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Abstract—Anticipating the effects of changes/modifications to
source code, is a difficult if not an impossible process, unless
the right tools or methods are applied. One way of handling
change impact analysis is through test case selection which can
cut down the testing time, as it only selects and runs the tests
that have been affected by a change. In order to realize this, the
method of traceability is applied on source code and automatically
generated unit tests. This approach aims at facilitating software
maintenance by cutting down the time and the effort required to
re-validate changes. This paper investigates the impact of trace-
ability with the intention of evaluating the effects on debugging
time and mutation kill score. By conducting an experiment with
8 subjects, the results showed that no major statistical differences
were found, which is likely to change with a larger sample size.
Nonetheless, to generalize the impact of traceability between code
and automated unit tests, further research is required, however
the paper provides insights and deeper understanding of the
problem as well a guideline for future studies.

I. INTRODUCTION

Traceability refers to the capability of relating data kept
within artifacts, such as documentation, UML diagrams, source
code etc. and provides a way to analyze this connection. In
order to realize traceability, navigable links have to be created
between the artifacts. The concept of traceability consists of
trace artifacts, the traceable components, and trace links, the
association between two or more artifacts. Traceability links
can be visualized to provide a deeper understanding of the
system under development in relation to its corresponding
development activities (testing, implementation, maintenance,
etc.) and artifacts (requirements, tests, source-code) [1]. In
turn, software testing is an essential part of the development
process, but can be quite costly and tedious. Unit testing tests
a small part of the system such as a method or a class and
this process can be automated or manual [2]. Many different
tools exist for automating unit tests and Evosuite is popular
in the test research community, being widely compered with
different generation tools 1 which is a search based software
testing tool.

Test-to-code traceability plays a significant role in reducing
time consumption of maintenance work and software evolution

1https://www.evosuite.org

[3], and can, therefore, be valuable for an organization with
a complex code base, for instance a large object-oriented
programming code in Java, where a change in one class affects
other classes. By creating traces between these objects and
their tests, it can save the developer time by scaling down the
amount of regression tests they have to run during development
time. It also plays a significantly important role in reducing
time consumption of maintenance work [4]. Here, we propose
an approach where trace links will be created between the
source code and automatically generated unit tests in order
to mitigate the unit testing effort. Our approach proposes a
solution to this problem by using traceability to create trace
links when a modified part of the code triggers a fault in
another part of the system.

Software maintenance is a software artifact that endures
a change to the code and related documentation as a result
of a problem or when a new feature is introduced or when
something needs to be upgraded. Maintenance work is also
necessary to enhance quality attributes such as performance or
when the software system has to settle in to a new or changed
environment [5]. Some approaches to maintain the source code
is solved by using regression tests, i.e. tests are generated and
executed and once changes have been made to the source code,
the tests are re-executed to see if the changes have broken any
existing parts of the code [6]. The constant testing, along with
the increasing size of the test suite, increases testing costs
significantly at the unit level and deviates effort in meeting
sprint deadlines and/or demonstrations.

According to Weinberg [7], one of the biggest problems
in maintenance is “unexpected linkages”. This refers to how a
change in one part of the program can have an effect on other
parts of the system.

To explore the impact of traceability between source code
and automated unit tests, an empirical study is conducted in
order to evaluate our hypothesis that there is a difference
in (i) debugging time, (ii) mutation kill score and (iii) the
average amount debug time/per mutant, when traceability is
implemented.



A. Problem Statement and Proposed Solution

The research problem that is being investigated in this
paper is to find out what impact traceability has on test case
selection and error detection. We use the example below to
illustrate how our approach can be used during a development
activity.

Software projects usually consist of dozens of classes.
Assuming a developer is working with an arbitrary class A,
he or she may be unaware that changes in A can affect other
classes in the code, e.g. B. The traces would suggest that the
developer should run regression tests for all of the involved
classes [8], namely A, B. This allows the developer to see
if their added changes have affected the involved classes but
also saves them time since they don’t have to run all of
the test suites available. Instead, tester runs only the ones
that have trace-links in between them, view Figure 1. The
benefit of running a smaller amount of regression tests during
development, is that it saves time and the developer can get
quicker feedback of what their changes are affecting. Although
running all of the tests might be more reliable, it would be
infeasible in practice due to the time constraint.

Fig. 1: Trace creation exmple: arrow represents inheritance,
dotted line represents the trace-links created with Capra

Automated tracing refers to implementing traceability with
automated techniques [1]. The traceability tool Capra 2 can
currently create trace-links between different kinds of artifacts
manually, but have yet to reach automatic execution, which
we implement in our approach. This paper intends to evaluate
the impact of automated tracing between source code and
automated unit tests.

In our approach, the initial setup consists of an open source
project, from which the automated unit tests will be generated
through Evosuite 3[9], view Figure 3. Initially there are only
trace links between each class and their corresponding test
class. Then, these trace links are generated automatically by
Capra, whenever we use Evosuite to automatically generate
unit tests both before and after the source code is refactored
and tested. Ultimately, faults are detected as a result of
automatically executing tests of modified classes (see Figure
2), view Figure 2.

Here is a concrete scenario, during development, a devel-
oper refactors a single class, lets call it class A. In addition,
there are already some trace links generated previously by
Capra, as well as a set of unit tests generated by Evosuite. At
this point, keep in mind that the tester has a package of classes
and a package of unit tests, testing those classes. In summary,

2https://projects.eclipse.org/projects/modeling.capra
3https://www.evosuite.org

a one-to-one trace (between class and tests), in Figure 2. Once
this is done, they will run a regression test on the test class
that has the trace link with the current class, which in this
case would be test TestA. If the test reveals any failures, the
developer will have to correct them until all of the methods
in TestA pass. Once the developer is finished with class A,
i.e he or she get a green bar from the unit tests, they will
run regression tests for all the tests that are available in the
project. Once the tests are done executing, it results in a report
listing all the passing and failing tests. If the current class A
has triggered faults in other classes (e.g the modification in
A created a fault as a side effect), lets say class B, a trace
link will be created between Class A and class B’s test, i.e
Test B, view Figure 1. Once the traces have been created the
developer can view them in a tracability diagram.

Fig. 2: Trace creation example.

Before running all the regression tests, a developer might
be unaware of the dependencies between the classes(e.g the
inheritance between A and B in this case). He or she can use
code information to infer relationship between classes, but even
so, for a big project with dozens or hundreds of classes, those
relationships become overwhelming and hard to keep track
of. Now, with the help of the trace-links between classes and
tests, the developer has the ability to view which trace-links
are available in a diagram provided by Capra. Then they will
execute the regression tests that are displayed in the diagram
(in our example, both TestA and TestB) to make the necessary
corrections to make the tests pass. The process repeats such
that once all tests linked to the classes pass, the developer will
run the regression tests again, such that new traces (possible a
consequences of modifying B) may be reveled (or not).

In conclusion, traces are automatically created based on
faults detected from running regression tests. Therefore, to
update the traces in a simultaneous flow, the technique of
integration and regression testing is applied, which is widely
practiced in automated unit testing to ensure acceptance and
satisfaction for a given piece of code [10].

To narrow down the scope and minimize the complexity of
the problem, regression testing will begin with the generated
tests that are initially passing (resolved). The trace links will
be updated once the code has been changed and then the
regression tests will be run to provide input for the trace links.
The input for the trace-links is the failing tests that have been
triggered by a single class.

To solve this problem we will create automated tests with
Evosuite, which is search-based software testing (SBST) tool
[11]. We choose Evosuite since it is a well established tool in



Fig. 3: Process overview

academia, which has reached a good maturity level and since
it supports Java, which is a programming language familiar to
us. In order to evaluate our approach, we will generate tests
from an open source Bank application project and to create all
of the trace links we use Capra.

B. Contributions of the paper

The scientific contribution is to fill the gap in the research
field of automated unit testing and traceability. The aim is to
investigate the impact of applying the technique of traceability
between source code and automated unit tests.

The technical contribution, is a methodological guideline
for using test case selection through traceability on automated
unit tests. Additionally, we are looking to extend Capra’s ex-
isting functionality by developing a feature that automatically
creates trace links between source code and automated unit
tests.

This thesis provides contribution towards the following
development activities:

Change impact analysis: By creating traces between the
code base and the automated unit tests, a visualization aspect
is provided. This is helpful in identifying missing elements and
helps the developer in resolving maintenance and development
problems more efficiently [12]. It assists the developer in
finding which classes to refactor next and gives a better
understanding in how changes affect other parts of the system
and can provide better estimation of development, testing and
maintenance effort as well as time to completion.

Test case selection: The more regression tests that are
run, the greater the chance is of having strong re-validation

results, however, it is a tedious process which requires time
and resources, that might not be feasible in practice [13].
Narrowing down the amount of regression tests that need to
be run helps the developers save time as limited test results
needs to be analysed and debugged each time. Since all of
the regression tests are run during the night, quality won’t be
compromised to a great extent.

C. Research Questions

The following research questions will be investigated:

RQ 1 What effect does traceability have on test case selection?
RQ 1.1 How does traceability affect the developer’s time to
fix defects?

RQ 2 How is regression testing affected by traceability
between source code and unit tests?
RQ 2.1 How does traceability influence the number of faults
detected and fixed?

The rest of the paper is structured according to the fol-
lowing: Section II covers the background, followed by related
work in section III. The research methodology, concerning
the implementation of the Capra extension as well all the
elements of the empirical study and survey structure can be
found in section IV. The results and analysis of the descriptive
statistics along with the hypothesis testing is uncovered section
V. The discussion section VI goes more in depth regarding the
research questions. Finally the validity threats can be found in
section VII followed conclusion and future work in sections
VIII and XI.



II. LITERATURE REVIEW

A. Background

1) Traceability: Traceability aims at creating navigable
links between between data that is contained within some ar-
tifact, that otherwise wouldn’t have a association. Traceability
can facilitate various kinds of analysis used in the software
engineering field and on top of that provides a visualization
standpoint which provides a better insight of the system under
development [1]. Any traceable unit of data is referred as
trace artifacts which can be applied to UML class diagram,
single class or a particular class operations. Traceability links
between the artifacts helps in mapping high-level documents
(abstracts concepts) to low-level artifacts [4]. The application
of traceability between developed code and test classes is done
to facilitate the process of testing with reduced time and cost
consumption and better quality assurance.

2) Automated unit testing: Test and verification is an
essential part of software development since it is fundamental
that the code is working as anticipated and does not contain
defects. Unit testing is procedure in which individual parts,
such as functions or classes, of a program are independently
tested to find faults. Unit tests can be manually written or
automatically generated. The challenges of automated unit
testing is generating significant input for the test cases and
to establish if the outcome of the tests is passing or failing,
which is called an oracle [2].

3) Evosuite: Evosuite is a search-based software testing
(SBST) tool that provides automatic generation of test suites
for Java classes by using a generic algorithm (a population of
possible solutions is progressed using procedures inspired by
natural evolution). The algorithm continuously generates test
cases until it meets a solution or stopping state that, in turn, is
related to a coverage threshold (e.g branch coverage, statement
coverage, condition coverage) [11]. Evosuite generates test
suites to satisfy a coverage criterion [9].

4) Regression testing: Regression testing is carried out in
order to validate that a changes made in the software program
has not caused any defects in the existing code. New test cases
are conducted for testing new features and old tests are rerun
to see if the program gives any exceptions, therefore with
the evolution of program, the expense of regression testing
grows, therefore, different methods have been introduced for
test selection e.g modification based test selection , selection
and prioritization based test selection etc. [13].

5) Software Maintenance: Software maintenance is defined
as the process of changes made to a software product after
delivery to the client, in order to adjust/improve the system
according to new user requirements, faults detected in need
of correction or to adapt the software to a new or changing
environment [5] [14]. Keeping the software up to date and
stable is also considered as maintenance.

Corrective maintenance is referred to modifications made
to amend faults in the software[14]. This includes validation,
which is the activity of confirming that changes made to the
software works properly and that the changes have not broken
existing parts. Object oriented programs (OOP) were believed
to be the solution to maintenance problems, as it is easier to
make changes to them, but OOP also introduces a set of new

problems due to inheritance and other relationships between
classes in the code. Changes in one part of the program
can cause problems in other parts of the software which
always needs to be taken into consideration when making
modifications[5].

6) Maintenance of automated unit tests: Maintaining auto-
mated unit testing, such as JUnit test cases, can be an endless
processes, especially in bigger companies with a large code
base. Regression tests usually helps to find a large percentage
of the defects of a new release. Updating or removing each
failing test can consume a lot time from the developers
which could be spent on developing new functionality. In an
experiment by Robinson et al. [6], Randoop’s test generation
technique was extended to create more effective and maintain-
able regression tests for real software programs by comparing
the Randoop generated tests with manually written tests (by
humans) in terms of coverage and mutation kill score (amount
of mutations4 detected by a test suite).

By generating a test suite with string literals, removing
lexically redundant tests and disabling observer functions, they
found that the automatically generated regression test suite
covered more than half the code and was able to detect more
defects. To evaluate maintenance of the test suites, they deter-
mined the effort required to maintain them as well as analyzing
the impact removing redundant tests on maintainability. The
study found that the new implementation provided test suites
with higher coverage and mutation kills score and the suites
were easily understandable and maintainable for the developers
[6]. We choose Evosuite over Randoop, because it is more
efficient in terms of coverage and finding faults [9].

III. RELATED WORK

Test case prioritization can be used in order to schedule the
execution of the regression tests to re-validate the functionality
of the tests with the highest priority to stay within the time and
budget constraints [13]. Regression testing can otherwise be a
tedious and time consuming process and is also very costly, but
by selecting the a suitable part of the test suite, expenses and
time can be cut down significantly. The drawbacks is that the
fault detection abilities can be reduced. There are different test
case prioritizing techniques such as scheduling the tests in the
order that reaches the most coverage in a short time, or testing
first the frequently used features. The results of an experiment
Rothermel et al. [15] showed that prioritizing test cases can
increase the frequency of fault detection. The paper mentions
many cases of prioritization but does not discuss selecting test
suites based on dependencies between classes.

Regression testing using slicing is a selective method of
regression testing by using program slicing [16]. Slicing is all
the statements and conditionals that can have an effect on the
value of a variable at a certain point. This is called a definition-
use pair, such that definition is the location (i.e statement)
where the variable is assigned and use is all the sub-paths
where the variable is being used. The def-use pairs that have
been affected by a change are used to generate and execute
tests. This technique reduce costs on maintaining test suites as

4Mutant: To evaluate test techniques, the code is systematically modified
to include a fault, named mutant. The goal of the evaluation is to compare
which techniques reveals failures by triggering the mutants.



it cuts down the amount of test suites that need to be rerun
whilst still achieving high coverage [16]. The paper has an
effective solution to test case selection, but does not have the
visual aspect that has been proven to be helpful for developers
as it makes them understand connections between different
artifacts better [4].

Automated unit tests uncover faults and report on the
coverage, but the debugging part is still a manual procedure
which can be quite intensive. In an experiment, Ceccato et
al. [17], the variances of automated unit tests and manually
written test was investigated in regards to debugging in terms
of the ability of the developers to accurately debug the code.
The study compared manual tests with automatically generated
tests in Evosuite and Randoop (random test generation tool).
The findings showed that complexity of the actual test cases
has a bigger affect on effectiveness and efficiency of debugging
rather than the meaningfulness identifiers that can be found
in automatically generated test cases. These identifiers are
usually easy to comprehend. The automated test cases were
more effective than the manual ones, for subjects with inter-
mediate experience while less experienced subjects felt like
understanding the test code is more important to be able to
debug. The general results showed that automatically generated
test cases has a minor factor on the difficulty of debugging
while other factors such as experience, ability and complexity
of the test cases plays a much bigger part [17]. Although there
was no big difference in the difficulty of debugging, having a
traceability aspect could increase the efficiency of debugging
and also provide defects that are more related to the developers
current work.

The process of generating traces between test-and-code
facilitates the process of test driven development and software
evolution. It keeps the unit test cases synchronized with the
source code that might continuously change throughout the
development process. Each test case may be linked to several
methods under test and vice-versa, therefore, the heuristic
for their detection is very beneficial during development and
maintenance. The study by Ghafari et.al [3], examines the
relationship between source code and test code on a method
level by identifying focal methods in unit test cases (the meth-
ods accountable changing the system status). Our research,
however, provides visibility of the trace-links through Capra,
unlike this study. Although the study is more low level, since
it operates on methods, the visualization aspect and constant
feedback distinguishes our approach.

IV. RESEARCH METHODOLOGY

This sections describes the extension of the traceability tool
Capra that has been developed, and all the elements and factors
involved in the empirical study.

A. Development

To introduce the technique of traceability in our study, we
are using a software called ”Capra”, which helps to create trace
links among different artifacts such as documentation, source
code, tests etc. The tool currently requires manual creation
of the links. We have developed an addition to the tool that
can make trace links automatically between the source code
and the tests. The functionality we have implemented provide

two features. It creates a link between each class and their
corresponding test, view Figure 4 and it also creates a link
between each failing test and the class that causes it, Figure 5
.

Fig. 4: Capra: Single trace link between class and test

Fig. 5: Capra: Trace between class and failing tests

Before we started working on creating the trace-links we
had to generate the tests with Evosuite. We used Maven to
compile and build the tests and Evosuite provides different
features for test generation by allowing you to choose if you
want to generate tests for a class or package for example.
Therefore we began by implementing a class that generates
tests for all of the java classes in a package. Evosuite generates
two types of test files, ”ClassName”.scaffolding, which makes
sure that the tests are executed in the same consistent state
(acts as a dependency of sorts) and the ”ClassName”.ESTest,
which contains the actual test cases which can be executed
with JUnit.

Since Capra has a plugin for Eclipse IDE, we extended the
functionality by creating an plugin project. This required us
to use Eclipse Java Development Tools (jdt) 5, which supports
development of java applications and plugin development. We
also used some additional dependencies such as Eclipse core,
which provides some basic platform infrastructure and Eclipse
UI for the interaction with the Eclipse Platform User Interface.
To create the initial traces, which are between each class and
their test, we matched them by using their names which are
equal. First we had to extract all of the files and place them into
lists. Then we were able to compare the lists by finding where
the file names are the same. When Evosuite generates tests,
they are provided with the same name as their corresponding
java file.

For the second part of the implementation is where the

5http://www.eclipse.org/jdt/



trace links are created between the class under modifica-
tion/refactoring and the unit tests effected (failed) because of
the changes made to the class. To implement this we created
a file where the ”developer”/user writes down the class that
they are currently working on/refactoring. The file is read and
added to a list A. Then the regression tests are ran on all of
the unit tests in a package. The tests that fail are added to the
same list A, and then the trace links are creating by iterating
through the elements of the list. This results in traces that look
like Figure 5. As can be seen from the figure, there is a double
trace between Account and Account ESTest, this is because
each class is initially traced with its corresponding test. The
second trace signifies that it the test has failed.

In our implementation we are assuming that no new classes
are added to the project. The reason being that we want to run
regression testing, and if a new class is added, a test needs to be
generated for that class with Evosuite. The generation assumes
that the class is correct which means that all tests passed for
first version of the code,thus creating a baseline test suite. So
running the newly generated test would not result in a failure
even if the class has a defect. This is a function of Evosuite,
but is noted here as a limitation of the study.

B. Empirical Study

The scope is very limited due to time and resource
constraints and the study does not aim at generalization at
this stage, rather to provide insights and familiarity for later
investigation of test-to-code traceability. Nonetheless, we have
been careful to provide controllable execution, however the
scope was too limited to perform an actual experiment.

The experimental process, according to Wohlin et.al.[18],
abides by the following stages: (i) Scoping, (ii) Planning, (iii)
Operation (iv) Analysis , (v) Packaging. In turn, Operation
is divided into two distinct parts, namely Instrumentation and
Execution, where the former is the process of deploying tools
and apparatus used in the experiments, while the latter is the
actual execution of the experiment.

C. Evaluation

To address the research questions we conducted an empir-
ical study. We used an open source project as the unit, which
was a simple ”BankSystem” project written in Java. A total of
8 subjects from the Software Engineering and Management
program participated. The goal was to determine how test
case selection affects error detection time and mutation kill
score. To observe the behaviour of the subjects, the computer
screens was recorded and monitored during each participant’s
execution. The time was calculated for how long it takes for the
subjects to find and kill the seeded faults (i.e mutants) added
in the source code. Based on the collected data we conducted
hypothesis testing and statistical analysis. We have taken into
consideration that the participants might have different levels
of skills and experience and this will be regarded as blocked
factors, i.e are not of interest in the results.

D. Scoping

The foundation of the study is the following:

Analyze the debugging supported by traceability,
for the purpose of exploring benefits and drawbacks,

with respect to their efficiency and effectiveness,
from the point of view of the developer,
in the context of continuous testing

E. Planning and Operation

The following variables have been identified for our study:

• Independent variables: Traceability, which has two
levels: applied and not applied.

• Controlled variable: Seeded faults are implemented to
simulate faults in the code to be able to make the
measurements on the dependent variables. The tests
will be automated in Evosuite and traceability links
are created with Capra through our implementation.

• Dependent variables: The dependent variables will
measure different aspects of the generated test suites
and the traceability in terms of (i) Mutation Kill Score,
(ii) Time spent on debugging.

To ensure controllability of the execution, seeded faults
were added to the source code to analyze the performance of
our approach. Fault Seeding or be-bugging is the process of
inserting artificial faults in the software. This is done to get the
artificial faults which are discovered through software testing
along with and real faults [19]. Faults were added in the super-
class, so that the faults would propagate down the hierarchy
in classes that were extended or inherited by it. By doing so,
it is possible to record how long it takes to debug those faults
and how many are detected.

The instruments consist of the following contents:

• A guide: stating what the subjects are going to do, how
to find the selected test suites through the traceability-
links, how to run the regression tests, how many
defects to find and how to refactor, view Appendix
A.

• The source code: each subject will be provided with
the source code that they will be refactored by the
subjects.

• Traceability-links: displayed in a traceability matrix or
as a visual diagram.

• A survey: that will be filled by the subjects after
execution is done”.

F. Hypothesis

Our informal hypothesis is that code that has traceability
applied with the unit tests yield different results in terms of
efficiency and effectiveness in debugging time and mutation
kill score as compared to source code where traceability is
not applied. Based on this statement it is possible to state a
formal hypothesis:

Hypothesis 1 (H1): Null hypothesis, H0 There is no
difference in efficiency (measured in debugging time) when
traceability applied (TA) as to when traceability is not applied
(TNA).



H0: Debug time(TA) = Debug time(TNA)
H1: Debug time(TA) 6= Debug time(TNA)
Measures needed: debugging time (minutes)

Hypothesis 2 (H2): Null hypothesis, H0 There is no
difference in effectiveness (measured in mutation kill score)
when traceability is applied (TA) as to when traceability is
not applied (TNA).

H0: Mutation kill score(TA) = Mutation kill score(TNA)
H1: Mutation kill score(TA) 6= Mutation kill score(TNA)
Measures needed: mutation kill score

Hypothesis 3 (H3): Null hypothesis, H0 There is no
difference in the average debugging time of a defect when
traceability is applied (TA) as to when traceability is not
applied (TNA).

H0: DebugTimePerMutant(TA) = DebugTimePerMutant(TNA)
H1: DebugTimePerMutant(TA) 6= DebugTimePerMutant(TNA)
Measures needed: debugging time and mutation kill score

G. Design

The subjects were randomly divided into two groups. Half
of them are provided with the traceability diagram which
displays the selected test suites identified with traceability.
These subjects only needed to run regression tests on the test
suites present in the diagram. However, the other half were not
provided with such a diagram. Instead they had to re-run all of
the regression tests followed by debugging. Nonetheless, both
groups had to do the same kind of operations i.e run regression
tests on the automatically generated unit tests and debug the
defects found. Seeded faults were added to the source code
before hand, so the code already contained the faults when
its provided to the subjects. Before the subjects started, they
were provided with a guide and then we took a few minutes
to further explain additional details about the procedure. After
completion, the subjects were asked to answer a survey in
order to collect the qualitative data.

H. Analysis and Packaging

The data obtained from the subjects is analyzed by applying
statistical methods using the tool RStudio 6. The data will be
analyzed for normality using Shapiro Wilk-test and graphically
through qq-plots. Depending on the how the data is distributed,
we will follow up by running a two sample test with either
t-test or Wilcoxcon test. The qualitative data acquired from the
surveys is used to draw further conclusions about the results.

I. Survey

To gather further insight we conducted a survey and to
do so we used an online tool called SurveyMonkey 7. A
combination of open-ended and closed questions were applied,
in which the latter was used for both subject groups (with

6https://www.rstudio.com/
7https://www.surveymonkey.com/

and without traceability) and the former was more specific
questions to each group about their experience in terms of
difficulty, advantages and disadvantages of each method.

1) Coding survey data: Since we included open ended
questions, we decided to code the data by going through it
and finding some common themes in the answers, that could
be made into categories. This was summarized into a table,
with three columns, (i) code, (ii) margin note and (iii) quote,
where the code is the category, the margin note specifies a
more direct relation to the quote, which is a quote pulled from
the survey data.

J. Data collection

In this study we have gathered both quantitative data from
the screen recordings we recorded during the empirical study,
and some from the surveys. We were also able to gather
qualitative data from the open questions in the survey.

1) Screen recordings: For both parts of the empirical study,
the screens were recorded. We later analyzed those recording to
get the number of mutants killed per total number of mutants,
and the total time it took to debug the faults detected, view
Table III and Table IV. This will in turn give an average
amount of time to find and debug one mutant.

2) Survey data: The questionnaire used a combination of
open an closed questions. The closed questions used a matrix
where the subject had to give a rate between 1 (strongly
disagree) and 5 (strongly agree). In the questionnaire, we
gathered information about how the participants experienced
the task they had been given in terms of understand ability
and attainability. Furthermore, it included questions about
the debugging process where the subject had to rate their
experience. Participants were asked question regarding the
understandability and usability of the tool, their experience
with traceability tool. For the participants without traceability
applied, we were interested in knowing how they experienced
the debugging process and what they found to be most difficult.
For instance, in Figure 6, the question would be ”To what
extent do you agree that it was difficult to debug?

Fig. 6: Survey data: Results of traceability applied

Fig. 7: Survey Data: Results without traceability applied



The data collected from the open questions of the ques-
tionnaire can be found in Table I and Table II. The evaluation
was done through coding, where the data is put into categories
and subcategories.

V. RESULTS & ANALYSIS

The data sets consist of the debug time and the mutation
kill score, and the average time per mutant, for the traceability
and non-traceability. Since the data samples are quite small, the
results might be affected, refer to Validity threats section VII.
The data collected from the screen recordings of the Mutant
kill score and Debug time can be found in Table III and IV.

A. Descriptive statistics

The descriptive statistics provides a general understanding
of the data in respect to what can be anticipated from the
hypothesis testing and what kind of problems might be present
due to outliers [18].

Traceability vs. Debug Time From Table V, it is pos-
sible to see that traceability applied (TA) seems to have a
significantly smaller average in debug time than traceability
not applied (TNA) by looking at the difference in means.

TA has a mean value of 39.75 with a standard deviation of
roughly 6.9. The standard deviation show the average extent
to which the data points branch of from the mean. For the
TNA the mean is 50 with a standard deviation of 5.9. Since
the data is bit skewed it is also of good practice to look at the
medians to get a more accurate value of the central tendency,
which are 40.5 for TA and 51.5 from TNA.

None of the variances is 0 which indicates that there is
in fact variance in the data values of the samples. To gain
better understanding of the data we used a boxplot, Figure
8. The boxplot demonstrates that the values of DebugTime
(TA) is more left skewed, meaning that the data points fall
lower down on the scale and DebugTime (TNA) is more right
skewed. By looking at the boxplot it is clear that the TA has
shorter debugging time and it is also possible to see that there
are no outliers in the data.

By looking at all of the above values, it is possible to
conclude that the samples are not equal and therefore it should
be feasible to discover the statistical differences by using
hypothesis testing. A t-test is used for this hypothesis, view
results in section B.

Traceability vs. Mutation Kill Score In Table VI, for
traceability applied (TA) has a mean value of 3.5 with a
standard deviation of 0.58. Comparing to traceability not
applied (TNA) where there is a mean value of 2.75 with a
standard deviation of 0.96. The low standard deviations of the
two data sets tells us that the values are very close to the mean.
The variance low variance of 0.3 and 0.9 signifies that values
are very similar.

To further explore the data, it is possible to see that the
boxplot in Figure 9, suggest that TA is right skewed, and
has data points closer to the end of the scale, with a median
of 3.5. TNA on the other hand is more left skewed and has
data points on the lower spectrum with a median of 2.5. After
inspecting the data, it shows that there is a difference between

Fig. 8: Boxplot of debug time

Fig. 9: Boxplot of mutation kill score

the samples, although it is quite small, but TA has a slightly
higher mutation kill score than TNA. For this hypothesis a
Wilcoxcon test is used, since one of the samples does not
have normal distribution.

Traceability vs. Average Debug Time Per Mutant The
values for the average time per mutant (ATPM) has been
calculated by dividing the total debug time with the mutation
kill score from each participant in RStudio.

Table VII, displays the values of central tendency of the
data. The mean of ATPM is notably smaller when traceability
is applied (TA), indicating that it has a shorter ATPM. The
mean value for TA is 11.71 with a standard deviation of
approximately 11.1, which is almost as high as the average,
indicating that the is not very concentrated. The mean value for
the TNA is 19.3 and has a standard deviation of 20.8, which
is even less concentrated than the previous one, meaning that



TABLE I: Survey data: Traceability Applied

Code Margin Note Quote

Debugging Process making it faster/ef-
ficient

It makes it easier to localize the error/problem, as
it provides a a clear picture of all the components
related.

Debugging Process held back
It didn’t held back in any way otherwise it looks
like it would take forever to find mutant in the
code.

Software
Maintenance tracking issues

It was helpful and would be even more benefi-
cial for big systems with a lot of inheritances
involved.

Software
Maintenance

understanding rela-
tion between com-
ponents

Traceability link view shows clear picture of
classes relation once code is modified or altered.

TABLE II: Survey data: Traceability Not Applied

Code Margin Note Quote

Debugging Process difficulties faced

It was hard to find the defects and took a long
time to run all the tests, debugging someone else’s
code makes it harder as inheritances between
classes is unknown at first.

Debugging Process ease faced The error message and failure trace made it easier
to find out where the problem was lying.

Debugging Process future facilitation

Knowing association among classes would be
helpful as it would tell which test cases needs
to be run. It will also be proved feasible for the
process if test cases could be run altogether.

there are big differences in the data values.

What is noteworthy is that the mean and median are equal,
which can be an indication that the data is normally distributed,
but this is further evaluated in section B. Hypothesis testing.

The measures of dispersion shows that the variance is 3.3
in TA and 4.6 in TNA, which indicates that the values in the
data sets are quite different.

Moreover, to visualize the data better we used a boxplot,
Figure 10. The plot demonstrates that the TA data in compar-
ison to TNA, suggesting that the ATPM are closer together in
the data set. There are no outliers in both data sets.

B. Hypothesis testing

In this study we want to compare one factor (traceability)
with two treatments (applied and not applied).

Traceability vs Debug time:For the statistical analysis of
the sample ”Debug time”, we started by examining if data set
was normally distributed both graphically and numerically. A
Shapiro-Wilk test was executed to test the null hypothesis that
the samples come from a normal distribution.

The test resulted in:

TABLE III: Empirical study data: traceability

Subject Mutation kill score(/5) Debug time(min)

1 3 47
2 4 31
3 4 43
4 3 38

DebugT ime(TA) : p− value = 0.9022
DebugT ime(TNA) : p− value = 0.43

Since none of the values are 0.05 or lower, the test results
cannot reject the hypothesis of normality, i.e no there is no
significant departure from normality.

The scatter plot shows a graphical representation of how
well the plotted points follow the normal line, Figure 11a, and
Figure 11a. Both figures show that the points lie quite close
to the line and it is common that the points from either end of
the line be a bit farther away from the line, i.e the plots point
to normal distribution.

The first hypothesis is regarding quicker debug time when
traceability is applied as compared to debugging without
traceability, which is evaluated using two sample t-test. A t-test
is a parametric test used to compare two sample means, where
the design is one factor with two levels [18]. In this case the
factor is Traceability, with two levels applied and not applied.
The null hypothesis we are testing is that the debugging time is
the same when traceability is applied and when its not applied:

H0 : DebugT ime(TA) = DebugT ime(TNA)

From the results of the t-test we can see that H0 can be

TABLE IV: Empirical study data: without traceability

Subject Mutation kill score(/5) Debug time(min)

1 3 54
2 2 39
3 4 55
4 2 49



TABLE V: Debug Time: Measures of central tendency and
dispersion

Factor Mean Median Variance Standard Deviation

TA 39.75 40.5 47.58333 6.898067
TNA 50 51.5 35.33333 5.944185

rejected since the p-value is lower than 0.05, view Figure
VIII. There is in fact a difference in debugging time when
traceability is applied and when it has not been applied. The
reason behind it will be further evaluated in the Summary
section.

Traceability vs. Mutation kill score: The normality anal-
ysis for hypothesis 2 also evalutes it by using the Shapiro Wilk
test which produced the following results:

MutationKillScore(TA) : p− value = 0.02386
MutationKillScore(TNA) : p− value = 0.2725

Since the first one has a value under 0.05, the it can reject
the null hypothesis that the sample is normal. The second value
however does not reject normality as it is bigger than 0.05.

To support the numerical representation of normality, a
graphical test was also issued which produced the following
diagrams in Figure 13a and Figure 13b. Figure 13a, shows that
there is some skweness in the data and reflects that the data
is not normally distributed. The second one however,Figure
13b, the points are reletivley close to the line, except for the
ones at the beginning and the end which is common in normal
distribution. Together with the numerical analysis, it points to
the sample being normal.

From the second test we have to run the Wilcoxcon test
(not paired) as it does not assume normal distribution in the
data and which is the case for one of our samples. We want
to test our null hypothesis that the mutation kill score is equal
when traceability is applied and when it is not applied:

H0 : MutationKillScore(TA) =
MutationKillScore(TNA)

Based on a probability level of 0.05, the null hypothesis
cannot be rejected since the p-value is greater than 0.05
Figure IX. Meaning that there is not a significant difference in
mutation kill score when traceability is applied and when its
not applied, find reasoning in Summary section.

Traceability vs. Average Debug Time Per Mutant Like
the previous hypotheses, we used a Shapiro-Wilk test for the
normality testing along with the qqplots, which produced the
following results:

TABLE VI: Mutation Kill Score: Measures of central tendency
and dispersion

Factor Mean Median Variance Standard Deviation

TA 3.5 3.5 0.3333333 0.5773503
TNA 2.75 2.5 0.9166667 0.9574271

TABLE VII: Average time per mutant: Measures of central
tendency and dispersion

Factor Mean Median Variance Standard Deviation

TA 11.71 11.71 3.326981 11.0688
TNA 19.3125 19.5 4.561501 20.80729

TABLE VIII: Results from t-test: debug time

Factor Mean diff Degrees of freedom t-value p-value

TA vc.TNA 10.25 6 -2.2513 0.03266

AverageDebugT imePerMutant(TA) : p− value = 1
AverageDebugT imePerMutant(TNA):

p− value = 0.988

None of the values are below 0.05, indicating that the
data has normal distribution. To further support this claim, we
examined the qqplots which shows that both data sets follow
the lines closely. Based on these observations, we assume that
the data has normal distribution and will run a two sample
t-test.

The hypothesis we are testing against is:

H0: DebugT imePerMutant(TA) =
DebugT imePerMutant(TNA)

The t-test resulted in a p-value (0.03924) lower than the
probability value 0.05, view Table X, and in so the null hypoth-
esis can be rejected. This supports our alternative hypothesis
that there is indeed a difference in the average debugging
time per mutant when traceability is applied and traceability
is not applied. The average debugging time is shorter when
traceability is applied, this is further analyzed in the Summary
section.

Fig. 10: Boxplot of averge debug time/per mutant



(a) Scatter plot: Debug Time (TA)

(b) Scatter plot: Debug Time (TNA)

Fig. 11: Graphical normality representation: Debug time

(a) Scatter plot: Mutation Kill Score (TA)

(b) Scatter plot: Mutation Kill Score (TNA)

Fig. 12: Graphical normality representation: Mutation Kill
Score

C. Summary

We have investigated two hypothesis: 1. Traceability vs.
Debug time 2. Traceability vs. Mutation kill score 3. Trace-
ability vs. Average debug time/per mutant

By running our hypothesis testing we were able to see that
the subjects who had traceability applied had more efficient
debugging time than the students without traceability. This

TABLE IX: Results from Wilcoxcon test

Factor W p-value

TA vc.TNA 12 0.2849

(a) Normality test:Average Debug Time Per Mutant (TA)

(b) Data: Average Debug Time Per Mutant (TNA)

Fig. 13: Scatter plots for Average Debug Time/per mutant

TABLE X: Results from t-test: AVPM

Factor Mean diff Degrees of freedom t-value p-value

TA vc.TNA 7.6025 5.4878 -2.2513 0.03924

is the result we were expecting since traceability provides
a visualization aspect that is helpful for the developer. By
looking at the screen recordings we could see that the subjects
frequently the traceability diagram to view which trace-links
where available, in in doing so found the bugs much quicker.
Its not possible to make a general conclusion at this stage
regarding the results because of the small sample size, but
a replication is encourages for future work within the field,
in particular with a larger sample and a more controlled
environment.

In the second hypothesis the results showed that the sub-
jects with traceability had almost the same mutation kill score
as the subjects without traceability. From going back to the
recordings we could see that both subject groups had problems
with actually killing the bugs. They didn’t quite know what
needed to be changed in order to kill the mutant, but often
they could find where the problem was. The results may have
varied if:

• There were more subjects involved.

• Clearer comments in the source code of what the
functions with the mutants should do.



• The inexperienced subjects might have a harder time
to correct the bugs in comparison to the more experi-
enced participants.

At this stage no generalization can be made. There are
probably more reasons behind the result, but a replication
of the study would be encouraged, especially with a bigger
sample size.

The third hypothesis reveled that there is a difference
between the average debug time/per mutant when traceability
is applied (TA) as when it is not applied (TNA), the time is
shorter for TA. This can be due to multiple factors, but from
reviewing the recordings we could see that the subjects with
TA generally had found more bugs on a shorter time period,
we believe that this is due to the help of constantly being
able to refer back to the traceability diagram. Furthermore, it
is because they had to run significantly less regression tests,
which also improved the debugging time.

To sum up the study, no generalizations can be made from
the hypotheses, further studies are needed either through repli-
cation or through comparable studies to validate the results.

VI. DISCUSSION

To asses our discoveries, lets revisit the research questions:
RQ1. What effect does traceability have on test case selection?

Running the hypothesis tests, showed that the debugging
time was faster when traceability was applied (TA) than when
it was not applied (TAN) and the results provides an answer
to RQ.1.1How does traceability affect the developer’s time to
fix defects?

The screen recordings showed that the subjects with TA had
to run fewer tests due to being provided with the traceability
diagram which showed them which tests needed to be run.
By observing the screen recordings it was possible to see that
the subjects referred back to the traceability diagram 12 times
on average, which goes that they did find some help from it.
From the qualitative data of the surveys, subjects that used
the TA stated that traceability provided them with a clearer
view of the connections between the classes and the tests.
When asked if they thought traceability held them back in
anyway, the majority was in agreement that it did not, rather
the opposite, helped them to know what tests to run. On a
scale from 1 (very easy) - 5 (very difficult) in difficulty level
of the debugging process, 75% of the subjects with TA rated
it 3/5 and 25% as 2/5, as compared to subjects with TAN,
where 50% rated it a 4/5 and 25% gave it 5/5. These results
provides some insights on how traceability can be helpful for
maintenance of automated unit tests in terms of debugging
time. As mentioned previously, the study was conducted on
quite a small sample which makes it difficult to generalize the
results, however the results provides a better understanding of
how traceability impacts maintenance and this study can be
helpful for further research.

RQ.2 How is regression testing affected by traceability
between source code and unit tests?

The TNA had to run significantly more regression tests
than TA. While TA ran only 5 regression tests, TNA had to
run all 14 to make sure that there were no more failing tests.

The results show that traceability is helpful as it cuts down the
amount of regression testing quite drastically.

The sub-research question: RQ2.1 How does traceability
influence the number of faults detected? is answered by
examining the mutation kill score (MKS) through a Wilcoxcon
test. The results showed that the null hypothesis could not be
rejected, i.e there is no significant difference between the MKS
when traceability is applied (TA) and when it is not applied
(TNA). The results of the hypothesis testing would probably
be different if there was a bigger sample size and a larger
number of mutants. We also examined the average debugging
time/per mutant (ATPM) and the hypothesis testing, using a
t-test, resulted in a rejection of the null hypothesis, indicating
that there is a difference in the ATPM. By examining the screen
recordings we could see that both subject groups were able to
find most of the mutants, but as mentioned in the summary they
were having trouble with actually killing them (i.e. fixing the
fault itself to make the test pass). The subjects with TA actually
found and fixed more mutants in a shorter amount of time than
the subjects with TNA. By taking a closer look at the survey
results we discovered that TNA participants found great help in
the failure trace of the JUnit tests, which is how the could find
the actual mutants. This was an interesting discovery as they
only had could rely on the tests to find the problems.The open
questions, which is also a part of the questionnaire, showed
that for debugging process traceability helped them to localize
the error/problem easily, as it provided a clearer picture of
connections among classes and the tests.

Some participants experienced that the unit tests generated
with Evosuite were a bit difficult to understand. We believe
that this is mostly due to inexperience but perhaps an area of
improvement for test generation tools.

VII. VALIDITY THREATS

The criteria for validity is based on Cook and Campbell
[18]. Conclusion validity is a threat in this study due the small
samples sizes. Because of this it is hard to reveal a true pattern
in the data. Even though the sample size was small, we still
checked for normality in the samples before determining which
kind of hypothesis testing to use. Random variation due to the
having traceability applied and not applied is alleviated by to
the providing the subjects with the treatments randomly. We
did all of the measurements through the screen recordings,
which made sure that the measurements were objective.

Internal validity is a function of variables that are sys-
tematically manipulated and observed during the study[18].
For our empirical study, we made sure to properly inform
the subjects about the task, both orally and textually, before
hand to mitigate the threats of having different comprehension
levels. We also questioned the subjects after completion of the
experiment, to see on which level they understood the task. In
order to mitigate compensatory rivalry and resentful demoral-
ization, the subjects were only provided with information about
their specific treatment and we made sure that the subjects were
seated separately so that they didn’t know about each others
treatments.

For our experiment, the internal validity might threat might
also be due to difference in subjects interest and enthusiasm
towards testing and debugging during the experiment. The



outer interruption (e.g noise) to one group of people is also
considered a threat factor to this validity.

External validity is related to generalizing the result of the
experiment beyond the study itself [18]. This has occurred
as we have gathered very modest sample from the project.
Therefore, to make the results more applicable, further experi-
ments should be run by working on real complex open source
projects like JEdit 8 for instance, and adding mutants through
automated tools supported for it e.g Mutagen.

The subjects different experience levels, also limits the
ability to generalize the results to an extent , yet they are all
second and third year bachelor students, meaning that they do
have experience in both testing and developing. To improve
validity it would be beneficial to conduct more experiments
with people having multilevel of experience.

VIII. CONCLUSION

The research addressed by this paper aims at investigating
the impact of enabling test case selection of automatically
generated unit tests through traceability. The data was collected
by conducting an empirical study aimed at investigating the
relationship between traceability and debugging time as well
as traceability and mutation kill score. Our hypothesis testing
indicated that the debugging time is shorter when traceability is
applied, but also showed that there is no difference in mutation
kill score when traceability is applied or not applied. When
traceability is not applied, tracing the bug takes more time
compared to when traceability is invoked.

Based on our overall findings, future research is needed
in order to be able to make a generalization. Our goal in
employing statistics, even with a small sample size, was to
provide a baseline methodology for future research (e.g. future
Bachelor thesis projects) needed in order to be able to make a
generalization. In summary, our goal with the empirical study
is to provide some insights to the problem and possible aspects
to think about in the future.

As stated in our introduction, we were able to achieve
technical and scientific contribution by providing i) a tool
integrating two novel techniques in software development to
foster automation initiative, and ii) a systematic investigation
within an empirical framework to enable future evaluation of
extensions of our work.

Certainly both contributions can be extended, as discussed
in the next section.

IX. FUTURE WORK

There were certain limitations that can be extended in
future projects. Our initial idea was to run all of the regression
tests on a Jenkins server. This would allow the developer to
do something else in the meantime, perhaps start working with
another class, while the regression tests are being executed and
the traces are being made. In our implementation it takes a few
minutes for the regression tests do execute, but if we had more
time we would have done it on Jenkins, which is a possible
strategy for future work.

8http://www.jedit.org/

For a smaller project it is feasible to do the debugging
without traceability, even though it takes a bit longer. But in
further research it could be interesting to test our approach
on a much larger source code. Then it will be possible to see
if the subjects can even find the mutants, let along kill them,
when there is such a large amount of regression tests to be
ran.

For the Capra implementation it could be good to also have
trace-links between the java classes and show the inheritance or
composition relationships. This with an additional view, which
would provide a deeper understanding of the connections, and
perhaps prevent them from introducing faults in the super
classes that propagate down the subclasses.
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Experimental guide (TNA) 
Description: In this experimental session, you will debug a simple Bank application by using tests that 
have been automatically generated through the Evosuite tool. The source code contains seeded faults 
which can be found through regression testing with JUnit. 
  
What: 
The source code provided to you will contain seeded faults. There are different kinds of seeded faults 
such as changing an operator from * to / for example. Or incrementing a variable that is supposed to 
be decremented as well as negating/removing conditionals. Your job is to run regression tests with 
JUnit on the code and see if you can find bugs. There is a total of 2 bugs. The screen will be recorded 
to allow us to trace-back and help us to analyze the results better, but each subject is anonymous.  
 
Once you are done you will be asked to fill out a survey form. 
 
  
How:  

1. You will find the project in the Eclipse project explorer, select a class. 
2. To run the regression tests, right click on your selected test class, testName_ESTest.java, and 

select Run as -> JUnit test.  
3. Debug the selected class. 
4. Once you are done, rerun the tests to see if it has revealed more failures. Repeat this process 

until all of the tests pass.  
5. To measure the coverage:  Right click on the test and select Coverage As -> JUnit test. 

 
 
 
 

APPENDIX A



Experimental guide (TA) 
Description: In this experimental session, you will debug a simple Bank application by using tests that 
have been automatically generated through the Evosuite tool. The source code contains seeded faults 
which can be found through regression testing with JUnit. To find out which tests you need to run in 
order to start the debugging process, you will be provided with a traceability-diagram which shows all 
of the tests linked with your class.  

 
Traceability refers to the capability of relating data kept within artifacts, such as documentation, UML 
diagrams, source code etc. and provides a way to analyze this connection. In order to realize 
traceability, navigable links have to be created between the artifacts. In this case there is traceability 
between source code and unit tests.  

 
What: 
The source code provided to you will contain seeded faults. There are different kinds of seeded faults 
such as changing an operator from * to / for example. Or incrementing a variable that is supposed to 
be decremented as well as negating/removing conditionals. Your job is to run regression tests with 
JUnit and see if you can find bugs. There is a total of 2 bugs and you have 30 minutes to find them. 
The screen will be recorded to allow us to trace-back and help us to analyze the results better, but each 
subject is anonymous.  
 
Once you are done you will be asked to fill out a survey form. 
 
 
How: 

1. Select a class to refactor from the project to refactor. 
2. Check which tests that have traceability links with your selected class by: 

-> Select the Capra perspective in the top right corner. 

 
-> Click on WorkspaceTraceModels and select artifactWrappers.xmi 
 
-> Open the dropdown menu for the Artifact Wrapper Container and select your class from 
the list.  

 
 
 
(make sure you have the plantUml tab opened, to be able to view the traces ) 



 
 
 

3. Run the tests displayed in the diagram by: 
-> Right click on the test class select “Run as -> JUnit test”. 

4. Start debugging! 
5. Once you are done debugging, rerun the tests and see if you have managed to fix all of the 

errors. If not continue the refactoring until all of the tests pass in the diagram pass.  
 


