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Abstract 
A Kelly strategy theoretically optimizes the growth rate of investor’s capital. This paper 

evaluates its usefulness on the Swedish stock market between 2005 and 2015 by comparing 

returns to that of common portfolio strategies and a market index. We conclude that the Kelly 

strategy produces returns around five times that of the market for the same period. After 

conducting robustness tests, the results are less convincing.  
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1. Introduction  
 
A Kelly strategy as defined by Ziemba (2016) is a scheme that enables investors to find the 

growth optimal allocation of securities to maximize their final wealth. This strategy is based 

on Kelly’s (1956) criterion, which defines the long-run growth optimal allocation size. 

Several studies examine the implementation of a Kelly strategy on financial markets but are 

divided in their conclusions. Roll (1973) shows that the Kelly strategy applied as a portfolio 

strategy is statistically indistinguishable from the market portfolio in terms of rate of returns, 

whereas Estrada (2010) argues it is superior in terms of long-term growth to traditional 

strategies. The theoretical framework on the properties of Kelly’s criterion is commonly 

accepted (see Davis & Lleo, 2014; Rotando & Thorp, 1992; Thorp, 2006) meanwhile the 

usefulness in practice remains undetermined. With this in mind, the problem statement in this 

thesis is whether investors would benefit (“benefit” evaluated based on performance relative 

to benchmarks) from applying a Kelly strategy in practice and whether its previous findings 

are aligned with our findings from the Swedish stock market from 2005 to 2015.  

 

Our purpose is to provide the reader with an objective evaluation of this strategy. We 

examine the applicability of a Kelly strategy in practice, i.e., apply a Kelly strategy to 

empirical data and compare it to other portfolio choice approaches. We use all data on 

Swedish listed stocks from 2005 to 2015. The intuition behind the choice of Swedish equities 

in our analysis is based on the fact that there is no previous evidence for implementations of a 

Kelly strategy on this asset class and market. In this paper, we show how the Kelly strategy 

differs in returns and in volatility of the returns. Estrada (2010) concludes that the Kelly 

strategy is, in fact, superior in terms of long-term growth to traditional strategies. In line with 

this, we illustrate that it is a relevant long-term allocation strategy in terms of wealth growth. 

However, there are potential biases in our results, hence we conduct a number of robustness 

analysis. We conclude that the robustness returns are in fact lower when adjusted. Since our 

adjustments are of major importance in order to evaluate the strategy, we build our analysis 

by looking at both the adjusted and the unadjusted Kelly portfolios when comparing to our 

benchmark strategies. Finally, we want to highlight how a rational and growth maximizing 

investor following a Kelly strategy might differ in their allocation relative to the market 

portfolio.  
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The remainder of this paper is organized as follows. Section 2 outlines the theoretical 

framework, which serves as a foundation on which this paper is built. First the Kelly strategy 

and formula are presented and discussed, whereby the existing literature is highlighted. In 

Section 3, we explain the method used throughout the paper and how we proceed by applying 

the Kelly strategy on the financial market. In the same section we also do a robustness test on 

our method. Section 4 presents our results, which also include robustness tests of the Kelly 

strategy. Our findings are later included in the final discussion in Section 5. Finally, in 

Section 6 we bring forward our conclusion.  

 

 

2. Theoretical Framework 

2.1 Kelly strategy  
A Kelly strategy is the implementation of Kelly’s (1956) criterion but to avoid confusion we 

only use the term Kelly strategy throughout this paper. To understand the intuition behind the 

usage of a Kelly strategy, consider a scenario where there are favourable (i.e., the probability 

to win is larger than the probability to lose) bets at hand available to choose from. Next, we 

proceed to determine what this bet should amount to, measured as a fraction of total wealth at 

hand. The Kelly strategy determines the optimal bet size for us in terms of growth 

maximization. Thorp, MacLean, & Ziemba (2011) demonstrate in practice how gambling 

houses can be beaten by individuals implementing a Kelly strategy, through betting the 

optimal fraction of their wealth.  

 

The general formula used to implement the Kelly strategy for independent investments is to a 

high degree identical to the Sharpe ratio but uses variance instead of volatility, which is 

demonstrated below. The logic behind this is explained by, for example, Thorp (2006) who 

uses Tucker’s theorem to transform the function into a Brownian motion. To use the Kelly 

formula one needs to estimate excess returns and return volatilities for securities. Following 

this, the optimal allocation of a portfolio consisting of these securities is constructed. Below 

we derive the Kelly formula. First we look at the discrete probabilities case, used in betting. 

Thereafter, we present two derivations of the formula used for continuous probabilities, one 



 
 

7 
 

illustrated in the next section, and one included in the appendix. Continuous probabilities are 

applicable when investing.  

2.1.1 Kelly (1956) Formula for Discrete Probabilities  

Assume a favourable bet with probability !
"
< 𝑝 ≤ 1 and outcome 1, a losing probability of 

𝑞 = 1 − 𝑝 with outcome -1, and that the odds are even. The initial wealth is denominated by 

𝑊+. The wealth after n trials, betting a fraction f of the initial wealth, is given by 

 

𝑊, = 𝑊+ 1 + 𝑓 /(1 − 𝑓),2/	

   

The exponential rate of asset growth per trial, equal to the logarithm of the geometric mean, 

can be restated by 

 

𝐺, 𝑓 = log
𝑊,
𝑊+

!
,
= 	 log 1 + 𝑓)

/
, 1 − 𝑓

,2/
,  

=
𝑚
𝑛 log 1 + 𝑓 +

𝑛 −𝑚
𝑛 log	(1 − 𝑓) 

 

Our expected growth rate is given by 

 

𝐸 𝐺,(𝑓) = 𝑔 𝑓 = 𝑝	 ∙ 	 log 1 + 𝑓 + 𝑞 ∙ log 1 − 𝑓 = 𝐸 𝑙𝑜𝑔(𝑊)  

 

where 𝑝 is defined as the winning probability and 𝑞 the losing probability. Maximizing 𝑔 𝑓  

with respects to 𝑓 results in 

𝑞? 𝑓 = 	
𝑝

1 + 𝑓 −
𝑞

1 − 𝑓 =
𝑝 − 𝑞 − 𝑓

(1 + 𝑓)(1 − 𝑓) = 0 

⇔ 𝑓 = 𝑓∗ = 𝑝 − 𝑞,			𝑝 ≥ 𝑞 > 0 

 

The second derivative with regards to f shows that f = f* is the unique maximum of the 

function 

𝑔 𝑓∗ = 𝑝 ∙ log 𝑝 + 𝑞 ∙ log 𝑞 + log 2 > 0 

𝑞?? G = −
𝑝

1 + 𝑓 " −
𝑞

(1 − 𝑓)" < 0 
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Theorem 1 (Kelly): the optimal fraction, under Bernoulli trials, which should be invested per 

trial, is f* = p-q, the edge. This fixed fraction strategy maximizes the expected value of the 

logarithm of capital at each trial (Kelly 1956). 

 

Thorp (1971) points out that maximizing the expected logarithm of wealth E[log(Wt)] is 

equivalent to maximizing the exponential rate of growth per time period g(f).  

 

Now, moreover, we assume that the odds are not even such that 𝜊 ∈ ℝK; thus, a game is 

favourable if po - q > 0, which results in a variation of the logarithm of the geometric growth 

rate 

𝑔 𝑓, 𝑜 = 𝑝𝑙𝑜𝑔 1 + 𝑜𝑓 + 𝑞𝑙𝑜𝑔 1 − 𝑓  

Which is maximized by 

𝑓∗ =
𝑜𝑝 − 𝑞
𝑜 =

𝑒𝑑𝑔𝑒
𝑜𝑑𝑑𝑠 

The optimal fraction of wealth one uses to bet, 𝑓∗, is presented above. In the next section we 

derive it in another way and translate inputs into financial terms so that the formula is 

applicable when investing. 

2.1.2 Thorp’s (2006) continuous approximation  
Since our goal is to apply the Kelly criterion on stocks, a similar result for a continuous 

distribution is relevant (Thorp 2006). The goal is still to maximize 𝑔 𝑓 = 𝐸 log 1 + 𝑓𝑥 =

log	(1 + 𝑓𝑥 = 𝑑𝑃(𝑥) with P(x) being a probability measure and f a fraction of capital 

invested. Also we assume constraints 1 + 𝑓𝑥 > 0, such that log can be defined, and 𝑓Q = 1. 

If the outcomes of x are a symmetric random variable around E(x)= µ with Var(x) = σ2 we can 

describe the wealth W as 

𝑊 𝑓 = 𝑊+ 1 + 1 − 𝑓 𝑟 + 𝑓𝑥 = 𝑉+[1 + 𝑟 + 𝑓 𝑥 − 𝑟 ] 

r is the return on the risk free, thus g(f) is 

𝑔 𝑓 = 𝐸 𝐺 𝑓 = 𝐸𝑙𝑜𝑔
𝑊 𝑓
𝑊+

= 𝐸	log	[1 + 𝑟 + 𝑓 𝑥 − 𝑟 ] 

With subdivided time intervals with T independent steps 

𝑊V(𝑓)
𝑊+

= [1 + 1 − 𝑓 𝑟 + 𝑓𝑥W]
V

WX!

 

Taking the expectation and natural logarithm on both sides allows us to calculate g(f) from a 

second order Taylor-approximation as 
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𝑔 𝑓 = 𝑟 + 𝑓 𝜇	 − 	𝑟 −
𝜎"𝑓"

2 + 𝑂 𝑛2
!
"  

As t approaches ∞, 𝑂 𝑛2
\
]  approaches 0 resulting in 

𝑔^ 𝑓 = 𝑟 + 𝑓 𝜇	 − 	𝑟 −
𝜎"𝑓"

2  

Differentiating g(f) with respect to f   

𝜕𝑔^(𝑓)
𝜕𝑓 = 	𝜇 − 𝑟 − 𝜎"𝑓 = 0 ⇔ 𝑓∗ =

𝜇	 − 	𝑟
𝜎"  

 
This is the Kelly formula, where 𝜇 is the return, r is the risk-free rate, and 𝜎" is the return 

variance. 𝑓∗ is the weight each security receives in the Kelly portfolio, or put in other words, 

the fraction of our wealth at hand we should invest in each security. Generally, in terms of 

risk and return, a portfolio based on a Kelly strategy differs significantly from other 

strategies. MacLean, Thorp, & Ziemba (2010) state that it is often prone to larger risk 

exposures due to the volatile and undiversified nature of an optimal Kelly strategy portfolio. 

This is because the strategy requires investors to frequently invest large fractions into few 

securities which common portfolio strategies, for example, equal weight or mean-variance, 

do not. Through estimating the inputs in the formula above, investors find the optimal long-

term (long-term is defined based on frequency of trades in this case) allocation size for each 

security in the portfolio.  

 

Kelly (1956) build on Bernoulli’s (1738) utility theory, which states that marginal utility is a 

function of log wealth where increasing wealth induces lower marginal utility, where Kelly 

showed the maximization of the one period expected log of wealth. Latané (1959) 

independently implements Kelly’s ideas as an investment criterion. This marked the first step 

in the usage of the Kelly criterion on financial markets and investing. Breiman (1961) shows 

that using the Kelly criterion is asymptotically optimal under two paradigms: first, it produces 

the maximal rate of increase of wealth and secondly it minimizes the expected time to 

achieve a fixed level of resources. Thorp (1969) concludes that the Kelly criterion should 

replace the Markowitz criterion (Markowitz 1959) as the guide to portfolio selection. 

Additionally, Thorp (2006) states that Kelly bettors maximize expected one-period log of 

wealth, and they are certain to win if the horizon is sufficiently long. Samuelson (1979), on 

the other hand, is critical towards the Kelly criterion and points out that  ‘when you lose – 

and you sure can lose – with N large, you can lose real big.’ 
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2.2 Strengths and Limitations With a Kelly Strategy  
MacLean, Thorp, & Ziemba (2010b) discuss a wide array of properties of the Kelly strategy. 

Amongst the positive characteristics discussed is, for example, the fact that the log growth of 

wealth bettor never risks ruin (Hakansson, & Miller 1975), maximizing log growth of wealth 

also asymptotically maximizes the rate of asset growth (Breiman 1961), and finally that the 

absolute amount bet is monotone increasing in wealth (MacLean, Thorp, and Ziemba, 

(2010b)). Markowitz (1959) states that even though Kelly’s (1956) Criterion might not 

maximize the expected utility of wealth by maximizing the mean return it may still be a 

plausible and useful theory. 

 

There are several key issues with a Kelly strategy when applied as an investment criterion. 

The most crucial is based on the fact that the market for financial instruments is characterized 

by uncertainty of future returns, which makes estimation of the probability of a certain 

outcome hard to determine. Since tomorrow’s outcome is highly uncertain, and requires 

estimation, modeling uncertainty and forecasting errors can be high. This problem is likely to 

apply in this paper; to obtain the required inputs for the Kelly formula we are forced to rely 

on historical data and make predictions.  

 

The problem mentioned above is also recognized in practice. Samuelson (1963) argues that if 

a rational individual rejects a single favourable bet, he would also reject a large number of 

such bets. In another paper, Samuelson (1971) agrees that aiming to maximize the geometric 

mean return would lead to a maximization of the terminal wealth given a timeframe which is 

long enough, but that this strategy would not necessarily maximize the expected utility unless 

the underlying utility function is logarithmic. He then concludes “the geometric-mean 

strategy is not optimal for any finite number of periods”.  

2.3 Empirical Evidence 
Research papers on this topic and its implementation as a portfolio strategy in practice are 

rare. Estrada (2010) conducts a study similar to this thesis. He concludes that the Kelly 

criterion is, in fact, superior in terms of long-term growth to traditional strategies. 

Meanwhile, Estrada’s analysis also shows that Kelly portfolios are less diversified, have a 

higher (arithmetic and geometric) mean return, and higher volatility than benchmark 

portfolios. Additionally, Evstigneev, Hens, and Schenk-Hoppé (2009) find that the Kelly rule 
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insures the survival of investors continuously applying this rule. Finally, MacLean, Thorp & 

Ziemba (2010) show the immense increase in return achieved when investing by Kelly’s 

strategy.  

 

In contrast to Estrada’s findings, Roll (1973) concludes that the Kelly Strategy is statistically 

indistinguishable from the market portfolio. Worth to mention, though, is that Roll’s findings 

emerge from studies on the NYSE and AMEX in the 1970s, whereas we will look at a 

different time era and market. Furthermore, Thorp (1971) shows the Kelly strategy is not 

mean-variance efficient ex ante. Cover (1991) illustrates how a universal portfolio with an 

equally weighted strategy outperforms a performance weighted (i.e., Kelly strategy based) 

portfolio. Finally, Markowitz (1976) concludes that the Kelly strategy was the limiting mean-

variance portfolio under the assumption that an investor follows the strategy in the long run. 

 

To conclude, Kelly’s (1956) criterion is a high-risk portfolio strategy and prone to great 

uncertainty. Opinions on the effectiveness of a Kelly strategy vary; our goal is thus to test the 

strategy with data from the Swedish stock market to analyze how it performs in practice. An 

explanation of how we proceed with this implementation is presented in the Section 3.  

3. Methods 
To get the return component in the Kelly formula, we identify stocks that we believe have 

potential for positive abnormal returns, in order to find our edge. To identify such firms we 

define a ranking system. First, stocks are ranked based on a selection of multiples. 

Additionally, after the first screening process, the stocks in this universe are ranked again 

based on how they rank combined for the three multiples. Firms with low P/B-and P/E ratios 

and a high Gross Margin relative to all other listed Swedish equities get the best score. “Low” 

is defined as any value above 0 (if a firm has a multiple value of 0 it is excluded from our 

universe). “High” is defined as any value, which is positive; the higher the value of the Gross 

Margin the better. On average, during our 43 quarterly observations from 2005 to 2015, our 

universe consists of 109 stocks after they have been ranked. Once these stocks are identified 

we start building the portfolios, of which one allocation scheme is based on the Kelly 

strategy, and analyze their performance in relation to benchmark portfolio choices. In the 

next sections, we explain the intuition behind the choice of multiples and why multiples 
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should have a high or low value respectively, whereby we proceed by illustrating how and 

why we use selected benchmark portfolios to compare to our Kelly portfolio.  

3.1 Multiple Screening Criterions  
To find stocks with potential of abnormal returns relative to the market, SBX, we use a 

multiple approach. Three key ratios with theorized potential for outperformance relative to 

the market have been selected; the P/B-ratio with close similarities to the B/M-ratio from the 

Fama and French (1992), gross margin, and the P/E ratio. The choice behind these multiples 

is based on previous research on multiple strength and predictive power of returns. We 

provide details below.  

 

Finally, for each section where we explain our multiples, we also conduct our own analysis 

on the ability of our multiples to predict returns through a robustness test. This is made in 

order to support our choice with more evidence than that from previous studies only and also 

because the choice of multiples influence the data from which we conduct all calculations1.  

3.1.1 Price-to-Book Ratio 
Banz (1981) shows that firms with high book-to-market ratio, i.e., value stocks, outperform 

those with a lower ratio. Put in other words, these stocks are undervalued and thus experience 

a value premium. Fama and French (1992) build on this idea and introduce the 3-factor model 

where one factor is the High Minus Low Book-to-Market ratio. In this paper, this factor is 

referred to as the Price-to-Book ratio; by looking at stocks with a low Price-to-Book ratio we 

obtain the equivalence of a high B/M-ratio (B/M is simply P/B inverted, hence we look for 

low P/B stocks), with the only difference being that the HML factor looks at portfolios 

whereas when using the P/B-ratio we look at individual securities. We do this to find stocks 

that theoretically could experience strong performance, which our P/B-multiple should be 

indicative of.   

                                                
1 This robustness test of multiples induces high exposure to errors, though, since we look at US equities, due to data availability. Also, due 

to the huge amount of observations we only look at the year of 2015. Yet, this enables us to get a general perception of how these multiples 

have performed empirically.  
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Figure 1: Predictive Power of the P/B-ratio. This figure shows the predictive power of the 

P/B-ratio. Data on US equities is retrieved from Morningstar.fundamentals API and 

Quantopian.USEquityPricing API. Sample period is 2015-2016 (12 months) and n= 985 559. 

The x-axis shows 100 portfolios, which are divided, based on the size of the multiple. From 

left to right we have the lowest to the highest value of the multiple applied as a screening 

criterion on the portfolios. The y-axis shows the multiple’s predictive power of realized 

return, measured daily. 

 

Figure 1 reveals that portfolios based on a low multiple are ineffective at predicting returns; 

the first 10 portfolios, which are selected based on the lowest P/B-ratio relative to the other 

portfolios, only yield negative returns. Thus, using a low P/B-ratio to screen stocks would not 

predict future returns for US equities during 2015.  

3.1.2 Gross Margin 
We also include the gross margin to look for persistence in the Earnings-to-Cost-of-Goods-

Sold (COGS) ratio. By identifying persistence in earnings amongst firms, this demonstrates 

strong performance and a solid market position. Novy-Marx (2013), for example, builds on 

this idea and states, “profitable firms generate significantly higher returns than unprofitable 

firms”.  
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Figure 2: Predictive Power of the Gross Margin. This figure shows the predictive power of 

the Gross Margin. Data on US equities is retrieved from Morningstar.fundamentals API and 

Quantopian.USEquityPricing API. Sample period is 2015-2016 (12 months) and n= 985 559. 

The x-axis shows 100 portfolios, which are divided, based on the size of the multiple. From 

left to right we have the lowest to the highest value of the multiple applied as a screening 

criterion on the portfolios. The y-axis shows the multiple’s predictive power of realized 

return, measured daily. 

 

Figure 2 depicts that a high Gross Margin applied as a criterion on portfolio screening, has 

quite strong predictive power of returns, which is illustrated in the right section of the figure. 

This is in line with what we hope this multiple will do for us, but also with what the previous 

literature (see: Novy-Marx (2013)) states; firms with persistence in earnings experience 

higher returns. Hence, we can conclude that in this data set investors could somewhat predict 

future returns by identifying firms with a high Gross Margin, based on US equities during 

2015. 

3.1.3 P/E ratio 
Finally, we look at the P/E ratio as an indicator of returns. This key ratio is widely used as a 

measure of valuation within finance. Furthermore, Basu (1977) shows this multiple has 

predictive power in measuring firm performance; he concludes that portfolios consisting of 

firms with a low P/E outperform portfolios where firms have relatively higher P/E-ratios. 
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Thus, we also use a low P/E-ratio when screening the Swedish stock market to find abnormal 

returns. 

 

 

 
Figure 3: Predictive Power of P/E-ratio. This figure shows the predictive power of the P/E-

ratio. Data on US equities is retrieved from Morningstar.fundamentals API and 

Quantopian.USEquityPricing API. Sample period is 2015-2016 (12 months) and n= 985 559. 

The x-axis shows 100 portfolios, which are divided, based on the size of the multiple. From 

left to right we have the lowest to the highest value of the multiple applied as a screening 

criterion on the portfolios. The y-axis shows the multiple’s predictive power of realized 

return, measured daily. 

 

Figure 3 illustrates the multiple is a relatively poor predictor of returns for US equities during 

2015. Again, the first portfolio percentiles, which have been created based on stocks with a 

low P/E-ratio, experience negative returns. This implies that a low P/E-ratio does not have 

predictive power of returns based on US equities 2015. 

3.2 Robustness of Multiples  
The previous three figures show two of the multiples are weak in terms of predictive power 

of returns. Yet, in our study, all our portfolios created based on these criteria combined 
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outperform the SBX (illustrated in the results in Section 4). Perhaps this is due to the fact that 

our implementation of the multiples is during a longer time period, which strengthens the 

predictability of the multiples, but it could also be due to the fact that the three ratios are very 

general measurements of valuation. In other words, one can conclude that investors could 

have benefited, in terms of predicting returns, during the period 2005 to 2015 from using a 

ranking system on the Swedish stock market based on the combined multiples we explained 

above. To support this we conduct another robustness test for our multiples where we also 

look at sum of rank of monthly correlations between two key ratios at a time. Correlations 

imply one of the factors contains information about the other factor. Our goal is to have three 

key ratios, which are as uncorrelated as possible so that each multiple capture firm effects and 

consequently returns independent of the other two. This translates into extensive measures of 

returns2. 

 

 
Figure 4: Sum of Rank of Monthly Correlation between P/B-ratio and P/E-ratio. This figure 

shows correlation between the P/B-ratio and the P/E-ratio. Data on US equities is retrieved 

from Morningstar.fundamentals API and Quantopian.USEquityPricing API. Sample period is 

2015-2016 (12 months) and n= 985 559. The x-axis shows monthly portfolios. The y-axis 

                                                
2 Again, we look at US equities for the period 2015 below as well, hence the conclusions we draw are very general and not necessarily 

applicable to the Swedish data we use later in the paper. However, as we choose such general multiples to find predictive power we still 

believe the test is relevant. 
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shows the sum of rank of monthly correlations, measured by looking at the rank of one factor 

(i.e. multiple) versus the rank of the other factor, and returns in each factor rank.  

 

Figure 4 highlights that there is a tendency for weak positive correlation; the average monthly 

sum rank of correlation between the two key ratios is around 0,18. This implies that, together, 

these multiples are fairly extensive in measuring returns, meaning they capture returns 

separately from one another. This increases the probability that we do identify as many of the 

best performing firms as possible. In terms of having two independent measures, we can 

conclude that, based on US equities during 2015, these two multiples are relevant. 

 
Figure 5: Sum of Rank of Monthly Correlation between P/E-ratio and Gross Margin. This 

figure shows correlation between the P/E-ratio and Gross Margin. Data on US equities is 

retrieved from Morningstar.fundamentals API and Quantopian.USEquityPricing API. Sample 

period is 2015-2016 (12 months) and n= 985 559. The x-axis shows monthly portfolios. The 

y-axis shows the sum of rank of monthly correlations, measured by looking at the rank of one 

factor (i.e. multiple) versus the rank of the other factor, and returns in each factor rank.  

 

Compared to Figure 4, Figure 5 shows that more observations experience much weaker 

correlation; this means that the two key ratios are less correlated in their predictive power of 

return, and measure performance correspondingly to a smaller extent. We can conclude that 
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the P/E-ration and Gross Margin are also relevant since they are independent of one another, 

with an average monthly sum of rank correlation of 0,08. 

 

 
Figure 6: Sum of Rank of Monthly Correlation between P/B-ratio and Gross Margin. This 

figure shows correlation between the P/B-ratio and Gross Margin. Data on US equities is 

retrieved from Morningstar.fundamentals API and Quantopian.USEquityPricing API. Sample 

period is 2015-2016 (12 months) and n= 985 559. The x-axis shows monthly portfolios. The 

y-axis shows the sum of rank of monthly correlations, measured by looking at the rank of one 

factor (i.e. multiple) versus the rank of the other factor, and returns in each factor rank.  

 

In line with previous reasoning, Figure 6 depicts that the P/B-ratio and Gross Margin share 

some similarities in the ability to predict returns for US equities during 2015, even though the 

correlation is low. This slightly stronger monthly sum of rank correlation of around 0.20 on 

average is something we want to avoid since our goal with the three key multiples is that they 

are as extensive as possible in predicting future returns. Meanwhile, as with Figure 4 and 5, 

Figure 6 experiences no significant dependence3.  

                                                
3 Finally, we again want to emphasize the fact that our robustness test of the multiples look at US equities due to data availability and 

simplicity, whereas our main test and results in this paper is based on Swedish equities. The idea is to conduct a robustness test on empirical 

data, independent of what previous literature says, which is as similar as possible to the Swedish data we use in this thesis, hence we believe 

the test is still relevant. 
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Our takeaway from the first robustness test on predictive power of return is less in line with 

the findings from the Swedish stock market; Figures 1 & 3 show that the multiples have weak 

predictive power of return. The second test, though, illustrated through Figures 4 to 6, show 

that the multiples are uncorrelated which is a sign of strength in terms of capturing as much 

of future return as possible. This leads us to the conclusion that the robustness tests have 

mixed results, but there is evidence for the strength of our selected multiple’s ability to 

predict returns.  

3.3 Portfolios 
We form portfolios out of stocks that meet criteria in section 3.2. The portfolios are 

rebalanced on a quarterly basis; in this way we attempt to avoid Proebsting’s Paradox, which 

states that the risk of over betting increases when string bets are involved (further explained 

in Appendix B). Furthermore, we choose to rebalance quarterly since there is new 

information on our multiples from the quarterly reports from the firms in our universe. 

Finally, the intuition behind our method of selecting stocks with a rolling window is to 

control for survivorship bias; if our model chooses a stock that later gets delisted, the 

contributing total return is calculated from the day of purchase until the last trading day’s 

close.  

 

When the Kelly strategy shows a high excess return-to-variance ratio, the number of stocks in 

our portfolio narrows, which increases weights (and thus decreases number of total securities) 

of our investments going forward. One portfolio allocation is based on the Kelly strategy, 

which is then compared to four other portfolio strategies with different weighting techniques; 

mean-variance, equally weighted, value weighted, and a high beta portfolio. Altogether, the 

five strategies are compared to one another in terms of risk and return. We also look at the 

allocation of stocks. Whereas traditional portfolio strategies often seek to maximize the return 

per unit of risk, the Kelly portfolio is designed to maximize return solely. Consequently, 

volatility can be extremely high relatively. For this reason, we include the relatively more 

aggressive high beta strategy portfolio as our fourth benchmark and weighting strategy 

(where “high” is defined as the higher the value the better), where Bloomberg creates a fourth 

rank and again rank all stocks combined with the beta criteria added. The other three 

portfolios are commonly used strategies. Finally, each individual portfolio is also compared 



 
 

20 
 

to the OMX Stockholm Benchmark Index (SBX). This is a market index of all Swedish 

equities listed on the Stockholm Exchange, which is weighted based on market cap and 

where dividends are reinvested. We use this primarily to compare the Kelly portfolio to the 

market, but also to look at the benchmark portfolio strategies in relation to the market index. 

Later, this index is also leveraged to the same volatility levels as Kelly to look at the 

performance when volatility levels are the same, in order to compare the risk-return tradeoff. 

All the benchmark portfolios are simulated through Bloomberg terminals, whereas Kelly is 

calculated manually.  

3.3.1 Kelly Portfolio 
A Kelly portfolio is often prone to large concentrated investments when the expected return is 

relatively high and has a high probability to be achieved. Therefore, it also tends to produce 

undiversified portfolios, which previous studies show (see for example: Nekrasov, 2014). We 

begin the construction of our Kelly portfolio through taking the average return for all selected 

stocks for each quarter between 2005 and 2015. From this return we then subtract the repo 

rate gathered from the Swedish Riksbank corresponding to that quarter, and finally we divide 

by the variance of the 3-month return to get the Kelly weight. For each quarter, the number of 

stocks included is based on the weight corresponding to that period. For example, let us 

assume we want to calculate the weight in the period Q2 2006. We retrieve average 3-month 

total return for all individual stocks for the preceding quarter, Q1 2006, which contains our 

universe that has been created through the ranking system, and proceed by calculating the 

total average for all stocks. This is our return component for Q2 2006. The value of 

returnW2! is thus of importance since it is used for our returnW component, whereby we 

assume that returnW2! will have predictive power for the following quarter. This is also why 

we earlier stressed the importance of predictive power of return. Thereafter, we adjust for the 

risk-free rate, whereby we divide by the variance of returns for the same universe of stocks. If 

the Kelly formula tells us the weight is 0.5, we include the top two ranking stocks within the 

universe since the formula indicates portfolio weights should be 50%. Additionally, we 

calculate the individual return for the two stocks and multiply by each stock’s weight (in this 

case 0.5 for both stocks). We are left with the total return for our portfolio for Q2 2006 and 

proceed by doing this for all quarters. In this way we have 43 quarterly observations during 

the 11-year time period between 2005-2015, where our first Kelly weight is the 31st of March 

2005. 
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3.3.2 Equally Weighted Portfolio 
An equally weighted portfolio gives the same weight to all securities in the portfolio.  

Finnerman and Kirchmann (2015) state, “the rationale behind the equal weighting technique 

is to avoid a large concentration of only a few stocks in the portfolio.” Additionally, 

Markowitz (1952) illustrates the strengths of this portfolio strategy.  

3.3.3 Market Capitalization (Value) Portfolio 
This strategy assigns weights based on size; larger firms receive larger portfolio weight. If 

implemented under CAPM assumptions it can be regarded as the market portfolio (Zhang, 

Shan, & Su 2009).  

3.3.4 Mean-Variance Portfolio 
The mean-variance portfolio, or Active Risk Minimized as defined in Bloomberg, is a 

portfolio simulated by Bloomberg. Active risk exists when managers seek to beat the market; 

they take on more risk to obtain excessive returns which gives rise to tracking errors, also 

defined as active risk. Bloomberg specifies that under the constraint that this portfolio will 

take long positions only, it behaves like Markowitz’s mean-variance portfolio. We impose the 

long only constraint to achieve this, meaning there is no short selling in this portfolio. Finally, 

this portfolio is very similar to the market portfolio. 

3.3.5 High Beta Portfolio 
The first three strategies compared to the Kelly strategy are, ex post, significantly less 

exposed to risk, measured as volatility of returns, and prone to diversification. Yet, by adding 

stocks with a beta larger than one our goal is to include firms which have more market risk 

than the other portfolio benchmarks, creating a portfolio which is more similar to Kelly in its’ 

risk characteristics. Consequently, we have one portfolio we hope is more similar, creating a 

more solid ground for comparison.  

3.3.6 SBX and Leveraging the SBX 
We also compare all strategies to the market portfolio (SBX). Finally, we create a portfolio, 

which is the market (SBX), with the exact same, ex post, volatility characteristics as the Kelly 

portfolio. We do this to look at whether the Kelly returns are solely due to higher volatility of 

returns and if this has explanatory power for the returns in our Kelly portfolio.  
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3.4 Kelly Portfolio Industries  
 

Industry Kelly (%) SBX (%) 

Financials 31,5 33,5 

Industrials 16,1 29,8 

Consumer Goods 13,7 9,5 

Consumer Services 11,3 8,3 

Technology 6,5 6,0 

Health Care 14.5 4,6 

Telecommunication 3,2 4,3 

Oil & Gas 2,4 1,0 

Basic Materials 0,8 3,0 

Table 1: Industry Breakdown for Kelly Portfolios and SBX  

Table 1 illustrates the largest industry holdings based on our Kelly portfolios and SBX. Data 

is retrieved from Bloomberg and Nasdaq for the period 2005 to 2015.  

 

The inclusion of firms is based on if they have low P/B-and P/E-ratio and high gross margin, 

which favours some industries over others. Our take on why the average industry composite 

for Kelly looks the way it does in Table 1, is for example because firms investing in Real 

Estate have high book values, and thus a low P/B-ratio, scoring high in our ranking. 

Furthermore, firms in the financial sector have relatively low Cost Of Goods Sold in relation 

to revenue, which increases the gross margin. This partially explains why the most frequent 

industry in our portfolios is financials. Finally, the same applies for the industries at the 

bottom of the table, only reversed. For example firms in the basic materials sector have 

higher COGS and thus a low gross margin, scoring lower on our rankings, and are therefore 

not included as often in the Kelly portfolio. 
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SBX is also dominated by financials, which is reflected in the number of banks included, 

whereas our financials category involves more firms within Real Estate.  

3.5 Carhart 4-factor Model 
The final part of our theoretical framework is integrated in section 4.4, which is a regression 

analysis where we test if there is causality between the four factors included in Carhart’s 

(1997) model, and the returns from our Kelly portfolios. Carhart (1997) illustrates return 

anomalies and the model is often used when running regressions on abnormal returns.  

3.6 Assumptions 
The Kelly strategy in theory only tells investors to invest when there is a potential edge for 

our risk-adjusted Kelly portfolio, which we seek to find through our multiple screening. If 

there is no edge, the wager in the particular equity should be 0 and the investor should instead 

turn to a market-portfolio, i.e., the index.  

 

Furthermore, we assume no transaction costs or taxes. We also infer that stock returns are 

independent, which is not always the case in reality, but is assumed due to time constraints 

and computational constraints. 

 

Finally, we assume no short selling and no leveraging in our portfolios, although our 

calculated Kelly weights for some years are larger than one (we should leverage) and, during 

the crisis, negative (we should short sell the portfolio). When this occurs we therefore turn to 

the alternative proposed to that of the Kelly strategy; if the weight is above 100% we simply 

invest 100% in the best ranking stock (instead of leveraging above this amount) and if our 

weights are negative we proceed with a risk-free investment instead. At this stage investors 

can choose between the risk-free rate and cash; in this paper we use the risk-free rate to keep 

our Kelly portfolio somewhat dynamic. We decide to impose constraints on leveraging and 

short selling since to many factors are unknown; short selling for example requires 

knowledge about parameters such as collateral, covenants, and the cost of borrowing. 

Although this restriction in leverage and short selling opts for misinterpreted returns, some 

researchers encourage avoiding leverage in a Kelly strategy. MacLean, Thorp, and Ziemba 

(2010) state that investors striving for long term growth maximization never gain from 

betting more than the Kelly strategy, arguing that risk increases (lower number of securities 
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in the portfolio) and growth decreases. Finally, we provide an approximation of the Kelly 

portfolio without restrictions in Appendix C. 

  

4. Results  
In line with previous studies on Kelly, our expectation is that the portfolio based on a Kelly 

strategy differs significantly compared to other common portfolio strategies in terms of risk, 

return, and allocation. This translates into the Kelly portfolio being subject to, on the one 

hand, substantially higher volatility and larger drawdowns compared to benchmarks. But, on 

the other hand, produces (within our universe) a relevant growth strategy in the long run. This 

is very much in line with what our research finds. In the next sections we compare our 

portfolio strategies based on descriptive statistics. We also look at the general risk and return 

profile. Additionally, the Kelly portfolio is independently dissected and analyzed through a 

sensitivity analysis where we adjust for several factors to look at the robustness of the 

portfolio strategy. Finally, we proceed with a Carhart (1997) 4-factor regression, and 

compare the factors included to our portfolio strategies.   
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4.1 Return Analysis  
 

 
Figure 7: Cumulative Returns for All Strategies. Figure 7 illustrates the performance of the 

Kelly portfolio and benchmark portfolios. Data is retrieved for the period 2005 to 2015 from 

Bloomberg.  

 

Kelly clearly outperforms the market (SBX) and the benchmark portfolios over a 10-year 

period from 2005-2015. As underlined earlier in this paper we do not use leverage nor do we 

short sell securities, hence a graph where such constraints do not exist should demonstrate a 

smoother exponential character, in line with what previous studies show on the growth of 

wealth (see MacLean, Thorp, Zhao, & Ziemba 2010) but also most likely higher returns. 

When the Kelly portfolio returns pictured above are somewhat flat (for example during 2007-

2009) we have invested in the risk-free asset, hence the linear sections in the graph, whereas 

the strategy encourages the investor to short the portfolio. Furthermore, leveraging would 

also have impacted returns for some periods. Yet, irrespective of the restriction we have 

imposed, the Kelly allocation strategy clearly outperforms all benchmarks. Cumulative 

Return for this period amounts to 953%, whereas the second best strategy (High Beta) 

produces 323%, and the market (SBX) 183%. Finally, we also look at the cumulative return 

for OMXS30 (not included in graph), in order to look at another market index, which during 
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this period amounts to 91%. By looking at the graph above we can see a huge increase in 

return around 2013. In the next sections we look at what drives this huge leap in the Kelly 

portfolio return, and analyze what happens if it is removed.  

 

Strategy Average 

Annualized 

Geometric Return 

 

Average 

Number of 

Holdings 

Maximum 

Drawdown 

Kelly 23.9% 7 -20.0% 

Equally Weight 15.9% 109 -28.2% 

Market Cap 10.7% 109 -20.9% 

Mean-Variance 12.0% 55 -21.9% 

SBX 9.6% 3204 -19.9% 

High Beta 

 

16.8% 109 -26.9% 

Levered SBX 16.1% 320 -57.2% 

Table 2: Descriptive statistics (highest absolute value is highlighted in bold). In Table 2, 

descriptive statistics for all portfolio strategies are depicted. Data is retrieved for the period 

2005 to 2015 from Bloomberg.  

 

In line with previous statements on the characteristics of a Kelly portfolio (see for example 

the paper produced by MacLean, Thorp, and Ziemba, 2010) we get higher returns compared 

to benchmark portfolio strategies. The maximum drawdown for Kelly is relatively good 

given the previous statements on its risk nature; only the SBX is more attractive. This is 

largely explained by the fact that we hold the risk-free rate during the financial crisis, which 

our other portfolios do not, consequently punishing their downsides since the financial crisis 

saw returns suffer. Perhaps, though, advocates of the Kelly strategy want to see that the Kelly 

portfolio has the lowest maximum drawdown but in this case SBX is more stable in terms of 
                                                
4 We use data on holdings from 2017 for SBX due to the lack of data availability for 2005 to 2015. 
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downside losses, conceivably due to the more diversified nature of the market. Finally, the 

average number of holdings is much lower for the Kelly portfolio, which illustrates the 

undiversified nature of the Kelly strategy.  

4.2 Return Analysis with Robustness Tests 

 
4.2.1 Impact on the Kelly Portfolio when Removing Outlier  

 
Figure 8: Adjusted Cumulative Returns for the Kelly Portfolio During 2005-2015. In Figure 

8, we show results after Obducat AB is removed. Data is retrieved for the period 2005 to 

2015 from Bloomberg.  

 

To account for the fact that the boost in return during the second quarter of 2013 is largely 

due to one stock’s huge increase, we look at what happens with the cumulative return if we 

exclude this stock. The stock we remove is Obducat AB, which during Q2 2013 returns 163% 

and receives a 78% weight in our portfolio, hence aggressively increases the accumulated 

return for that period. The reason for the increase in Obducat AB’s stock price was mainly 

due to new contracts and orders, as well as lower costs due to a general restructuring of the 

firm structure. We act accordingly since this significant amount of increase of wealth is 

solely due to one stock during one quarter; hence we adjust for the risk that luck drives most 
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of the return. This results in an immense reduction of total return; after the adjustment our 

Kelly strategy returns 354% after 10 years, compared to the portfolio where Obducat AB is 

included, which produces a 953% increase in wealth. Also, the Kelly strategy is now only the 

third best performing strategy. From now on, when we refer to the adjusted Kelly in Figure 8 

(where the outlier, Obducat AB, has been removed) we call it “Kelly Robust”. The Kelly 

Robust is of key interest since we believe the return in Figure 7 is mostly due to luck, as we 

have previously argued.  

 

 

Strategy Average 

Annualized 

Geometric Return 

 

Average 

Number 

of Holdings 

Maximum 

Drawdown 

Kelly Robust 14.7% 7 -20.0% 

Equally Weight 14.9% 109 -28.2% 

Market Cap 10.7% 109 -20.9% 

Mean-Variance 12.0% 55 -21.9% 

SBX 9.6% 3205 -19.9% 

High Beta 

 

16.8% 109 -26.9% 

Levered SBX 16.1% 320 -57.2% 

Table 3: Descriptive statistics (highest absolute value is highlighted in bold). Table 3 shows 

the descriptive statistics for all portfolio strategies, where Kelly is now replaced with Kelly 

Robust. Data is retrieved for the period 2005 to 2015 from Bloomberg.  

 

All values are identical to that of Table 2, except the average annualized geometric return, 

which is now lower (14.7% vs 23.9%). The Kelly Robust portfolio is now less convincing 

when we adjust for the outlier.  

                                                
5 We use data on holdings from 2017 for SBX due to the lack of data availability for 2005 to 2015. 
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4.2.2 Impact when Replicating the Kelly Short Selling Restriction on 
Benchmark Portfolios 

 
Figure 9: Adjusted Cumulative Returns for All Strategies During 2005-2015. Figure 9 

depicts how during the period when the Kelly strategy tells us to short sell, i.e., when we hold 

the risk-free investment, the same holding is replicated in all other portfolios as well. Data is 

retrieved for the period 2005 to 2015 from Bloomberg.  

 

Previously we explained that when weights are negative we should short sell according to our 

Kelly strategy, but instead we allocate into the risk-free rate, which gives the Kelly portfolio 

stability during the financial crisis and has a positive impact on our return. One take on the 

short selling constraint in this paper is done by looking at the outcome on return when Kelly 

is in the risk-free rate and at the same time all other strategies also invest in the risk-free rate. 

In this way, we are more “fair” in that the stability Kelly experiences for example during the 

financial crisis is also seen in the benchmark portfolios. The comparison above illustrates the 

effect on return when the benchmark portfolios hold the risk-free investment, i.e. Swedish 

repo-rate, during the same time as Kelly does. This time, Kelly underperforms compared to 

peer portfolios from the period around March 2010 to March 2013, but the cumulative return 

(953%) is still superior to that of all strategies, where the High Beta strategy is the second 

best (920%), and most importantly compared to the market index SBX (407%). We can 

therefore conclude that the strong performance of the unadjusted Kelly portfolio is not due to 

a bias in our short selling restriction. 
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4.2.3 Impact when Replicating Kelly Short Selling Restriction on Benchmark 
Portfolios and Removing Outlier 

 
Figure 10: Adjusted Cumulative Returns for All Strategies During 2005-2015. Figure 10 

builds on Figures 8 & 9 and has the same premise regarding the risk-free rate holding for all 

strategies. Additionally, Figure 10 has also removed Obducat AB to adjust for potential luck 

as we previously argued could be the case. Data is retrieved for the period 2005 to 2015 from 

Bloomberg.  

 

This time, the Robust Kelly portfolio has the second lowest return (354%), only superior to 

that of the market (346%). The best performing strategy is High Beta with 807% return. We 

can from this graph conclude that the Kelly strategy would be less relevant, or even 

irrelevant, for investors if Obducat AB would have been excluded from the portfolio and if 

the benchmark portfolios invested in the risk-free asset during the financial crisis. In the 

previous section we argued that our short selling restriction does not impose a bias; yet, if we 

look at the Kelly Robust strategy in Figure 10 this does not hold.  
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4.2.4 Kelly Robust Portfolio Compared to SBX Leveraged  

 
Figure 11: Leveraging SBX to Match Kelly Robust Volatility. In Figure 11 we leverage 

positions in SBX to match the ex post volatility of the Kelly Robust portfolio. Data is 

retrieved for the period 2005 to 2015 from Bloomberg.  

 

By looking at Figure 11, we can conclude that the previous outperformance, of both Kelly 

and Kelly Robust versus SBX, is to a large extent attributable to higher risk. When we 

leverage SBX to the same level as that of the Kelly Robust portfolio, the cumulative return 

increases to 2615%, which is much higher than the Kelly Robust portfolio’s return of 353%. 

This implies that the risk-return tradeoff, based on the adjusted Kelly portfolio, is not 

attractive. Often when we leverage the SBX, the factor by which we leverage is extremely 

high. This is due to the high underlying volatility of the stocks in our Kelly portfolio. 

Consequently, this implies the volatility of Kelly Robust is often much higher than for SBX, 

which we will show in the next sections. 
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4.3 Risk Analysis 
An important feature of a Kelly strategy as highlighted by previous papers is the large risk 

exposure. In this paper, risk translates into volatility of returns. This section illustrates the 

risk characteristics of our Kelly portfolio; it is exposed to significantly more risk compared to 

other strategies, mainly due to poor diversification, which translates into the number of 

holdings of seven firms on average. The following figures illustrate the larger volatility for 

the adjusted Kelly portfolio.  

 

 

 
Figure 12: Annual Volatility of Returns for all Portfolios. Figure 12 shows the volatility 

characteristics of our Kelly Robust portfolio and the benchmark portfolio choices. Data is 

retrieved for the period 2005 to 2015 from Bloomberg.  

 

From Figure 12 we can see that the volatility of returns moves in the opposite direction to 

that of our benchmarks. As one would expect the volatility of Kelly is relatively lower when 

we hold the risk-free asset, yet higher whenever our portfolio consists of positions in stocks. 

The graph could be of interest for investors with risk preferences (given that they have 

imposed the short selling restriction) who want to hedge risk; there is great stability in the 

adjusted Kelly portfolio in times of general uncertainty (e.g. the financial crisis) since we are 

in the risk-free. Investors could do risk budgeting, i.e., allocation based on individual 
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portfolio risk and return, and thereafter decrease exposure to the benchmark if its volatility 

goes up. Again, we should highlight the fact that the volatility would be different (most likely 

higher) had we not imposed our leverage and short selling restrictions.  

 

 
Figure 13: Comparison of Volatility of Returns. Figure 13 shows the volatility between the 

underlying stocks in the Robust Kelly portfolio, the universal average after the multiple 

screening, and the Market. Data is retrieved for the period 2005 to 2015 from Bloomberg.  

 

The Kelly volatility is the weighted sum of quarterly volatility for all firms in each Kelly 

portfolio for all periods. Hence, this is a measure of the volatility of the underlying stock 

rather than the portfolio as a whole; in this way we also illustrate how the underlying firms in 

the Kelly portfolio are volatile. We use the quarterly volatility since the portfolios are 

rebalanced quarterly. When our Kelly portfolio is based on a risk-free investment, we give 

this portfolio a volatility of 0 due to the stability of Swedish rates. The average volatility is 

the volatility for all the firms in our universe which have been selected based on our ranking 

criterion, and includes all firms irrespective if they are included in our Kelly portfolio or not. 

Finally, we also graph the SBX volatility. Again, we reach the same conclusion as above, but 

this time it is clearer; the volatility of returns for a Kelly strategy is significantly higher 

compared to benchmarks. This is most likely due to the Kelly portfolio holding fewer 
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securities on average, and in line with previous research (see for example MacLean, Thorp, & 

Ziemba (2010)) on the larger risk, relative to benchmarks, a Kelly strategy experiences.  

 

The last part of the risk analysis is conducted through looking at correlations of returns.  

 

Strategy Kelly Robust 

 

Equal Weight Market Cap Mean-Variance SBX High Beta 

Kelly Robust 1.000  

 

    

Equal Weight 0.447 

(0.003) 

1.000 

 

    

Market Cap 0.410 

(0.006) 

0.890 

(0.000) 

1.000    

Mean-Variance 0.400 

(0.008) 

0.907 

(0.000) 

0.990 

(0.000) 

1.000   

SBX 0.404 

(0.007) 

0.904 

(0.000) 

0.983 

(0.000) 

0.984 

(0.000) 

1.000  

High Beta 0.473 

(0.001) 

0.996 

(0.000) 

0.904 

(0.000) 

0.921 

(0.000) 

0.916 

(0.000) 

1.000 

Table 4: Correlation Matrix of Quarterly Returns for all Strategies During 2005-2015 (p-

value in brackets, where H0 states that correlation is insignificant). Table 4 depicts 

correlations of returns. Data is retrieved for the period 2005 to 2015 from Bloomberg and 

Stata.  

 

To further investigate matters concerning risk and consequently diversification opportunities 

for example, we create the correlations matrix in Table 4. In line with the principles which 

Kelly builds on, this strategy is high risk due to its unique characteristics, displayed in for 

example the low number of holdings, compared to benchmark strategies and indices. 

Correlation with Kelly is below 0.24 for all strategies. Again, as mentioned in previous tables 

in this section, due to Kelly’s low correlation with the other strategies investors could turn to 

a Kelly strategy and include it in their overall portfolio for diversification purposes. 

Correlations are not significant though, most likely because the Kelly portfolio is dynamic 
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and because we have many holdings in the risk-free rate, whereas our benchmark portfolios 

are more static.  

 

 

Strategy Robust Kelly 

 

Equal Weight Market Cap Mean-Variance SBX High Beta 

Robust Kelly 1.000  

 

    

Equal Weight 0.557 

(0.000) 

1.000 

 

    

Market Cap 0.512 

(0.000) 

0.869 

(0.000) 

1.000    

Mean-Variance 0.486 

(0.001) 

0.893 

(0.000) 

0.984 

(0.000) 

1.000   

SBX 0.505 

(0.000) 

0.889 

(0.000) 

0.979 

(0.000) 

0.980 

(0.000) 

1.000  

High Beta 0.587 

(0.000) 

0.990 

(0.000) 

0.885 

(0.000) 

0,906 

(0.000) 

0.896 

(0.000) 

1.000 

Table 5: Correlations Matrix of Quarterly Returns for all Strategies During 2005-2015 with 

replicated risk-free holdings (p-value in brackets, where H0 states that correlation is 

insignificant). Table 5 illustrates the correlations between all portfolio strategies when they 

replicate the risk-free holding. Data is retrieved for the period 2005 to 2015 from Bloomberg 

and Stata.  

 

Finally, we look at correlations when the benchmark strategies replicate the short selling 

restriction. We do this to get the full picture of correlations with respect to Section 4.2. 

Logically, the correlations between Kelly and the benchmark portfolios are now larger since 

there are more identical holdings. 
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4.4 Carhart 4-factor Regression6  
 

03/2005-12/2015 ReturnKelly Return Kelly Robust ReturnEW 

Intercept 0.002** 

(2.22)  

0.001** 
(1.87) 

0.001*** 
(3.00) 

SMB 0.139 

(1.14) 

0.169 
(1.63) 

0.280*** 
(6.91) 

HML 0.438*** 

(3.46) 

  

0.443*** 
(4.10) 

0.065 
(0.15) 

Market Factor 0.262*** 

(4.63) 

0.276*** 
(5.72) 

0.857*** 
(45.49) 

MOM 0.135 

(1.35) 

0.109 
(1.28) 

0.244*** 
(7.36) 

𝑅" 0.014 0.022 0.521 

Observations 2724 2724 2723 

Note: T-statistics are presented in brackets.  **=p<0.05 ***=p<0.01. 

Table 6: Carhart 4-factor Regression Analysis  

Table 6 depicts a regression analysis on daily returns of the securities in our Kelly portfolios 

and includes Carhart’s (1997) four factors as independent variables. We retrieve information 

from each factor from the database AQR where we get daily data for Swedish stocks. Data on 

the Kelly and benchmark portfolios is retrieved from Bloomberg, and the regression is 

conducted in Stata. 

 

We choose to look at daily returns (instead of 3-month total return) this time to obtain more 

observations. Through the regression, we can see which factor each strategy is exposed to, 

                                                
6 For the benchmark strategies we only look at the Equal Weight portfolio. This is due to the fact that Bloomberg provides us with 

erroneous daily returns for the other strategies, appearing as sudden moves into risk-free and unexplained sporadic returns.  This should not 

impose a severe problem, since the Equal Weight experiences correlation of at least 0.86 with the other strategies containing the same 

stocks.  
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which makes it easy to imitate the returns based on the beta with each factor.  

First, there is a significant, although extremely small, positive alpha on both the adjusted and 

unadjusted Kelly Portfolio, which implies that the Kelly strategy in fact outperforms relative 

to the four risk factors. This in turn supports the usage of the Kelly strategy. Secondly, HML 

and Market Factor are significant and have a positive beta. The significance of HML is 

explained by the fact that we use the P/B-ratio, which is closely related to HML as described 

in previous section. The market factor is most likely significant because of the high 

explanatory power observed in periods when the Kelly strategy is in the stock market. 

Interestingly, though, the correlations we looked at above were not significant for the market 

with our Kelly portfolio. Finally, the other factors are insignificant and based on this we can 

again conclude that the Kelly strategy have somewhat independent returns and can be 

regarded as a diversification strategy. However, our 𝑅" are very low, which implies that 

modeling Kelly returns versus the other four factors has little explanatory power. 

Additionally, it implies that we should be critical towards what we have inferred from the 

regression analysis. Most importantly, there might not exist any alpha, at least not when 

Kelly is modeled towards the four factors. The low 𝑅" in Table 6 is perhaps explained by the 

fact that we look at daily returns for the Kelly portfolio, which varies a lot from the daily 

returns from the other four factors. Although 1.4% and 2.2% are extremely low numbers 

irrespective of what we decide to compare with, previous papers (see for example Roll 

(1973)), also experience low explanatory power, illustrated in a low 𝑅" of 5%, compared to 

benchmarks. This in turn implies the reader should be critical when analyzing the regression 

results, and generally we cannot draw accurate conclusions. We want to stress, though, that 

even though the significant alphas we find are extremely low, the strong performance of both 

the adjusted and unadjusted Kelly portfolios still remains, which is illustrated in our figures. 

Finally, we decide to run a regression on one of the benchmark portfolios. Since the Market 

Cap portfolio experiences very high correlation with the other benchmark portfolios (above 

0.86 at all time) we decide to look at this strategy only, since it is similar to all others. This 

time, the benchmark strategy experiences a significant alpha of 0.01, which is around the 

same as for Kelly. Furthermore, SMB, Market Factor and Momentum have significant 

positive betas. 𝑅" (52%) is also much higher than for Kelly. We can conclude that the 

benchmark portfolio(s) are to a larger extent explained by the four-factor model, and 

investors who are confident with portfolios which experience more explanatory power based 

on Carhart’s (1997) model should replicate the Equally Weighted portfolio investment style. 
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5. Discussion 
 
This paper illustrates how an investor can potentially benefit from trading based on a Kelly 

strategy. Based on historical returns, if one is willing to take on more risk and use a Kelly 

strategy this would have outperformed many traditional portfolio strategies during the 2005 

to 2015 period. From a log growth perspective we have thus shown the strength of a Kelly 

strategy. Our results have strong resemblance to findings by Estrada (2010), who shows that 

Kelly portfolios are less diversified, have a higher (arithmetic and geometric) mean return, 

and higher volatility than benchmark portfolios. Also, when we conduct robustness tests the 

Kelly performs quite well relative our benchmark portfolio strategies. Yet, one test of Kelly 

Robust, where we exclude outliers and replicate the short selling restriction in benchmark 

portfolios, demonstrates weaker performance. Finally, if investors would have leveraged the 

market to volatility levels of the Kelly Robust instead, this would have induced more 

attractive returns. 

 

There is still much left to discuss and comment on. Let us begin by emphasizing four 

approaches in this paper, which affect the final results. First, this paper shows full Kelly, 

whereas previous studies (see for example Davis & Léo (2014)) bring forward the fact that 

few investors use a full Kelly allocation of wealth in practice. Instead, they apply a fractional  

Kelly7 due to the full strategy’s significant risk exposure. This being said, readers who want 

to pursue with this strategy can simply choose to invest a fraction of the weights, which have 

been calculated, but should remember the fact that returns will decrease as a consequence. 

Secondly, we have imposed some constraints, which also affect our results. As mentioned 

throughout this paper, the results would most likely be different if we could leverage and 

short sell our Kelly portfolios since this would affect the return. In other words, this paper 

                                                
7 The Kelly strategy is perceived as risk-abundant and thus investors have turned to look for an alternative, 

namely “Fractional Kelly”, introduced by MacLean, Thorp, & Ziemba (2010). This refinement seeks to 

adjust the initial Kelly (or “full Kelly”) allocation fraction to a smaller amount. To illustrate this, let us 

assume our Kelly calculations on a certain stock results in an optimal allocation of 50% of total portfolio 

weight. Many investors find this number too high and use a fractional Kelly of ¼ resulting in a new 

allocation of 12.5%. In this paper only the full Kelly strategy will be used and not a fraction of weights in 

order to enable us to look at as much risk budgeting of the Kelly strategy as possible.  
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illustrates our take on the Kelly strategy; meanwhile returns can vary greatly depending on 

the different approaches investors take. We provide an approximation of how Kelly returns 

could look without such restrictions in Appendix C. Our third point is that it would be 

interesting to look at the performance of the Kelly strategy whilst using another approach to 

identify the best performing stocks. In this paper we chose three multiples, which turned out 

to be rather successful in predicting returns, yet the usage of other multiples (or approaches) 

to identify predictive power of returns would most certainly generate other results. Previous 

studies, for example Roll (1973), rank stocks based on size of the expected risk premium. He 

concludes that the growth-optimal model (i.e. Kelly) share similarities to the market 

portfolio. In the end, whether the investor can successfully implement the Kelly strategy boils 

down to the ability in making predictions of stock movements; the Kelly strategy can be the 

optimal portfolio strategy only if the investor is successful in doing so. Finally, the Kelly 

(1956) criterion’s main critique brought forward by Markowitz (1976) and Samuelson (1971) 

is the fact that it is most useful when implemented on an infinite time period. This being said, 

the strategy’s main critics might regard the ten-year period we look at as inadequate in order 

to draw any robust conclusion on the usefulness. Yet, our choice of ten years is due to the fact 

that we believe an insufficient amount of stocks were listed before 2005, which would give us 

to little data to work with. Investors should bear these four premises in mind when analyzing 

the results.  

 

Additionally, we have not taken transaction costs or taxes into account. In this paper, one can 

argue that transaction costs should be relatively lower for Kelly since there are fewer 

securities in the Kelly portfolio on average. Yet, in terms of accuracy, returns should be 

adjusted for transaction costs and taxes. We can, however, note that due to the concentrated 

nature of our strategy, we have fewer transactions (which translates into holdings) than the 

portfolio benchmark strategies. 

 

Moreover, an important factor to note is that our strategy is highly dynamic in its positioning 

and risk taking with the most common holding being the risk-free rate; Patel and Lo (2008) 

discuss the difficulty of benchmarking dynamic strategies. They propose a solution to this 

problem, which is not applicable in this paper, i.e., we have not been able to create a suitable 

dynamic benchmark, resulting in us benchmarking our Kelly strategy against static indices, 

which limits the comparability. To adjust for this benchmark dilemma in the best way 

possible, we also included the high beta strategy, as well as looking at effects when 
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leveraging the SBX to the equivalent volatility levels as that of Kelly. Results are mixed, but 

generally not in favour of the Kelly strategy in terms of risk-return tradeoff. Moreover, the 

Kelly strategy beats the market in all our tests, which we have shown, though, is due to the 

larger values of volatility.  

 

When removing the best performing stock the performance is more in line with the 

benchmarks, and even worse in one test. This could be explained by either the reduction of 

alpha or that the skewness of returns decreases. Hakansson (1971) discusses this effect and 

concludes that with low, to non-existing alpha, and normally distributed returns, a Kelly 

strategy is expected to achieve returns close to the mean-variance portfolio (see for example: 

Markowtiz (1976); Roll (1973); Thorp (1971) for more on this). Meanwhile, the strongest 

and most typical effects of the Kelly strategy are illustrated in high alpha and highly skewed 

or fat-tailed distributions, which can be seen in our volatility of returns for example. This 

results in a recommendation to use the strategy in certain options trading systems or stock 

picking strategies with skewed returns.  

 

Finally, the usage of this strategy in practice is highly dependable on the risk attitude of the 

investor. This paper shows that the returns of a Kelly portfolio are sometimes both significant 

and robust. Yet, due to the undiversified and volatile nature of the strategy, it would be 

difficult for institutional actors to implement this strategy, as they would face liquidity and 

volatility constraints. Retail investors should be aware of the dangers with this strategy; the 

risk of largely diminished wealth is significantly higher than alternative strategies and for 

unsophisticated investors the optimal bet size itself can be difficult to approximate. It could, 

however, prove to be a useful strategy for small institutions with a liberal investment 

philosophy, sophisticated (defined as being able to make accurate predictions of the inputs in 

the Kelly formula) retail investors, and day traders. This is because of the high frequency of 

trades each day, which serves as a ground on which day trader’s predictions can be based, 

and which in turn makes predictions more reliable. Finally, we can conclude that some of the 

active Swedish day traders use similar allocation strategies to that of Kelly. Due to the large 

amount of predictions needed, many have created their own take on Kelly, with adaptations 

such as attempting to maintain a constant variance in their strategy. This results in a 

simplified method to optimize the potential edge in an investment.  
 



 
 

41 
 

6. Conclusion  
 
This paper shows the implementation of the Kelly strategy on the Swedish stock market from 

2005 to 2015. We have used a multiple approach to get all our inputs, whereby we proceed 

by comparing the Kelly strategy to benchmark portfolio choices. Although our multiple 

approach is subject to a great level of arbitrariness, by applying the Kelly model outlined in 

this paper an investor in the Swedish stock market between 2005 and 2015 would have 

achieved a superior return compared to investing passively in a market index or such. Our 

results share similarities with, for example, the portfolio simulated by Ziemba (2016) who 

shows that the Kelly strategy’s superiority in producing long run maximum wealth from a 

sequence of favourable investments.  

 

Yet, in order to be as neutral as possible, we do not use the unadjusted Kelly portfolio (Figure 

7) as our foundation of comparison and evaluation; instead we use the Kelly Robust portfolio 

(Figure 8) to account for the potential lucky event with Obducat AB during our time interval. 

We do this in order to strengthen our general conclusions from the Kelly strategy. This in 

turn leads to a different perception of the strategy; the adjusted Kelly strategy is in fact not 

beneficial for investors from a risk-return tradeoff perspective.  

 

Furthermore, contrary to previous findings (see for example MacLean, Thorp, Zhao, and 

Ziemba, 2010), returns do not clearly approach the theorized exponential shape of growth of 

wealth until after the financial crisis. Our model has limits such as no short selling and no 

leveraging which has an impact on this pattern. Surprisingly to us, we are faced with these 

constraints far more often than we had first anticipated. This results in applied allocation, 

which differs, from the “real” (i.e. where there are no constraints) allocations; a model 

without these limitations would during several periods, for example the financial crisis, 

leverage the positions as well as by to short sell stocks with surprising accuracy. Thus, as we 

have emphasized above, a Kelly portfolio without these limitations would be expected to 

perform differently compared our constrained strategy due to compounding.  

 

Finally, if market participants are comfortable in their predictions, alternatively use the 

multiple approach presented in this paper, and are comfortable with an undiversified 

portfolio, investors could potentially benefit from applying the Kelly strategy in relation to 
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traditional portfolio choices. Investors should always bear in mind that the Kelly strategy is 

highly exposed to idiosyncratic risk, whether it is desirable or not.  

 

7. Suggestions for future research 
Generally speaking, the Kelly strategy deserves more attention in our opinion. Previous 

studies (see for example Estrada 2010) and also this paper show that a Kelly strategy would 

have produced strong long-term returns relatively for the period 2005 to 2015 in the Swedsih 

market. This being said, its robustness should be tested on more markets and during longer 

and more time periods, and most importantly with leverage and short selling. Finally, earlier 

on we stated that we assume no correlation between stocks. A practical implementation of the 

Kelly strategy on this market and time era could be re-made with the inclusion of a 

correlation matrix to look at how results would change.   
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9. Appendix 

A. Lognormal Prices (Merton 1969 & Merton 1992)  
To derive a closed-form solution for the optimal fraction under lognormal prices PJ for assets 

j to k, Gaussian log-returns XJ with µj and 𝜎j. The optimization problem is 

max𝐸[𝐺(𝑓)] = max𝑔 𝑓  

⇔max𝐸 log 1 + 𝑟 + 𝑓 𝑋 − 𝑟  

 

The crucial assumption for deriving the following results is that the logarithm of the price 

ratio follows a Geometric Brownian Motion, also referred to as a Itô-process. In other words 

the price of the risky asset j must satisfy the stochastic differential equation below 

 

𝑑𝑃Q,W = 𝜇Q,W𝑃Q,W𝑑𝑡 + 𝜎Q,W𝑃Q,W𝑑𝑍Q,W 

 

Where Zj,t are standard Brownian Motions which might be dependant.  Also, a risk-free asset 

with price R and risk free return 0 ≤ r ≤ µj evolving according to 

 

𝑑𝑅W = 𝑟𝑅W𝑑𝑡 
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As with the Black-Scholes-Merton approach, the parameters 𝜎Q, µj and r are supposed to be 

fixed over time to attain one-time constant solutions. The continuous wealth process, 

depending on the consumption factor C in period t, can be described as 

𝑑𝑊W = 𝑓Q,W𝜇Q𝑊W

m

QX!

	𝑑𝑡 + 𝑓Q,W𝜎Q𝑊W𝑑𝑍Q,W

m

QX!

 

 

In a univariate case, i.e. when there is one risky and one risk-free asset, the wealth dynamic 

can be written as: 

𝑑𝑊W = 𝑓	µ + 1 − 𝑓 𝑟 𝑊W − 𝐶W 𝑑𝑡 + 𝑓𝜎𝑊W𝑑𝑍W 

 

Merton (1992) defines the lifetime objective function, which is given by 

𝐼 𝑊W, 𝑡 = max𝐸 𝑒2qW𝑈 𝐶W 𝑑𝑡 + 𝐵(𝑊V, 𝑇)
V

+
 

 

With impatience factor ρ and the Bequest valuation function at time T, concave in wealth at 

T. Using a Taylor approximation at t and taking expectations 

0 = max 𝑒2qW𝑈 𝐶W +
𝜕𝐼(𝑊𝑡, 𝑡)

𝜕𝑡 +
𝜕𝐼(𝑊𝑡, 𝑡)
𝜕𝑊 [𝑓𝑡((𝜇	 − 	𝑟) 	+ 	𝑟)𝑊𝑡	

− 	𝐶𝑡]+
1
2
𝜕"𝐼(𝑊𝑡, 𝑡)
𝜕𝑊" 𝑓W"𝜎"𝑊W

" ≡ 𝜑 

 

with first order conditions 

𝜑w = 	 𝑒2qW𝑈? 𝐶∗ −
𝜕𝐼 𝑊W, 𝑡
𝜕𝑊 = 0 

𝜑𝑤	 = 	 𝜇	 − 	𝑟 𝑊
𝜕𝐼 𝑊W, 𝑡
𝜕𝑊 +

𝜕"𝐼 𝑊W, 𝑡
𝜕𝑊" 𝑓∗𝑊"𝜎" = 0 

 

The solution to φ, the life time objective function is not trivial we simplify it by assuming 

that  

𝐽 𝑊W, 𝑡 = 𝑒2qW𝐼(𝑊W, 𝑡) 

 

Letting T →∞ the Bequest function at T, B(Wt, T), falls out. We can now write the new 

objective function as 
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𝐽 𝑊W = max𝐸 𝑒2qW𝑈 𝐶W 𝑑𝑣
^

+
, 𝑣 ∈ [0,∞] 

Consequently, the Partial Differential Equation simplifies to the Ordinary Differential 

Equation  

0 = max 𝑈 𝐶W − 𝑝𝐽 𝑊 +
𝜕𝐽(𝑊W, 𝑡)
𝜕𝑊 [𝑓W((𝜇	 − 	𝑟) 	+ 	𝑟)𝑊W 	−	𝐶W]

+
1
2
𝜕"𝐽(𝑊W, 𝑡)
𝜕𝑊" 𝑓W"𝜎"𝑊W

"  

 

Which is no longer a function of time, since 𝑑W falls out 

 

The goal is to produce optimal portfolio strategies under a log-utility function in a normative 

way. In the case of CRRA (Constant Relative Risk Aversion) the marginal utility is given by 

𝑈 𝐶 =
1
𝛾 𝐶

} 

The relative risk aversion (RRA) is 

𝑅𝑅𝐴 = −
𝑈?? 𝐶
𝑈? 𝐶 𝐶 =

− 𝛾 − 1 𝐶}2"

𝐶}2! 𝐶 = 1 − 𝛾 

Notice that we assume that this is a constant, therefore if U(C)=log(C), then γ = 0 and RRA = 

1. Substituting the RRA into our first order condition φc yields 

𝑒2qW(�∗)��\ = 𝐼? 𝑊 ⟺ 𝐶∗ = [𝑒2qW𝐼? 𝑊 ]
!

}2! 

𝑓∗ = −
𝜇	 − 	𝑟
𝜎" 𝑊

𝐽′(𝑊)
𝐽′′(𝑊) 

As T →∞, we can now write our optimal decision rule as 

𝐶∗ = 𝐽′(𝑊)
!

}2! 

𝑓∗ = −
𝜇	 − 	𝑟
𝜎" 𝑊

𝐽′(𝑊)
𝐽′′(𝑊) 

Merton (1969) shows that the solution of J(W) with �
��\

}
𝑊} allows us to solve optimal 

consumption and investment rules in the infinite time case if price changes follows a 

Geometric Brownian Motion and the marginal utility is 𝑈 𝐶 = !
}
𝐶} with 

𝐶^,W∗ =
𝑝

1 − 𝛾 − 𝛾
𝜇	 − 	𝑟 "

2𝜎2 1	 −	𝛾" +
𝑟

1 − 𝛾  

𝑓∗ =
𝜇	 − 	𝑟
𝜎" [1	 − 	𝛾] 
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Because we assume that µ, σ and r are constants our optimal fraction 𝑓∗  only depends on the 

risk aversion parameter γ. As we assume logarithmic utility, such that γ = 0 the formula is 

simplified to 

𝐶^,W∗ = 𝑝 + 𝑟 𝑊W 

𝑓∗ =
𝜇	 − 	𝑟
𝜎"  

 
The formula above is equal to the formula we present in section 2.1.2; only this time we 

derive it another way. 

 

 

B. Proebsting’s Paradox (Thorp 2008) 
Due to the fact that we assume each of our bets are independent of one another, our method 

of rebalancing our portfolios is potentially subject to Proebsting’s paradox (named after Todd 

Proebsting who discovered the paradox in a e-mail conversation with Thorp). To illustrate the 

intuition behind the paradox, suppose that you are offered a 2:1 bet with 50% probability. 

After this you are offered a second bet on the same premise but with 5:1 odds; the optimal 

Kelly allocation results in a 47,5% allocation of your bankroll when odds are 2:1, and 40% if 

you were offered the 5:1 bet. Hence, even though we are worse off in the first case, the 

allocation fraction is larger, which illustrates the paradox. 

 

This problem arises due to the concave shape of the Kelly function and is the only potential 

way a Kelly bettor ever risks the entire wealth; normally one should include a correlation 

factor, which we do not, to solve this. Instead, as argued in the text, we solve it by avoiding 

string bets by rebalancing in discrete time intervals (i.e. quarterly). 
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C. Approximation of the Unrestricted Kelly Portfolio 

 

Figure 14: The Kelly Portfolio Without Restrictions. Figure 14 depicts our attempt to show 

Kelly returns for a portfolio, which does not have the leverage and short selling restriction we 

impose. Data is retrieved from Bloomberg for the period 2005 to 2015. 

 

This time, when the Kelly formula indicates we should short sell the portfolio, we short SBX 

instead. We do this by taking the inverse return to that of the SBX due to simplicity. 

Additionally, during periods when we should leverage we simply multiply the factor by 

which we should leverage with the return for the Kelly portfolio that period (the strategy 

leverages six times, maximum 1,5 times the portfolio and minimum 1,04 times). The removal 

of our restrictions has a great positive effect on Kelly returns; cumulative return for the 

period 2005 to 2015 now amounts to 1512% (instead of the initial 953%). This underlines the 

relative strength of a Kelly strategy. We should stress, though, that the calculations in Figure 

14 are very arbitrary since there are several factors, for example the cost of borrowing, which 

we do not consider. Also, we do not apply short selling on the Kelly portfolio; instead we use 

the SBX for simplicity, which most certainly does not reflect the same results. The intuition 

behind figure 14 is to give the reader a general picture of how the Kelly portfolio would 

perform without the restrictions.  
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