
Master’s Thesis in Finance

Comparing forecasts of ARMAs and ANNs on
OMXS30

Examining from a economic and statistical point of view

Lars Pilerot & David Waldenbäck Hellman

900328 , 890809

Abstract
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1. INTRODUCTION

1 Introduction

Forecasting is of great interest in economics and finance. Both governments and firms use fore-
casting models to guide their decision making processes (Giacomini & White 2006). The impor-
tance of forecasting within economics and finance is also reflected in the vast number of pub-
lications on the subject — searching for ‘forecasting financial time series’ on Google Scholar
produces approximately 1.2m hits. However, financial time series are among the most difficult
to forecast due to their inherent noisy, non-stationary, and chaotic behavior (Tay & Cao 2001).
Also, forecasting financial time series is difficult as many factors may play a role, e.g., politi-
cal events, economic news, traders’ expectations etc.; these may causes prices to move (Huang
et al. 2005). Further, Van Gestel et al. (2001) state that the signal to noise ratio is low in fi-
nancial time series, which makes prediction of the next points in the time series challenging.

In this paper, we investigate the performance of two return forecasting models: autoregressive
moving average (ARMA) model and artificial neural network (ANN). We use the OMXS30, the
index of Swedish blue chip firms, to evaluate the models. The ARMA model is used due to its
popularity within time series analysis (cf. De Gooijer & Hyndman 2006) while the ANN is used
due its successful application in other complex areas (cf. Kuan & White 1994). Another reason
for comparing these models is that they differ in structure, the ARMA belongs to a family of
parametric or semi-parametric models and the ANN is a non-parametric model.

ARMA models have been widely used in forecasting time series (cf. De Gooijer & Hyndman
2006, Du Preez & Witt 2003, Ediger & Akar 2007, French et al. 1987, Merh et al. 2011, Dhrymes &
Peristiani 1988). The ARMA is regarded as the most efficient forecasting technique in social science
and is used extensively (Adebiyi et al. 2014). Its origin is related to Yule (1927) work on stochastic
processes and, later, to the introduction of Autoregressive (AR) and moving average (MA) models
(cf. De Gooijer & Hyndman 2006). The approach was further popularized by Box et al. (1974).

Artificial neural networks (ANN) have existed for a long time (cf. McCulloch & Pitts 1943)
but their popularity increased in the 1990s (Zhang & Hu 1998) as a result of an increase in com-
puting power, which meant that larger models could be used. ANNs are universal and highly
flexible function approximators (Kaastra & Boyd 1996) and are classified in a branch of artificial
intelligence called ‘machine learning’ (Gardner & Dorling 1998). ANNs are designed to mimic
the human brain’s ability to learn and recognize patterns (Vaisla & Bhatt 2010). Zhang & Hu
(1998) argue that ANNs are well suited for complex problems where there is a large amount of
data available but the solutions require knowledge that may be difficult to specify. They fur-
ther state that ANNs have the ability to generalize when the data is noisy. However, this comes
at a cost of lower tractability compared to ARMAs. In general the tractability of ANNs are
low in contrast to the high tractability of ARMAs. Kuan & White (1994) give a few example
areas where ANNs have proved to be successful. These include: handwriting recognition, com-
plex coordination tasks, decoding deterministic chaos, diagnosing chest pain, and in the game
of backgammon. Some financial applications where ANNs have been used include risk rating of
mortgages and fixed income investments, index constructions, market behavior simulations, port-
folio selection, identification of economic explanatory variables and others (Kaastra & Boyd 1996).

In contrast to previous studies, this paper examines the forecasts on the OMXS30 from several
perspectives, with statistical and economic measures. There are many studies that examine AR-
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1. INTRODUCTION

MAs using economic measures (cf. Metghalchi et al. 2008, Sermpinis et al. 2012, Ojah & Karemera
1999) and due to their popularity and history ARMA models are typically used as benchmarks for
other models (cf. Trinkle 2005, Metghalchi et al. 2012). However, there are not as many studies
that examine ANNs using economic measures (cf. Zhang et al. 2001, Shambora & Rossiter 2007,
Fernandez-Rodrıguez et al. 2000). Four other studies have compared ANNs to ARMAs on financial
time series (Adebiyi et al. 2014, Lindemann et al. 2004, Sermpinis et al. 2012, Merh et al. 2011).
All with different conclusions. None of the studies have been carried out on the Swedish index.
Also, two of the studies have compared the models solely from a statistical perspective. We aim to
compare the models using both statistical and economic measures. Hence, the research question
in this study is: which model creates the best forecast from a statistical and economic standpoint?

The statistical measures rely on root mean squared error, mean absolute error, correct direc-
tion of the forecast as well as the tests proposed by Diebold & Mariano (2002) and Giacomini
& White (2006). The economic measures rely on Sharpe ratios and out-of-sample R2 of trad-
ing strategies based on the forecasts, and on cumulative returns. The purpose of these measures
is to evaluate whether there is economic value in a model that might not perform well accord-
ing to statistical measurements. For example Cenesizoglu & Timmermann (2012) and Welch
& Goyal (2008) find that standard statistical measures do not always imply that there is eco-
nomic value in the forecast. In a similar fashion, even models that perform poorly in statistical
terms might be useful in economic terms. If a trading strategy based on one of the forecasts
would outperform the index, this would be in violation of the (weak) efficient market hypoth-
esis. The efficient market hypothesis is defined by Jensen (1978) as “a market is efficient with
respect to information set Q if it is impossible to make economic profits by trading on the ba-
sis of information set Q”. It would also contradict the random walk hypothesis by Fama (1995)
who states that returns are random and can not be forecasted. Although such results cannot
be used to reject the efficient market hypothesis but rather challenge it as the efficient mar-
ket hypothesis does not provide a time-frame nor does the study account for market fictions.1

The results in this paper are inconclusive, in some cases ARMA forecasts are superior and in
other cases ANN forecasts are superior . The performance of the models are highly dependant on
whether the evaluation is conducted using statistical or economic measures. The worst performing
model statistically is among the top performers economically. Also, evaluating a model from an
economic point of view is concluded to be a highly complex task and visualizations of cumulative
returns are deemed to be the most informative. Hence, our results show that there is a discrep-
ancy between statistical and economic measures, but also highlights the difficulty of evaluating a
forecast from an economic point of view.

The remainder of this paper is structured as follows: Section 2 describes ANNs and section 3
describes ARMAs. Section 4 reviews theory on forecast comparison and economic evaluation of
forecasts. Section 5 describes the data collection and transformation. In section 6 the methodology
of the study is described together with the results and analysis, which is followed by discussion in
section 6 and conclusion in section 7.

1This study does not evaluate the models based on general forecasting ability, but rather the forecasts created
by the models during the selected time period. The rationale being that model comparison requires testing of the
models on a larger sample and/or on pseudo time series, which is not relevant if the aim is to evaluate during the
selected time period of study. Further, the study does not consider intra-day changes in the index and trading
strategies assume that the OMXS30 future has the same movements as the underlying index. Also, transaction
related costs are ignored.
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2. ARTIFICIAL NEURAL NETWORK

2 Artificial Neural Network

The following section describes the fundamentals of ANNs, including their intuition, structure and
fitting. As ANNs are relatively less known compared to ARMAs, we offer a detailed exposition.

Artificial Neural Networks (ANN) are nonparametric models that are commonly used to forecast
time series (cf. Zhang et al. 1998, Sharda & Patil 1992, Kaastra & Boyd 1996). Such nonpara-
metric models (as well as parametric models using robustness checks) can be used for processes
where the relationship between input and output variables is unknown and, therefore, hard to fit
(Darbellay & Slama 2000). ANNs are based on a structure that is meant to imitate how the human
brain processes information (Vaisla & Bhatt 2010) and the parameters of the ANN are estimated
given a loss function (Kuan & White 1994). One benefit of ANNs is that they require few prior
assumptions about data (Khashei & Bijari 2011).

ANNs are structured into layers. A layer refers to a collection of neurons that are working
in parallel (neurons can be thought as coefficients in a regression and will be further explained
shortly. Figure 1 shows a 4 layer ANN with 3 neurons in the first layer, 5 neurons in the second
and third layers, and 1 neuron in the fourth layer. Many biological networks process information
using multiple layers of neurons, which inspired the hidden layers of ANNs (Kuan & White 1994).
More layers are capable of more complex processing (Kuan & White 1994). For example the cor-
tex, which is one of the more advanced human processing units, has six processing layers and is
therefore able to process a lot more information than, e.g., the knee-jerk reflex (Kuan & White
1994). The knee-jerk reflex is an instant reaction that requires no processing – a straight from
input to output reaction. A larger number of layers can be viewed as having multiple, multivari-
ate regressions, one regression in each layer. Each layer treats the preceding layer as input and
produces output that is then processed by the succeeding layer (Kuan & White 1994). As in any
modelling exercise, ANNs are prone to overfitting.

ANNs consist of an input layer, at least one hidden layer and an output layer (Guide 1995).
The input layer is where the input variables, the exogenous variables, enter the model and the layer
plays no computational role (Gardner & Dorling 1998). The input layer can be either a scalar or a
vector of the input variables (Gardner & Dorling 1998). An input variable is a data point that is
being used in the regression, for example traded volume, spread, or traded price while forecasting
stock prices. The hidden layer(s) is where the processing of the information takes place and what
separates the input of the model from the output of the model (Kuan & White 1994). The out-
put layer is simply a vector or a scalar with the final output of the ANN (Gardner & Dorling 1998).

Figure 1: Neural network with four layers, whit 3 neurons in the first layer, 5 neurons in the second layer,
5 neurons in the third layer and 1 neuron in the fourth layer.. Source: Gardner and Dorling, 1998
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2. ARTIFICIAL NEURAL NETWORK

All hidden layers consists of a set of ‘neurons’. A neuron consists of a transfer function
(Kaastra & Boyd 1996).2 The transfer function returns a value or outgoing signal based on the
weighted sum of inputs or incoming signals (Guide 1995). Figure 2 illustrates a single neuron.

Figure 2: A single neuron. The incoming signal p is adjusted by the weight, w, and a constant, b, is added.
These are sent through the transfer function, f, to create the output. Source: Guide 1995

The p represents the input that is multiplied by weight w. Together they form the product
wp called a weight function. An optional constant can be added to the weight function (Kaastra
& Boyd 1996).The optional constant b and the weight function wp are arguments for the transfer
function. The argument is passed through the transfer function and produces output a. The con-
stant b is a weight and works by shifting the function f by a certain amount (Guide 1995), which
may be beneficial when fitting the model (LeCun et al. 1998).

Fitting the model is called training in machine learning terms. A network is fitted by minimiz-
ing the model’s error term through derivation of the transfer functions with respect to the weights.
The aim of the fitting is to find weights that produce the lowest errors for each input. Hence,
it is similar to estimation of coefficients in a regression. ANNs are usually trained using cross
validation (cf. Huang et al. 2004, Kaastra & Boyd 1996, Guide 1995). The use of a cross-validation
set helps to weed out overfitting versions of the ANN and improve generalization (Tay & Cao 2001).

Transfer functions can be binary or continuous. Binary transfer functions are simpler to use
while continuous functions produce outputs that are more informative. Linear and sigmoidal trans-
fer functions are the most common continuous transfer functions. The sigmoid transfer function is
an S-shaped function (Kuan & White 1994) and is what give ANNs their nonlinear ability (LeCun
et al. 1998). Another benefit of using a sigmoid transfer function is that it has upper and lower
bounds due to its shape, which solves fitting problems that may occur with linear functions (LeCun
et al. 1998). The sigmoid transfer function includes the logistic and tanh functions as special cases.

2In machine learning terms the constant is called bias, not to be mistaken with biased estimators.
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2. ARTIFICIAL NEURAL NETWORK

ANNs can be univariate or multivariate, which refers to the number of input variables (Guide
1995). (Kaastra & Boyd 1996) state that raw data should be normalized between the lower and
upper bounds of the transfer function, which normally is between -1 and 1. Two of the most
common ways of transforming the data is through first differencing and natural logs (Kaastra &
Boyd 1996). The most common way to present the input data is by using the neurons of the input
layer of the ANN as a rolling window over the time series Huang et al. (2004). As a result, the
number neurons in the input layer decides the number of lags. In principle, this provides the same
input data as required for an AR(p) regression. As an example, a univariate ANN with five lags
on a daily time series could hold days 1-5 in the first sequence and days 2-6 in the next sequence.
Sequence refers to how the data is being fed to the ANN. The ANN would therefore constantly be
scanning the input data over a time period of five days. A multivariate model works in the same
way but for more inputs. Consequently, the number of input neurons decides how much of the
past the ANN considers when forecasting.

2.1 Creating and configuring the ANN

Creating and configuring the network refers to choosing architecture of the network. The net-
work can be used for nonlinear regression or pattern recognition (Guide 1995). A network used
for nonlinear regression often uses hidden layers of sigmoid neurons and a final hidden layer of
linear neurons. A network used for pattern recognition often uses a final hidden layer of a sigmoid
transfer function instead since they are more suitable for discrete and binary output values.

An ANN can be static or dynamic. A static ANN, also known as feedforward network, is a net-
work where the output is calculated directly from the input through the connections in the ANN.
A dynamic ANN however can, for example, include feedback elements (the output of one layer is
fed through the network multiple times), delays, and the input is not necessarily calculated directly
through the network. Feedforward ANNs are the most commonly used (Guide 1995, Huang et al.
2004, Kaastra & Boyd 1996).

Deciding on the number of neurons and layers of an ANN is hard (Guide 1995, Huang et al.
2004) and can be compared to deciding the order of ARMA. There are quite a few methods on
how to select the starting number of layers and neurons, but there is no consensus (cf. Kaastra &
Boyd 1996). To put the number of neurons into perspective Sarle (1994) states that few ANNs
have more than a few thousands of neurons while the human brain has about one hundred billion
neurons. Huang et al. (2004) advocate trial and error when it comes to the number of hidden
layers and neurons.

2.2 Training and validating the ANN

Backpropagation ANN are the most commonly used type (Zhang et al. 1998, Tay & Cao 2001,
Kaastra & Boyd 1996). Backpropagation refers to a type of learning algorithm that is often used
to fit the ANN (LeCun et al. 1998). Backpropagation works by feeding the network with an in-
put and the resulting output is then compared to a desired output. The comparison is done by
calculating an error using a loss function such as mean squared error (MSE). Once the total error
has been calculated, the contribution of each neuron to the error is calculated by taking partial
derivatives through the network (LeCun et al. 1998). The weight of each neuron is then updated
according to its impact on the total error. Backpropagation is thus similar to maximum likelihood
estimation or Gaussian mixture model in estimating model parameters through minimizing a cost
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3. TIME-VARYING MEAN MODELS

function. However, the aim of backpropagation is to minimize the error rather than to maximize
the likelihood function through minimizing the error. There are many types of backpropagation
algorithms such as Gradient descent, Newton, Quasi-Newton (cf LeCun et al. 1998, Guide 1995).
Training or optimization of an ANN may be done in two ways, either with a moving-window or
based on the full sample, also called batch traning. The moving-window technique updates the
weights after each new input is applied to the network. Hence, estimating the parameters using
moving-window technique is similar to using recursive least squares. The batch training is done
after the entire sample has been fed through the network. Hence, estimating the parameters using
batch training is similar to full sample estimation such as least squares or ordinary least squares.
Batch training is faster and normally produces smaller errors (Guide 1995).

Fitting of the model benefits from randomized initialization of weights and biases (Haykin &
Network 2004). For example randomizing the weights and biases to numbers between 0 and 1.
The randomization ensures that neurons do not receive the exact same output in the beginning,
which makes it easier for the backpropagation algorithm to differentiate between the neurons while
fitting and as a result makes it easier to find a global minimum.

3 Time-varying mean models

The following section aims to describe the fundamentals of time-varying mean models and more
specifically the family of ARMA models, we describe the intuition behind the models, their struc-
ture, and fitting.

The autoregressive moving average model (ARMA) was originally proposed by Whittle (1954).
Box et al. (1974) developed the model further into the autoregressive integrated moving average
(ARIMA). Their idea was to eliminate trend, seasonal and irregular effects by differencing in the
beginning of the analysis rather than modelling the different components (of trend, seasonal, and
irregular effects) separately (Durbin & Koopman 2012). Box and Jenkins also introduced a coher-
ent and versatile three-stage iterative cycle for identification, estimation and verification known as
the Box-Jenkins approach (De Gooijer & Hyndman 2006). Ever since, autoregressive models have
been commonly used for forecasting time series (cf. De Gooijer & Hyndman 2006, Du Preez & Witt
2003, Ediger & Akar 2007). There are also many papers applying ARMA to financial time series
(cf. Hein & Spudeck 1988, Dhrymes & Thomakos 1998, Downs & Rocke 1983, Öller 1985, Adebiyi
et al. 2014, French et al. 1987, Merh et al. 2011, Dhrymes & Peristiani 1988, Metghalchi et al.
2008, Sermpinis et al. 2012, Ojah & Karemera 1999, Trinkle 2005, Metghalchi et al. 2012), which
illustrates the popularity and diversity of the model. These papers further show that ARMAs are
often used due to being simple and good enough rather than having stellar forecasting ability.

The ARMA model (equation 1) is based on an AR(p) and MA(q) processes, where p is the
number of previous lags in the AR processes and q is the number of previous lags in the MA
process. The θ represents a constant term.

Yt = θ +

p∑
i

αiYt−i

q∑
j

β1uq−1 + β0uq (1)

The Box-Jenkins approach is widely used for determining what type of process the data follows
as well as determining the parameters in the model (De Gooijer & Hyndman 2006). Simplified,
the approach is based on three iterative steps, identification, estimation; and diagnostics (Khashei
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& Bijari 2011). According to the Box-Jenkins approach the number of lags should be determined
by visually analyzing autocorrelation function (ACF) and partial autocorrelation function (PACF)
(Gujarati 2009). Other model selection methods than the Box-Jenkins approach are Akaike’s
information criterion (AIC) described by Shibata (1976), Bayesian information criteria (BIC/SIC)
described by Dayhoff et al. (1978) or the minimum description length (MDL) described by Jones
(1975), Hurvich & Tsai (1989). The AIC and BIC methods are two of the most used model selection
criteria (Yong 2005). Both AIC and BIC are based upon selecting as few model parameters as
possible while still producing a good fit. The more complex the model gets the more it will be
punished by the AIC/BIC. The underlying rationale is that a more complex model should fit
better but the risk of overfitting increases, therefore keeping the models simple is being favoured
(Gujarati 2009). Tsay (2005) concludes that there is no evidence that one approach is superior the
others, but state that substantive knowledge about the problem under study and simplicity is of
importance when determining model specification.

4 Forecast comparison

This section contains a review of the literature regarding forecast comparison deemed relevant to
this paper in order to evaluate the forecasts from a economic and statistical view.

As previously stated, forecasting is important when it comes to decision making within eco-
nomics and finance (Giacomini & White 2006). It is important to distinguish between model and
forecast comparison as forecast accuracy may not necessarily reflect the model accuracy (Diebold
2015). Model comparison is more complicated than forecast comparison (cf. Giacomini & White
2006, Diebold 2015). We focus on forecast comparison. Perhaps the most commonly used test,
within the area of forecast comparison, is the procedure proposed by Diebold & Mariano (2002).
Loss functions, use of samples, as well as statistical and economical performance measures are im-
portant aspects when evaluating a financial forecast and we explain them further in the following
subsections.

4.1 Loss functions and prediction accuracy

Forecasts are usually evaluated given a chosen loss function. More specifically, Granger (1999)
states that the specification of the loss function is an important factor within forecasting. Sym-
metric quadratic loss functions are often used because of their simplicity (Granger 1999). The
optimal forecast of a time series using a symmetric quadratic loss function is the conditional mean
or median. However, negative and positive forecast errors are not differentiated by the symmetric
quadratic loss function, which may not be reasonable from a financial perspective. In line with
Granger’s (1999) reasoning, Diebold and Mariano (2002) state that within finance the loss asso-
ciated with a forecast error is often an asymmetric function of the error and therefore standard
statistical tests using symmetric loss functions do not give full insight. For example, if the forecast
suggests to go long a stock — i.e., predicts positive returns for the next time period — then the loss
of negative forecast errors should be different from the loss of positive forecast errors. Many of the
earlier techniques of forecast comparison focus on a specific loss function (cf. Granger & Newbold
2014, Leitch & Tanner 1991), which is limiting if one wants to compare forecasts using different
loss functions. The test proposed by Diebold & Mariano (2002), DM-test, compares forecasts by
testing for the null hypothesis of zero expected loss differential and is therefore able to compare
forecasts using different loss functions. The original DM-test (equation 2 through 5) uses a general
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loss function based on squared errors, but can be adjusted for a wide variety of loss functions
including asymmetric (equation 6).

d = g(e1t)− g(e2t) (2)

eit = ŷit − yt (3)

g(eit) = e2it (4)

H0 : E(dt) = 0∀t, H1 : E(dt) 6= 0 (5)

g(eit) = eλeit − 1− λeit (6)

4.2 Use of samples

An issue when evaluating performance is that a true out-of-sample performance test, i.e., live testing
is often not feasible or realistic as it can take a long time to get results (Diebold 2015). However,
in-sample performance does not necessarily imply good out-of-sample performance (Giacomini &
Rossi 2008). Also, previous out-of-sample performance from a forecast does not ensure further out-
of-sample performance. This may be due to; overfitting, misspecification of the model, or structural
or other changes in dynamic properties of the time series. Further, Stock & Watson (2004) show
that out-of-sample performance may change if parts of the full out-of-sample are considered in
isolation. The DM-test has been further developed by West (1996), Clark & McCracken (2001),
Giacomini & Rossi (2008) to better predict out-of-sample performance using pseudo-out-of-sample
procedures (POOS). However, many of these updated DM-tests focus on comparing models rather
than forecasts. Further, POOS may inform more about particular episodes within the full sample,
which is often important within financial economics (Diebold 2015). For example, Pardo (2008)
stresses the need for stability throughout the full sample rather than high returns during particular
episodes. Giacomini & White (2006) extend the DM-test to include additional variables that may
explain the loss differential. Thereby turning the unconditional DM-test into a conditional test.
In contrast to DM-test, the Giacomini & White (2006) test also indicates which forecast is better
given some significance level.

4.3 Statistical versus economic measures of accuracy

Welch & Goyal (2008) and Cenesizoglu & Timmermann (2012) show that standard statistical ac-
curacy measures such as the mean squared error (MSE) do not necessarily correlate with economic
forecasting performance. Cenesizoglu & Timmermann (2012) elaborate on the difference between
conventional predictability measures and economic return measures by stating that the economic
value, for mean and variance investors, is dependent on the movement in the full return distribu-
tion with weights that depend on the utility function. They find that simple models often perform
better out of sample when measured using MSE than more complicated models. However, the
more complicated models often produce more accurate probability density forecasts. Cenesizoglu
& Timmermann (2012) conclude that many of the models they test underperform statistically to
the benchmark, but outperform economically in terms of risk-adjusted returns and Sharpe ratios.
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The Sharpe ratio measures excess return divided by portfolio volatility (equation 7 ) (Bodie et al.
2011). A higher Sharpe ratio indicates higher return per unit of risk compared to a lower Sharpe
ratio, the ratio can be negative in cases where the portfolio value has decreased or not beaten the
risk free return. Cenesizoglu & Timmermann (2012) stress the importance of focusing on economic
measures of performance and suggest that return predictability has been too focused on MSE and
R2.

S =
E[Rp]− rf
SD(Rp)

(7)

Cenesizoglu & Timmermann (2012) find a positive correlation with low predictive power be-
tween the root mean squared error (RMSE) and the economic value of a forecast. Also, Campbell
& Thompson (2008) show that a small increase in R2 can have a large economic impact and can
lead to substantial benefits for investors. Campbell & Thompson (2008) suggest that out-of-sample
R2 can give more meaningful economic insight if compared with the squared Sharpe ratio S2 as
illustrated in equation (9). A positive R2/S2 implies that the forecast can be used, by a mean-
variance investor, to obtain higher portfolio returns (Campbell & Thompson 2008).

R2
OS = 1−

∑T
t=1(ri − r̂i2)∑
i=1 T (ri − r̄i2)

(8)

R2
OS

S2
(9)

Out-of-sample R2 is illustrated in equation (8) where r̂ is the fitted value from the predictive re-
gression and r̄ is the historical average return over the same period (Campbell & Thompson 2008).
If the out-of-sample R2 is positive, then the forecast has lower average mean-squared prediction
error than the historical average returns. Furthermore, Campbell & Thompson (2008) state that
since small R2 can generate large benefits for an investor, large R2s are unreasonable and most
likely signs of spurious regression.

Timmermann (2008) stresses another issue with financial forecasting: the creative self destruc-
tion of forecasting models. Timmermann (2008) states that a model may perform well until it is
widely discovered and adopted. The issue being that the markets are influenced by the market
participants attempt to profit from patterns and thus the market changes over time as types of
pattern exploitation get integrated in market prices. For the specific forecasting model this means
that it may be profitable for a while, but as it gets more widely adopted its predictive power
will cease. Further, Timmermann (2008) concludes that it is difficult to persistently predict stock
prices over longer time periods using standard forecasting models. Welch & Goyal (2008) argue
that none of the typical predictor variables seem capable of persistently predict stock prices.
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5 Data

In this section, we describe the the data set and data collection. The section includes the origin of
the data and sample choice as well as the transformation of the original data.

5.1 Dataset and data collection

We use return series from the Swedish OMXS30 index. The index is composed of the 30 stocks
with the highest trading volume measured in SEK on NASDAQ Stockholm (Nasdaq, 2016). No-
table is that the index is not capped with regards to industries or companies and does not adjust
for dividends or cash payouts. However, the OMXS30 is chosen rather than a total return index
because the OMXS30 is the underlying for the most traded index future on NASDAQ Stockholm.
The price data was retrieved from the Swedish House of Finance.

The sample period is 11 years of daily closing price, starting from 2006-01-02. Seven years of
the data is used to fit the models (in-sample) and the remaining 4 years of the data is used for
out-of-sample testing. The out-of-sample period is from 2013-01-07 to 2016-12-30. The models are
refitted daily during the out-of-sample period using an extending window in order to let the models
take new data into account. We use one-period-ahead predictions in our tests. The underlying
reason for the amount of data that is used in this study is that the ANNs require a large set of
data for fitting while the ARMAs require less. As a result, the ANN becomes the limiting factor
when choosing the time frame. However, using a lot of data for fitting may affect the performance
of the models negatively as older data does not necessarily reflect current market conditions. More
specifically, recent data is preferred since market conditions have been changing since the beginning
of the millennium with for example the introduction of electronic market participants. The chosen
time frame includes a full business cycle, which ensures that the models experience both bull and
bear markets and thus exposes the models to different market conditions.

5.2 Transforming data

Figure 3: Daily closing price of the OMXS30 index from 2006-01-02 to 2016-12-30.
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Figure 3 illustrates that the original data is not stationary. An Augmented Dickey-Fuller test
fails to reject the null of a unit root. However, an underlying assumption of the ARMA is that
the time series should be stationary. We model log returns as the natural logarithm stabilizes the
variance while differencing reduces the effect of trends and cycles.

Figure 4: OMXS30 logged values Closing price from 2006-01-03 to 2016-12-30. The period used for initial
fitting of the models marked with blue and the period used for the extending-window forecasts is marked
with orange

Figure 4 shows the transformed OMXS30 log returns. Figure 5 and 4 indicate that the data
is stationary and figure 6 also suggests that there is no clear lag pattern. An Augmented Dickey-
Fuller test rejects the null of a unit root (p-value 0.0001). The blue line in figure 4 shows the
in-sample data and the orange line shows the data that is used for the out-of-sample extending
window forecasts. An F-test shows that there is a significant difference (p-value of 0) between the
unconditional variance in the in-sample and out-of-sample periods. In-sample variance is 0.00027
and out-of-sample variance is 0.00012. A Ljung-Box test on returns rejects the null that the returns
are not autocorrelated (p-value of 0,001). Further, a Ljung-Box test on squared returns indicates
that there are significant ARCH effects (p-value of 0) in the residuals of the returns, and an En-
gle’s ARCH test rejects the null hypothesis of no residual heteroskedasticity (p-value of 0). One
way to deal with the decreasing variance over time and conditional heteroskedasticity is to use an
ARMA-GARCH or possibly GARCH-M model. Hence, a GARCH-extension is added to the best
fitting ARMA in-sample.
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Figure 5: Autocorrelation Function of logged values for 15 days and Partial Autocorrelation Function of
logged values for 15 days.

Figure 6: Lag plot of transformed OMXS30

6 Methodology, Results and Analysis

In this section, we describe the methodology, our results and analysis. The standard statistical
measures subsection describes how errors are measured throughout the paper. The ANN subsection
includes the fitting of the ANN models and the ARMA subsection includes the fitting of the ARMA
models. The out-of-sample subsection includes the general results and interpretation from the out-
of-sample forecasts followed by the tests conducted on these forecasts. These tests are symmetric
DM-test, asymmetric DM-test, unconditional and conditional Giacomini &White (2006). The final
subsection includes the results and interpretation from trading strategies based on the forecasts
and includes financial measures proposed by Campbell & Thompson (2008) as well as cumulative
returns.

6.1 Standard statistical measures

We use root mean squared error (RMSE) and mean absolute error (MAE) to measure the error
terms in this paper. MAE and RMSE are among the most commonly used statistical measures,
see equation 10 and equation 11.

MAE =
1

n

p∑
t=i

| xt − x̂t | (10)

RMSE =

√∑
(ei)2

N
(11)
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6.2 ANN

We use three ANNs in this paper – 1 neuron with 1 lag, 10 neurons with 5 lags, 30 neurons with 20
lags as these performed best during in-sample testing. We find that larger networks do not produce
quantitatively different results. The ANNs are all feedforward, univariate with two hidden layers
– one layer with sigmoidal transfer functions followed by a layer with a linear transfer function,
which is in line with Beale et al. (2016) who state that this type is the most common for non-linear
regression and is why the non-linear part is important.

It is common to split the data into training and validation sets that contain 90% vs 10% of
data respectively (Zhang & Hu 1998), and since there is no general methodology we split the
data in a similar manner. The data is split using the ‘dividerand’ function in the Neural Network
Toolbox in MATLAB. ‘Dividerand’ divides the fitting data into random sets of training and val-
idation. ‘Dividerand’ is beneficial in the way that the most recent data is used for both training
and validation rather than validation only. For example, if the fitting data was divided by blocks
using the same ratio of training and validation, then the validation set would equate to the full
final year before the out-of-sample testing, which means that the data that is likely most relevant
for fitting the model for the out-of-sample testing would be used only for validation. To the best
of our knowledge ‘dividerand’ resamples the data with the dynamic properties of the time series
preserved. Furthermore, ‘dividerand’ decreases the RMSE heavily compared to blockwise fitting.

We use Levenberg-Marquardt algorithm for backpropagation and the training is done in batch-
form. The Levenberg-Marquardt is the standard algorithm for moderate-sized feedforward neural
networks according to Guide (1995). The choice of the algorithm does not change the results. The
ANNs are fitted based on minimizing validation set MSE. The weights and biases are randomized
between 0 and 1 so that the initialization is asymmetric.

The training set and validation set RMSE differ every time the model is fitted due to dividerand
and randomization of weights and biases. Hence, an average based on 100 iterations of model fit-
ting is presented in table 1 to give an indication of RMSE values. Both of the larger models had
higher validation set RMSE than training set RMSE while the 1 neuron 1 lag model had lower
validation set RMSE than training set RMSE.

ANN Full in-sample RMSE Training set RMSE Validation set RMSE
1 neuron1 lag 1.65 1.65 1.63
10 neuron 5 lag 1.62 1.62 1.67
30 neuron 20 lag 1.58 1.56 1.78
All numbers are expressed in centesimal

Table 1: Fitting of ANN

In the full sample 30 neurons 20 lags ANN produces the lowest RMSE among all ANNs. Also,
the 30 neuron 20 lag ANN has the smallest training set RMSE, but highest validation set RMSE.
The 1 neuron 1 lag ANN has the highest full-sample RMSE as well as training set RMSE but
lowest validation set RMSE.
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6.3 ARMA

We fit six ARMA models: ARMA(1,0), ARMA(1,1)-GARCH(1,1), ARMA(1,1), ARMA(2,1),
ARMA(1,2), and ARMA(5,0). The number and types of ARMA models are chosen to ensure a
broad spectra of model specifications similar to the ANNs. The main reason is to test if there is a
difference between ANNs and ARMAs that have similar lag lengths - ARMA(1,0) and ARMA(5,0)
compared to the 1 neuron 1 lag ANN and 10 neuron 5 lag ANN. The ARMA(1,1), ARMA(2,1)
and ARMA(1,2) are selected due their low AIC and BIC. The ARMA(1,1)-GARCH(1,1) model is
selected to counter varying volatility in the sample. The rationale behind using many models is
also that in-sample performance may not correspond with good out-of-sample performance.

Unsurprisingly, the larger ARMA models have lower in-sample RMSE than the smaller models
as Table 2 illustrates. However, both AIC and BIC in Table 2 indicate that the ARMA(1,1)-
GARCH(1,1) is the best model, followed by the (1,1), (2,1) and (1,2). Noticable is that the
ARMA(1,1)-GARCH(1,1) stands out with lower AIC and BIC.

ARMA In-sample RMSE AIC BIC
(1,0) 1.646 -9.47 -9.45

(1,1)-GARCH(1,1) 0.165 -10.00 -9.98
(1,1) 1.640 -9.48 -9.45
(2,1) 1.640 -9.47 -9.45
(1,2) 1.639 -9.47 -9.45
(5,0) 1.638 -9.47 -9.44

In-sample RMSE are expressed in centesimal. AIC and BIC are expressed in thousands.

Table 2: Fitting of ARMA

As table 1 and table 2 show, the 30 neurons 20 lags ANN has the lowest in-sample RMSE of all
models. The 10 neuron 5 lag ANN has the second lowest in-sample RMSE of all models followed
by the ARMA(5,0),ARMA(2,1),ARMA(1,2),ARMA(1,1) and ARMA(1,0) that are all in a small
range. The ARMA(1,1)-GARCH(1,1) has the highest in-sample RMSE of all models.

6.4 Out-of-sample testing

Below are two representative plots of the 1000 day out-of-sample testing of the models. The
representative plots show the ARMA(1,1) and the 10 neuron 5 lag ANN to include one of each
model types. The forecasts are illustrated in blue and compared to the actual movements of the
OMXS30 index in red, for all models see Appendix B. Noticeable is that the forecasts have a
narrower range than the actual returns.
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Figure 7: Forecasts compared to actual returns, 10 neurons 5 lag ANN

Figure 8: Forecasts compared to actual returns, ARMA(1,1)

6.5 Tests

This subsection compares the performance of the competing forecasts and models using the DM-
test proposed by Diebold & Mariano (2002), the test proposed by Giacomini & White (2006), the
Sharpe ratio and out-of-sample R2 test proposed by Campbell & Thompson (2008), a directional
test and standard statistical measures such as mean absolute error (MAE) and root mean squared
error (RMSE). Two different loss functions are used in the DM-test for robustness purpose, one
symmetric and one asymmetric. Further, four trading strategies, one without threshold and three
with thresholds are tested based on the direction of the forecasts.
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6.5.1 Statistical measures

The directional test is a measure to see how often the forecast has the correct direction. The direc-
tional test does not take the magnitude of the forecast or actual movement into consideration, i.e.,
a forecast predicting a small positive change is considered to be right even when the actual change
is larger, and vice versa. It is of interest to measure how many times the models can forecast the
direction correctly as it may be argued that the direction of the return is more important than the
error of the return for financial time series. Also, directional accuracy is used as a base for trading
strategies in subsection 6.5.2.2 and 6.5.2.3 Furthermore, a t-test is used to determine whether there
is statistical difference between the directional test scores.

ARMA Out-of-sample RMSE Out-of-sample MAE Correct direction
(1,0) 1.097 0.806 0.478

(1,1)-GARCH(1,1) 1.097 0.802 0,528
(1,1) 1.094 0.803 0.509
(2,1) 1.097 0.806 0.478
(1,2) 1.097 0.806 0.478
(5,0) 1.103 0.811 0.482

Out-of-sample RMSE and out-of-sample MAE are expressed in centesimal. Correct direction is not rescaled.

Table 3: Out-of-sample testing of ARMA

The out-of-sample RMSE and MAE are similar for all ARMA models. However, as table 3
illustrates the ARMA(1,1)-GARCH(1,1) model distinguishes itself with lowest out-of-sample and
the best prediction accuracy. The ARMA(1,1)-GARCH(1,1) is significantly better at prediciting
the correct direction compared to ARMA(1,0), ARMA(2,1), ARMA(1,2), and ARMA(5,0) at 10%
level. However, there is no significant difference compared to the ARMA(1,1). The (5,0) has both
the highest out-of-sample RMSE and MAE. However, the higher errors do not affect the model’s
ability to predict the correct direction as it does not differ statistically to the others with the
exception of ARMA(1,1)-GARCH(1,1).

ANN Out-of-sample RMSE Out-of-sample MAE Correct direction
1 neuron per layer, 1 lag 1.100 0.808 0.514

10 neurons per layer, 5 lags 1.106 0.813 0.501
30 neurons per layer. 20 lags 1.142 0.850 0.510
Out-of-sample RMSE and out-of-sample MAE are expressed in centesimal. Correct direction is not rescaled.

Table 4: Out-of-sample testing of ANN

The ANN models differ more when it comes to RMSE and MAE as table 4 illustrates. The
1 neuron 1 lag ANN has the lowest out-of-sample RMSE and out-of-sample MAE of the ANNs.
There is no significant difference between ANNs regarding the correct direction.

When comparing the ANNs with the ARMAs, the ARMA(1,1) and ARMA(1,1)-GARCH(1,1)
model outperform all other models in terms of RMSE and MAE. Further, in general the AR-
MAs outperform the ANNs in terms of RMSE and MAE by for example placing the ARMA(1,0),
ARMA(1,1), ARMA(1,2) and ARMA(2,1) ahead of the 1 neuron 1 layer ANN in terms of er-

16



6. METHODOLOGY, RESULTS AND ANALYSIS

ror. As previously stated the ARMA(1,1)-GARCH(1,1) is significantly better than ARMA(1,0),
ARMA(2,1), ARMA(1,2) and ARMA(5,0) regarding the correct direction. However, there are no
other significant differences between any of the models regarding the correct direction. A constant
forecast of 0% returns is also tested due to the fact that many of the smaller models produce small
forecasts (close to 0) and have lower errors than the larger models. Such a model has a RMSE of
1.098 and MAE of 0.805 and hence has the third lowest error of all models after the ARMA(1,1)
and ARMA(1,1)-GARCH(1,1).

6.5.1.1 Diebold and Mariano (1995) tests

The DM-test is based on squared errors and should be interpreted as a two-sided hypothesis
test where the hypothesis is that both forecasts have equal losses. The alternative hypothesis is
that the losses differ between two forecasts. In cases where the null hypothesis can be rejected it
merely states that the losses associated with the forecasts are not the same. Hence, further analysis
is required to draw conclusions on which forecast is superior e.g. interpreting loss function values.
In this thesis, interpreting loss function values is done using the Giacomini & White (2006) test
(see subsection 6.5.1.2). For full results from the DM-test see Appendix D.

The DM-test test finds no statistical differences between the ARMAs. However, it does find that
there is a statistical difference between the 30 neuron 20 lag and the other ANNs. The difference
between the 30 neuron 20 lag ANN and the 10 neuron 5 lag ANN is significant at 5% level and
the difference between the 30 neuron 20 lag ANN and the 1 neuron 1 lag ANN is significant at
1% level. Further, the DM-test finds a difference between the 30 neuron 20 lag ANN and all the
ARMAs. This is significant at the 5% level. An asymmetric loss function is also used to test the
robustness of the DM-test statistic (see Appendix D). However it does not provide any additional
information regarding the similarities and differences of the models.

6.5.1.2 Giacomini and White (2006) test

The Giacomini & White (2006) test is similar to the DM-test, but tests the conditional predic-
tive ability and the unconditional predictive ability while the DM-test only compares unconditional
predictive ability. The Giacomini & White (2006) test also does not assume that estimation errors
are removed and hence allows for non-stationarity (Giacomini & White 2006). A positive sign
of the test statistic indicates that forecast B is better than A and a negative sign indicates the
opposite. For full results from the Giacomini & White (2006) test see Appendix D.

The unconditional Giacomini & White (2006) test finds that the ARMA(5,0) is statistically
worse than ARMA(1,1) at a significance level of 5%. The test also shows that the 30 neuron 20
lag ANN is worse than all other models. The 30 neuron 20 lag ANN is worse than 10 neuron
5 lag ANN at significance level of 5% and the 1 neuron 1 lag ANN at significance level of 1%.
Also, all ARMAs beat the 30 neuron 20 lag ANN at significance level of 1%. Further, there is no
statistically significant difference between the two smaller ANNs and the ARMAs.

The conditional Giacomini & White (2006) test shows, in addition to results similar to the
unconditional test, that the ARMA(1,1) is statistically better than the other ARMAs and that the
ARMA(5,0) is statistically worse than all the other ARMAs. However, the ARMA(1,1) does not
have a statistical difference to the 10 neuron 5 lag ANN nor the 1 neuron 1 lag ANN.
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6.5.1.3 Analysis of statistical measurements

From a statistical point of view the ARMA(1,1), 1 neuron 1 lag ANN and the 10 neuron 5
lag ANN are the best models while the 30 neuron 20 lag is the worst model. We find differences
in out-of-sample errors that point towards ARMA(1,1) and ARMA(1,1)-GARCH(1,1). However,
the conditional Giacomini & White (2006) test shows that ARMA(1,1) is significantly better than
ARMA(1,1)-GARCH(1,1). Further, the formal tests do not find any significant differences between
the ARMA(1,1), 1 neuron 1 lag ANN and 10 neuron 5 lag ANN. Also, none of these models have
significant differences in accuracy. Further research is needed to determine if these numerical and
statistical results change as the sample is increased.

None of the models have significant differences in accuracy except for the ARMA(1,1)-GARCH(1,1)
that is statistically superior to ARMA(1,0), ARMA(2,1), ARMA(1,2) and ARMA(5,0). All mod-
els predict the correct direction around 50% of the time and are thus similar to tossing a coin.
Further, the fact that the 0 forecast is similar to the best performing forecasts error-wise suggests
that the models that make low or no predictions perform better and the models that make larger
predictions perform worse, which can be extended to state that it is impossible to predict the
future and thus assuming that prices follow a random walk.

The reason why the DM-tests, unconditional and conditional Giacomini & White (2006) tests
do not find a difference between most of the smaller models may be that the models produce small
predictions causing the errors to be small, which in turn makes it hard to differentiate between
the models. Further, the standard DM-test and Giacomini & White (2006) tests evaluate mod-
els based on squared loss functions, which could partly explain why the tests favor the models
with lower forecasts. Since the tests are based on squared errors, forecasts with larger predictions
are punished more severely compared to forecasts with lower predictions, given the relative lower
volatility in our out-of-sample period. As illustrated in Appendix B there is a large difference
in the strength of the forecasts between the 30 neuron 20 lag ANN and the ARMAs. Since the
30 neuron 20 lag ANN make strong predictions it is punished severely by squared errors when it
is wrong. The reason why the asymmetric DM-test is not able to draw any further conclusions
than the standard DM-test may be explained by that fact that all models tend to underpredict
compared to the actual movements of the index i.e. the models rarely overpredict. As such, the
contribution of an asymmetric DM-test that punishes underprediction more than overprediction is
limited in this study.

The error-argument is strengthened by the fact that the 0-forecast, a constant forecast of 0
percent change every day, would have second lowest errors of all models and neither DM-test
nor unconditional Giacomini & White (2006) test can find a statistical difference between the
0-forecast and any of the models except the 30 neuron 20 lag ANN (the 0-forecast is better) as
shown in in Appendix C. Further, the conditional Giacomini & White (2006) test shows that the
zero forecast is better at a 10% significance level than the ARMA(0,1) and better at a 5% level
than the ARMA(5,0) and 30 neuron 20 lag ANN. From a financial perspective the 0-forecast adds
no value and the low errors of the 0-forecast indicates a strong need to evaluate forecasts using
financial measures rather than statistical measures.
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6.5.2 Economic measures

We use Sharpe ratios and Campbell & Thompson (2008) test of two types of trading strategies
as economic measures. Sharpe ratio is computed using zero interest rate as risk free. The daily
STIBOR 3-month rate adjusted to daily returns over the out-of-sample period is negative, however
most investors do not have the possibility to borrow at negative rates, instead zero interest rate is
used.

Our trading strategies are based on directional trading and long/short positions meaning that
we allow bets in both directions. The trading signal is based on the direction and magnitude of
the forecast and the trading strategy is to take a long position when the forecast indicates positive
returns and take a short position when the forecast indicates negative returns. The position is
opened at the daily closing price and closed at the next day closing price. Hence, the gain or loss
of the position is therefore equal to the actual movement of the index the following day. Trans-
action costs are ignored. The trading strategies are based on full reinvestment in each trade with
a starting value of 1. The first strategy takes a long or short position in the OMXS30 every day
based on the forecast.

The trading strategies are analyzed using the Campbell & Thompson (2008) test and cumulative
returns. The Campbell & Thompson (2008) test includes the out-of-sample R2, the Sharpe ratio
and the R2/S2. The R2 to S2 ratio gives insight into how the predictive ability of the forecast,
out-of-sample R2, can be used to increase portfolio returns for mean-variance investors. Campbell
& Thompson (2008) compare out-of-sample R2 with Sharpe ratios to specify the percentage that
the overall portfolio returns can be increased by including the forecast in the portfolio.

6.5.2.1 Trading system evaluation

When evaluating trading systems there are a few key characteristics of a robust system. Overall
profit is not the sole measure of a system, since it may be generated through an insufficient
number of trades or the system may have unacceptable drawdowns (Pardo 2008). A successful
system should exhibit even distribution of trades, even distribution of profits, acceptable risk,
and statistical validity according to Pardo (2008). There are a number of ways to measure these
characteristics and in this paper the focus on the visual properties of equity curves (cumulative
returns). Equity curve stability refers to the distribution of trades, contribution of each trade,
number of trades, and drawdowns of a system. A system where the majority of the overall profit
is generated by a single trade is not robust since that trade might be unrepeatable, e.g. shorting
the ‘Black Monday’ in october of 19873 (Pardo 2008).

6.5.2.2 No threshold trading strategy

This section includes the results from the Campbell & Thompson (2008) test on the different
trading strategies, which includes Sharpe ratio, out-of-sample R2, and R2/S2 ratio. Cumulative
returns for each model for all the trading strategies can be seen in Appendix A.

The basic trading strategy based upon taking a directional bet in the same way as the predic-
tion results in that six models have positive Sharpe ratios - ARMA(1,1), ARMA(1,1)-GARCH(1,1),

3Black Monday refers to 19th of october 1987, when world markets crashed, the Dow Jones Industrial Average
declined 22.61% in a single trading day.
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No thresholds
Model 30N20L 10N5L 1N1L (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
Overall return 1.524 1.123 1.370 0.852 1.256 1.403 0.888 0.888 1.045
Sharpe Ratio 0.783 0.364 0.618 -0.041 0.505 0.670 -0.041 -0.041 0.216
Out-of-sample R2 -0.718 -0.523 -0.691 -1.432 1 -0.544 -1.432 -1.432 -0.711
R2/S2 -296 -994 -456 -213280 984.91 -305 -213280 -213280 -3870
No. Trades 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 5: Results from trading strategy with no threshold.

ARMA(5,0) and all of the ANNs. The ARMA(1,1)-GARCH(1,1) has a positive out-of-sample R2,
which yields a positive ratio R2/S2 of 984.91 indicating that the overall portfolio returns could be
increased by including the forecast. The equity curve of ARMA(1,1)-GARCH(1,1) is similar to
that of the OMXS30 – it shows high and stable returns during the first 600 days, however almost
all accumulated profit is lost during the following 300 days (see Appendix A). The out-of-sample
R2 is negative for all other forecasts indicating that the return is random, thus also yielding a neg-
ative ratio of R2 to S2. All strategies based on the ARMA models exhibit unstable equity curves.
The equity curves for the ANNs exhibit random patterns with the exception of the 30 neuron 20
lag ANN that shows a positive drift, see Appendix A. The 30 neuron 20 lag ANN also has the
highest overall return. As a result the 30 neuron 20 lag ANN is deemed best from this perspective.

The ARMA models have lower out-of-sample RMSE compared to in-sample RMSE. This is usu-
ally not the case, however this can be explained by the decrease in variance in the out-of-sample
period compared to the in-sample period. One argument behind the decrease in variance is that
the variance increased during the financial crisis of 2008 and continued to be high the following
years. Another possible explanation is the increase of market participants through computerised
trading causing lower volatility, however papers on microstructure tend to disagree on the subject
(cf. Zhang 2010, Brogaard et al. 2010). Also, there is no proof for these arguments in this study.
Since the ARMA models tend to predict small changes, the error becomes larger in times where
the general variance is high and vice versa in times where the general variance is small, which can
be seen in the figure 7 and 8 of forecasts against the actual returns.

6.5.2.3 Threshold trading strategies

A threshold for the predicted change is used for increased precision in the long/short direc-
tional strategy. This means that the system requires a stronger signal in order to take a position.
Our hypothesis behind this strategy is that when the prediction anticipates a sharp move in re-
turns the forecast is more likely to be directionally correct compared to a prediction of a smaller
movement, thus leading to higher accuracy and performance. The thresholds are based upon the
distribution of absolute values of in-sample forecasts, and set to the 25th, 50th and 75th percentiles.

We set the lowest threshold at the 25th percentile. In this case, all models generate trad-
ing signals. However, the ARMA(2,1) and ARMA(1,2) only have 13 and 20 trades respectively.
The models that have few trades also experience decreasing activity with time (see for example
ARMA(1,0)), indicating inconsistent trading and thus inconsistent returns. All models have pos-
itive Sharpe ratios except for ARMA(1,0). None of the models have positive out-of-sample R2

which according to the Campbell & Thompson (2008) test suggests spurious regression and the
returns to be random, the ARMA(1,1)-GARCH(1,1) is an exception with positive out-of-sample
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Threshold 25th percentile
Model 30N20L 10N5L 1N1L (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
Overall return 1.562 1.063 1.327 0.961 1.231 1.452 0.082 0.081 1.124
Sharpe Ratio 0.851 0.255 0.606 -0.087 0.4776 0.821 0.986 0.836 0.345
Out-of-sample R2 -0.637 -0.310 -0.516 -1.083 0.9959 -0.313 -0.024 -0.040 -0.438
R2/S2 -222 -1197 -354 -35708 11000 -117 -6 -14 -930
No. Trades 844 713 803 720 996 372 13 20 679

Table 6: Results from trading strategy with threshold at 25th percentile.

R2. The ARMA(1,1)-GARCH(1,1) is almost identical to that of no threshold as only 4 trades have
been removed, but performing slightly worse in terms of overall returns and Sharpe ratio than
without thresholds. The equity curves at this threshold are volatile (see Appendix A) except for
the ARMA(1,1). The 1 neuron 1 lag ANN shows unstable performance with high returns the first
200 trading days then unstable performance from day 200 until day 850 where it has high returns
once again closing at a positive overall return. This suggests a weak trading strategy since short
periods of time have large impact on the overall performance. The 30 neuron 20 lag ANN also has
a volatile equity curve, but shows a positive drift. The 30 neuron 20 lag ANN exhibits a rather
smooth increase of returns until day 650, where it shows poor performance for 100 days and then
similar to the 1 neuron 1 lag ANN, performs well the last 250 days. The 30 neuron 20 lag ANN is
the best performer of all models given the threshold 25th percentile threshold with a cumulative
return of 56%. Second best is the ARMA(1,1) with a cumulative return of 45%.

Threshold 50th percentile
Model 30N20L 10N5L 1N1L (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
Overall return 1.735 1.311 1.197 1.076 0.980 1.372 1 1 0.880
Sharpe Ratio 1.085 0.662 0.460 0.184 -0.410 0.938 0.000 0.000 -0.146
Out-of-sample R2 -0.473 -0.285 -0.279 -0.292 0.003 -0.245 -0.001 -0.001 0.018
R2/S2 -101 -164 -332 -2173 5.649 -70 0 0 213
No. Trades 641 498 581 185 7 96 0 0 362

Table 7: Results from trading strategy with threshold at 50th percentile.

The 50th percentile threshold produces positive Sharpe ratios for all models that are trading ex-
cept the ARMA(5,0) and ARMA(1,1)-GARCH(1,1). The ARMA(2,1) and ARMA(1,2) never trade
given this threshold and ARMA(1,1)-GARCH(1,1) only has 7 trades, which shows that the fore-
casts produced by these models are very narrow compared to in-sample period. All models have
negative out-of-sample R2, with exception of the ARMA(5,0) and the ARMA(1,1)-GARCH(1,1)
which also results in a positive R2/S2. However, as previously mentioned the ARMA(5,0) and
ARMA(1,1)-GARCH(1,1) have negative Sharpe ratio and therefore it is not relevant to analyze
the R2/S2 further. Further, the equity curve of the ARMA(5,0) displays instability and negative
drift. Noticeable is that the 30 neuron 20 lag ANN shows a cumulative return of 73% and scores
the highest Sharpe ratio of all models in this study at 1.08. The equity curve of the 30 neuron
20 lag ANN shows high returns in the last 250 days of trading, which could be due to higher
volatility during that period. The 30 neuron 20 lag ANN has 641 trades. The equity curve for the
ARMA(1,1) shows positive results, but only has 96 trades Overall the equity curves for the 50th
percentile trading strategy shows similarities to the 25th percentile strategy (Appendix A). The 30
neuron 20 lag ANN implies robustness by increased overall return. Further, the ARMA(1,1) has
the highest return of all ARMAs but lower compared to 25th percentile strategy. The ARMA(1,1)
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and 30 neuron 20 lag ANN are considered the best models at the 50th percentile threshold as they
have the highest Sharpe ratios, highest returns and best looking equity curves.

Threshold 75th percentile
Model 30N20L 10N5L 1N1L (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
Overall return 1.347 1.023 1.034 1 1 1.019 1 1 0.998
Sharpe Ratio 0.721 0.156 0.191 0 0 0.153 0 0 0.085
Out-of-sample R2 -0.271 -0.161 -0.072 -0.001 -0.001 -0.028 -0.001 -0.001 0.068
R2/S2 -131 -1676 -498 0 0 -297 0 0 2384
No. Trades 387 219 377 0 0 26 0 0 123

Table 8: Results from trading strategy with threshold at 75th percentile.

The ARMA(1,0), ARMA(1,1)-GARCH(1,1), ARMA(1,2) and ARMA(2,1) are not trading given
this threshold. However all trading models have positive Sharpe ratios. All models with the excep-
tion of ARMA(5,0) experience decreasing Sharpe ratios at the 75th percentile threshold compared
to the 50th percentile threshold. Conversely, the ARMA(5,0) has a positive Sharpe ratio at the
75th percentile compared to a negative Sharpe ratio at 50th percentile. The ARMA(5,0) also has
positive out-of-sample R2 - however, the Sharpe ratio is close to zero and the equity curve displays
an uneven distribution of trades and randomness. The ARMA(1,1) produces profit but does not
trade a lot. The 30 neurons 20 lags ANN has the best Sharpe ratio at 0.72 but once again negative
out-of-sample R2. The only model that shows equity curve stability among the ANNs is the 30
neurons 20 lags ANN with an overall return close to 34%. However, the 30 neuron 20 lag ANN has
worse performance compared to previous thresholds. The best performing model with the given
threshold is the 30 neuron 20 lag ANN with the highest Sharpe ratio, highest cumulative returns,
most stable equity curve, and relatively large number of trades.

In order to further test the robustness of the forecasts figure 9 shows the arithmetic average return
per trade (ARPT) given 99 different threshold strategies for each model. The different strategies
represent trading thresholds based on every percentile of the in-sample forecasts. Strategies with
less than 100 trades are not included. Given a higher threshold the weak signals are weeded out
and arguably the ARPT should increase with the increasing threshold.

Figure 9 shows that two strategies stand out given ARPT with increasing thresholds - the
ARMA(1,1) and the 30 neuron 20 lag ANN. The ARMA(1,1) has the second highest initial ARPT
and the ARPT is increasing rapidly until the system produces less than 100 trades at the 49th
percentile threshold and is stopped. The 30 neuron 20 lag ANN has the highest initial ARPT and
a steady increase until around the 50th percentile threshold where the ARPT starts to decrease.
However, the ARPT of the 30 neuron 20 lag ANN starts to increase again around the 70th per-
centile and overall shows an increasing trend. This indicates robustness of the 30 neuron 20 lag
ANN and especially the ARMA(1,1). Further, 95% confidence intervals for the ARMA(1,1) show
that the ARPT is increasing and is distinguishable from 0 except for the first thresholds. The
confidence intervals for the 30 neuron 20 lag ANN however show that the ARPT is not distin-
guishable from 0 most of the time. The confidence intervals further strengthen the robustness of
the ARMA(1,1).

Figure 10 shows cumulative returns rather than average return for the trading strategies based
on 1st to 99th percentile of in-sample forecasts. In theory, similarly to the ARPT, the cumulative
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Figure 9: Average return per trade for 99 different threshold strategies. Confidence interval for ARMA(1,1)
and 30 Neuron 20 lag ANN are marked with round dots.

Figure 10: Average return per trade for 99 different threshold strategies.

returns should experience an increase with an increasing threshold (at least initially) as less certain
forecasts are weeded out. In addition to figure 9, figure 10 shows that overall the 30 neuron 20 lag
ANN would have higher returns than the ARMA(1,1) in our sample. Also, the increased ARPT
of ARMA(1,1) shown in figure 9 does not increase the overall cumulative returns as clearly - the
cumulative returns of ARMA(1,1) in figure 10 are volatile and have no clear overall trend. Further,
the 30 neuron 20 lag ANN has a positive trend of cumulative returns until the 50th percentile where
it shifts to a continuous decline instead, which may be explained by the fact that the APRT is not
increasing fast enough make up for less trades.
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6.5.2.4 Analysis of economic measurements

Based on economic metrics and trading strategies the ARMA(1,1) and the 30 neuron 20 lag
ANN are deemed the best performing models. However, it seems as all models have trouble
with consistently accumulating returns over time. The trading strategies show that implementing
thresholds have varying impact. For some models the thresholds reduce the number of trades while
increasing the overall return, thus sorting out the weak (bad) signals. However, for some of the
strategies this is not the case. The number of trades are lower but the average returns are also lower
- this implies that the forecasts are not robust since ‘stronger’ signals do not correspond with ‘bet-
ter’ signals. If stronger signals would equal better signals the ARPT would increase for all models,
which is clearly not the case. For example, the 1 neuron 1 lags ANN that experiences decreasing
ARPT over time. Two models that stand out is the ARMA(1,1) where the ARPT increases rapidly
and the 30 neuron 20 lag ANN for which we also see a positively increasing ARPT coupled with
more trades than the ARMA(1,1). The 30 neuron 20 lag ANN and the ARMA(1,1) are the best
models from an ecomomic perspective, however differentiating between the models is hard. One
could argue that the ANN is more robust since it has more trades and produces higher overall
return than the ARMA(1,1) and higher Sharpe ratios in general. However, the robustness test
using ARPT favors the ARMA(1,1) since the 30 neuron 20 lag ANN experiences decreasing ARPT
between 50th to the 70th percentile thresholds. Further, the fact that the GARCH(1,1) extension
created worse performance from an economic point of view could be interpreted as the original
ARMA(1,1) is overfitting. More specifically, the ARMA(1,1) interprets the changing volatility as
changes in the mean. As such, the GARCH-extension works as a robustness test and indicates
that some of the economic performance of the ARMA(1,1) may be due to luck. Notwithstanding,
both the 30 neuron 20 lag ANN and ARMA(1,1) have quite volatile equity curves with positive drift.

Another notable fact (illustrated in Appendix A) is that even though some models outperform
the OMXS30 according to final returns, none of the models consistently outperform the index
during the 1000 days. Hence, none of the forecasts can be used to challenge the efficient market
hypothesis.

7 Discussion

In this section we analyze and discuss the results further and from a higher level of abstraction
in order to find the overall best forecast(s). We also discuss discrepancies between financial and
statistical measures of performance.

Based on MSE, RMSE, DM-tests and Giacomini & White (2006) tests the ARMA(1,1), 10
neuron 5 lag ANN and 1 neuron 1 lag ANN are deemed the best models while the 30 neuron 20
lag ANN is deemed the worst. Based on economic metrics however the ARMA(1,1) and the 30
neuron 20 lag ANN are deemed the best performing models. The fact that the 30 neuron 20 lag
ANN is deemed the worst performing model statistically, but one of the best performing according
to Sharpe ratio and equity curve is interesting. In general the DM-tests, the Giacomini & White
(2006) tests as well as RMSE and MAE might not give full financial insight when compared to
Sharpe ratios and equity curves. Also, the conclusions that can be drawn from out-of-sample R2

can be questioned when looking at the equity curves based on these forecasts. In the case where
the out-of-sample R2 and the Sharpe ratio are both positive, the Sharpe ratio is low, the equity
curve is unstable, or the number of trades are low. Comparing the out-of-sample R2 measure with
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the best performing models considering Sharpe ratio and equity curve stability makes one question
the relevance of the measure. For example the ARMA(5,0) at the 50th percentile threshold that
scores a positive out-of-sample R2 and positive Sharpe ratio, but has a low overall profit and un-
stable equity curve. One problem with the out-of-sample R2 is that it does not take profitability
of the system into consideration, nor equity curve stability which could be argued is the two most
interesting parameters when designing a trading strategy. Further, there is often a discrepancy
between economic measures (Sharpe ratio and cumulative returns) and the equity curves, which
highlights the complexity of evaluating forecasts from a financial perspective.

This study further strengthens the arguments of Welch & Goyal (2008), Cenesizoglu & Timmer-
mann (2012), and Campbell & Thompson (2008) that more meaningful economic measurements
are needed to evaluate forecasts and models rather than standard statistical measures, but also
shows the difficulty in determining economic performance. For many of the threshold strategies
the distribution of trades are not even which is troublesome from a trading perspective as argued
by Pardo (2008). The reason why it is troublesome is that it is uncertain if the required conditions
would appear again. For example, a system that requires arbitrage possibilities might be obsolete
in a modern highly competitive environment. Timmermann (2008) discusses this type of problem
where a forecast does not produce consistent returns. In such a case it is costly for the investor
to allocate capital to a system that does not trade for extensive periods of time. Whenever a
systems activity or performance decreases there is a possibility that the opportunity has ceased to
exists according to Timmermann (2008). Therefore a robust trading strategy should have evenly
distributed returns and trades over time. Finding consistency in a trading strategy is an argument
for why it is important to analyze equity curves. Analyzing equity curves also solves the potential
sub-sample issue that Stock & Watson (2004) mention when analyzing out-of-sample performance.
Out-of-sample equity curves are deemed to give the most insight into the economic performance
of the forecast and minimize the risk of curve fitting - a phenomenon similar to overfitting.

8 Conclusion

The aim of this study is to determine which model produces the best forecasts. We have ex-
amined the models with both statistical and economical measures in order to find evidence to
support a conclusion. However, our evidence is not homogeneous. When deciding which model
that creates the best forecast is conditional on the objective. The statistical measures indicate that
ARMA(1,1), 10 neuron 5 lag ANN and 1 neuron 1 lag ANN are the best models. However, if the
criteria is economic value it is another issue. The trading strategies show that the 30 neuron 20
lags ANN exhibited the most compelling equity curve in general, and the ARMA(1,1) show posi-
tive drift given certain thresholds and highly increasing ARPT with increasing thresholds. These
findings suggest that there is limited value in only using statistical measures when analyzing a
model if the objective is to create profitable trading strategies, and that it is important to take
equity curves and non-statistical measures into consideration when developing trading strategies.
The statistical measurements rely heavily on one type of metric – the error, which might not give
sufficient information from an economic view. In this study we can conclude that models that
have a small predictive range score far better in terms of errors but do not necessarily lead to
better economic outcomes. For example, the 0 prediction scored low errors but has no predictive
power. The general conclusions that statistical measures do not translate into economic value is
supported by previous findings of Timmermann (2008), Welch & Goyal (2008). Further, the study
also highlights the complexity in evaluating a forecast from an financial perspective by showing

25



8. CONCLUSION

how economic measures give different results. The out-of-sample equity curve features the reliabil-
ity of a trading system by displaying distribution of trades and returns, which is something that
statistical measures and also most economic measures fail to show. This is an important aspect as
a system that either stops trading or has poor performance over extended periods of time might
be a sign of creative destruction as Timmermann (2008) argues.

Based on the findings in this study, evaluating a forecast is far more complex than the result
of one metric and is dependent on the intended application of the forecast. There are good mea-
sures for establishing the statistical performance of a forecast however there are not any good
measures for establishing the financial performance. The study suggests that a combination of
statistics are needed in order to evaluate forecasts and shows how out-of-sample equity curves may
be the best metric for evaluating financial forecasts. Further research is needed to find suitable
measures for determining economic value of forecasts.
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A. CUMULATIVE RETURNS WITH TRADING STRATEGIES

Appendices

A Cumulative returns with trading strategies

Figure 11: Cumulative returns for ARMA(1,1)-GARCH(1,1), 25th, 50th and 75th percentile threshold.

Figure 12: Cumulative returns for ARMA(1,0), 25th, 50th and 75th percentile threshold.
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A. CUMULATIVE RETURNS WITH TRADING STRATEGIES

Figure 13: Cumulative returns for ARMA(1,1), 25th, 50th and 75th percentile threshold.

Figure 14: Cumulative returns for ARMA(1,2), 25th, 50th and 75th percentile threshold.
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A. CUMULATIVE RETURNS WITH TRADING STRATEGIES

Figure 15: Cumulative returns for ARMA(2,1), 25th, 50th and 75th percentile threshold.

Figure 16: Cumulative returns for ARMA(5,0), 25th, 50th and 75th percentile threshold.
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A. CUMULATIVE RETURNS WITH TRADING STRATEGIES

Figure 17: Cumulative returns for 1 neuron 1 lag ANN, 25th, 50th and 75th percentile threshold.

Figure 18: Cumulative returns for 10 neuron 5 lag ANN, 25th, 50th and 75th percentile threshold.
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B. FORECASTS COMPARED TO ACTUAL RETURNS

Figure 19: Cumulative returns for 30 neuron 20 lag ANN„ 25th, 50th and 75th percentile threshold.

B Forecasts compared to actual returns

Figure 20: Forecast compared to actual for ARMA(0,1), with indication of max and min forecast.

35



B. FORECASTS COMPARED TO ACTUAL RETURNS

Figure 21: Forecast compared to actual for ARMA(1,0), with indication of max and min forecast.

Figure 22: Forecast compared to actual for ARMA(1,1), with indication of max and min forecast.

Figure 23: Forecast compared to actual for ARMA(1,2), with indication of max and min forecast.
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B. FORECASTS COMPARED TO ACTUAL RETURNS

Figure 24: Forecast compared to actual for ARMA(2,1), with indication of max and min forecast.

Figure 25: Forecast compared to actual for ARMA(5,0), with indication of max and min forecast.
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B. FORECASTS COMPARED TO ACTUAL RETURNS

Figure 26: Forecast compared to actual for 1 neuron 1 lag ANN, with indication of max and min forecast.

Figure 27: Forecast compared to actual for 10 neurons 5 lags ANN, with indication of max and min forecast.
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C. DM-TEST AND GIACOMINI AND WHITE-TEST OF 0-FORECAST

Figure 28: Forecast compared to actual for 30 neurons 20 lags ANN, with indication of max and min
forecast.

C DM-test and Giacomini and White-test of 0-forecast

Confidence of DM test of 0-forecast
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0) 1 N 1 L 10 N 5 L 30 N 20 L

0 forecast 0.3116 0.6711 0.8908 0.3180 0.3167 0.1048 0.6711 0.8612 0.9993

Table 9: Confidence of DM test of 0-forecast. Neuron is shortened to ’N’, Lag is shortened to ’L’.

Unconditional Giacomini and White (2006) test of 0-forecast
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0) 1 N 1 L 10 N 5 L 30 N 20 L

0 forecast
T-S 0.24(-) T-S 0.02(+) T-S 1.51(-) T-S 0.22(+) T-S 0.23(+) T-S 1.57(+) T-S 0.20(+) T-S 1.18(+) T-S 10.09(+)
P-v: 0.623 P-v: 0.887 P-v: 0.218 P-v: 0.636 P-v: 0.633 P-v: 0.210 P-v: 0.658 P-v: 0.278 P-v: 0.001

Table 10: Unconditional Giacomini and White (2006) test of 0-forecast, + indicates model B better and -
indicates model A better . Neuron is shortened to ’N’, Lag is shortened to ’L’,Test-Statistic is shortened
to ’T-S’, P-value is shortened to ’P-v’.
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D. COMPARING TESTS

Conditional Giacomini and White (2006) test of 0-forecast
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0) 1 N 1 L 10 N 5 L 30 N 20 L

0 forecast
T-S: 1.54(+) T-S: 2.98(+) T-S: 3.83(-) T-S: 1.47(+) T-S: 1.52(+) T-S: 9.37(+) T-S: 0.89(+) T-S: 3.16(+) T-S: 10.58(+)
P-v: 0.462 P-v: 0.225 P-v: 0.147 P-v: 0.480 P-v: 0.469 P-v: 0.009 P-v: 0.642 P-v: 0.206 P-v: 0.005

Table 11: Conditional Giacomini and White (2006) test of 0-forecast, + indicates model B better and -
indicates model A better . Neuron is shortened to ’N’, Lag is shortened to ’L’,Test-Statistic is shortened
to ’T-S’, P-value is shortened to ’P-v’.

D Comparing tests

D.1 Symmetric DM-test

Confidence of symmetric DM-test
ANN \ ARMA (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
1 neuron 1 lag 0.6161 0.6551 0.8349 0.617 0.6172 0.2882
10 neuron 5 lag 0.8422 0.8527 0.922 0.8425 0.8426 0.6286
30 neuron 20 lag 0.9991 0.9994 0.9998 0.9991 0.9991 0.9982

Table 12: Confidence of symmetric DM-test of ANNs and ARMAs.

Table 12 shows the DM-tests between the ARMAs and the ANNs. The DM (1995) test can
not find any statistical difference between the forecast of the 1 neuron 1 lag or the 10 neurons 5
lags ANNs and the ARMAs. However, the DM (1995) test shows, with 5% significance, that there
is a difference between the 30 neuron 20 lag ANN and all the ARMA models.

Confidence of symmetric DM-test
ANN \ ANN 1 neuron 1 lag 10 neuron 5 lag 30 neuron 20 lag
1 neuron 1 lag 0 - -
10 neuron 5 lag 0.7563 0 -
30 neuron 20 lag 0.9986 0.9932 0

Table 13: Confidence of symmetric DM-test of ANNs.

As table 13 illustrates the DM-test finds a difference between the 30 neuron 20 lag and the 1
neuron 1 lag ANN on a 1% significance level and a difference on a 5% significance level compared
to the 10 neuron 5 lag ANN. The DM-test can not find a difference between the 1 neuron 1 lag
ANN and the 10 neuron 5 lag ANN.
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D. COMPARING TESTS

Confidence of symmetric DM-test
ARMA \ ARMA (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0)
(1,0) 0 - - - - -
(1,1)-GARCH(1,1) 0.4827 0 - - - -
(1,1) 0.902 0.8720 0 - - -
(1,2) 0.9426 0.5143 0.4851 0 - -
(2,1) 0.904 0.5141 0.0987 0.4846 0 -
(5,0) 0.1249 0.0083 0.0103 0.1243 0.1070 0

Table 14: Confidence of symmetric DM-test of ARMAs.

As table 14 illustrates the DM-test can not find any statistical difference between the ARMAs.

D.2 Asymmetric DM-test

Confidence of asymmetric DM-test
ARMA \ ARMA (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
(1,0) 0
(1,1)-GARCH(1,1) 0.5078 0
(1,1) 0.9052 0.8831 0
(2,1) 0.9049 0.4928 0.5102 0
(1,2) 0.9435 0.4931 0.0955 0.5097 0
(5,0) 0.1341 0.0076 0.0104 0.1336 0.1230 0

Table 15: Confidence of asymmetric DM-test of ARMAs.

Confidence of asymmetric DM-test
ANN \ ARMA (1,0) (1,1)-GARCH(1,1) (1,1) (2,1) (1,2) (5,0)
1 neuron 1 lag 0.6215 0.6252 0.8446 0.6223 0.6225 0.2846
10 neuron 5 lag 0.8517 0.8522 0.9275 0.8521 0.8522 0.6405
30 neuron 20 lag 0.9987 0.9990 0.9997 0.9987 0.9987 0.9975

Table 16: Confidence of asymmetric DM-test of ARMAs and ANN.

Confidence of asymmetric DM-test
ANN \ ANN 1 neuron 1 lag 10 neuron 5 lag 30 neuron 20 lag
1 neuron 1 lag 0
10 neuron 5 lag 0.2327 0
30 neuron 20 lag 0.0018 0.0096 0

Table 17: Confidence of asymmetric DM-test of ANN.
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D. COMPARING TESTS

Conditional Giacomini and White (2006) test.
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0)

(1,0)
T-S: 0
P-v: 1

(1,1)-GARCH(1,1
T-S: 1.81(+) P-v: 1
P-v: 0.405 P-v: 0

(1,1)
T-S: 4.86(+) T-S: 4.71(+) T-S: 0
P-v: 0.088 P-v: 0.095 P-v: 1

(1,2)
T-S: 3.60(+) T-S: 1.78(-) T-S: 4.84(-) T-S: 0
P-v: 0.165 P-v: 0.411 P-v: 0.089 P-v: 1

(2,1)
T-S: 3.10(+) T-S: 1.79(+) T-S: 4.84(-) T-S: 2.63(-) T-S: 0
P-v: 0.212 P-v: 0.073 P-v: 0.089 P-v: 0.269 P-v: 1

(5,0)
T-S: 9.07(-) T-S: 10.72(-) T-S: 11.41(-) T-S: 9.08(-) T-S: 9.07(-) T-S: 0
P-v: 0.011 P-v: 0.005 P-v: 0.003 P-v: 0.011 P-v: 0.011 P-v: 1

Table 18: Conditional Giacomini and White (2006) test between ARMAs,+ indicates model B better and
- indicates model A better. Test-Statistic is shortened to ’T-S’, P-value is shortened to ’P-v’.

Unconditional Giacomini and White (2006) test.
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0)

(1,0)
T-S: 0
P-v: 1

(1,1)-GARCH(1,1)
T-S: 0.00(-) P-v: 1
P-v: 0.965 P-v: 0

(1,1)
T-S: 1.67(+) T-S: 1.29(+) T-S: 0
P-v: 0.196 P-v: 0.256 P-v: 1

(1,2)
T-S: 2.48(+) T-S: 0.00(+) T-S: 1.66(-) T-S: 0
P-v: 0.115 P-v: 0.970 P-v: 0.198 P-v: 1

(2,1)
T-S: 1.70(+) T-S: 0.00(+) T-S: 1.66(-) T-S: 0.11(-) T-S: 0
P-v: 0.192 P-v: 0.969 P-v: 0.198 P-v: 0.745 P-v: 1

(5,0)
T-S: 1.32(-) T-S: 1.54(-) T-S: 5.34(-) T-S: 1.33(-) T-S: 1.33(-) T-S: 0
P-v: 0.250 P-v: 0.214 P-v: 0.021 P-v: 0.249 P-v: 0.249 P-v: 1

Table 19: Unconditional Giacomini and White (2006) test between ARMAs,+ indicates model B better and
- indicates model A better. Test-Statistic is shortened to ’T-S’, P-value is shortened to ’P-v’.

Conditional Giacomini and White (2006) test. + indicates model B better and - indicates model A better
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0)

1 N 1 L
T-S: 0.65(-) T-S: 0.85(-) T-S: 4.01(-) T-S: 0.66(-) T-S: 0.66(-) T-S: 1.05(+)
P-v: 0.721 P-v: 0.655 P-v: 0.135 P-v: 0.720 P-v: 0.720 P-v: 0.593

10 N 5 L
T-S: 2.65(-) T-S: 4.18(-) T-S: 3.54(-) T-S: 2.65(-) T-S: 2.65(-) T-S: 1.64(-)
P-v: 0.266 P-v: 0.124 P-v: 0.170 P-v: 0.265 P-v: 0.266 P-v: 0.440

30 N 20 L
T-S: 10.28(-) T-S: 10.64(-) T-S: 12.74(-) T-S: 10.28(-) T-S: 10.28(-) T-S: 8.38(-)
P-v: 0.006 P-v: 0.005 P-v: 0.002 P-v: 0.006 P-v: 0.006 P-v: 0.015

Table 20: Conditional Giacomini and White (2006) test between ARMAs,+ indicates model B better and
- indicates model A better. Test-Statistic is shortened to ’T-S’, P-value is shortened to ’P-v’.
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D. COMPARING TESTS

Unconditional Giacomini and White (2006) test.
Model B \ Model A (1,0) (1,1)-GARCH(1,1) (1,1) (1,2) (2,1) (5,0)

1 N 1 L
T-S: 0.12(-) T-S: 0.16(-) T-S: 1.03(-) T-S: 0.13(-) T-S: 0.13(-) T-S: 0.31(+)
P-v: 0.724 P-v: 0.690 P-v: 0.310 P-v: 0.722 P-v: 0.722 P-v: 0.576

10 N 5 L
T-S: 1.05(-) T-S: 1.10(-) T-S: 2.04(-) T-S: 1.06(-) T-S: 1.06(-) T-S: 0.11(-)
P-v: 0.305 P-v: 0.295 P-v: 0.153 P-v: 0.304 P-v: 0.304 P-v: 0.743

30 N 20 L
T-S: 9.77(-) T-S: 10.27(-) T-S: 12.38(-) T-S: 9.78(-) T-S: 9.78(-) T-S: 8.41(-)
P-v: 0.002 P-v: 0.001 P-v: 0.000 P-v: 0.002 P-v: 0.002 P-v: 0.004

Table 21: Unconditional Giacomini and White (2006) test between ARMAs,+ indicates model B better and
- indicates model A better. Test-Statistic is shortened to ’T-S’, P-value is shortened to ’P-v’.

Unconditional Giacomini and White (2006) test.
Model B \ Model A 1 neuron 1 lag 10 neuron 5 lag 30 neuron 20 lag

1 neuron 1 lag
T-S: 0
P-v: 1

10 neuron 5 lag
T-S: 0.48(-) T-S: 0
P-v: 0.487 P-v: 1

30 neuron 20 lag
T-S: 8.87(-) T-S: 6.06(-) T-S: 0
P-v: 0.003 P-v: 0.014 P-v: 1

Table 22: Unconditional Giacomini and White (2006) test between ARMAs,+ indicates model B better and
- indicates model A better. Test-Statistic is shortened to ’T-S’, P-value is shortened to ’P-v’.

Conditional Giacomini and White (2006) test.
Model B \ Model A 1 neuron 1 lag 10 neuron 5 lag 30 neuron 20 lag

1 neuron 1 lag
T-S: 0
P-v: 1

10 neuron 5 lag
T-S: 2.30(-) T-S: 0
P-v: 0.316 P-v: 1

30 neuron 20 lag
T-S: 11.07(-) T-S: 6.42(-) T-S: 0
P-v: 0.004 P-v: 0.040 P-v: 1

Table 23: Conditional Giacomini and White (2006) test between ARMAs,+ indicates model B better and
- indicates model A better. Test-Statistic is shortened to ’T-S’, P-value is shortened to ’P-v’.
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