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Abstract
The project investigates and implements a two-factor authentication system utilizing
the RSA cryptography scheme. The system consists of an FPGA security token and
a PAM module for Linux. Two similar solutions were made, one air-gapped with
a shorter key (version A), whereas the other communicated over USB (version B).
The cryptography module in the FPGA supports no more than 512-bit RSA and is
the greatest area of improvement - since a longer key would provide more security
and still be supported by the rest of the system. Additionally, interesting follow-up
projects could be to explore quantum safe cryptography schemes - especially if to
be used for decades to come. Altogether, the prototype created is a basic, yet fully
functional, two-factor system with no obvious security flaws if deployed correctly.
The project is released as open source under the BSD license.

Sammanfattning
Detta projekt undersöker och implementerar ett tvåfaktorsautentiseringssystem som
använder sig av RSA kryptografi. Systemet består av en koddosa och en Linux PAM-
modul. Två liknande lösningar skapades, där en lösning har en kort nyckel och ej
kopplas direkt till datorn (version A), medan den andra lösningen använder USB-
kommunikation (version B). Den befintliga krypteringskärnan kan maximalt stödja
512 bitars RSA-nycklar, vilket är systemets största förbättringspotential. Ty längre
nycklar skulle kunna hanteras av systemet i övrigt, samt ge en förhöjd säkerhet av
tvåfaktorslösningen. Vidare kan intressanta uppföljningsprojekt vara att undersöka
kvantsäker kryptografi, speciellt om projektet skall användas decennier framöver.
Sammanfattningsvis är prototypen ett grundläggande, men fullt fungerande, två-
faktorssystem utan självklara säkerhetsbrister givet att systemet är konfigurerat
korrekt. Projektet i sin helhet släpps som öppen källkod, licensierad under BSD.

Keywords: FPGA, Linux, Open source, OpenSSL, PAM, RSA, Security, Two-
factor, VHDL.
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Glossary
AFL - American Fuzzy Looper, a program that tests different inputs to find bugs
API - Application Programming Interface
APT - A very dedicated attacker with a specific goal
ASCII - American Standard Code for Information Interchange
Baud - Bits per second a serial port can transfer
Binary (file) - Compiled code run by an executable device
Bitstream file - A file of a binary sequence, can be used to program an FPGA
BRAM - Block Random Access Memory
BSD-license - Open source software license
DMZ - Demilitarized Zone, isolated section of a network. Used to separate public
from private features of a network
FIFO - First-In First-Out (memory)
FPGA - Field-Programmable Gate Array, reprogrammable hardware
Fuzzing - Finding Bugs by testing a lot of random inputs
GCC - GNU Compiler Collection. A compiler included in GNU utilities
GNU utilities - Basic software included in most Linux distributions
Hash - In this report’s context: result of a one-way function that makes passwords
safer to store
IPS - Intrusion Prevention System used on computer networks
ISE - Development tool for Xilinx FPGA:s
JTAG - Joint Test Action Group, a debugging interface
Key pair - A pair of cryptography keys (a private and a public)
LUT - Look Up Table
on-chip general purpose FPGA logic - Premade circuit on an FPGA that can
be used by the design for different functionallities
PAM - Pluggable Authentication Module
Pseudo-random - Statistically random
Quantum computer - A computer using quantum bits for which factorization is
trivial
RSA - An asymmetric cryptography scheme
Scrum - An agile software development framework
Sign - Encrypt a message with the private key
Slice LUT - Primary programmable component in an FPGA
SOC - System On a Chip
SSH - Secure Shell used for remote login
Top module - The VHDL file that integrates all needed submodules, implements
logic to control them and defines I/O
Verify - Decrypt a message with the public key (encrypted by the private key)
Version A - Our first version. Uses the user as communication link
Version B - Our second version. Uses USB for communication, more secure
VHDL - Very high speed integrated circuit Hardware Description Language
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1 Introduction
Authentication in computer security is when a user is prompted to verify herself
to a system in order to access information or perform some type of action. This
is necessary in order to keep information private, to restrict permissions and to
make users accountable for their actions when using a system. Authentication in
most computer systems today is done by password, which is meant to be unique
and known to one user only. Unfortunately, passwords are frequently discovered by
unauthorized individuals, primarily since humans are poor in choosing and storing
passwords [42]. A leaked password may lead to devastating effects for an individ-
ual or a company, not limited to economic consequences. A solution for a more
secure login is a second authentication step for business critical systems - so-called
two-factor authentication. Two-factor authentication is growing in popularity and
is often provided as a smartphone application or as a biometric reader. However,
since smartphones often are attacked [21] and biometrics can be faked [29, 43], the
second login-factor for this project will consist of a custom physical security token.

This project’s software will be released under the BSD-3-Clause license. Thus in-
terested individuals and companies can use the code in order to produce their own
tokens or use it as a building block for other projects. Furthermore, sharing the
code enables external audits to confirm and improve the security of the project.

1.1 Aim
The project aims to find out how secure a challenge-response system based on RSA
cryptography can be. A challenge-response system on an FPGA will be designed
that implements RSA cryptography. Additionally, the system will be used to extend
the login authentication on a Linux system. Since human interaction is required in
the system, user-friendliness also needs to be an important factor during the analysis.

1.2 Scope
The project will focus on developing a non-portable prototype of a security token,
with the software needed to extend the login authentication functionality in Linux
via PAM. It is outside the scope of this project to investigate security issues that
could arise in parts of the system (when integrated with a solution) that is not de-
veloped by the project group, e.g. servers and operating systems.

The project code will be released as an open source software, allowing its users
to audit and change the code themselves. It is of utmost importance to release
the code of any software using cryptography openly - giving transparency to its
users, and proving that no backdoor, calling-home functionality or other unwanted
functionality is included.
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2 Theory and Technical
Background

This chapter describes central concepts and technologies. Briefly introducing im-
portant topics for the project and the developed product.

2.1 Two-Factor Authentication
Two-factor authentication is a method to make computer authentication more se-
cure by introducing an extra step to the login procedure. There are three different
categories of authentication: “something you know", “something you have", and
“something you are" (e.g. password, credit card, and fingerprint respectively) [5].

When designing a two-factor authentication system, two authentication methods
are chosen. It is common to use a password as well as a device that the person
possess [44].

2.2 Security
Correctly implemented two-factor authentication helps to protect the user against,
amongst others: bad passwords, powerful brute-force attacks, and passwords ob-
served by a third-party. The prevalence of bad passwords in organizations has
prompted a plethora of two-factor authentication solutions. However, not all two-
factor authentication systems are equal, sadly many solutions are proprietary or
connected to the Internet - possibly weakening the security [15, 25]. Connecting a
device to the Internet increases the attack surface greatly. Furthermore, proprietary
solutions require utmost trust in its creators since they are the only ones able to
analyze the source code.

A security token only protects against password attacks, e.g. brute-force attacks
and leaked passwords. More specifically, if the host computer has been compro-
mised, i.e. somehow infected with malicious software, it is assumed the data is at
risk regardless of any authentication solution.

2.3 Asymmetric Cryptography
Asymmetric cryptography is a form of a cryptographic system that creates two
paired keys, one may be shared (public) and one is secret (private). A benefit to
asymmetric cryptography, when compared to symmetric cryptography, is that a
communication can be set up without the need of two parties meeting up in person
and physically sharing keys. Key exchange can instead be done by sending public
keys to each other via unencrypted communication, without concern if the key is
seen by others. However, one must be careful if the key can be changed by attackers
before arriving at the destination.
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2. Theory and Technical Background

In an asymmetric cryptosystem, a message encrypted with a public key must only
be decipherable with its related private key. Furthermore, inversely a message en-
crypted with a private key must only be decipherable with its public key. A message
is said to be signed if it is encrypted with the private key, thus anyone with the public
key can verify the signer’s identity. On the other hand, a message encrypted with the
public key can only be decrypted by the private key - thus providing confidentiality
and integrity [1].

2.4 RSA
RSA (Rivest-Shamir-Adleman) [45] is an asymmetric cryptosystem and thus uti-
lizes public and private keys. In order to generate the keys, as well as to perform the
algorithm itself, RSA uses properties of prime numbers to ensure high security. The
security is derived from the fact that large numbers are difficult to prime factorize
for today’s computer. If either key is used to encrypt data, the other key can always
decrypt it. However, encrypting data with the private key, to sign it, is primarily
done in digital significates.

RSA utilizes the modular arithmetic properties of prime numbers, and the equa-
tions below briefly show how to generate keys, encrypt messages as well as decrypt
them.

Public key [e,N ], Secret key [d,N ]
Choose p, q ∈ prime, N = p ∗ q, γ = (p− 1)(q − 1)

0 ≤ e ≤ γ, gcd(e, γ) = 1
d ∗ e ≡ 1 (mod γ)

ciphertext ≡ plaintexte (mod N)
plaintext ≡ ciphertextd ≡ plaintexte∗d (mod N)

According to the NIST foundation, RSA-keys shorter than 2048 bits are not deemed
secure for applications where the public key is disclosed in plaintext [3].

RSA is much used and recognized by many authorities. However, RSA is not consid-
ered quantum-safe. Specifically it is assumed that - decades in the future - quantum
computers will be able to prime factorize arbitrarily and easily. Thus, a quantum
computer can, in theory, break the security of the RSA cryptography system [48].
There are cryptosystems which are quantum-safe, e.g. Lattice-based algorithms
[32]. Nevertheless, many applications still use RSA since it is well known, well
understood and well supported.

2.5 Multiprecision Operations
When operating on big numbers, the bus width of the processor could be exceeded.
However, with a multi-precision algorithm, this issue can be avoided and any nor-
mal operation can be performed. An analog to multi-precision multiplication is how
many school kids perform manual multiplication. More precisely, to multiply two
two-digit numbers, a well-used algorithm is to perform multiple separate multiplica-
tions on single digits and to use carry and summing to complete the multiplication.

3



2. Theory and Technical Background

A computer works in the same way, but instead of digits there are bits, and the
processor’s bus width represents the number of bits that can be calculated at once.
If two numbers with 32 bits individually were to be multiplied on a 16-bit wide bus,
it would require multiple steps of multiplications, carrying and adding to perform
the whole calculation [22].

Multiprecision operations become very relevant even for 64-bit processors when han-
dling numbers with sizes relevant for RSA encryption, which often are in the lower
thousands (of bits).

2.6 Modular Exponentiation
Among other things, the RSA algorithm calculates me mod N , which can be done in
the two separate steps - me = i and i mod N . The calculation is neither memory nor
calculation efficient, because the product of a number with amount of digits x to the
power e, is a number with x× e digits. The only exception is when the base number
is one - then the amount of digits remains the same. Although for small m and
e, this is usually not a problem for today’s computers. However, when performing
RSA, the need for larger m and e forces developers to find more efficient algorithms
to use. Modular exponentiation can be done in a way to make such calculations
more efficient by dividing the whole calculation process into smaller steps [52] .

Utilizing the fact that:

x mod m ≡ (a ∗ b) mod m
x mod m ≡ [(a mod m) ∗ (b mod m)] mod m

An algorithm can be realized where many small steps are being performed where
multiplication and modulus are alternating. Thus reducing the number of compu-
tations, as well as reads and writes to memory. Because in each step, the numbers
operated on can never exceed more than twice the size of the modulus. The algo-
rithm below shows such a program [52].
int modPower(int base, int exp, int modulus)

int tmp=base
while(exp not 1) do

if (exp.even = True){
exp = exp/2
tmp = tmp*tmp

}
else{

exp = exp-1
tmp = tmp*base

}
tmp = tmp mod modulus

return tmp
[46]
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2. Theory and Technical Background

2.7 Random-Number-Generator (RNG)
Random-number-generators are extensively used in applications that utilize cryptog-
raphy and thus require random data, e.g. in key-generation. Software-based-RNG
uses either mathematical algorithms (pseudo-random) or readings of physical en-
tropy (true randomness) from for example atmosphere noise (lightning discharges)
or radioactive decay [56].

2.8 PAM - Pluggable Authentication Modules
PAM is an API used to create and configure different methods for authenticating
users and handling user sessions. On most computer systems, the default authenti-
cation requires you to enter a password. The password is then checked against the
hash stored on the computer, paired to the chosen username.

It is possible to use multiple layers of authentication in addition to the default
password, such as an RFID-chip or fingerprint. Any PAM-aware application can be
configured to require the user to perform multiple tasks of authentication, before
given access. Furthermore, each PAM module can enable one such later of authen-
tication.

A PAM-configuration file can be unique for each application. The configuration
file decides what modules are needed - e.g. pam_unix.so for default password au-
thentication - and of how high priority they are. For example, the configuration for
user login can state that it is sufficient for the user to scan her fingerprint. However,
if the same user declines to login via fingerprint, she could be prompted to use the
standard password authentication in addition to any other methods - if declared in
the configuration file [18].

PAM is licensed under the BSD 3-clause, which in short enables anyone to use
the code according to their wish, however, no liability is assumed by its creators and
the copyright notice must be kept intact [23].

2.9 OpenSSL
OpenSSL is a software library that is commonly used in applications that require
secure communication. OpenSSL implements a variety of cryptographic functions,
as well as their utility functions. Additionally, OpenSSL offers command line utilities
for most of its functions. This is useful if one, for example, does not want to generate
keys inside a program or to perform simple testing [40].

2.10 CentOS/Red Hat
Red Hat Enterprise Linux is a Linux distribution directed towards businesses, and
CentOS is the community-based free version of Red Hat. Since these distributions
use the Linux kernel and the GNU utilities, they are largely compatible with other
GNU/Linux distributions.
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2. Theory and Technical Background

2.11 FPGA
An FPGA (Field-Programmable Gate Array) is an integrated circuit that can be
(re-)configured according to specifications given by a programmer. Such specifica-
tions come in the terms of code and constraints (e.g. power consumption). An
FPGA frequently comes mounted on a development board, with many different
peripherals such as memory, connectors, displays, power supplies and LEDs. Fur-
thermore, FPGA development boards often have different buttons and switches for
debugging and prototyping purposes [57].

2.12 VHDL
A hardware description language is used to program an FPGA - one such language
is VHDL. VHDL describes how physical signals interact, are stored and manipu-
late the program flow. Contrary to software descriptive languages where the code
specifies in which order low-level instructions are executed. To avoid enormous files
which contain a whole program, code can be subdivided into modules which per-
form separate tasks on their own. This not only helps with making the code easier
to understand but also makes it easier to debug since each module can be tested
separately.

2.13 USB
USB is a serial communications interface which is frequently used in modern devices.
USB connected devices uses baud rate, to decide how many bits of information to
communicate per second. When setting up a USB connection, an agreed upon baud
rate is selected so that both units know at which rate they will be transmitting bits.
More specifically, a high signal for one second in a 9600 baud rate setup, is 9600
ones being transmitted - since a high signal is interpreted as one and a low signal
as a zero. [6]

2.14 Open Source
Open source is a license type for intellectual property and appears in many different
forms. Individuals interested in a particular open source software can use, modify
and distribute the source code quite freely. However, different licenses give differ-
ent sets of permissions to the user. So called copyleft licenses forces “any program
derived from it" to also be released under the same license, as in the case of GPL
[19]. However, most open source licenses are permissive - i.e. there are no limits to
its use as long as the license is included.

An open source license can be beneficial to use especially for software dealing with se-
curity since it enables transparency. More specifically, open source makes it possible
for anyone to analyze software for security issues, backdoors or privacy violations.
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3 Method
In this chapter, the tools and methods used throughout the project are described.
Thus giving transparency and enabling reproducing the project.

3.1 Planning
The project was Scrum based [28] and utilized two-week sprints, that resulted in
five product iterations labeled Mark: I, II, III, IV, and V. The project had two
groups, with the focuses: hardware and software. Due to the different challenges
encountered by each group, the sprint goals differed at times.

On the hardware side Mark I focused on getting basic I/O functionality working
and Mark II implemented the RSA cryptography. Mark III was a collaboration
with the software group to make the two systems work together. In Mark IV we
changed direction and changed how I/O worked, namely, the USB communication
was implemented. Like Mark III, Mark V collaborated with the software group to
make the two systems work together correctly.

In the software group, Mark I included the configuration of PAM to meet our needs.
Mark II explored how to use the built-in functions in OpenSSL for use in the RSA
cryptography. Mark III collaborated with the hardware group to make the two sys-
tems work together as intended. Mark IV implemented USB connectivity instead of
the manual system, and finally, Mark V again was a collaboration with the hardware
group to make the two systems work together.

The project used git as its version control system and Google Docs for time logging.
Three special assignments were dealt out to the project members: meeting convener,
git responsible, and logbook writer. Other responsibilities were taken collectively
and assigned at the weekly meetings. Furthermore, to simplify communication the
project group spent most days working in the same location.

3.2 Tools
To fulfill the security token system and its functions, this project has been depen-
dent on a couple of tools to compile and execute different programming code. The
programming tools have been selected based on what PAM and the FPGA require,
but also based on what was available and familiar to the project group.

3.2.1 Linux
CentOS was used to ensure compatibility with the Chalmers environment. More
specifically CentOS 6.8 (Final), with Linux kernel 2.6.32-642.15.1.el6.x86_64 SMP,
and Gnome Display Manager 2.30.4.
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3. Method

3.2.2 OpenSSL
OpenSSL was used on the host machine, for random number generation as well as
all RSA functionality.

3.2.3 PAM
PAM was used to handle authentication on the computer. To begin with, other
already existing PAM modules were investigated [37, 51, 60]. The PAM modules
we designed are written in C and compiled with GCC.

3.2.4 Mobilefish.com
Many calculators are cumbersome to use when calculating the very large numbers
used in RSA encryption. On the website www.mobilefish.com, there are tools for
conversion between different number bases for large numbers, as well as calculators
for them. In this project, the site’s tools - Big number converter [30] and Big
number equation calculation [31] - were used. With these tools it was possible
to calculate what signed message (ciphertext) should be returned from the token,
when testing.

3.2.5 QuestaSim
To avoid testing the VHDL code on hardware directly, and to simplify finding faults
and bugs, the simulation tool QuestaSim was used. This program provides a code
editor, and it also makes it possible to step through a design and change parameters
for debugging. While it is no complete guarantee, a module that works correctly
in QuestaSim is also very likely to function as intended once synthesized into an
FPGA.

3.2.6 Xilinx ISE
Xilinx ISE is, like QuestaSim, a development tool for VHDL and Verilog, which is
able to compile and simulate implementations. Unlike QuestaSim, this tool can be
used to make the VHDL code into a bitstream file which in turn is used to pro-
gram an FPGA. The conversion is done by using the built-in tools which map and
configure specific pins on the FPGA to our design. As well as optimizing the: im-
plementation, placement, and timings of the design itself onto the FPGA. Finally,
it outputs the result as bitstream files.

Besides providing functionality for realizing code in hardware, Xilinx ISE can also
be used for analyzing the implementations size requirements, power usage, and max
speed. The tool was used for all mentioned functionalities besides simulation.

3.2.7 Development Board
A development board is a circuit board containing an FPGA, as well as many
peripherals and connection points. In this project the primary board was the Digilent
Nexys-3 housing the FPGA Xilinx Spartan-6 XC6SLX16-CSG324C [13]. In the case
that the Nexys-3 was insufficient the Digilent Atlys housing the FPGA Spartan-6
XC6SLX45CSG324C [12] was used instead.
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3. Method

3.2.8 Adept
Adept from Digilent is a tool for easy loading of bitstream files onto a development
board. While programming the development board with a bitstream file could be
done in Xilinx ISE, Adept provides a much more streamlined process. Additionally,
Adept provides easy to use self-tests for a development board, which can be used to
ensure correct functionality of I/O.

3.2.9 Docklight
To test the functionality of the USB communication, data has to be able to be read
and written to a port. On Linux systems this can easily be done with included GNU
utilities, but on Windows systems it is not as easy. A useful tool that can provide
these actions is Docklight, which was used when testing the USB on the Windows
system.
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4 Implementation
This chapter describes the process of designing and implementing the two versions
of the security token system.

4.1 Design of the Security Token System
The design of the complete system is based on the security derived from asym-
metrical cryptography. RSA is the cryptosystem used since it is recommended by
multiple standardization bodies, such as ISO [9]. Furthermore, RSA is quite simple
from a mathematical standpoint. The system implemented in this project acts as
a challenge-response system, where either a user or a USB connection is the com-
munication channel between the computer and the security token. The security is
affected by the behavior of each user, e.g. if the user does not log off when she leaves
her PC unattended the token does not make a difference. Hence the system should
depend as little as possible on the user and still enhance security. The computer
uses Linux (CentOS) and extending the PAM-login module is sufficient to add the
security token as a second factor of authentication. A system overview is shown in
Figure 4.1.

User login
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dialogue

Type to
Token

Random
characters

PC

Input

Security token

Sign

Display
on LCD

Type
to PC

Verify

Y

N

Recieve
access

Plain

Cipher

Figure 4.1: System Overview

Version A uses a human as the communication link, which impose the constraint
that information transferred from the token to the computer needed to be easily read
and written by humans. Thus a character-set of 64 (26) characters was created. The
character set includes the characters: zero to nine, a to z, A to Z, ! and ", each
translated to a unique 6-bit value. This allows for data to be transferred densely,
and more precisely it enables a signed message (72 bits) to be communicated in only
twelve characters (12 ∗ 6 = 72).
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4. Implementation

In version B the human link was exchanged for serial communication between the
security token and the computer, unlocking the possibility for vastly longer key
lengths.

4.2 Implementation of the Security Token
The security token’s top module is responsible for housing all submodules, designat-
ing in/out pins, the PIN-code, controlling program flow and configuring constants.

To make the configuration of the token easier, the top module includes a number
of configurable constants. These constants are propagated down into the modules
which need them and/or configures the modules’ implementation (e.g. the RAM
size, vector width, RSA exponent value).

The top module implements the
flowchart to the right (Figure 4.2) as
a series of states. It first waits for
the LCD to be initialized, as it needs
some time to do this. Once the LCD
signals that it is ready for commands,
the normal program flow follows:

A message prompting the user
to input the PIN is written to the
LCD, read from a predefined message
placed in ROM. If the entered PIN
is correct, the program continues to
print out a message that prompts the
user to enter a randomly generated
message from the computer. Is the
PIN incorrect, however, the program
goes back to the PIN state unless
the maximum amount of tries has
been reached. In the project’s de-
fault config, the user is given three
tries. If the number of tries has
been exhausted the program locks
itself permanently, and the FPGA
needs to be reprogrammed. To reset
the FPGA is not enough since the
try-counter will not reset unless the
FPGA is reprogrammed.

Input

Y

Pin N #Tries

Initialize

Security Token

Convert
into

binary

Sign

Convert
into

ASCII

Display
on LCD

When key pressed

≥ 3

Lock

Figure 4.2: Flowchart of Security Token

After a successful PIN, the user is prompted to enter the message shown on the
computer. This input is transferred into the FPGA’s RAM, in the form of hexadec-
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4. Implementation

imal values. To clarify, the input 8, 6 becomes the hexadecimal value 86 in RAM.
Once enough values are entered, as defined in the constants mentioned above, the
program proceeds to the signing phase.

Once the RSA signing is done, the resulting value is present in RAM and has to be
returned to the user. However, first the values have to be converted into Alphanu-
merical++ (see Section 4.2.4) to avoid invalid characters. To do this however it first
needs to be rearranged from eight bit chunks to six bit cunks. Those two processes
are done by the byte splitter(Section 4.2.3) and then the message is printed to the
LCD.

After the return message has been printed, the program does nothing until a button
on the keypad is pressed. Once a button is pressed, the RAM is cleared by writing
zeroes to all cells and then the program returns to the PIN state - ready for another
message to sign.

4.2.1 Hexadecimal Keypad
In the project, a hexadecimal keypad that consists of sixteen buttons was used. This
keypad was chosen because it simplifies the translation of input messages to bit val-
ues since each button conveys a 4-bit value. Furthermore, a larger keypad would
not be needed since the cleartext entered is only a couple of characters long. The
keyboard chosen has eight pins, four of which are connected to the rows while the
other four are connected to the columns. When a button is pressed, a signal goes
from one of the row pins into one of the column pins. The pins can be connected in
sixteen different ways, just like the number of physical buttons on the keypad.

To parse the keyboard input, the token has to scan which button is pressed. Initially,
the token provides a signal to all four column pins until a signal is detected on the
row pins (i.e. a button is pressed). Once this happens, the token provides a signal
to only one column at a time and reads the row pins. This is done for all the four
column pins. If and only if one row-pin gives a signal and one of the four columns is
active, the input is a valid button press. Otherwise, two or more buttons have been
pushed at once, thus resulting in an invalid button press. Once a legal button press
has been detected, the token translates the button’s value to hexadecimal and waits
for the button to be released - before signaling to the rest of the hardware which
value is to be used.

4.2.2 LCD
The LCD screen used was the DMC16207 with the HD44780 controller [10]. This
LCD can display two rows of 16 character each. There are more possible instructions
to give to the LCD than the ones implemented, but for the sake of simplicity, only
the essential instructions were chosen. These are: printing a character, clearing
the screen, changing row, as well as the instructions required for initialization. To
simplify the system, the screen was given a separate clock since it was in need of long
delays after certain functions, such as clearing the screen. This clock was realized
by dividing the system’s main clock to a frequency that allows the LCD to always
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be ready for the next operation, and not being busy with a previous. However,
printing to the screen is much slower than it could be since the same clock is used
regardless of instruction. The printing could be faster if instruction specific delays
were used instead. Nevertheless, the implemented solution is still fast enough to be
almost unnoticeable.

4.2.3 Byte Splitter
The LCD is capable of printing a total of 256 different characters. This would be
fine for printing back the signed message, as the bytes of the signed message all can
have a value between 0 and 255. However, this was deemed bothersome as standard
English/Swedish keyboards do not have easy or obvious ways to write that many
different characters. As a result, the signed message had to be modified to print
only writable characters. The signed message bytes are split into segments of 6 bits.
A message of three bytes thus translates to a split message of four 6-bit segments.
The characters were restricted to six bits since a larger character set would require
at least 128 (27) different characters - more than what the average user can type
with ease.

Byte Splitter has a local memory to temporarily save the values as well as a small
register to save the, still unused, bits read from the signed message in RAM. The
process is as follows: the module reads one byte from RAM and takes the six least
significant bits and saves to the local memory. While the unused two most significant
bits are saved in the register. The following cycle, the module reads the next cell of
RAM and combines the two saved bits in the register with the four least significant
bits from RAM (where the RAM bits are the most significant in the resulting six-bit
vector), and again the unused bits are saved in the register. The third cycle the
next RAM cell is read and the two least significant bits are combined with the saved
register (again the RAM bits are most significant), and the unused six bits are saved
in the register. Finally, the six bits in the register is saved to the local memory. This
is visualized in Figure 4.3. This process repeats until all values are read from RAM,
converted to the corresponding 6-bit vectors, and written back to the RAM.

Figure 4.3: Demonstration of the Byte Splitter
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4.2.4 ASCII Converter
An extended alphanumerical character-set containing 0-9, A-Z, a-z, ! and " was
invented and named alphanumerical++. The characters in alphanumerical++ can
be mapped from 0 to 63, but the LCD requires the characters in standard ASCII
encoding. This makes the translation of a value between 0 to 63 to the correspond-
ing ASCII value needed. The ASCII converter module performs the functionality
implemented as a Lookup-Table, furthermore, it is asynchronous (i.e. does not wait
for clock pulse) to make the translation immediate.

4.2.5 ModMult Module
The ModMult module was created by Steven R. McQueen who published it at
OpenCores.org 2009 under the LGPL license. The module performs modular mul-
tiplication used in the RSA algorithm and takes three parameters: multiplicand,
multiplier, and modulus. The module returns the modulus of the multiplication.

4.2.6 RSA Module
The RSA module controls the signing of the message with the use of the sub-module
ModMult. The RSA module performs the algorithm described in the program flow
as described in Section 2.4, executing the iteration through the exponent and leaving
out the modular multiplication to the ModMult module. It receives the message via
RAM, which it is given permission to by the top module. The RSA key, exponent,
and modulus result are read from the constants located in the top module.

When the RSA module is set to inactive, nothing executes and all registers are
set to their initial value. Once the module is activated, however, the message is
fetched from RAM and saved locally. The RSA algorithm is later executed by using
the ModMult module to sign the message. The signed message is then printed back
to memory, overwriting the original message.

4.2.7 ROM and RAM
The ROM and RAM modules are based on code implemented by Gustav Örtenberg
for the course Digital Design (EDA322) given at Chalmers University[35]. The
modules are simple implementations of read-only and random-access memory, in
which an address vector is used to choose the active cell to function as the output
port. In the RAM module, there is also a write enable signal for replacing the active
cell’s value with that on an input bus.

4.2.8 Version B Top Module
Version B of the security token was implemented with a serial communications link
(USB), instead of the user typing between devices. Since the information transferred
do not have to make sense for a human, all the steps converting and partitioning the
information are not needed. More specifically, writing the ciphertext to the LCD
is not necessary since it is transferred via the USB connection to the computer,
using the USB modules described below. The cryptography core used in Version
A, described above, was too weak to handle RSA key lengths of significance. Thus
another core, an existing open source one, was used to handle RSA of key length
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512 bits. However, the new core did not fit on the Nexys-3, instead the Atlys was
used.

4.2.9 USB
The USB communication is implemented using the EXAR XR21V1410 USB-UART
bridge on the Atlys board. The USB module consists of three submodules: the
command parser, the RXD-handler (Recieve data) and the TXD-handler (Transmit
data). The USB communication is very simple and has only a small instruction
set. Each transaction has a header consisting of the character * and one command
specific character. The code was inspired by a private conversation with a Xilinx
employee, and is based on a Xilinx Vivado Workshop-lab [50, 59]. The existing
headers are mention in Table 4.1.

*I (Identification)
*B (Busy)
*R (Request signed message)
*D (Done receiving)
*T (Timeout, not all data received)
*M (Signed message from FPGA to PC)
*W (Write message to FPGA)

Table 4.1: USB Instruction Set

In the cases of *W and *M, they are immediately followed by 64 bytes of information.

The transmission of data works the same at both the receiving and the transmitting
end, and has four stages: idle, start, data and stop. When idle, the signal is resting
with a high value, but when the transmission starts the signal is set to a low value.
After the start bit is handled, the data follows from the least significant to the most
significant bit. Finally, a stop bit (high value) is put on the signal.

4.2.10 RXD-handler
The RXD-handler is the submodule that receives and translates the serial bitstream
from the PC to bytes. These bytes can be part of headers or data to be written to
the token’s RAM. To avoid incorrect sampling the RXD-handler needs to know the
exact clock-speed it uses, as well as the baud rate of the transmission. With these
numbers, the middle of each bit is sampled as shown in Figure 4.4 The receiving
process follows the stage flow described above, and as such, the RXD-handler first
listens to the input for the start bit. Once the input goes low, it starts counting to
the middle of the start bit and double-checks that the input is still low. If that is
the case, then it is confirmed that it is the start bit, and the following eight bits are
the input. If the input were high during the double-check of the start bit, however,
this was a false start bit (an anomaly) and is thus ignored. After taking the eight
bits, if the input is low, then it waits for the stop-bit/idle state on the input. Once
a complete byte is received the module puts it on its output bus and signals the
command parser that a new byte is on the bus.
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Figure 4.4: Example on Serial Port Sampling

4.2.11 TXD-handler
The TXD-handler is the submodule that translates bytes to a serial bitstream which
is then sent to the PC, much like the RXD-handler reversed. The TXD-handler also
needs to know both the baud rate and the clock frequency to be able to send data
at a correct pace. However, unlike the RXD-handler, this module needs a FIFO-
memory to store active transmission jobs. This is needed as a consequence of the
token working much faster than the serial link, meaning that it is faster to execute
internal commands than to transmit data to an external device. When the FIFO-
memory is empty, the TXD-handler is in its idle state, but as soon as there is data
in the memory, the module reads and sends every byte until it is empty again. To
send a byte: firstly the module sets the output to low for the start bit, and secondly
follows up with the data bitwise in the least significant to most significant bit order.
After data is sent, the stop-bit (output high) is set and the module checks if the
FIFO-memory is empty. If it is, the module goes to the idle state, otherwise, it
begins another transmission with the next byte to be sent.

4.2.12 CMD-parser
The command parser does what the name entails and parses commands from the
computer. It is also responsible for setting flags to other parts of the token, reading
from and writing to the RAM as well as deciding what to send back to the PC. When
idle, the module waits for a new byte from the RXD-handler, and this byte must
be the first character in a header (’*’). If a received byte does not match this case,
it is ignored and the module remains in idle mode. However, if the byte is correct
the next byte decides what command it is (see Table 4.1). If the header does not
match one of the defined commands, it is ignored. Depending on the token’s state,
the command parser may respond with either a busy header or the data requested.
When headers or data is to be transmitted, they are put into the TXD-handler’s
FIFO-memory. If invalid headers or *W commands are being sent from the PC, or
if the timeout message (*T) is received on the PC, then it verifies that something
went wrong in transmission, and the PC should retry to send the command again.
If the request (*R) command is received, and there is an active job in the FIFO,
the command parser will not send another 64-byte message, but it will instead give
a busy response command (*B). An example as shown in Figure 4.5.
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Figure 4.5: PC-Token Interactions Example

4.2.13 RSA_512
The RSA_512 module was published by Emilio and Javier Castillo-Villar at Open-
Cores.org 2010 under the LGPL license [53]. The module is a part of a larger
product they intended to make, which could handle key lengths up to 4096 bits.
However, the version available only provides 512-bit RSA cryptography. The mod-
ule, given an RSA key and a message, returns the message encrypted. Along with
the VHDL files, the module includes a PDF-document describing the correct usage
of the cryptography core and the other modules needed to accommodate their de-
sign. The open source module is implemented using Montgomery CIOS (Coarsely
Integrated Operand Scanning) multiplication [2].

4.2.14 Xilinx IP Core Generator
Not all modules used are designed by us nor are open source code fetched from the
internet. The memory in the RSA_512 (BRAMs and FIFOs), as well as the FIFO
in the TXD-controller, made use of the built-in tool IP Core Generator in Xilinx
ISE. The IP Core Generator has an extensive library of complete and customizable
modules. The modules are available to use, but only in combination with a valid
Xilinx ISE Licence. As a result, they can not be included in the final open source
repository, however, instructions on how to create these IP Cores will be provided
and can be found in Appendix B.
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4.3 Implementation of the Linux-PAM System

On CentOS and most Linux
distributions, the out of the box
PAM configuration requires only
a password for authentication (as
shown in Figure 4.6). Since the
aim of the project is to have an
extra authentication layer to lay
on top of the already existing
password login, the
password-auth is the only
configuration file that needs to
be edited. The authentication
has to go through this projects
PAM-module in addition to the
standard password login.
Furthermore, because the
module only should handle
authentication the other
management groups (account,
session, and password) are left
untouched. However, more
applications could utilize the
security token, by setting the
requirement in their PAM
configuration files.
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Figure 4.6: Flowchart of PAM Module

4.3.1 The PAM Module
The PAM module begins by opening a (PAM-)conversation with the user. A PAM
conversation is a structure containing a PAM message and a PAM response. The
message, in version A, is the user prompt showing the randomly generated hex string
that should be typed on the security token. Furthermore, the response is the output
(signed message) from the security token. To create the PAM module, code was
taken from pam_unix.c [37] which is Unix’s standard authentication module and
falls under the BSD-3-clause license. However, instead of waiting for a password
to be entered, the module generates a random message and waits for the token’s
response to be provided.

To generate the pseudo-random message, OpenSSL’s RAND_bytes-function is used.
In version A three random bytes are generated, but in version B (with USB) this is
increased to 63 bytes. These lengths are determined by the size of the RSA keys:
<72-bit for version A and <512-bit for version B. Note that version A could gener-
ate a longer message with this configuration, however, due to user friendliness being
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concern - this was limited to six hexadecimal characters (three bytes). OpenSSL
uses the Linux built in /dev/random as entropy source to generate cryptographically
strong data [56, 39].

In version A, the user response requires multiple steps of parsing before interpreted
by the token, as described in this section. The user response - the signed message
(ciphertext) - is run through a sanitizer to verify that the string is formatted cor-
rectly, i.e. correct length (default: twelve characters) and only legal characters (0-9,
A-Z, a-z, ! and "). If not, the string is either filled with zeros to make it longer or
null terminated to make it shorter - to the same length as the RSA key. The reason
the user response length is important is because RSA without padding is used, and
thus the ciphertext must match the key length. Furthermore, by adding zeros before
the data if needed, the user does not need to enter leading zeros. After cleaning the
user input, the input is parsed in multiple steps because of how the FPGA handles
memory and characters. First, the user response is read as its characters’ ASCII
values. These values are then merged and split into chunks of six bits and put into
an array of 72 characters where each holds a binary value. Finally, the bit-string
is parsed as nine 8-bit characters which are equal to the original message signed
with the private RSA key.

Verification of the specified message is done by using OpenSSL’s RSA_public_decrypt
function, with the public RSA key available on the computer’s storage [41]. OpenSSL
has a verify function, however, it works on a too high level requiring trusted cer-
tificates and it is meant to be used for communication with a message content -
while this project only cares about authentication [55].

4.3.2 USB Solution
Since the key and message lengths are global variables, and because the code is fairly
generic, the switch to USB was straight forward. With USB, the module no longer
needs to initiate a conversation with the user but instead communicates directly
with the security token. The communication now takes place in the background
and the user will, after entering the PIN-code on the token, not be able to notice
it. To read and write to a USB port in Linux, the module has to configure it to be
compatible with the token. The USB port requires a correctly set baud rate, the
size of each data segment, and enable possible control or parity bits.

The module starts the transmission by writing a pseudo-random message preceded
by *W, to let the FPGA know it is a write operation of 64 bytes. The message sent
over USB does not require any parsing or reformatting since the user does not have
to manually read or write to the token. Therefore, the message can be whichever
random values originally created, even if they can not be printed as readable char-
acters. The module then continuously reads from the USB port until the FPGA
has sent a *D, signaling that the message has been received. Lastly, the module
sends the request code *R to ask the FPGA for the signed message and waits until
the FPGA no longer sends its busy code, *B. The signed message is then received
and is to be verified and compared to the original pseudo-random message. If the
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messages match, the module returns that the first authentication step was a success
and PAM can move on to test the standard password. On the other hand, if the
authentication fails, the user is still asked for a password. However, access will be
denied.

4.3.3 RSA Key Generation
Generation of the RSA keys is done with OpenSSL’s command line utilities. Genrsa
is used to create a private and public key pair of a length specified in the command
call, 72 bits for version A and 512 bits for version B [38]. Furthermore, the gener-
ation of keys is critical and must be done on a non-compromised machine. Scripts
for key generation is provided in the project code (link can be found in Appendix
C).

4.3.4 PC-Environment
The security token was tested with CentOS and should thus be fully compatible with
Red Hat Enterprise Linux, if using the same versions. Furthermore, the security
token could work for any recent Linux distribution - but this might require minor
changes to the PAM-configuration files [8]. Since PAM is fairly standard for Unix
systems [49] - e.g. Linux, FreeBSD, or Mac OS - with some configuration, the created
module could be ported.

4.3.5 Analysis
Some tools for analysis were used during development of the PAMmodule: American
Fuzzy Lop (AFL), Valgrind and Flawfinder. Valgrind and Flawfinder are static
analysis tools used to detect memory leaks and safety errors, important when coding
in an unsafe language such as C [17]. With the help of these tools, multiple memory
leaks were resolved and unsafe function calls were replaced. Furthermore, the fuzzer,
AFL, was used to test the compiled binary file with millions of different input values
[16]. Not once did AFL manage to crash the PAM module, which is a good sign.
To analyze the binary, a separate test module was created since it was not possible
to analyze the regular authentication program itself. The test module performs
the same functions as the project’s pam_module.c, however, it does not utilize or
examine the external PAM functions - which correctness was assumed.
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5 Security and System
Analysis

In this chapter the results of the security and system analysis will be presented.

5.1 Security Token Analysis
The short RSA key used in the project’s Version A makes it trivial for an advanced
threat to break the device - i.e. calculating the key-pair - if the host is infected. It
is as if a symmetric cryptosystem was used since either key is enough to gain full
insight into the other key, and thus perform any cryptographic operation. Therefore,
it is imperative that the host computer is not compromised by an adversary - and
that each user is aware of this weak link.

At first, it was incorrectly calculated that a 72-bit key would suffice when both keys
are secret. When the mistake was discovered, Version B (USB) was implemented
instead. The big difference with version B is that the 512-bit key provides safety
even if message transactions are known. Furthermore, brute-forcing the private key
knowing the public key becomes less trivial.

5.1.1 Physical Realities
Version A of the token uses the smaller key size of 72 bits, a design that is small
enough to fit onto the Nexys-3. More specifically, this implementation took only 1131
out of 9112 available Slice LUTs, had a maximum possible frequency of 134.4MHz
and a power usage of 22mW. A more detailed summary can be seen in Appendix A.1.

Version B of the token is considerably larger, as it needs much more space to house
the RSA_512. It uses 9016 Slice LUTs but is not able to fit onto the Nexys-3 re-
gardless. The reason for this is that this version uses 50 DSP48A1s (on-chip general
purpose FPGA logic) on the bigger Atlys Spartan-6, of which the smaller Spartan-6
on the Nexys-3 only has 32. Version B has the maximum possible frequency of
93.941MHz and the power usage of 144.57mW. A more detailed summary can be
found in Appendix A.2.

Worth noting is that all these values were found without any deep optimization
effort due to a lack of time. Only the default settings and a clock constraint of 10ns
(100MHz) were used. It is possible that with further effort one or more numbers
can be improved if optimization targeting specific aspects (space, speed, power) is
done. Furthermore, the power usage does not include the power needed for I/O.

In both version A and B the signing of the message takes so little time to per-
form, less than one millisecond, that the user does not notice the execution. The
signing is the most computationally demanding step performed while the only vi-
sually noticeable delay is that of the message being printed onto the LCD. This
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because of how the LCD code was implemented. However, even though this delay
is noticeable, it is so fast that this delay should not be of any annoyance.

5.2 Linux PAM Analysis
Using the tools for static analysis and fuzzing, the correctness of the code was
improved. Valgrind shows no memory leaks, Flawfind’s results were used to remove
unsafe functions, and AFL did not manage to adversely affect the program.

5.3 Complete System Analysis
In both of the project’s versions, the keys are relatively short, and thus it is required
that none of the keys are discovered by an adversary, even the so-called public key.
Unlike the typical RSA usage, the cryptosystem must be thought of as a symmetric
one. This means both keys must be kept secret, especially in version A, to prevent
calculation of the private key. Furthermore, if message transactions are known - i.e.
cleartext-ciphertext pairs - the keys can, in theory, be calculated. The keys can be
determined faster the shorter the key and the more message transactions that are
known. Additionally, knowing the key length makes this processes even easier. In
the case of 72-bit keys, it is to be assumed that an attacker can perform a brute-force
attack in reasonable time, especially since it cannot be assumed that the key length
is secret. However, in version B the 512-bit cryptography should protect against
attacks where only message transactions are known.

There are three attack vectors concerning the cryptosystem with a short key: the
private key stored in the FPGA, the public key on a local server and in the RAM, and
the message transactions taking place. Regardless of the weaknesses, the two-factor
authentication solution protects from the most attackers. A majority of attacks
against the system must be performed in real life on the premises, and if not, it
must be a very targeted malware reading the data or keys when accessed. The
two-factor authentication system with keys of 72 bits provides enhanced security
compared to not using any two-factor authentication at all, however, it has multiple
unnecessary attack vectors.

At first it was incorrectly calculated that a 72-bits would be enough as long as
the keys were unknown. However, it became evident that another solution was re-
quired. Thus, a modification to the project was made enabling a USB-connection
and much longer keys, making the system resilient against cryptographic attacks.

With a USB link, the security is improved in a number of ways. Firstly, the sys-
tem uses 512-bit keys which make the private key much harder to calculate given a
public key. Secondly, it makes the keys extremely difficult to calculate given only
message transactions. Consequently making man-in-the-middle attacks futile, the
biggest improvement compared to version A. Finally, in both versions, the keys are
shorter than recommended by institutes such as NIST and is therefore not generally
recommended. However, the security is improved since the (so-called) public key is
hidden on a server, and not openly shared as in NIST’s model.
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6 Discussion
In this chapter the two versions of the security token system will be evaluated and
compared. Furthermore, different approaches as well as security considerations will
be discussed.

6.1 Threat Landscape
The security token aims to protect against a dedicated adversary, an adversary
which in this text is referred to as an Advanced Persistent Threat (APT). However,
no solution is impenetrable and the security token does not provide protection for
malware if executed locally. Thus one cannot emphasize enough the importance of
other protection mechanisms such as firewalls, IPS, and DMZ in the network. Fur-
thermore, user awareness training should be provided within the organization and
critical data should be centralized and encrypted. However, the report focuses on
two-factor solutions specifically.

The project makes it possible for a user to (more) safely log into an organization
environment locally as well as remotely (e.g. via SSH). However, user mindset is
still of utmost importance since an infected computer on their end jeopardizes any
accessible files. Furthermore, a risk is that users try to circumvent the security to-
ken because they find them all too time-consuming. To limit brute-force attempts,
invalid login tries is limited as set in the PAM config files [4, 27]. However, it is
of utmost importance that each sysadmin deploying the security token set these
settings as specified in the project files.

6.1.1 FPGA Security Considerations
Even though the security token is protected by a password, one must assume that
an APT can obtain the private key if enough resources are utilized assuming full
control of the token. In theory, there are multiple points of attack: brute-forcing the
key, observing the local buses used to transfer the key when authorized, accessing
JTAG or other interfaces, and monitoring register values. If the FPGA used is not
open source, or even if it is, one must acknowledge potential backdoors or security
bugs present.

If the current designs’ bitstream files were to be loaded into the FLASH, there
is a lack of enough secure key storage since, the programming file, and thus the key,
remains in the FLASH memory. Hence, if building a custom chip - not done in this
project - tamper protection should be implemented. With a custom FPGA board,
the program including the key could be stored in volatile memory together with a
battery backup. Thus, if the device is opened the idea is to cut power to the mem-
ory, removing the program, rendering the token useless. Protection measurements
as described in this section are explained more in depth in the ENISA Hardware
Threat Landscape and Good Practice Guide [14].
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Although the key might be accessible by opening the device, it is extremely dif-
ficult. Furthermore, it is easy to revoke a token’s access - i.e. change its public key
on the server. Security tokens are going to get lost or stolen eventually, but the ease
of invalidating their access to the systems makes them more resilient to attacks. Ad-
ditionally, the token does not perform random-number-generation or key creation -
it only encrypts data and stores the private key - making potential bugs less critical.

6.1.2 Version A Security Considerations
Without a USB link, there is a significant trade-off between key strength and us-
ability, i.e. the key and thus the resulting ciphertext has been greatly limited to
make the time-loss for the user acceptable. The minimum key size as recommended
by NIST (2015) [3] is 2048 bits. However, since the key is as long as the ciphertext
in RSA, each 6-bit increase of the key length increases the output by one (6-bit)
character. Thus 2048 bits translates to 342 characters on the project’s security token
without USB, well beyond what is acceptable to type manually. Instead, a key of
72 bits was chosen, resulting in a user input of twelve characters - reaching the limit
of what a user should be expected to type in.

A 72-bit key provides some resilience since it requires the attacker to discover the
public key or some message transactions. Furthermore, with a key this short it is
impractical, yet possible, to calculate the private key provided at least a message
transaction coupled with offline brute-force attempts. The more transactions that
are known the easier the brute-force, however, if the message length is unknown
there will be multiple possible solutions found during brute-force and would thus
require multiple tries on the security token. Hence, a key length kept secret would
increase the security of the token, but in practice, it would be difficult to enforce.
The ciphertext gives hints about the key length: it is known that the key length and
ciphertext is the same, but the ciphertext can go from all zeroes to the maximum
value, making the possible key length somewhat ambiguous. However, it cannot be
assumed that each entity using the token will change the default key length, which
is known, and if the key length is changed it can be assumed to be around 72 bits.
Thus, since security by obscurity is nothing to rely on and observing one message
transaction could, in theory, compromise the token - it was evident that the system
needed to be improved and as such a USB implementation was begun.

All in all, the resilience of the security token relies on the difficulty for an adversary
to: observe authentication transactions and guess the key length, or get their hands
on the public or private key. Ergo, there are multiple vectors of attack. However,
the attacks require physical presence or advanced malware, making the token useful.

In both version A and B of the token, the private key was placed in the FPGA
while the public key was stored in the computer. The choice was made since it is
both harder and requires physical access to attack the token directly. Contrary to
attacking the computer, which can generally be done online with less sophisticated
tools - since it is a more generic and connected device. Nevertheless, it would be
trivial to switch the place of these keys if needed, see section 2.4.

24



6. Discussion

The reason to aim for a longer key in our case would be to protect the private
key even if the host is compromised or the visual input copied. Nevertheless, it is
possible to accept a short key - e.g. 72-bit - because it is assumed that if the host
is compromised or physical access is gained, the secret data may be compromised
as well. However, if a short key is used and the host is compromised by a possible
APT - it is recommended to replace the user’s security token and thus the key-pair.
Therefore it is inadvisable to employ short keys if the cost of replacing a user’s
security token comes with a considerable cost. However, this would only really be
relevant if the tokens were implemented on one-time programmable FPGA:s. To
conclude the greatest weakness of version A is that even one message transaction
could be used to bypass the token, at least in theory.

6.1.3 Version B Security Considerations
In version B, instead of having a user enter the clear- and ciphertext manually, it
is done over a USB link, enabling longer keys. Currently, the length is 512 bits,
since a restriction in the RSA code used on the FPGA. A 512-bit key is shorter
than recommended, however, it has the major benefit of resilience - compared to a
key of 72 bits - against attacks where only message transactions are known. Thus,
an adversary observing the user and recording all message transactions still has a
long way to go before compromising the system. Furthermore, using a USB link
prevents people to espy message transactions, on the other hand, it might enable
other man-in-the-middle attacks such as the NSA Cottonmouth [34]. However,
because of the limited data gained, these man-in-the-middle attacks will be very in-
efficient, and a direct attack on the PC itself would be a more logical vector of entry.

The reason 512-bit RSA keys are no longer recommended is because, with known
public key and message transactions, it is possible to calculate the private key - in
that case making the token useless. Thus the security depends on the public key
kept hidden, perhaps on the organization’s server. If the organization using the
security token is unsure about the secrecy of the public key and its traversal to the
user’s computer, they are recommended to change the RSA module and increase
the key size to the recommended 2048 or 4096 bits. With a key of at least 2048 an
adversary would be prevented to break the security token for a good number of years
- regardless if the public key or message transactions are known [3]. Provided a key
of at least 2048-bits, the only known weakness of the token would be the private key
stored in the FPGA. However, even if theoretically possible, there would be needed
much specialized knowledge and hardware to extract a private key from the bit-files
in FLASH memory on an FPGA-device - not least the token itself.

To conclude, if a user requires high security it is possible to use this project. How-
ever, it is recommended to replace the RSA_512 module in order to allow keys of
2048-bits or longer. Nevertheless, with a USB link and a key length of at least 512
bits, a skilled adversary must have physical access to the token or access to the
server/end-user’s computer. Thus the two-factor authentication device has shifted
the weakest link to the stronger one.
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6.2 Hardware Programming and FPGA
There were some design choices made early that became the foundation to how the
code would be written, and one of these were the usage of generics. Generics are
values set at the declaration of a module which can be used to describe parts of
logic and sizes of vectors. Thus, the code became easier to manipulate even with
little or no understanding of the language itself. This not only made the reusage and
manipulation of the whole project structure simpler, but it also made the code easier
to understand, as the names chosen for the generic constants were of a descriptive
nature.

When starting this project the group had very rudimentary knowledge of VHDL, the
simulation and the Xilinx tools (i.e. QuestaSim and ISE). The lack of FPGA expe-
rience resulted in a big time investment just to familiarize with the tools and get the
tools working correctly, furthermore, there were also some suboptimal choices made
as a result. For example, we re-used a RAM module from a previous course, but a
simpler solution would have been to either uses the Xilinx Core Generator to make
one or simply define an array which would have similar functionality. Additionally,
the available parallelism was rarely utilized fully, and instead the code written was
often sequential - limiting the performance.

6.3 USB-connection
Once it became clear that the first implementation (version A) with only a keyboard
and LCD had inadequate security we needed a way to interface the FPGA with the
target computer. USB was the obvious choice as it is a very common port and easy
to use in C-programming. But at this stage in the project, there was very limited
time left for a complete from-scratch implementation of USB interaction. A search
for open source devices handling USB was conducted, but before this search was
concluded a Xilinx employee talked with us and helped out by supplying a guide
with material on USB [50, 59]. This helped out tremendously as we received clear
instructions on how the protocol was to be interfaced with as well as how the module
could be implemented. Without this help, there was probably not enough time for
us to figure out the USB functions by ourselves, let alone implement it.

Even though the token has a physical link to a computer by using USB, there
is very little an external attacker can do with it. The implemented communication
protocol only responds to the predefined commands described in Table 4.1. Further-
more, for the token to sign messages the PIN has to be physically put on the device
for each signing. Even if a user forgets his device on, connected to the computer
and put in the PIN, the built-in timeout of 5 seconds would prevent an attacker to
interface with it. The only conceivable way to be able to extract data from the token
is if an attacker has physical access to it, knows the PIN and uses the predefined
commands in a correct way - thus bypassing the token completely. However, based
on the group’s limited knowledge of embedded systems and security, a professional
opinion could be warranted - even though the USB interface was deemed secure by
the group.
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6.4 Sustainability
When designing hardware solutions for security, the conclusion to go with FPGA has
become clear to the project group. The reconfigurability of an FPGA provides a lot
of freedom when designing a product, as well as environmental benefits. An FPGA
is reprogrammable, enabling easy replacement of peripheral parts by reprogramming
the FPGA. Also, if unknown bugs are discovered, or an attacker has compromised
the security in any way (e.g. found the key-pair of a specific token), the FPGA can
be reconfigured with a new set of keys without having to replace the entire unit.

The product could have been implemented in a customized ASIC which would make
the product more power and size efficient, however, this would be a very expensive
endeavor [58]. Another solution would be to use a generic ASIC, e.g. a SOC such
as an Arduino. However, these solutions are most often proprietary and a separate
RSA module would be needed to efficiently perform the required RSA calculation.
Thus, an FPGA was used - enabling cheap and fast deployment of the two-factor
system.

Two-factor authentication is important today, where more and more critical sys-
tems and services are put online. Humans are bad at storing, creating and using
good unique passwords. Thus, critical applications such as banking require two-
factor authentication if the transaction is to be made online. Moreover, various
websites and cloud services have also begun to offer two-factor authentication - to
prevent the loss of monetary or sensitive material [36, 25]. Security is of utmost
importance in society and without it, our modern society would crumble [7].

6.5 Improvements
In both version A and B, the token is performing its task as it should, but there
are some improvements that could be made. For the device to become usable for its
designed purpose it has to be able to be shut off. In the prototype, the programming
file is not put on the on-chip FLASH memory, and as such the token program does
not remain on the device after power is cut.

Programming the FLASH memory to instantiate the code at startup should be
a very streamlined process using Xilinx ISE and Digilent Adept, but was not done
during this project.
As a consequence, the device can not be shut off without losing the entire program
and thus all functionality. Loading the bitstream file into the FLASH does come
with its own security flaws. Theoretically, the program could be extracted from the
FLASH, but this needs specialized knowledge and equipment. Also, with the current
implementation the PIN, storing the program in the FLASH would make it so that
the token’s lock function would be bypassed by a reset. With the program loaded on
FLASH, the counter should, in that case, be stored in non-volatile memory instead.
Furthermore, depending on how critically the security of the data protected by the
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token, it is possible to implement functionality on the device that overwrites the
data in the FLASH when too many incorrect tries have been made.
The result would be that the device would be not only unusable after three incorrect
tries but also makes probing of the FLASH futile after such a state is reached.

Since this was many of the group members second time programming in VHDL
there are much to be improved in both performance and structuring of the code.
Many parts do not utilize VHDL’s ability for parallelism to its fullest extent, and as
such, the code is slower than it might otherwise be. Later on in the project, efforts
were made to improve in these regards but with a lack of time for a full rewrite,
much of the code was kept as its initial version.

Another issue to consider is what if working quantum computers are made in the
future, breaking RSA. RSA is listed as a quantum unsafe cryptography system, be-
cause of its heavy reliance on the traditional difficulty in prime factorizing large
numbers. Thus, exploring the realm of quantum-safe cryptography systems is ap-
pealing - and there are such systems available today - but these cryptosystems are
not used as much as RSA and thus are less tested and available online. Quantum
safe cryptosystems, such as lattice-based ones, are most probably safe to use today
- however since they lack a lot of documentation and open source implementations,
more work would be required compared to RSA. Changing to a quantum-safe cryp-
tosystem is a recommended improvement if protecting sensitive systems for decades
to come.

Even though the code is completely open source and licensed under LGPL and
BSD, some elements, as well as the synthesis, were done with the proprietary Xilinx
solution. Most would argue using a proprietary FPGA suite is acceptable, however,
if the threat perceived is very advanced one should acknowledge possible backdoors.
Backdoors are easier to hide in proprietary solutions and thus should be avoided
if possible, especially since backdoors in FPGAs are not unheard of [20, 47]. On
the other hand, backdoors in an offline two-factor authentication token are for most
uses extremely unlikely to be a problem - even if present in the device. The reality
is that open-source FPGA solutions suitable for the project are rare, but depend-
ing on the threat model and investment, this improvement could be considered [33].

The programming language C was used for the PAM module since it is the na-
tive language for PAM. However, as recommended by ENISA, C should be avoided
if possible since it is more prone to result in software vulnerabilities. Unlike C,
programming languages like Go and Rust introduce type-safety, garbage collection,
and more security relevant features [14]. The written code is not long and has been
analyzed, nevertheless, an improvement could be to re-write all C code in a safer
language. Furthermore, PAM modules can be written in any language which is able
to call C functions, such as but not limited to Rust [11].

Compilation flags could be investigated further to harden against memory corrup-
tion attacks [54]. Unfortunately, there was not enough time to perform extensive
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research and testing of the different flags, which could potentially increase security.
Furthermore, before the token is used in critical applications it is also advisable
to perform more security analysis of the system (e.g. fuzzing and static analysis)
because of the group’s limited skillset in this area. Due to time constraints, fuzzing
the source code was not possible, and only the binary was examined, it is recom-
mended to fuzz the source code to ensure security flaws are even more improbable.
Additionally, further testing of the FPGA interface could be done by fuzzing - to
ensure no unwanted response can be triggered.

During development there were attempts to improve the security of version A while
not changing the user experience. However, the difficulty lies in the fact that the
ciphertext is the only thing to verify the user and it needs to be decryptable and
short. Regardless, a possible improvement could be to perform the RSA algoritm
multiple times with different keys - similar to the 3DES algoritm [26]. This would
not increase the ciphertext length, but it would increase the security we believe.
More specifically, it would presumably make it harder to calculate the keys from
message transactions alone - which is the biggest weakness in version A.

6.6 Follow Up
During the projects planning stage[24] it was underestimated how much time the
parts of the project would take. The idea was to complete certain functionalities ev-
ery two weeks, but this proved hard to accomplish. The first release was postponed
by a week because both the PAM and FPGA configuration were more difficult than
planned and thus the second release was also delayed. Additionally, the different
marks should have been better defined in the planning stage. As we had three
marks, which only set out to improve the previous mark, it was impossible to know
how much time the improvements would take, as these were yet to be defined.

When version A’s basic functionality was completed, the security analysis showed
that while the solution worked and did what it was supposed to do, it had security
flaws. Therefore, instead of continuing work on the original idea, with a user being
the communication link, it was decided to use USB instead. With this switch, we
were able to increase the RSA key length to 512 bits, while re-using much existing
code. However, this version also required more space on the FPGA and the Nexys-3
could no longer be used, as it proved too small. Instead, we used the Atlys devel-
opment board. The change was seamless, as the only needed changes was a setting
in Xilinx ISE from using the old FPGA to the new one, as well as generate the new
specific pin-outs for the Atlys.

Even though it might seem obvious, one should not reinvent the wheel, so to speak.
At the start of this project everyone started to think of ways to solve the problems
from the ground up, both on the software and hardware side. When we noticed that
we didn’t have enough time to be so ambitious we started to search for and use open
source modules and solutions. Especially were the cryptography done by external
open source libraries, partly because it is good from a security perspective - i.e. to
use recognized and well-tested code.
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We had two designated group roles which were kept throughout the duration of
the project (meeting convener and logbook writer), but the third role (git responsi-
ble) was dropped because of the lack of relevancy. In addition, our decision to use
a very flat hierarchy structure was mostly a success. There were moments when
there was uncertainty who was supposed to do what, but generally it worked fine.
It will probably not work in projects with a larger work group or longer time spans,
but in our case this provided sufficient structure as well as a friendly environment -
motivating each member to contribute with their respective skills.
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7 Conclusion
The aim of the project was (as mentioned in Section 1.1) to discover if the two-
factor token could be made secure enough by the use of RSA cryptography. The
conclusion, based on the aim, is that a two-factor system can be made quite secure.
However, no computer system is foolproof but with this two-factor authentication
system, a possible point of entry (i.e authentication) is patched. RSA cryptography
worked well and showed to be well suited for the application, however, only 512-bit
keys are supported by the system created - thus weakening the security in some
respects. Furthermore, the RSA cryptosystem is likely to be broken decennium in
the future with the dawn of quantum computing, thus, making a poor choice against
a very advanced adversary.

The challenge-response system created, regardless of its flaws, quickly enables two-
factor authentication on Linux for any PAM-aware application - such as user login
or SSH. The current prototype system is not user-friendly but would be if deployed
in a more suitable FPGA. For a skilled adversary to bypass the two-factor system
it is needed to have extended access to the token or the device used to log in, ergo,
the token serves its purpose.

The most reasonable attack against the whole system would be to social engineer
the user to execute the malware, thus getting access to their public key, data and
transactions. Thus the private key can be computed in theory, however, this data
exfiltration and malware execution are very serious in of itself - regardless of any
two-factor system.

The first implementation that was created, without USB (Version A), is not rec-
ommended for serious use - even though it provides some resilience. The main flaw
is that the key length is restricted to ensure user-friendliness since it is needed to be
manually entered. A larger key length would indeed result in a more secure system,
but a much larger key is impossible when the user is forced to enter it into the to-
ken. Other cryptography schemes, which does not generate as long outputs, would
work as a replacement for the RSA scheme if one wishes to have a human as the
communication channel. This could prevent the currently devastating man-in-the-
middle attack, however, keys would still need to be secret and finding a quantum-safe
scheme could be hard.

The second implementation (Version B) used USB to communicate and could, there-
fore, enable arbitrarily long keys. Systems implemented with an electronic link
between the devices, such as these, can be very powerful security solutions. By
replacing the human as the communicator between the devices, with either one-
or two-way serial communication, the RSA cryptography will prove to be secure
until quantum computing is available - assuming a long enough key is used. The
two-factor authentication token with USB created in the project uses 512-bit RSA,
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which is sufficient as long as the private key and public key are kept secret.

The security token has been implemented in a way that should make the source
code easily understandable and adjustable for others. A couple of downsides and
alternatives has been taken into account in the Discussion chapter. Furthermore,
anyone with interest is free to modify the project according to these alternatives
or any idea of their own. The intention of leaving this project as an open source
software is, after all, to make the security token better and more secure.
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A Appendix: ISE Result
A.1 ISE FPGA Reports, Keyboard Version
A.1.1 Device Utilization
Device Utilization Summary:

Slice Logic Utilization:
Number of Slice Registers: 756 out of 18,224 4%

Number used as Flip Flops: 756
Number used as Latches: 0
Number used as Latch-thrus: 0
Number used as AND/OR logics: 0

Number of Slice LUTs: 1,131 out of 9,112 12%
Number used as logic: 1,112 out of 9,112 12%

Number using O6 output only: 733
Number using O5 output only: 130
Number using O5 and O6: 249
Number used as ROM: 0

Number used as Memory: 6 out of 2,176 1%
Number used as Dual Port RAM: 0
Number used as Single Port RAM: 6

Number using O6 output only: 3
Number using O5 output only: 1
Number using O5 and O6: 2

Number used as Shift Register: 0
Number used exclusively as route-thrus: 13

Number with same-slice register load: 11
Number with same-slice carry load: 2
Number with other load: 0

Slice Logic Distribution:
Number of occupied Slices: 348 out of 2,278 15%
Number of MUXCYs used: 336 out of 4,556 7%
Number of LUT Flip Flop pairs used: 1,201

Number with an unused Flip Flop: 547 out of 1,201 45%
Number with an unused LUT: 70 out of 1,201 5%
Number of fully used LUT-FF pairs: 584 out of 1,201 48%
Number of slice register sites lost

to control set restrictions: 0 out of 18,224 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.
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A. Appendix: ISE Result

The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

IO Utilization:
Number of bonded IOBs: 20 out of 232 8%

Number of LOCed IOBs: 20 out of 20 100%

Specific Feature Utilization:
Number of RAMB16BWERs: 0 out of 32 0%
Number of RAMB8BWERs: 0 out of 64 0%
Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0%
Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0%
Number of BUFG/BUFGMUXs: 1 out of 16 6%

Number used as BUFGs: 1
Number used as BUFGMUX: 0

Number of DCM/DCM_CLKGENs: 0 out of 4 0%
Number of ILOGIC2/ISERDES2s: 0 out of 248 0%
Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 248 0%
Number of OLOGIC2/OSERDES2s: 0 out of 248 0%
Number of BSCANs: 0 out of 4 0%
Number of BUFHs: 0 out of 128 0%
Number of BUFPLLs: 0 out of 8 0%
Number of BUFPLL_MCBs: 0 out of 4 0%
Number of DSP48A1s: 0 out of 32 0%
Number of ICAPs: 0 out of 1 0%
Number of MCBs: 0 out of 2 0%
Number of PCILOGICSEs: 0 out of 2 0%
Number of PLL_ADVs: 0 out of 2 0%
Number of PMVs: 0 out of 1 0%
Number of STARTUPs: 0 out of 1 0%
Number of SUSPEND_SYNCs: 0 out of 1 0%
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A.1.2 Device Clock Timing
Data Sheet report:
-----------------
All values displayed in nanoseconds (ns)

Clock to Setup on destination clock clk
---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clk | 7.439| | | |
---------------+---------+---------+---------+---------+

Timing summary:
---------------

Timing errors: 0 Score: 0 (Setup/Max: 0, Hold: 0)

Constraints cover 4326163 paths, 0 nets, and 5297 connections

Design statistics:
Minimum period: 7.439ns{1} (Maximum frequency: 134.427MHz)

A.1.3 Device Power Summary
2. Summary
2.1. On-Chip Power Summary
-----------------------------------------------------------------------------
| On-Chip Power Summary |
-----------------------------------------------------------------------------
| On-Chip | Power (mW) | Used | Available | Utilization (%) |
-----------------------------------------------------------------------------
| Clocks | 0.50 | 2 | --- | --- |
| Logic | 0.00 | 1131 | 9112 | 12 |
| Signals | 0.00 | 1486 | --- | --- |
| IOs | 0.00 | 20 | 232 | 9 |
| Static Power | 21.51 | | | |
| Total | 22.02 | | | |
-----------------------------------------------------------------------------
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A.2 ISE FPGA Reports, USB Version
A.2.1 Device Utilization
Device Utilization Summary:
Slice Logic Utilization:

Number of Slice Registers: 8,653 out of 54,576 15%
Number used as Flip Flops: 8,205
Number used as Latches: 0
Number used as Latch-thrus: 0
Number used as AND/OR logics: 448

Number of Slice LUTs: 9,016 out of 27,288 33%
Number used as logic: 8,077 out of 27,288 29%

Number using O6 output only: 6,323
Number using O5 output only: 530
Number using O5 and O6: 1,224
Number used as ROM: 0

Number used as Memory: 648 out of 6,408 10%
Number used as Dual Port RAM: 0
Number used as Single Port RAM: 8

Number using O6 output only: 8
Number using O5 output only: 0
Number using O5 and O6: 0

Number used as Shift Register: 640
Number using O6 output only: 0
Number using O5 output only: 0
Number using O5 and O6: 640

Number used exclusively as route-thrus: 291
Number with same-slice register load: 255
Number with same-slice carry load: 36
Number with other load: 0

Slice Logic Distribution:
Number of occupied Slices: 3,034 out of 6,822 44%
Number of MUXCYs used: 1,772 out of 13,644 12%
Number of LUT Flip Flop pairs used: 10,165

Number with an unused Flip Flop: 2,385 out of 10,165 23%
Number with an unused LUT: 1,149 out of 10,165 11%
Number of fully used LUT-FF pairs: 6,631 out of 10,165 65%
Number of slice register sites lost

to control set restrictions: 0 out of 54,576 0%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.
The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

IV



A. Appendix: ISE Result

IO Utilization:
Number of bonded IOBs: 23 out of 218 10%

Number of LOCed IOBs: 23 out of 23 100%

Specific Feature Utilization:
Number of RAMB16BWERs: 0 out of 116 0%
Number of RAMB8BWERs: 10 out of 232 4%
Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0%
Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0%
Number of BUFG/BUFGMUXs: 1 out of 16 6%

Number used as BUFGs: 1
Number used as BUFGMUX: 0

Number of DCM/DCM_CLKGENs: 0 out of 8 0%
Number of ILOGIC2/ISERDES2s: 0 out of 376 0%
Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 376 0%
Number of OLOGIC2/OSERDES2s: 0 out of 376 0%
Number of BSCANs: 0 out of 4 0%
Number of BUFHs: 0 out of 256 0%
Number of BUFPLLs: 0 out of 8 0%
Number of BUFPLL_MCBs: 0 out of 4 0%
Number of DSP48A1s: 50 out of 58 86%
Number of ICAPs: 0 out of 1 0%
Number of MCBs: 0 out of 2 0%
Number of PCILOGICSEs: 0 out of 2 0%
Number of PLL_ADVs: 0 out of 4 0%
Number of PMVs: 0 out of 1 0%
Number of STARTUPs: 0 out of 1 0%
Number of SUSPEND_SYNCs: 0 out of 1 0%
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A.2.2 Device Clock Timing
Clock to Setup on destination clock clk
---------------+---------+---------+---------+---------+

| Src:Rise| Src:Fall| Src:Rise| Src:Fall|
Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|
---------------+---------+---------+---------+---------+
clk | 10.645| | | |
---------------+---------+---------+---------+---------+

Timing summary:
---------------

Timing errors: 32 Score: 11137 (Setup/Max: 11137, Hold: 0)

Constraints cover 405776 paths, 0 nets, and 45275 connections

Design statistics:
Minimum period: 10.645ns{1} (Maximum frequency: 93.941MHz)

A.2.3 Device Power Summary
-----------------------------------------------------------------------------
| On-Chip Power Summary |
-----------------------------------------------------------------------------
| On-Chip | Power (mW) | Used | Available | Utilization (%) |
-----------------------------------------------------------------------------
| Clocks | 67.11 | 2 | --- | --- |
| Logic | 8.74 | 9016 | 27288 | 33 |
| Signals | 19.62 | 14193 | --- | --- |
| IOs | 0.85 | 23 | 218 | 11 |
| BlockRAM/FIFO | 5.18 | --- | --- | --- |
| 8K BlockRAM | 5.18 | 10 | 232 | 4 |
| 16K BlockRAM | 0.00 | 0 | 116 | 0 |
| DSPs | 3.31 | 50 | 58 | 86 |
| Static Power | 39.75 | | | |
| Total | 144.57 | | | |
-----------------------------------------------------------------------------
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B Appendix: Required
Memory Cores

Needed FIFOs and BRAMs:

Type: Single Port BRAM
Name: Mem_b

Signals:

CLKA : in STD_LOGIC;
ADDRA : in STD_LOGIC_VECTOR (5 downto 0);
DINA : in STD_LOGIC_VECTOR(15 downto 0);
WEA : in STD_LOGIC_VECTOR(0 downto 0);
DOUTA : out STD_LOGIC_VECTOR(15 downto 0);

Internal sizes:
Write Width: 16
Write Depth: 40

Operating Mode: Write First
Always Enabled

Type: Standard FIFO
Name: FIFO_TXD
Signals:

CLK : in STD_LOGIC;
RST : in STD_LOGIC;
WR_EN : in STD_LOGIC;
RD_EN : in STD_LOGIC;
FULL : out STD_LOGIC;
EMPTY : out STD_LOGIC;
DIN : in STD_LOGIC_VECTOR(7 downto 0);
DOUT : out STD_LOGIC_VECTOR(7 downto 0);

Internal sizes:
Write width: 8
Write Depth: 128
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Type: Standard FIFO
Name: fifo_256_feedback
Signals:

CLK : in STD_LOGIC;
RST : in STD_LOGIC;
WR_EN : in STD_LOGIC;
RD_EN : in STD_LOGIC;
FULL : out STD_LOGIC;
EMPTY : out STD_LOGIC;
DIN : in STD_LOGIC_VECTOR(48 downto 0);
DOUT : out STD_LOGIC_VECTOR(48 downto 0);

Internal sizes:
Write width: 49
Write Depth: 32

Type: Standard FIFO
Name: fifo_512_bram
Signals:

CLK : in STD_LOGIC;
RST : in STD_LOGIC;
WR_EN : in STD_LOGIC;
RD_EN : in STD_LOGIC;
FULL : out STD_LOGIC;
EMPTY : out STD_LOGIC;
DIN : in STD_LOGIC_VECTOR(15 downto 0);
DOUT : out STD_LOGIC_VECTOR(15 downto 0);

Internal sizes:
Write width: 16
Write Depth: 64

Type: Standard FIFO
Name: res_out_fifo
Signals:

CLK : in STD_LOGIC;
RST : in STD_LOGIC;
WR_EN : in STD_LOGIC;
RD_EN : in STD_LOGIC;
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FULL : out STD_LOGIC;
EMPTY : out STD_LOGIC;
DIN : in STD_LOGIC_VECTOR(31 downto 0);
DOUT : out STD_LOGIC_VECTOR(31 downto 0);

Internal sizes:
Write width: 32
Write Depth: 64
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C Appendix: Source Code
All code is licensed under BSD-3, and can be found at:
https://github.com/GustaMagik/RSA_Security_Token

X
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