
This is also one of the basic theories that R. J. Wirfs-Brocks’ proposes [31] in her
paper. Wirfs-Brock argues that each individual class has some elements such as
class, method or variable names that imply certain functionality. Then Wirfs-Brock
argues that using this information and further inspecting the code it is possible to
see certain patterns and features that emerge from each class. Using such informa-
tion Wirfs-Brock assigns a certain role type for each analyzed class. Class roles that
Wirfs-Brock assigns serves a certain general purpose that is somewhat distinct from
the other roles. The roles (also known as stereotypes) that Wirfs-Brock proposes
are: Information holder, Structurer, Service Provider, Controller, Coordinator and
Interfacer. Any class should fit at least one of the proposed stereotypes with most
classes having only a single well defined role. This of course is an ideal view of such
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characterization. Wirfs-Brock also argues that more experienced developers tend to
blur the lines between each class and its functionality and make them as flexible
as possible in that aspect. In such cases classes become more ambiguous and their
roles become much more difficult to clarify. With ambiguous roles without any clar-
ification it becomes possible to assign more than one role to each particular class.
This certainly makes the process of characterization more complex but still provides
some useful insight about the code.

2.2.2 Text-based searches & analysis
Another study currently in a review process (obtained via private communication
[32]) evaluated four different text-based program comprehension techniques in order
to see how effective they were at locating security related code. In this study the
same K9-mail application was used as a running example and its classes were as-
signed labels related to their function from a security point of view. Then the four
techniques (grep, Aromatic Keyword-Based Extraction, Latent Dirichlet Allocation,
Supervised Latent Dirichlet Allocation) were used in order to analyze the code and
predict its assigned label. Depending on the label assigned and the technique used
to predict it the results were varied but mostly positive and indicated that key-word
based prediction can be fairly accurate. Some of the issues with these techniques
were that in order to be more effective it was necessary to have better structural
insight of the software which is not possible with these techniques. Despite this
though their most effective technique turned out to be a simple grep combined with
a classifier which proves the usefulness of machine learning algorithms.

2.2.3 Data-flow and taint analysis
Edward J. Schwartz et. al [18] have published a paper giving a good introduction
into dynamic taint analysis. In this paper Schwartz introduces various concepts
around taint analysis and related vulnerabilities. There Schwartz explains in details
how taint analysis works by giving several examples and providing definitions and
policies that are used to detect data taints. These examples with formal definitions
provide an excellent explanation of how taint analysis works and what it can be
used for.

A study published in 2014 by S.Arzt et. al [20] studied data-flow in Android
applications and potential detection of security flaws that come with it. The study
focused on taint analysis using FlowDroid and DroidBench tools for their analysis
and result evaluation. The study evaluated the effectiveness and efficiency of various
commercially available tools to that of FlowDroid and found that FlowDroid was
able to easily outperform them and offer great accuracy with high taint detection.

Another set of studies [21] [19] looked into bigger picture of Android applica-
tions and analyzed larger sets of Android applications to detect taints. W. Kliebers
[19] study focused on potential taints that happen between different applications
using static analysis methods. Similarly Z. Yang [21] uses the same static analysis
methods to detect taints in a much larger set of applications. In both cases static
analysis techniques managed to identify a large set of leaks (potential data taints)
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and localize their origins.
Using knowledge gained from these previous studies we can identify possible

uses of taint analysis in order to detect certain leaks with an intent to locate the
source code causing them. Since taint analysis has security relevance and identifies
flaws in the code that most often lead to certain types of security issues we can
assume that detected leaks would lead to certain security sensitive code snippets.

2.2.4 Software architecture pattern detection
Software architecture unarguably provides information about software that captures
some of the rationale behind certain decisions and so architectural design patterns
captures this rationale really well. K. Keller [6] argues exactly that in his study and
uses several reverse-engineering techniques in order to find these design patterns.
The study concludes by a successful identification of many of the design patterns
found in three large software systems. However, in extremely large and complex
projects detection of all of the patterns turned out to be simply unfeasible due to
their size and time required to do so. This was also mostly due to a manual nature
of such pattern detection.

Another later study by D. Heuzeroth [33] used static and dynamic analysis
methods in order to detect a selected set of design patterns. This study showed that
a successful and automated pattern detection is possible at least for well known
and defined patterns. Even non-standard pattern detection is possible by modifying
current known pattern detection templates used in the study. This mostly concerns
static analysis with dynamic analysis being somewhat more difficult due to the lack
of knowledge and structure definitions. In either case design pattern prediction is
possible unlike in the previosuly mentioned study.

Finally another study published in 2006 by N.Tsantalis et. al [34] shows some
works with software design patterns and their identification in code. This study
attempted to detect a known set of patterns in the given software by using a simi-
larity scoring algorithm. After carefully working out the steps necessary for pattern
identification the study was successful in creating a tool that managed to identify
all of the defined patterns with very few false negatives and no false positives. The
main difference and advantage of this study was the use of similarity scoring algo-
rithm which allowed automatic detection of certain patterns even if there were slight
deviations in their implementation.

All of these studies show that combining various techniques and approaches it
is possible to detect software design patterns. With some modifications it should
also be possible to detect lesser known patterns that tend to deviate from their
specification in code implementation. This should make it possible to automatically
detect even security related patterns that we are interested in.

2.2.5 Feature location in source code
Feature location is another concept directly related to our topic. Feature location
utilizes various techniques in order to analyze the source code and identify features as
well as patterns leading to them. A good example of this is a study by T. Eisenbarth
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[10] where both dynamic and static analysis techniques are applied in order to locate
certain features. By largely automating the entire process with dynamic and static
analysis techniques the study also introduces a conceptual mathematical technique
in order to investigate binary relations. These binary relations are used to derive
correspondences between computational units (sections of code) and features. Such
combination of analysis techniques proves to be quite efficient at locating features
even if the source code is large and complex.

A good collection and summary of feature location techniques is described by
B. Dit [35]. In there B. Dit presents a systematic literature survey of more than
80 articles from different sources. The study includes reviews of dynamic, static,
textual, historical and other types of analysis techniques used to locate features.
This study also takes time to review the results of each reviewed article providing
a quick overview of the effectiveness that each respective analysis technique has in
the provided context.

While we are not directly interested in feature location ourselves some of the
techniques used can certainly be modified and applied in our own approach. More
importantly some of the feature location techniques can serve as an inspiration
and a starting point in deriving our own analysis methods to apply on software
architecture.
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3
Methodology

In this chapter we discuss our methods and procedures used in our experiments.
We detail all of the approaches and argue why we deem them interesting and what
potential outcomes they can have. Starting with a visualization of our intended
approach we continue by explaining some of the metrics that we will use. We also
explain how we intend to collect the data and what our data-set will consist of. We
end this chapter by mentioning how we will use machine learning and some other
approaches related to data extraction.

3.1 Approach and the Data-set
In this section we include a simple diagram showing our intended approach to this
project. We also include a description and explanation of the data set that we intend
to use as well as explanation about metrics and additional features in the data-set.

3.1.1 Approach visualization
Figure 3.1 shows our overall approach to this project. We start by defining some of
the features and what data we want to extract. We then use these definitions and
apply them on k9mail source code in order to extract corresponding metrics. We
also extract some of the basic source code metrics and add them to the data-set,
together with feature metrics and ground truth. Once this is done we use the data-
set with machine learning algorithms and get our results. We then analyze these
results and refine corresponding features and data set in order to achieve better
prediction accuracy. We do this until we collect enough data and results about
both, features used and their effect on the machine learning algorithms.

Generally the entire work-flow is fairly simple and is easy to replicate. We start
by identifying an interesting feature or metric that we would like to extract. Then
we proceed by either extracting it using already existing methods or come up with
our own. If this doesn’t work out we pick a new feature to work with. Once feature
data is extracted we merge it to our already existing data set. After the merge we
feed the data to machine learning algorithms for training and prediction. After both
training and prediction is completed we analyze the results and record anything of
interest. We then repeat the entire process until we run out of time or ideas.

The purpose of more complicated features that we will introduce later on is to
introduce a wild-card variable (read feature) in our data-set. Well known metrics and
some basic features can be predictable and may not give desired results. Introducing
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Figure 3.1: A simplified visualization of our methodology

a variable that we know very little off might help to stir the data enough to produce
some interesting outcomes. Therefore we take a look at some of the features by
investigating ways of obtaining them and even attempting to extract some data.

3.1.2 The Data-set
Our data-set contains a list of all classifiable (read .class files) instances. This means
that our data-set contains an entire list of .class files with their corresponding name
as an identifier. Each instance has all of the feature values assigned to it in a
numerical form with the only exception being ground truth which holds a boolean
true or false value.

Since Wirfs-Brock class roles initially have textual representation we have as-
signed a unique numerical value to each defined role. This is needed so that machine
learning algorithms could effectively differentiate between the class roles. The values
were mapped as follows:

1. - Controller
2. - Service Provider
3. - Structurer
4. - Information Holder
5. - Interfacer
6. - Coordinator
Such class role conversion allows us to easily identify what role each instance

has been assigned and use this with machine learning algorithms. It is important
to note though that values we assigned are arbitrary and have no other purpose
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and does not affect the results. It is also worth noting that these values can be any
number as long as each role has a unique value that it could be identified by.

3.1.2.1 Basic metrics

Since we are trying to experiment with software architecture features in order to see
if some features could be used for code detection, we need some kind of benchmark.
For this purpose we are going to use some basic software code metrics that can be
extracted by an already existing automated tools such as the SourceMonitor. We
already know that software metrics can be extracted from any kind of source code
and so we don’t have to worry about reliability of such extracted metrics. By using
basic metrics with machine learning algorithms we will be able to get our baseline
results. Having baseline results will allow us to measure the effectiveness of our
machine learning algorithms. While even basic metrics alone could have some effect
on the prediction accuracy and machine learning, we will be able to add additional
features to measure how the accuracy changes based on the features used.

Granularity level for all of the extracted metrics is set at the class level. This
is chosen because classes still contain some architectural information about the code
and can still be analyzed at a more detailed level (such as methods or lines of code).
It is also convenient since a lot of the automated tools for data extraction use class
granularity to extract a lot of additional metrics (ex. avg. complexity, avg. depth
etc.).

It is important to note that we do not leave out any of the extracted basic
metrics. This is done to preserve any potential impact extracted metrics may have
on our machine learning algorithms and their prediction accuracy. By excluding
some of the metrics we could inadvertently remove an important metric that could
have had an unforeseen effect (be it positive or negative). Therefore when we extract
our basic metrics we include as many as possible and reasonable to extract by using
available tools. By doing this we are also able to get some answers to our RQ1
and RQ2 and to better plan our next step by setting some expectations based on
obtained data.

3.1.2.2 Advanced features

Advanced features in this case refers to features that are extracted from software
architecture and require more attention and intervention from our part. Advanced
features include so called experimental variables which we define and attempt to
extract in a procedural way.

We start with additional metrics such as libraries in use. In JAVA much like
in other programming languages it is possible to include external source code called
libraries. We can use this as an included libraries metric and even refine it to a more
specific included security libraries metric which shows how many of the libraries
contain security related functionality. This will allow us to see if there are any
identifiable relations between the amount of additional source code (read libraries).
included and likelihood of that particular instance to be security related.

Another feature that can be included is based on keywords. By searching for
specific terminology and expressions we could quantify our findings and feed them
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to a machine learning algorithm. Assuming that selected keywords have relation to
security it could help machine learning algorithms to better predict whether source
code contains any security specific functionality. This would be very similar to our
previously mentioned included libraries feature.

Additionally we have the class role [31] concept. Class roles are tied to software
architecture and represent an innate functionality of an entire class. This could
mean that by using class role as a feature and quantifying it we could be able to
better predict whether a class with a specific role contains any security related code.
Further more we could improve such class roles and create our own role definitions
in order to describe a class role in terms of its security functionality and context.

There may be more features that can be extracted from software architecture
that can help us with security relevant source code detection. However it is impossi-
ble to predict them all and thus we limit ourselves to the above mentioned features
as our initial experimental set. Additional features could be extracted using but
not limited to techniques such as taint analysis or software architecture pattern
detection.

Extracting additional advanced features helps us answering RQ3. By looking
into broader variety of features we can see whether our results improve or worsen in
comparison with previously mentioned basic metrics. This directly relates to RQ3
and allows us to answer which features have any effect on the results as well as how
big of an effect they have.

3.2 Data Collection
In this section we explain what approach we took when extracting metrics and other
data needed for our experiments. We explain our approaches, the reasoning behind
them and extraction of certain features.

3.2.1 Extracting initial feature set
In order to collect the necessary data first we need several things:

• K9-mail source code
• A list of categorized classes
• Ground truth
K9-mail source code is freely available for download to anyone from GitHub

[36].
Once we have our source code we can start looking into it and understanding

it better. Having source code leads us to being able to classify it using Wirfs-
Brocks class roles [31] and create the initial data set to work with. In order to avoid
some subjectivity role classification has been done by 3 reviewers (2 experts and
one student in Software Engineering field) independently. Then the results were
compared and discussed before a final decision was made on which roles to assign
to produce the final data set.

Since these class roles are one of the few major factors that are deemed to be
useful in code detection we have spent some additional time studying them. In order
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for each reviewer to better understand and familiarize with both roles and the code
we have spent additional time using these class roles by classifying some randomly
selected source code of K9-mail. Once individual classification has been done each
reviewer shared their results and explanations of their motivation for each instance
classification. Most of the discussion time was spent on cases where different roles
would be assigned for the same part of source code to eliminate any differences in
reasoning and interpretations. Initial disagreement rate was 24.5% meaning that
57 out of 233 classes were assigned different roles and the remaining 176 out of 233
would have the same role assigned by all 3 reviewers.

Figure 3.2: Class role relationship diagram created by T. H. Quang [2]

In addition to do better mock classifications a relationship diagram was created
(figure 3.2). The diagram was created in order to better understand how each role
relates to other respective roles and how class roles relates to the used source code.

Only after several rounds of classifications each reviewer received a final set of
200 semi-randomly selected classes. Since the classes were selected randomly and
we had a limited set to work them naturally some of the selected ones were already
used in our mock classifications. In the final set 150 of the classes were unique
to each reviewer while the remaining 50 were assigned to others as well. None
of the reviewers knew which classes were unique (assigned only to them) in order
to eliminate any potential bias. These 50 classes were then used as a control to
compare overall disagreement between assigned roles. In case the disagreement was
too great (more than 20% of assigned roles were different) all of the classes would
be re-assigned and re-classified for more accurate results.
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The ground-truth has been obtained from another (so far unpublished [32])
study which had several security experts look at the code and decide which classes
contained security and privacy relevant code. As far as our knowledge goes a similar
strategy was used as with our class roles. We do not modify the ground-truth that
we obtained in any way and use it as is in order to keep the consistency.

Finally we obtain our source code metrics by using SourceMonitor tool with
all of its default settings. By default SourceMonitor provides us with a total of 12
different metrics to work with. Additionally SourceMonitor has a built-in change
tracker which allows us to see any changes in code throughout its development if we
want to track such information. Even though we have no intentions on modifying
code this allows us to compare different versions of K9-mail since its source code is
readily available on GitHub including many older and even versions.

After classification and basic metrics extraction we have our data set that is
composed of the following features:

• Security relevance
• Class role
• Lines
• % Statements
• % Branches
• Calls
• % comments
• Classes
• Methods per class
• Average statements per method
• Average complexity
• Maximum complexity
• Average depth
• Maximum depth
This is our initial feature set which will be expanded as more data and features

become available from further experiments.

3.2.2 Java libraries as a feature
In addition to source code metrics we also used Java libraries in use as an additional
feature. For Java libraries in use feature we counted all of the libraries imported
by a class and assigned a corresponding value to that instance. One of the reasons
for this is that some of the libraries can be considered inherently security related
and thus an assumption can be made that if such library is imported, the class
will contain some security sensitive code. Finally some of the import statements
include local (within the project) classes which could be accounted for. Similarly to
security related imports, it also could indicate certain tendencies and relationships
that otherwise might be overlooked.

We count and assign all of the libraries by using a custom script (see Appendix
A) that crawls through the code and looks for any occurrences of word import. Since
K9-mail is a JAVA application all of the libraries are loaded using import statement
(see an example below).
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Also, in order to avoid comments or any other irrelevant statements, we manu-
ally look through results and identify any false positive matches and discard them.
The keyword list that has been used for extracting security related libraries is in-
cluded in an Appendix A.

1 import java . s e c u r i t y . c e r t . C e r t i f i c a t e E x c e p t i o n ;
2 import android . content . ContentResolver ;
3 import com . f s c k . k9 . prov ide r . EmailProvider ;

Listing 3.1: Java import statement examples

The example above shows how some of the import statements would look like
in our analyzed source code. From that example we can see that each statement
starts with a keyword import which we then use in our script to detect each such
line of code.

3.2.3 Keywords as a feature
Since there’s indication that keyword and text based analysis can be used to de-
tect security sensitive code with fairly decent accuracy we also try to use a similar
approach. One of the challenges with keyword based approach is that it requires
us to compile a list of keywords that would be relevant for the task at hand. In
this case we have crafted our own custom keyword list partially based on existing
Java libraries that we know they provide security functionality (see Appendix A for
details). Our rationale behind this is that assuming that the library is in use and
not included by accident or left out from older functionality, the class that uses it
should perform some security or privacy related functionality. We also add some
additional security related terms and informal expressions extracted from various
reports and online sources related to security. The additional terms and expressions
were chosen individually by a student with experience in computer security field.
The reason for this is to introduce a little bit more flexibility in our search as well
as to have more potential matches.

We use keyword list by crawling through the code and counting any occurrences
of these keywords in a similar way as we did with import extraction. This means
that our search does not take into account context that keywords were found in as
well as including keywords found in comments or dead code (unreachable or unused
code). Once the crawling is done we assign match count to each .class file that
they were found in. In order to test the impact of different set of keywords we also
split the list into two parts and ran the scans twice. First run looked for keywords
based on the Java libraries while the second run included both, Java libraries as
well as misc security related words. The reason for this was to measure whether our
selection would have any impact on the overall results or not.

3.3 Taint analysis

There are several tools available to perform data-flow analysis. In our case we
have mostly focused on taint-analysis due to its security based nature and with an
assumption that any leaks detected by it would be security related. Taint-analysis

21



3. Methodology

Figure 3.3: fsHornDroid interface for analyzing .apk files [3]

works by following various data-flows in the application and detecting functions and
processes that interact with specific data instances.

In some cases methods with different security permissions might be able to
access the same data source and change it which would be considered data tainting.
To discover such taints we can use either dynamic or static analysis techniques. Since
dynamic techniques require to run the application in question we have decided to
stick to static analysis techniques and tools which allow us to inspect only the parts
of K9-mail that we are interested in rather than the whole thing.

One of the newer static taint-analysis tools, fsHornDroid [3], allows us to use
its online platform for code analysis by simply uploading a source code to analyze
(see figure 3.3). Having such a platform is convenient for us since we no longer need
to install and configure the tool ourselves and we can get the same result without
worrying about different installation configurations.

Additionally, we use another static analysis tool FlowDroid [37] which per-
forms the exact same task, however, in this case we need to download not only its
source code but also all of the dependency libraries. In both cases the tools provide
information about any of the tainted (data) sinks if they identify any.
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3.4 Pattern detection

Software pattern detection is a fairly well researched field with several studies prov-
ing that it is indeed possible to detect various patterns by analyzing software source
code [34] [6] [33]. One caveat with most of the studies though, is that majority of
the studies focus on more generic software patterns. While these studies are still
relevant they are not as useful when it comes to security. The lack of security-
focused studies makes it somewhat difficult to apply the same techniques without
putting too much, if not all of the focus on pattern detection in order to identify
our security-sensitive source code.

In either case software pattern detection works by reading whatever source you
provide and then compares its existing methods and calls with a behavioral template
constructed for each specific pattern. For example the Facade pattern would have
one unique signature and the Authenticator pattern would have a different one. By
detecting a set of pre-defined patterns we could associate each class file with either
the amount of patterns detected or simply with specific patterns. If there is any
relation between patterns and source code we could train our classifier to recognize
this data and improve accuracy of our predictions. Architectural software patterns
used in our case could be anything from more generic ones to the ones specifically
tailored with regards to software security. The reason for this is that we do not know
if there would be any noticeable relation between any of the patterns and source
code without first testing it. Therefore we can not discard any of them even if our
intuition might suggest otherwise.

In our case we attempt to use the knowledge gained from previous studies
as well as some of the suggested tools in order discover if pattern detection would
be possible on our running example and in what ways we could use the extracted
information for security relevant code location.

3.5 Machine learning
This section describes steps taken in order to use WEKA and its provided machine
learning algorithms. We talk about settings used and the rationale behind some of
the methodology decisions.

3.5.1 Working with WEKA
For our classification, we use two different approaches: first, we use a 10-fold cross-
validation [30] classification and then we run the classifier again using percentage
split of 66% and 34% for training set and classification. We do this in order to
compare the results and check which method gives best accuracy and predictions.

Since we have a total of 225 entries in our data, we can afford splitting it into
smaller chunks and still expect it to do well with machine learning classifiers. To
top it all of in best and worst case scenarios we alter cross-validation folds from 10
to anywhere between 1 and 100. We also change percentage split from 66/34 to
50/50 to check how our results change depending on these parameters. To achieve
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the absolute best results we also filter out some of the features and code metrics
that we use. By doing so we can also measure the relative impact each feature used
has on our classification.

We use WEKA by feeding it our data set and selecting machine learning al-
gorithm together with either 10-fold cross-validation or percentage split. Initially
experiments start with all of the extracted code metrics and additional features such
as imported libraries, keyword found and security roles. We then run each classi-
fier in different modes and record all of the results. We also run all classifiers by
using only extracted metrics to get our baseline prediction result. Then we add
each additional feature (parameter) to measure their relative effects to prediction
accuracy based on our metrics only classification results. We also repeat the same
process with best performing classifier in order to measure the relative impact of
each source code metrics in the data-set. We do this by using a combination of best
performing metrics and then removing single metric and measuring its impact on
the result. This is done in order to compare regular metrics with our additional
extracted features and measure their relative impact on the accuracy.

Using machine learning we are able to answer or at the very least to get an
indication for our RQ1. To be more precise, using machine learning we can answer
whether software architecture is able to provide any useful data to identify security
relevant code in our context.

3.5.2 Vote casting

Since we are using multiple classifiers to predict and classify our data, we can create
a voting system that decides the classification by a majority vote. By comparing
each classifiers decision we count votes for security relevance (total of true and false
outcomes) and reassign the majority vote to that class. By using vote casting we
can potentially weed out less accurate classifiers, assuming that most of the falsely
classified instances are specific to the algorithm in use and are not repeated by other
machine learning algorithms. Therefore when vote casting we also select only five
best performing classifiers and use their predictions only.

We wrote a custom script (see Appendix A) that reads each classifiers decision
for specific instances. It works by giving each instance initial value of 0 which is
either incremented by +1 for positive matches (classifier thinks the class is security
relevant) and decremented by -1 for negative matches (unrelated classification).
Since we are using an uneven number of votes (in our case 5 votes) we always
end up with either positive or negative value which in the end represents a majority
decision. We then compare our voted results with the ground truth and check if
overall prediction accuracy has improved or not.
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Results

In this chapter we discuss the results that we obtained from our experiments. We
also include outcomes and reasoning of why certain approaches that we took didn’t
work out as expected. We start by describing what kind of data we used and define
those sets. We then continue by explaining results obtained from experiments using
specific data-sets that we described earlier. We then continue by going more in to
detail about most successful results where we include truth tables and other related
data. The chapter concludes by briefly mentioning all of the other attempts that
didn’t work out as well as was expected.

4.1 Machine learning results
In this section we discuss our results obtained while working with WEKA machine
learning software. Here we mention most of the outcomes from our experiments
including some variations of results omitting only those that repeat or have no
significant value.

4.1.1 Feature sets and data set used
From our experiments we have derived several feature sets in order to compare
impact of features in use. Below we define the feature sets that ended up being
most informative and useful (table 4.1):

From here on we will refer to Feature set 1 as FSF (Feature Set Full), Feature
set 2 as FSC (Feature Set Class roles), Feature set 3 as FSM (Feature Set Metrics),
Feature set 4 as FSB (Feature Set Best).

In our feature-sets security relevance represents our ground truth and holds a
boolean true or false value representing its state. Number of libraries and Security
libraries hold a total number of libraries used as per definitions in Chapter 2. The
rest of the features in the feature-sets represent code metrics with an exception
of class role. Class role entry represents an integer value of a class role based on
Wirfs-Brocks definitions as per mapping explained earlier in Chapter 3.

The data-set itself consists of a list of 225 JAVA .class files with all of the
extracted features assigned to them. Then based on the feature set selected, corre-
sponding feature data is selected and fed to the classifiers using WEKA. It is also
worthwhile to note that we have a 73.3% vs 26.7% distribution of .class files con-
taining security relevant code and those that do not. This means that by naively
classifying all of the instances as security relevant we would get a prediction ac-
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FSF FSC FSM FSB
Feature set 1 Feature set 2 Feature set 3 Feature set 4
Security relevance Security relevance Security relevance Security relevance
Number of libraries Number of libraries Number of libraries Number of libraries
Security libraries Security libraries
Statements Statements Statements Statements
Calls Calls Calls Calls
Classes Classes Classes Classes
Lines Lines Lines
% Branches % Branches % Branches % Branches
% Comments % Comments % Comments
Methods per class Methods per class Methods per class Methods per class
Avg. statements Avg. statements Avg. statements
Max complexity Max complexity
Max depth Max depth
Average complexity Average complexity Average complexity Average complexity
Average depth Average depth Average depth

Class Role Class Role

Table 4.1: Feature sets used for different experiments

curacy of 73.3%. This means that we can use 73.3% prediction accuracy as our
control value. If we get a prediction accuracy above this value it would mean that
the machine learning algorithm in use is able to correctly guess at least some of the
instances. Anything below this value would indicate worse results and some under-
lying issue either with the data-set, machine learning algorithm or our methodology.
A full data-set used with all of the results and extracted information can be found
in Appendix A.

You may notice that not all of the features that were discussed earlier in the
paper are listed in our feature sets. This is because while initially we did run exper-
iments with other feature-sets containing more features, the results obtained from
these experiments were lacking or the results were similar to those of feature-sets
described earlier. By this we mean that none of the performed experiments provided
any information that could be used and therefore these results were omitted. More
about why other experiments didn’t provide much useful information we discuss
about later in the paper.

4.1.2 Feature set 1 results
We start off our experiments by extracting code metrics and compiling a data sheet
representing each .class file. Using our FSF we were able to get baseline results
which show what we can expect from other attempts, since this set includes most of
the features. By performing two different sets of experiments, one with 10-fold cross-
validation (experiment 1) and another with splitting the data set 66% for training
and 34% for classification (experiment 2) we get our first set of results.

We display these results (table 4.2) sorted by classifiers accuracy (percentage
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of correctly classified instances). We also include Matthews correlation coefficient
(MCC) [13] which ranges from -1 to 1 (higher positive value means better predic-
tion) as well as F-measure that ranges from 0 to 1 (higher positive value represents
more accurate predictions). Both MCC and F-measure values represent averages
calculated from algorithms prediction performance in terms of true positive and
true negative predictions.

Classifier Prediction Accuracy Avg. MCC Avg. F-Measure
LogitBoost 75.1% 0.279 0.726
PART 75.1% 0.279 0.726
RandomForest 74.2% 0.229 0.707
ZeroR 73.3% 0.000 0.621
BayesNet 72.4% 0.025 0.631
DecisionStump 72.4% 0.025 0.631
REPTree 72.0% 0.139 0.676
Logistic 71.1% 0.003 0.630
MultiClassClassifier 71.1% 0.003 0.630
kStar 70.2% 0.210 0.696
RandomTree 69.8% 0.211 0.694
J48 69.8% 0.131 0.673
OneR 69.3% 0.029 0.640
NaiveBayes 49.3% 0.087 0.517

Table 4.2: WEKA results using feature set 1 (FSF). Sorted by best prediction
accuracy in 10-fold Cross-validation (experiment 1)

From table 4.2 we can see that ZeroR classifier achieved 73.3% accuracy by
labelling all of the instances as true for security relevance. Since ZeroR is a naive
classifier it will always choose the most frequently occurring value and assign it to
all of the instances. This means that since our data-set is dominated by security
relevant instances, ZeroR will classify all of them as true. By doing this the accuracy
achieved by ZeroR will directly correspond the percentage distribution of, in our
case, security relevant instances. Due to this property and the fact that we do not
change our data/set we use ZeroR classifier results as our baseline score.

The best achieved accuracy using FSF was 75.1%. In this case two of the
classifiers managed to achieve this accuracy which is only 1.8% better than ZeroR
classifier. Both of them however have a significantly better MCC (0.279) and F-
Measures (0.726) meaning their predictions are somewhat more accurate (+0.279
MCC value and +0.105 F-measure). In either case we did not expect this feature
set (FSF) to be good enough for accurate prediction since it used only basic source
code metrics.

Table 4.3 displays the results of experiment 2 (training set split) with same the
FSF. Here we see our baseline accuracy from ZeroR to be much lower at 60.5% which
is caused by having a slightly different classification set and more even distribution
of security relevant and irrelevant classes (due to the split). Best accuracy achieved
was 68.4% as well being 6.7% lower than in our previous tests however the difference
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Classifier Prediction Accuracy Avg. MCC Avg. F-Measure
RandomTree 68.4% 0.310 0.663
RandomForest 64.5% 0.251 0.540
J48 64.5% 0.204 0.582
OneR 63.2% 0.177 0.600
kStar 63.2% 0.172 0.592
LogitBoost 63.2% 0.162 0.560
NaiveBayes 60.5% 0.063 0.515
PART 60.5% 0.000 0.456
ZeroR 60.5% 0.000 0.456
Bayesnet 60.5% 0.000 0.456
DecisionStump 60.5% 0.000 0.456
REPTree 60.5% 0.000 0.456
Logistic 57.9% -0.070 0.464
MultiClassClassifier 57.9% -0.070 0.464

Table 4.3: WEKA results using feature set 1 (FSF). Sorted by best prediction
accuracy in 66/34 training set split (experiment 2)

between best and second best classifiers was much greater (3.9%) than in previous
10-fold tests (same result with 3rd best being only 0.9% less accurate). It is also
worth to note that RandomTree classifier has similar performance even in our earlier
test and the top performers of the previous test end up at the mid-field performance.

Another noteworthy difference between two sets of tests is that the RandomTree
classifier had slightly better MCC value than the LogitBoost and PART classifiers
however its F-measure was a bit lower. However by looking at overall trends it is
fairly clear that 10-fold cross validation worked much better overall. It had higher
F-measures and only somewhat better MCC values although they were less evenly
distributed. In our second set of experiments we can see that performance gradually
decreases together with MCC and F-measure values which is not the case in the first
set of tests.

These results show us that it is possible to use some metrics for classification but
they are not much better than pure guessing. Adding more features and modifying
metrics might change the results.

4.1.3 Feature set 2 results
For our second experiment the same metrics data set has been used with a single
addition of Wirfs-Brocks roles as an additional feature. This feature set (FSC)
has been used with exactly the same classifiers and parameters as our previous
experiment using FSF.

Once again we have our ZeroR classifier that acts as a baseline measure at 73.3%
accuracy in 10-fold cross-validation experiments. However with an addition of class
roles we reach best accuracy of 76.4%. This is an improvement of 3.1% compared to
baseline accuracy as well as giving us a slight improvement of 1.3% over FSF results.

28



4. Results

Classifier Prediction Accuracy Avg. MCC Avg. F-Measure
LogitBoost 76.4% 0.318 0.739
RandomForest 75.5% 0.267 0.717
ZeroR 73.3% 0.000 0.621
REPTree 72.8% 0.152 0.678
BayesNet 72.4% 0.025 0.631
DecisionStump 72.4% 0.025 0.631
J48 71.5% 0.193 0.695
Logistic 71.1% -0.021 0.624
MultiClassClassifier 71.1% -0.021 0.624
kStar 70.2% 0.193 0.692
PART 69.3% 0.132 0.673
OneR 69.3% 0.029 0.640
RandomTree 68.4% 0.206 0.687
NaiveBayes 49.7% 0.073 0.523

Table 4.4: WEKA results using Feature set 2 (FSC). Sorted by best prediction
accuracy in 10-fold Cross-validation (experiment 1)

Classifier Prediction Accuracy Avg. MCC Avg. F-Measure
RandomTree 68.4% 0.310 0.663
J48 64.4% 0.204 0.582
RandomForest 64.4% 0.251 0.540
OneR 63.1% 0.177 0.600
kStar 63.1% 0.172 0.592
LogitBoost 63.1% 0.162 0.560
NaiveBayes 60.5% 0.063 0.515
PART 60.5% 0.000 0.456
ZeroR 60.5% 0.000 0.456
BayesNet 60.5% 0.000 0.456
DecisionStump 60.5% 0.000 0.456
REPTree 60.5% 0.000 0.456
Logistic 57.8% -0.070 0.464
MultiClassClassifier 57.8% -0.070 0.464

Table 4.5: WEKA results using Feature set 2 (FSC). Sorted by best prediction
accuracy in 66/34 training set split (experiment 2)

We can see similar overall improvement for all of the classifiers. This improvement is
supported by better MCC and F-measures as well. This indicates that class roles do
have positive impact and help our classifiers to perform better. In both feature sets
the LogitBoost classifier remains as best and most accurate algorithm outperforming
the rest.

If we look at our experiment 2 results (table 4.5) there is no clear improvement
over FSF. In this case there’s no improvement in accuracy, MCC or F-measure
values. It is odd considering the fact that class roles had a clear positive impact in
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10-fold cross-validation classification. This leaves us with somewhat mixed results
where we have some indication of class role positive impact but only in certain
circumstances. It is hard to tell whether this improvement in accuracy can be
attributed to usefulness of class roles or due to a more random nature of the classifiers
that we used.

From here on now we will only include the results obtained from our 10-fold
cross-validation experiments. The reason for this is that 10-fold cross-validation
experiments are essentially the same as using 66/34 training split experiments except
the split is 90/10 and we repeat it 10 more times. We have already obtained some
basic data and can see that the results improve and are more accurate using 10-fold
cross-validation. Therefore there is no need to continue running two different types
of experiments.

4.1.4 Feature set 3 results
Since we got our baseline as well as class role results showing some improvement in
accuracy we wanted to test if it was possible to further tweak feature sets in order to
achieve even better accuracy by either manipulating classifier settings or changing
some features that we use. We do this by at first changing the amount of folds and
adjusting training set percentage split. By using FSM in experiment 1 environment
(10-fold cross validation) we got improved results as can be seen in table 4.6.

Classifier Prediction Accuracy Avg. MCC Avg. F-Measure
RandomForest 77.3% 0.338 0.744
LogitBoost 74.2% 0.244 0.713
ZeroR 73.3% 0.000 0.621
BayesNet 72.4% 0.025 0.631
DecisionStump 72.4% 0.025 0.631
REPTree 72.4% 0.150 0.679
PART 71.1% 0.166 0.686
kStar 70.2% 0.218 0.698
Logistic 70.2% -0.108 0.605
MultiClassClassifier 70.2% -0.108 0.605
J48 69.7% 0.077 0.656
OneR 69.3% 0.029 0.640
RandomTree 64.0% 0.103 0.644
NaiveBayes 51.5% 0.009 0.543

Table 4.6: Feature set 3 (FSM) results using 10-fold cross-validation (experiment
1)

From these results (table 4.6) we can see that we have managed to achieve 77.3%
accuracy, which is better than any previously achieved results with or without class
roles. This is largely due to our modification of metrics used in our data. For this set
we have limited our metrics to: number of imports, statements, calls, classes, lines,
branches, methods per class, average statements per method and average complexity.
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Using only those metrics we achieved 4% better precision than our baseline accuracy
as well as beating best metric only result by 2.2%. This accuracy is also 0.9% better
than our best prediction accuracy using class roles.

4.1.5 Feature set 4 results

Classifier Prediction Accuracy Avg. MCC Avg. F-Measure
LogitBoost 79.5% 0.414 0.770
RandomForest 74.6% 0.248 0.713
J48 74.2% 0.265 0.721
PART 74.2% 0.229 0.707
ZeroR 73.3% 0.000 0.621
BayesNet 73.3% 0.000 0.621
DecisionStump 73.3% 0.000 0.621
REPTree 72.8% 0.109 0.659
OneR 72.0% 0.117 0.667
RandomTree 71.1% 0.250 0.709
Logistic 70.6% -0.033 0.621
MultiClassClassifier 70.6% -0.033 0.621
kStar 68.0% 0.164 0.676
NaiveBayes 55.1% 0.137 0.577

Table 4.7: WEKA results using FSB in 20-fold cross-validation classification

In order to check whether previous results were simply a coincidence and class
roles don’t actually contribute that much for our prediction accuracy we ran another
set of experiments where we include class roles in our classification but remove
other metrics and change some classifier settings to improve prediction accuracy.
By changing our classifier to 20-fold cross validation and filtering metrics provided
to class role, number of imports, statements, calls, number of classes, branches,
comments, methods per class, average statements per method, average depth and
average complexity, we get the results shown in table 4.7.

As you can see (table 4.7) we have managed to reach 79.5% prediction accu-
racy using FSB. Unsurprisingly, LogitBoost classifier performed best even without a
refined list of metrics and settings. In this best case scenario we achieve 6.2% better
than baseline accuracy which is also 3.1% better than previously achieved results
using FSC. This actually doubles the improvement in our prediction accuracy and
clearly indicates benefit of using class roles as a feature. Furthermore if we look at
MCC and F-measure values we can also note a clear improvement over any of the
previously achieved results.

Since LogitBoost achieved best prediction accuracy we can also take a look
at its confusion matrix (table 4.8). The confusion matrix shows us how well our
algorithm performed in terms of true and false positives as well as true and false
negatives.

From this matrix we can see that LogitBoost managed to classify almost all
of the files containing security code correctly (approx. 95% accuracy) however it
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Predicted True Predicted False Actual:
157 8 True
38 22 False

Table 4.8: LogitBoost confusion matrix using feature set 4 (FSB)

was significantly worse at predicting files without any security related code (approx.
63% accuracy).

Additionally we have an F-measure of 0.872 and MCC of 0.414 for all of the
TRUE classifications. FALSE classifications had an F-measure of 0.489 and MCC
of 0.414 (same as true). While MCC value remains the same for both types of
classifications we can see that F-measure shows that LogitBoost is much better at
predicting true instances. Even if we get a few more instances in false wrong it means
that if we could achieve slightly better true classification we could use this algorithm.
To be more precise this algorithm then could be used to discard all predicted false
instances. Even though by doing so we would have some false-positives we could be
sure that we didn’t really miss any true-positives.

4.1.6 Individual feature impact results
We would like to find out how much of an impact each code metric that we used has
on the overall accuracy. For this purpose we run another set of classifications. This
time we do this by removing a single parameter from our data and measuring its
relative impact on the accuracy. We run this experiment by using our previously best
achieved accuracy settings and algorithm (LogitBoost in 20-fold cross-validation) and
get the following results:

Parameter Accuracy impact
Class role 4.89%
Methods per class 3.56%
Statements 3.12%
Branches 3.12%
Number of imports 3.00%
Average statements per method 2.67%
Classes 2.29%
Comments 1.78%
Average complexity 1.34%
Average depth 0.45%
Calls 0.45%

Table 4.9: Individual metrics relative impact to the prediction accuracy in best
case scenario

From this (table 4.9) we can see that the class roles feature had an overall
impact of 4.89%. This also is the greatest relative impact for all features. This of
course doesn’t mean that this is its absolute or actual (real) impact on the accuracy
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but rather relative one to. Even thought this shows us the change in accuracy using
FSB in experiment 1 environment we can still gauge its potential effect even under
different circumstances.

Our class roles are followed by methods per class, statements, branches and
number of imports which all provide 3% or more relative impact to the prediction
accuracy. This is quite interesting since we can see that even seemingly basic code
metrics can have fairly measurable impact. Oddly enough though if we would remove
our least impact-full features (average depth and calls) from this feature set we
would find that our prediction accuracy plummets. This only solidifies idea that
these accuracy impact are only relative to the environment they are being observed
at.

Even though class roles seem to have the most impact, we can’t attribute all
of the importance to class role feature alone. As mentioned earlier this is rather
due to the combination of all of the features used. However even keeping this in
mind it is clear that class role feature is one of the more important factors that
affect prediction accuracy. In addition we were unable to achieve any better results
by any other feature combinations that did not include class role which certainly
highlights its importance.

Figure 4.1: InfoGain results from WEKA

Additionally we ran InfoGain attribute evaluator from WEKA (table 4.1).
This evaluator computes how much of an impact each feature has in decreasing the
overall entropy (how much it helps to increase prediction accuracy). Greater value
represents greater impact of that feature.

Interestingly enough by using this InfoGain attribute we see that the biggest
impact on the results is done by methods per class feature rather than class role
(Role ID). Even in this case we can still see class roles being second best feature
however the calculated impact is still fairly small (0.0268). This may depend on the
implementation of this InfoGain evaluator as well as due to the fact that we achieved
our best accuracy by tweaking feature set as well as experiment environment. This
proves that our results are not universal and more case specific.

From these results we can see that the least we should expect from our classifiers
is a prediction accuracy of 73.3% which is fairly high but is caused by the distribution
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(true / false) of our data set. The best achieved prediction accuracy is 79.5% which
gives us approximately 6.2% overall improvement which is quite fair considering
the metrics used. However having only 80% accuracy may not be enough in real
world environment where accurate predictions are needed. Missing 1/5 of potential
results can be a sizable chunk of code that requires manual correction. The only
case in which 80% accuracy would be beneficial is if our classifiers could achieve
perfect prediction with either no false positives or false-negatives. This way at least
we could be certain that at least part of the classification would require no more
manual intervention.

4.1.7 True Positives and True Negatives
From all of these results it is worth to mention some of the algorithms that excelled
at classifying instances as either security related or unrelated instances. Tables
4.10 and 4.11 shows these results. TP (True Positive) Rate shows how well the
algorithm did at correctly identifying instances. FP (False Positive) Rate shows
how many of the corresponding instances were miss-classified. In terms of TP Rate
the higher the value, the better the result. For FP rate a higher value means more
miss-classifications and so lower value is better. The rates were obtained from FSB
feature set of experiments.

Classifier TP Rate FP Rate
ZeroR 1.000 1.000
BayesNet 1.000 1.000
DecisionStump 1.000 1.000
REPTree 0.958 0.900
Logistic 0.952 0.967
MultiClassClassifier 0.952 0.967
LogitBoost 0.952 0.633
OneR 0.927 0.850
RandomForest 0.921 0.733
PART 0.921 0.750
J48 0.891 0.667
RandomTree 0.812 0.567
kStar 0.794 0.633
NaiveBayes 0.521 0.367

Table 4.10: Algorithms TP and FP rates based on security relevant instance clas-
sification. Sorted by best TP Rate.

From table 4.10 we can see that most of the classifiers did really well in terms
of True Positives. ZeroR, BayesNet and DecisionStump algorithms even managed to
classify all of the security related instances correctly. However, we can also see that
they have FP rate of 1 which also means that they miss-classified all of the unrelated
instances as well. Looking at the other algorithms such as the REPTree and the
Logistic algorithms we can see that they too suffer from the same problem albeit a
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bit less than the top 3. Ideally in this situation we would want an extremely high
TP rate (as close to 1 as possible) and very low FP rate (as close to 0 as possible)
to have best prediction results.

If we look at the machine algorithm with the greatest difference between the
two rates we find the LogitBoost algorithm. It has the highest difference of 0.319
between TP rate and FP rate. This means that the LogitBoost algorithm is actually
a bit better at predicting instances than the remaining ones. This also means that
there is a difference in how it identifies and classifies its instances.

Classifier TP Rate FP Rate
NaiveBayes 0.633 0.479
RandomTree 0.433 0.188
kStar 0.367 0.206
LogitBoost 0.367 0.048
J48 0.333 0.109
PART 0.250 0.079
RandomForest 0.267 0.079
OneR 0.150 0.073
REPTree 0.100 0.042
Logistic 0.033 0.048
MultiClassClassifier 0.033 0.048
BayesNet 0.000 0.000
DecisionStump 0.000 0.000
ZeroR 0.000 0.000

Table 4.11: Algorithms TP and FP rates based on unrelated to security instance
classification. Sorted by best TP Rate.

Table 4.11 shows TP and FP rates in terms of True Negatives. Here we can
see that our prediction rates are much lower than those of true positives in table
4.10. This means that all of the machine learning algorithms were much worse at
identifying instances unrelated to security. The best resulting rate of 0.633 (corre-
sponding to 63.3% prediction accuracy) is held by NaiveBayes algorithm. However
once again we see that its high TP rate is almost matched by its FP rate meaning
that the results aren’t terribly accurate or very different from one another.

If we look at an algorithm with the greatest difference between TP and FP rates
we find that the LogitBoost once again beats all of the remaining machine learning
algorithms. Unsurprisingly the difference remains 0.319 between TP and FP rates
which is the same as with true positives. It is also worth to note that LogitBoost
algorithm was our top performer achieving the best prediction accuracy of 79.56%.
This proves that LogitBoost algorithm is one of the best choices for classification.

4.2 Other attempts
In this section we mention several other approaches taken to extract some informa-
tion which either didn’t result in any successful application or in some cases lead
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to more complex solutions that would require too much focus and time to complete
and thus were considered out of scope for this project. We start by going through
our attempt at defining security class roles. Then we move on to security keywords
and libraries, taint analysis, pattern detection and some other smaller experiments.

4.2.1 Security roles as a feature
Using Wirfs-Brock class roles may be useful, however none of the roles used are
defined with any security concepts in mind and so they may be too generic for
our purpose. We attempt to create a similar class role definitions in order to suit
more security and privacy related code and JAVA classes. Much like original roles,
security roles would be somewhat generic but have clear type and purpose and then
ideally any single class would have its own independent role based on our definitions.
Since Wirfs-Brocks roles are not security or privacy related, our custom roles should
ideally have greater impact on classifier prediction accuracy. By using Wirfs-Brocks
roles as a template we arrived at the following roles:

• Security Information Holder - In this case, much like withWirfs-Brocks classes,
an information holder is a simple data structure or an object. They tend to
be static and persist and have mostly getter and setter methods with very
limited additional functionality. They might use other information holders or
process data, however the key difference in this case is that the data is clearly
security or privacy related.

• Security Controller - Controllers are complex classes that handle various secu-
rity related configurations and uses security providers and information holders.
Controllers perform functions directly related to security and/or privacy.

• Security Provider - Security providers are similar to Controllers in that they
also perform security or privacy related functionality. Key difference being that
security providers are much smaller and more specific with their functionality.
They contain methods that process data, perform certain functions and return
the result to their caller. Security providers are essentially meant to be used
by other classes rather than work on their own.

• Security User - A user class in this case is similar to a security provider,
however, its main purpose is not security functionality. A user class simply
tends to use some security or privacy related functionality for a fraction of time
with it being a sort of secondary use. An example of this would be displaying
users profile name on a pop-up message, in which case the class might need to
access users profile data. User classes tend to have void methods or functions
that return data unrelated to security or privacy.

• Abstract Class - Abstract classes can be explained as a sort of placeholder
for fully implemented classes. Abstract classes always contain one or more
methods and variables that are not fully implemented or instantiated. This
means that some, if not most of the abstract classes will have no defined
functionality making them extremely difficult to classify without seeing full
implementation. Therefore we assign abstract classes to a category of their
own.

• Interface - We refrained from assigning roles to interfaces as well by giving
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them their own role.
• Enum - enum elements are used to declare some kind of enumeration and

contains a list of constants used for it. Since this is a fairly specific and only
use of enum elements we assign them to their own unique role.

• Unrelated - An unrelated role represents a class that has no security related
functionality.
One of the reasons to why we chose to have separate roles for abstract classes,

interfaces and enum classes was to check whether splitting them would have any ef-
fect with machine learning algorithms. We then use these class roles and assign them
to the same set of classes as with regular Wirfs-Brocks classification. This time how-
ever the class roles were assigned by a single reviewer without any cross-referencing
or dialog from other parties. This makes our classification more subjective and
prone to bias, however we wanted to maintain at least some consistency (in terms
of interpretations of roles) even if it could lead to biased results. The rest of the
classification followed the same procedure as with Wirfs-Brocks roles and was based
on the security annotations from the ground truth source code. This entire process
took about a month from the initial code review and the final draft of roles.

4.2.2 Security keywords and libraries as a feature
The few additional and promising features such as checking security related imports
turned out to be more confusing than helpful. Even though security related libraries
would seem to be inherently indicating which instances (.class files) contain security
related code, this was not the case at all. Regardless of machine learning algorithms
used, none of them identified security related libraries feature to be of much im-
portance. Effectively this meant that our security libraries had very little to no
measurable impact on the prediction accuracy.This allowed us to remove it from the
feature set to minimize information noise (too much data is not always good) and
achieve slightly better prediction accuracy that way.

The exact same situation repeated with our attempt to use security keywords
as a feature. Any time we would use security keywords as a feature, our prediction
accuracy would get worse than without using it. It also gave absolutely no indica-
tions of any positive impact. This was the case even after modifying our keyword
list several times to refine it and make it more case specific (tailored to fit k9-mail
code base) or more generic (adding even unrelated security terms).

Using FSF together with security keywords feature, the best achieved accuracy
was only 76%. This is all while FSC alone gave an accuracy of 76.4%. Even though
the difference is minimal (0.4%) this was the absolute best achieved accuracy using
this feature. We also tried to compile a feature set where security keywords would
have some measurable impact but this was the best result we achieved. The best
achieved prediction accuracy using a set with security keywords as a feature is 3.1%
worse than our absolute best achieved prediction accuracy of 79.5% using FSB.

It still remains unclear what was the precise reason why those features didn’t
work. While security related libraries are more of a mystery, security keywords
feature may have lacked context or used incomplete set of keywords despite of our
attempts to make it as comprehensive as possible. This may be very likely since
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there have been successful attempts at using keyword based search for security code
identification in other studies.

4.2.3 Taint analysis
In addition to extracting code metrics and other information we have tried using
taint analysis in order to detect data flows related to security. Since taint analysis
is security related we assumed that finding data sinks and assigning them to classes
would be a good additional feature for our classifiers. However the tools that we
used either couldn’t detect any taint sources. While we have our doubts whether
this was actually the case we were left with no data to work with and thus couldn’t
make this a useful feature.

Since taint analysis is not directly related to software architecture and our goal
was to identify features that could be extracted from it. For this reason we have
decided to abandon this topic and feature and move on to other features instead.

4.2.4 Software pattern detection
Software pattern detection seemed another promising feature to use. However in this
case a major issue proved to be a lack of pattern necessary definitions. There are
hundreds of software patterns available with various degrees of relevance to privacy
and security. While this is great in most cases in order to use them we needed to
create pattern definitions and behavioral models. Creating just a few of them would
take considerable time and dedication which in our case we didn’t have enough of. In
addition to time constraints we were uncertain of which patterns would work best for
K9-mail application and what patterns would be easiest to define. For this reason we
have abandoned this topic in order to finish already existing experiments. However
this does leave software pattern detection as a great potential feature for follow-up
studies since no apparent downsides were identified during our investigation.

4.2.5 Misc attempts
Another attempt was made by trying to reverse engineer K9-mail architecture using
some of the tools that analyze the source code and create a representation of it in
an UML format (Enterprise Architect [38], StarUML [39], ArgoUML [40]) . This
information was then used with a language processing tools (such as GATE [41])
in order to find some relationships between classes that could be used as a feature
in our data set. However the reverse engineered architecture proved to be lacking
both in accuracy as well as in details. Nonetheless we have attempted to use this
data by trying to identify any reoccurring patterns in the architecture. We did
this by analyzing frequency of reoccurring architecture elements as well as keywords
(specific to the tools used) however without any luck. It may be possible to use this
method to extract features in the future however for this we need a much better
reverse engineering tool that provides more details about software architecture and
relationships between architecture elements.
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In this chapter we discuss our results and provide our conclusion as well as other
thoughts around it. We start this off by offering a discussion of results and our
opinion on the overall success of the study as well answering research questions.
We then talk about potential threats to validity and what could have gone wrong.
We then finish this chapter by mentioning potential future work and give our final
conclusion.

5.1 Discussion
In this section of the thesis we mainly provide our thoughts about the thesis and
what could have been done differently. We also talk about factors that could have
influenced results as well as mentioning what could be done in the future. Here we
also talk about threats to validity and discuss potential future work.

5.1.1 Discussion
From our experiments we have obtained some interesting results. In some cases we
were able to improve our machine learning algorithm predictions by using features
such as class roles, number of libraries used, and various code metrics. In other
cases seemingly useful features such as security related libraries or security keywords
proved to have no or very little effect on the results. Even scenarios tailored to favor
security libraries or keywords the results proved to be disappointing.

Just by using source code metrics we were able to achieve slightly better accu-
racy than initial baseline results. Providing an additional class role feature to our
machine learning algorithms gave us the best results which shows us that there are
some links between software architecture and our code. These results also imply
that there is some potential to use software architecture features to detect security
relevant code.

By manipulating algorithm settings and selecting specific features to use we
achieved somewhat decent prediction of approximately 79.56% or almost 4/5. Whether
this is adequate or not is not up to us to decide but whatever the case may be our
final results show improvement over baseline implementation. However some of the
improvement in accuracy can be attributed to our data set and its distribution in
terms of related and unrelated source code. Since we have a data set consisting of
roughly 3/4 security relevant and a 1/4 non relevant classes we can expect our results
to reflect exactly that. Ignoring the skew in distribution we get an improvement of
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6.26% for prediction accuracy compared to baseline results. In other words we get a
net improvement of 6.26%. While in some cases this may seem insignificant we still
see this as an improvement and a positive result.

The biggest caveat with the features we chose, especially with class roles, is
that it still takes some considerable amount of time to extract them. While there are
tools for extraction of code metrics, class roles require manual intervention which
includes certain degree of subjectivity. As long as there are no automatic tools for
class role assignment this remains somewhat impractical especially on a large scale
projects. On top of that these class roles require some consistency which is difficult
to achieve when more than one person is assigning them. Allowing a single person
to assign them would reduce the overhead required to classify them and make it a
bit faster. However a single person assigning such roles could introduce too much
bias and even then could have some inconsistencies. Though one of the positive
side effects (in our case) of working with class roles is that it allows whoever is
assigning the roles to familiarize themselves with the system and gain much better
understanding of it.

In terms of granularity chosen the decision seems to be fairly sound. By using
whole classes we are able to relate them to software architecture as well as use
several tools to extract additional information about the source code. This saved
us considerable amount of time as well as allowed us to experiment with more
parameters such as Java security libraries used or potential of software pattern
detection. Using any smaller granularity such as methods or lines of code may have
allowed us to locate the precise parts of code that relate to security. However such
granularity would make it much more difficult to extract additional information
about software architecture or see any relations to it. Since one of our objectives is
to use software architecture this would be not only impractical but also prevent us
from achieving our objective.

It also should be possible to use more different features for security related code
detection. However not all of these features would have to be extracted only from
software architecture. Data flow diagrams, control flow graphs, sequence diagrams
and other artifacts could be used at the current granularity level to extract addi-
tional features. One of the biggest issues with extracting features is knowing which
ones would have most impact and therefore the only way to find out is by trial and
error. Though biggest issue once you start using too many features is that it be-
comes increasingly more difficult for machine learning algorithms to create accurate
prediction models. This becomes a bigger issue when there are no clear patterns in
the data and introducing additional features only increases the so called data noise.

To sum all of our work up we can answer our initial research questions:
RQ1: Can software architecture provide any means to identify security relevant

code?
A1: A simple answer would be yes, yes it can. However it all depends on your

approach and resources available.
RQ2: How useful are software metrics when used for security sensitive code

detection?
A2: Just by using default source code metrics such as the ones extracted by

SourceMonitor we wont get far. While basic metrics make it possible to somewhat
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predict where security related code might be, the results won’t be very accurate.
Furthermore you need to cherry pick a set of metrics in order to be able to use them
for prediction since using too many won’t give any results at all.

RQ3: Can we improve our results by using additional features extracted from
software architecture?

A3: Yes, we can. Filtering out some of the basic metrics and adding additional
features related to software architecture such as class roles will improve prediction
accuracy. While the improvement may not be extreme it is still noticeable and has
a positive impact.

RQ4: How much of an effect do these additional features have?
A4: Based on our data we managed to get a 4.89% improvement in accuracy

when we added class roles to the data-set. The overall improvement for best predic-
tion accuracy by using a combination of features was 3.1% when compared to best
prediction accuracy without additional features.

5.1.2 Threats to validity
One of the biggest threats to this study is subjectivity during class role assignments.
Since Wirfs-Brock roles have flexible definitions in some cases there will be disagree-
ments whether a class has one role or the other. To complicate things even more
these class roles assume that each instance (class) has a clear and well defined role
which is easy to identify. This is not always the case with some of the instances
having multiple roles, or at least flexible functionality that can be attributed to
more than one role. This makes class role identification not only complicated but
also difficult to get right especially when you have to choose a single role.

Deriving fromWirfs-Brocks roles we have created our own class roles with intent
to have a security related class system. This is new system may be heavily biased
for a couple of reasons. First of all we derive these new roles after having worked
extensively with Wirfs-Brocks roles which could have lead to us making decisions
based on what we learned about the system (in this case k9 mail). This would make
our derived roles k9 mail specific rather than security related which would skew
the results one way or another and not represent the actual truth. Additionally
these new security roles are completely new concept and were created by a single
individual rather than through a group discussion. This introduces further potential
bias and potential for these new roles to be k9 mail application specific rather than
objectively security related.

Another similar issue is apparent with our security code. While in most cases it
is fairly obvious that a piece of code is performing security or privacy related tasks in
others it can be more ambiguous and discrete. We are using our own definitions and
interpretations of what we consider to be security and privacy related code which
works well in this case but may not in others. We can’t be completely sure whether
the success or failure of our experiments is the result of our definitions or whether
there is a real relation between features used which introduces a certain degree of
uncertainty. This also applies to the ground-truth that we have used. We rely and
trust completely that the ground-truth is actually representative of security code.
Since our ground-truth is obtained from a different, unpublished study, we depend
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on its accuracy and suffer from any potential mistakes that may have been made on
their part. Of course we believe that the ground-truth used is not plagued by any
major threats of validity but we still can’t exclude such a possibility.

In our feature set we attempt to use a list of security keywords as a feature.
This list is compiled by browsing various sources online, source code as well as by
using own experience in the security field. This introduces more potential bias and
could result in our list that was used being inconsistent, incomplete and heavily
tailored to suit exactly our needs. Since software security is a very broad field it
has many different terms associated with different types of software and areas. By
creating such list on our own we introduce our own bias and potentially skew results.
Since when we create this list we already have experience with k9 mail application
and know its source code well, it’s possible that our keyword list is tailored to
suit exactly k9 mail case. It is also possible that we have left out many potential
keywords as well. Overall our approach has an advantage that tailoring such a list
to suit our needs we could potentially emphasize our results which may be the same
even without our biases. Alternatively it could have an opposite effect so the only
way to test this is to replicate the study using different keyword list.

We also use native Java libraries as a feature set which we later refine to secu-
rity related libraries only. Since there are many different native as well as custom
Java libraries its extremely difficult to know which ones are which. From our re-
search we have identified several of the Java libraries as being security relevant by
checking Java documentation. This has been done by looking for specific function-
ality such as handling user data, encryption, communication and other similar tasks
which we deemed would have security relevance. We did not verify the contents of
these libraries due to time constraints and assumed that they simply contain some
security functionality. This introduces a fairly major flaw since we can no longer
have complete confidence in our results. Since there are no openly available lists of
security related libraries online we were limited to this choice only. However due to
a relatively small number of Java libraries used we can have some confidence that
our list, while perhaps incomplete, still provides the desired results.

One of the additional assumptions we make when checking for security related
libraries is that we assume that all of the included Java libraries are actually being
used. Since checking for specific library calls would be too time consuming we can’t
guarantee that an identified security related library in use is being used in a security
context. This means that some functionality that relies on such libraries could be
using other functionality provided by the library giving us a false positive. We have
no real and efficient way of checking whether security functionality is present or
being used from these libraries this leaves yet another fairly major flaw when it
comes to security related libraries feature.

5.1.3 Future Work
One of the main areas that seems to have some potential for security relevant code
detection is software pattern identification. While it would be difficult to choose
which patterns to identify, it does seem to be fairly promising, especially if imple-
mentation is done right. There already exists tools that are capable of automatic
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software architecture pattern detection which only need to be adapted for security
related patterns. The only question that remains in this case is if such pattern
detection would be as accurate as regular patterns. Additionally in case security
pattern detection turns out to be effective it would be also necessary to test if these
detected patterns could be used in a similar context as this project. Since most this
could be done automatically it might be able to replace class roles completely and
eliminate most of the required manual work (required with class roles).

Additionally more information about class relationships could be extracted
from software architecture. In this project we have used only a small amount of
available information about software architecture. This is due to several reasons such
as lack of time and need to have more focus. Therefore any future projects around
the same topic could attempt to use more information about architecture than in
this case. Additional information use could reveal some undiscovered relationships
between architecture and code and improve machine learning algorithms prediction
accuracy. All of this of course is still speculative at this point since we haven’t had
enough time to explore this more in-depth. Nonetheless this is one of the areas that
could certainly benefit from additional research.

Finally security keywords could be investigated further. The results from using
security keywords in our project scope were disappointing. While security in nature
such keywords weren’t as useful as expected and it might be useful to discover the
reason why this is the case. We already know from other studies that using keywords
can aid in code classification. Therefore what is left is to find out if our issue in this
context stems from the keyword list that we used or if it has to do with the nature
of machine learning algorithms. Whatever the case might be spending additional
time and using a more thorough process to create security keyword list might answer
some of the questions.

5.2 Conclusion
Using regular software metrics extracted from k9 mail source code it was possi-
ble to detect security-sensitive code somewhat better than just by purely guessing.
However the difference in such case was marginal. Adding additional software archi-
tecture features into the mix such as Wirfs-Brocks class roles were able to improve
our results by approximately 6.26%. This increase in accuracy gives us a prediction
accuracy of almost 80% or 4/5 correct classifications. This means that 1 in 5 in-
stances will be miss classified which severely limits the trust of our classifiers. Since
the intention of introducing such classification is to minimize the amount of source
code needed to inspect having 80% accuracy doesn’t cut it. If we could achieve near
perfect 100% prediction accuracy for instances containing or lacking security code
we could at least use such classification partially. However none of the machine
learning algorithms achieved such prediction accuracy leaving our results a bit lack-
ing in terms of usefulness. Without improving our prediction accuracy we can’t use
any of the gained information in a meaningful way making it somewhat useless.

In addition to a lack in accuracy we need to dedicate considerable amount of
time and effort into assigning class roles to source code. This introduces a certain
degree of uncertainty as well as time overhead. All of this combined doesn’t really
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warrant a 6.26% improvement in prediction accuracy over random guessing. This
becomes especially evident when we consider that the total prediction accuracy is
only 80% making this kind of code location methods not very viable.

Overall we were able to extract some useful information from software archi-
tecture (ex. libraries used, class roles). We were then able to use this information
in predicting whether a certain instance (part of source code) contains security re-
lated code. This prediction however was not very accurate and somewhat better
than guessing. Extracting more information from software architecture and using
it as additional features (such as software architecture patterns) could still improve
prediction accuracy. This leaves us with a positive indication that software archi-
tecture can be used in security related code detection and that it has more potential
to achieve better prediction accuracy.
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Appendix A

A.0.1 Complete data set
The complete set of data is available for download here: https://drive.google.com/file/d/1gvd-
sBN9Wbd1T6wcF0U1WPIz4aQsOJYL/view
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