

Predictive Control for Autonomous
Articulated Vehicles
Bachelor Thesis

Nils Andrén, Alicia Gil Martı́n, Kevin Hoogendijk,
Lars Niklasson, Fanny Sandblom, Filip Slottner Seholm

Department of Computer Science
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden 2017

Bachelor Thesis: DATX02-17-83

Predictive Control for Autonomous
Articulated Vehicles

Nils Andrén, Alicia Gil Mart́ın, Kevin Hoogendijk,
Lars Niklasson, Fanny Sandblom, Filip Slottner Seholm

Department of Computer Science
Chalmers University of Technology

University of Gothenburg
Göteborg, Sweden 2017

iii

Predictive Control for Autonomous Articulated Vehicles

Nils Andrén, Alicia Gil Mart́ın, Kevin Hoogendijk,
Lars Niklasson, Fanny Sandblom, Filip Slottner Seholm

c© Nils Andrén, 2017.
c© Alicia Gil Mart́ın, 2017.
c© Kevin Hoogendijk, 2017.
c© Lars Niklasson, 2017.
c© Fanny Sandblom, 2017.
c© Filip Slottner Seholm, 2017.

Bachelor Thesis: DATX02-17-83
Department of Computer Science
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Cover: The model semi-trailer truck used in this project.

Göteborg, Sweden 2017

Abstract

Autonomous driving is a highly topical research area, where significant positive
impacts on safety and environment can be made, especially in the trucking industry.
The vehicles in this industry often consist of a tractor unit combined with a trailer.
This project focuses on navigating a model semi-trailer truck through an urban-
like environment. A number of challenges arise from these settings, such as path
planning and control through sharp turns and crossings, combined with obstacle
avoidance. This needs to be done with high precision, considering that the whole
articulated vehicle needs to stay within the bounds of the road. Since the vehicle
will need to take critical decisions quickly, the performance and reliability of the
control system is also important.

Working towards a real world solution, this project offers a complete prototype
implementation in a scaled testbed environment for articulated vehicles. To achieve
this, we have mathematically modeled the vehicle, created a path planning algorithm
that takes the trailer into account when calculating a suitable path, and developed
a controller that makes the vehicle follow this path. These components have been
integrated on a single-board computer (Raspberry Pi 3) embedded on the vehicle.
The evaluation of the system shows satisfying results, where the prototype is able to
do on-the-fly path planning while staying within the allowed areas of the test track.
The system is also extensible and modifiable, and can be extended in future student
projects.

Keywords: Automation, Automated Control, Path planning, Articulated vehicles,
Autonomous vehicles, PID Controller

v

Sammanfattning

Autonom fordonskörning är ett högaktuellt forsknings- och utvecklingsomr̊ade som
kan bidra med stora positiva effekter för miljö och säkerhet, framför allt inom last-
bilsindustrin. Ett fordon inom den industrin best̊ar oftast av en dragvagn kombin-
erat med en släpvagn. Det här projektet fokuserar p̊a att navigera en modell-lastbil
genom en stadsliknande miljö. Ett antal utmaningar uppst̊ar i en s̊adan miljö,
s̊asom vägplanering och styrning genom skarpa svängar och korsningar, kombinerat
med undvikande av trafikhinder. Detta måste göras med hög precision d̊a hela det
ledande fodonet måste h̊alla sig i körbanan. Eftersom fordonet snabbt behöver ta
viktiga beslut, är prestandan och p̊alitligheten p̊a reglersystemet viktig.

Som resultat har en fullständig implementering av en nedskalad, självkörande last-
bilsprototyp framställts. Detta har krävt matematisk modellering av det ledade
fordonet, skapande av en algoritm för vägplanering som tar hänsyn till släpet vid
uträknandet av en passande referensväg, och utveckling av en regulator som f̊ar for-
donet att följa denna referensväg. Dessa komponenter är integrerade p̊a en enkorts-
dator (Raspberry Pi 3) p̊a fordonet. Evalueringen av systemet visar tillfredställande
resultat d̊a den färdiga prototypen klarar av vägplanering i farten och samtidigt h̊alla
sig inom till̊atna omr̊aden p̊a testbanan. Systemet är även gjort för att enkelt kunna
modifieras och vidareutvecklas för att underlätta för framtida studentarbeten.

Den här rapporten är skriven p̊a engelska.

Nyckelord: Automation, Reglering, Vägplanering, Ledade fordon, Autonoma for-
don, PID-regulator

vii

Acknowledgements

We would like to express our gratitude to Fredrik Svensson from Volvo Group Trucks
Technology for the proposal of this project, as well as the engagement and interest
in our work.

We also thank Chalmers for giving us the opportunity to work in a team and take
on a real world problem. We especially thank our supervisors Thomas Petig and
Elad Schiller for their expert advice, encouragement, and enthusiasm during the
project.

Thanks also to the kind and helpful people in the Bachelor’s group Evaluation and
Development of Imagebased Positioning Systems for Self Driving Scaled Vehicles,
with whom we have shared the access to our lab and the model truck.

Finally, we thank Andrew Söderberg-Rivkin and Sanjana Hangal, who developed the
position estimation system used in our project, and last years Bachelor’s group An
affordable vision-based alternative for global localization and steering of autonomous
vehicles, who further contributed to the system.

ix

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Evaluation Criteria . 2
1.3 Scope . 3
1.4 Our Contribution . 3

2 Background Knowledge 4
2.1 PID Feedback Loop . 4
2.2 Path Planning . 5
2.3 ROS: Robot Operating System . 6
2.4 GulliView: Vision Based Localization System 7

3 Vehicle and Testbed Environment 8
3.1 The Vehicle . 8

3.1.1 Materials used . 8
3.1.2 Sensors and data gathering . 9
3.1.3 Kinematic model . 10
3.1.4 Collision model . 13

3.2 Testbed Environment . 14
3.2.1 Physical evaluation environment 14
3.2.2 Visualization of the system . 14

4 System Architecture 15
4.1 Overview . 15
4.2 Components . 17

5 Algorithms and Implementation 21
5.1 Path Planning . 21

5.1.1 Heuristics . 22
5.1.2 The algorithm . 23

5.2 Feedback Control Loop . 26
5.3 Map and Global Path . 28

5.3.1 The graph . 28
5.3.2 Computing a global path . 28

5.4 Path Following, Dynamic Path Planning and ROS Integration 29
5.4.1 The automatic control node 30
5.4.2 The path planning node . 31

6 Evaluation and Results 35
6.1 PID Controller . 35
6.2 Kinematic Model . 37
6.3 Path Planning . 39

7 Discussion and Conclusion 43
7.1 Meeting the Evaluation Criteria . 43
7.2 Related Work . 43
7.3 Future Work and Extendability . 45

1. Introduction

According to the WHO [1], road traffic accidents cause over 1 million deaths and
up to 50 million non-fatal injuries every year. Almost all accidents are caused by
human errors such as having a slow reaction time, driving aggressively or being
distracted [2]. With the emergence of autonomous vehicles, these factors can largely
be eliminated, leading to a dramatic decrease in the number of traffic accidents [3].
Without the human factor, the driving can also be optimized, with increased fuel
efficiency, shorter travelling times and reduced carbon emissions as a result.

As with all new technology, the mechanics need to be thoroughly tested in secure
environments before being employed in the real world. Autonomous driving is a
hot research topic, with numerous current projects at both Chalmers and KTH
[4],[5],[6],[7]. In this project, we are working with a physical vehicle, maneuvered on
a realistic track with roadways and restricted areas, whereas many other projects
are limited to simulations [4] or less challenging environments [6].

With a more well-defined environment, and the development of an effective path
planning algorithm, we are able to run trajectory planning in real time. We do this
on a single-board computer, while others have had performance issues even with the
use of desktop computers [6].

Much of the research in this field is focused on smaller, car-like vehicles [4],[5],[6].
When it comes to trucks and other articulated vehicles, the automation process
involves additional challenges due to the motion patterns of the trailer and the
situational need for extra road space. The purpose of this project is to explore these
challenges, with the use of a model semi-trailer truck in a scaled testing environment.
The resulting system will be made publicly available, and is intended to work as a
testbed for future student projects.

1.1 Problem Description

The main objective of this project is to create a complete system, designed to make
an articulated vehicle drive through various traffic scenarios on a test track. The
system should be installed on a model semi-trailer truck and run in a controlled
test-environment. With the position and direction of the truck given, the system
should be able to navigate from point A to point B in a safe manner.

1

To achieve this, various subproblems needs to be solved. In order to get from
one location to another, the vehicle will have to follow a path. This path needs
to be carefully planned, to ensure that the vehicle stays on the road and avoids
obstacles.

For articulated vehicles, this problem becomes more difficult, as the trailer needs
to be taken into consideration. These vehicles usually need to deviate from the
current lane in order to manage for example a T-crossing. To be able to predict the
behaviour of the trailer and avoid collisions, mathematical models of the articulated
vehicle are needed for the path planning.

Given continuous updates on vehicle state, this path will then have to be followed.
For this, a control mechanism needs to be implemented to minimize the deviation
from the projected path. The performance of the system, and in particular the
path-planning, is important, as the time the vehicle is idle and waits for instructions
should be as short as possible.

Submodules for different tasks will have to be built, and a big challenge will be to
integrate these modules into a complete working system. The system architecture
needs to be carefully designed, to allow for effective communication between the
different components.

Another objective of this project is to create a testbed for further development.
Therefore, the components should be loosely coupled, to increase reusability and
maintainability. It should be possible, with minimal effort, to replace a component
with an alternative implementation that provides the same service.

1.2 Evaluation Criteria

To achieve acceptable levels of safety, portability and performance, the finished
system should satisfy the following criteria:

1. When driving, the entire vehicle should stay within the bounds of the road.

2. The vehicle should make minimum use of the opposite lane.

3. The path planning should be fast and flexible enough, so that the vehicle does
not have to stand still and wait for instructions for more than a few seconds.

4. All parts of the system, except for the user interface, should be able to run on
a single-board computer embedded on the vehicle.

2

1.3 Scope

The main focus of this project is to create a functioning control system, for au-
tomating an articulated vehicle. This includes the development of a hardware API,
a manual control system, an automatic control system, a path planning algorithm,
and a user interface. The development of a positioning system is not included in the
scope of the project, and we assume the availability of such a system.

The practical elements of the project are carried out in a scaled environment, limited
by the boundaries of a medium sized room. The vehicle used is a modified model
semi-trailer truck, which is run on a test track designed to cover a set of challenging
traffic scenarios, including T-crossings and a roundabout. The track is far from
easy to navigate, so precise control and efficient and accurate motion planning is
required.

The scope covers a single vehicle. Obstacle avoidance is implemented, but is limited
to static objects. Neither reversing nor parking is considered.

1.4 Our Contribution

The finished project features a complete autonomous control system, that allows
a scaled semi-trailer truck to safely navigate through a variety of complex traffic
scenarios, including T-crossings and roundabouts, with excellent reliability. The
automation strategy consists of two parts: path following using a feedback loop
control, and dynamic motion planning using our self-designed path planning algo-
rithm. The relative performance of the system is satisfactory. We are able to perform
on-board path planning with real-time obstacle avoidance, all while the truck is in
motion.

As we have developed the system from scratch, we chose to design it with safety
concerns, portability, and modularity in mind. A dedicated simulation environment
was implemented, which has allowed us to develop, test and analyse parts of the
system, without being dependant on any hardware. The final system has been
installed and tested on a single-board computer (Raspberry Pi 3) embedded on the
truck, to ensure the portability of the system.

We intend to make our testbed open-source, as it is extensible and modifiable, and
could be of use to similar projects in the future.

3

2. Background Knowledge

This chapter goes through the theory behind two main parts of the system: the
controller and the path planning. It also gives a general overview of the Robot
Operating System (ROS) framework and the GulliView localization system. Each
section provides the basic knowledge required to understand the implemented sys-
tem, as well as the decisions and results presented later on.

2.1 PID Feedback Loop

Control theory has allowed automation to become a reality by managing the be-
haviour of devices and making them perform in a desired way. In a controlled
system, the control actuators, the reference and the output need to be identified in
order to understand the system. The mathematical description of the system be-
haviour (the kinematic model for the tractor unit) is called the plant of the system,
and will be used to find the expected behaviour of the system.

Once the plant of the system has been studied, its stability is checked [8],[9]. This
is done in order to see if the output of the system remains naturally bounded for
any initial state, and then select the suitable control strategy. For unstable systems,
closed-loop strategies are selected, in order to obtain a final stable system and make
it robust. The PID (proportional, integral and derivative) feedback loop [10] is one
of many closed-loop strategies. It balances the unmeasurable disturbance that the
vehicle can experience, and eliminates any steady errors on the performance.

In a feedback control loop, the actuation signal sent to the plant is changed in real
time, so that its output follows the reference signal. Then, the output of the plant
is gathered by use of sensors and compared to the reference signal. The difference
is applied as an error signal, to bring the output of the plant closer to the reference,
as shown in Figure 2.1.

4

Figure 2.1: Feedback loop strategy

The control applies a proportional, integral and derivative response to the error.
The proportional part introduces a gain to the error. The integral accumulates the
error, to compensate it even if constant disturbances affect the modelled system. For
contrasting the slow response of the integral part, the derivative is lastly introduced,
and generates an actuation proportional to the derivative of the error. Once a
suitable control strategy is selected according to the system and desired performance,
the control parameters Kp, Ki and Kd can be selected. These values will be used
in the control, to output the actuator signal in continuous time with the following
equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
.

2.2 Path Planning

In order for an automated vehicle to know the path to its final destination, a motion
planning algorithm is needed. Going from point A to point B in a quick and efficient
manner is one of the difficulties the planning needs to solve. In an environment with
realistic traffic scenarios, the planning also needs to consider that the vehicle should
stay in its own lane rather than the opposite lane, to not collide with obstacles, and
to always remain on the road. Any good path planning algorithm should take these
constraints and priorities into account and produce an efficient path.

In order for the planner to produce a path, a predictive behaviour is needed, and the
planner needs to some time in advance find a path that works. Otherwise, the vehicle
would end up in a situation where finding a valid path requires stopping, reversing,
and redoing the turn as shown in Figure 2.2. This is not a viable behaviour.

5

Figure 2.2: Showcase of the need for a predictive behaviour. The adaption point is
where the vehicle needs to start adapting for the turn.

To be able to find an efficient path, one approach is to sample different paths and
compare them to find the best one. To make a path measurable, a cost function
needs to be defined, where the path with the lowest cost is considered the most
efficient solution. The cost function for each sampled path is then compared and the
path with the lowest cost is considered the most efficient one. For a comprehensive
explanation of the path planning problem and different ways to solve it, we refer
the reader to S.M. LaValle’s book Planning Algorithms [11].

2.3 ROS: Robot Operating System

Robot Operating System [12] is a set of frameworks that assist in the development of
software for robots. The distributed node network spine and built-in publisher sub-
scriber system makes the developed systems extremely flexible. The whole system
can run on one computer, or easily be divided amongst several computers connected
with network cables or Wi-Fi.

The core of ROS is the publisher subscriber system where messages can be published
on topics. A topic is like a billboard, on which publishers can publish messages (put
a poster on the board). Each time this happens, all of the subscribers get notified
(sees the poster) and gets the message. There can be several publishers and several
subscribers on the same topic. Messages are automatically sent over the network
if your setup allows that. Each topic has a specific type of message and there is
a set of predefined message types. However, custom messages can be created that
consist of several other message types. For an example on how to use publishers
and subscribers in ROS, see Appendix A.

6

The distribution points that publish and subscribe to topics are called nodes. A
node is a process that uses ROS to communicate with other nodes. A system can
be retained on one computer or distributed over several different computers over
several different geographical locations.

For visualization of the system there is a package called RViz, that visualizes a
selection of standard message types effortlessly. RViz shows a 3D-world in which
objects can be placed, maps can be shown and input can be taken (see Figure 4.3
on page 18).

2.4 GulliView: Vision Based Localization System

GulliView [13] was created by students at Chalmers University of Technology as a
part of the Gulliver project, a testbed for development of vehicular systems. It is a
low cost solution for localization of moving vehicles, using normal USB cameras, and
open source libraries such as OpenCV [14]. The positioning is built on a set of easily
detected QR code style tags called AprilTags [15], which are developed specifically
for vision localization. For a vehicle to be detectable, it needs to be fitted with a
tag, as can be seen in Figure 2.3.

The localization system used in this project consists of 4 cameras, mounted in the
ceiling above the test-track. This setup is the result of a previous Bachelor’s project
[5].

Figure 2.3: An example of GulliView locating a moving vehicle by detecting the
AprilTags mounted on top. The position of the vehicle is published on a ROS topic.

7

3. Vehicle and Testbed
Environment

In this chapter, we describe the environment in which the experiments are conducted.
First, the given materials including the sensors and data gathering are detailed.
Then, the motion of the scaled truck is presented as a mathematical model to use
further on during the implementation steps. Finally, the chapter is closed with
information about the lab, and the virtual visualization environment.

3.1 The Vehicle

The vehicle is a modified radio controlled model truck, in scale 1:14 (see Figure 3.1).
For measurements of the truck, see Appendix B. It is equipped with a single-board
computer (Raspberry Pi 3), replacing the radio receiver. This lets us connect to it
via Wi-Fi to gather and monitor sensor data as well as control the servos.

Figure 3.1: The model truck used in this project.

3.1.1 Materials used

In addition to the computer it is also equipped with an analog to digital converter,
a potentiometer and a powerbank. To keep this mounted on the truck, we created
a polymer plate using a 3D-printer. It was designed to be mounted using existing
screwing holes. On this plate we placed the Raspberry Pi, the analog converter, as

8

well as servo cables (see Figure 3.2). The truck has two servos, used for steering
and shifting, and an Electronic Speed Control (ESC) for the motor. The Raspberry
Pi is directly wired to the servos and ESC, and controls them using Pulse Width
Modulation (PWM).

3.1.2 Sensors and data gathering

The potentiometer is serving as an angle sensor, used to keep track of where the
trailer is, relative to the tractor. In order for the Raspberry Pi to be able to read
the value of the sensor, the analog signal needs to be converted to a digital signal.
On top of the tractor unit, we have placed two AprilTags to be able to locate it
using the GulliView localization system. The use of two tags makes it possible to
track the orientation as well as the position.

Figure 3.2: Setup of onboard computer, servos, and sensor.

9

3.1.3 Kinematic model

A mathematical description of the system is needed for the path-planning algorithm
to be able to predict the future behaviour of the truck [16]. As the truck will be
driving under relatively low speed, a simplified 2D kinematic model is enough to
describe the behaviour. Our vehicular system consists of two main sub-components.
The tractor unit, which has two front steering wheels and two back rear wheels, and
a trailer that has four more back rear wheels and is attached to the tractor at a
connection point (xc, yc) as presented in Figure 3.3.

Figure 3.3: Kinematic model of the truck

The point (xr, yr) represents the middle of the tractor rear wheels and will be used
later on to calculate the centre of rotation. Symbols θ1 and θ2 will represent the
rotation of the tractor and the trailer respectively and ϕ will be used to represent
the steering angle. The steering angle will be approximated as in the bicycle model
[7],[17],[18] by assuming the same steering angle for both tractor front wheels, and
translating it to the middle of the line that connects the wheels. LH and LT define
the distance between front and back wheels of the tractor and the distance between
middle of back wheels and connection point (xc,yc) on the trailer.

10

The nonlinear equations that describe the kinematics of the truck are derived as fol-
lows. For the tractor, the centre of instant rotation can be calculated by delineating
the perpendicular lines to the rear wheels and the steering angle direction, as pre-
sented in Figure 3.4. The velocity of the rear wheels of the tractor is denoted by v.
Equations for ẋ and ẏ, which represent the first order derivative for x and y, can be
easily extracted by projecting the velocity onto the selected axis (ẏ = v ·cos(θ1) and
ẋ = v · sin(θ1)). The centre of rotation of the tractor is used to define the angular

velocity as follows: tan(ϕ) = LH

R
→ R = LH

tan(ϕ)
then θ̇1 = v

R
= v · tan(ϕ)

LH
.

Figure 3.4: Kinematic model of the tractor unit

The equation for θ̇2 is similarly extracted, after deriving the velocity of the connec-
tion point of the trailer, as shown in Figure 3.5. With r, the distance between point
(xr, yr) and the connection point (xc, yc) with the trailer, we can derive the rotating
velocity to determine v′, which is the total velocity of the connection point. Then
the centre of rotation is derived perpendicular to the velocity v′ and the back wheels
of the trailer.

11

Figure 3.5: Kinematic model of the trailer

The derived centre of rotation is used to define the angular velocity as it follows:
first we calculate the radius of rotation, sin(θ1 − θ2 + Ω) = LT

R
→ R = LT

sin(θ1−θ2+Ω)

to obtain the trailer’s connection point velocity v′ =
√

(rθ̇1)2 + v2 to finally obtain

θ̇2 = v′

R
=

√
(rθ̇1)2 + v2 · sin(θ1−θ2+Ω)

LT
.

Finally, the state vector description for the kinematic model of the truck can be
defined as:

ẏ = v · cos(θ1),

ẋ = v · sin(θ1),

θ̇1 = v · tan(ϕ)
LH

,

θ̇2 =
√

(rθ̇1)2 + v2 · sin(θ1−θ2+Ω)
LT

.

(3.1)

12

3.1.4 Collision model

In order for the truck to recognize when it hits an obstacle, a model for collision
detection is needed. In this project, that is done by defining a set of key points on
the truck, which are continuously checked for collision to detect when an obstacle
is reached. Obstacles that are checked for include both actual obstacles, as well as
being outside the bounds of the road.

To check for collisions, the collision points are checked with a map database, where
the obstacles are stored. If any of the points are within an obstacle, the truck has
collided with that obstacle. The collision model takes a state vector, where the x
and y positions are on the back of the trailer. By using the x and y position, tractor
angle, and trailer angle, the key points as seen in Figure 3.6 are calculated.

Figure 3.6: Collision model of the truck

13

3.2 Testbed Environment

The evaluation environment consist of two main parts. The lab which is a physical,
real world environment and the simulator which is a synthetic environment.

3.2.1 Physical evaluation environment

The lab that was provided for this project is equipeed with a black mat covering
the floor with white tape as road markings, as you can see in Figure 3.7. The track
has been carefully created to match our goals with the project.

Figure 3.7: Testing track

In the ceiling there are four cameras for the GulliView localization system, as de-
scribed in Section 2.4. GulliView allows us to get the position of anything eqiupped
with an AprilTag. This system was provided to us, but the software as well as the
camera settings have been tweaked to fit the project.

3.2.2 Visualization of the system

We are using a third party package called RViz to visualize both the simulations
and the physical tests in real time. RViz connects to the ROS network as any other
node and enables visualization of robot data in both 2D and 3D.

RViz can be used to visualize the physical vehicle, showing a virtual representation
of the whole testbed. The visualizer displays the map, the truck with trailer, and
the different paths. Everything is updated in real time so that one can follow exactly
what happens in the system.

14

4. System Architecture

In this chapter, a high-level description of the system architecture, including a brief
description of each component, is presented. For further details of the components
Automatic Control, Path Planning and Map Service, including ROS communication,
refer to Chapter 5.

4.1 Overview

At a high level, the software system consists of a few loosely coupled components,
each serving a specific purpose. Some components handle inputs and outputs to the
system, some implement algorithms, and some regulate information flow. The com-
ponents communicate mainly through the ROS framework, and are divided across
three different hosts in a shared Wi-Fi network. An overview of the complete system,
including external components, can be seen in Figure 4.1.

Hosts:

1. The GulliView Host: A computer placed in the ceiling of the lab room, running
the GulliView system.

2. The User Host: Typically a laptop, used to display information and capture
user input.

3. The Raspberry Pi embedded on the truck.

System inputs:

1. Image stream from cameras mounted in the ceiling of the lab room.

2. User input from the graphical environment RViz, providing goal and subgoal
destinations.

3. User input from a second GUI, used to handle virtual obstacles.

15

Figure 4.1: A high-level overview of the system architecture. The diagram shows
how components are distributed on different hosts and how they communicate with
each other and with the hardware, highlighting the inputs and outputs of the system.

16

4. User input from a gamepad. Used for manual driving, toggling between manual
and automatic control, and the fail-safe mechanism for the automatic control.

5. Signals from the potentiometer (trailer angle sensor) mounted on the truck.

System outputs:

1. Command signals for steering angle and speed, sent to the truck hardware.

2. Visualization in RViz, displaying the track, the obstacles, the truck, and the
progress of the path planning algorithm.

4.2 Components

This section contains a short description of the purpose and tasks of each compo-
nent.

GulliView

Continuously reads the image stream from the ceiling-mounted cameras and recog-
nizes the AprilTags on top of the truck. The tag positions are translated to global
coordinates and sent to Automatic Control.

Automatic Control

Central component that handles the automatic control of the vehicle. With the
current truck position as a starting point s, and given goal and subgoal destinations
g and ~sg, a valid path from s to g, sequentially visiting each position in ~sg, is
requested from the Path Planning component.

When a path has been provided, the distance from the truck to this path is con-
tinuously calculated. The distance, or error, is fed into a PID controller which
outputs a steering angle to compensate for the deviation from the path. This steer-
ing angle is, along with a constant speed value, passed down to the Truck Master
component.

Visualization

Redirects ROS messages to and from RViz. This includes:

1. Capturing user clicks for goal and subgoal destinations, and sending these to
Automatic Control (see Figure 4.2)

17

2. Gathering data from Automatic Control and Path Planning, and transform-
ing it into the specific message types required for visualization in RViz (see
Figure 4.3).

Also provides a GUI used to add virtual obstacles to the track (see Appendix D).
When an obstacle is activated, information is sent to Path Planning so that the
algorithm can adapt and avoid the obstacle.

Figure 4.2: Gathering goal and subgoal destinations in RViz by mouse click. The
resulting global path shows how each subgoal is sequentially visited.

Figure 4.3: Displaying the output from the path planning in RViz. Notice how the
added obstacle is avoided, and how a small finished section of the path is already in
use, even though the path planning is still calculating.

18

Path Planning

Contains the implementation of our own dynamic path planning algorithm. After
receiving a path request from Automatic Control, a map and a global shortest path
is fetched from Map Service. Next, the algorithm is executed and the resulting path
is returned to Automatic Control in small sections (see Figure 4.3).

Also handles the dynamic obstacle avoidance. When an obstacle appears, the algo-
rithm adapts on the fly and recalculates the path.

Map Service

Stores the map as a binary image, where white and black pixels represent allowed
and forbidden areas of the track. Also provides a representation of the track as a
directed graph, with the edges marking the middle of the lane (See Figure 5.5 on
page 29). The graph is used in the implementation of a k-shortest-paths algorithm,
to compute a global path from given start, goal and subgoal locations.

Manual Control

Captures user input from a gamepad, typically a wired Xbox 360 controller. Handles
manual driving, toggling between automatic and manual control, and a fail-safe
mechanism for the automatic control. Gamepad input is mapped to speed and
steering angle commands, and sent to Truck Master. One button acts as a dead
man’s switch, which always needs to be pressed in order for the truck to move,
stopping it immediately upon release. A control scheme for the gamepad can be
seen in Appendix E.

Truck Master

Regulates steering commands to the Hardware API, choosing between automatic
and manual control.

Hardware API

Receives speed and steering angle commands from Truck Master and translates these
into command signals for the steering servo and the electrical speed controller. It
also continuously reads the potentiometer signals and translates the output voltage
to an angle, representing the direction of the trailer relative to the tractor unit.

19

Truck Simulator

The loose coupling between components allows us to replace GulliView and the
Hardware API with a simulator component, serving the same purpose (see Fig-
ure 4.4).

The simulator stores the current state of the truck, and uses the kinematic model (see
Section 3.1.3) to discretely calculate vehicle movements. Given speed and steering
angle commands, the next vehicle state is calculated and sent back to Automatic
Control.

Figure 4.4: An overview of the system architecture when using the truck simulator.

20

5. Algorithms and Implementation

This chapter contains the selected strategy to reach the automation goal. First, a
path-planning strategy was developed, to search in advance for a route that ensures
that both the tractor and the trailer stays within the bounds of the road. Then,
a PID controller for the tractor was implemented, to achieve trajectory following
by estimating the deviation from the desired path and translating it into a steering
command. Finally, the two ROS nodes containing the mentioned algorithms and
their communication are explained, as well as the map module that provides the
global reference path.

5.1 Path Planning

Path planning is a well known and general problem, which has generated many
different algorithms, that are good in different scenarios. Most algorithms have in
common that they use a graph of possible discrete states of the vehicle and do a
search of the graph to either find a path or a shortest path from ~sstart, which is the
start discrete state, to Pgoal, which is the navigation goal. A mathematical model
of the vehicle is then used to find new discrete states to use in the graph.

In this section the following definitions will be used:

• ~s = (x, y, θ1, θ2): A discrete state of the truck which is defined by its position
(x, y) ∈ R2, its global tractor angle θ1 ∈ [0, 2π), and its global trailer angle
θ2 ∈ [0, 2π).

• Cfree: The free space, a set of all discrete states that avoids collision with
forbidden areas.

• ~sstart: The start discrete state, ~sstart ∈ Cfree.

• Pgoal: The position that is chosen as the navigation goal, consists of a position
(x, y) ∈ R2.

The model used in our solution is the kinematic model which takes a state ~s1 and
some driving command as input, and together with a step size, gives a new state
~s2 as output. If we want all possible states C~s1 ⊂ Cfree reachable from state ~s1, we
need to give all possible steering commands where the output state of the model
belongs to the set Cfree.

21

This however leads to a very big graph if we want all possible states for the truck.
Consider that we would have to visit all discrete states in C~s1 and give all possible
steering commands to each of those states. Then do the same for all new states we
find and so on until we find no new states. To avoid long execution times caused by
large graphs, a heuristic algorithm is used. The heuristic algorithm trades solution
accuracy for performance.

5.1.1 Heuristics

The complexity of the path planning problem and the fact that the software will
run on a Raspberry Pi gives a constraint on how fast the algorithm needs to run.
Trying all possible solutions is not fast enough. Therefore, a heuristic algorithm
is needed and the best possible path can not be guaranteed. A grid based search
and limited steering commands are the heuristics used in our algorithm. By adding
these heuristics the amount of nodes the algorithm needs to visit is limited. These
heuristics can also be tuned using different parameters.

Grid search

The amount of nodes in the graph is limited by a grid. Each grid consists of a state
~s = (x, y, θ1, θ2) where the grid of a state can be computed by calling a rounding
function, which can be found in Appendix F. If the grid of a state is already visited
we do not visit that state. This is done to not visit similar nodes multiple times. All
parameters in ~s are used because even if just one parameter, say the trailer angle
θ2, is different while the other parameters are similar, it will lead to completely
different new states from ~s. However, if all parameters are similar, the new states
from ~s would be similar.

Limited steering commands

The algorithm always uses the same step length and five different steering angles to
find the new states from ~scurrent when using the kinematic model. The algorithm
only uses five angles to limit the amount of nodes in the graph.

Since we use few steering commands we have to choose those in a clever way that
can lead to a good trajectory for the truck. The steering angles used are: ϕstraight,
ϕmax−left, ϕmax−right, ϕmiddle−lane, and ϕouter−lane. Where ϕmiddle−lane is the steering
angle that takes ~snew’s x and y position to be in the middle of the road and ϕouter−lane
is the steering angle that takes ~snew’s x and y position to be in the outside of a
turn.

To find ϕmiddle−lane a binary search is used. Since the middle of the lane is stored in
a map we reapply the kinematic model with different steering commands until the
distance to it is less than some ε, which is set to 0.1 cm. Same strategy is used to

22

find ϕouter−lane. By using the map we know if there is a left or right turn. The width
of the lane and the truck width is also known. The distance d from the middle of
the road is: d = lanewidth − truckwidth

2
. The binary search finds a steering angle

towards the outside of the turn, in the trucks lane, d distance from the middle of
the lane. A visualization of the angles and position of the middle lane and outer
lane can be found in Figure 5.2

5.1.2 The algorithm

The algorithm designed by the group consists of two layers which both use the
heuristics explained above. The first layer computes a path from ~sstart to Pgoal as
fast as possible and uses the cost of that path, calculated with the cost function, as
an upper bound for the second layer.

The second layer of the algorithm searches for all possible solutions. It uses the
upper bound to limit the search and avoid unnecessary solutions that are worse
than the best path found this far.

A cost function is used to make a path measurable and is implemented by measuring
every discrete state that makes the path. By applying a cost to each state and
calculating the sum of those costs we get the total cost of the path. The cost for
each state is calculated using the two front wheels of the tractor unit and the two
back wheels of the trailer. The distance from the optimal position of the trucks
wheels in reference to the middle of the road will then be calculated and used as
error which is shown in Figure 5.1. If any wheel is in the opposite lane we increase
the error of that wheel by multiplying it with some weight, which in our case is set
to 10. The total cost for the state is then calculated by taking the sum of the errors
for all four wheels.

Figure 5.1: Cost function for a discrete state

23

Three main data structures are used in the first layer of the algorithm. A stack of
discrete states where every element is in Cfree that the algorithm is going to visit,
A set visited of grids of states that has been visited, and a key value pair. Given
a state as key, the state that lead to that state is given as value. Below comes the
pseudo-code for the first layer of the algorithm:

1 addPossiblePaths(~sstart);
2 while stack not empty do
3 while True do
4 node ← stack.pop();
5 grid ← round(node);
6 if grid /∈ visited then
7 break;

end

end
8 if dist(node, Pgoal) < ε then
9 return gatherPath(node);

else
10 if left of middle-lane then
11 addPossiblePathsLeft(node);

else
12 addPossiblePathsRight(node);

end
13 grid ← round(node);
14 visited.insert(grid);

end

end
Algorithm 1: Layer one of the algorithm

’addPossiblePaths’ is a method that takes a state ~sin as input and appends new
states to the stack. The new states from ~sin are calculated using the kinematic
model and the steering angles defined above. A state ~snew calculated from ~sin will
only be added to the stack if travelling from ~sin to ~snew stays in the free space the
whole way. This is checked using the collision model. The different new states are
added in a specific order to visit the nodes that are most likely to lead to the goal
first. The order of the stack from top to bottom after the method call:

’addPossiblePathsLeft’ ’addPossiblePathsRight’

~smiddle−lane ~smiddle−lane
~souter−lane ~souter−lane
~smax−right ~smax−left
~smax−left ~smax−right
~sstraight ~sstraight

previous nodes previous nodes

Order of the stack after call to ’addPossiblePaths’

24

’addPossiblePaths’ also adds ~sin as a parent node to the new states that are
added to the stack. The new states are added as keys with the parent node ~sin as
value in the key-value data structure.

The key-value data structure is then used in the gatherPath method. In this method
the parent nodes are used to backtrack to ~sstart. By backtracking and sampling every
state, a path from the start position to the given node is achieved. A visualization
of the algorithm can be seen in Figure 5.2.

Figure 5.2: Visualization of the algorithm finding a path. The red path is the
path from ~sstart to Pgoal. The transparent nodes and edges are nodes that did not
contribute to the solution, and the solid ones contributed to the solution. A lot of
none-contributing nodes have been skipped in the picture for clearer visualization.

After the first layer has found a path the cost function is used on that path. The
cost is used as a start upper bound for the second layer and the path is saved as
the best path found this far. The second layer of the algorithm is similar to the
first layer. It uses the same three data structures as well as another key-value data
structure, that stores a grid as key and the lowest error for the grid as value.

This layer doesn’t stop the main loop when a solution is found, instead it calculates
the cost of the solution. If the cost is lower than the currently lowest cost it gets
updated and the path is saved. The next node on the stack is then visited, and the
algorithm only terminates when there are no more nodes to visit. Hence line 8 and
9 are replaced with:

25

if dist(node, Pgoal) < ε and gatherCost(node) < lowestCost then
lowestCost ← gatherCost(node);
cheapestPath ← gatherPath(node);

end

Another difference is that when a node is being visited the total error it took to
reach that node is added to the new error data structure.

When to visit nodes is the last difference between the layers. In layer one a node
~s in the stack will be visited if ~s ∈ Cfree and the grid of ~s /∈ visited. However in
layer two ~s will be revisited if the current path to the grid of ~s is cheaper than the
previous visit to that grid. The second layer also doesn’t visit nodes which total
cost is higher than the currently cheapest solution (the upper bound). Line 6 and 7
is changed to:

if gatherCost(node) < lowestCost then
if grid /∈ visited or getCost(grid) < getLowestError(grid) then

break;
end

end

The final result of the algorithm and the path that is returned is the cheapest
solution found this far, as a list of discrete states ~spath ⊆ Cfree that does not collide
into any obstacles while travelling between the states.

5.2 Feedback Control Loop

The control system can be represented as the feedback control loop shown in Figure
5.3, where the input to the control loop is a reference path. This section covers how
this control loop works.

Figure 5.3: The control loop

26

The reference path is a set of positions represented as dots connected with line
segments, as shown in the right-hand side of Figure 5.4. The error from the path is
calculated as the perpendicular distance from a point p, to some line segment l. As
the path consists of many line segments, sometimes overlapping, determining which
of these to use becomes a problem. The solution is to, with each position update,
traverse the path and remove line segments already passed. The first line segment
of the remaining path can then be used for the error calculation.

The left part of Figure 5.4 displays how a look-ahead point, Plookahead, is used. This
is the position that the error calculation compares with the reference path. The
reason for this is to be able to respond to changes in the trajectory a bit earlier to
prevent a large error when the path turns.

Figure 5.4: To the left the error from the look-ahead point is displayed. To the right
the path traversal is shown.

The controller works in discrete time and receives the current calculated error as
input. The output is a steering command to the hardware API with the purpose to
correct the error from the reference path. The steering command consists of a P, I
and D term. The control signal (steering angle) that the hardware API receives is
calculated by

U = Kp · ecurrent +Ki · etot +Kd ·∆e/∆t

where Kp, Ki and Kd are adjustable parameters, ecurrent is the input and the rest
is calculated. The time difference since the last iteration is determined by

∆t = T − Tlast

where T is the current timestamp and Tlast is the timestamp of the last itera-
tion.

27

The total error since the start

etot = etotprev + ecurrent

where etotprev is the previous total error. The error difference since last iteration

∆e = ecurrent − elast

where ecurrent is the current error and elast is the error of the last iteration. The
speed input control signal is constant and determines the new position of the vehicle
along with the steering angle control signal. To prevent etot to run away to extreme
numbers, for example if the vehicle stands still with an error, an integral anti windup
guard Iaw is used. If etot sums up to larger than ±Iaw, it is set to ±Iaw.

5.3 Map and Global Path

The map module provides the path planner with an up-to-date map of the track
and a global path which functions as a starting point for the path-search. The map
is stored as a binary image, where white and black pixels correspond to allowed and
forbidden areas of the track. During run time, the map is represented by a two
dimensional array of 1:s and 0:s. Internally, the module contains a representation of
the track as a directed graph, with the edges marking the middle of the lane.

5.3.1 The graph

The graph is a cornerstone in the implementation of a k-shortest-paths algorithm,
used to compute a global path between two points on the track. It is designed so that
it always gives a valid path if one exists, with special care taken in the T-crossings.
Since the turning radius of the truck is too large for it to manage U-turns, the nodes
are connected in a way that does not allow them. For a visualization of the graph,
see Figure 5.5.

5.3.2 Computing a global path

When requesting a global path, the current state of the vehicle and a list of desired
goal and sub-goal positions are given as parameters. The first step in constructing
the path is to find a start node. The start node should be as close as possible to the
current position of the vehicle, and have an out-edge in the same direction. After
that, each of the given goal and sub-goal positions are paired with the closest node.
The final step is to compute the shortest path between each pair of nodes, and then
concatenate all the subpaths.

28

All resulting paths are feasible, but can still prove too difficult to manage if the
truck is positioned in an unfavorable way. If any of the subpaths are impossible
to follow, the path planner can request an alternative path for those sections. We
then compute all possible loop-less paths between the affected nodes, and try each
of them until a working path is found, or there are no more alternatives.

To find these alternative paths, we use a generalised version of Dijkstra’s algorithm
[19], as shown in Appendix G. Instead of just returning the shortest path between
two nodes, the algorithm is extended to find the k shortest loop-less paths. By
choosing a high enough value for k, we can assure that we have exhausted all pos-
sibilities.

Figure 5.5: A simplified version of the directed graph used to compute a global path.
The zoomed in section shows how the nodes are connected in the T-crossings, to
achieve desired behaviour.

5.4 Path Following, Dynamic Path Planning and

ROS Integration

This section describes two central parts of the software system, the ROS-nodes
AutoMaster and PathPlanningNode. It is explained how they communicate with
each other and how they integrate and use the algorithms described in this chapter.
Furthermore, the dynamic path planning with the real-time obstacle avoidance is
explained.

An overview of this part of the system can be seen in Figure 5.6, showing the
communication interface between AutoMaster and PathPlanningNode, and how the
non-ROS classes are integrated into the system.

29

Figure 5.6: An overview of the internal and external communications of the compo-
nents Automatic Control, Path Planning and Map.

5.4.1 The automatic control node

This node, named AutoMaster, requests and receives paths from PathPlanningNode
and, based on continuous position updates from GulliView, makes sure that the
truck follows these paths as closely as possible.

Requesting and receiving paths

The list representing the path in AutoMaster can be both appended and overwritten,
and is done so by publishing data on the topics ’path_append’ and ’path_overwrite’.
Both of these topics use the Path message type, which is simply a list of (x,y)-
coordinates.

30

When a list of goal destinations is received from Visualization, the path_request

service, implemented in PathPlanningNode, is called. The service takes a starting
position and a list of goals as input, and tries to find a global path that visits each
goal sequentially. If no such path is found, the request fails. Otherwise, the request
succeeds, indicating that PathPlanningNode has initialized the path planning, and
that it will soon start publishing paths on ’path_append’.

Translating tag positions to driving commands

With each tag position update, a look-ahead point is calculated and the path stored
in AutoMaster is traversed. A drive command is then prepared, consisting of a speed
value s and a steering angle ϕ.

If the path is empty, the goal has been reached and s and ϕ are both set to 0. Other-
wise, the error from the path is calculated, and fed into the PID-controller’s update
function. The returned value is assigned to ϕ, and some constant value is assigned
to s. The drive command is then published on the topic ’auto_drive’.

AutoMaster also receives trailer angle updates, and together with the tag positions,
a complete state vector ~s = (x, y, θ1, θ2) can be put together. The same state vector
is used in the kinematic model, and is described in section 3.1.3. With each position
update, a new state is compiled, and published on the topic ’truck_state’.

5.4.2 The path planning node

This node coordinates how the path planning algorithm is utilized. It handles the
on-the-fly path planning, the recalculation of global paths, as well as the dynamic
avoidance of virtual obstacles.

On the fly path planning

The path planning is, by far, the most computationally expensive part of the system.
As we want to minimize the time the truck stands still and waits for directions, the
path is computed and sent to AutoMaster in smaller sections. This allows the truck
to start following the early parts of the path, while the latter ones are still being
calculated.

A problem becomes selecting start and end points for different subsections. Simply
dividing the path into sections of equal length, and computing each section sepa-
rately will not work, as some start and endpoints might end up just before a sharp
turn or an obstacle. At such a point, it might be too late to adapt to the difficult
circumstances ahead, since the truck would’ve needed to start turning during the
previous section. (See Figure 5.7)

31

Figure 5.7: Poor choice of start/end point. If the point p is selected as the endpoint
of Section 1 and the start point of Section 2, the truck won’t have time to adapt to
the sharp turn.

The following solution is used to solve this problem: For the first section, a path P1

with some length l is calculated along the global path. Then, some point p along
P1 is chosen as the starting point for the next section. In doing so, the end part of
P1 is cut off, and discarded. The cut-off point is chosen a fixed distance d from the
end of P1. This procedure is illustrated in Figure 5.8.

Figure 5.8: A solution to the problem demonstrated in Figure 5.7. Overlapping the
different sections allows the truck to adapt to the turn in time.

32

Recalculating the global path

Sometimes, the global path turns out to be impossible to follow. Maybe there is a
turn that’s too difficult to take, or there is an obstacle blocking the way. In either
case, another global path needs to be found. This is done by choosing the second
shortest path instead of the shortest one. (See Fig 5.9) If this path doesn’t work
either, the third shortest path is used, and so on. In the end, we either find a feasible
path or exhaust all possibilities.

Figure 5.9: The shortest path is impossible to follow so the second shortest path is
used instead.

Dynamic obstacle avoidance

When a virtual obstacle is added to the track, the map is updated and the path P
that the truck is currently following, is examined. Continuing on P might lead to a
collision with the newly added obstacle. If a collision point q is found, P is cut off
some distance d before q, and the remaining path P

′
is sent to AutoMaster on the

’over_write’ topic, overwriting the old path. The cut-off point c is chosen as the
new starting point, and the path can be recalculated. (See Figure 5.10)

If the length of P is less than d, the current truck position, received on topic
’truck_state’, is chosen as the new starting point, and an empty path is pub-
lished on ’over_write’.

33

Figure 5.10: Cutting off and recalculating a part of the path, to avoid an obstacle.
Notice how the truck doesn’t have to stop, as it can still follow P

′
while the new

path is being calculated.

34

6. Evaluation and Results

In this section the results from the different tests are presented and the error sources
are briefly discussed. The performed tests include: the PID controller performance
on path following, how accurately the derived kinematic model represents the model
truck, and the performance and correctness of the path planning algorithm. The
tests have been carefully designed to showcase that the system can handle difficult
scenarios.

6.1 PID Controller

For the vehicle to stay on the road, it is crucial that it is able to follow the reference
path without a large error. The parameters of the PID controller has been tuned
strategically to satisfy this need. In order to validate the performance of the PID
controller, a few steps of evaluation has to be made on the prototype. With a given
path through the track, we study how well the PID controller is able keep the error
to a minimum.

In Figure 6.1 three test runs are plotted which shows how it follows the reference
path with the speed input set to 0.35 m/s. The reference path runs through the
hardest parts of the track including for example a sharp right turn in the T-crossing
followed by a left turn in the roundabout. There is a very small difference between
the laps and the vehicle follows the reference path well.

A more precise view of the tests are shown in Table 6.1. The different results we have
decided to study are the maximum absolute value of the error, |emax|, the average
absolute value of the error, |eavg|, the mean value of the error, e, and the percentage
of the time the error is below 1 (t1cm), 3 (t3cm) and 5 (t5cm) centimeters respectively.
The results show a consistency in the controller even if there is a small difference
between the test runs. This is the result of using a real model vehicle where physical
disturbances always are present.

In this case, there is also an issue with the positioning system when the vehicle is
between two cameras. This leads to a large maximum error shown in Figure 6.2,
a small jump in position (like a step response), where the PID controller quickly
compensates to a negative error. This results in an unwanted behaviour during a
few seconds.

35

Figure 6.1: The left plot contains the three test run and the reference path. The
right plot shows a zoomed in view on a part of the trajectory for the first test run.
Both plots have coordinates in meters on the axes.

Test run |emax|[mm] |eavg|[] e[mm] t1cm[%] t3cm[%] t5cm[%]

1 62.3 13.1 -0.4 94 97 99

2 53.3 12.9 2.7 88 93 98

3 40.1 11.7 -3.2 96 99 100

Table 6.1: Test results for the PID controller

The percentage of the time the error is below 5 centimeters, t5cm, is above 98 %
for all the test runs which is a good result in order to meet evaluation criteria.
Furthermore, the results in Table 6.1 show that there is a small variation between
the test runs which is desired. This shows that the controller is robust against
uncertainties and disturbances in the model. The average absolute value of the
error for the test runs are all less than 15 mm. The mean values of the error, e,
are all close to 0 . This means that there is almost no offset error after a long run.
Worth to mention here is that there are additional uncertainties in the positioning
system which could have an effect on the results.

36

Figure 6.2: The error over time for the first test run. The green dotted line is where
the error is 0 and the two orange dotted lines shows where the absolute value of the
error is above 5 centimeters. The histogram to the right shows the distribution of
data points with the same Y-axis values as the left graph.

6.2 Kinematic Model

To be able to accurately plan a path for the truck and trailer to follow, the internal
mathematical representation of the vehicle has to be accurate. To verify the kine-
matic model we have constructed a test that makes the truck drive through some
difficult parts of the testing track. The path used includes both the roundabout
and a T-crossing. Making the truck follow this given path we can study how well
the trailer’s position is represented by the model throughout the run. Trailer angle
relative to the tractor unit is given by an angle sensor and the actual position is
then calculated using simple trigonometry. The position calculated is the middle of
the back of the trailer. This test has been run twice.

Figure 6.3 shows that both the tractor unit, as previously evaluated, and the trailer
follows the path calculated very well. There are several disturbances in the system.
The tractor is not following the reference path exactly which means that there is
almost always an initial error from which the trailers position will be measured.
Another source of error is the sensor itself, it introduces a lot of noice. Also, the
tractors position is measured using GulliView and by that the position gathered is
not a precise reproduction of reality, even though it is very close.

37

Figure 6.3: A plot of how well the trailer and tractor unit is following their given
paths. The data points are from the first run, values can be found in Table 6.2.

Figure 6.4: The error over time comparing the position of the trailer with the
calculated estimated position

38

Given all these error sources the model is rather accurate, the absolute error is
always rather low. Figure 6.4 shows how the error changes over time and also the
distribution of data points. We can observe some instant value changes at, for
example, t = 5s. For one or two data points the error goes from around 20 mm to
-30 mm and then back again to around 10 mm. This is most certainly because of the
error sources in the system. It is impossible for the truck to move like that.

Table 6.2 uses the same parameters as used for the PID evaluation in section 6.1. As
shown in the table, 95% of the time we have an error of less than 5 cm. The absolute
max error is 111 mm which is rather high, but again, this is probably because of
some error in the localization system.

Test run |emax|[mm] |eavg|[mm] e[mm] t1cm[%] t3cm[%] t5cm[%]

1 71.1 18.5 7.49 64 78 94

2 110.9 19.7 0.04 74 88 95

Table 6.2: Test results for the kinematic model

6.3 Path Planning

For the system to function well, the path planner has to be fast. When computing
the path for longer sections of the road, the route is split into several smaller sections,
each handled sequentially by the path planner. This way the truck can start driving
along the first part of the route, meanwhile a path is being calculated for the next
section. Ideally, the path planner should return a path for the subsequent section
before the vehicle gets there, so that it does not have to stop and wait.

While speed is important, we also want the calculated paths to be as good as possible.
To be able to measure and compare the quality of different paths, we use a cost
function. This function takes into account both the deviation from the global path
and the amount of time spent in the opposite lane.

Both the runtime and the quality of the path depends largely on the values of
the heuristics. Since their interests are in conflict, we need to find a middle way
when deciding on appropriate parameter values. The test cases presented here are
focused on evaluating the effect on runtime and path quality with different grid size
parameters. We have tried a few combinations, on two different traffic scenarios.
The scenarios are referred to as S1 and S2, and can be seen in Figures 6.5 and 6.6.
All tests are performed on the Raspberry Pi.

39

Most of our system is written in Python, including the original version of the path
planner. However, since this is the most computation heavy part of the system,
we decided to translate the path planner into C++, with the hope of improving
the performance. In Table 6.3, we show an example, highlighting the difference in
runtime between the two versions.

Version
Traffic
scenario

Grid size
parameters

Step size
Runtime [s]
(first layer)

Runtime [s]

Python
S1 (6, 0.4) 25

1 36

C++ 0.2 6

Table 6.3: Difference in runtime between Python and C++ versions, with the exact
same parameters.

Without any further optimization, this made the algorithm run about 6 times faster.
A shorter execution time means that we can get better paths within an acceptable
time frame, and is especially beneficial when running the system on the Raspberry
Pi. All other tests presented in this section are executed with the C++ version of
the path planner.

In Table 6.4 and Figure 6.5, we show the effects on cost function output and overall
runtime when changing the values of the heuristics. The grid size parameters decide
the rounding values for the (x,y)-coordinates and vehicle angles, and are displayed
as (coordinate value, angle value).

Traffic
scenario

Grid size
parameters

Visited
nodes

Cost
(first layer)

Cost
Runtime [s]
(first layer)

Runtime [s]

S1

(10, 0.5) 956 783 390 0.12 2.2

(6, 0.4) 3518 710 329 0.2 6

(3, 0.3) 16054 710 310 0.24 26

S2

(6, 0.4) 446 640 499 0.16 0.92

(3, 0.3) 895 437 423 0.29 1.6

(1, 0.1) 4755 437 423 0.5 5.6

Table 6.4: Difference in runtime and cost with different grid size parameters. The
displayed cost is an average value of the cost function, for each discrete step of the
path. The step size is set to 25 for all test cases.

40

Figure 6.5: Difference in path generated with different grid size parameters.
The yellow line represents the global reference path.

As can be seen in Table 6.4, the lower parameter values gives a lower average cost,
and thus provides better solutions. At the same time, the runtime increases as
a result of visiting more nodes. As mentioned before, the computations are time
sensitive, and we have to weigh the gain in path quality against the impacts on
overall performance. Given the speed of the truck (0.5 m/s), a runtime of more
than 20 seconds for a path of relatively short length, as we see in the last entry for
S1, is not acceptable.

One can also see that the difference in cost, when comparing the lowest param-
eter values with the middle range values, is not proportional to the difference in
runtime.

Figure 6.6 shows the difference in quality between the paths generated by the first
and second layer of the path planning algorithm. While the first layer paths are
feasible, in the sense that the vehicle does not drive outside of the track, they are far
from optimal. Large sections of the paths are drawn in the opposing lane, especially
for S1, which makes the cost function value go up to more than the double for the
worst cases. This motivates the need for a second layer, and shows why we can not
simply take the path generated by the first layer and be satisfied with that.

41

Figure 6.6: Difference in path generated by the first and second layer of the algo-
rithm. Grid size parameters are (6, 0.4) for both cases. The yellow line represents
the global reference path.

42

7. Discussion and Conclusion

This Bachelor’s thesis proposed a predictive control solution to automated heavy
articulated vehicles. The implemented solution integrated the discussed PID control
and a path planning strategy that turn out in a complete and efficient testbed that
responds under difficult traffic scenarios such as roundabouts and T-crossings. The
system also calculates the trajectory path on-the-fly and readjusts if obstacles are
detected on the road. Along this chapter the obtained results are discussed to
demonstrate how the initial requirements have been achieved. Furthermore, the
performance of the system is compared to related work to highlight the advantages
of the presented work.

7.1 Meeting the Evaluation Criteria

One of the main focuses of this project was to run all parts of the system, excluding
the user interface. This makes the testbed portable and adaptable to other systems
or environments. Being able to run on-the-fly the testbed on the Raspberry Pi
proves that the designed automated system is fast enough to satisfy the evaluation
criteria as presented in Table 6.3.

The ultimate aim of this project is to drive the articulated model truck autonomously
to a goal destination. For this, the designed testbed calculates a path that stays
in its own lane when it is possible by minimizing the path planning cost function,
and to prevent getting out of the road. For this purpose it has been shown in the
previous chapter that the PID control follows the given paths within a 5 cm error,
Table 6.1, and that the path planning provides a collision model accounting for this
margin. Then, the initial statement that the truck always drives inside the given
track is, with high certainty, fulfilled.

7.2 Related Work

When looking into previous work carried out in this field, we could not find a single
project that attempts to solve the very same problem as we do. It is therefore hard
to compare our results to the work of others in a formal way. Instead, we will do a
general comparison to a somewhat similar project [6], and then discuss some of the
components of our system.

43

A Related Project

The project in question is a KTH Masters Thesis [6], where they implement an au-
tonomous driving system for heavy-duty vehicles, moving in unstructured environ-
ments. The vehicle is very similar to ours, using almost the exact same kinematic
model, but the environment is different. While we have a set environment, with
roadways and opposing lanes, they have a large open space and use movable boxes
to create dynamic structures.

They use the Rapidly exploring Random Trees (RRT) algorithm [20] to plan their
trajectory, and a Model Predictive Controller (MPC) [21] to predict and regulate
the movement of the vehicle. We have chosen a different approach, with our own,
deterministic path planning algorithm, and a PID controller combined with simula-
tions based on the kinematic model. Both approaches seems to be working well for
their respective applications, and it is hard to say which one is better.

When comparing the performance of the two systems, our system seems to be work-
ing faster. Although, since they do not provide any actual runtime data, we can
only judge from visual inspection. Some of the difference in runtime is likely due to
the fact that we split longer paths into several smaller sections. This way the truck
can start driving within a few seconds, while simultaneously computing a path for
the subsequent section, and hardly ever has to stop and wait. They do not start
driving until they have calculated the entire path, and thus have to stand still for
the full computation time.

Predictive Control

The standard method when implementing autonomous vehicular systems involves
using some kind of predictive control. Predictive control can be accomplished in
many different ways, for example using MPC [21]. Even though MPC seems to
be widely used, we could not find any actual examples on how to implement one.
Since we found that a PID controller, combined with predictions based on the kine-
matic model, was fully sufficient for this project, we decided to go with this more
straightforward approach.

Path Planning

When creating time efficient algorithms, a common approach is to introduce an ele-
ment of randomness. An example of this is RRT [20] which has been used in various
projects [22],[23]. We instead decided on a deterministic heuristic approach. We use
a search grid to limit the number of nodes, and a cost function that ensures favoring
of the own lane before the opposing. Having a deterministic algorithm means that
there is no risk for unfavorable worst-case behaviour, and that we know how the soft
parts of the system will behave, given the same set of heuristic parameters. Even

44

though we can not guarantee that a computed path is the global optimum, we can
say with certainty that the path will always be equally good or better if we lower
the grid size.

7.3 Future Work and Extendability

The flexibility of a system like this is of great importance, and that is something we
have achieved. Great flexibility means that the platform can be extended to conduct
other studies and experiments. Our platform can easily be extended with other
positioning systems, better sensors and other path-planning algorithms. The model
can be exchanged or extended to work for backwards driving vehicles[24].

Currently the truck is always supplied with the same signal for speed, meaning both
that the speed is dependent of the resistance of the wheels and the battery level,
also that the speed is not adapted to the road conditions. For future work a speed
controller can be implemented to keep the desired speed at all times. Some system
to get the current speed limit to allow for acceleration and deceleration could also
be implemented.

For future projects, the camera system could be improved, replaced or combined
with something else. Preferably, the localization system should be integrated on
the truck, to not be dependant on external systems. Positioning is important for
being able to accurately follow a path and the position received from the camera is
not stable enough. It does give more or less the correct value, but it needs some
filtering. For this purpose a Kalman filter [25] would fit well. Introducing a filter
to both the angle sensor and the positioning system would significantly improve the
robustness of the system.

45

Bibliography

[1] World Health Organization (WHO), “World health statistics 2016 re-
port,” http://www.who.int/gho/publications/world health statistics/2016/
whs2016 AnnexA RoadTraffic.pdf?ua=1&ua=1.

[2] O. Olarte, “Human error accounts for 90% of road accidents,” http:
//channel.staging.alertdriving.com/home/fleet-alert-magazine/international/
human-error-accounts-90-road-accidents, April 2011.

[3] Business Insider, “8 ways driverless cars will drasti-
cally improve our lives,” http://www.businessinsider.com/
8-ways-driverless-cars-will-drastically-improve-our-lives-2015-12?r=US&
IR=T&IR=T/#thousands-of-lives-will-be-saved-each-year-1.

[4] S. Dädeby, A. Eriksson, P. Khosravi, K. Onsjö, and K. Sandell, “Simulation av
gulliver - en virtuell robotmiljö för skalade autonoma fordon,” 2015, Bachelor
Thesis, Department of Computer Science and Engineering, Chalmers University
of Technology.

[5] A. Arkheden, A. Lindhé, R. Gustafsson, and R. Zaragatzky, “Ett prisvärt al-
ternativ för global visuell lokalisering och styrning av autonoma fordon,” 2016,
Bachelor Thesis, Chalmers University of Technology.

[6] R. Oliveira, “Planning and motion control in autonomous heavy-duty vehicles,”
2014, Masters Thesis, KTH.

[7] A. Elhassan, “Autonomous driving system for reversing an articulated vehicle,”
2015, Masters Thesis, KTH.

[8] I. Nagrath and M. Gopal, Control Systems Engineering. John Wiley & Sons
Canada, Limited, 1982. [Online]. Available: https://books.google.se/books?
id=XZpyPwAACAAJ

[9] J.-J. E. Slotine and W. Li, Applied nonlinear control. Upper Saddle River,
NJ: Pearson, 1991, the book can be consulted by contacting: BE-ABP-CC3:
Pfingstner, Juergen. [Online]. Available: https://cds.cern.ch/record/1228283

[10] K. J. ström and T. Hägglund, PID Controllers: theory design and tuning. In-
ternational Society of Automation, 1934.

[11] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge Uni-
versity Press, 2006.

http://www.who.int/gho/publications/world_health_statistics/2016/whs2016_AnnexA_RoadTraffic.pdf?ua=1&ua=1
http://www.who.int/gho/publications/world_health_statistics/2016/whs2016_AnnexA_RoadTraffic.pdf?ua=1&ua=1
http://channel.staging.alertdriving.com/home/fleet-alert-magazine/international/human-error-accounts-90-road-accidents
http://channel.staging.alertdriving.com/home/fleet-alert-magazine/international/human-error-accounts-90-road-accidents
http://channel.staging.alertdriving.com/home/fleet-alert-magazine/international/human-error-accounts-90-road-accidents
http://www.businessinsider.com/8-ways-driverless-cars-will-drastically-improve-our-lives-2015-12?r=US&IR=T&IR=T/#thousands-of-lives-will-be-saved-each-year-1
http://www.businessinsider.com/8-ways-driverless-cars-will-drastically-improve-our-lives-2015-12?r=US&IR=T&IR=T/#thousands-of-lives-will-be-saved-each-year-1
http://www.businessinsider.com/8-ways-driverless-cars-will-drastically-improve-our-lives-2015-12?r=US&IR=T&IR=T/#thousands-of-lives-will-be-saved-each-year-1
https://books.google.se/books?id=XZpyPwAACAAJ
https://books.google.se/books?id=XZpyPwAACAAJ
https://cds.cern.ch/record/1228283

[12] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, and R. Wheeler,
“Ros: an open-source robot operating system,” in ICRA Workshop on Open
Source Software, 2009.

[13] S. Hangal and A. Söderberg-Rivkin, “GulliView: A Vision Based Localiza-
tion System for Autonomous Vehicles,” March 2014, Final project report in
Autonomous and Cooperative Vehicular Systems (DAT295), Department of
Computer Science and Engineering, Chalmers University of Technology.

[14] Itseez, “Open source computer vision library,” https://github.com/itseez/
opencv, 2015.

[15] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), May 2011.

[16] A. L. Romain Pepy and H. Mounier, “Path planning using a dynamic vehicle
model,” Université Paris-Sud XI. Orsay, France., Tech. Rep.

[17] J. M.Snider, “Automatic steering methods for autonomous automobile path
tracking,” Carnegie Mellon University, Pittsburg, Pennsylvania, Tech. Rep.,
February 2009.

[18] R. E. Colyer and J. T. Economou, “Comparison of steering geometries for
multi-wheeled vehicles by modelling and simulation,” in IEEE Conference on
Decision and Control, 1998.

[19] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959. [Online]. Available:
http://dx.doi.org/10.1007/BF01386390

[20] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”
Tech. Rep., 1998.

[21] J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design.
Nob Hill Pub., 2009. [Online]. Available: https://books.google.se/books?id=
3 rfQQAACAAJ

[22] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-
time motion planning with applications to autonomous urban driving,” IEEE
Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1105–1118,
2009.

[23] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic vehicle
model,” in Information and Communication Technologies, 2006. ICTTA’06.
2nd, vol. 1. IEEE, 2006, pp. 781–786.

[24] C. Altafini, A. Speranzon, and B. Wahlberg, “A feedback control scheme for

https://github.com/itseez/opencv
https://github.com/itseez/opencv
http://dx.doi.org/10.1007/BF01386390
https://books.google.se/books?id=3_rfQQAACAAJ
https://books.google.se/books?id=3_rfQQAACAAJ

reversing a truck and trailer vehicle,” IEEE Transactions on Robotics and Au-
tomation, vol. 17, no. 6, pp. 915–922, Dec 2001.

[25] R. E. Kalman and Others, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

Appendix

A Publisher subscriber system example

To make a publisher, you use the built in class that rospy provides to create a
publisher object. Use that object to call the publish function with your message as
argument. To make a subscriber you need a callback function that is called each
time a message is sent on the topic. Then just create the subscriber with the built
in constructor that the rospy package provides. Following is some sample code that
shows how simple it is to use topics with primitive message types in ROS.

publisher.py

import rospy

from std_msgs.msg import Float32

class Publisher:

def __init__(self):

rospy.init_node(’pub_node’)

self.pub = rospy.Publisher(’test’, Float32, queue_size=10)

i = 0

while(1):

self.pub.publish(i)

i = i + 1

if __name__ == "__main__":

Publisher()

subscriber.py

import rospy

from std_msgs.msg import Float32

class Subscriber:

def __init__(self):

rospy.init_node(’sub_node’)

rospy.Subscriber(’test’, Float32, self.callback)

def callback(self, data):

print "received: ", data.data

if __name__ == "__main__":

Subscriber()

rospy.spin()

B Truck measurements (mm)

C The test track

D Obstacle GUI

Figure 7.1: Obstacle GUI, used to add virtual obstacles to the track. In this example,
obstacle one and four are active.

E Manual Control

Figure 7.2: Control scheme for an Xbox 360 controller, mapping buttons to control
actions.

F Rounding function

The rounding function is used to find the grid of a state.

def rounding(x, y, theta1, theta2):

modPoint = 3 #tuning parameter

modTheta = 0.3 #tuning parameter

m_x = x % modPoint

if m_x >= (modPoint/float(2)): #round up

x = x-m_x + modPoint

else: #round down

x = x - m_x

m_y = y % modPoint

if m_y >= (modPoint/float(2)): #round up

y = y-m_y + modPoint

else: #round down

y = y - m_y

theta1 = round(theta1, 1)

m_t1 = round(theta1 % modTheta, 1)

if m_t1 >= (modTheta/float(2)): #round up

theta1 = theta1-m_t1 + modTheta

else: #round down

theta1 = theta1 - m_t1

theta2 = round(theta2, 1)

m_t2 = round(theta2 % modTheta, 1)

if m_t2 >= (modTheta/float(2)): #round up

theta2 = theta2-m_t2 + modTheta

else: #round down

theta2 = theta2 - m_t2

return ((x,y),theta1,theta2)

G k-shortest-paths function

The k-shortest-paths function is used to find the k shortest loop-less paths between
two nodes in a directed graph.

def kShortestPaths(graph, start_node, end_node, k):

if start_node == end_node:

return []

path_heap = [] # Heap data structure, holding partial paths

paths = [] # Array, holding the complete paths

graph.resetGraph() # Resetting node.count for all nodes

heappush(path_heap, (0, [(start_node.x, start_node.y)]))

Repeating until the end node has been visited k times,

or there are no more paths from the start node to the end node

while end_node.count < k and path_heap:

cost, path = heappop(path_heap)

current_node = graph.getNode(path[-1][0], path[-1][1])

current_node.count += 1

If the end node has been reached,

this path is added to the array of shortest paths

if current_node == end_node:

paths.append(path)

Otherwise if the current node is not already in all k paths,

all possible paths forward from this node are added to the heap

elif current_node.count <= k:

for out_edge in current_node.out_edges:

if (out_edge.x, out_edge.y) not in path:

new_path = []

for coord in path:

new_path.append(coord)

new_path.append((out_edge.x, out_edge.y))

new_cost = cost + current_node.getEdgeLength(out_edge)

heappush(path_heap, (new_cost, new_path))

return paths

	Introduction
	Problem Description
	Evaluation Criteria
	Scope
	Our Contribution

	Background Knowledge
	PID Feedback Loop
	Path Planning
	ROS: Robot Operating System
	GulliView: Vision Based Localization System

	Vehicle and Testbed Environment
	The Vehicle
	Materials used
	Sensors and data gathering
	Kinematic model
	Collision model

	Testbed Environment
	Physical evaluation environment
	Visualization of the system

	System Architecture
	Overview
	Components

	Algorithms and Implementation
	Path Planning
	Heuristics
	The algorithm

	Feedback Control Loop
	Map and Global Path
	The graph
	Computing a global path

	Path Following, Dynamic Path Planning and ROS Integration
	The automatic control node
	The path planning node

	Evaluation and Results
	PID Controller
	Kinematic Model
	Path Planning

	Discussion and Conclusion
	Meeting the Evaluation Criteria
	Related Work
	Future Work and Extendability

