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Abstract

We develop new procedures to quantify the statistical uncertainty from sorting units in panel data

into groups using data-driven clustering algorithms. In our setting, each unit belongs to one of a

finite number of latent groups and its regression curve is determined by which group it belongs

to. Our main contribution is a new joint confidence set for group membership. Each element

of the joint confidence set is a vector of possible group assignments for all units. The vector

of true group memberships is contained in the confidence set with a pre-specified probability.

The confidence set inverts a test for group membership. This test exploits a characterization

of the true group memberships by a system of moment inequalities. Our procedure solves a

high-dimensional one-sided testing problem and tests group membership simultaneously for all

units. We also propose a procedure for identifying units for which group membership is obviously

determined. These units can be ignored when computing critical values. We justify the joint

confidence set under N,T → ∞ asymptotics where we allow T to be much smaller than N .

Our arguments rely on the theory of self-normalized sums and high-dimensional central limit

theorems. We contribute new theoretical results for testing problems with a large number of

moment inequalities, including an anti-concentration inequality for the quasi-likelihood ratio

(QLR) statistic. Monte Carlo results indicate that our confidence set has adequate coverage and

is informative. We illustrate the practical relevance of our confidence set in two applications.

Keywords: Panel data, grouped heterogeneity, clustering, confidence set, machine learning,

moment inequalities, joint one-sided tests, self-normalized sums, high-dimensional CLT, anti-

concentration for QLR
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1. Introduction

Panel data models with grouped heterogeneity have emerged as useful modeling tools to learn

about heterogeneous regression curves (cf. Bonhomme and Manresa 2015; Su, Shi, and Phillips

2016; Vogt and Linton 2017). The heterogeneity can reflect unobserved characteristics (Heckman

and Singer 1984) or equilibrium selection (Hahn and Moon 2010). In these models, it is assumed

that the population is partitioned into a finite set of “groups.” All members of a group share

the same regression curve. Each unit’s group membership is unobserved and has to be inferred

from its behavior over time.1 The existing literature has focused on inference with respect to the

group-specific regression curves. This problem has been considered in Bonhomme and Manresa

(2015), Su, Shi, and Phillips (2016), Vogt and Linton (2017), and Wang, Phillips, and Su (2016).

In the present paper, we focus on the clustering problem and study inference with respect

to the group memberships. In particular, we construct confidence sets for group membership.

We consider joint and unit-wise confidence sets. For a panel of N units, an element of a joint

confidence set is an N -dimensional vector that states a possible group membership for each

unit. Our construction guarantees that the joint confidence set contains the N -vector of true

group memberships with a pre-specified probability, say 90%. For a specific unit, a unit-wise

confidence set is a collection of possible group memberships. Its construction ensures that it

contains the unit’s true group membership at least with a pre-specified probability.

Our confidence sets are the first contribution in the econometric and statistical literature to

rigorously quantify the estimation error from assigning group memberships using a data-driven

clustering algorithm. If a unit’s unit-wise confidence set is a singleton then the unit’s group

membership is clear from the data. In this case, the unit’s estimated group membership is the

only element in the confidence set and may be considered statistically significant. If the data

does not clearly identify a unit’s group membership, then the unit’s confidence set contains

multiple possible group memberships. Providing a joint rather than a unit-wise confidence set is

important if we want to control the probability of misclassification when selecting units by group,

either for a policy/program intervention or further study. In one of our empirical applications,

we follow Wang, Phillips, and Su (2016) and cluster states in the U.S. into two groups. The

effect of a minimum wage on unemployment is positive in one group and negative in the other.

When designing a new minimum wage policy, it is important to detect the units for which group

membership cannot be identified with confidence. This requires joint inference on all units.

Our unit-wise confidence sets are computed by inverting a test for group membership. The

test is based on the observation that the true group membership of a specific unit satisfies a

system of moment inequalities. The unit’s true group membership provides a best fit to the

observed behavior of a unit. Each moment inequality compares the fit of two possible group

assignments.2 We exploit the specific structure of these inequalities to recenter them so that they

are binding under the null hypothesis. It follows that testing group membership is equivalent to

testing a one-sided hypothesis for a vector of moments. In particular, we test the hypothesis that

the vector is the zero vector versus the alternative hypothesis that it has a positive component.

1The group structure can be interpreted structurally or as an approximation to some underlying finer pattern of
heterogeneity, as in Bonhomme, Lamadon, and Manresa (2016).

2The estimator of group membership in Bonhomme and Manresa (2015) is based on this observation.
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We construct our joint confidence set by combining unit-wise confidence sets. To guarantee

that the joint confidence set has the desired coverage probability we use a Bonferroni-type

correction. For computational reasons we do not construct our joint confidence set by inverting

a joint test that tests the group memberships of all units simultaneously.3 Note that a naive

inversion of a joint test requires testing GN possible membership configurations; this is intractable

even in small panels. On the other hand, the computation of our joint confidence set is based

on GN tests of group membership. This computational cost scales well in large panels. Under

cross-sectional independence, which is a common assumption in panel regression, the Bonferroni

correction is expected to render our joint confidence set only minimally conservative if N is

large.4

We suggest three procedures for constructing unit-wise confidence sets, corresponding to three

flavors of the underlying test of group membership. We consider two test statistics, MAX and

QLR, from the literature on testing moment inequalities (cf. Rosen 2008; Andrews and Soares

2010; Romano, Shaikh, and Wolf 2014) in combination with analytical critical values derived

from Gaussian approximations. The MAX statistic looks at the largest element of the tested

vector of moments, while the QLR statistic minimizes a quadratic form and can be derived as

the quasi-likelihood ratio test statistic of our one-sided hypothesis. We suggest two different

methods to compute critical values for the MAX statistic and one way to compute critical values

for the QLR statistic. To improve the coverage of the joint confidence sets in short panels we

suggest adjustments of the critical values that are motivated by the finite-sample behavior of

the respective test statistic under Gaussianity.

The first procedure is based on the MAX test statistic and a critical value common to all units

and groups. We call it the SNS procedure. This procedure works for any correlation structure

between the within-unit moments but is possibly more conservative than the other procedures.

SNS stands for “self-normalized sum”, referring to the theoretical justification of this procedure

by the theory of self-normalized sums (de la Pena, Lai, and Shao 2009). The SNS critical value

is computationally advantageous because it is not unit specific and therefore has to be computed

only once. Moreover, the SNS procedure can be justified under much weaker moment conditions

than the other procedures that we propose. The idea for the SNS critical value is adapted from

Chernozhukov, Chetverikov, and Kato (2014). However, our critical value is defined differently

from theirs. Our definition admits a finite-sample justification under an additional normality

assumption.

Our second procedure combines the MAX test statistic with unit-specific critical values. We

call it the MAX procedure. The critical values of the MAX procedure account for the correlation

of within-unit moments. This correlation is expected to be high and the correlation structure

may be different for different units. Theoretically, the MAX procedure is equivalent to multiplier

bootstrap with Gaussian multipliers. However, to compute the Bonferroni correction in our

setting, we would have to evaluate (unit-wise) bootstrap distributions at very large quantiles.

This renders the computational cost of the usual Monte Carlo approximation of the bootstrap

3A joint test for the group memberships of all units can be based on a system of moment inequalities that
describes the group memberships of all units simultaneously.

4As N →∞, the Bonferroni correction inflates the theoretical coverage of a confidence set at nominal level 1−α
by less than α2.
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distribution prohibitive. By contrast, our proposed analytical critical values compute rapidly.

The short-panel adjustment for the MAX procedure is based on the multivariate t-distribution.

Lastly, we combine the QLR test statistic with unit-specific analytical critical values. We

call this the QLR procedure. The unit-specific critical values are based on a well-known

approximation of the distribution of the QLR statistic under the null hypothesis by a mixture of

χ2 distributions (Kudo 1963; Wolak 1989). The short-panel adjustment for the QLR procedure

is based on a mixture of F -distributions.

We also study a variation of our procedure that can increase the power of the joint confidence

set. We call this approach unit selection. In the literature on moment inequalities, moment

selection is a popular approach for increasing the power of a test. It detects inequalities that are

“obviously” slack and can be disregarded when computing critical values.5 In our setting, we

recenter all inequalities to be binding under the null hypothesis and moment selection is not

applicable. Nonetheless, we can still exploit the intuition that a part of the testing problem that

is “obvious” should not inflate critical values. To motivate our approach, suppose the panel is

split into units with low noise for which the group assignment is “obvious” and units with noisier

measurements. We suggest an algorithm that learns the identities of the units in the first group

and ignores these units when computing the Bonferroni adjustment for the unit-wise confidence

sets for units in the second group. Our algorithm combines moment selection with iterated

deletion of hypotheses. Unit selection is expected to be effective in settings with substantial

heteroscedasticity.

We justify our procedures under a double asymptotic framework that sends both the number

of units N and the number of time periods T to infinity. The theory allows T to be very small

compared to N . For example, the SNS critical value can be justified if T−1/3(logN)→ 0 under

some regularity conditions. Our asymptotic results establish that our confidence sets are valid

uniformly over a broad class of probability measures. This class is defined in terms of bounds on

the moments of covariates and error terms. These bounds restrict the heaviness of the tails of

the distribution of the error term and depend on the relative magnitudes of N and T .

Our theoretical analysis relies on and extends recent results from high-dimensional statistics.

A high-dimensional analysis is required since the number of simultaneously tested inequalities,

(G− 1)N , is large compared to the number of time periods T that determine the quality of the

Gaussian approximation. The analysis of the SNS procedure builds on an idea in Chernozhukov,

Chetverikov, and Kato (2014, Theorem 4.1). We show that their theoretical approach can

be extended to accommodate our choice of critical value as well as estimation error from a

preliminary estimation of the group-specific regression curves.

New theoretical developments are required to provide a theoretical justification of the MAX

and QLR procedures. These procedures employ unit-specific critical values. This renders our

approach substantially different from the high-dimensional bootstrap procedure in Chernozhukov,

Chetverikov, and Kato (2014). To prove the validity of our approach, we derive a Gaussian

approximation of the joint behavior of all unit-wise tests. Our assumptions about the relative

5Both moment selection and moment recentering address possible slackness of moment inequalities. For a
comparison of the two approaches, see Allen (2017). These methods are developed in Andrews and Soares
(2010), Bugni (2010), Andrews and Barwick (2012), Chernozhukov, Chetverikov, and Kato (2014), and Romano,
Shaikh, and Wolf (2014).
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magnitudes of T and N trade off increased precision of the unit-wise approximation (larger T )

against a more stringent uniformity requirement (larger N). Our other results combine unit-wise

finite-sample bounds with an anti-concentration inequality (Chernozhukov, Chetverikov, and

Kato 2015) to argue that the unit-wise test statistics can be replaced by certain oracle test

statistics. The approximation error from this replacement is controlled uniformly over all units.

The oracle statistics are then jointly approximated by their normal limit using a high-dimensional

central limit theorem (Chernozhukov, Chetverikov, and Kato 2016).

We contribute new theoretical results for the QLR statistic in high-dimensional one-sided

testing problems. The existing results focus on testing one-sided hypotheses for finite vectors

(Wolak 1991; Rosen 2008), and the underlying theoretical arguments do not extend to the

high-dimensional case. Our approach uses a new approximate anti-concentration bound for the

limiting distribution of the QLR statistic. We combine this anti-concentration result with a

high-dimensional central limit theorem for sparse-convex sets (Chernozhukov, Chetverikov, and

Kato 2016) to derive the joint limiting distribution of the unit-wise tests.

Our theoretical justification of unit selection builds on Chernozhukov, Chetverikov, and Kato

(2014). Although our approach implements a different idea, we can follow the broad strokes of

their argument.

For all three tests of group membership, we allow for estimated group-specific regression curves.

The tested moment inequalities depend on the group-specific regression curves, and a preliminary

estimator of group-specific coefficients enters the testing problem as a nuisance parameter.

Provided that the estimator satisfies a weak rate condition, its effect on the distribution of the

unit-wise test statistics is not of first order and can be ignored when computing critical values.

We are agnostic about the specific choice of estimator of the group-specific coefficients. For

example, the estimator may be based on an auxiliary training data set where group memberships

are observed. Alternatively, coefficients can be estimated without information about the true

group memberships. This problem has received attention in the recent econometric literature

and estimators based on kmeans clustering (Bonhomme and Manresa 2015; Vogt and Linton

2017) or penalization (Su, Shi, and Phillips 2016; Wang, Phillips, and Su 2016) are available.

We complement our asymptotic results by Monte Carlo experiments that study the performance

of our procedures in finite samples. For panels with a small number of observed time periods,

our simulation results indicate that the short-panel adjustment is essential for guaranteeing

correct coverage of the joint confidence set. For long panels, the procedures yield good coverage

both with and without finite-sample adjustment, confirming our asymptotic results. We also

demonstrate that neither the MAX nor the QLR test statistic dominates the other. In a design

with substantial heteroscedasticity, we study the benefits and limits of our procedure for unit

selection.

To demonstrate the usefulness of our confidence set for group membership in practice we

discuss two applications. First, we follow Wang, Phillips, and Su (2016) and study heterogeneous

relationships between a minimum wage and unemployment in a US state panel. For some

states the relationship is positive, but for others, it is negative. We illustrate how, based on

our confidence set, a policy maker can select units that belong to the positive or negative effect

group while controlling the probability of misclassification. Secondly, we study the country panel
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data on income and democracy from Acemoglu et al. (2008). We consider the specification with

group-specific trends from Bonhomme and Manresa (2015). The panel is very short (T = 7),

which makes inference on the classification problem challenging. Our joint confidence set is still

informative. In a specification with four groups, it separates the two most extreme groups.

The rest of the paper is organized as follows. Section 2 discusses the related literature and

Section 3 introduces our panel model with a group structure. Section 4 motivates our approach

and defines the joint and unit-wise confidence sets for group membership. Section 5 gives an

asymptotic justification of our procedures and Section 6 reports our simulation results. Finally,

Section 7 discusses two applications of the new methods developed in this paper to real data

sets.

2. Related Literature

Classifying units into discrete groups is one of the oldest problems in statistics and statistical

decision theory (Pearson 1896). Popular modeling tools are finite mixture models (McLachlan

and Peel 2004). These models offer a random-effect approach to modeling discrete heterogeneity

(Bonhomme, Lamadon, and Manresa 2016). In computer science, classification and clustering

problems are often tackled using machine learning (Friedman, Hastie, and Tibshirani 2009).

Perhaps surprisingly, we have not been able to find any research on how to conduct joint inference

on the population group structure in the machine learning literature.

Algorithms in machine learning compute posterior probabilities of group membership (Murphy

2012, Chapter 5.7.2).6 In principle, it is possible to compute unit-wise Bayesian credible sets

from the posterior distribution. Although this approach is appealing in applications in computer

science, it is not always a useful approach for inference in the social sciences. Consider, for

example, the problem of classifying e-mail into regular mail and spam.7 The generation of an

e-mail can be modeled as a two-stage process. The first stage draws a data generating process

(DGP), and the second stage generates an e-mail from this DGP. A user of an e-mail client

observes new e-mail repeatedly and is interested in inference that works well in “typical” cases.

In this context, it makes sense to follow the Bayesian paradigm and take the randomness of the

DGP into account. In the social sciences we typically observe only one draw of the DGP and we

have to ascertain that our inference is valid for this particular DGP. Our frequentist approach is

uniformly valid over a large class of DGPs and therefore fulfills this requirement.

We follow the recent econometric literature and adapt a fixed effect approach that treats the

unobserved group memberships as a structural parameter. Inference in panel models with a

latent group structure has been studied in Lin and Ng (2012), Bonhomme and Manresa (2015),

Sarafidis and Weber (2015), Ando and Bai (2016), Vogt and Linton (2017), Wang, Phillips, and

Su (2016), Lu and Su (2017), Vogt and Schmid (2017), and Gu and Volgushev (2018).8 Previous

studies address inference with respect to the group-specific regression curves. We are the first to

address inference on group membership.

6For example, in the case of finite mixture models, posterior probabilities can be computed in the E-step of the
EM algorithm (Dempster, Laird, and Rubin 1977).

7This example is inspired by Murphy (2012, p.5).
8Models with a latent group structure have also been proposed for data other than panel data (Shao and Wu

2005).
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Our theoretical analysis relies on the theory of self-normalized sums (de la Pena, Lai, and Shao

2009) and recent results in high-dimensional statistics, particularly the central limit theorems in

Chernozhukov, Chetverikov, and Kato (2016) and the anti-concentration result in Chernozhukov,

Chetverikov, and Kato (2015). We contribute new theoretical results for high-dimensional testing

problems.

Our confidence set is based on a characterization of the true group memberships by a system

of moment inequalities. A recent review of confidence sets constructed from moment inequalities

is given in Canay and Shaikh (2016). Most of the previous literature focuses on finite systems

of moment inequalities. Chernozhukov, Chetverikov, and Kato (2014) provide a framework

for testing high-dimensional systems of moment inequalities.9 Our approach builds on and

extends their results. To compute our joint confidence set, we solve a multiple one-sided testing

problem. We provide a theoretical argument for the validity of our procedure for a diverging

number of simultaneously-tested hypotheses. Romano and Wolf (2018) study a similar testing

problem in a simulation experiment, but do not provide an asymptotic analysis of their approach.

Even though we develop our theoretical argument in the context of a specific application, our

approach can be adapted easily to other simultaneous one-sided testing problems. We expect

this contribution to the theory of one-sided testing in high dimensions to be of independent

interest.

3. Setting

We observe panel data (yit, xit), i = 1, . . . , N and t = 1, . . . , T , where yit is a scalar dependent

variable and xit is a covariate vector. We assume that units are partitioned into a finite set

of groups G = {1, . . . , G}. Group membership is unobserved. The relationship between yit

and xit is described by a linear model. Units within the same group share the same coefficient

value. Between groups, coefficient values may vary. Let βg,t denote the vector of coefficients

that applies to units in group g ∈ G at time t = 1, . . . , T . Unit i’s true group membership is

denoted g0
i . In period t, unit i’s outcome is generated according to

yit = x′itβg0i ,t
+ uit, (1)

where uit is an error term.

This paper addresses inference with respect to the vector of latent group memberships

{g0
i }1≤i≤N . In most practical applications, the coefficient vector is unknown and constitutes

an additional source of uncertainty. We assume that an estimator β̂g,t of βg,t is available. For

example, estimators based on the kmeans algorithm (Bonhomme and Manresa 2015) or on

penalization (Su, Shi, and Phillips 2016, Wang, Phillips, and Su 2016) may be used. Under a

weak rate condition, our procedure controls for uncertainty from parameter estimation.

In applications, two special cases of model (1) are of particular interest.

Example 1 (Random coefficient model with a group structure). The coefficient vector is

9Estimation with many moment inequalities is examined by Menzel (2014).

8



assumed to be constant over time. The model is

yit = x′itβg0i
+ uit.

Estimation of this model is considered in Su, Shi, and Phillips (2016) and Wang, Phillips, and

Su (2016). For this specification, we consider also an extension that adds individual fixed effects.

A heuristic discussion of to apply our procedures to models with individual fixed effects is given

in Section C of the Supplementary Appendix. Following Wang, Phillips, and Su (2016), we apply

the random coefficient model to the analysis of heterogeneous effects of a minimum wage.

Example 2 (The group fixed effect model). The set of regressors contains a constant term.

The coefficient on the constant term is group-specific and varies over time. It is called the group

fixed effect. The values of the coefficients on the time-varying regressors are the same for all

groups and time periods. The model is

yit = w′itθ + αg0i ,t
+ uit,

where wit is a vector of time-varying regressors, θ is a common slope coefficient and αg0i ,t
is

the group fixed effect. This model is developed in Bonhomme and Manresa (2015). Following

their lead, we apply it to the clustering of countries according to their respective trajectories of

democratization.

4. Procedure

This section discusses our approach for constructing confidence sets for group membership. First,

we provide a rigorous definition of the confidence sets for group memberships discussed in this

paper. We then present a characterization of the true group memberships by a system of moment

inequalities. Next, we propose three procedures for computing confidence sets. We also discuss

finite-sample adjustments. Lastly, we present our algorithm for unit selection.

4.1. Definition of confidence set for group membership

We consider joint confidence sets for the entire group structure as well as unit-wise confidence

sets for each unit i.

A joint confidence set quantifies uncertainty about the true group structure {g0
i }1≤i≤N . It

is a non-empty random subset of the set of all possible group configurations GN that contains

the true group structure with a pre-specified probability. Let P(·) denote the power set of its

argument. For 0 < α < 1, the joint confidence set Ĉα with confidence level 1− α is a random

element from P(GN ) \ {∅} such that

lim inf
N,T→∞

inf
P∈PN

P
(
{g0
i }1≤i≤N ∈ Ĉα

)
≥ 1− α, (2)

where PN is a set of probability measures that satisfy certain regularity conditions. A typical

element of Ĉα is {gi}1≤i≤N with gi ∈ G. If {gi}1≤i≤N ∈ Ĉα, then we cannot exclude the

possibility that {g0
i }1≤i≤N = {gi}1≤i≤N at a confidence level of at least 1− α.
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A unit-wise confidence set for unit i is a non-empty random subset of the set of possible group

memberships G that contains i’s true group membership g0
i with a pre-specified probability. The

unit-wise confidence set Ĉα,i at confidence level 1−α is a random element from P (G) \ {∅} such

that

lim inf
T→∞

inf
P∈P

P
(
g0
i ∈ Ĉα,i

)
≥ 1− α,

where P is a set of probability measures.

A unit-wise confidence interval quantifies the uncertainty about the group membership of

one specific unit. For example, if Ĉα,i is a singleton, say Ĉα,i = {1}, then we may conclude at

confidence level 1− α that unit i belongs to group 1. On the other hand, if Ĉα,i = G then, at

confidence level 1− α, the data is not informative at all about i’s group membership.

4.2. Motivation of our approach

The key insight of our approach is that each unit’s group membership can be characterized

by a system of moment inequalities that can be used for a statistical test of the hypothesis

H0 : g0
i = g. Our confidence set is constructed by inverting such a test. To focus on the main

idea, we assume in this section that group-specific parameters are known.

The null hypothesis H0 : g0
i = g is equivalent to

E
[(
yit − x′itβg,t

)2] ≤ E
[(
yit − x′itβh,t

)2]
(3)

for all h ∈ G and t = 1, . . . , T . This inequality is justified under E[uit | xit] = 0, which guarantees

that the true DGP minimizes a least-squares criterion. It has been used previously by Bonhomme

and Manresa (2015) as a basis for their estimation procedure.

To test (3), we introduce a mean-adjusted difference between squared residuals. Let

dit(g, h) =
1

2

((
yit − x′itβg,t

)2 − (yit − x′itβh,t)2 +
(
x′it (βg,t − βh,t)

)2)
.

The first two terms on the right-hand side are squared residuals. The third term ensures that

dit(g, h) has mean zero under the null hypothesis. This can best be seen by writing

dit(g, h) = −uitx′it (βg,t − βh,t) +
(
βg,t − βg0i ,t

)′
xitx

′
it (βg,t − βh,t) . (4)

Here, the first term on the right-hand side has mean zero under E[uit | xit] = 0 and the second

term vanishes for g = g0
i . Thus, under g0

i = g we have

E [dit(g, h)] = 0

10



for all h ∈ G \ {g}.10 If g0
i 6= g then there is h ∈ G \ {g} such that

E [dit(g, h)] > 0.

To see this, note that choosing h = g0
i ∈ G \ {g} guarantees that dit(g, h) has a strictly positive

mean if E[xitx
′
it] has full rank.

In summary, we can base a test of H0 : g0
i = g on the vector{

1

T

T∑
t=1

E[dit(g, h)]

}
h∈G\{g}

. (5)

For this vector, we test equality to zero against the alternative that at least one of its components

is strictly positive.

Remark 1. The explicit mean adjustment is our solution to the problem of possibly slack moment

inequalities in (3). It exploits the specific structure of our problem and ensures that we test

inequalities that are binding under the null hypothesis. This turns the problem of testing the

moment inequalities (3) into a one-sided testing problem for a vector of moments. In other

testing problems with moment inequalities, a similar mean adjustment is not feasible and possible

slackness of the tested inequalities has to be addressed in another way. A popular solution is to

use data-driven methods to detect and eliminate slack inequalities (Andrews and Soares 2010;

Andrews and Barwick 2012; Romano, Shaikh, and Wolf 2014).

4.3. Procedures for computing confidence sets

Here, we describe how to construct our confidence sets. A unit-wise confidence set is computed

by inverting a test for group membership. Our joint confidence set strings together Bonferroni-

corrected unit-wise confidence sets.

Let T̂i(g) denote a test statistic. For a pre-specified probability α, let cα,1,i(g) denote a critical

value. Moreover, let ĝi denote a point estimator of g0
i .

11 A unit-wise confidence set for unit i is

given by

Ĉα,i =
{
g ∈ G : T̂i(g) ≤ cα,1,i(g)

}
∪ {ĝi} .

Adding the estimated group membership guarantees that the confidence set is never empty.12

A joint confidence set for all units is constructed by combining Bonferroni-corrected unit-wise

confidence sets. Let cα,N,i(g) be a Bonferroni-corrected critical value. Our joint confidence set is

10The assumption E[uit | xit] = 0 implies E[dit(g
0
i , h) | xit] = 0. The conditional version can yield a more powerful

test if there is a specific alternative and a function f such that the moment E[dit(g
0
i , h)f(xit)] reveals more

evidence against the null hypothesis than the moment E[dit(g
0
i , h)]. In our setting, relevant alternatives are

detected by large positive values of the quadratic form in (4). Therefore, we do not expect that the power of
the test can be improved by using a function f to look in another direction.

11Typically, such an estimator is available as part of the procedure that estimates the group-specific parameters.
If not, then such an estimator can be based on inequality (3) (cf. Bonhomme and Manresa 2015).

12This is also required for our algorithm for unit selection to work.
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given by

Ĉα = ×
1≤i≤N

{
g ∈ G : T̂i(g) ≤ cα,N,i(g)

}
∪ {ĝi} .

We consider different choices for the test statistic and the critical values. For g ∈ G and

t = 1, . . . , T , let β̂g,t denote an estimator of βg,t. Define

d̂it(g, h) =
1

2

((
yit − x′itβ̂g,t

)2
−
(
yit − x′itβ̂h,t

)2
+
(
x′it

(
β̂g,t − β̂h,t

))2
)
.

The test for group membership is based on the studentized statistic

D̂i(g, h) =

∑T
t=1 d̂it(g, h)√∑T

t=1

(
d̂it(g, h)− ¯̂

dit(g, h)
)2
,

where
¯̂
dit(g, h) =

∑T
t=1 d̂it(g, h)/T . Let D̂i(g) =

{
D̂i(g, h)

}
h∈G\{g} denote the vector that stacks

the studentized statistics for h ∈ G \ {g}. We consider two test statistics to measure the distance

of D̂it(g) from zero in the direction of the positive axes: the MAX statistic and the QLR statistic.

They are defined, respectively, as

T̂MAX
i (g) = max

h∈G\{g}
D̂i(g, h),

T̂QLR
i (g) = min

t≤0

(
D̂i(g)− t

)′
Ω̂−1
i (g)

(
D̂i(g)− t

)
,

with Ω̂i(g) = Ω̂∗i (g) + max{ε− det(Ω̂∗i (g)), 0}IG−1, where IG−1 is the identity matrix in RG−1,

Ω̂∗i (g) is the (G− 1)× (G− 1) sample correlation matrix with entries

(
Ω̂∗i (g)

)
h,h′

=

∑T
t=1

(
d̂it(g, h)− ¯̂

dit(g, h)
)(

d̂it(g, h
′)− ¯̂

dit(g, h
′)
)

√∑T
t=1

(
d̂it(g, h)− ¯̂

dit(g, h)
)2∑T

t=1

(
d̂it(g, h′)− ¯̂

dit(g, h′)
)2
,

and ε is a positive parameter that controls the regularization of the sample correlation matrix

(cf. Andrews and Barwick 2012).13

For the MAX test statistic we offer two different strategies for computing critical values. The

SNS critical value is given by

cSNS
α,N,i(g) = cSNS

α,N =

√
T

T − 1
t−1
T−1

(
1− α

(G− 1)N

)
,

where t−1
T−1(p) denotes the p-th quantile of a t-distribution with T − 1 degrees of freedom. This

critical value does not depend on any characteristics of the unit and is justified under relatively

mild conditions on moments. We refer to the combination of the MAX statistic and SNS critical

values as the SNS procedure. The corresponding joint confidence set is denoted by ĈSNS
α .

13We do not study the choice of ε. In the simulations in Section 6 and the applications in Section 7 we follow
Andrews and Barwick (2012) and set ε = 0.012.
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Our second strategy for computing critical values explicitly takes the correlation of the

within-unit moments into account. Note that although the SNS critical value is robust against

this correlation, it can be conservative in the presence of a strong correlation of the within-

unit moments. In the literature on testing moment inequalities, the preferred way to capture

correlation of the moment inequalities is to compute critical values from a bootstrap distribution

that replicates the correlation (Romano, Shaikh, and Wolf 2014; Chernozhukov, Chetverikov, and

Kato 2014). In our setting with unit-specific critical values, a näıve application of the bootstrap

is computationally intractable.14 Instead, we suggest an analytical critical value that is easy to

compute with modern software. Even though the implementation is not based on Monte Carlo

methods, our analytical critical value is mathematically equivalent to multiplier bootstrap with

Gaussian multipliers; we call this the bootstrap critical value for the MAX statistic.

The bootstrap critical for the MAX statistic is given by

cMAX
α,N,i(g) =cMAX

α,N

(
Ω̂i(g)

)
= Φ−1

max,Ω̂i(g)

(
1− α

N

)
,

where Φmax,V denotes the distribution function of the maximal entry of a centered normal

random vector with covariance matrix V . This critical value can be computed by inverting

a multivariate normal probability and is straightforward to implement in modern statistical

software.15 We refer to the combination of the MAX statistic and the bootstrap critical values

as the MAX procedure. The corresponding joint confidence set is denoted by ĈMAX
α .

To define the critical value for the QLR test statistic, let w(·, ·, ·) denote the weight function

defined in Kudo (1963). For a (G− 1)× (G− 1) covariance matrix V , define the distribution

function FQLR,V by

FQLR,V (t) = 1−
G−1∑
j=1

w (G− 1, G− 1− j, V )P
(
χ2
j > t

)
, (6)

where χ2
j has a χ2-distribution with j degrees of freedom. The critical value for the QLR statistic

is given by

cQLR
α,N,i(g) = cQLR

α,N

(
Ω̂i(g)

)
= F−1

QLR,Ω̂i(g)

(
1− α

N

)
.

The weight function w(·, ·, ·) can be represented by a function of multivariate normal probabilities

and is easily computed in statistical software (cf. footnote 15). We refer to this strategy for

computing the confidence set as the QLR procedure. The corresponding joint confidence set is

denoted by ĈQLR
α .

14The unit-wise critical values are large quantiles of a bootstrap distribution and are difficult to approximate
accurately by unsophisticated Monte Carlo methods.

15 For Z ∼ N (0, V ) and a scalar a, P (maxj Zj ≤ a) = P (Z ≤ (a, . . . , a)′). Multivariate normal probabilities can
be efficiently approximated by modern algorithms (Genz 1992). Such algorithms are implemented in the Stata
package MVTNORM (Grayling and Mander 2016) and the R package mnormt (Azzalini and Genz 2016).
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4.4. Critical values for short panels

We suggest a heuristic correction of critical values to improve performances in short panels (i.e.,

panels where T is small). The critical values introduced above are based on theoretical results

that allow the number of observed time periods to be very small compared to the number of units

but still require T →∞ (see Section 5). It is not clear whether our asymptotic approximation is

sufficiently accurate if T is small. Our heuristic correction for short panels is motivated by the

SNS procedure and calibrated so that all three procedures produce the same confidence set in

settings with G = 2 groups. The SNS procedure can be justified for finite T under an additional

normality assumption and does not require a short-panel adjustment.

For the MAX procedure the adjustment is based on the multivariate t-distribution. Let

F fmax,V,T−1 denote the distribution function of the maximal entry of a random vector with

multivariate t-distribution with scale matrix V and T − 1 degrees of freedom. The adjusted

critical value is given by

cMAX,f
α,N,i =cMAX,f

α,N

(
Ω̂i(g)

)
=

√
T

T − 1

(
F f

max,Ω̂i(g),T−1

)−1 (
1− α

N

)
.

For the QLR procedure the adjustment is based on a mixture of F -distributions, as in Wolak

(1987). Let

F f
QLR,Ω̂i(g)

(t) = 1−
G−1∑
j=1

w
(
G− 1, G− 1− j, Ω̂i(g)

)
P (Fj,T−1 > t/j) ,

where Fj,ν has an F -distribution with j and ν degrees of freedom. The adjusted critical value is

given by

cQLR,f
α,N,i = cQLR,f

α,N

(
Ω̂i(g)

)
=

√
T

T − 1

(
F f

QLR,Ω̂i(g)

)−1 (
1− α

N

)
.

All three procedures with short-panel adjustment yield the same confidence level when G = 2. In

this case, each unit’s group membership is completely described by only one moment inequality.

Equivalence of the MAX procedure with short panel adjustment and the SNS procedure is

immediate. For the QLR procedure, note that

T̂QLR
i = (max(D̂i(g, h), 0))2 =

(
T̂ SNS
i

)2

if G = 2 and T̂ SNS
i ≥ 0. The QLR statistic computes critical values from a F -distribution with

1 and T − 1 degrees of freedom or, equivalently, a squared tT−1-distribution. This establishes

equivalence of the QLR procedure with short-panel adjustment and the SNS procedure.

For G > 2, the adjusted critical values do not reflect the finite sample distribution of the

respective test statistic under an additional normality assumption. Tracking the exact distribution

under normality, although desirable, is at odds with our goal of offering confidence sets that can

be easily implemented and cheaply computed.
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4.5. Unit selection

We propose an algorithm that detects units whose group membership is “obvious”. These

units can be ignored when computing the Bonferroni correction in the definition of the critical

values. The algorithm combines moment selection and iterative hypothesis selection. The group

membership for a unit becomes obvious if two conditions are simultaneously met. First, a test

statistic that measures the difference between the left- and the right-hand side of (3) for g = ĝi

and h 6= ĝi takes a large negative value. This corresponds to moment selection. Second, all

alternative group memberships h 6= ĝi are rejected. This corresponds to hypothesis selection.

The algorithm for unit selection can be combined with any of the test statistics and critical

values discussed above. For i = 1, . . . , N , let T̂ type
i denote a unit-wise test statistic and ctype

α,N,i

denote a corresponding critical value, where type = SNS,MAX or QLR. Our algorithm is

parameterized by β, 0 ≤ β < α/3. The larger β, the more unit selection is carried out. Setting

β to zero switches off unit selection.

Moment selection is based on a counterpart to D̂i which does not adjust for the mean under

the null hypothesis. It is given by

D̂U
i (g, h) =

∑T
t=1 d̂

U
it(g, h)√∑T

t=1

(
d̂Uit(g, h)− ¯̂

dUi (g, h)
)2
,

where

d̂Uit(g, h) = (yit − x′itβ̂g,t)2 − (yit − x′itβ̂h,t)2

and
¯̂
dUi (g, h) =

∑T
t=1 d̂

U
it(g, h)/T . For g ∈ G and i = 1, . . . , N , let

M̂i(g) =
{
h ∈ G \ {g} | D̂U

i (g, h) > −2cSNS
β,N

}
.

This set gives the selected inequalities for the hypothesis H0 : g0
i = g. Here we use the SNS

critical value, but other choices may also be possible. Our algorithm proceeds as follows:

1. Set s = 0 and Hi(0) = G.

2. Set N̂(s) =
∑N

i=1 maxg∈Hi(s) 1{#M̂i(g) 6= 0}.

3. Set

Hi(s+ 1) =
{
g ∈ G | T̂ type

i (g) ≤ ctype

α−2β,N̂(s),i
(g)
}
∪ {ĝi} .

If Hi(s+ 1) = Hi(s) for all i then go to Step 5.

4. Set s = s+ 1. Go to Step 3.

5. The confidence set with unit selection is given by Ĉtype
sel,α,β =×1≤i≤N Hi(s+ 1).

Step 2 of the algorithm counts the number N̂(s) of units whose memberships are not obvious.

This number is used for computing critical values. Step 3 carries out hypothesis selection. For
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each unit i, group memberships g ∈ Hi(s+ 1)c = G \Hi(s+ 1) are not rejected under the critical

value that accounts for N̂(s) simultaneously tested units. We iterate moment selection (Step

2) and hypothesis selection (Step 3) until convergence. Typically, moment selection renders a

unit’s group membership “obvious” if the set Hi(s+ 1) is a singleton so that Hi(s+ 1) = {ĝi}.
Otherwise, it is likely that M̂i(g) is non-empty for some g 6= ĝi. Note that for hypothesis selection

(Step 3) we exploit the information revealed by moment selection (Step 2) and use the critical

value computed under N̂(s).

If there is a sufficient number of units for which group membership is “obvious” then Ĉtype
sel,α,β

is more powerful (“smaller”) than the confidence set Ĉtype
α without moment selection. However,

there is a cost of unit selection. When computing the critical value we replace α by α− 2β. This

adjustment controls two possible errors that each occur with probability β. The first error is

estimating an incorrect group membership for a unit whose group membership is obvious “in

population”. The second error is classifying a non-obvious unit as obvious. Because of this cost

of unit selection, confidence sets with unit selection can be more conservative (“larger”) than

those without if an insufficient number of units is eliminated.

Remark 2. The unit selection procedure may be understood as a data-driven way to allocate

error probability to each unit. Let αi denote the probability that the unit-wise confidence level

for unit i does not include the true group membership. In principle, we may distribute the total

error probability α arbitrarily among the N units as long as
∑N

i=1 αi = α. Without unit selection

our procedures allocate the error probability evenly so that αi = α/N . In our discrete testing

problem, this even allocation of the failure probability can render the joint confidence set overly

conservative. Each unit’s marginal confidence set contains at least one group. For units that

are very easy to classify, the probability that a singleton set containing only the estimated group

membership does not cover the truth is less than the error probability α/N .This is a potential

source of overly conservative behavior of the joint confidence set. Our algorithm for unit selection

reshuffles allocated error probability from units that are easy to classify to units that are hard to

classify.

Remark 3. Our unit selection procedure builds on moment selection procedures developed by

Chernozhukov, Chetverikov, and Kato (2014) and others. Allen (2017) points out that the

moment recentering procedure of Romano, Shaikh, and Wolf (2014) yields a more powerful test.

However, the moment recentering procedure has not been developed for settings such as ours

where many moment inequalities are tested simultaneously. Note that in our setting, there is

no point in doing moment selection, since the recentered inequalities are binding under the null

hypothesis. Still, unit selection is possible because the estimated group memberships are always

included.

5. Asymptotic results

In this section, we establish theoretically that our procedures yield joint confidence sets that

asymptotically cover the truth with a pre-specified probability, i.e., we show that (2) holds. Our

results exploit recent developments in high-dimensional statistics. In particular, we rely on
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high-dimensional central limit theorems and anti-concentration inequalities for high-dimensional

settings. We also provide new contributions to this field. All proofs are in the Appendix.

For the justification of the unit-wise confidence sets, we refer to existing results for confidence

sets for finite-dimensional parameters defined by moment inequalities (Rosen 2008; Romano,

Shaikh, and Wolf 2014).

5.1. Asymptotic framework and assumptions

Our asymptotic framework is of the long-panel variety and takes both the number of units N

and the number of time periods T to infinity. In most panel data sets, the number of units far

outstrips the number of time periods. We replicate this feature along the asymptotic sequence

by allowing N to diverge at a much faster rate than T .

We introduce some assumptions. For a probability measure P , let EP denote the expectation

operator that integrates with respect to the measure P .

Assumption 1. (i) The set of latent groups is enumerated as G = {1, . . . , G}. For g, h ∈ G
and g 6= h, max1≤t≤T ‖βg,t−βh,t‖ > 0. There exists Kβ such that maxg∈G max1≤t≤T ‖βg,t‖ ≤
Kβ.

(ii) P is a probability measure such that, for N,T ≥ 1, for each unit i = 1, . . . , N , (uit)1≤t≤T

is an independent sequence with EP [uit | xit] = 0 and EP (u2
it) = σ2

i and, for t = 1, . . . , T ,

the matrix EP (xitx
′
it) is of full rank. There exists σ > 0 such that EP [(uit/σi)

2 | xit] ≥ σ2.

(iii) There exists a sequence γN,T,8 and estimators β̂g of βg for all g ∈ G such that

P

max
g∈G

(
1

T

T∑
t=1

∥∥β̂g,t − βg,t∥∥8

)1/8

> γN,T,8

 ≤ ξN,T
for a vanishing sequence ξN,T .

(iv) Along the asymptotic sequence T ≤ N and T−1/2(logN) ≤ 1 and, for t = 1, . . . , T , the

moment EP
[
|uit/σi|8 ‖xit‖8 + ‖xit‖16/σi

]
exists.

Part (i) restricts the group structure. The set of latent groups is assumed to be finite with

known cardinality. Groups are unique, i.e., there are no groups that share the same coefficient

values. We also assume that group-specific coefficients take values in a bounded set. This is a

technical assumption that can be relaxed at the expense of a more involved statement of the

asymptotic results.

Next, Part (ii) imposes assumptions on the error term. Most importantly, we assume that

the innovations are independent. This rules out serial correlation. Our proofs build on recent

advances in the theory of asymptotic approximations in high-dimensional settings that are

currently only available for independent innovations.16 In the future, as new results become

available, it may be possible to extend our results to settings with weakly dependent observations.

16A high-dimensional CLT for possibly dependent data is proved in Zhang and Cheng (2017) for the MAX
statistic. There exist some attempts to extend the SNS theory to dependent data (see, e.g., Chen et al. 2016).
We are not aware of a high-dimensional anti-concentration inequality for dependent data.
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Part (iii) requires existence of an estimator β̂g,t that is consistent for βg,t at a certain rate.

Suppose, for example, that the group-specific coefficients are estimated from an auxiliary data

set with Naux observations. Under some regularity conditions we can take γN,T,8 = O
(
N
−1/2
aux

)
.

In settings in which the coefficients are estimated without explicit knowledge about the true

group memberships, rate calculations can be based on the results in Bonhomme and Manresa

(2015), Su, Shi, and Phillips (2016), and Wang, Phillips, and Su (2016). These methods provide√
NT consistent estimators when the coefficients are time invariant (i.e., βg,t = βg).

Finally, Part (iv) is a technical assumption that guarantees the existence of all moments that

enter the statements of the theorems below.

For the asymptotic analysis, it is convenient to write

D̂i(g, h) =
T−1/2

∑T
t=1 d̂it(g, h)/σi

Ŝi,T (g, h)
,

where

Ŝ2
i,T (g, h) =

1

σ2
i T

T∑
t=1

(
d̂it(g, h)− ¯̂

dit(g, h)
)2

and
¯̂
dit(g, h) =

∑T
t=1 d̂it(g, h)/T . The population counterpart of Ŝ2

i,T (g, h) is given by

s2
i,T (g, h) =

1

σ2
i T

T∑
t=1

E (dit(g, h)− E[dit(g, h)])2 .

Let P denote a probability measure that satisfies Assumption 1. For a matrix A, let λ1(A)

denote A’s smallest eigenvalue. Assumptions 1(i) and (ii) imply

s2
i,T (g0

i , h) ≥ σ2 min
1≤i≤N

min
h∈G\{g0i }

1

T

T∑
t=1

λ1(EP (xitx
′
it))‖βg0i ,t − βh,t‖

2 =: s2
N,T (P ) > 0.

The theorems below define a class PN of probability measures. This class satisfies a number of

moment conditions that are defined in terms of

BN,T,p(P ) = max
1≤t≤T

(
EP
[

max
1≤i≤N

(
|uit/σi|p ‖xit‖p + ‖xit‖2p/σi

)]
/spN,T (P )

)1/p

,

DN,T,p(P ) = max
1≤i≤N

(
1

T

T∑
t=1

EP
[
|uit/σi|p ‖xit‖p + ‖xit‖2p/σi

]
/spN,T (P )

)1/p

.

In the following, for all quantities that depend on the probability measure P , this dependence is

kept implicit.

5.2. The SNS procedure

In this section, we establish validity of the joint confidence set based on the MAX test statistic

with SNS critical values.
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Theorem 1. Let PN denote a sequence of classes of probability measures that satisfy Assump-

tion 1, and let

ε1,N = sup
P∈PN

γN,T,8(logN)
(
T−5/24B2

N,T,8

√
logN +DN,T,4

)
,

ε2,N = sup
P∈PN

γN,T,8
√
T logNDN,T,2,

ε3,N = sup
P∈PN

T−1/6DN,T,3

√
logN.

and εN = ε1,N + ε2,N + ε3,N + ξN,T . Suppose that εN → 0 and

max
P∈PN

T−5/24BN,T,4
√

logN ≤ 1. (7)

Then, for each 0 < α < 1, there is a constant C depending only on α, G, Kβ and the sequence

εN such that

sup
P∈PN

P
({
g0
i

}
1≤i≤N ∈ Ĉ

SNS
α

)
≥ 1− α− CεN .

This theorem states that the SNS confidence set contains the true group membership structure

at least with probability 1− α−CεN . Note that the rate of convergence εN does not depend on

P . Hence, convergence is uniform over PN .

The outline of the proof is as follows. We first replace D̂i(g
0
i , h) by

D̃i

(
g0
i , h
)

:=

∑T
t=1 dit(g

0
i , h)√∑T

t=1

(
dit(g0

i , h)− d̄it(g0
i , h)

)2 .
The rates ε1,N and ε2,N bound the rate at which D̂i(g

0
i , h) converges to D̃i

(
g0
i , h
)
. Thus, they

represent the effect of estimating the group-specific coefficients. The distribution of D̃i

(
g0
i , h
)

is approximated by a t-distribution scaled by the factor
√
T/(T − 1).17 This approximation

contributes ε3,N to the overall convergence rate and relies on a Cramér-type moderate deviation

inequality for self-normalized sums (Jing, Shao, and Wang 2003). Note that Condition (7) is

non-essential. It is imposed to simplify the statement of the theorem. It can be relaxed at the

expense of inflating ε1,N and ε2,N .

Our result holds even if T is very small compared to N . For example, if DN,T,3 is bounded

along the asymptotic sequence then ε3,N vanishes if T−1/3(logN)→ 0, allowing T to diverge to

infinity at a much slower rate than N . We therefore expect that the confidence set performs

well even if the panel is rather short.

Although the usefulness of the SNS theory in testing many inequalities was first discovered in

Chernozhukov, Chetverikov, and Kato (2014, Theorem 4.1), our result differs in two ways. First,

we use a critical value that is computed from a t-distribution, whereas their critical value is

computed by transforming normal quantiles. Our approach offers an appealing symmetry between

the small T setting with an additional normality assumption and the large T setting without

a parametric assumption. Moreover, whereas the critical value in Chernozhukov, Chetverikov,

17If the dit(g
0
i , h) are normally distributed, then this is the exact distribution.
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and Kato (2014) is not defined for small T , our critical value is always computable.18 To prove

the validity of our critical value, we extend the argument in Chernozhukov, Chetverikov, and

Kato (2014) by an additional approximation step. Following their argument, we first apply the

Cramér-type inequality to show that quantiles of D̃i(g
0
i , h) can be approximated by a function

of normal quantiles. Our second approximation step establishes that this function of normal

quantiles is well approximated by our critical value.

Second, Chernozhukov, Chetverikov, and Kato (2014, Theorem 4.1) do not consider parameter

uncertainty, whereas our results quantify the effect of estimating the group-specific parameters

under low-level assumptions that are easy to interpret.19 In our proof, we reduce the problem

with estimated parameters to a problem with known parameters. To this end, we bound the

probability that the test rejects by the probability that the oracle statistic D̃i(g
0
i , h) exceeds the

critical value associated with confidence level 1− αN for αN > α. Based on a careful analysis of

the tail of the t-distribution, we can show that, under the assumptions of the theorem, there is

asymptotically no effect of replacing α by αN .

5.3. The MAX procedure

In this section, we establish that the MAX procedure produces an asymptotically valid confidence

set. Our result requires slightly stronger assumptions than the corresponding theorem for the

SNS procedure.

We allow for strong correlation of the within-unit moment inequalities. Let Ωi(g
0
i ) denote the

(G− 1)× (G− 1) correlation matrix with entries

(
Ωi(g

0
i )
)
h,h′

=

∑T
t=1 E

[
dit(g

0
i , h)dit(g

0
i , h
′)
]√∑T

t=1 E
[
d2
it(g

0
i , h)

]∑T
t=1 E

[
d2
it(g

0
i , h
′)
] .

For our theoretical result below, we assume that Ωi(g
0
i ) is nonsingular. In particular, pairs of

moment inequalities are not perfectly correlated. To model strong correlation of the moment

inequalities, we allow the correlation matrix to approach singularity at a controlled rate.

Theorem 2. Suppose that there is a sequence ωN > 0 such that λ1(Ωi(g
0
i )) ≥ ω−1

N for i =

1, . . . , N . Let PN denote a sequence of classes of probability measures that satisfy Assumption 1,

and let

ε1,N = sup
P∈PN

γN,T,8(logN)
(
T−3/14B2

N,T,8

√
logN +DN,T,4

)
,

ε2,N = sup
P∈PN

γN,T,8
√
T logNDN,T,2,

ε3,N = sup
P∈PN

T−1/7BN,T,4 logN.

18In our setting, the critical value in Chernozhukov, Chetverikov, and Kato (2014) is given by Φ−1(1− α/((G−
1)N))/

√
1− Φ−1(1− α/((G− 1)N))2/T . If T is small, then the term inside of the square root can be negative.

19Chernozhukov, Chetverikov, and Kato (2014) consider parameter uncertainty for their bootstrap procedures,
but not for their SNS procedures. For their bootstrap procedure they give a high-level assumption under
which parameter uncertainty can be ignored.
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and

εN =
(
ε1,N + ε3,N

)
(ω2
N ∨ 1) + ε2,N + ξN,T .

Suppose that εN → 0 and T−1/7(logN) → 0. Then, for each 0 < α < 1 there is a constant C

depending only on α, G and Kβ and the sequence εN such that

sup
P∈PN

P
({
g0
i

}
1≤i≤N ∈ Ĉ

MAX
α

)
≥ 1− α− CεN .

The theorem states that the empirical coverage probability of the MAX confidence set is

at least 1 − α − CεN . As in Theorem 1, our result establishes that the coverage probability

converges uniformly over PN to the nominal level.

The proof of Theorem 2 relies on two new oracle results. The first establishes that D̂i(g
0
i , h)

can be replaced by Di(g
0
i , h), where

Di(g
0
i , h) :=

T−1/2
∑T

t=1 dit(g
0
i , h)/σi

si,T (g0
i , h)

.

The cost of estimating the group-specific parameters is given by ε1,N and ε2,N . Note that, in

contrast to the proof of Theorem 1, we eliminate the randomness of the denominator before

deriving a distributional result. We prove this result by combining point-wise bounds with a

high-dimensional anti-concentration inequality (Chernozhukov, Chetverikov, and Kato 2015,

Corollary 1). Then, we approximate Di(g
0
i , h) by its normal limit using a high-dimensional

central limit theorem (Chernozhukov, Chetverikov, and Kato 2016). This step of the proof

contributes ε3,N to the overall convergence rate. If the support of uit and xit can be bounded

uniformly over i, then ε3,N vanishes if T−1/7(logN)→ 0. This is a stronger condition than what

is required in Theorem 1.

The second oracle result establishes that the critical value cMAX
α,N (Ω̂i(g

0
i )) can be replaced by

cMAX
αN ,N

(Ωi(g
0
i )) for some αN → α. Under the normal approximation of Di(g

0
i , h), cMAX

αN ,N
(Ωi(g

0
i ))

is the critical value that gives a unit-wise confidence set with coverage 1− αN/N .

5.4. The QLR procedure

We now establish that the QLR confidence set has asymptotically the correct coverage. To the

best of our knowledge, our formal result below represents the first theoretical analysis of the

QLR statistic in a high-dimensional setting.

Theorem 3. Suppose that there is a constant λ1 such that λ1(Ωi) ≥ λ1 > 0 for i = 1, . . . , N .

Let PN denote a sequence of classes of probability measures that satisfy Assumption 1, and let

ε1,N = sup
P∈PN

γN,T,8(logN)
(
T−3/14B2

N,T,8

√
logN +DN,T,4

)
,

ε2,N = sup
P∈PN

γN,T,8
√
T logNDN,T,2,

ε3,N = sup
P∈PN

T−1/7BN,T,4 logN,
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and εN = ε1,N + ε2,N + ε3,N + ξN,T . Suppose that εN → 0 and T−1/7(logN)→ 0. and that all

P ∈ PN impose cross-sectional independence. Then, for each 0 < α < 1 there is a constant C

depending only on α, λ1, G, Kβ and the sequence εN such that

sup
P∈PN

P
({
g0
i

}
1≤i≤N ∈ Ĉ

QLR
α

)
≥ 1− α− CεN .

This theorem establishes the validity of the QLR approach under similar assumptions as those

imposed in Theorem 2.

The proof of Theorem 3 follows the same outline as that of Theorem 2. However, the

arguments for establishing some of the steps are different and require new theoretical results.

Let Di(g
0
i ) = {Di(g

0
i , h)}h∈G\{g0i } and let

TQLR
i (g0

i ) = max
t≤0

(
Di(g

0
i )− t

)′
Ω−1
i (g0

i )
(
Di(g

0
i )− t

)
.

We first apply a new anti-concentration result to justify that we can replace T̂QLR
i (g0

i ) by

TQLR
i (g0

i ). We then show that the set of values of Di(g
0
i ) that map into rejections, i.e., that

yield TQLR
i (g0

i ) > cQLR
α,N (Ωi), is a convex set in RG−1. This observation allows us to employ the

central limit theorem for sparse-convex sets in Chernozhukov, Chetverikov, and Kato (2016,

Proposition 3.2) from which we conclude that the oracle test statistics {TQLR
i }1≤i≤N converge

jointly to their normal limits. For each i = 1, . . . , N , the limiting distribution of TQLR
i (g0

i ) is

described by the distribution function FQLR,Ωi(g0i ) (Rosen 2008).

As an additional assumption, Theorem 3 imposes independence between units. We use

cross-sectional independence to verify the conditions of a high-dimensional central limit theorem

and to prove an anti-concentration inequality. In the first instance, cross-sectional independence

can be relaxed to allow for some correlation between units at the expense of more restrictive

moment conditions. In the second instance, cross-sectional independence is an essential ingredient

in our proof strategy. To prove an appropriate anti-concentration result, we exploit the fact

that the limiting distribution of the unit-wise test statistic T̂QLR
i (g0

i ) has a representation as a

mixture of χ2-random variables (Kudo 1963; Nüesch 1966; Wolak 1989; Rosen 2008). Under

cross-sectional independence, we can use the marginal distributions of the unit-wise tests to

derive an anti-concentration result for the joint test that tests all N units simultaneously. This

argument cannot be extended to a setting without cross-sectional independence.

We also deviate from the assumptions of Theorem 2 by requiring a uniform lower bound on the

smallest eigenvalue of Ωi. This bound is needed to verify the assumptions of a high-dimensional

central limit theorem (Chernozhukov, Chetverikov, and Kato 2016, Proposition 3.2).

5.5. Unit selection

In this section, we provide an asymptotic justification of our algorithm for unit selection. We

show that applying unit selection to any of the three procedures described above generates valid

confidence sets. The following theorem gives conditions under which the coverage probability

of the confidence set after unit selection converges to the nominal level. The convergence is

uniform over probability measures.
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Theorem 4. Let Ĉtype
sel,α,β denote a joint confidence set, where type = SNS,MAX or QLR.

Suppose that {ĝi}1≤i≤N satisfies D̂U
i (ĝi, h) ≤ 0 for any h ∈ G and i = 1, . . . , N . Let PN denote a

sequence of classes of probability measures that satisfy the conditions in Theorem 1 if type = SNS,

Theorem 2 if type = MAX and Theorem 3 if type = QLR. In addition, suppose that

max
P∈PN

T−5/36DN,T,3

√
log(N/β) ≤ 1, (8)

max
P∈PN

T−5/24BN,T,4 log(N/β) ≤ 1, (9)

max
P∈PN

T 2/3γN,T,8

(
T−5/24BN,T,4

√
logN +DN,T,2

)√
log(N/β) ≤ 1, (10)

max
P∈PN

T 1/6γ2
N,T,8

(
T−5/12(logN)B4

N,T,8 +D2
N,T,4

)
×
(
DN,T,1 +

√
logN + T−1/4BN,T,4 logN

)√
log(N/β) ≤ 1. (11)

Then, for each 0 < α < 1, there is a constant C depending only on α, G, Kβ and the sequence

εN , defined in the theorem corresponding to the value of type, such that

sup
P∈PN

P
({
g0
i

}
1≤i≤N ∈ Ĉ

type
sel,α,β

)
≥ 1− α− CεN − CT−1/6.

The conditions assumed here are slightly stronger versions of the conditions required in the

previous theorems. This is partly because we use an auxiliary test statistic based on moment

inequalities that have not been mean-adjusted.

Although the proof strategy for Theorem 4 has been adapted from the literature on moment

selection (cf. Chernozhukov, Chetverikov, and Kato 2014), details of the argument have to be

modified to account for the fact that our test statistics are based on mean-adjusted moment

inequalities.

For unit selection to work, it is key that our joint confidence set always includes the vector of

estimated group memberships. This implies that for units whose group memberships are obvious,

it suffices to control the probability that the true group membership is not the estimated one.

Step 1 of our proof shows that D̂U
i (ĝi, h) ≤ 0 implies that this probability is asymptotically less

than β.

The assumption D̂U
i (ĝi, h) ≤ 0 means that the estimator of group memberships is based on an

empirical version of inequality (3). This assumption will be automatically satisfied for estimators

based on the kmeans estimator such as the estimator in Bonhomme and Manresa (2015). For

Theorem 1 through Theorem 3, the inclusion of estimated memberships is not required for the

asymptotic validity of the confidence set and it does not matter how group memberships are

estimated.

6. Monte Carlo simulations

In this section, we study the finite-sample behavior of our procedures in Monte Carlo simulations.

We consider both homoscedastic and heteroscedastic designs. For all our designs, we simulate

panels of N = 50 units that are observed over T = 10, 20, 30, 40 time periods. We assume that

the group-specific parameters are observed and compute joint confidence sets with nominal
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coverage probability 1− α = 0.9. All simulation results are based on 1000 replications.

6.1. Homoscedastic design with three groups

For our first design, we consider a model with group fixed effects and G = 3 groups. For unit

i = 1, . . . , N , the outcome in period t is given by

yit = αg0i ,t
+ uit. (12)

The group fixed effects {αg,t}1≤t≤T for the three groups are defined as follows. Let ϕT (t) =

−1/2+2 |t− T/2| /T . For t = 1, . . . , T , α1,t = 0, α2,t = ϕT (t)+1, α3,t = ϕT/2(t mod dT/2e)−1.20

The time profile for the group fixed effects is plotted in Figure B.1 in the Appendix. Note that

the groups can be ordered. The group fixed effect of group 2 is large in all time periods, and that

of group 2 is small in all time periods. The group fixed effect of group 1 is straddled between the

effects of the other two groups. This choice of group fixed effects can be viewed as a perturbation

to a specification with three parallel group fixed effects.21 All units are assigned to the same

group g0 = 1, 2, 3. Our specification induces strong correlation of the moment inequalities.22

The error terms uit are i.i.d. draws from N (0, σ2T ) for σ = 0.25, 0.5. Note that the variance of

the error term is scaled in a way that keeps the difficulty of the classification problem constant as

we increase the number of observed time periods. This makes our simulation results for different

values of T informative about the accuracy of the asymptotic approximation in finite-samples.23

We simulate three joint confidence sets (SNS, MAX and QLR). The critical values for the

QLR and MAX procedures are adjusted for short panels. For this homoscedastic design, we

turn off unit selection (β = 0). Following Andrews and Barwick (2012), we set the parameter

for regularizing Ω̂i to ε = 0.012.24 The simulation results are summarized in Table 1, where

we report simulated coverage probabilities and average cardinality of the marginal unit-wise

confidence sets. For group assignments g0 to the two “outer” groups (groups 2 and 3), the

simulation results are almost identical. This is expected, since these two groups are symmetric

by construction. Therefore, we only discuss results for g0 = 1, 2.

In all simulated designs, all three procedures construct valid confidence sets, with the empirical

coverage probability close to or exceeding the nominal coverage probability. Since the SNS

procedure does not explicitly take into account the within-unit correlation of the moment

inequalities, the SNS critical value is an upper bound to the MAX bootstrap critical value.

Therefore, the SNS procedure always yields a more conservative confidence set than the MAX

procedure. This is confirmed numerically in the simulations.

For g0 = 1, the QLR procedure provides narrower confidence sets than the MAX procedure,

20dT/2e is the smallest integer larger than T/2.
21A specification with parallel group fixed effects induces perfectly correlated moment inequalities. This violates

the assumptions under which we establish the validity of our procedures. Our perturbation is calibrated in a
way that ensures that our Monte Carlo results do not reflect our particular choice for how we regularize Ω̂i(g).

22For example, for T = 40 and g0 = 1, our simulations indicate that (E Ω̂i(1))1,2 = −0.93 and (E Ω̂i(2))1,2 = 0.98.

For T = 40 and g0 = 2, (E Ω̂i(1))1,2 = −0.90 and (E Ω̂i(2))1,2 = 0.98.
23Note that without rescaling the variance of the error term, increasing T eventually renders the classification

problem trivial. For large T , all our procedures report a confidence set that includes only the true group
memberships.

24The results are robust to different choices of ε.

24



empirical coverage cardinality of CS

g0 σ T SNS MAX QLR SNS MAX QLR

1 0.25 10 0.96 0.96 0.96 2.40 2.21 2.09
1 0.25 20 0.92 0.93 0.95 1.74 1.59 1.53
1 0.25 30 0.92 0.91 0.95 1.54 1.42 1.39
1 0.25 40 0.92 0.92 0.94 1.45 1.35 1.33
1 0.50 10 0.94 0.93 0.93 2.91 2.87 2.84
1 0.50 20 0.92 0.93 0.92 2.82 2.75 2.73
1 0.50 30 0.90 0.92 0.93 2.77 2.70 2.68
1 0.50 40 0.92 0.92 0.94 2.75 2.67 2.65
2 0.25 10 0.97 0.95 0.93 1.84 1.81 1.85
2 0.25 20 0.96 0.93 0.90 1.42 1.41 1.51
2 0.25 30 0.94 0.92 0.92 1.30 1.30 1.39
2 0.25 40 0.96 0.91 0.92 1.25 1.25 1.33
2 0.50 10 0.95 0.92 0.89 2.63 2.53 2.47
2 0.50 20 0.95 0.92 0.91 2.28 2.20 2.20
2 0.50 30 0.95 0.91 0.91 2.17 2.11 2.13
2 0.50 40 0.95 0.92 0.90 2.12 2.07 2.10
3 0.25 10 0.97 0.95 0.94 1.84 1.81 1.85
3 0.25 20 0.96 0.91 0.92 1.42 1.42 1.51
3 0.25 30 0.94 0.91 0.91 1.30 1.30 1.38
3 0.25 40 0.95 0.92 0.90 1.25 1.25 1.32
3 0.50 10 0.97 0.93 0.91 2.62 2.53 2.47
3 0.50 20 0.95 0.92 0.90 2.28 2.20 2.20
3 0.50 30 0.94 0.90 0.89 2.17 2.11 2.12
3 0.50 40 0.94 0.91 0.90 2.12 2.07 2.09

Table 1: Homoscedastic design with G = 3 groups. Results based on 1000 simulated joint
confidence sets with 1 − α = 0.9. Critical values for MAX and QLR procedures are
adjusted for short panels. “Empirical coverage” gives the simulated coverage probability
of the joint confidence set. “Cardinality of CS” gives the simulated expected average
cardinality of a marginal (unit-wise) confidence set.
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despite also being more conservative. For g0 = 2, the result is reversed. The MAX procedure is

more powerful than the QLR procedure, despite also being more conservative. This comparison

illustrates that neither of our two test statistics dominates the other.

We also simulate the QLR and MAX confidence sets without short-panel adjustment. The

simulation results are given in Table B.1 in the Appendix. As expected, without short-panel

adjustment the confidence set is substantially undersized in short panels. As T increases, the

empirical coverage probability of the confidence set monotonically converges to the nominal

level, confirming our asymptotic results. For T = 40 the empirical coverage is within a 5% rage

of the nominal level. Since the exact rate of convergence is design dependent, we recommend

always using critical values with short-panel adjustment.

Our design induces highly correlated moments. In the Supplementary Appendix, we report

simulation evidence for an alternative design in which the moment inequalities are not as strongly

correlated. Our procedures perform well in this alternative design.

6.2. Heteroscedastic design with two groups

We now study the finite-sample properties of our algorithm for unit selection. To make unit

selection meaningful we introduce heteroscedasticity.

Again, outcomes are generated from the linear model with group fixed effects (12). There

are G = 2 groups with time-constant group fixed effects. For all t = 1, . . . , T , the group fixed

effects are given by α1,t = 0.5 and α2,t = −0.5. We only simulate units with g0
i = 1. Due to the

symmetry of the design this is without loss of generality.

There are two “types” of units that face different degrees of statistical noise. For the “high noise”

type the error term uit is an i.i.d. draw from N (0, σ2T ), where σ = 0.25, 0.5. For the “low noise”

type, uit is an i.i.d. draw from N (0, (σ/5)2T ). The type of a unit is randomized independently

of everything else. Unit i is assigned to the “high noise” type with either probability 0.5 (1:1

type ratio) or with probability 0.25 (1:3 type ratio).

We only simulate SNS confidence sets. QLR and MAX with short panel adjustment give

numerically identical confidence sets when G = 2 (see Section 4.4). We set either β = 0 (no unit

selection) or β = 0.01 (unit selection).

The simulation results are reported in Table 2. In the designs with σ = 0.25, the unit selection

algorithm identifies units of the “low noise” type as easy to classify and ignores them when

computing the Bonferroni adjustment of the critical values. Relative to the case of no unit

selection, this lowers the critical values for units of the “high noise” type. Consequently, the

unit-wise confidence sets for “high noise” units become more powerful and a higher proportion

of singletons is reported. This effect is more pronounced in the setting with a higher proportion

of “low noise” units (1:3 type ratio).

In the designs with σ = 0.50, the unit selection algorithm identifies only a small proportion of

the “low noise” types as easy to classify. Relative to the case of no unit selection, the unit-wise

confidence sets for the “high noise” units become less powerful and a smaller proportion of

singletons is reported.

This illustrates an important trade-off in employing unit selection. It improves the power of

the joint confidence set if many units are deleted, but may reduce the power if an insufficient
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no unit selection with unit selection

σ type ratio T coverage power coverage N̂/N power

0.25 1:1 10 0.95 0.59 0.95 0.52 0.67
0.25 1:1 20 0.95 0.75 0.94 0.51 0.81
0.25 1:1 30 0.95 0.80 0.92 0.51 0.85
0.25 1:1 40 0.95 0.82 0.94 0.51 0.87
0.25 1:3 10 0.98 0.59 0.95 0.28 0.78
0.25 1:3 20 0.96 0.76 0.93 0.26 0.89
0.25 1:3 30 0.97 0.80 0.92 0.26 0.90
0.25 1:3 40 0.98 0.82 0.93 0.26 0.92
0.50 1:1 10 0.96 0.10 0.96 0.90 0.09
0.50 1:1 20 0.94 0.14 0.94 0.94 0.13
0.50 1:1 30 0.95 0.15 0.97 0.96 0.14
0.50 1:1 40 0.94 0.17 0.96 0.97 0.15
0.50 1:3 10 0.97 0.10 0.97 0.85 0.09
0.50 1:3 20 0.97 0.14 0.97 0.92 0.13
0.50 1:3 30 0.98 0.15 0.98 0.94 0.14
0.50 1:3 40 0.98 0.16 0.98 0.95 0.15

Table 2: Heteroscedastic design with two groups. Results based on 1000 simulated joint confidence
sets (SNS) with 1−α = 0.9. “Coverage” gives the simulated coverage probability of the
joint confidence set. “Power” gives the simulated probability of reporting a singleton
marginal (unit-wise) confidence set for the “high noise” type. N̂/N gives the simulated
expected proportion of selected units.

number of units are deleted. To see why this is the case, note that unit selection affects critical

values in two ways. First, it allows us to do less Bonferroni correction, which lowers the critical

values. Second, it changes the nominal level of the computed confidence set from α to α− 2β,

which increases the critical values. Unit selection is beneficial if the first effect dominates the

second effect.

7. Applications

We apply the proposed confidence sets to two empirical applications. The first studies the effect

of a minimum wage, and the second studies heterogeneous trajectories of democratization.

7.1. Minimum wage and unemployment

The first application studies heterogeneity in the effect of a minimum wage on unemployment.

We examine panel data of states in the US and cluster them into two groups. The effect of a

minimum wage is positive in one group and negative in the other. Our confidence sets quantify

the uncertainty from using a data-driven method to sort states into one of the two groups.

To estimate the group-specific effects, we replicate results from Wang, Phillips, and Su (2016).

Using US panel data, they follow an approach pioneered by Neumark and Wascher (1992) and

identify the effect of a minimum wage from cross-state variation. Recently, Dube, Lester, and

Reich (2010) argued that the way that a local economy reacts to a minimum wage may be

affected by unobserved spatial heterogeneity. Wang, Phillips, and Su (2016) address this concern

by proposing a linear panel model with a group structure. They estimate the following model
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Effect of minimum wage
insignificant pos.

insignificant neg.

significant pos.

significant neg.

Figure 1: Estimated group memberships. The significance of the estimated group membership is
based on unit-wise confidence sets at level 1− α = 0.9.

for state i in time period t

ueit = βg0i ,1
uei(t−1) + βg0i ,2

gri(t−1) + βg0i ,3
mwi(t−1) + µi + uit,

where ueit is the unemployment rate, grit is the growth rate of GDP, mwit is the real state

minimum wage, µi is a state fixed effect and uit is an error term. The coefficients that describe

the linear relationship may depend on the latent group membership of state i. We estimate the

grouped panel model and compute unit-wise and joint confidence sets for group membership.

The presence of the individual fixed effect µi renders this regression model different from our

canonical model (1). In Section C of the Supplementary Appendix, we explain how to apply our

methods to a linear panel data model after individual fixed effects have been differenced out.

We obtain all data from the online portal of the Federal Reserve Bank of St Louis.25 We

use yearly data for all 50 states (N = 50) from the period 1988 to 2014 (T = 26). For states

in which state law does not specify a minimum wage, we use instead the federally mandated

minimum wage. The data is standardized so that the time series for each state have standard

deviation one.

Our estimation strategy is different from that employed in Wang, Phillips, and Su (2016), but

our estimates are very similar.26 We use the CLasso estimator from Su, Shi, and Phillips (2016)

to estimate the group structure. Then, we estimate the group-specific parameters by post-Lasso

least squares and perform a bias correction by half-panel Jackknifing (Dhaene and Jochmans

2015).

We detect G = 2 groups with 26 and 24 members, respectively. Like Wang, Phillips,

and Su (2016), we find that one group has a positive coefficient on the lagged minimum

wage (“positive effect group”), whereas the other has a negative coefficient (“negative effect

group”). The estimated coefficients are reported in Table B.2. The map in Figure 1 depicts

25The GDP data is from the US Bureau of Economic Analysis, the minimum wage and unemployment data is
from the US Department of Labor, and the CPI data is from the OECD Main Economic Indicators table.

26Their procedure includes a post-processing step using a hierarchical clustering algorithm. The results of
the procedure are sensitive to the choice of the regularization parameter that controls the intensity of the
post-processing step. We choose an alternative estimation procedure for which this post-processing step is not
needed.
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jointly insignificant pos.

jointly insignificant neg.

select for intervention (pos.)

select for intervention (neg.)

Figure 2: Joint confidence set at level 1 − α = 0.66. States with jointly significant estimated
group memberships are selected into a treatment group based on the sign of their
estimated effect of a minimum wage.

the estimated group memberships. Significant estimates are indicated by bold colors, states

with insignificant estimates are lightly shaded. Significance is based on unit-wise confidence

sets at level 1− α = 0.9.27 A state’s estimated group membership is significant if its unit-wise

confidence set is a singleton.

The job of a policy maker who considers adjusting a minimum wage rate is complicated by

heterogeneous responses to a minimum wage. An ideal policy decreases the local minimum

wage in states where it has a positive effect on unemployment and increases it in states where

is has a negative effect. A näıve way of assigning states to one of the two treatment groups

is by estimated group membership. However, because of sampling error we may estimate the

group membership of some states incorrectly and select them into the “wrong” treatment group.

The näıve way of assigning states to treatments does not control this kind of misclassification.

Based on our joint confidence set, we can implement an alternative procedure that controls the

probability of misclassification.

We first compute a joint confidence set at confidence level 1−α. For an illustrative calculation,

we choose α = 0.33 and compute a “1-sigma” joint confidence set.28 In the case of two groups,

all our procedures yield numerically identical results. As outlined in Section C, we remove the

fixed effect by a standard fixed effect transformation and correct for bias using the half-panel

Jackknife from Dhaene and Jochmans (2015). We do not employ unit selection (β = 0). The

realized joint confidence set is depicted in Figure 2.29

To select the states for the “lower the minimum wage” treatment we select all states for

which the marginal confidence set contains only the “positive effect” group. This strategy avoids

uncontrolled misclassification, as these states have been found to be jointly significantly different

from those in the “negative effect” group. Conversely, we select all states for which the marginal

confidence set contains only the “negative effect” group into the “increase the minimum wage”

27We use critical values with a short-panel adjustment so that, in this setting with G = 2 groups, all our procedures
compute the same confidence sets.

28In contrast to the pointwise case, there does not seem to be an established confidence level for joint inference
over a large set. We adopt a 1-sigma confidence set (1 − α = 0.66). This level is often used for confidence
bands for impulse response functions in time-series models (cf. Stock and Watson 2001).

29See also Table B.3 in the Appendix.
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treatment. States for which the marginal confidence set is not a singleton are left untreated.

This procedure guarantees that the probability of assigning one or several states to the wrong

treatment is at most α. Based on the realized joint confidence set, we select 3 states into

the “decrease the minimum wage” treatment and 9 states into the “raise the minimum wage”

treatment.30

7.2. Paths to democracy

Our second application addresses the classification of countries based on heterogeneous trajectories

of democratization. We build on the group fixed effects model proposed in Bonhomme and

Manresa (2015).

Acemoglu et al. (2008) use country panel data to estimate the relationship between income

(measured by GDP per capita) and democracy (measured by the Freedom House democracy

index). Bonhomme and Manresa (2015) expand on this seminal study and estimate an augmented

specification with group fixed effects. For country i and time period t they estimate the model

democracyit = θ1democracyi(t−1) + θ2 log(gdp pci(t−1)) + αg0i ,t
+ uit,

where democracyit is the level of democracy measured by the Freedom House indicator, gdp pc

is GDP per capita and uit is an error term. The inclusion of the group fixed effect αg,t lends

credibility to the exogeneity assumption of the linear panel model. In particular, the group fixed

effect can pick up exogenous events, such as the process of decolonization, that unfold over time

and impact both democratization and income growth.

We use the replication data set provided by Bonhomme and Manresa (2015). It is based

on the balanced subsample from Acemoglu et al. (2008) and contains observations for N = 90

countries. Each country is observed every five years over the period 1970 – 2000 (T = 7). Details

on the estimation procedure and estimates can be found in Bonhomme and Manresa (2015).

Here, we focus on the pattern of grouped heterogeneity.

Bonhomme and Manresa (2015) detect G = 4 groups. Estimated time profiles for the group

fixed effects are plotted in Figure B.2. There are two groups for which the fixed effect is

almost constant over time, one with a low constant value and one with a high constant value.

These are called the “low democracy” and “high democracy” groups, respectively. Then, there

are two transitioning groups for which the group fixed effect starts out at about the level of

the “low democracy” group, and then transitions to roughly the level of the “high democracy”

group. There is an early transitioning group for which the transition starts in 1975, and a late

transitioning group for which the transition starts in 1990.

As we demonstrate below, our procedures compute large, yet informative confidence sets.

Based on these confidence sets, we can, for example, reject the hypotheses that all countries are

“low democracy” countries or that all countries are “high democracy” countries.

We compute 1-sigma joint confidence sets, i.e., 1− α = 0.66, based on the SNS, MAX and

QLR procedures without unit selection. For the MAX and QLR procedures, we use short-panel-

30The “decrease the minimum wage” treatment group consists of California, Connecticut and Massachusetts.
The “raise the minimum wage” treatment group consists of Kansas, Minnesota, Mississippi, North Dakota,
Nebraska, South Dakota, Vermont, West Virginia and Wyoming.
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critical value |Ĉα,i| = 1 |Ĉα,i| = 2 |Ĉα,i| = 3 |Ĉα,i| = 4

SNS 0 0 44 46
MAX 0 0 48 42
QLR 0 2 52 36

Table 3: Cardinality of the marginal unit-wise confidence sets for a joint confidence set at level
1− α = 0.66.

low democracy

Algeria(*) Burundi(*) Cameroon(*)
Chad(*) China(*) Congo, Rep.
Cote d’Ivoire(*) Dem. Rep. Congo(*) Egypt, Arab Rep.(*)
Gabon(*) Guinea(*) Indonesia
Iran(*) Jordan(*) Kenya(*)
Mauritania(*) Morocco(*) Nigeria
Paraguay(*) Rwanda(*) Sierra Leone
Singapore(*) Syrian Arab Republic(*) Togo(*)
Tunisia(*) Uganda

high democracy

Australia(*) Austria(*) Belgium(*)
Canada(*) Colombia Costa Rica(*)
Cyprus Denmark(*) Dominican Republic
El Salvador Finland(*) France(*)
Guatemala Iceland(*) India(*)
Ireland(*) Israel(*) Italy(*)
Jamaica(*) Japan(*) Luxembourg(*)
Malaysia Netherlands(*) New Zealand(*)
Norway(*) RB Venezuela(*) Sri Lanka
Sweden(*) Switzerland(*) Trinidad and Tobago(*)
Turkey United Kingdom(*) United States(*)

Table 4: Estimated member countries for the “low democracy” and “high democracy” groups.
The indicated significance of the estimated group assignments is based on a joint
confidence set at level 1 − α = 0.66 (MAX procedure). Estimated “low democracy”
countries with a (*) are not “high democracy” countries, and vice versa.

adjusted critical values. The cardinality of the marginal unit-wise confidence sets is reported

in Table 3. All procedures generate an informative confidence set that rules out some group

membership for some countries. For the MAX test statistic, taking the within-unit correlation of

moment inequalities into account yields substantial power gains. With bootstrap critical values,

the confidence set is uninformative about the group membership of only 36 countries, compared

to 46 countries for the confidence set with the SNS critical value.

In the following we focus on the MAX joint confidence set.31 To explore the computed

confidence set further, we focus on the units that are estimated to be either “low democracy”

or “high democracy” countries. These constitute 59 out of a total of 90 observed units. For the

“low democracy” countries, we check whether their marginal confidence set contains the “high

democracy” group. This divides the “low democracy” countries into a set of countries that is

statistically separated from the group at the opposite side of the political spectrum, and a set of

countries that is not. Vice versa, we check which “high democracy” countries we can rule out

as members of the “low democracy” group. This characterization of the joint confidence set is

31We observe a moderate degree of regularization of the estimated correlation matrix. This may potentially affect
the performance of the QLR statistic, whereas the MAX statistic is the more robust option.
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reported in Table 4. For both groups, a vast majority of their estimated member countries are

statistically different from the other group.
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Embrechts, Paul, Claudia Klüppelberg, and Thomas Mikosch (2013). Modelling extremal events:
for insurance and finance. Vol. 33. Springer Science & Business Media.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2009). The elements of statistical
learning. 2nd ed. Vol. 1. Springer.

32



Genz, Alan (1992). “Numerical computation of multivariate normal probabilities”. In: Journal
of Computational and Graphical Statistics 1.2, pp. 141–149.

Grayling, Michael J and Adrian Mander (2016). “MVTNORM: Stata module to work with the
multivariate normal and multivariate t distributions”. In: Statistical Software Components.

Gu, Jiaying and Stanislav Volgushev (2018). “Panel data quantile regression with grouped fixed
effects”. Unpublished working paper.

Hahn, Jinyong and Guido Kuersteiner (2002). “Asymptotically unbiased inference for a dynamic
panel model with fixed effects when both n and T are large”. In: Econometrica 70.4, pp. 1639–
1657.

Hahn, Jinyong and Hyungsik Roger Moon (2010). “Panel data models with finite number of
multiple equilibria”. In: Econometric Theory 26.03, pp. 863–881.

Heckman, James and Burton Singer (1984). “A method for minimizing the impact of distributional
assumptions in econometric models for duration data”. In: Econometrica, pp. 271–320.

Horn, Roger A and Charles R Johnson (2013). Matrix analysis. 2nd ed. Cambridge University
Press.

Ipsen, Ilse and Rizwana Rehman (2008). “Perturbation bounds for determinants and characteristic
polynomials”. In: SIAM Journal on Matrix Analysis and Applications 30.2, pp. 762–776.

Jing, Bing-Yi, Qi-Man Shao, and Qiying Wang (2003). “Self-normalized Cramér-type large
deviations for independent random variables”. In: The Annals of Probability 31.4, pp. 2167–
2215.

Kudo, Akio (1963). “A multivariate analogue of the one-sided test”. In: Biometrika 50.3/4,
pp. 403–418.

Laurent, Beatrice and Pascal Massart (2000). “Adaptive estimation of a quadratic functional by
model selection”. In: Annals of Statistics, pp. 1302–1338.

Lewis, Richard and Gregory C Reinsel (1985). “Prediction of multivariate time series by autore-
gressive model fitting”. In: Journal of multivariate analysis 16.3, pp. 393–411.

Lin, Chang-Ching and Serena Ng (2012). “Estimation of panel data models with parameter
heterogeneity when group membership is unknown”. In: Journal of Econometric Methods
1.1, pp. 42–55.

Lu, Xun and Liangjun Su (2017). “Determining the number of groups in latent panel structures
with an application to income and democracy”. In: Quantitative Economics 8.3, pp. 729–760.

McLachlan, Geoffrey and David Peel (2004). Finite mixture models. John Wiley & Sons.
Menzel, Konrad (2014). “Consistent estimation with many moment inequalities”. In: Journal of

Econometrics 182.2, pp. 329–350.
Murphy, Kevin P (2012). Machine learning: a probabilistic perspective. MIT press.
Neumark, David and William Wascher (1992). “Employment effects of minimum and subminimum

wages: panel data on state minimum wage laws”. In: ILR Review 46.1, pp. 55–81.
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Appendix

A. Proofs of mains results

In the proofs, we drop the g argument for ease of notation and write, e.g., dit(h) instead of
dit(g, h) (or dit(g

0
i , h)). The g argument is made explicit in the statements of the lemmas. Here,

we provide proofs of Theorem 1 – Theorem 3. All supporting lemmas and the proof of Theorem 4
are given in the Supplementary Appendix.

For our proof of the QLR procedure we analyze the limiting distribution of the QLR statistic,
which we call the χ̃2-distribution. Let V denote a nonsingular covariance matrix, and let
X ∼ N (0, V ). The χ̃2(V ) distribution is given by the distribution of the random variable

W = min
t≤0

(X − t)′V −1(X − t).

The χ̃2(V )-distribution can be characterized as a mixture of χ2-distributions (Rosen 2008)
and is closely related to the χ̄2-distribution (Kudo 1963, Nüesch 1966). Lemma D.13 in the
Supplementary Appendix summarizes some properties of the χ̃2-distribution.

Proof of Theorem 1. We first evaluate the effect of estimation error from estimating the group-
specific coefficients. Let C1 denote the constant from Lemma D.8 and let ζN,T as defined in
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Lemma D.8. Let

aN,T =C1

√
TγN,T,8

(
T−5/24BN,T,4

√
logN +DN,T,2

)
+ C1ζN,T

√
logN

(
1 + T−1/4BN,T,4

√
logN

)
Define the event

EN,T,1 =

{
max

1≤i≤N
max

h∈G\{g0i }

∣∣∣D̂i(h)− D̃i(h)
∣∣∣ ≤ aN,T} .

Applying Lemma D.8 with c = 1/6 yields

1− P (EN,T,1) ≤ N−1 + C1T
−1/6 + C1

(
T−1/4BN,T,4/(logN)

)4
≤ N−1 + CT−1/6.

Note that under the assumptions of the lemma, ζN,T ≤ 3εN,1. On EN,T,1, for i = 1, . . . , N and
h ∈ G \ {g0

i }, ∣∣∣D̂i(h)− D̃i(h)
∣∣∣ ≤ C (ε1,N + ε2,N ) /

√
logN =: bN .

Next, we discuss the contribution of the estimation error to the coverage level. Define αN
implicitly by

cSNS
αN ,N

= cSNS
α,N − bN .

To see that αN is well-defined, note that since cSNS
α,N → ∞ and bN → 0 the right-hand side of

the equation is diverging, and therefore positive for large N . Moreover, cSNS
p,N ↓ 0 as p ↑ N/2.

This establishes the existence of αN . Uniqueness follows from the strict monotonicity of the
distribution function of the t-distribution. Let FT denote the distribution function of a t-
distributed random variable with T −1 degrees of freedom, and let fT denote its density function.
Let c(α) = t−1

T−1(1− α/((G− 1)N)) and b∗N =
√

(T − 1)/TbN . By the mean-value theorem

αN
(G− 1)N

− α

(G− 1)N
=FT (c(α))− FT (c(αN ))

=FT (c(α))− FT (c(α)− bN ) = fT (c∗)b∗N ,

where c∗ is a value between c (αN ) and c (α). Noting that c (αN ) < c (α) and that fT is decreasing
on the positive axis, rearranging this equality yields

|αN − α| ≤fT (c (αN )) (G− 1)Nb∗N

≤2c (αN ) (1− FT (c (αN )) (G− 1)Nb∗N

≤4b∗NαN
√

log ((G− 1)N/αN )

≤4bNα
√

log ((G− 1)N/α) + 4bN |αN − α|
√

log ((G− 1)N/α)

≤4bN
√

log ((G− 1)N/α) + o (|αN − α|) ,

where the second inequality follows from Lemma D.11, the third inequality follows from
Lemma D.10 (with ε = 1), and the fourth inequality follows from bN

√
logN → 0. This

recursion implies

|αN − α| ≤ 5bN
√

log ((G− 1)N/α)

for N large enough.
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We now derive an approximation based on the theory of self-normalized sums, i.e., Lemma
D.12. Let gT : x→ x/

√
1 + x2/T and

D̃i,T,3(h) =

(
1

T

T∑
t=1

EP |dit(h)/(σisi,T (h))|3
)1/3

.

We apply Lemma D.12 with ξt = dit(h)/(σisi,T (h)), ν = 1, and x = gT (cSNS
αN ,N

). The lemma
requires

gT
(
cSNS
αN ,N

)
≤ T 1/6/D̃i,T,3(h), (13)

for N large enough, for all i = 1, . . . , N and h ∈ G \ {g0
i }. To prove this inequality, note that

under Assumption 1 there is a constant C such that

sup
1≤i≤N

sup
h∈G\{g0i }

D̃i,T,3(h)/DN,T,3 ≤ C,

so that it is sufficient to show T−1/6cSNS
α,NDN,T,3 → 0. Setting ε = 1 in Lemma D.10 gives

T−1/6cSNS
α,NDN,T,3 ≤

√
T/(T − 1)T−1/62

√
log ((G− 1)N/α)DN,T,3.

Under our assumptions the right-hand side vanishes and condition (13) is verified. Applying
Lemma D.12 yields∣∣∣P (D̃i(h) > cSNS

αN ,N

)
−
(
1− Φ

(
gT (cSNS

αN ,N

))∣∣∣
=

∣∣∣∣∣∣P
 ∑T

t=1 dit(h)/(σisi,T (h))√∑T
t=1 d

2
it(h)/(σisi,T (h))2

> gT (cSNS
αN ,N

)

− (1− Φ
(
gT
(
cSNS
αN ,N

)))∣∣∣∣∣∣
≤KT−1/2D̃3

i,T,3

(
1 + gT (cSNS

αN ,N
)
)3 (

1− Φ
(
gT (cSNS

αN ,N

))
, (14)

where K is the constant from Lemma D.12. For standard normal dit(h), we can take D̃i,T,3(h) =
23/2/

√
π, and (13) is easily verified provided that T−1/3(logN) → 0. As DN,T,3 ≥ 1, the

assumption ε3,N → 0 requires T−1/3(logN)→ 0. Evaluating (14) for the special case of standard
normal dit(h) gives ∣∣∣∣ αN

(G− 1)N
−
(
1− Φ

(
gT
(
cSNS
αN ,N

)))∣∣∣∣
≤KT−1/229/2π−3/2

(
1 + gT (cSNS

αN ,N
)
)3 (

1− Φ
(
gT (cSNS

αN ,N

))
. (15)

Under T−1/3(logN) → 0, the right-hand side vanishes and therefore the recursive nature of
the inequality implies 1 − Φ(gT (cSNS

α,N )) = αN/((G − 1)N) + o(αN/((G − 1)N)). Combining
inequalities (14) and (15) gives∣∣∣∣P (D̃i(h) > cSNS

αN ,N

)
− αN

(G− 1)N

∣∣∣∣
≤
∣∣∣P (D̃i(h) > cSNS

αN ,N

)
−
(
1− Φ

(
gT
(
cSNS
αN ,N

)))∣∣∣
+

∣∣∣∣ αN
(G− 1)N

−
(
1− Φ

(
gT
(
cSNS
αN ,N

)))∣∣∣∣
≤KT−1/2

(
D̃3
i,T,3 + 29/2π−3/2

) (
1 + gT (cSNS

αN ,N
)
)3 (

1− Φ
(
gT (cSNS

αN ,N

))
.
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≤CT−1/2D3
N,T,3

(
1 + gT (cSNS

αN ,N
)
)3 (

1− Φ
(
gT (cSNS

αN ,N

))
≤C

(
2T−1/6DN,T,3

√
log

(
(G− 1)N

α

))3(
αN

(G− 1)N
+ o

(
αN

(G− 1)N

))
.

Summing up, we have

P

(
max

1≤i≤N
max

h∈G\{g0i }
D̂i(h) > cSNS

α,N

)

≤P

(
max

1≤i≤N
max

h∈G\{g0i }
D̃i(h) > cSNS

α,N − bN

)
+ P

(
EcN,T,1

)
=P

(
max

1≤i≤N
max

h∈G\{g0i }
D̃i(h) > cSNS

αN ,N

)
+ P

(
EcN,T,1

)
≤

N∑
i=1

∑
h∈G\{g0i }

P
(
D̃i(h) > cSNS

αN ,N

)
+ P

(
EcN,T,1

)

≤αN + C

(
2T−1/6DN,T,3

√
log

(
(G− 1)N

α

))3

+ 1− P (EN,T,1)

≤α+ C
(
bN
√

logN + ε3,N + T−1/6 +N−1
)
.

Proof of Theorem 2. Throughout the proof let C denote a generic constant depending only on
G and Kβ. Define the events

EN,T,1 =

max
g∈G

(
1

T

T∑
t=1

∥∥β̂g,t − βg,t∥∥8

)1/8

≤ γN,T,8

 ,

EN,T,2 =
{

max
1≤i≤N

max
h,h′∈G\{g0i }

∣∣∣(Ω̂i)h,h′ − (Ωi)h,h′
∣∣∣ ≤ C1(3ε1,N + ε3,N )

}
,

where C1 is the maximum of the constants from Lemma D.7 and Lemma D.8. By Assumption
1((iii)), P (EN,T,1) ≥ 1−εN . Lemma D.7 and Lemma D.8 imply P (EN,T,2) ≥ 1−CT−1/7 ≥ 1−CεN .
To see this, let Ω∗i as defined in Lemma D.7 and decompose∣∣∣(Ω̂i)h,h′ − (Ωi)h,h′

∣∣∣ ≤ ∣∣∣(Ω̂i)h,h′ − (Ω∗i )h,h′
∣∣∣+
∣∣(Ω∗i )h,h′ − (Ωi)h,h′

∣∣ .
The first term on the right-hand side is bounded by C1ζN,T with probability more than 1−CT−1/7,
where ζN,T is defined in Lemma D.8. This can be shown by applying Lemma D.8 with
c = 1/7Under the assumptions of the theorem we have

ζN,T ≤ ε1,N/(logN)(1 + ε3,N ) + (ε1,N/ logN)2 ≤ 3ε1,N/ logN.

For c = 1/7, Lemma D.7 controls the rate of
∣∣(Ω∗i )h,h′ − (Ωi)h,h′

∣∣ and gives the upper bound

C1T
−3/7B2

N,T,4(logN) = C1T
−1/7ε23,N/ logN ≤ C1ε3,N/ logN.
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On EN,T,1 ∩ EN,T,2

‖Ω̂i − Ωi‖2 ≤ ‖Ω̂i − Ωi‖F =

√∑
h,h′

∣∣∣(Ω̂i)h,h′ − (Ω)h,h′
∣∣∣2 ≤ C(ε1,N + ε3,N )/ logN.

Since Ωi is a correlation matrix we have ‖Ωi‖2 ≤ tr (Ωi) ≤ G− 1 and therefore

‖Ω−1
i ‖2

(
1 ∨ ‖Ωi‖2‖Ω

−1
i ‖2

)
‖Ω̂−1

i − Ω−1
i ‖2

≤CωN (1 ∨ ωN (G− 1))(ε1,N + ε2,N )/logN

≤C‖Ω̂i − Ωi‖2
(
ω2
N ∨ 1

)
≤ C∗1

(
ω2
N ∨ 1

)
(ε1,N + ε3,N ) / logN

where C∗1 depends only on G and Kβ. Lemma D.8 with c = 1/7 gives a lower bound on the
probability of the set on which∣∣∣D̂i(h)−Di(h)

∣∣∣ ≤C1

[√
TγN,T,8 (ε3,N +DN,T,2)

+

(
ζN,T +

(
ε3,NT

−1/7/
√

logN
)2
)

(1 + ε3,N )
√

logN
]

≤C∗2 (ε1,N + ε2,N + ε3,N ) /
√

logN,

where C∗2 depends only on G and Kβ. Define the event

EN,T,3 =
{

max
1≤i≤N

max
h∈G\{g0i }

∣∣∣D̂i(h)−Di(h)
∣∣∣ ≤ C∗2 (ε1,N + ε2,N + ε3,N ) /

√
logN

}
.

By Lemma D.8,

P (EN,T,3) ≥ 1−N−1 − C1

(
T−1/7 +

(
T−(1/4−1/7)εN,3

)4
)
≥ 1−N−1 − CT−1/7.

By Lemma D.3, there are random variables (Xi)1≤i≤N with Xi ∼ N (0,Ωi) such that

sup
(r1,...,rN )∈RN++

∣∣∣∣P ( max
1≤i≤N

(
TMAX
i − ri

)
> 0

)
− P

(
max

1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0

) ∣∣∣∣
≤C

(
T−1/6BN,T,4 log7/6N + T−1/6B2

N,T,4 logN
)

≤C
(
ε3,N

(
T−1/7(logN)

)6
+ ε23,N

)
logN ≤ C∗3ε3,N (logN),

where C∗3 depends only on G and Kβ . To avoid ambiguity, denote the quantities in the statement
of Lemma D.1 with a † superscript. The conclusion of the theorem follows from applying
Lemma D.1 with ε†N = (C∗1 ∨ C∗2 ∨ C∗3 )εN/(logN), D̂†i = D̂i, D

†
i = Di, Ω̂†i = Ω̂i and Ω†i = Ωi on

the event EN,T,1 ∩ EN,T,2 ∩ EN,T,3.

Proof of Theorem 3. Throughout the proof, let C denote a generic constant depending only on
G and Kβ . Let V̂i denote the diagonal matrix with entries (V̂i)h,h = Ŝi,T (h)/(σisi,T (h)) and let

∆D
i (h) =

1√
T

T∑
t=1

d̂it(h)− dit(h)

σisi,T (h)
,

Ω̂V
i =V̂i(g)Ω̂i(g)V̂i(g),

∆D
i = (∆D

i (h))h∈G\{g0i }
. Using these definitions, we may rewrite the unit-specific test statistics
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in a way that eliminates all random denominators

T̂QLR
i = min

t≤0

(
∆D
i +Di − t

)′[
Ω̂V
i

]−1(
∆D
i +Di − t

)
.

Define the events EN,T,1, EN,T,2 and EN,T,3 as in the proof of Theorem 2. Recall that on⋂3
`=1 EN,T,` we have

‖Ω̂i − Ωi‖2 ≤CεN/ logN

‖D̂i −Di‖ ≤CεN/
√

logN

and P
(⋂3

`=1 EN,T,`
)
≥ 1−CεN . Work conditional on

⋂3
`=1 EN,T,`. By the inequality |

√
a− 1| ≤

|a− 1|, ∣∣∣(V̂i)h,h − 1
∣∣∣ =
∣∣√Ŝ2

N,T (g0
i , h)/(σ2

i s
2
i,T (g0

i , h))− 1
∣∣

≤
∣∣Ŝ2
N,T (g0

i , h)/(σ2
i s

2
i,T (g0

i , h))− 1
∣∣

≤
∣∣∣(Ω̂i)h,h − (Ω)h,h

∣∣∣ ≤ ‖Ω̂i − Ωi‖2 ≤ CεN/ logN.

and therefore, ‖V̂i−IG−1‖2 ≤ CεN/ logN , where IG−1 is the (G−1) dimensional identity matrix.
Write Vi = IG−1 and decompose

Ω̂V
i − Ωi =(V̂i − Vi)(Ω̂i − Ωi)(V̂i − Vi) + 2Vi(Ω̂i − Ωi)(V̂i − Vi)

+ Vi(Ω̂i − Ωi)Vi + (V̂i − Vi)Ωi(V̂i − Vi) + 2V Ωi(V̂i − Vi).

Noting that ‖Ωi‖ ≤ tr(Ωi) ≤ G− 1, this decomposition implies

‖Ω̂V
i − Ωi‖2 ≤ C

(
ε3N + (2 + ‖Ωi‖2)ε2N + (1 + 2‖Ωi‖2)εN

)
≤ CεN ,

where the second-to-last inequality follows from εN ≤ 1 for N large enough. Therefore,

(1 ∨ ‖Ω−1
i ‖)(‖Ωi‖ ∨ ‖Ω−1

i ‖)‖Ω̂
V
i − Ωi‖2

≤C(1 ∨ λ−1
1 )(λ−1

1 ∨ (G− 1))εN/ logN ≤ C∗1εN/ logN,

where C∗1 depends only on λ1, G and Kβ. Define the event

EN,T,4 = max
1≤i≤N

{
‖Di‖ ≤ 2C1

√
logN

}
.

Taking N large enough that ε3,N ≤ 1, Lemma D.7 with c = 1/7 yields

1− P (EN,T,4) ≤
G−1∑
`=1

P

(
max

1≤i≤N
‖Di,`‖ > 2C1

√
logN

)

≤
G−1∑
`=1

P

(
max

1≤i≤N
‖Di,`‖ > C1

√
logN

(
1 + T−1/4BN,T,4

√
logN

))
≤(G− 1)

(
N−1 +

(
T−(1/4−1/7)ε3,N

)4
)
≤ CεN ,

where Di,` is the `-th element of Di. On
⋂4
`=1 EN,T,`,

(‖Di‖ ∨ 1)‖Ω−1
i ‖2‖D̂i −Di‖ ≤(C

√
logN ∨ 1)λ−1

1 C(ε1,N + ε2,N + ε3,N )/
√

logN
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≤C∗2 (ε1,N + ε2,N + ε3,N ),

where C∗2 is a constant that depends only on λ1, G and Kβ . By Lemma D.3, there are independent
random variables (Ui)1≤i≤N with Ui ∼ χ̃2(Ωi) such that

sup
(r1,...,rN )∈RN++

∣∣∣P ( max
1≤i≤N

(
TQLR
i − ri

)
> 0

)
− P

(
max

1≤i≤N
(Ui − ri) > 0

) ∣∣∣
≤C

(
T−1/6BN,T,4 log7/6N + T−1/6B2

N,T,4 logN
)

≤C
(
ε3,N

(
T−1/7(logN)

)6
+ ε23,N

)
logN ≤ C∗3ε3,N (logN),

where C∗3 is a constant that depends only on λ1, G and Kβ. To avoid ambiguity, denote the
quantities in the statement of Lemma D.2 with a † superscript. The conclusion of the theorem
follows from applying Lemma D.2 with ε†N = (C∗1 ∨C∗2 ∨C∗3 )εN/ logN , D̂†i = Di + ∆D

i , D†i = Di,

Ω̂†i = Ω̂V
i and Ω†i = Ωi on the event EN,T,1 ∩ EN,T,2 ∩ EN,T,3 ∩ EN,T,4.
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B. Figures and tables

empirical coverage cardinality of CS

g0 σ T MAX QLR MAX QLR

1 0.25 10 0.64 0.71 1.37 1.36
1 0.25 20 0.75 0.83 1.28 1.28
1 0.25 30 0.81 0.88 1.26 1.26
1 0.25 40 0.83 0.90 1.24 1.24
1 0.50 10 0.47 0.49 2.46 2.46
1 0.50 20 0.71 0.77 2.52 2.52
1 0.50 30 0.81 0.84 2.54 2.54
1 0.50 40 0.82 0.83 2.55 2.55
2 0.25 10 0.75 0.76 1.28 1.37
2 0.25 20 0.79 0.78 1.20 1.28
2 0.25 30 0.83 0.83 1.18 1.25
2 0.25 40 0.85 0.83 1.17 1.23
2 0.50 10 0.59 0.62 1.96 2.00
2 0.50 20 0.79 0.76 1.95 2.01
2 0.50 30 0.81 0.82 1.96 2.01
2 0.50 40 0.84 0.84 1.95 2.00
3 0.25 10 0.72 0.74 1.28 1.36
3 0.25 20 0.81 0.80 1.20 1.27
3 0.25 30 0.83 0.83 1.18 1.24
3 0.25 40 0.87 0.85 1.17 1.23
3 0.50 10 0.58 0.58 1.96 1.98
3 0.50 20 0.76 0.76 1.96 1.98
3 0.50 30 0.82 0.82 1.95 1.99
3 0.50 40 0.85 0.86 1.96 1.99

Table B.1: Homoscedastic design with G = 3 groups. Results based on B = 1000 simulated joint
confidence sets with 1− α = 0.9. Critical values for MAX and QLR procedures are
not adjusted for short panels. “Empirical coverage” gives the simulated coverage
probability of the joint confidence set. “Cardinality of CS” gives the simulated
expected average cardinality of a marginal (unit-wise) confidence set.

log(uerage) log(gr) log(rminwg)

Positive-effect group 0.62 -0.43 0.06
Negative-effect group 0.86 -0.18 -0.07

Table B.2: Estimated group-specific coefficients.
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Figure B.1: Time profile of the group fixed effect for the simulation design from Section 6.1.

positive-effect group

Arizona California(*) Colorado Connecticut(*)
Florida Georgia Hawaii Illinois
Massachusetts(*) Maryland Maine Michigan
North Carolina New Hampshire New Jersey Nevada
New York Ohio Pennsylvania Rhode Island
South Carolina Texas Utah Virginia
Washington Wisconsin

negative-effect group

Alaska Alabama Arkansas Delaware
Iowa Idaho Indiana Kansas(*)
Kentucky Louisiana Minnesota(*) Missouri
Mississippi(*) Montana North Dakota(*) Nebraska(*)
New Mexico Oklahoma Oregon South Dakota(*)
Tennessee Vermont(*) West Virginia(*) Wyoming(*)

Table B.3: Estimated group memberships in minimum wage example. In a joint confidence set
at significance level 1− α = 0.66, states with a (*) have a marginal confidence set
that contains only the estimated group membership. For these states, the estimated
group membership is significantly different from the other group.
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Figure B.2: Estimated time profiles for the group fixed effects.
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C. Extension to model with individual fixed effects

In this section, we discuss an extension of the grouped random coefficient model from Example 1
that adds individual fixed effects. As in Example 1, the group-specific coefficients are assumed
to be time-invariant. We argue that our procedures can be used after applying a fixed effect
transformation.

Suppose that unit i’s outcome is generated from

yit = x′itβg + µi + uit,

where µi is i’s fixed effect and all other quantities are defined as before. The individual fixed
effect can be removed by the fixed effect transformation

yit − ȳi = (xit − x̄i)′βg + uit − ūi,

where ȳi =
∑T

t=1 yit/T , x̄i =
∑T

t=1 xit/T and ūi =
∑T

t=1 uit/T .
We work with the transformed data to construct confidence sets. The natural counterpart to

d̂it(g, h) is given by

d̂FE
it (g, h) =

1

2

((
yit − ȳi − (xit − x̄i)′β̂g

)2
−
(
yit − ȳi − (xit − x̄i)′β̂h

)2

+
(

(xit − x̄i)′ (β̂g − β̂h)
)2 )

.

Replacing D̂i(g, h) by

D̂FE
i (g, h) =

∑T
t=1 d̂

FE
it (g, h)∑T

t=1

(
d̂FE
it (g, h)− ¯̂

dFE
it (g, h)

)2 , (16)

we can follow the recipes for constructing confidence sets in Section 4.3. Strictly speaking, our
asymptotic results from Section 5 do not apply here, since {(yit − ȳi, xit − x̄i)}1≤t≤T is not an
i.i.d. sequence. Heuristically, our approach is still expected to work well since

xit − x̄i = xit −
T∑
t=1

E(xit)/T +Op

(
T−1/2

)
,

uit − ūi = uit +Op

(
T−1/2

)
,

so that, asymptotically, the correlation between time periods becomes negligible.
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We now discuss bias in D̂FE
i (g0

i , h). To this end, suppose that the group-specific parameters
are estimated accurately, i.e. β̂g = βg for g ∈ G.32 In the case of strictly exogenous regressors,
the numerator in (16) has mean zero. With predetermined regressors, such as lagged outcomes,
it may be biased. In this case, we can use the half-panel Jackknife from Dhaene and Jochmans
(2015) for bias correction.33

To explain the adjustment based on the half-panel Jackknife, define the split sample means

w̄i,1,t0 =

t0∑
t=1

wit/t0, w̄i,2,t0 =

T∑
t=t0+1

wit/(T − t0)

for random vectors (wit)1≤t≤T . For j = {1, 2}, let

d̂FE
it,j,t0(g, h) =

1

2

((
yit − ȳi,j,t0 − (xit − x̄i,j,t0)′β̂g

)2
−
(
yit − ȳi,j,t0 − (xit − x̄i,j,t0)′β̂h

)2

+
(

(xit − x̄i)′ (β̂g − β̂h)
)2 )

,

d̂FE
it,1+2(g, h) =

(
d̂FE
it,(t−1) mod bT/2c+1,bT/2c(g, h) + d̂FE

it,(t−1) mod dT/2e+1,dT/2e(g, h)
)
/2.

The Jackknifed version of (16) is given by

D̃FE
i (g, h) =

2
∑T

t=1 d̂
FE
it (g, h)−

∑T
t=1 d̂

FE
it,1+2(g, h)∑T

t=1

(
d̂FE
it (g, h)− ¯̂

dFE
it (g, h)

)2 .

D̃FE
i replaces D̂i in the test statistics described in Section 4.3.

D. Lemmas

Lemma D.1 (Slutsky-type result for MAX statistic). Let α denote a constant 0 < α < 1. Let
εN ≥ N−1 such that

max
1≤i≤N

max
h∈G\{g0i }

∣∣D̂i(g
0
i , h)−Di(g

0
i , h)

∣∣ ≤εN√logN,

max
1≤i≤N

‖Ω−1
i (g0

i )‖2
(
1 ∨ ‖Ω−1

i (g0
i )‖2‖Ωi(g

0
i )‖2

)
‖Ω̂i(g

0
i )− Ωi(g

0
i )‖2 ≤εN .

Let (Xi)1≤i≤N denote a collection of random vectors such that Xi ∼ N(0,Ωi) and suppose that

sup
(r1,...,rN )∈RN

∣∣∣P( max
1≤i≤N

TMAX
i (g0

i ) ≤ ri
)
− P

(
max

1≤i≤N
max

1≤h≤G−1
Xi,h ≤ ri

)∣∣∣ ≤ εN (logN).

Also, suppose that

64(G− 1)2 log(N/α)εN ≤1.

Then, there is a threshold N0 and a constant C depending only on G and α such that for N ≥ N0

P
(
∃i ∈ {1, . . . , N} : T̂MAX

i (g0
i ) > cMAX

α,N

(
Ω̂i(g

0
i

))
≤ α+ CεN (logN).

Proof. For nonsingular covariance matrix V , write cα,N (V ) = cMAX
α,N (V ). Take N large enough

32Our asymptotic results in Section 5 provide conditions under which parameter estimation affects only higher-order
terms.

33An alternative approach is analytical bias correction as in Hahn and Kuersteiner (2002).
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such that

log(N/α) ≥max

{
1,
α2(G− 1)

2π
,

2G−1 − 1

8(G− 1)2
, log(2(G− 1))

}
,

If we choose N large enough, then the assumptions of the lemma imply εN ≤ 1/2 and thus

2 max
1≤i≤N

‖Ω̂i − Ωi‖2‖Ω
−1
i ‖2 ≤ 1.

Therefore, we can employ Lemma D.14 to bound

‖Ω̂−1
i − Ω−1

i ‖2 ≤ 2‖Ω−1
i ‖

2
2‖Ω̂i − Ωi‖2

for all i = 1, . . . , N , and

‖Ω̂−1
i − Ω−1

i ‖2
(
‖Ω−1

i ‖2 ∨ ‖Ω̂
−1
i ‖2

)
≤2‖Ω−1

i ‖
2
2‖Ωi‖2‖Ω̂i − Ωi‖2 + 2

(
‖Ω−1

i ‖2‖Ω
−1
i ‖

2
2‖Ω̂i − Ωi‖2

)2
≤ 4εN .

(17)

Define

αN = α
(
1 + 16(G− 1)2 log(N/α) max

1≤i≤N
‖Ω̂−1

i − Ω−1
i ‖2

(
‖Ωi‖2 ∨ ‖Ω̂i‖2

)
∨N−1

)
.

Note that (17) imples α ≤ αN ≤ 2α. First, we show that

cαN ,N (Ωi) ≤ cα,N (Ω̂i). (18)

Let a2
N = 4(G− 1)‖Ωi‖2 log(N/α). Note that

‖Ω̂−1
i − Ω−1

i ‖2
(
‖Ω−1

i ‖2 ∨ ‖Ω̂
−1
i ‖2 ∨ (G− 1)a2

N

)
≤8(G− 1)2‖Ω−1

i ‖
2
2‖Ωi‖2‖Ω̂i − Ωi‖2 log (N/α) + 2

(
‖Ω−1

i ‖2‖Ω̂i − Ωi‖2
)2
≤ 1.

This verifies the required assumption for the application of Lemma D.18 below. For X ∼ N (0,Ωi)
and X̂ ∼ N (0, Ω̂i) we have

P
(

max
j=1,...,G−1

Xj > cα,N (Ω̂i)
)

≤P
(

max
j=1,...,G−1

Xj > cα,N (Ω̂i) ∧ ‖X‖max ≤ aN
)

+ P (‖X‖max > aN )

≤
P
(

maxj=1,...,G−1Xj > cα,N (Ω̂i) ∧ ‖X‖max ≤ aN
)

P
(

maxj=1,...,G−1 X̂j > cα,N (Ω̂i) ∧ ‖X̂‖max ≤ aN
)P( max

j=1,...,G−1
X̂j > cα,N (Ω̂i)

)
+ P (‖X‖max > aN )

≤
(
1 + (2G−1 − 1)‖Ω̂−1

i − Ω−1
i ‖2‖Ω̂i‖2 + 2(G− 1)a2

N‖Ω̂−1
i − Ω−1

i ‖2
)
(α/N)

+ P (‖X‖max > aN )

≤
(

1 + ‖Ω̂−1
i − Ω−1

i ‖2(‖Ωi‖2 ∨ ‖Ω̂i‖2)
(
(2G−1 − 1) + log(N/α)8(G− 1)2

)
+

(α/N)
√
G− 1√

2π log(N/α)

)
α

N
≤ αN

N
.

The third inequality above follows from Lemma D.18 noting that, under the assumptions of the
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lemma, we can take

(2G−1 − 1)‖Ω̂−1
i − Ω−1

i ‖2‖Ω̂i‖2 ≤ (2G−1 − 1)εN ≤ 1.

The fourth inequality follows from Lemma D.17. This establishes (18). Let (Xi,1, . . . , Xi,G−1)
denote a centered normal random vector with covariance matrix Ωi. Next, we show that for a
universal constant C̃ and a threshold N0 that is independent of (Ωi)1≤i≤N , for all bN > 0,

P

(∣∣ max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − cαN ,N (Ωi)

) ∣∣ ≤ bN)
≤C̃(bN ∨N−1)

√
2 log(N

√
G− 1)

(19)

for N ≥ N0. There exists N0, independent of Ωi, such that for N ≥ N0√
log(N/αN ) < cαN ,N (Ωi) ≤

√
2 log(G− 1) +

√
2 log(N/αN ). (20)

The lower bound follows from the fact that TMAX
i ≥ Z for standard normal Z in conjunction with

a bound on the tail probability of a standard normal random variable (e.g., the argument in the
proof of Lemma D.20 with a = 2). The upper bound follows from Lemma A.4 in Chernozhukov,
Chetverikov, and Kato (2014). The inequality

log(N/αN ) ≥ log(N/(2α)) ≥ log(G− 1)

implies that the right-hand side of (20) can be bounded by√
2 log(N/αN ) +

√
2 log(N/αN ) ≤

√
8 log(N/αN ).

Therefore, to prove (19) it suffices to show

max
(ai)1≤i≤N
1≤ai≤2

√
2

P

(∣∣∣ max
i=1,...,N

(
max

1≤h≤G−1
Xi,h − ai

√
log(N/αN )

) ∣∣∣ ≤ bN)

≤C̃(bN ∨N−1)

√
2 log(N

√
G− 1).

For N ≥ 2 we write

max
(ai)1≤i≤N

1≤ai≤8

P

(∣∣∣ max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − ai

√
log(N/αN )

) ∣∣∣ ≤ bN)

≤ max
(ai)1≤i≤N

1≤ai≤8

sup
x∈R

P

(∣∣∣ max
1≤i≤N

max
1≤h≤G−1

Xi,h

ai
− x
∣∣∣ ≤ bN ∨N−1

)

≤C̃(bN ∨N−1)

√
1 ∨ log

(
N(G− 1)

bN ∨N−1

)
≤ C̃(bN ∨N−1)

√
2 log(N

√
G− 1).

The second inequality follows from Corollary 1 in Chernozhukov, Chetverikov, and Kato (2015).
Collecting the results from above yields

P
(

max
1≤i≤N

(
T̂MAX
i − cα,N (Ω̂i)

)
> 0
)
≤ P

(
max

1≤i≤N

(
T̂MAX
i − cαN ,N (Ωi)

)
> 0
)

≤P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − cαN ,N (Ωi)

)
+ εN

√
logN > 0

)
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+
∣∣∣P( max

1≤i≤N

(
max

h≤≤G−1
Di(h)− cαN ,N (Ωi)

)
+ εN

√
logN > 0

)
− P

(
max

1≤i≤N

(
max

1≤h≤G−1
Xi,h − cαN ,N (Ωi)

)
+ εN

√
logN > 0

)∣∣∣
≤P
(

max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − cαN ,N (Ωi)

)
> 0
)

+ P

(∣∣ max
1≤i≤N

(
max

1≤h≤G−1
Xi,h − cαN ,N (Ωi)

) ∣∣ ≤ εN√logN

)
+ εN (logN)

≤
N∑
i=1

αN
N

+ C̃εN
√

logN

√
2 log(N

√
G− 1) + εN (logN)

≤α
(
1 + CεN (logN) +N−1

)
+ CεN (logN).

The first inequality holds due to (18) and the fourth inequality holds due to (19). The last
inequality holds due to

αN ≤α+ α
(
64(G− 1)2 log (N/α) εN ∨N−1

)
≤α+ 64 (G− 1)2 (logN)εN

(
1− logα

logN

)
.

Lemma D.2 (Slutzky-type result for QLR). Let α denote a constant 0 < α < 1. Suppose that
there is a sequence εN such that

max
1≤i≤N

(1 ∨ ‖Ω−1
i (g0

i )‖
2
2)(‖Ωi(g

0
i )‖2 ∨ ‖Ω

−1
i (g0

i )‖2)‖Ω̂i(g
0
i )− Ωi(g

0
i )‖2 ≤εN ,

max
1≤i≤N

(‖Di(g
0
i )‖ ∨ 1)‖Ω−1

i (g0
i )‖2‖D̂i(g

0
i )−Di(g

0
i )‖ ≤εN (logN),

εN ≤ 1/48 and

32(G− 1)2εN log (N/α) ≤ 1.

In addition, suppose that max1≤i≤N‖D̂i(g
0
i )−Di(g

0
i )‖ ≤ 1. Let (Ui)1≤i≤N denote independent

random variables with Ui ∼ χ̃2(Ωi) such that

sup
(r1,...,rN )∈RN++

∣∣∣∣P ( max
1≤i≤N

(Ui − ri) > 0

)
− P

(
max

1≤i≤N
(TQLR
i (g0

i )− ri) > 0

)∣∣∣∣ ≤ εN (logN).

Then, there is a constant C and a threshold N0 depending only on α, G and the sequence εN
such that for N ≥ N0

P
(
∃i ∈ {1, . . . , N} : T̂QLR

i (g0
i ) > cQLR

α,N

(
Ω̂i(g

0
i

))
≤α+ C

(
εN (logN) +N−1

)
.

Proof. To simplify notation, we fix the null hypothesis and drop the g0
i argument. For nonsingular

covariance matrix V , we write cα,N (V ) = cQLR
α,N (V ). Define

αN = α (1 + 96εN log (N/α))

and

b1,N = max
1≤i≤N

2‖Ωi‖2‖Ω
−1
i ‖

2
2‖Ω̂i − Ωi‖2,
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bN,2 = max
1≤i≤N

(2‖Di‖+ 3)‖Ω−1
i ‖2‖D̂i −Di‖.

Choose N large enough so that

32(G− 1)2 max
1≤i≤N

‖Ω̂i − Ωi‖2
(

1 ∨ 2‖Ω−1‖22
) (
‖Ωi‖2 ∨ ‖Ω

−1
i ‖2

)
≤ 1.

Then, Lemma D.19 gives cαN ,N (Ωi) ≤ cα,N (Ω̂i) for N large enough. Next, we show that we can
choose N0, depending only on α, such that, for N ≥ N0,

P

(∣∣∣∣ max
1≤i≤N

(Ui − cαN ,N (Ωi))

∣∣∣∣ ≤ b1,N max
1≤i≤N

(
cαN ,N (Ωi)

)
+ b2,N

})
≤C1

(
b1,N max

1≤i≤N

(
cαN ,N (Ωi)

)
+ b2,N +N−1

)
+N−1

(21)

for a constant C1 depending only on α and p. This follows from an application of Lemma D.9.
First, we bound cαN ,N (Ωi). We choose N large enough such that

logN ≥ max{− logα, 2 logα}.

The upper bound from Lemma D.20 implies that, for all N exceeding a threshold that depends
only on α,

cαN ,N (Ωi) ≤ cα,N (Ωi) ≤ 4 log(N/α) ≤ 4 logN (1− (logα)/(logN)) ≤ 8(logN).

The lower bound from Lemma D.20 gives that for all N exceeding a threshold that depends
only on α

cαN ,N (Ωi) ≥ c2α,N (Ωi) ≥ log(N/α) ≥ logN (1− (logα)/(logN)) ≥ (1/2)(logN).

These results imply that, when applying Lemma D.9, we can choose a = (1/2) logN and
ā = 8 logN . Next, we choose N large enough that we can take εN ≤ 1/48. Then,

b1,N + b2,N/(6 logN) ≤ 3εN ≤ 1/16

and

b1,N max
1≤i≤N

cαN ,N (Ωi) + b2,N ≤8(logN) (b1,N + b2,N/(6 logN)) ≤ a/2 logN

and we can take (
b1,N max

1≤i≤N
cαN ,N (Ωi) + b2,N

)
∨N−1 ≤ a/2 logN

for N large enough. Therefore, we may set τ = 1 and

ε =

(
b1,N max

1≤i≤N
cαN ,N (Ωi) + b2,N

)
∨N−1

in Lemma D.9. This proves (21). Choose N0 such that 16pεN (logN) ≤ 1 for N ≥ N0. This
is sufficient to guarantee that the assumptions of Lemma D.19 are satisfied, and therefore,
cα,N (Ω̂i) ≥ cαN ,N (Ωi). By Lemma D.5 and Lemma D.6

T̂QLR
i ≤

(
TQLR
i + b2,N

)
(1 + b1,N )
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for all i = 1, . . . , N , and therefore{
T̂QLR
i > cα,N (Ω̂i)

}
⊂
{
T̂QLR
i > cαN ,N (Ωi)

}
⊂
{
TQLR
i > cαN ,N − b1,NcαN ,N (Ωi)/(1 + b1,N )− b2,N

}
⊂
{
TQLR
i > cαN ,N − b1,NcαN ,N (Ωi)− b2,N

}
.

Write cN,i = cαN ,N (Ωi)− b1,NcαN ,N (Ωi)− b2,N . Collecting the results from above yields

P
(
∃i ∈ {1, . . . , N} : T̂QLR

i > cα,N (Ω̂i)
)

≤P
(

max
1≤i≤N

(
TQLR
i − cαN ,N (Ωi) + b1,NcαN ,N (Ωi) + b2,N

)
> 0

)
≤P

(
max

1≤i≤N
(Ui − cN,i) > 0

)
+

∣∣∣∣P ( max
1≤i≤N

(Ui − cN,i) > 0

)
− P

(
max

1≤i≤N

(
TQLR
i − cN,i

)
> 0

)∣∣∣∣
≤P

(
max

1≤i≤N
(Ui − cαN ,N (Ωi)) > 0

)
+ P

(∣∣∣ max
1≤i≤N

Ui − cαN ,N (Ωi)
∣∣∣ ≤ (b1,N max

1≤i≤N
cαN ,N (Ωi) + b2,N

)
∨N−1

)
+ εN (logN)

≤
N∑
i=1

P (Ui > cαN ,N (Ωi)) + C1

(
b1,N max

1≤i≤N
cαN ,N (Ωi) + b2,N

)
∨ C1N

−1 +N−1

+ εN (logN)

≤αN + C
(
εN (logN) +N−1

)
.

where C is a constant that can be chosen to depend only on C1 and α. The fourth inequality
follows from the union bound and the anti-concentration inequality (21). The conclusion follows
upon noting that

αN ≤ α+ 96εN log (N/α) ≤α+ 96εN log (N)

(
1− logα

logN

)
≤α+ 192εN log (N) .

Lemma D.3 (Large CLT for QLR statistic). Let P denote a probability measure that satisfies
Assumption 1 and imposes cross-sectional independence. Let λ1 = minNi=1 ming∈G λ1

(
Ωi(g

0
i )
)

and suppose that λ1 > 0. Then, there are random variables (Ui)1≤i≤N with Ui ∼ χ̃2(Ωi(g
0
i )) such

that

sup
(r1,...,rN )∈RN++

∣∣∣∣P( max
1≤i≤N

(
TQLR
i (g0

i )− ri
)
> 0

)
− P

(
max

1≤i≤N
(Ui − ri) > 0

)∣∣∣∣
≤C


(
GB6

N,T,4 log7((G− 1)NT )

T

)1/6

+

(
GB6

N,T,4 log3((G− 1)NT )
√
T

)1/3
 ,

where C is a constant that depends only on λ1 and G.
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Proof. Let ti(x) = ti(x1, . . . , xN ) = infs≤0(xi − s)′Ω−1
i (xi − s). We first show that, for all

r > 0, the set {x ∈ RN(G−1) : ti(x) ≤ r} is a convex set. Let S = {y ∈ RG−1 : y ≤ 0}. For
y ∈ RG−1, define ‖y‖Ω−1 =

√
y′Ω−1y and di(y, S) = infz∈S‖y − z‖Ω−1

i
. Convexity of S and

positive definiteness of Ωi imply that there is a unique ŷ such that d(y, S) = ‖y − ŷ‖Ω−1
i

. For

y1, y2 ∈ RG−1 and λ ∈ [0, 1] define yλ = λy1 + (1−λ)y2. Define also y∗λ = λŷ1 + (1−λ)ŷ2. Then,
y∗λ ∈ S and therefore, by the triangle inequality,

d(yλ, S) ≤ ‖yλ − y∗λ‖Ω−1
i
≤λ‖y1 − ŷ1‖Ω−1

i
+ (1− λ)‖y2 − ŷ2‖Ω−1

i

=λd(y1, S) + (1− λ)d(y2, S).

This proves that, for ri ∈ R(G−1), the set

{x ∈ RN(G−1) : ti(x) ≤ ri} = {x ∈ RN(G−1) : d(xi, S) ≤
√
ri}

is convex. For r1, . . . , rN ∈ RN++ the set

N⋂
i=1

{
x ∈ RN(G−1) : ti(x) ≤ ri

}
is therefore a sparse-convex set, as defined in Chernozhukov, Chetverikov, and Kato (2016). Let

Zit(h) = dit(h)/(σisi,T (h)).

and Zit = (Zit(h))h∈G\{g0i }
. Let X̃t = (X̃1t, . . . , X̃Nt)

′ with dim(X̃it) = G− 1 for i = 1, . . . , N ,

t = 1, . . . , T denote a centered normal random vector with the property that X̃t and X̃s are
independent for t 6= s and EP [X̃t(X̃t)

′] = EP [Zt(Zt)
′] for i = 1, . . . , N , t = 1, . . . , T . Condition

(M.1”) in Chernozhukov, Chetverikov, and Kato (2016) is satisfied with b = λ1. Let v denote a

vector v = (vj)
N(G−1)
j=1 with ‖vj‖ = 1 and ‖vj‖0 ≤ (G−1). Also, let j(i, h) = (i−1)(G−1)+(h−1)

and v(i) = (vj(i,j))h∈G\{g0i }
. Because of cross-sectional independence, we obtain

1

T

T∑
t=1

EP
( N∑
i=1

∑
h∈G\{g0i }

vj(i,h)Zit(h)

)2

=
1

T

T∑
t=1

N∑
i=1

∑
h∈G\{g0i }

∑
h′∈G\{g0i }

vj(i,h)vj(i,h′)EP
[
Zit(h)Zit(h

′)
]

=
1

T

T∑
t=1

N∑
i=1

(v(i))′
[
Ωi,t

]
v(i)

=

N∑
i=1

(v(i))′
[

1

T

T∑
t=1

Ωi,t

]
v(i) =

N∑
i=1

(v(i))′
[
Ωi(g

0
i )
]
v(i)

≥ 1

T

T∑
t=1

N∑
i=1

λ1

[
Ωi

]
‖v(i)‖2 ≥ λ1

1

T

T∑
t=1

N∑
i=1

‖v(i)‖2 = λ1.

This verifies assumption (M.1”) in Chernozhukov, Chetverikov, and Kato (2016). Next, by
Hölder’s inequality there is a constant C1 ≥ 1 depending only on Kβ such that

1

T

T∑
i=1

EP [|Zit|3] ≤ C
(
B4
N,T,4

)3/4 ≤ C1G
1/2B3

N,T,4,
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1

T

T∑
i=1

EP [|Zit|4] ≤ CB4
N,T,4 ≤ (C1G

1/2B3
N,T,4)2.

This allows us to choose C1G
1/2B3

N,T,4 as the sequence of constants in assumption (M.2) in Cher-
nozhukov, Chetverikov, and Kato (2016). Lastly, we verify assumption (E.2) in Chernozhukov,
Chetverikov, and Kato (2016). To this end, note that

EP

[
max

1≤i≤N
max

h∈G\{g0i }

∣∣∣Zit(h)/(G1/4B3
N,T,4)

∣∣∣4] ≤∑
h∈G

EP
[

max
1≤i≤N

∣∣∣Zit(h)/(G1/4B3
N,T,4)

∣∣∣4]
≤G2C2

1B
6
N,T,4/(G

2C4
1B

12
N,T,4) ≤ 1 ≤ 2,

where we used that BN,T,4 ≥ 1. We may now apply Proposition 3.2 in Chernozhukov, Chetverikov,
and Kato 2016 to deduce

sup
(r1,...,rN )∈RN++

∣∣∣∣P( max
1≤i≤N

(
ti
(
Di

)
− ri

)
> 0

)
− P

(
max

1≤i≤N
(Ui − ri) > 0

)∣∣∣∣
≤ sup

(r1,...,rN )∈RN++

∣∣∣P( N⋂
i=1

{
ti
(
Di

)
≤ ri

})
− P

( N⋂
i=1

{
ti

(
1√
T

T∑
t=1

X̃it

)
≤ ri

})∣∣∣
≤C


(
GB6

N,T,4 log7((G− 1)NT )

T

)1/6

+

(
GB6

N,T,4 log3((G− 1)NT )
√
T

)1/3
 ,

where C is a constant that depends only on λ1, G and Kβ. Next, note that

ti

(
1√
T

T∑
t=1

X̃it

)
= inf

t≥0

(
− 1√

T

T∑
t=1

X̃it − t

)′
Ω−1
i

(
− 1√

T

T∑
t=1

X̃it − t

)
.

Since −
∑T

t=1 X̃it/
√
T is a zero-mean normal random vector with covariance matrix Ωi the

right-hand side follows a χ̃2(Ωi)-distribution.

Lemma D.4 (Large CLT for MAX statistic). Let P denote a probability measure satisfying
Assumption 1. For i = 1, . . . , N , there are centered normal random vectors Xi with EP [XiX

′
i] =

Ωi(g
0
i ) such that

sup
(r1,...,rN )∈RN++

∣∣∣∣P( max
1≤i≤N

(
max

h∈G\{g0i }
Di(g

0
i , h)− ri

)
> 0

)
− P

(
max

1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0

)∣∣∣∣
≤C


(
GB6

N,T,4 log7((G− 1)NT )

T

)1/6

+

(
GB6

N,T,4 log3((G− 1)NT )
√
T

)1/3
 ,

where C is a constant depending only on G.

Let Zit(h) = dit(g
0
i , h)/si,T (g0

i , h) and

Zt =
(
(Z1t(g

0
1, h))h∈G\{g01}, . . . , (ZNt(g

0
N , h))h∈G\{g0N}

)′
.

Let X̃t = (X̃1t, . . . , X̃Nt)
′ with dim(X̃it) = G − 1 for i = 1, . . . , N , t = 1, . . . , T denote a

normal random vector with the property that X̃t and X̃s are independent for t 6= s and
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EP [X̃t(X̃t)
′] = EP [Zt(Zt)

′] for i = 1, . . . , N , t = 1, . . . , T . Define Xi =
∑T

t=1 X̃it/
√
T . Clearly,

Xi is a normal random vector with covariance matrix Ωi. Let ai = −∞ and bi = ri. Then we
may write

sup
(r1,...,rN )∈RN++

∣∣∣∣P( max
1≤i≤N

(
max

h∈G\{g0i }
Di(g

0
i , h)− ri

)
> 0

)
− P

(
max

1≤i≤N

(
max

1≤h≤G−1
Xi,h − ri

)
> 0

)∣∣∣∣
≤ sup

(r1,...,rN )∈RN++

∣∣∣∣P( N⋂
i=1

⋂
h∈G\{g0i }

{
ai < Di(g

0
i , h) ≤ bi

})

− P
( N⋂
i=1

G−1⋂
h=1

{ai < Xi,h ≤ bi}
)∣∣∣∣

≤ sup
(r1,...,rN )∈RN++

∣∣∣∣P( N⋂
i=1

⋂
h∈G\{g0i }

{
ai <

1√
T

T∑
t=1

Zit(g
0
i , h) ≤ bi

})

− P
( N⋂
i=1

G−1⋂
h=1

{
ai <

1√
T

T∑
t=1

X̃it,h ≤ bi
})∣∣∣∣

≤C


(
GB6

N,T,4 log((G− 1)NT )

T

)1/6

+

(
GB6

N,T,4 log((G− 1)NT )
√
T

)1/3
 .

The last inequality holds by Proposition 2.1 in Chernozhukov, Chetverikov, and Kato (2016).
Their assumption (M.1) holds trivially with b = 1. As in the proof of Lemma D.3, their assumption
(M.2) can be verified for the deterministic sequence G1/4B3

N,T,4. Then, their assumption (E.2)
holds with q = 4.

Lemma D.5. Suppose that Ω−1
i (g) is symmetric and positive definite and

2‖Ω−1
i (g)‖2‖Ω̂i(g)− Ωi(g)‖2 ≤ 1.

Then,

T̂QLR
i (g) ≤

(
1 + 2‖Ω(g)‖2‖Ω

−1
i (g)‖22‖Ω̂i(g)− Ωi(g)‖2

)
×min

t≤0

(
D̂i(g)− t

)′
Ωi
−1(g)

(
D̂i(g)− t

)
.

Proof. For brevity, we write D̂ = D̂i(g), Ω̂ = Ω̂i(g) and Ω = Ωi(g) and

T̂Ω
i = min

t≤0
(D̂ − t)′Ω−1(D̂ − t).

Let t∗ ∈ Rp such that t∗ ≤ 0 and T̂Ω
i = (D̂ − t∗)′Ω−1(D̂ − t∗). By definition

T̂QLR
i ≤

(
D̂ − t∗

)′
Ω̂−1

(
D̂ − t∗

)
≤T̂Ω

i +
∣∣(D̂ − t∗)′[Ω̂−1 − Ω−1

]
(D̂ − t∗)

∣∣.
Let 0 < λi,1 ≤ · · · ≤ λi,p denote the eigenvalues of Ω and note that λ−1

i,p = ‖Ω‖−1
2 . Let

Ω−1 = PΛP ′, where P is an orthogonal matrix and Λ is a diagonal matrix with diagonal entries
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(λ−1
i,j )pj=1. Then,

(D̂ − t∗)′Ω−1(D̂ − t∗) =

p∑
j=1

λ−1
i,j

(
P ′(D̂ − t∗)

)2

≥ min
1≤j≤p

{λ−1
i,j }‖P

′(D̂ − t∗)‖2 = ‖Ω‖−1
2 ‖D̂ − t

∗‖2.

Therefore,∣∣(D̂ − t∗)′[Ω̂−1 − Ω−1
]
(D̂ − t∗)

∣∣ ≤‖D̂ − t∗‖2‖Ω̂−1 − Ω−1‖2 ≤ ‖Ω‖2‖Ω̂
−1 − Ω−1‖2T̂

Ω
i .

By combining inequalities, we obtain

T̂QLR
i ≤T̂Ω

i

(
1 + ‖Ω‖2‖Ω̂

−1 − Ω−1‖2
)
≤ T̂Ω

i

(
1 + 2‖Ω‖2‖Ω

−1‖22‖Ω̂− Ω‖2
)
,

where the last inequality holds by Lemma D.14.

Lemma D.6. Suppose that ‖D̂i(g)−Di(g)‖ ≤ 1. Then∣∣TQLR
i (g)−min

t≤0

(
D̂i(g)− t

)′
Ω−1
i (g)

(
D̂i(g)− t

)∣∣
≤(2‖Di(g)‖+ 3)‖Ω−1

i (g)‖2‖D̂i(g)−Di(g)‖.

Proof. For brevity, we write D = Di(g), D̂ = D̂i(g) and Ω = Ωi(g) and define

T̂Ω
i = min

t≤0

(
D̂i(g)− t

)′
Ω−1
i (g)

(
D̂i(g)− t

)
.

Write ‖v‖Ω−1 =
√
v′Ω−1v and note that ‖·‖Ω−1 defines a vector norm and ‖v‖Ω−1 ≤ ‖v‖·‖Ω−1‖1/22 .

By the triangle inequality,√
T̂Ω
i = min

t≤0
‖D̂ − t‖Ω−1 ≤‖D̂ −D‖Ω−1 + min

t≤0
‖D − t‖Ω−1

=‖D̂ −D‖Ω−1 +

√
TQLR
i ≤ ‖D̂ −D‖

√
‖Ω−1‖2 +

√
TQLR
i .

Taking squares and using TQLR
i ≤ ‖Ω−1‖2‖D‖

2 and ‖D̂ −D‖ ≤ 1 gives

T̂Ω
i ≤ T

QLR
i + (2‖D‖+ 1)‖Ω−1‖2‖D̂ −D‖.

Reversing the roles of D̂ and D gives

TQLR
i ≤T̂Ω

i + (2‖D̂‖+ 1)‖Ω−1‖2‖D̂ −D‖
≤T̂Ω

i + (2‖D‖+ 2‖D̂ −D‖+ 1)‖Ω−1‖2‖D̂ −D‖
≤T̂Ω

i + (2‖D‖+ 3)‖Ω−1‖2‖D̂ −D‖,

where the third inequality follows by ‖D̂ − D‖ ≤ 1. The assertion follows by combining the
inequalities.

Lemma D.7. Suppose that the probability measure P satisfies Assumption 1. For h, h′ ∈ G\{g0
i }

let

(Ω∗i )h,h′ =
T−1

∑T
t=1(dit(g

0
i , h)− d̄i(g0

i , h))(dit(g
0
i , h
′)− d̄i(g0

i , h
′))

σ2
i si,T (g0

i , h)si,T (g0
i , h
′)

.
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There is a constant C depending only on Kβ and G such that for 0 < c < 1

P

(
max

1≤i≤N
max

h,h′∈G\{g0i }

∣∣(Ω∗i )h,h′ − (Ωi(g
0
i ))h,h′

∣∣
> CT−(1−c)/2(logN)B2

N,T,4

)
≤ CT−c,

(i)

P

(
T−1/2 max

1≤i≤N

∣∣Di(g
0
i , h)

∣∣ > C
(
T−1/2

√
logN + T−3/4BN,T,4 logN

))
≤ N−1 + C

(
T−1/4BN,T,4/ log(N)

)4
.

(ii)

Proof.

Proof of (i) Decompose

T−1
∑T

t=1(dit(h)− d̄i(h))(dit(h
′)− d̄i(h′))

σ2
i si,T (h)si,T (h′)

− (Ωi)h,h′

=
T−1

∑T
t=1 (dit(h)dit(h

′)− EP [dit(h)dit(h
′)])

σ2
i si,T (h)si,T (h′)

−
(

d̄i(h)

σisi,T (h)

)(
d̄i(h

′)

σisi,T (h′)

)
.

Below, we show that

P

(
max

1≤i≤N

∣∣∣∣∣T−1
∑T

t=1 (dit(h)dit(h
′)− EP [dit(h)dit(h

′)])

σ2
i si,T (h)si,T (h′)

∣∣∣∣∣
> C1B

2
N,T,4T

−(1−c)/2 logN

)
≤ 2T−c,

(22)

P

(
max

1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

dit(h)

σisi,T (h)

∣∣∣∣∣ > C2

(
T−1/4

√
logN + T−3/4 log(N)

)
BN,T,4

)
≤ 2T−2 (23)

where C1 and C2 are constants that depend only on Kβ. For

x = (2C1 ∨ C2)T−(1−c)/2(logN)B2
N,T,4(P ) + C2T

−3/2(log2N)B2
N,T,4(P )

and a constant C3 depending only on Kβ and G

P

(∣∣∣∣T−1
∑T

t=1 (dit(h)dit(h
′)− EP [dit(h)dit(h

′)])

σ2
i si,T (h)si,T (h′)

−
(

d̄i(h)

σisi,T (h)

)(
d̄i(h

′)

σisi,T (h′)

) ∣∣∣∣ > 2x2

)
≤P
(∣∣∣∣T−1

∑T
t=1 (dit(h)dit(h

′)− EP [dit(h)dit(h
′)])

σ2
i si,T (h)si,T (h′)

∣∣∣∣ > x2

)
+
∑
h∈G

P

( ∣∣∣∣ d̄i(h)

σisi,T (h)

∣∣∣∣ > x

)
≤C3T

−c,

where the last inequality follows from (22) and (23). The assertion of the lemma follows. It
remains to establish the inequalities (22) and (23). Write

Uit(h, h
′) =

(
dit(h)dit(h

′)− EP [dit(h)dit(h
′)]
)
/
(
σ2
i si,T (h)si,T (h′)

)
.

By

EP [Uit(h, h
′)2] ≤ max

1≤t≤T
EP
[

max
1≤i≤N

|dit(h)dit(h
′)|2/σ2

i

]
/
(
s2
i,T (h)s2

i,T (h′)
)

12



≤ max
1≤t≤T

EP
[

max
1≤i≤N

(
|uit/σi|4 ‖xit‖4‖δt(g0

i , h)‖2‖δt(g0
i , h)‖2

)]
/s4
N,T (P )

≤16K2
βB

4
N,T,4(P )

we have E[max1≤i≤N max1≤t≤T |Uit(h, h′)|2] ≤ 16K2
βTB

4
N,T,4 and E[U2

it(h, h
′)] ≤ 16K2

βB
4
N,T,4.

By Lemma A.3 in Chernozhukov, Chetverikov, and Kato (2014) there is a universal constant K
such that for C4 = 32K2

βK

EP

[
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

(Uit(h, h
′)− EP [Uit(h, h

′)])
∣∣∣] ≤ C4B

2
N,T,4(logN)/

√
T .

Thus, by Lemma A.2 in Chernozhukov, Chetverikov, and Kato (2014) for every r > 0 and a
universal constant K2

P

(
max

1≤i≤N

∣∣Uit(h, h′)− EP [Uit(h, h
′)]
∣∣ ≥ 2CB2

N,T,4(logN)/
√
T + r

)
≤e−Tr

2/(48K2
βB

4
N,T,4) +K216K2

βr
−2T−1B4

N,T,4.

Taking r = C1T
−(1−c)/2B2

N,T,4 for 0 < c < 1 and C1 = 4(
√
K2 +

√
3)Kβ ∨ C then yields

P

(
T−1

∑T
t=1 (dit(h)dit(h

′)− EP [dit(h)dit(h
′)])

σ2
i si,T (h)si,T (h′)

> C1B
2
N,T,4T

−(1−c)/2 logN

)
≤ 2T−c.

By Hölder’s inequality

EP

[
max

1≤i≤N
max

1≤t≤T

∣∣∣∣ dit(h)

σisi,T (h)

∣∣∣∣2
]
≤

√√√√EP

(
max

1≤i≤N
max

1≤t≤T

∣∣∣∣ dit(h)

σisi,T (h)

∣∣∣∣4
)
≤
√
T4KβB

2
N,T,4.

Thus, by Lemma A.3 in Chernozhukov, Chetverikov, and Kato (2014) for a universal constant K

EP

[
max

1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

dit(h)

σisi,T (h)

∣∣∣∣∣
]
≤ K

(
T−1/2

√
logN + 2T−3/4

√
KβBN,T,4 logN

)
.

Then, by Lemma A.2 in Chernozhukov, Chetverikov, and Kato (2014) for all r > 0 and a
universal constant K4

P

(
max

1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

dit(h)

σisi,T (h)

∣∣∣∣∣
> 2K

(
T−1/2

√
logN + 2T−3/4

√
KβBN,T,4 logN

)
+ r

)
≤e−Tr2/3 +K4r

−4T−3B4
N,T,4.

(24)

Now, taking r = 2
√
KβK

1/4
4 T−1/4BN,T,4 and noting that BN,T,4 ≥ 1 yields

P

(
max

1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

dit(h)

σisi,T (h)

∣∣∣∣∣ > C2

(
T−1/2

√
logN + T−3/4 log(N)

)
BN,T,4

)
≤ 2T−2,

where C2 is a constant that depends only on Kβ.

13



Proof of (ii): Taking r = 3T−1/2
√

logN in (24) gives

P

(
max

1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

dit(h)

σisi,T (h)

∣∣∣∣∣ > C5

(
T−1/2

√
logN + T−3/4(logN)BN,T,4

))

≤N−1 +
(
T−1/4BN,T,4/(logN)

)4
.

Lemma D.8. Suppose that the probability measure P satisfies Assumption 1. Then, there is a
constant C depending only on Kβ and G such that for 0 < c < 1 and

ζN,T =γN,T,8
(
T−(1−c)/4√logNB2

N,T,8 +DN,T,4

)(
1 + T−(1−c)/4√logNBN,T,4

)
+ γ2

N,T,8

(
T−(1−c)/2(logN)B4

N,T,8 +D2
N,T,4

)
,

we have

P

(
max

1≤i≤N

∣∣∣∣ 1

T

T∑
t=1

(d̂it(g
0
i , h)− ¯̂

di(g
0
i , h))(d̂it(g

0
i , h
′)− ¯̂

di(g
0
i , h
′))

σ2
i si,T (g0

i , h)si,T (g0
i , h
′)

− 1

T

T∑
t=1

(dit(g
0
i , h)− d̄i(g0

i , h))(dit(g
0
i , h
′)− d̄i(g0

i , h
′))

σ2
i si,T (g0

i , h)si,T (g0
i , h
′)

∣∣∣∣
>CζN,T

)
≤ CT−c,

(i)

P

(
T−1/2 max

1≤i≤N

∣∣∣∣Di(g
0
i , h)− 1√

T

T∑
t=1

d̂i(g
0
i , h)

σisi,T (g0
i , h)

∣∣∣∣
> CγN,T,8

(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

))
≤ CT−c.

(ii)

Suppose that, additionally, ζN,T ∨ T−(1−c)/4√logNBN,T,4 ≤ 1. Then,

P

(
max

1≤i≤N

∣∣∣D̂i(h)− D̃i(h)
∣∣∣ > CγN,T,8

√
T
(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

)
+ CζN,T

(
1 + T−1/4BN,T,4

√
logN

)√
logN

)
≤N−1 + CT−c + C

(
T−1/4BN,T,4/ log(N)

)4
,

(iii)

P

(
max

1≤i≤N

∣∣∣D̂i(h)−Di(h)
∣∣∣ > C

√
TγN,T,8

(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

)
+ C

(
ζN,T + T−(1−c)/2(logN)B2

N,T,4

)
×
(

1 + T−1/4BN,T,4
√

logN
)√

logN

≤N−1 + CT−c + C
(
T−1/4BN,T,4/ log(N)

)4
.

(iv)

Proof. Throughout the proof, let C denote a generic constant that depends only on Kβ and G.

Proof of (i): Bound as follows

∣∣∣ 1

T

T∑
t=1

(d̂it(h)− ¯̂
di(h))(d̂it(h

′)− ¯̂
di(h

′))− 1

T

T∑
t=1

(dit(h)− d̄i(h))(dit(h
′)− d̄i(h′))

∣∣∣

14



≤
∣∣∣ 1

T

T∑
t=1

(
d̂it(h)− dit(h)− (

¯̂
di(h)− d̄i(h))

)(
d̂it(h

′)− dit(h′)− (
¯̂
di(h

′)− d̄i(h′))
)∣∣∣

+
∣∣∣ 1

T

T∑
t=1

(
dit(h)− d̄i(h)

)(
d̂it(h

′)− dit(h′)− (
¯̂
di(h

′)− d̄i(h′))
)∣∣∣

+
∣∣∣ 1

T

T∑
t=1

(
dit(h

′)− d̄i(h′)
)(
d̂it(h)− dit(h)− (

¯̂
di(h)− d̄i(h))

)∣∣∣
≤

√√√√ 1

T

T∑
t=1

(
d̂it(h)− dit(h)

)2√√√√ 1

T

T∑
t=1

(
d̂it(h′)− dit(h′)

)2
+

√√√√ 1

T

T∑
t=1

(
dit(h)− d̄i(h)

)2√√√√ 1

T

T∑
t=1

(
d̂it(h′)− dit(h′)

)2
+

√√√√ 1

T

T∑
t=1

(
dit(h′)− d̄i(h′)

)2√√√√ 1

T

T∑
t=1

(
d̂it(h)− dit(h)

)2
.

Therefore,∣∣∣∣ 1

T

T∑
t=1

(d̂it(h)− ¯̂
di(h))(d̂it(h

′)− ¯̂
di(h

′))

σ2
i si,T (h)si,T (h′)

− 1

T

T∑
t=1

(dit(h)− d̄i(h))(dit(h
′)− d̄i(h′))

σ2
i si,T (h)si,T (h′)

∣∣∣∣
≤

√√√√ 1

T

T∑
t=1

(
d̂it(h)− dit(h)

)2
σ2
i s

2
N,T

√√√√ 1

T

T∑
t=1

(
d̂it(h′)− dit(h′)

)2
σ2
i s

2
N,T

+ max
h,h′∈G

2

√√√√ 1

T

T∑
t=1

(
dit(h)− d̄i(h)

)2
σ2
i s

2
i,T (h)

√√√√ 1

T

T∑
t=1

(
d̂it(h′)− dit(h′)

)2
σ2
i s

2
N,T

≤γN,T,8
(
T−(1−c)/4√logNB2

N,T,8 +DN,T,4

)(
1 + T−(1−c)/4√logNBN,T,4

)
+ γ2

N,T,8

(
T−(1−c)/2(logN)B4

N,T,8 +D2
N,T,4

)
.

where the last inequality follows from Lemma D.7 and

P

(
1

T

T∑
t=1

(
d̂it(h)− dit(h)

σisi,T (h)

)2

> Cγ2
N,T,8

(
T−(1−c)/2B4

N,T,8(logN) +D2
N,T,4

))
≤ CT−c.

(25)

We now prove (25). For the following calculations note that

‖δ̂(g0
i , h)− δ(g0

i , h)‖2 ≤ 2
(
‖β̂g0i − βg0i ‖

2 + ‖β̂h − βh‖2
)
≤ 4 max

g∈G
‖β̂g − βg‖2

and, since the matrix norm ‖·‖2 is an induced norm and ‖xit‖ =
√
x′itxit,

‖xitx′it‖2 = sup
‖y‖=1

‖xitx′ity‖ ≤
‖xitx′itxit‖
‖xit‖

= ‖xit‖2.
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Decompose d̂it(h)− dit(h) as follows

d̂it(h)− dit(h)

=− uitx′it(δ̂t(g0
i , h)− δt(g0

i , h))

+ (β̂g0i ,t
− βg0i ,t)

′(xitx
′
it)(δ̂t(g

0
i , h)− δt(g0

i , h)) + (β̂g0i ,t
− βg0i ,t)

′(xitx
′
it)δt(g

0
i , h).

By the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2),(
d̂it(h)− dit(h)

σi

)2

≤3

∣∣∣∣uitσi
∣∣∣∣2 ‖xit‖2‖δ̂t(g0

i , h)− δt(g0
i , h)‖2

+ 3σ−2
i ‖β̂g0i ,t − βg0i ,t‖

2‖xit‖4‖δ̂t(g0
i , h)− δt(g0

i , h)‖2

+ 3σ−2
i ‖β̂g0i ,t − βg0i ,t‖

2‖xit‖4‖δt(g0
i , h)‖2.

Let Vit =
(
|uit/σi|2‖xit‖2 + ‖xit‖4/σ4

i

)
/s2
N,T . Below, we show that for 0 < c < 1

P

(
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

(
V 2
it − EP [V 2

it ]
)∣∣∣ > CT−(1−c)/2B4

N,T,8(logN)

)
≤ CT−c. (26)

Now, by the Cauchy-Schwarz inequality

1

T

T∑
t=1

(
d̂it(h)− dit(h)

σisi,T (h)

)2

≤C

{
max
g∈G

(
1

T

T∑
t=1

∥∥β̂g,t − βg,t∥∥4

)1/2

+ max
g∈G

(
1

T

T∑
t=1

∥∥β̂g,t − βg,t∥∥8

)1/2}

×

(
1

T

T∑
t=1

( ∣∣∣∣uitσi
∣∣∣∣4 ‖xit‖4 + ‖xit‖8/σ4

i

)
/s4
N,T

)1/2

≤C(γ2
N,T,8 + γ4

N,T,8)

(
1

T

T∑
t=1

(
V 2
it − EP

[
V 2
it

])
+

1

T

T∑
t=1

EP
[
V 2
it

])1/2

.

Together with (26) this implies (25). It remains to prove (26). Note that EP [V 2
it ] ≤ B8

N,T,8 and

EP [max1≤i≤T max1≤i≤N V
2
it ] ≤ TB8

N,T,8. By Lemma A.3 in Chernozhukov, Chetverikov, and
Kato (2014) there is a universal constant K such that

EP

[
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

(V 2
it − EP [V 2

it ])
∣∣∣] ≤ KB4

N,T,8

logN√
T
.

Then, by Lemma A.2 in Chernozhukov, Chetverikov, and Kato (2014) for every r > 0

P

(
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

(V 2
it − EP [V 2

it ])
∣∣∣ > 2KB2

N,T,4 logN/
√
T + r

)
≤e−Tr

2/(3B8
N,T,8) +Kr−2T−1B8

N,T,8.

Then, taking r = T−(1−c)/2B4
N,T,8 for 0 < c < 1 yields (26).
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Proof of (ii): By slightly modifying the arguments above, we can prove∣∣∣∣ 1

T

T∑
t=1

d̂it(h)− dit(h)

σisi,T (h)

∣∣∣∣
≤C(γN,T,4 + γ2

N,T,4)

(
1

T

T∑
t=1

(
Vit − EP

[
Vit
])

+
1

T

T∑
t=1

EP
[
Vit
])1/2

.

In addition, for 0 < c < 1,

P

(
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

(
Vit − EP [Vit]

)∣∣∣ > CT−(1−c)/2B2
N,T,4(logN)

)
≤ CT−c

from whence the conclusion follows.

Proof of (iii): Define

S∆
i,T (h) =

(
Ŝi,T (h)− Si,T (h)

σisi,T (h)

)
Si,T (h)

σisi,T (h)
.

By the inequality |a− b| ≤ |a− b| /(
√
a+
√
b ≤ |a− b| /

√
a and (i) of the lemma we have

S∆
i,T (h) ≤

∣∣∣(Ŝ2
i,T (h)/(σisi,T (h))

)2 − (S2
i,T (h)/(σisi,T (h))

)2∣∣∣ ≤ C2ζN,T

uniformly over i = 1, . . . , N on a set of probability less than CT−c. By the inequality |
√
a− 1| ≤

|a− 1| and Lemma D.7 we have∣∣S2
i,T (h)/(σisi,T (h))− 1

∣∣ ≤ ∣∣∣(S2
i,T (h)/(σisi,T (h))

)2 − 1
∣∣∣ ≤ C1T

−(1−c)/2(logN)B2
N,T,4

uniformly over i = 1, . . . , N on a set of probability less than CT−c. By Lemma D.7(ii)∣∣Di(g
0
i , h)

∣∣ ≤ C (√logN + T−1/4BN,T,4 logN
)

uniformly over i = 1, . . . , N on a set of probability less than N−1 + C
(
T−1/4BN,T,4/ log(N)

)4
.

Now, decompose

D̂i(h)− D̃i(h) =
σisi,T (h)

Ŝi,T (h)

(
1√
T

T∑
t=1

d̂i(g
0
i , h)

σisi,T (g0
i , h)

−Di(g
0
i , h)

)

−
Ŝi,T − Si,T

Si,T (h)Ŝi,T (h)
σisi,T (h)Di(h)

=
Si,T (h)/(σisi,T (h))

S∆
i,T (h) + Si,T (h)/(σisi,T (h))

(
1√
T

T∑
t=1

d̂i(g
0
i , h)

σisi,T (g0
i , h)

−Di(g
0
i , h)

)

−
S∆
i,T(

S∆
i,T + S2

i,T (h)/(σisi,T (h))2
)
S2
i,T (h)/(σisi,T (h))

Di(h).

In conjunction with part (ii) of the lemma, this decomposition implies

max
1≤i≤N

∣∣∣D̂i(h)− D̃i(h)
∣∣∣ ≤CγN,T,8√T (T−(1−c)/4BN,T,4

√
logN +D2

N,T,4

)
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+ CζN,T

(√
logN + T−1/4BN,T,4 logN

)
with probability less than CT−c +N−1 + C

(
T−1/4BN,T,4/ log(N)

)4
.

Proof of (iv): Write

D̃i(h)−Di(h) = − (Si,T /si,T − 1) (Si,T /si,T )−1Di(h).

The bounds derived in the proof of part (iii) imply

max
1≤i≤N

∣∣∣D̃i(h)−Di(h)
∣∣∣ ≤ C1T

−(1−c)/2(logN)B2
N,T,4

(√
logN + T−1/4BN,T,4 logN

)
with probability less than CT−c +N−1 +C

(
T−1/4BN,T,4/ log(N)

)4
. The conclusion now follows

from the triangle inequality and part (iii) of the lemma.

Lemma D.9. (Simultaneous anti-concentration) Let {Vi}Ni=1 denote a collection of nonsingular
(p× p)-variance matrices, and let {Wi}Ni=1 denote a collection of independent random variables
with marginal distribution Wi ∼ χ̃2(Vi). For positive constants a and ā, let S = [a logN, ā logN ].
Then, for each τ > 0 there are constants C and N0 that depend only on a, ā, τ and p such that
for all ε with N−τ < ε < a/2(logN) we have

sup
(s1,...,sN )∈SN

P

(
| max
1≤i≤N

Wi − si| ≤ ε
)
≤ Cε+N−1.

Proof. For a collection of nonsingular p × p covariance matrices (Vi)
N
i=1 let Wi ∼ χ̃2(Vi). Let

(Ui,j)
k
j=1 denote a collection of chi-squared random variables with Ui,j ∼ χ2

j and Ui,j ⊥ Ui,k for

j 6= k. Let W̄i denote the random function W̄i(d) =
∑p

j=1 1{d = j}Ui,j . and let (Di)
N
i=1 denote

random variables that are supported on {0, . . . , p} and satisfy P (Di = d) = w(p, p− d, Vi) for
d = 0, . . . , p. This construction ensures that L(Wi) = L(W̄i(Di)). Let (D∗i )

N
i=1 denote random

variables that are supported on {1, . . . , p} and satisfy P (D∗i = 1) = w(p, p, Vi) + w(p, p− 1, Vi)
and P (D∗i = d) = w(p, p− d, Vi) for d = 0, . . . , p and define W ∗i = W̄i(D

∗
i ). For ε < a/2(logN),

P
(
| max
1≤i≤N

(Wi − si)| ≤ ε
)

=P
(
| max
1≤i≤N

(
W̄i(Di)− si

)
| ≤ ε

)
≤P
(
| max
1≤i≤N

(
W̄i(D

∗
i )− si

)
| ≤ ε

)
= P

(
| max
1≤i≤N

(W ∗i − si)| ≤ ε
)
,

where the inequality holds since the upper bound on ε implies W̄i(0)− si = 0− si < −ε so that
units i with Di = 0 do not contribute any probability mass. Then, Lemma D.16 gives C and N0

such that for N−τ < ε < a/2(logN) and N ≥ N0,

P

(
| max
1≤i≤N

(Wi − si)| ≤ ε
)
≤P

(
| max
1≤i≤N

(W ∗i − si)| ≤ ε
)

≤
∑

(d1,...,dN )∈{1,...,p}N
P
(
D∗1 = d1, . . . , D

∗
N = dN

)
× P

(
| max
1≤i≤N

(Ui,di − si)| ≤ ε
)
≤ Cε+ 2N−1.

Lemma D.10. Let ν(N) ≥ 1 denote a sequence that converges to infinity, and let cN (α)
denote the (1− α/N)-quantile of the t-distribution with ν(N) degrees of freedom. Suppose that
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(logN)/ν(N)→ 0. For each ε > 0 and 0 < α < 1, there is a threshold N0 such that for N ≥ N0

sup
α≤α<1

cN (α) ≤
√

2(1 + ε) log(N/α).

Proof. For notational convenience, write ν = ν(N). We prove the bound for α = α and write
cN = cN (α). Then, the uniformity follows from the monotonicity of the distribution function.
Clearly, cN → ∞ so that we can take cN ≥ 1, provided that N is large enough. The density

function of the t-distribution with ν degrees of freedom is given by fν(x) = c(ν)
(
1 + x2/ν

)− ν+1
2 ,

where

c(ν) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) → 1√
2π

as ν →∞. It follows that there is a universal constant C such that c(ν) ≤ C. We first show that
c2
N/ν = O(1). The proof is by contradiction. Suppose that lim supN→∞ c

2
N/ν =∞. Applying

Theorem 1 in Soms 1976 with n = 1 yields

1− Fν(cN ) ≤ fν(cN )
1

cN

(
1 +

c2
N

ν

)
. (27)

This implies that

α

N
≤ c(ν)

(
1 +

c2
N

ν

)− ν+1
2
(

1 +
c2
N

ν

)
≤ C

(
1 +

c2
N

ν

)− ν−1
2

.

Taking logs and rearranging gives

log(N/α)

ν
≥ 1

2

ν − 1

ν

(
log

(
1 +

c2
N

ν

)
− C

)
.

The left-hand side of the inequality vanishes under the assumptions of the lemma, whereas a
subsequence of the right-hand side diverges to infinity. This establishes that the inequality is
impossible and therefore c2

N/ν = O(1). This implies that there exists a constant b such that

1 < b ≤
(

1 +
c2
N

ν

) ν

c2
N ≤ e,

so that we can take ((
1 +

c2
N

ν

) ν

c2
N

)−1

≤ e−
ν
ν+1

(1+ε∗/2)−1

for a positive ε∗. Then,

fν(cN ) ≤ C

[(
1 +

c2
N

ν

) ν

c2
N

]− c2N
2 [ ν+1

ν ]

≤ C exp

(
−
c2
N

2
(1 + ε∗/2)−1

)
.

Take N large enough that

1

1 + ε∗/2
− 4 log cN

c2
N

>
1

1 + ε∗
.
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Then, the right-hand side of (27) can be bounded by

C exp

(
−
c2
N

2
(1− ε∗/2)−1

)(
1 +

c2
N

ν

)
≤2C exp

(
−
c2
N

2

(
(1 + ε∗/2)−1 − 4 log cN

c2
N

))
≤2C exp

(
−
c2
N

2
(1 + ε∗)−1

)
.

Plugging in 1− Fν(cN ) = α/N and taking logs gives

c2
N ≤(1 + ε∗) log (N/α) + log(2C)

≤2(1 + ε∗) log (N/α)

(
1 +

1

2(1 + ε∗)

log(2C)

log(N/α)

)
.

Hence, there is a constant C such that c2
N ≤ C log(N/α). Using this inequality, we can now

verify that c2
N/ν → 0 so that (

1 +
c2
N

ν

) ν

c2
N → e,

allowing us to take ε∗ = ε/2 for sufficiently large N . Taking N large enough that

(1 + ε/2)

(
1 +

1

2(1 + ε/2)

log(2C)

log(N)

)
≤ 1 + ε

yields c2
N ≤ 2(1 + ε) log (N/α).

Lemma D.11. For ν ≥ 1, let Fν and fν denote the distribution and density function of a
t-distributed random variable with ν degrees of freedom. For x2 > 2

fν(x) < 2x (1− Fν(x)) .

Proof. Applying Theorem 1 in Soms (1976) with n = 2 yields the inequality

1− Fν(x) ≥ (1 + x2/ν)

(
1− ν

(ν + 2)x2

)
fν(x)/x.

Now, x2 > 2 implies

1− Fν(x) >

(
1− 1

2

)
fν(x)/x.

Lemma D.12. Let ξ1, . . . , ξT be independent centered random variables with E(ξ2
t ) = 1 and

E(|ξt|2+ν) < ∞ for all 1 ≤ t ≤ T where 0 < ν ≤ 1. Let ST =
∑T

t=1 ξt, V
2
T =

∑T
t=1 ξ

2
t and

DT,ν = (T−1
∑T

t=1E(|ξt|2+ν))1/(2+ν). Then uniformly in 0 ≤ x ≤ T ν/(2(2+ν))/DT,ν ,∣∣∣∣Pr(ST /VT ≥ x)

1− Φ(x)
− 1

∣∣∣∣ ≤ KT−ν/2D2+ν
T,ν (1 + x)2+ν .

Proof. This lemma is first proved by Jing, Shao, and Wang (2003). Here we use the version by
Chernozhukov, Chetverikov, and Kato (2014, Lemma A.1), which is based on de la Pena, Lai,
and Shao (2009, Theorem 7.4).
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Lemma D.13 (Properties of χ̃2-distribution). Let W denote a random variable with χ̃2(V )
distribution for a nondegenerate p× p covariance matrix. For j = 0, . . . , p let w(p, j, V ) denote
the weight function for the χ̄2-distribution defined by Kudo (1963) and Nüesch (1966).

1. (Weights define a probability distribution) For j = 0, . . . , p, w(p, j, V ) > 0 and

p∑
j=1

w(p, j, V ) = 1.

Moreover, w(p, j, V ) ≤ 1/2 for j = 1, . . . , N .

2. (Tail probabilities) Let (Uj)
p
j=1 denote chi-squared random variables, Uj ∼ χ2

j . For all
c ≥ 0

P (W ≥ c) =

p∑
j=1

w(p, p− j, V )P (Uj ≥ c).

3. (Mixture representation) Let (Uj)
p
j=1 denote independent chi-squared random variables

such that Uj ∼ χ2
j . Let D denote a random variable with support in {0, . . . , p} and

P (D = d) = w(p, p− d, V ). Define W̄ (d) =
∑p

j=1{d = j}Uj. Then

L(W ) = L(W̄ (D)).

4. (Calculation of weights) For subsets M ⊂ {1, . . . , p} let M̄ denote {1, . . . , p} \M . For
M1,M2 ⊂ {1, . . . , p} and a (p×p)-matrix A let AM1,M2 denote A with the rows with indices
corresponding to entries in M̄1 and the columns with indices corresponding to entries in
M̄2 deleted. For M 6= ∅ define the normal vector Y1(M) ∼ N(0, V −1

M,M ) and the probability
p1(M) = P (Y1(M) ≤ 0). For M = ∅ set p1(M) = 1. For M 6= {1, . . . , p} define the
normal vector Y2(M) ∼ N(0, (V −1)−1

M̄,M̄
) and the probability p2(M) = P (Y2(M) > 0). For

M = {1, . . . , p} set p2(M) = 1. The weights can be written as

w(p, p− j, V ) =
∑

M⊂{1,...,p}
|M |=j

p1(M)p2(M).

Proof. (1) In the derivation of the weights (see e.g., Nüesch 1966) the weights correspond to
probabilities of events that partition the sample space. To prove the asserted upper bounds use
the representation from (4) and write

w(p, p, V ) = P (Y2(∅) > 0) ≤1− P (there is j = 1, . . . , p such that Y2,j(∅) ≤ 0)

≤1− max
j=1,...,p

P (Y2,j(∅) ≤ 0) =
1

2
.

For the other weights, the bound can be proved in a similar way.
(2) This can be proved analogously to the derivation of the distribution of the χ̄2 statistic (see
Kudo 1963; Nüesch 1966).
(3) This follows from (2) upon observing that χ̃2(V ) is supported only on the nonnegative reals
and that {[c,∞) : c > 0} is a generating class.
(4) See Kudo (1963) and Nüesch (1966).

Lemma D.14. Let Â and A denote nonsingular p× p matrices and suppose that

2‖Â−A‖2‖A
−1‖2 ≤ 1.
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Then,

‖Â−1 −A−1‖2 ≤ 2‖Â−A‖2‖A
−1‖22.

Proof. This approach is originally due to Lewis and Reinsel (1985). Like any induced norm, the
‖·‖2-norm obeys submultiplicativity so that

‖Â−1 −A−1‖2 = ‖Â−1(Â−A)A−1‖2 ≤ ‖Â−A‖2‖A
−1‖2(‖A−1‖2 + ‖Â−1 −A−1‖2).

Rearranging yields

‖Â−1 −A−1‖2 ≤
‖Â−1 −A−1‖2‖A−1‖22
1− ‖Â−A‖2‖A−1‖2

≤ 2‖Â−A‖2‖A
−1‖22.

Lemma D.15. Let (φi)
N
i=1 denote normal random variables such that φi ∼ N(0, Ipi) with pi ≤ p̄.

Let a, ā > 0 and let cN denote a deterministic sequence. For each τ > 0 and κ > 0 there exist
positive constants C̄ and N0 such that for N ≥ N0 and all ε > N−τ we have

sup
(a1,...,aN )∈[a,ā]N

P

(∣∣∣ max
1≤i≤N

‖φi‖
ai
− cN

∣∣∣ ≤ ε) ≤ C̄aε√logN +N−κ.

Proof. Let ε denote a generic constant satisfying ε > N−τ . Let Γi denote a δN -covering of a
sphere in Rpi with radius a−1

i , where

δN =
1

4
N−τ

(
(κ+ 1) logN

)−1/2
.

It is without loss of generality to assume that, for all γ ∈ Γi, ‖γ‖ = a−1
i . An upper bound on

card(Γi) is given by

card(Γi) ≤ b1N b2 ,

where b1 and b2 depend only on κ, τ , a and p̄. As in Zhilova (2015), note that

‖φi‖
ai

= sup
γ∈Rpi :‖γ‖=a−1

i

γ′φi.

We employ an approximation argument based on the inequality

P

(∣∣ max
1≤i≤N

‖φi‖
ai
− cN

∣∣ ≤ ε) ≤P (∣∣ max
1≤i≤N

max
γj∈Γi

γ′jφi − cN
∣∣ ≤ 2ε

)
+ P

(
max

1≤i≤N
sup

γ∈Rpi :‖γ‖=a−1
i

min
γj∈Γi

|(γ − γj)′φi| > ε

)
≡A1 +A2.

To bound A1, note that each γ′jφi is a normal random variable with standard deviation bounded

between ā−1 and a−1. This follows from our assumptions about the covering Γi and

E
[
(γ′jφi)

2
]

= γ′jE[φiφ
′
i]γj = ‖γj‖2 = a−2

i .

Then, max1≤i≤N maxγj∈Γi |γ′jφi| is the maximum of
∑N

i=1 card(Γi) independent normal random
variables and the results for Levy concentration bounds in Chernozhukov, Chetverikov, and
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Kato (2015) apply. For a constant Ca depending only on a and ā, their Corollary 1 yields

A1 ≤ Caε

√√√√1 ∨ log

(∑N
i=1 card(Γi)

2ε

)
≤ Caε

√
1 ∨ log ((1/2)b1N b2+τ ) ≤ C̄ε

√
logN.

The last inequality holds for N ≥ N0,a and sufficiently large C̄, where the choice of N0,a and C̄
depends only on κ, τ , a and p̄. To bound A2 let N0,b be large enough such that for N ≥ N0,b

and tN = 1
2(N−τ/δN )2 we have tN > p̄. For N ≥ N0,b, by the Cauchy-Schwarz inequality

A2 ≤P

(
max

1≤i≤N
‖φi‖2 >

(
ε

δN

)2
)

≤P
(

max
1≤i≤N

‖φi‖2 − pi > tN

)
≤ N exp

(
− tN

8

)
≤ N−κ.

The fourth inequality follows from the fact that ‖φi‖2 obeys the subexponential condition

E
[
eα(‖φi‖2−pi)

]
≤ e

42α2

2 for all |α| < 1

2
√
pi
.

This implies the tail bound

P (‖φi‖2 − pi > tN ) ≤ e−
tN
8

for tN > pi (see, e.g., Proposition 2.2 in Wainwright 2015). The conclusion of the lemma follows
by setting N0 = max{1, N0,a, N0,b}.

Lemma D.16. Let (φi)
N
i=1 denote normal random vectors such that φi ∼ N(0, Ipi) with pi ≤ p̄.

For a, ā, γ > 0, and a positive deterministic sequence cN such that cN ≤ Nγ let SN = [cNa, cN ā].
For each τ > 0 and κ > 0 there exist positive constants C̄ and N0 such that for N ≥ N0 and all
ε > N−τ we have

sup
(s1,...,sN )∈SN

P

(∣∣∣ max
1≤i≤N

(
‖φi‖2 − si

) ∣∣∣ ≤ ε) ≤ C̄ε√ logN

cN
+N−κ.

If the random vectors φi are independent, then we also have

sup
(s1,...,sN )∈SN

P

(∣∣∣ max
1≤i≤N

(
‖φi‖2 − si

) ∣∣∣ ≤ ε) ≤ C̄ε(1 +

√
ācN

logN

)−1
+N−κ.

Proof. Fix ε > N−τ and (s1, . . . , sN ) ∈ SN . Let LN denote a lower bound on max1≤i≤N‖φi‖.
Suppose first that the φi are independent. Then,

max
1≤i≤N

‖φi‖ ≥ max
1≤i≤N

|φi,1| ≥ max
1≤i≤N

φi,1.

By Example 3.5.5 in Embrechts, Klüppelberg, and Mikosch (2013)

max1≤i≤N φi,1√
2 logN

→ 1 P -almost surely.

Therefore, there exists a finite N0,a for which we may assume N ≥ N0,a ⇒ max1≤i≤N‖φi‖ ≥√
logN . This implies that, for independent φi, we may take LN =

√
logN , otherwise take
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LN = 0. For each i = 1, . . . , N write si = cNai. For N ≥ N0,a

P

(
| max
1≤i≤N

(
‖φi‖2 − si

)
| ≤ ε

)
≤P

(∣∣ max
1≤i≤N

‖φi‖2

ai
− cN

∣∣ ≤ a−1ε

)

≤P
((

ā−1/2 max
1≤i≤N

‖φi‖+
√
cN

)∣∣∣ max
1≤i≤N

‖φi‖√
ai
−
√
cN

∣∣∣ ≤ a−1ε

)
≤P

(∣∣∣∣ max
1≤i≤N

‖φi‖√
ai
−
√
cN

∣∣∣∣ ≤ a−1ε

ā−1/2LN +
√
cN

)
.

Let

ε′ =
a−1ε

ā−1/2LN +
√
cN
.

Since cN < Nγ , we can find τ ′ > 0, depending only on a, ā, τ and γ, such that ε′ > N−τ
′
.

Applying Lemma D.15 with ε′ and τ ′ we may now conclude that there are constants N0,b and
C̄a such that for N ≥ N0,b

P

(∣∣∣∣ max
1≤i≤N

‖φi‖√
ai
−
√
cN

∣∣∣∣ ≤ a−1ε

ā−1/2
√

logN +
√
cN

)
≤C̄aε′

√
logN +N−κ

≤C
( √

logN

LN +
√
ācN

)
+N−κ.

The last inequality holds for conformant C. The assertion of the lemma follows by choosing
N0 = max{N0,a, N0,b} and plugging in the appropriate value of LN .

Lemma D.17 (Extremal bound for normal vector). Let X be a centered normal random vector
of length p with covariance matrix V . Let a > 0. Then,

P
(
‖X‖max >

√
2p‖V ‖2 log(a)

)
≤ P

(
‖X‖max >

√
2 tr(V ) log(a)

)
≤

√
p

a
√
π log a

.

Proof. For the first inequality, let 0 ≤ λ1 ≤ · · · ≤ λp denote the eigenvalues of V . Then

p‖V ‖2 = pλp ≥
p∑
j=1

λj = tr(V ).

For the second inequality, write c =
√

2 tr(V ) log(a). Then

P (‖X‖max > c) ≤
p∑
j=1

(|Xj | > c) =2

p∑
j=1

(
1− Φ

(
c

σj

))

≤2

p∑
j=1

σj
c
φ

(
c

σj

)

=

√
2

π

p∑
j=1

σj
c

exp

(
− c2

2σ2
j

)

≤
√

2

π
exp

(
− c2

2 tr(V )

)1

c

p∑
j=1

σj
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≤
√

2p

π
exp

(
− c2

2 tr(V )

)√tr(V )

c

=

√
p

π

1

a
√

log a
,

where the second inequality uses Gordon’s inequality for standard normal probabilities (see, e.g.,
Duembgen (2010)), and the last inequality uses the inequality ‖x‖1 ≤

√
p‖x‖2 for vectors x of

length p where ‖·‖1 is the L1 norm.

Lemma D.18 (Perturbation bound for rectangular normal probabilities). Consider the centered
normal p-vectors X and X̂ with respective positive-definite covariance matrices V and V̂ . Let
x1 = (x̃1, . . . , x̃p) ∈ Rp and x = (x̃p+1, . . . , x̃2p) ∈ Rp. Let xmax = max1≤j≤2p |x̃|j and suppose
that xmax > 0. Moreover, assume

‖V̂ −1 − V −1‖2
(
‖V ‖2 ∨ ‖V̂ ‖2 ∨ px

2
max

)
≤ 1.

Then, for any measurable function g : Rp → R

`N,T ≤
E[g(X̂)1{x1 ≤ X̂ ≤ x2}]
E[g(X)1{x1 ≤ X ≤ x2}]

≤ uN,T ,

where

`N,T =
(

1 + (2p − 1)‖V̂ −1 − V −1‖2‖V̂ ‖2
)−1 (

1 + px2
max‖V̂ −1 − V −1‖2

)−1
,

uN,T =
(

1 + (2p − 1)‖V̂ −1 − V −1‖2‖V ‖2
)(

1 + px2
max‖V̂ −1 − V −1‖2

)
.

Suppose that, in addition,

(2p − 1)‖V̂ −1 − V −1‖2(‖V ‖2 ∨ ‖V̂ ‖2) ≤ 1

then ∣∣∣P (x1 ≤ X̂ ≤ x2)− P (x1 ≤ X ≤ x2)
∣∣∣

≤‖V̂ −1 − V −1‖2
(
(2p − 1)(‖V ‖2 ∨ ‖V̂ ‖2) + 2px2

max

)
.

Proof. Let fX and fX̂ denote the probability densities corresponding to X and X̂. Then,

E
[
g(X̂)1{x1 ≤ X̂ ≤ x2}

]
=E

[
g(X)1{x1 ≤ X ≤ x2}

fX̂(X)

fX(X)

]
=

det(V )

det(V̂ )
E

[
g(X)1{x1 ≤ X ≤ x2} exp

(
−1

2
X ′
(
V̂ −1 − V −1

)
X

)]
≤det(V̂ −1V )E

[
g(X)1{x1 ≤ X ≤ x2} exp

(
1

2
‖X‖2‖V̂ −1 − V −1‖2

)]
≤
(

1 + (2p − 1)‖V̂ −1 − V −1‖2‖V ‖2
)

× E
[
g(X)1{x1 ≤ X ≤ x2} exp

(
px2

max

2
‖V̂ −1 − V −1‖2

)]
≤E [g(X)1{x1 ≤ X ≤ x2}]

(
1 + (2p − 1)‖V̂ −1 − V −1‖2‖V ‖2

)
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×
(

1 + px2
max‖V̂ −1 − V −1‖2

)
.

The last inequality uses the inequality exp(x) ≤ 1 + 2x for x ≤ 1/2.34 For the second inequality
note that Hadamard’s inequality implies (see e.g. Lemma 2.5 in Ipsen and Rehman (2008))

det(V̂ −1V ) ≤ ‖V̂ −1V ‖p2 ≤
(
‖Ip‖2 + ‖(V̂ −1 − V −1)V ‖2

)p
≤1 + (2p − 1)

(
‖V̂ −1 − V −1‖2‖V ‖2

)
.

This holds since ‖Ip‖2 = 1 and, for 0 ≤ a ≤ 1, we have

(1 + a)p ≤ 1 +

p∑
k=1

(
p

k

)
ak ≤ 1 + (2p − 1)a.

To derive the lower bound reverse the roles of X and X̂.

Lemma D.19 (Perturbation bound for large quantiles). Suppose that V̂ and V are positive

definite (p × p) variance matrices for p ≥ 2. Let W ∼ χ̃2(V ) and Ŵ ∼ χ̃2(V̂ ). Let ĉα,N and

cα,N denote the (1− α/N)-quantile of Ŵ and W , respectively. Suppose that

32p2‖V̂ − V ‖2(1 ∨ 2‖V −1‖22)(‖V ‖2 ∨ ‖V
−1‖2) log (N/α) ≤ 1.

There is a threshold N0 depending only on α and p such that for N ≥ N0 and

αN = α
(

1 + 96
(
‖V̂ − V ‖2(1 ∨ ‖V −1‖22)(‖V ‖2 ∨ ‖V

−1‖2) log (N/α) +N−1
)

we have
ĉα,N ≥ cαN ,N .

Proof. Throughout the proof, we take N large enough so that

2‖V̂ − V ‖2‖V
−1‖2

(
1 ∨ 2‖V −1‖2‖V ‖2

)
≤ 1.

This proof is based on the mixture representation of the χ̃2-distribution from Lemma D.13.
For each M = (m1, . . . ,m|M |} ⊂ {1, . . . , p} with m1 < · · · < m|M | where |M | is the cardinality
of M , let SM denote a |M | × p matrix with ones in the cells (mk, k), k = 1, . . . , |M |, and
zeros in all other entries. For M1,M2 ⊂ {1, . . . , p} and a symmetric positive-definite matrix
A, let AM1,M2 = M ′1AM2. Let M̄ = {1, . . . , p} \M . For M ⊂ {1, . . . , |M |} and a symmetric,
positive definite matrix A, we are interested in the centered normal random vector Y1(A,M)
with covariance matrix

Σ1(A,M) = Σ1(A) = (AM,M )−1

and the centered normal random vector Y2(A,M) with covariance matrix

Σ2(A,M) = Σ2(A) = AM̄,M̄ −AM̄,M (AM,M )−1AM,M̄ =
(
(A−1)M̄,M̄

)−1
.

34By the series expansion of the exponential function for 0 ≤ x ≤ 1/2

exp(x) = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · ≤1 + x+ x

∞∑
n=1

1

(n+ 1)!
xn = 1 + x+ x

∞∑
n=1

1

(n+ 1)(n!)
xn

≤1 +
x

2
(ex − 1) ≤ 1 + 2x.
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We first establish some useful inequalities. By Lemma D.14

‖V̂ −1 − V −1‖2 ≤ 2‖V̂ − V ‖2‖V
−1‖22. (28)

In the following, let A denote a generic nonsingular, symmetric (p× p)-matrix and let M denote
a generic subset of {1, . . . , p}. For any submatrix B of A, ‖B‖2 ≤ ‖A‖2. Let λ1(A) denote the
smallest eigenvalue of A. By the interlacing property for eigenvalues of principal submatrices
(see, e.g., Theorem 4.3.28 in Horn and Johnson (2013)) and the fact that permuting a matrix
does not change its eigenvalues, we have

λ1((A)M,M ) ≥ λ1(A)

and therefore

‖(A)−1
M,M‖2 = λ−1

1 ((A)M,M ) ≤ λ−1
1 (A) = ‖A−1‖2. (29)

Applying this result with A = V yields ‖Σ1(V )‖2 ≤ ‖V −1‖2. Moreover,

2‖V̂ −1
M,M − VM,M‖2‖V

−1
M,M‖2 ≤ 2‖V̂M,M − VM,M‖2‖Σ1(V )‖2 ≤ 2‖V̂ − V ‖2‖V

−1‖2 ≤ 1

so that by Lemma D.14

‖Σ1(V̂ )− Σ1(V )‖2 ≤ 2‖V̂M,M − VM,M‖2‖Σ1(V )‖22 ≤ 2‖V̂ − V ‖2‖V
−1‖22 ≤ ‖V

−1‖2.

Then, by the triangle inequality,

‖Σ1(V̂ )‖2 ≤‖Σ1(V )‖2 + ‖Σ1(V̂ )− Σ1(V )‖2 ≤ 2‖V −1‖2.

Moreover,

‖Σ−1
1 (V̂ )− Σ−1

1 (V )‖2 ≤ ‖V̂M,M − VM,M‖2 ≤ ‖V̂ − V ‖2.

By inequality (29), we have ‖Σ2(V )‖2 ≤ ‖V ‖2 and therefore

‖(V̂ −1)M̄,M̄ − (V −1)M̄,M̄‖2‖Σ2(V )‖2 ≤ ‖V̂
−1 − V −1‖2‖V ‖2 ≤

1

2
,

where the last line follows from inequality (28). Thus, by Lemma D.14

‖Σ2(V̂ )− Σ2(V )‖2 ≤2‖(V̂ −1)M̄,M̄ − (V )−1
M̄,M̄
‖2‖Σ2(V )‖22

≤4‖V̂ −1 − V −1‖2‖Σ2(V )‖22 ≤ 4‖V̂ − V ‖2‖V
−1‖22‖V ‖

2
2 ≤ ‖V ‖2.

By the triangle inequality,

‖Σ2(V̂ )‖2 ≤‖Σ2(V )‖2 + ‖Σ2(V̂ )− Σ2(V )‖2 ≤ 2‖V ‖2.

Moreover by inequality (28)

‖Σ−1
2 (V̂ )− Σ−1

2 (V )‖2 ≤‖(V̂
−1)M̄,M̄ − (V −1)M̄,M̄‖2

≤‖V̂ −1 − V −1‖2 ≤ 2‖V̂ − V ‖2‖V
−1‖22.

For (Σ, Σ̂) ∈ {(Σ1, Σ̂1), (Σ2, Σ̂2)}, let Y and Ŷ denote random variables such that Y ∼ N(0,Σ)
and Ŷ ∼ N(0, Σ̂). By the calculations above

‖Σ̂−1 − Σ−1‖2 ≤‖V̂ − V ‖2(1 ∨ 2‖V −1‖22),
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‖Σ̂‖2 ∨ ‖Σ‖2 ≤2(‖V ‖2 ∨ ‖V
−1‖2).

Let aN =
√

8p(‖V ‖2 ∨ ‖V −1‖2) log(N/α) and let N be large enough such that

log (N/α) ≥ max

{
1,

9(22p−1)α2p

π
,
2p − 1

8p2

}
.

By Lemma D.17

P (‖Y ‖max > aN ) ≤ α

N2

√
α2p

2π log (N/α)
≤ α

3N22p
.

Define the probabilities

p(A,M) =P (Y1(A,M) ≤ 0)P (Y2(A,M) > 0) ,

pN (A,M) =P (Y1(A,M) ≤ 0 ∧ ‖Y1(A,M)‖max ≤ aN )

× P (Y2(A,M) > 0 ∧ ‖Y2(A,M)‖max ≤ aN ) .

Note that by the characterization of the χ̃2-distribution in Lemma D.13, it suffices to show that∑
M⊂{1,...,p}

p(V,M)P
(
U|M | > ĉα,N

)
≤ αN

N
. (30)

We have

p(V,M) ≤pN (V,M) + P (‖Y1(V,M)‖ > aN )

+ P (‖Y2(V,M)‖ > aN ) + P (‖Y1(V,M)‖ > aN )P (‖Y2(V,M)‖ > aN )

≤pN (V,M) +
α

2pN
.

By the definition of ĉN ,

α

N
=

∑
M⊂{1,...,p}

p(V̂ ,M)P
(
U|M | > ĉα,N

)
≥

∑
M⊂{1,...,p}

pN (V̂ ,M)P
(
U|M | > ĉα,N

)
.

Hence, ∑
M⊂{1,...,p}

p(V,M)P
(
U|M | > ĉα,N

)
≤ α
N

+
∑

M⊂{1,...,p}

(
pN (V,M)− pN (V̂ ,M)

)
P
(
U|M | > ĉα,N

)
+

∑
M⊂{1,...,p}

α

2pN2

≤ α
N

+
∑

M⊂{1,...,p}

(
pN (V,M)− pN (V̂ ,M)

)
P
(
U|M | > ĉα,N

)
+

α

N2

≤ α
N

1 +N−1 +
∑

M⊂{1,...,p}

(
pN (V,M)

pN (V̂ ,M)
− 1

) . (31)

Note that, for M ⊂ {1, . . . , p}

(2p − 1)‖Σ1(V̂ ,M)− Σ1(V,M)‖2‖Σ1(V̂ ,M)‖2
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≤2(2p − 1)‖V̂ − V ‖2
(

1 ∨ 2‖V −1‖22
) (
‖V ‖2 ∨ ‖V

−1‖2
)
≤ 1

and

‖Σ1(V̂ ,M)− Σ1(V,M)‖2
(
‖Σ1(V,M)‖2 ∨ ‖Σ1(V̂ ,M)‖2 ∨ 2a2

N

)
≤2‖V̂ − V ‖2

(
1 ∨ 2‖V −1‖22

) (
‖V ‖2 ∨ ‖V

−1‖2
) (

1 ∨ 4p2 log (N/α)
)
≤ 1.

Therefore, we can apply Lemma D.18 to argue that

P (Y1 (V,M) ≤ 0 ∧ ‖Y1 (V,M)‖max ≤ aN )

P
(
Y1(V̂ ,M) ≤ 0 ∧ ‖Y1(V̂ ,M)‖max ≤ aN

)
≤1 + 16p2‖V̂ − V ‖2

(
1 ∨ 2‖V −1‖22

) (
‖V ‖2 ∨ ‖V

−1‖2
)(

1 +
2(2p − 1)

16p2 log (N/α)

)
log (N/α)

≤1 + 32p2‖V̂ − V ‖2
(

1 ∨ 2‖V −1‖22
) (
‖V ‖2 ∨ ‖V

−1‖2
)

log (N/α) .

Similarly, we can show that

P (Y2 (V,M) ≤ 0 ∧ ‖Y2 (V,M)‖max ≤ aN )

P
(
Y2(V̂ ,M) ≤ 0 ∧ ‖Y2(V̂ ,M)‖max ≤ aN

)
≤1 + 32p2‖V̂ − V ‖2

(
1 ∨ 2‖V −1‖22

) (
‖V ‖2 ∨ ‖V

−1‖2
)

log (N/α) .

Under the assumptions of the lemma,

32p2‖V̂ − V ‖2
(

1 ∨ 2‖V −1‖22
) (
‖V ‖2 ∨ ‖V

−1‖2
)

log(N/α) ≤ 1,

so that

pN (V,M)

pN (V̂ ,M)
− 1 ≤ 96p2‖V̂ − V ‖2

(
1 ∨ 2‖V −1‖22

) (
‖V ‖2 ∨ ‖V

−1‖2
)

log (N/α) .

Plugging this bound into the right-hand side of (31) verifies (30) and concludes the proof.

Lemma D.20 (Bounds on large quantiles). For a nonsingular covariance matrix V , let cQLR
α,N (V )

denote the (1−α/N)-quantile of χ̃2(V ). For each a > 1, there is N0 depending only on α and a,
such that for N ≥ N0,

2a−1 log(N/α) < cQLR
α,N (V ) < 2a log(N/α).

Proof. Let Uj ∼ χ2
j , j = 1, . . . , p. For notational convenience, write cN = cQLR

α,N (V ). By
Lemma D.13, cN is bounded from above by the (1− α/N)-quantile of Up. Lemma 1 in Laurent
and Massart (2000) implies that, for each x ≥ 0,

P (Up − p ≥ 2
√
px+ 2x) ≤ exp(−x).

Suppose that N ≥ N0 ≥ α−1. Choosing x = log(N/α) in the above inequality yields

P
(
Up ≥ p+ 2

√
log(N/α)

(√
p+

√
log(N/α)

))
≤ α

N
.

For N large enough,

p+ 2
√

log(N/α)
(√
p+

√
log(N/α)

)
< 2a log(N/α).
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This establishes the upper bound on cN . Let x =
√

2a−1 log(N/α), and let Φ denote the
distribution function and φ the density function of a standard normal random variable. Komatu’s
lower bound (see, e.g., Duembgen (2010)) is given by

1− Φ(x) >
2φ(x)√

4 + x2 + x
.

By Lemma D.13, the distribution χ̃2(V ) has point mass w(p, p, V ) ≤ 1/2 at zero. Let W ∼ χ̃2(V )
and Uj ∼ χ2

j , j = 1, . . . , p. Then,

P (W > x2) =

p∑
j=1

w(p, p− j, V )P (Uj > x2)

>(1− w(p, p, V ))P (U1 > x2) ≥ 1

2
P (U1 > x2).

Suppose that N is large enough such that
√

4/x2 + 1 ≤ 2 For a standard normal random variable
Z, we have

1

2
P (U1 > x2) =

1

2
P (|Z| > x) =1− Φ(x)

>
2φ(x)

x(1 +
√

4/x2 + 1)

>

√
2 exp

(
−x2

2

)
3
√
πx

=
(α/N)a

−1

3
√
πa−1 log(N/α)

≡ pN0 .

Clearly, pN0 /(α/N)→∞. For large N , this establishes x2 as a lower bound on the (1− α/N)-
quantile of W .

E. Proofs for unit selection procedures

We first introduce some additional notation. Let

dUit(g, h) =
1

2
[(yit − x′itβg,t)2 − (yit − x′itβh,t)2]

and

D̃U
i (g, h) =

∑T
t=1 d

U
it(g, h)√∑T

t=1(dUit(g, h)− d̄Ui (g, h))2

,

where d̄Ui (g, h) =
∑T

t=1 d
U
it(g, h)/T . Let

(sUi,T (g, h))2 =
1

σ2
i T

T∑
t=1

V ar(dUit(g, h)),

and

(SUi,T (g, h))2 =
1

T

T∑
t=1

(dUit(g, h)− d̄Ui (g, h))2.

Next, we observe that moment of dUit(g
0
i , h) can be bounded by terms defined for dit(g

0
i , h).
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Let

ZUit (h) =
dUit(g

0
i , h)− EP (dUit(g

0
i , h))

σisUi,T (g, h)
.

Note that

dUit(g
0
i , h)− EP (dUit(g

0
i , h))

=
1

2

[
u2
it − (uit + x′it(βg0i ,t

− βh,t))2
]
− EP (x′it(βg0i ,t

− βh,t))2

=uitx
′
itδt(h, g

0
i ) +

1

2
δt(g

0
i , h)′(xitx

′
it − EP (xitx

′
it)δt(g

0
i , h).

This formula indicates that

max
1≤i≤N

max
h∈G\{g0i }

(
EP

(
1

T

T∑
t=1

∣∣ZUit (h)
∣∣p))1/p

≤ GDN,T,p,

and

max
1≤t≤T

max
h∈G\{g0i }

(
EP
(

max
1≤i≤N

∣∣ZUit (h)
∣∣p))1/p

≤ GBN,T,p.

Moreover, we have

max
1≤i≤N

max
h∈G\{g0i }

(
1

T

T∑
t=1

EP
(∣∣dUit(h)

∣∣p)
σpi s

p
i,T (h)

)1/p

≤ GDN,T,p.

Lemma E.1. Suppose that the probability measure P satisfies Assumption 1. Then, there is a
constant C depending only on Kβ and G such that for 0 < c < 1 and

ζUN,T =γN,T,8
(
T−(1−c)/4√logNB2

N,T,8 +DN,T,4

)(
DN,T,2 + T−(1−c)/4√logNBN,T,4

)
+ γ2

N,T,8

(
T−(1−c)/2(logN)B4

N,T,8 +D2
N,T,4

)
,

we have

P

(
max

1≤i≤N
max

h∈G\{g0i }

1

T

T∑
t=1

(
d̂Uit(g

0
i , h)− dUit(g0

i , h)

σisUi,T (h)

)2

> Cγ2
N,T,8

(
T−(1−c)/2B4

N,T,8(logN) +D2
N,T,4

))
≤ CT−c,

(i)

P

(
T−1/2 max

1≤i≤N
max

h∈G\{g0i }

∣∣∣∣ 1√
T

T∑
t=1

dUit(g
0
i , h)

σisUi,T (g0
i , h)

− 1√
T

T∑
t=1

d̂Uit(g
0
i , h)

σisUi,T (g0
i , h)

∣∣∣∣
> CγN,T,8

(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

))
≤ CT−c,

(ii)

P

(
max

1≤i≤N
max

h∈G\{g0i }

∣∣∣∣ 1

T

T∑
t=1

(d̂Uit(g
0
i , h)− ¯̂

dUi (g0
i , h))2

σ2
i s

2
i,T (g0

i , h)
− 1

T

T∑
t=1

(dUit(g
0
i , h)− d̄Ui (g0

i , h))2

σ2
i s

2
i,T (g0

i , h)

∣∣∣∣
> CζUN,T

)
≤ CT−c.

(iii)

31



Suppose that, additionally, ζUN,T ∨ T−(1−c)/4√logNBN,T,4 ≤ 1. Then

P

(
max

1≤i≤N

∣∣∣D̂i(g
0
i , h)− D̃i(g

0
i , h)

∣∣∣ > CγN,T,8
√
T
(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

)
+ CζUN,T

(
DN,T,1 +

√
logN + T−1/4BN,T,4 logN

))
≤N−1 + CT−c + C

(
T−1/4BN,T,4/ log(N)

)4
.

(iv)

Proof of Lemma E.1. Proof of (i): Decompose d̂Uit(h)− dUit(h) as follows

d̂Uit(h)− dUit(h)

=− uitx′it(δ̂t(g0
i , h)− δt(g0

i , h))

+ (x′it(βg0i ,t
− β̂g0i ,t))

2/2 + (x′it(βh,t − β̂h,t))2/2− (βh,t − β̂h,t)(xitx′it)δt(g0
i , h).

By the inequality (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2),(
d̂Uit(h)− dUit(h)

σi

)2

≤4

∣∣∣∣uitσi
∣∣∣∣2 ‖xit‖2‖δ̂t(g0

i , h)− δt(g0
i , h)‖2

+ 2σ−2
i ‖β̂g0i ,t − βg0i ,t‖

4‖xit‖4

+ 2σ−2
i ‖β̂h,t − βh,t‖

4‖xit‖4

+ 2σ−2
i ‖β̂h,t − βh,t‖

2‖xit‖4‖δt(g0
i , h)‖2.

Let Vit =
(
|uit/σi|2‖xit‖2 + ‖xit‖4/σ4

i

)
/s2
N,T . Now, by the Cauchy-Schwarz inequality

1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)

σisi,T (h)

)2

≤C

{
max
g∈G

(
1

T

T∑
t=1

∥∥β̂g,t − βg,t∥∥4

)1/2

+ max
g∈G

(
1

T

T∑
t=1

∥∥β̂g,t − βg,t∥∥8

)1/2}

×

(
1

T

T∑
t=1

( ∣∣∣∣uitσi
∣∣∣∣4 ‖xit‖4 + ‖xit‖8/σ4

i

)
/s4
N,T

)1/2

≤C(γ2
N,T,8 + γ4

N,T,8)

(
1

T

T∑
t=1

(
V 2
it − EP

[
V 2
it

])
+

1

T

T∑
t=1

EP
[
V 2
it

])1/2

.

Here, we note that var(dUit(h)) ≥ var(dit(h)) so that sUi,T (h) ≥ si,T (h) ≥ sN,T . Together with
(26), this implies the desired result.

Proof of (ii): By slightly modifying the arguments above, we can prove∣∣∣∣ 1

T

T∑
t=1

d̂Uit(h)− dUit(h)

σisUi,T (h)

∣∣∣∣
≤C(γN,T,4 + γ2

N,T,4)

(
1

T

T∑
t=1

(
Vit − EP

[
Vit
])

+
1

T

T∑
t=1

EP
[
Vit
])1/2

.
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And, for 0 < c < 1,

P

(
max

1≤i≤N

∣∣∣ 1

T

T∑
t=1

(
Vit − EP [Vit]

)∣∣∣ > CT−(1−c)/2B2
N,T,4(logN)

)
≤ CT−c.

Thus it follows that

P

(
T−1/2 max

1≤i≤N

∣∣∣∣ 1√
T

T∑
t=1

dUit(g
0
i , h)

σisUi,T (g0
i , h)

− 1√
T

T∑
t=1

d̂Uit(g
0
i , h)

σisUi,T (g0
i , h)

∣∣∣∣
> CγN,T,8

(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

))
≤ CT−c.

Proof of (iii): We observe that

∣∣∣ 1

T

T∑
t=1

(d̂Uit(h)− ¯̂
dUi (h))2 − 1

T

T∑
t=1

(dUit(h)− d̄Ui (h))2
∣∣∣

≤ 1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)− (

¯̂
dUi (h)− d̄Ui (h))

)2
+ 2
∣∣∣ 1

T

T∑
t=1

(
dUit(h)

)(
d̂Uit(h)− dUit(h)− (

¯̂
dUi (h)− d̄Ui (h))

)∣∣∣
≤ 1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)

)2
+ 2

√√√√ 1

T

T∑
t=1

(
dUit(h)

)2√√√√ 1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)

)2
.

Let

UUit (h) =

(
dUit(h)

)2 − EP (
(
dUit(h)

)2
)

σ2
i s

2
i,T (h)

.

Note that

T∑
t=1

UUit (h) =
1

T

T∑
t=1

(
dUit(h)

)2
σ2
i s

2
i,T (h)

− 1

T

T∑
t=1

EP (
(
dUit(h)

)2
)

σ2
i s

2
i,T (h)

Because, EP
(
max1≤i≤N max1≤t≤T (UUit (h))2

)
≤ CTB4

N,T,4, following the same argument as the
proof of Lemma D.7 part (i) gives

P

(
max

1≤i≤n

1

T

T∑
t=1

UUit (h) > CBN,T,4T
−(1−c)/2 logN

)
≤ CT−c. (32)

Therefore, with probability at least 1− CT−c,∣∣∣∣ 1

T

T∑
t=1

(d̂Uit(h)− ¯̂
dUi (h))2

σ2
i s

2
i,T (h)

− 1

T

T∑
t=1

(dUit(h)− d̄Ui (h))2

σ2
i s

2
i,T (h)

∣∣∣∣
≤ 1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)

)2
σ2
i s

2
N,T
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+ max
h∈G

2

√√√√ 1

T

T∑
t=1

(
dUit(h)

)2
σ2
i s

2
i,T (h)

√√√√ 1

T

T∑
t=1

(
d̂Uit(h)− dUit(h)

)2
σ2
i s

2
N,T

≤γN,T,8
(
T−(1−c)/4√logNB2

N,T,8 +DN,T,4

)(
DN,T,2 + T−(1−c)/4√logNBN,T,4

)
+ γ2

N,T,8

(
T−(1−c)/2(logN)B4

N,T,8 +D2
N,T,4

)
,

where the last inequality follows from Lemma E.1 part (i) and (32).
Proof of (iv): Define

SU∆
i,T (h) =

(
ŜUi,T (h)− SUi,T (h)

σisi,T (h)

)
SUi,T (h)

σisi,T (h)
.

By the inequality |a− b| ≤ |a− b| /(
√
a+
√
b) ≤ |a− b| /

√
a and part (iii) of the lemma, we have

SU∆
i,T (h) ≤

∣∣∣(Ŝ2
i,T (h)/(σisi,T (h))

)2 − (S2
i,T (h)/(σisi,T (h))

)2∣∣∣ ≤ C2ζN,T

uniformly over i = 1, . . . , N on a set of probability less than CT−c. By the inequality |
√
a− 1| ≤

|a− 1| and Lemma D.7 we have∣∣(SUi,T (h))2/(σisi,T (h))− 1
∣∣ ≤ ∣∣∣((SUi,T (h))2/(σisi,T (h))

)2 − 1
∣∣∣ ≤ C1T

−(1−c)/2(logN)B2
N,T,4

uniformly over i = 1, . . . , N on a set of probability less than CT−c. Note that

∣∣DU
i (g0

i , h)
∣∣ ≤ ∣∣∣∣∣ 1√

T

T∑
t=1

dUit(h)− EP (dUit(h))

σisi,T (h)

∣∣∣∣∣+

∣∣∣∣∣ 1√
T

T∑
t=1

EP (dUit(h))

σisi,T (h)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
T

T∑
t=1

dUit(h)− EP (dUit(h))

σisi,T (h)

∣∣∣∣∣+DN,T,1

Thus, by following the same argument as that in the proof of Lemma D.7 part (ii), it holds that∣∣DU
i (h)

∣∣ ≤ DN,T,1 + C
(√

logN + T−1/4BN,T,4 logN
)

uniformly over i = 1, . . . , N on a set of probability less than N−1 + C
(
T−1/4BN,T,4/ log(N)

)4
.

Now, decompose

D̂U
i (h)− D̃U

i (h) =
σisi,T (h)

ŜUi,T (h)

(
1√
T

T∑
t=1

d̂Uit(h)

σisi,T (h)
−DU

i (h)

)

−
ŜUi,T (h)− SUi,T (h)

SUi,T (h)ŜUi,T (h)
σisi,T (h)DU

i (h)

=
SUi,T (h)/(σisi,T (h))

SU∆
i,T (h) + SUi,T (h)/(σisi,T (h))

(
1√
T

T∑
t=1

d̂Uit(h)

σisi,T (h)
−DU

i (h)

)

−
SU∆
i,T(

SU∆
i,T + (SUi,T (h))2/(σisi,T (h))2

)
(SUi,T (h))2/(σisi,T (h))

DU
i (h).

In conjunction with part (ii) of the lemma this decomposition implies

max
1≤i≤N

∣∣∣D̂U
i (h)− D̃U

i (h)
∣∣∣ ≤CγN,T,8√T (T−(1−c)/4BN,T,4

√
logN +D2

N,T,4

)
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+ CζUN,T

(
DN,T,1 +

√
logN + T−1/4BN,T,4 logN

)
with probability less than CT−c +N−1 + C

(
T−1/4BN,T,4/ log(N)

)4
.

Proof of Theorem 4. We note that the hypothesis selection part of the procedure does not affect
the theoretical analysis. This is because, here, we focus on size and thus need to consider only
the behavior of the test statistics under {g0

i }Ni=1.
Let

J1 =

{
(i, h) | i ∈ {1, . . . , N}, h ∈ G\{g0

i },
√
TEP (d̄Ui (g0

i , h))

σisUi,T (g, h)
> −cSNS

β,N

}

Roughly speaking, J1 is the set of pairs of units and groups that are difficult to distinguish from
true group membership.

In this proof, we set c = 1/6.

Step 1: We first prove that P
(

max(i,h)∈Jc1
¯̂
dUi (g0

i , h) ≤ 0
)
> 1− β − CT−c.

Note that
¯̂
dUi (g0

i , h) > 0 for some (i, h) ∈ Jc1 implies that

max
(i,h)∈J1

√
T (

¯̂
dUi (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSNS

β,N .

Let

cSN (β) =
Φ−1(1− β/((G− 1)N))√

1− Φ−1(1− β/((G− 1)N))2/T
.

Let

εUN,T,1 =
√
TγN,T,8

(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

)
.

We have

P

(
max

(i,h)∈J1

√
T (

¯̂
dUi (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSNS

β,N

)

≤P

(
max

(i,h)∈J1

√
T (d̄Ui (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSNS

β,N − εUN,T,1

)

+ P

(
max

(i,h)∈J1

∣∣∣∣∣
√
T (

¯̂
dUi (g0

i , h))− d̄Ui (g0
i , h))

σisUi,T (g, h)

∣∣∣∣∣ > εUN,T,1

)
.

The second term on the right-hand side is bounded by CT−c by Lemma E.1 part (ii). Let βN
solve cSNS

βN ,N
= cSNS

β,N − εUN,T,1. As in the proof of Theorem 1, we have

|βN − β| ≤ 4εUN,T,1
√

log((G− 1)N/β).

Thus we have

P

(
max

(i,h)∈J1

√
T (

¯̂
dUi (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSNS

β,N

)
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≤P

(
max

(i,h)∈J1

√
T (d̄Ui (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSNS

βN ,N

)
+ CT−c

=P

(
max

(i,h)∈J1

√
T (d̄Ui (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSN (c−1

SN (cSNS
βN ,N

))

)
+ CT−c.

Following essentially the same argument as that in Step 1 of the proof of Theorem 4.2 of
Chernozhukov, Chetverikov, and Kato (2014) shows that, under Assumptions (8) and (9),

P

(
max

(i.h)∈J1

√
T (d̄Ui (g0

i , h))− EP (d̄Ui (g0
i , h)))

σisUi,T (g, h)
> cSN (c−1

SN (cSNS
βN ,N

))

)
≤ c−1

SN (cSNS
βN ,N

) + CT−c.

Note that here we replace σ̂j and σj in the proof of Chernozhukov, Chetverikov, and Kato (2014)

with (T−1
∑T

t=1(dUit(g
0
i , h)− EP (dUit(g

0
i , h))))1/2 and σis

U
i,T (g, h). We have

c−1
SN (cSNS

βN ,N
) =(G− 1)N

1− Φ

 cSNS
βN ,N√

1 + (cSNS
βN ,N

)2/T


=β +O

(
(cSNS
βN ,N

)3

√
T

)
.

We thus have

P

(
max

(i,h)∈J1

√
T (d̄Ui (g0

i , h))− EP (dUit(g
0
i , h)))

σisUi,T (g, h)
>

√
T

T − 1
t−1
T−1

(
1− βN

(G− 1)N

))

≤βN +O

(
(cSNS
βN ,N

)3

√
T

)
+ CT−c ≤ β + CT−c,

where (cSNS
βN ,N

)3/
√
T ≤ CT−c by that (log(N))6/T ≤ CT−c which is implied by (8) together with

DN,T,3 ≥ 1 and Lemma D.10, and εUN,T,1
√

log((G− 1)N/β) ≤ CT−c by assumption (10).
An implication of Step 1 is as follows. Let

N =

{
i ∈ {1, . . . , N} | max

h∈G\{g0i }

√
TEP (d̄Ui (g0

i , h))

σisUi,T (g, h)
> −cSNS

β,N

}
.

Then

P

(
max
i∈Nc

max
h∈G\{g0i }

¯̂
dUi (g0

i , h) ≤ 0

)
> 1− β − CT−c.

Step 2: Next, we prove that P (×N
i=1 M̂i(g

0
i ) ⊇ J1) ≥ 1 − β − CT−c. Here, we drop the g

argument for simplicity of notation when arguments are g0
i and h.

We note that

P

(
N

×
i=1

M̂i(g
0
i ) + J1

)

=P

(
∃(i, h); D̂U

i (h) ≤ −2cSNS
βN ,N

and

√
TEP (d̄Ui (h))

σisUi,T (h)
> −cSNS

β,N

)
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≤P

(
∃(i, h); D̃U

i (h) ≤ −2cSNS
β,N + εUN,T,2 and

√
TEP (d̄Ui (h))

σisUi,T (h)
> −cSNS

β,N

)

+ P

(
max

1≤i≤N
max

h∈G\{g0i }

∣∣∣D̂U
i (h)− D̃U

i (h)
∣∣∣ > εUN,T,2

)
,

where

εUN,T,2 =CγN,T,8
√
T
(
T−(1−c)/4BN,T,4

√
logN +DN,T,2

)
+ CζUN,T

(
DN,T,1 +

√
logN + T−1/4BN,T,4

√
logN

)
.

By part (iv) of Lemma E.1, noting that its condition is satisfied by (9), (10) and (11),

P

(
max

1≤i≤N
max

h∈G\{g0i }

∣∣∣D̂U
i (h)− D̃U

i (h)
∣∣∣ > εUN,T,2

)
<N−1 + CT−c + C

(
T−1/4BN,T,4/ log(N)

)4
≤ N−1 + CT−c.

where the second inequality follows because (9) implies
(
T−1/4BN,T,4/ log(N)

)4 ≤ T−1/6.
We observe

P

(
∃(i, h); D̃U

i (h) ≤ −2cSNS
β,N + εUN,T,2 and

√
TEP (d̄Ui (h))

σisUi,T (h)
> −cSNS

β,N

)

≤P

(
max

1≤i≤N
max

h∈G\{g0i }

[√
T (E(d̄Ui (h))− d̄Ui (h))− (2SUi,T (h)− σisUi,T (h))cSNS

β,N + 2SUi,T (h)εUN,T,2

]
> 0

)
.

Let

(S̃Ui,T (h))2 =
1

T

T∑
t=1

(dUit(h)− EP (dUit(h)))2 −

(
1

T

T∑
t=1

(dUit(h)− EP (dUit(h)))

)2

.

We observe that

(SUi,T (h))2 =
1

T

T∑
t=1

(dUit(h)− EP (dUit(h)))2

+
2

T

T∑
t=1

(dUit(h)− EP (dUit(h)))(EP (dUit(h))− EP (d̄Ui (h)))

−

(
1

T

T∑
t=1

(dUit(h)− EP (dUit(h)))

)2

+
1

T

T∑
t=1

(EP (dUit(h))− EP (d̄Ui (h)))2

≥(S̃i,T (h))2 +
2

T

T∑
t=1

(dUit(h)− EP (dUit(h)))(EP (dUit(h))− EP (d̄Ui (h))).
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If 1− σisUi,T (h)/S̃Ui,T (h) ≥ −r/2 and

2

T

T∑
t=1

(dUit(h)− EP (dUit(h)))(EP (dUit(h))− EP (d̄Ui (h))) ≥ −(S̃i,T (h))2

(
r

2
− r2

16

)
,

for some 0 < r < 1, we have

2SUi,T (h)− σisUi,T (h) ≥ (1− r)S̃Ui,T (h)

because

2SUi,T (h)− σisUi,T (h) ≥2S̃Ui,T (h)

(
1− r

2
− r2

16

)1/2

− σisUi,T (h)

=σ̃i,h

(
2
(

1− r

4

)
−
σis

U
i,T (h)

S̃Ui,T (h)

)
≥ (1− r)S̃Ui,T (h).

We thus have

P

(
max

1≤i≤N
max

h∈G\{g0i }

[√
T (E(d̄Ui (h))− d̄Ui (h))− (2SUi,T (h)− σisUi,T (h))cSNS

β,N + 2SUi,T (h)εUN,T,2

]
> 0

)

≤P

(
max

1≤i≤N
max

h∈G\{g(i)}

√
T (E(d̄Ui (h))− d̄Ui (h))

S̃Ui,T (h)
> (1− r)cSNS

β,N − 2 max
1≤i≤N

max
h∈G\{g(i)}

SUi,T (h)

S̃Ui,T (h)
εUN,T,2

)
(33)

+ P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 2

T

T∑
t=1

ãit(h)

∣∣∣∣∣ > r

2
− r2

16

)
(34)

+ P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣σisUi,T (h)

S̃Ui,T (h)
− 1

∣∣∣∣∣ > r

2

)
, (35)

where

ãit(h) = 2(dUit(h)− EP (dUit(h)))(EP (dUit(h))− EP (d̄Ui (h)))/(S̃Ui,T (h))2.

We now take r = T−(1−c)/2B2
T,N,4 log((G− 1)N).

The first term of (33) is

P

(
max

1≤i≤N
max

h∈G\{g(i)}

√
T (E(d̄Ui (h))− d̄Ui (h))

S̃Ui,T (h)
> (1− r)cSNS

β,N − 2 max
1≤i≤N

max
h∈G\{g(i)}

SUi,T (h)

S̃Ui,T (h)
εUN,T,2

)

≤P

(
max

1≤i≤N
max

h∈G\{g(i)}

√
T (E(d̄Ui (h))− d̄Ui (h))

S̃Ui,T (h)
> (1− r)cSNS

β,N − CεUN,T,2

)

+ P

(∣∣∣∣∣ max
1≤i≤N

max
h∈G\{g(i)}

SUi,T (h)

S̃Ui,T (h)

∣∣∣∣∣ > 1

2
C

)
.

Note that we can take C > 2 and

P

(∣∣∣∣∣ max
1≤i≤N

max
h∈G\{g(i)}

SUi,T (h)

S̃Ui,T (h)

∣∣∣∣∣ > 1

2
C

)
< CT−c
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holds because

SUi,T (h)

S̃Ui,T (h)
=

SUi,T (h)

σisUi,T (h)

σis
U
i,T (h)

S̃Ui,T (h)
,

Lemma E.1 part (iii) and following the same argument of Lemma A.5 of Chernozhukov,
Chetverikov, and Kato (2014). Following the argument in the proof of Step 2 of Theorem
4.2 of Chernozhukov, Chetverikov, and Kato (2014) under (8), (9) and that (10) and (11) implies
εUN,T,2

√
log((G− 1)N/β) ≤ CT−1/6, it holds that

P

(
max

1≤i≤N
max

h∈G\{g(i)}

√
T (E(d̄Ui (h))− d̄Ui (h))

S̃Ui,T (h)
> (1− r)cSNS

β,N − CεUN,T,2

)
≤ β + CT−c.

For the second term (34), let ait(h) = 2(dUit(h)−EP (dUit(h)))(EP (dUit(h))−EP (d̄Ui (h)))/(σis
U
i,T (h))2.

The second term is

P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 1

T

T∑
t=1

ãit(h)

∣∣∣∣∣ > r

2
− r2

16

)

≤P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 1

T

T∑
t=1

ait(h)

∣∣∣∣∣ > (1− r

2

)(r
2
− r2

16

))

+ P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ (S̃Ui,T (h))2

(σisUi,T (h))2
− 1

∣∣∣∣∣ > r

2

)
,

where the inequality holds because (S̃Ui,T (h))2 ≥ (1−r/2)(σis
U
i,T (h))2 if 1−(S̃Ui,T (h))2/(σis

U
i,T (h))2 >

−r/2. The second term is bounded by CT−c by Lemma A.5 of Chernozhukov, Chetverikov, and
Kato (2014) (Note that the statement of Lemma A.5 of Chernozhukov, Chetverikov, and Kato
(2014) is about σ̂j/σj (in their notation) but their proof is based on σ̂2

j /σ
2
j ). For the first term,

observe that

T∑
t=1

EP ((ait(h)/T )2) =
1

T 2

T∑
t=1

var(dUit(h))

(σisUi,T (h))4
(EP (dUit(h))− EP (d̄Ui (h)))2

≤ 1

T 2

T∑
t=1

(EP (dUit(h))− EP (d̄Ui (h)))2

(σisUi,T (h))2
,

and

T∑
t=1

E

(
max

1≤i≤N
max

h∈G\{g(i)}
(ait(h)/T )2

)

≤ 1

T 2

T∑
t=1

B2
T,N,4 max

1≤i≤N
max

h∈G\{g(i)}
(EP (dUit(g

0
i , h))− EP (d̄Ui (g0

i , h)))2/(σis
U
i,T (h))2

≤ 1

T
GB2

T,N,4D
2
N,T,2.

By Leamm A.3 of Chernozhukov, Chetverikov, and Kato (2014), we have

E

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 1

T

T∑
t=1

ait(h)

∣∣∣∣∣
)
≤ CDT,N,2

(√
log((G− 1)N)√

T
+BT,N,4

log((G− 1)N)

T

)
.
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By Lemma A.2 of Chernozhukov, Chetverikov, and Kato (2014), we thus have

P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 1

T

T∑
t=1

ait(h)

∣∣∣∣∣ ≥ CDT,N,2

(√
log((G− 1)N)√

T
+BT,N,4

log((G− 1)N)

T

)
+ t

)

≤e−t
2/(3(D2

T,N,2/T ) +
K

t2
1

T
B2
T,N,4D

2
T,N,2,

for any t > 0. Taking t = T−(1−c)/2DT,N,2BT,N,4 and arranging the terms, we have

P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 1

T

T∑
t=1

ait(h)

∣∣∣∣∣ ≥ CDT,N,2BT,N,4T
−(1−c)/2 log((G− 1)N)

)
≤ CT−c.

We thus have

P

(
max

1≤i≤N
max

h∈G\{g(i)}

∣∣∣∣∣ 1

T

T∑
t=1

ãit(h)

∣∣∣∣∣ > r

2
− r2

16

)
≤ CT−c,

by Assumption (9).
The third term (35) can also be analyzed by following the argument in the proof of Step 2

of Theorem 4.2 of Chernozhukov, Chetverikov, and Kato (2014) and is bounded by β + CT−c

under Assumptions (8) and (9).
Summing up, we have

P

(
N

×
i=1

M̂i(g
0
i ) + J1

)
≤ β + CT−c +N−1.

An implication of Step 2 is as follows. Let

N̂ =
{
i ∈ {1, . . . , N} |Mi(g

0
i ) 6= ∅

}
.

Then

P
(
N̂ ⊇ N

)
≥ 1− β − CT−c −N−1.

Step 3: First, consider the case in which J1 = ∅. In this case, the argument in Step 1 yields
that

P (ĝi = g0
i , ∀i) = P

(
max

1≤i≤N
max

h∈G\{g(i)}
D̂U
i (g0

i , h) ≤ 0

)
> 1− β − CT−c.

Because {ĝ(i)}Ni=1 is always included in the confidence set, the probability of the confidence set
not including {g0

i }Ni=1 is less than β + CT−c < α+ CT−c.
Next, consider the case in which |J1| ≥ 1. Here, we consider the case with type = SNS. The

proofs for the other two cases are similar, and therefore omitted. Observe that

P
(
{g0
i }Ni=1 /∈ ĈSNS

Sel,α,β

)
=P

(
N⋃
i=1

({
T̂MAX
i (g0

i ) > cSNS
α−2β,N̂

}
∩

{
max

h∈G\{g0i }
D̂U
i (g0

i , h) > 0

}))

≤P

(⋃
i∈N

{
T̂MAX
i (g0

i ) > cSNS
α−2β,N̂

}
∪
⋃
i∈Nc

{
max

h∈G\{g0i }
D̂U
i (g0

i , h) > 0

})
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≤P

(⋃
i∈N

{
T̂MAX
i (g0

i ) > cSNS
α−2β,N̂

})

+ P

(⋃
i∈Nc

{
max

h∈G\{g0i }
D̂U
i (g0

i , h) > 0

})
.

By Step 1, we have

P

(⋃
i∈Nc

{
max

h∈G\{g0i }
D̂U
i (g0

i , h) > 0

})
≤ β + CT−c.

By Step 2, we have

P

(⋃
i∈N

{
T̂MAX
i (g0

i ) > cSNS
α−2β,N̂

})

≤P

(
{N̂ ⊇ N} ∩

⋃
i∈N

{
T̂MAX
i (g0

i ) > cSNS
α−2β,N̂

})
+ P ({N̂ + N})

≤P

(⋃
i∈N

{
T̂MAX
i (g0

i ) > cSNS
α−2β,|N|

})
+ β + CT−c +N−1.

Thus we have

P
(
{g0
i }Ni=1 /∈ ĈSNS

Sel,α,β

)
≤P

(⋃
i∈N

{
T̂MAX
i (g0

i ) > cSNS
α−2β,|N|

})
+ 2β + CT−c +N−1.

Theorem 1 implies that

P
(
{g0
i }Ni=1 /∈ ĈSNS

Sel,α,β

)
≤ α+ CεN + CT−c +N−1.

F. More simulation results

F.1. Another homoscedastic design with G = 3 groups

This design is defined exactly as that from Section 6.1 with the exception of defining a different

set of group-specific coefficients. Let ϕ
(2)
T (t) = −2 + 8 |t− T/2| /T . For t = 1, . . . , T , α1,t = 0,

α2,t = ϕ
(2)
T (t), α3,t = ϕ

(2)
T/2(t mod dT/2e). This specification implies moment inequalities that

are less correlated than those for the design in Section 6.1. For example, for T = 40 and g0 = 1,
our simulations indicate that (E Ω̂i(1))1,2 = 0.00 and (E Ω̂i(2))1,2 = 0.68. For T = 40 and g0 = 2,

(E Ω̂i(1))1,2 = −0.00 and (E Ω̂i(2))1,2 = 0.69. We simulate B = 1000 joint confidence sets based
on the SNS, MAX (with short-panel adjustment), and QLR (with short-panel adjustment)
approach. The simulation results are reported in Table F.1.
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empirical coverage cardinality of CS

g0 σ T SNS MAX QLR SNS MAX QLR

1 0.25 10 0.99 0.99 0.99 2.99 2.99 2.96
1 0.25 20 0.96 0.97 0.96 2.23 2.17 2.05
1 0.25 30 0.95 0.95 0.94 1.63 1.58 1.53
1 0.25 40 0.94 0.94 0.94 1.42 1.39 1.36
1 0.50 10 0.98 0.98 0.94 2.99 2.99 2.97
1 0.50 20 0.95 0.96 0.93 2.90 2.88 2.85
1 0.50 30 0.94 0.94 0.94 2.80 2.78 2.76
1 0.50 40 0.92 0.93 0.92 2.74 2.73 2.70
2 0.25 10 1.00 1.00 1.00 2.99 3.00 2.99
2 0.25 20 0.98 0.97 0.97 2.48 2.43 2.38
2 0.25 30 0.96 0.96 0.95 1.69 1.62 1.59
2 0.25 40 0.97 0.94 0.93 1.32 1.29 1.29
2 0.50 10 0.98 0.98 0.96 2.99 2.99 2.99
2 0.50 20 0.97 0.96 0.95 2.89 2.88 2.85
2 0.50 30 0.95 0.93 0.94 2.75 2.72 2.70
2 0.50 40 0.95 0.94 0.92 2.62 2.59 2.58
3 0.25 10 1.00 0.99 0.99 3.00 3.00 2.99
3 0.25 20 0.98 0.98 0.97 2.51 2.48 2.44
3 0.25 30 0.97 0.97 0.94 1.70 1.63 1.61
3 0.25 40 0.96 0.96 0.96 1.32 1.29 1.30
3 0.50 10 0.98 0.99 0.97 2.99 2.99 2.99
3 0.50 20 0.97 0.96 0.94 2.90 2.89 2.86
3 0.50 30 0.96 0.96 0.93 2.75 2.73 2.70
3 0.50 40 0.94 0.93 0.93 2.63 2.60 2.58

Table F.1: Homoscedastic design with G = 3 groups. Results based on B = 1000 simulated
joint confidence sets with 1− α = 0.9. Critical values for MAX and QLR procedures
are adjusted for short panels. “Empirical coverage” gives the simulated coverage
probability of the joint confidence set. “Cardinality of CS” gives the simulated
expected average cardinality of a marginal (unit-wise) confidence set.
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