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Abstract

In this thesis we compare the official Basel III method for computing credit
value adjustment (CVA) against a model that assumes piecewise constant
default intensities for a number of both market and fictive scenarios. CVA is
defined as the price deducted from the risk-free value of a bilateral derivative to
adjust for the counterparty credit risk. Default intensity is defined as the rate
of a probability of default, conditional on no earlier default. In the piecewise
constant model, the default intensity is calibrated against observed market
quotes of credit default swaps using the bootstrapping method. We compute
CVA for an interest rate swap in a Cox-Ingersoll-Ross framework, where we
calculate the expected exposure using the internal model method and assume
that no wrong-way risk exists.

Our main finding is that the models generate different values of CVA. The
magnitude of the difference appears to depend on the size of the change in the
spreads between credit default swap maturities. The bigger the change from
one maturity to another is, the bigger the difference between the models will
be.

Keywords: Basel III, Credit Value Adjustment, Counterparty Credit Risk,
Credit Default Swap, Interest Rate Swap, Piecewise Constant Default Inten-
sity, Bootstrapping, Expected Exposure, Internal Model Method.
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1 Introduction

In this section, we introduce our motivations and purpose behind this thesis, as well
as stating the method used, and the structure of our study.

The 1990s saw heavy deregulations of financial markets in the western world,
causing the financial industry to grow massively worldwide and enabled the banks
to increasingly take on risks. A general view existed that some financial institutions
were “too big to fail,” meaning that the government could not let these corporations
go bankrupt for fear of what it might do to the world economy. When the crisis
hit in 2007-2008, governments were forced to bail out distressed banks, but when
the United States government unexpectedly decided not to rescue Lehman Brothers,
which were thought of as one of those institutes who were “too big to fail”, the coun-
terparty credit risk (CCR) associated with these entities rose sharply. CCR is the
risk that a counterparty will not pay as obligated in a contract. As a consequence,
all of the derivatives Lehman Brothers had sold were suddenly much riskier than ini-
tially thought. The buyers demanded that collateral should be posted. Collateral is
a pledge of specific property that serves as a lender’s protection against a borrower’s
default. This proved to be too much for these institutions who were backing the
derivatives since the traded contracts were of such a nature that the seller, which
typically were the big “risk-free” institutions, would have to go bankrupt if they did
not have the money to meet the demands of collateral (Acharya et al., 2009). In fact,
according to a Bank of International Settlements (BIS) press release in June 2011,
two thirds of the losses that occurred during the crisis were due to the rising credit
risk and devaluation of derivatives, and only one third due to actual bankruptcies
(BIS, 2011).

Because of the huge effects of CCR on losses during the crisis, it is crucial that
banks can accurately measure their CCR exposure. The Basel accords were updated
after the financial crisis. From the Basel III accord, the important concept of credit
value adjustment (CVA) is derived. CVA can briefly be explained as the difference
between an asset’s risk free value and its value including the risk of default. In
other words it is a measure of CCR for bilateral derivatives. In order to maintain a
stable financial system, accurately measuring the CCR is vital. In particular since
the market for over-the-counter (OTC) derivatives has grown substantially over the
last decade. OTC derivatives are derivatives traded directly between two parties,
without the supervision of an exchange. The official formula for calculating the CVA
is presented in BIS (2011, p. 31).

In this thesis we explain how the equation for calculating CVA in Basel III is
mathematically inconsistent and examine the effects of this inconsistency. By using
both market data and fictive data we calculate CVA using the Basel III equation as
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well as an equation modelled for piecewise constant default intensities. The default
intensity is roughly defined as the rate of a default occurring in any time period,
given no default up to a specific time. Piecewise default intensity means that the
default intensity is constant between two maturities but changes after a maturity.
We then calculate the CVA value using both models and compare the results to see
if the inconsistency in the Basel equation has any significant impact on the CVA
value.

The question we ask ourselves is if the inconsistency in the Basel CVA formula
makes the corresponding CVA value significantly different to a model based on
piecewise constant default intensities.

This thesis follows the notation of Brigo and Mercurio (2006) and much of the
theoretical background is retrieved from Hull (2014). We refer to several official
documents from the Bank of International Settlements such as BIS (2015, 2016) for
concepts around CVA, including the official CVA formula given in BIS (2011, p. 31)
and our calculations are based on the Cox–Ingersoll–Ross (CIR) model, introduced
by Cox et al. (1985). The CIR model works better than e.g. the Vasicek model
when the interest rates are close to zero, as proven by Zeytun and Gupta (2007).

We consider five scenarios, three with actual market data retrieved from Bloomberg
on credit default swap (CDS) spread pricing and two with fictive data. A CDS is a
financial swap agreement, which for the buyer of it, works as an insurance against
a default for a third entity. In the first three scenarios, we use the CDS spreads
of Swedbank for different maturities from times with low, high and inverted spread
curves. Using fictive data we can also examine the difference in extreme scenarios,
such as when the spread is constant over all maturities and when the spread changes
drastically between maturities.

We use Matlab to implement the equations and to simulate the stochastic process
used for calculating CVA. In Section 5 we thoroughly explain how the simulation is
made. We derive default probabilities using a method called bootstrapping, which
is explained in Subsection 3.2.

Possible critique of our chosen method could be about the assumptions we make,
and if they are realistic. We aim to make as realistic assumptions as possible, and we
also perform a sensitivity analysis of the variables that drives our simulated interest
rate, in order to cover multiple different scenarios. In addition to this, we use CDS
spreads from both market data, to have some realistic scenarios, and fictive spreads,
to analyse the difference in extreme situations.

We choose to use CDS spreads from one single bank since it is of little importance
how many different corporations we gather CDS spread data on. It does not matter
whether the data is on spreads of Swedbank or Nordea, since the spreads represent
the same thing in both cases. We believe that it is more relevant to have different
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spread curves, which is why we have five different scenarios of CDS spreads.
This thesis is structured as follows: We begin by giving a description of the fi-

nancial crisis in 2007-2008 and introduce the Basel accords in Section 2, where we
also discuss important concepts such as credit counterparty risk, over-the-counter
derivatives, netting and central counterparty clearing. These concepts are vital to
understand in order to understand the importance of CVA. In Section 3 we explain
intensity based models and we describe how we calibrate our default probabilities
using piecewise constant CDS spreads. Furthermore, in Section 4, we describe and
discuss the different methods to calculate CVA and present the simulations we con-
duct in Matlab and explain the assumptions made when calculating our CVA values.
The results of our comparison between the Basel model and the piecewise constant
model are presented in Section 5. Lastly, in Section 6, we discuss the assumptions
we make when calculating CVA, as well as the findings from our numerical studies
and provide a conclusion of this thesis.

2 Theoretical Background

In this section we present concepts related to credit value adjustment (CVA) in order
to build an understanding of what we aim to explain in the rest of this thesis.

2.1 Basel Regulations

In the aftermath of the financial crisis of 2007-2008, the Bank of International Set-
tlements updated the Basel regulations with Basel III. A large part of the changes
were to account for the risk of default of one’s counterparties, and how to calculate
and incorporate the value of these risks in the traded derivatives in a more accurate
way.

Under the Basel II market risk framework, firms were required to hold capital to
account for the variability in the market value of their derivatives in the trading book,
but there was no requirement to hold capital against variability in the CVA. CVA
is the difference between a risk-free portfolio and a portfolio value that takes into
account the possibility that the counterparty might default. The counterparty credit
risk framework under Basel II was based on the credit risk framework and designed
to account for default and migration risk rather than the potential accounting losses
that can arise from CVA (Rosen and Saunders, 2012).

To address this gap in the framework, the Basel Committee on Banking Super-
vision introduced the CVA variability charge as part of Basel III. The current CVA
framework sets forth two approaches for calculating the CVA capital charge, namely
the advanced approach and the standard approach. Both approaches aim to capture
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the variability of regulatory CVA that arises solely due to changes in credit spreads
without accounting for the exposure variability driven by daily changes in market
risk factors. Calculation of regulatory CVA is usually made using the standard ap-
proach, which can be divided into three different methods. One of these methods is
the so-called internal model method (IMM), which requires a certain approval from
supervisory authorities. The other two are so-called non-internal model methods
with different degrees of complexity; the current exposure method and the standard-
ised method (BIS, 2015). These two methods are not be used nor further explained
in this thesis.

2.2 Credit Counterparty Risk

Counterparty credit risk (CCR) is the risk that the counterparty in a financial
contract will default prior to the contract expiration and not make all the payments it
is contractually required to make. CCR consists of two parts, credit risk and market
risk. Credit risk is the risk that one party in a bilateral trade cannot uphold their
part of the contract, for example by not being able to make the agreed payments,
resulting in default. Market risk refers to the overall risk, such as fluctuation in
prices that affects the entire market. Even though the definitions of credit risk and
CCR are very similar, some differences still exist (Duffie and Singleton, 2012, p. 4).

For example, only privately negotiated contracts, traded over-the-counter (OTC),
are naturally subject to CCR. Derivatives traded on an exchange are not subject to
CCR, since the counterparty is guaranteed the promised cash flow of the derivative
by the exchange itself. Two features separate counterparty risk from other forms of
credit risk: the uncertainty of the exposure and the bilateral nature of the credit
risk. CCR was one of the main causes of the credit crisis during 2007-2008, and as
mentioned in Section 1, two thirds of the losses that occurred during the crisis were
due to the rising credit risk and devaluation of derivatives, and only one third due
to actual bankruptcies (BIS, 2011).

2.3 OTC-derivatives

An over-the-counter (OTC) derivative is a contract written by two private parties, a
so-called bilateral contract. The alternative would be to buy a standardised contract
by a centralised clearing house, also called central counterparty (CCP) (Hull, 2015,
p. 390). We describe the role of a CCP in Subsection 2.10.

The OTC-market gives the counterparties the freedom to design their contracts
as they desire. Regulations implemented between 2015 and 2019 require some sort of
initial- and variation margin if the parties are financial institutions, or if one of the
two is a systemically important institution, e.g. a very large bank. Initial margin is
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the collateral posted when a contract is signed and variation margin is the collateral
posted based on change in the value of the derivative. If neither of the parties is
a financial institution or a systemically important institution, then the parties are
free to create a contract without any collateral requirements (Hull, 2015, p. 389).

The downside of a bilateral OTC contract is that the credit security provided by
a CCP is lost. In 2016 the nominal value of the OTC-market exceeded 500 billion
U.S. dollars (BIS, 2016). Since the 2007-2008 crisis, most financial derivatives are
required to be traded through a CCP. Before this change in regulation, the OTC-
market was estimated to make up 75% of the total derivatives market. Particularly
popular were credit default swaps (CDS) and interest rate swaps (IRS), where the
former is an insurance designed to cover defaults and the latter is a contract where
two parties exchange different interest rate payments, typically a floating rate for a
fixed rate (Hull, 2015, p. 389).

2.4 Forward Rate Agreements

In this subsection as well as in Subsections 2.5 and 4.4.2 we follow the notation and
setup of Brigo and Mercurio (2006). All calculations in this subsection are made
under "the risk neutral probability measure", also known as the "pricing measure".
Such a measure always exists if we rule out the possibility of an arbitrage, see
e.g. in Björk (2009). A forward rate agreement (FRA) is an OTC interest rate
derivatives contract between two parties where interest rates are determined today
for a transaction in the future. The contract determines the forward rates to be paid
or received on an obligation starting at a future date. The contract is characterised
by three important points in time (Brigo and Mercurio, 2006):

• The time at which the contract rate is determined, denoted by t

• The start date of the contract, denoted by T1

• The time of maturity, denoted by T2 where t ≤ T1 ≤ T2.

The FRA allows a party to lock in a fixed value of the interest rate, denoted
by KFRA, for the period T1 − T2. At T2, the holder of the FRA receives an interest
rate payment for the period. This interest rate payment is based on KFRA, and is
exchanged against a floating payment based on the spot rate L(T1, T2). The expected
cash flows are then discounted from T2 to T1. The nominal value of the contract is
given by N and δ(T1, T2) denotes the year fraction for the contract period from T1

to T2. The FRA seller receives the amount N · δ(T1, T2) · KFRA and simultaneously
pays N · δ(T1, T2) · L(T1, T2). At time T2, the value of the FRA, will for the seller
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be expressed as (Brigo and Mercurio, 2006):

FRA = N · δ(T1, T2) · (KFRA − L(T1, T2) (1)

where L(T1, T2) can be written as:

L(T1, T2) =
1− P (T1, T2)

δ(T1, T2) · P (T1, T2)
.

Here, P (t, T ) for t < T , denotes the price of a risk free zero coupon at time t which
matures at time T so that P (T, T ) = 1. Therefore, we can rewrite Equation (1) as:

N · δ(T1, T2) ·
[
KFRA −

1− P (T1, T2)

δ(T1, T2) · P (T1, T2)

]
= N ·

[
δ(T1, T2) ·KFRA −

1

P (T1, T2)
+ 1

]
.

(2)

The cash flows in Equation (2) must then be discounted back to time t in order
to find the value of the FRA at time t as:

N · P (t, T2) ·
[
δ(T1, T2) ·KFRA −

1

P (T1, T2)
+ 1

]
and since we know from no arbitrage interest rate theory that P (t, T2) = P (t, T1) ·
P (T1, T2), we can derive that the value of the FRA at time t is:

N · P (t, T2) ·
[
δ(T1, T2) ·KFRA −

1

P (T1, T2)
+ 1

]
= N · [P (t, T2) · δ(T1, T2) ·KFRA − P (t, T1) + P (t, T2)].

(3)

KFRA is the unique value that makes the FRA equal to zero at time t. By solving
for KFRA we obtain the appropriate FRA rate (Fs) to use in the contract. At time
t for the start date T1 > t, and maturity T2 > T1, the FRA rate is thus given by:

Fs(t;T1, T2) =
P (t, T1)− P (t, T2)

δ(t, T2) · P (t, T2)
=

1

δ(T1, T2)
·
[
P (t, T1)

P (t, T2)
− 1

]
. (4)

Fs(t;T1, T2) is here the simply-compounded forward interest rate. Rewriting
Equation (3) in terms of the simply-compounded forward interest rate in Equation
(4) gives:

FRA(t, T1, T2, δ(T1, T2), N,KFRA) = N · P (t, T2) · δ(T1, T2) · (KFRA − Fs(t;T1, T2)) .
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2.5 Interest Rate Swaps

In this subsection we discuss interest rate swaps (IRS). An IRS is a financial deriva-
tive where two parties agree to exchange future cash flows. Below, our notation
and concepts are taken from Brigo and Mercurio (2006) and Filipovic (2009). The
simplest form of an IRS is a so-called plain vanilla swap and is structured as follows:
As seen in Figure 1, counterparty A pays counterparty B cash flows that equal a
predetermined fixed interest rate on a principal for a predetermined time period.
In exchange, counterparty A receives a floating interest rate on the same principal
amount for the same period from counterparty B.

Figure 1: Example of an Interest Rate Swap (Hoffstein, 2016)

The most common IRS consists of exchanging a floating reference rate for a fixed
interest rate. Historically the floating reference rate has been based on the London
Interbank Offered Rate (LIBOR) but since the 2007-2008 credit crisis, other risk-
free rates have been used to discount cash flows in collateralised transactions. The
LIBOR is the average of interest rates estimated by each of the leading banks in
London that would be charged if a bank were to borrow from another bank. In
valuing swaps the cash flows have to be discounted by a risk-free rate. Hull (2014,
pp. 152-153) explains that having the same rate as both the reference rate and as
the discount rate simplifies the calculation.

The present value (PV) of a plain vanilla IRS can be computed through deter-
mining the PV of the floating leg and the fixed leg. Rationally, the two legs must
have the same PV when the contract is entered and thus no upfront payment from
either party is required (PVFIX = PVFLOAT ). However, as the contract ages the
discount factors and the forward rates change, so the PV of the swap will differ from
its initial value. When the swap differs from its initial value, the swap is an asset
for one party and a liability for the other (Kuprianov, 1993).

An IRS is equivalent to a portfolio of several FRAs. Consider the swap in Figure
1 where Company A pays a fixed interest rate and Company B pays a floating rate
corresponding to the interest rate L(Ti−1, Ti) over the contract period Ti−1 to Ti for
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Tα, Tα+1, ... Tβ, where α = α(t) for each time point t, equals the integer such that
the time point Tα(t) is the closest point in time to t, i.e. Tα(t)−1 < t ≤ Tα(t). The
maturity date of the IRS is denoted by Tβ.

The party who receives the fixed leg and pays the floating, in our case Company
B, is the receiver while the opposite party, Company A, is called the payer. We
assume, for simplicity that both the fixed-rate and the floating-rate payments occur
on the dates of the coupons Tα+1, Tα+2, Tα+3 ... Tβ and that there is no coupon
when the contract is entered at Tα. The fixed leg pays the N · δ · KIRS, where, N
stands for the nominal value, δ equals Ti − Ti−1, meaning it is the year proportion
between Ti−1 and Ti, and KIRS is a fixed interest rate. Hence the discounted payoff
at time t < Tα for A equals:

β∑
i=α+1

D(t, Ti) ·N · δ · (L(Ti−1, Ti)−KIRS).

The floating leg pays N · δ · L(Ti−1, Ti) which corresponds to the interest rate
L(Ti−1, Ti). The discounting factor used to discount the payoff from Ti to today’s
date t, is denoted by D(t, Ti). For maturity Ti, the interest rate L(Ti−1, Ti) resets
at the preceding date Ti−1. The discounted payoff at time t < Tα for B is given by:

β∑
i=α+1

D(t, Ti) ·N · δ · (KIRS − L(Ti−1, Ti)).

The value of the IRS for B, Πreceiver(t), is then given by (Brigo and Mercurio, 2006):

Πreceiver(t) = N ·
β∑

i=α+1

δ · P (t, Ti) · (KIRS − Fs(t;Ti−1, Ti))

=

β∑
i=α+1

FRA(t, Ti−1, Ti, δ, N,KFRA)

and by using Equation (4) in the above expression we get:

Πreceiver(t) = N ·
β∑

i=α+1

(
δ ·KIRS · P (t, Ti)−

δ · P (t, Ti)

δ(t, Ti)

(
P (t, Ti−1)

P (t, Ti)
− 1

))

which can be simplified into:

Πreceiver(t) = N ·
β∑

i=α+1

(δ ·KIRS · P (t, Ti)− P (t, Ti−1)− P (t, Ti)) . (5)

The sum in the Equation (5) above can be separated into two sums:
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N ·
β∑

i=α+1

(δ ·KIRS · P (t, Ti)) +N ·
β∑

i=α+1

(P (t, Ti)− P (t, Ti−1))

where the second sum of the two, can be simplified into:

N ·
β∑

i=α+1

(P (t, Ti)− P (t, Ti−1)) = N · P (t, Tβ)−N · P (t, Tα).

This simplification is possible since the sum of all the terms from i = α + 1 to
i = β cancel each other out, except N · P (t, Tβ) and − N · P (t, Tα). Adding the
sums back together yields:

Πreceiver(t) = −N · P (t, Tα) +N · P (t, Tβ) +N ·
β∑

i=α+1

δ ·KIRS · P (t, Ti). (6)

Equation (6) gives for the value of an IRS at time t ≤ Tα, from the receiver’s
point of view. Since Πreceiver(t) = −Πpayer(t), the value of the swap for the payer at
t ≤ Tα is (Filipovic, 2009):

Πpayer(t) = N · P (t, Tα)−N · P (t, Tβ)−N ·
β∑

i=α+1

δ ·KIRS · P (t, Ti) (7)

The floating leg, N · P (t, Tα ) in Equation (7) can be viewed as a floating rate
note and the fixed leg, −N · P (t, Tβ)−N ·

∑β
i=α+1 δ ·KIRS · P (t, Ti) in Equation (7)

can be viewed as a bond with a coupon. So an IRS can be seen as an agreement to
exchange a floating rate note for a coupon bond.

A coupon bond is an agreement of a series of payments of specific amounts of
cash at future times Tα+1, Tα+2, Tα+3 ... Tβ. The cash flows are in general expressed
as N · δ · KIRS when i < β and N · δ · β · KIRS + N when i = β. KIRS is here
the fixed interest rate and N is the nominal amount. By discounting the cash flows
back to present time t from the payment times Ti, the value of the coupon bearing
bond at time t is given by (Brigo and Mercurio, 2006):

N ·

(
P (t, Tβ) +

β∑
i=α+1

δ ·KIRS · P (t, Ti)

)
.

Where the future discounted cash flows from the coupon payments are given by
N ·

∑β
i=α+1 δ ·KIRS · P (t, Ti) and the discounted repayment of the bond’s notional

value is given by N · P (t, Tβ). The floating leg in the IRS in Equation (7), N ·
P (t, Tα), can be viewed as a floating rate note, which is a contract that guarantees
payments at future times Tα+1, Tα+2, Tα+3 ... Tβ of the interest rates that resets at
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the reset date just prior to the payment times, i.e. Tα, Tα+1, Tα+2 ... Tβ−1. Finally,
at Tβ, the note pays a cash flow that consists of the repayment of the notional value.
The floating rate note is valued by replacing the sign of the Πreciever(t) in Equation
(6), with a zero priced fixed leg and adding it to the PV of the cash flows paid at
time Tβ, giving (Brigo and Mercurio, 2006):

N · P (t, Tα)−N · P (t, Tβ)− 0 +N · P (t, Tβ) = N · P (t, Tα). (8)

Equation (8) is convenient since a portfolio can replicate the structure of the
entire floating rate note, illustrating that floating rate note always equals its notional
amount when t = Ti and it always equals N units of cash at its reset dates. So a
floating rate always trades at par (Björk, 2009).

The forward swap rate KIRS is the rate in the fixed leg of the IRS starting at
time t and ending at Tβ and is set so that the IRS contract value at time t is fair,
i.e. so that Πreceiver(t) − Πpayer(t) = 0 in Equation (7) (Brigo and Mercurio, 2006),
hence:

KIRS =
P (t, Tα)− P (t, Tβ)∑β

i=α+1 δ · P (t, Ti)

which, assuming that the contract is written at time t = Tα, can be reduced to:

KIRS =
1− P (t, Tβ)∑β
i=α+1 δ · P (t, Ti)

.

2.6 Credit Default Swaps

In this subsection we discuss the credit default swap (CDS), how it is constructed
and valued, and how to calculate the CDS spread. O’Kane and Turnbull (2003)
give an explanation of the CDS, stating that the purpose of the derivative is to
give agents the possibility to hedge or to speculate in a company’s credit worthiness
without having to take an opposite position.

A CDS on a reference entity is a contract between two counterparties, where
the seller of the CDS takes responsibility to pay the loss that the CDS buyer will
suffer if the reference entity defaults. The protection buyer insures itself against a
default of a third party, also known as a reference entity, by paying a fee. This fee is
known as the CDS premium and is measured in basis points, where one basis point
equals 0.01%. The premium is paid regularly until the contract ends or until the
reference entity defaults. The CDS is often standardised in order to bring a higher
liquidity and it typically has a maturity T of 3, 5 or 10 years. The reference entity is
usually a bank, a corporation or a sovereign issuer. If the reference entity defaults,
then the payment of the premium stops and the CDS seller fulfils its obligation by
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compensating the CDS buyer with the amount that the reference entity owes the
CDS buyer (O’Kane and Turnbull, 2003).

Before the crisis in 2007-2008 these CDS-derivatives were trading on the OTC-
market. The regulations have since then changed and regulators are now pushing for
all credit default swaps to be traded via a CCP. This reduces the counterparty risk
due to the CCPs ability to net the positions, which we explain in Subsection 2.9.

2.6.1 CDS Construction and Valuation

Hull (2014) describes the construction of a simple single-name CDS as follows: Com-
pany A enters into a credit default swap with insurance company B. The company
which default company A insures itself against is called the reference entity, and
the default of the reference entity is known as the credit event. Company A is the
buyer and has the right to sell bonds issued by the reference entity in the case of
a credit event to insurance company B, which is the seller of the insurance, for the
face value of the bonds. The total value of the bonds that can be sold in a credit
event is called the CDS’s notional principal. A transaction of this kind, where the
bonds are physically transferred between Companies A and B is called a physical
settlement. An alternative to the physical settlement is the cash settlement, where
B pays the net credit loss suffered by A in event of a default of the reference entity.
Note that in the event of a physical settlement A has to actually hold bonds that
will be delivered to B, which is not always the case. Company A could have bought
insurance without actually holding any bonds, and if several parties have done the
same then there would be a "short-squeeze" when everyone tries to buy the defaulted
bonds in order to claim their insurance pay-out. This is not a problem if for cash
settlements. The recovery rate of the bonds must however be determined, i.e. what
amount company B should pay company A at default of the reference entity. This
is usually solved by letting a "panel" of institutions bid on the defaulted bond, and
this procedure gives the recovery rate (Herbertsson, 2016). Company A agrees to
make payments to the insurance seller, typically each quarter, until the end of the
CDS or until a credit event occurs (Hull, 2014, p. 548-549).

An example to illustrate the cash flows is this: Suppose that company A buys
a 5 year CDS from company B in order to protect itself from a credit event by the
reference entity. Suppose that they buy the CDS on March 20th 2017 and that the
notional principal is $100 million. Company A agrees to pay 100 basis points per
year for this protection, called the CDS spread. Company A makes payments every
quarter of 25 basis points (0.25%) of the notional principal, beginning at March 20th
2017 and ending at March 20th 2022, which is the maturity date of the contract.

11



The amount paid each quarter is

0.0025 · $100, 000, 000 = $250, 000

If there is a credit event, the seller of the insurance is obligated to buy the bonds
for the total face value minus the possible recovery rate. Let us assume that a credit
event occurs with a recovery rate of 30%. The asset will have a value of $70 million.
The CDS seller compensates the buyer with $30 million, i.e. the difference between
the assets face value and current value. The CDS buyer pays the remaining accrued
interest between the time of the reference entity default and the intended expiration
of the contract, if the reference entity had not defaulted (O’Kane and Turnbull,
2003).

2.6.2 Calculating the Spread

As stated earlier in Subsection 2.6, the CDS spread, here denoted by ST , is very
useful when calculating the probability of a credit event for the reference entity. Let
the notional amount on the bond be N . The protection buyer, company A pays ST ·
N · δn to the protection seller, company B, at time points 0 < t1 < t2... < tnT

= T or
until τ < T . Here τ is the time of default of the reference entity and δn = tn− tn−1.
Time T is the maturity of the contract. If default for the reference entity happens
for some τ ∈ [tn, tn+1], A will also pay B the accrued default premium up to τ . On
the other hand, if τ < T , B pays A the amount N · (1 − φ) at τ where φ denotes
the recovery rate of the reference entity in % of the notional bond value. Thus, the
credit loss for the reference entity in % of the notional bond value is given by (1−φ).
Since ST is determined so that the expected discounted cash flows between A and
B are equal when the CDS contract is settled, we get that:

ST =
E
[
1{τ≤T}D(τ)(1− φ)

]∑nT

n=1 E
[
D(tn)δn1{τ>tn} +D(τn)(τ − tn−1)1{tn−1<τ≤tn}

] (9)

where 1{τ≤T} is an indicator variable taking the value 1 if the credit event occurs
before the maturity time T , and 0 otherwise. The discount factor D(t) is dependent
on the risk free rate rt and is further explained in Subsection 2.11.2 (Herbertsson,
2016).

We can make Equation (9) a little easier to understand by making a couple of
assumptions. We assume a constant recovery rate (1− φ), that τ is independent of
the interest rate, tn − tn−1 = 1

4
, and that rt is a deterministic function of time t,

r(t). Thus, ST can be simplified into:
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ST =
(1− φ)

∫ T
0
D(t)fτ (t)dt∑4T

n=1

(
D(tn)1

4
(1− F (s)) +

∫ tn
tn−1

D(s)(s− tn−1)fτ (s)ds
)

where F (t) = P(τ ≤ t) is the default distribution and fτ (t) is the density of default
time τ , e.g. fτ (t) = dF (t)

dt
.

Herbertsson (2016) (see also in Lando (2009)) makes two additional assumptions
which help simplify the equation further:

1. The accrued premium term is dropped, meaning company A does not pay for
the protection between time tn and default time τ .

2. If the credit event τ happens in the interval
[
n−1
4
, n
4

]
the loss is paid at tn = n

4
,

and not immediately at τ .

We can now simplify Equation (9) as follows:

ST =
(1− φ)

∑4T
n=1D(tn) (F (tn)− F (tn−1))∑4T
n=1D(tn)1

4
(1− F (tn))

. (10)

Remember that the discount factor D(t) is a function of the risk free rate and
is therefore deterministic due to the assumption we made earlier about rt being a
deterministic function of t. We now have a simplified equation which we can use to
derive the probability of default given the CDS spread in the market (Herbertsson,
2016). This process is explained in detail in Section 3.

2.7 Credit Value Adjustment

As explained in BIS (2015), credit value adjustment (CVA) has different definitions
depending on in what context it is used. We therefore need to describe two measures
for CVA: accounting CVA and regulatory CVA.

2.7.1 Accounting CVA

In the context of accounting, CVA is a measure to adjust an instruments risk free
value when counterparty credit risk exists. Accounting CVA is illustrated as either
a positive or a negative number, depending on which party is most likely to default
and is calculated as the difference between the risk free and the true value of the
portfolio. In other words, CVA is expressed as an expected value that includes
expected exposure (EE) and probability of loss given default in order to achieve fair
pricing. Alternatively, accounting CVA can be defined as the market value of the
cost of the credit spread volatility.Accounting CVA is closely related to debit value
adjustment (DVA) which is covered in Subsection 2.8 (Gregory, 2012).
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2.7.2 Regulatory CVA

Regulatory CVA is a measure that specifies the amount of capital needed to cover
losses on volatilities relating to the counterparty credit spread (BIS, 2015). CVA is
analogous to a loan loss reserve, aiming to absorb the future potential credit risk
losses on a loan. According to the regulation, it is not enough that the capital simply
covers the expected losses; instead it should cover the expected losses with a very
high probability (99%). This means that CVA is a measure of Value at Risk and is
always a positive number (Gregory, 2012).

CVA as a capital requirement is needed since the CCR is volatile, which creates
uncertainty regarding the expected value of the accounting CVA (BIS, 2015). The
uncertainty brings risk of losses on mark-to-market (MTM), i.e. the unrealised loss
resulting from a decrease in the asset market price.

As mentioned above, two thirds of all the credit losses during the 2007-2008
financial crisis were derived from CVA counterparty risk, and the CCR of financial
actors mostly consists of OTC derivatives (BIS, 2015). The complex nature of OTC
derivatives makes the calculation of CCR more difficult compared to other forms of
risks. Firstly, it is difficult to calculate the relevant EE since the uncertain future
value of the instrument is a function of the underlying asset. The Net Present Value
(NPV ) of an OTC derivative is at any point in time either an asset or a debt
depending on the sign of the derivative. This means that the risk is bilateral, i.e.
both parties are exposed to risk. Since OTC derivatives are priced on the market,
the volatility of both gains and losses increases (Brigo et al., 2013).

2.8 Debit Value Adjustment

When a bank computes CVA, it often considers itself to be default free or that its
counterparty has a much higher default probability. This is likely an unrealistic
assumption causing the CVA to be asymmetric (Brigo and Mercurio, 2006).

When calculating unilateral CVA, the entity assumes that only the counterparty
may default, not the entity itself. It is more realistic to assume that either party
might default. The debit value adjustment (DVA) is the PV of the expected gain
to the entity from its own default. It is calculated similarly to CVA.

DVA is controversial mainly due to the fact that if the credit rating of a firm
drops, the same firm will gain MTM profits. Accounting CVA is calculated as
the unilateral accounting CVA towards the counterparty, minus DVA. Since the
DVA is calculated based on a firm’s own credit quality, firms are able to profit and
thereby boost their equity from the deterioration of their own credit quality. It is
debated whether or not this is reasonable, but it is clear that DVA is important
when it comes to the further development of the CCR framework. In accounting,
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International Financial Reporting Standards (IFRS) and U.S. Generally Accepted
Accounting Principles states that DVA should be calculated if it leads to a more fair
value of the derivatives, according to the International Financial Reporting Standard
13: Fair Value Measurement. Many banks that follow IFRS do calculate DVA, but
not everyone (EBA, 2015, p. 20).

In the Basel framework however, the DVA volatility is not captured under the
CVA risk charge and the entire DVA amount is derecognised from the banks’ equity
(BIS, 2011, p. 23, §75). The Basel Committee motivates this by reasoning that this
source of capital could not absorb losses nor could it be monetised.

There has been a lot of discussion around DVA since 2011, but as late as 2015
BIS reinforced the message that DVA was not to be included in the banks equity
(BIS, 2015, p. 4), and in 2016 DVA was "eliminated by the U.S. body that sets
bookkeeping standards" according to Onaran (2016). For more about problems
regarding DVA, see e.g. in Section 10.5 in Brigo et al. (2013).

2.9 Netting & ISDA Master Agreement

Netting means allowing positive and negative values to cancel each other out into
a single net sum to be paid or received. Netting sets are sets of trades that can be
legally netted together in the event of default which reduces the counterparty credit
risk (CCR) (FederalReserve, 2006).

Netting can take two forms. Payment netting arises when two solvent parties
combine offsetting cash flows into a single net payable or receivable. Close-out
netting is best explained by the following example:

Figure 2: Close-out Netting (Perminov, 2016)
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In Figure 2, a defaulting and a non-defaulting party engage into two swap trans-
actions. In the first scenario, under a netting agreement, the non-defaulting party
has an outflow of $1 million in Transaction 1 while Transaction 2 brings an inflow of
$800,000. If close-out netting is enforceable, the non-defaulting party is compelled
to pay the defaulting party the difference of $200,000, illustrated in the top half
of Figure 2. Without close-out netting, illustrated in the bottom half of Figure 2,
the non-defaulting party would be compelled to immediately pay $1 million to the
defaulting party and then wait for the bankruptcy, which may take months or even
years, for whatever fraction of the $800,000 it recovers. Close-out netting reduces
credit exposure from gross to net exposure.

According to research by International Swaps and Derivatives Association (ISDA),
netting has reduced credit exposure on the OTC derivatives markets by more than 85
percent and without netting, total capital shortfall may exceed $500 billion (Mengle,
2010).

An OTC derivatives trade is typically documented through a standard contract
developed by the ISDA. This contract is called an ISDA master agreement and states
the way the transactions between the two parties are to be netted and considered
as a single transaction in the event that there is an early termination. The master
agreement makes managing credit risk easier as it reduces the counterparty risk
(Brigo et al., 2013).

Credit support annexes are included in the master agreements and used in docu-
menting collateral arrangements and margin requirements between two parties that
trade OTC derivatives. Collateral may take many forms but is usually made up out
of cash or securities. Margin requirements for collateral are constantly monitored,
ensuring that enough collateral is held per OTC derivative trading value. Consider
the example of when firm A is required to post collateral. The threshold is the un-
secured credit exposure to firm A that firm B is willing to bear. If the value of the
derivatives portfolio to firm B is less than the threshold, firm A is not required to
post collateral. If the value of the derivatives portfolio to firm B is greater than the
threshold, then the required collateral is equal to the difference between the value
and the threshold. If firm A fails to post the required collateral then firm B would
be allowed to terminate its outstanding transactions with firm A (Hull and White,
2012).

Netting and ISDA master agreements significantly reduce the counterparty risk
but also leave a net residual exposure, which may increase as the portfolio ages.
However, since OTC derivatives are complex by nature, the counterparty credit risk
can not be entirely eliminated (Brigo et al., 2013).
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2.10 Central Counterparty Clearing

In order to further reduce the CCR firms may use so-called central counterparty
(CCP) clearing, which is the process of entering an agreement with a central coun-
terparty. A CCP acts as a neutral middleman during standard OTC transactions
and assumes the responsibility of covering a counterparty in a bilateral contract if
the counterparty defaults. The CCP manages all margin calls and steps in to cover
the CDS seller if the seller fails to deliver liquid collateral.

Hull (2014) exemplifies CCP clearing with a forward contract transaction where
A has agreed to buy an asset from B in one year for a certain price, the CCP agrees
to:

1. Buy the asset from B in one year for the agreed price, and

2. Sell the asset to A in one year for the agreed price.

The CCP takes on the credit risk of both A and B. All members involved in
transactions with the CCP has to provide initial margin. Transactions are valued
on a daily basis so the member receives or makes margin payments every day. Only
big market participants are clearing members and if an OTC market participant is
not a member of a CCP, it can clear its trades via a CCP member who will provide
margin to the CCP. This relationship between a non-member and a CCP member
is similar to that of a broker and a futures exchange CCP member. (Hull, 2014)

Figure 3: An illustration how different cash flows are netted against each other
Franzén and Sjöholm (2014).

Figure 3 illustrates how the cash flows using CCP clearing are netted against
each other. The total counterparty risk is reduced since the size of the clearing
house enables it to net the counterparties. As can be seen in Figure 3, when there
is no netting, all the cash flows are transferred between the counterparties. With
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netting, only the net between each counterparty is transferred, for example as A
owes B 9 units and B owes A 5 units, it is enough to have A transfer 4 units to B.
In the netting scenario, as A has a debt of 4 to B and a claim of 3 from C, A has a
net claim of (3-4=) -1, i.e. a net debt of 1. Counterparty C also has a net debt of 1
(since 2-3=-1). Counterparty B has a net claim of (4-2=) 2, so the CCP covers A’s
and C’s debt to B.

Also, the risk is further reduced since the CCP can easily monitor the credit-
worthiness of the counterparties and require that they post collateral. Monitoring
and having overall information of all participants makes netting of collateral more
efficient. Furthermore, the CCP can identify dangerous asymmetric positions and
report this to regulators, thus increasing market transparency (Rehlon and Nixon,
2013).

Following the credit crisis in 2007-2008, regulators have become more concerned
about systemic risk. One result of this has been legislation requiring that most stan-
dard OTC transactions between financial institutions be handled by CCP’s (Hull,
2014).

The European Markets and Infrastructure Regulation (EMIR) is an European
Union law aiming to reduce risks posed to the financial system by reporting deriva-
tive trades to an authorised trade repository and clearing derivatives trades above
a certain threshold. The EMIR also mitigate the risks associated with derivatives
trades by, for example, reconciling portfolios periodically and managing dispute res-
olution procedures between counterparties (Lannoo, 2011).

2.11 Risk Free Rate and Discount Rate

In this section we describe the term discount rate, which we use in our calculations.
We begin by describing the risk free rate, what rate the market use and how it
changed during and after the financial crisis.

2.11.1 Risk Free Rate

One might think that the rate of U.S. Treasury bills is the obvious way to derive
the risk free rate. Treasury bills and bonds are issued by the U.S. government and
are considered to be risk free investments. However, the Treasury bills and bonds
rates are artificially low because of three points (Hull, 2014, p. 76-77):

1. Financial institutions are forced to buy Treasury bills and bonds to fulfil regu-
latory requirements, which creates a demand for these instruments. The price
increases and the yield declines.
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2. The capital that an institution has to hold to support the Treasury investment
is much lower than the same value investment in any other low risk instrument.

3. In the U.S., there are tax advantages of buying Treasury instrument, since
they are not taxed on state level.

Instead, institutions have used the LIBOR rate as the risk free rate. LIBOR
stands for London Interbank Offered Rate, which is a reference rate on what rate
banks pay when borrowing from each other and is calculated by the British Bankers’
Association. LIBOR is stated in all major currencies and has maturities of up to 12
months. To be able to borrow at the LIBOR rate one has to be considered to have
very low credit risk, typically an AA credit rating. Even if the LIBOR rate has a low
risk, it is not totally risk free as we saw in the 2007-2008 financial crisis. Banks were
not willing to lend to each other and the LIBOR rate increased drastically (Hull,
2014, p. 77).

Since the crisis, dealers have switched from the LIBOR rate to the overnight
indexed swap (OIS) rate. In an OIS a bank receives a fixed rate for a period, which
equals the geometric average of the overnight rates during the same period. The
OIS rate is the fixed rate in the OIS. At the end of the day a bank can either have
a surplus of cash or be short on cash to make all the transactions filed during the
day. Therefore the bank is in need of overnight borrowing and the rate which they
pay for that loan is the overnight rates in the OIS (Hull, 2014, p .77).

The spread between the LIBOR rate and the OIS rate can be a good indicator
on how stable the financial economy is. If the market is uncertain, as it was in 2007-
2009, the spread between the LIBOR and OIS rate will grow, and in times of stable
markets the spread will shrink. This also helps to illustrate why the OIS rate is seen
as a better choice for the risk free rate. The top half of Figure 4 below shows the
3-month LIBOR and the 3-month OIS rate in 2006-2017, where the LIBOR is the
white line and OIS is the orange. The bottom half illustrates the difference between
the LIBOR and the OIS in 2006-2017, i.e. the 3-month LIBOR-OIS spread.
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Figure 4: Monthly data of the 3-month LIBOR and the 3-month OIS rate (top)
and the 3-month LIBOR-OIS spread (bottom) in 2006-2017, retrieved from

Bloomberg

2.11.2 Discount Rate

Cash flows has to be discounted in order to take into account the time value of money.
One dollar today is more valuable than one dollar in a year. One can assume that
one dollar invested today would grow at the inflation rate, at least. Investments
with similar risk should yield the same return and therefore be discounted by the
same rate.

Brigo and Mercurio (2006, p. 3-4) express the discount factor D(t, T ), between
time t and a future time T as:

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

rsds

)
(11)

where B(t) is the value of an investment at time t. We assumed earlier in Subsection
2.6 that the rt is a deterministic function of time t, which would mean that the
discount factor D(t, T ) also is deterministic, as we can see in Equation (11).

As explained by Hull (2014, p. 152-153), having the same rate, both as reference
rate and as discount rate simplifies the calculation of the IRS. Although the floating
reference rate has historically been based on the LIBOR, since the credit crisis
of 2007-2008, most derivatives dealers now use OIS discount rates when valuing
collateralised derivatives. This is based on the fact that collateralised derivatives
are funded by collateral, and the OIS rate is usually paid on collateral (Hull, 2014, p.
207). Hull and White (2013) argues that the best proxy for the risk free rate should
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always be used when discounting and that the OIS zero curve is closest possible
proxy to the risk free rate. Therefore we use simulated values of the OIS rate, both
as discount rate and as reference rate in the calculation of the swap.

3 Modeling Default Intensities

As seen in Equation (10), we need to model the default time τ and its probability
distribution F (t) = P [τ ≤ t]. In Subsection 3.1 we explain intensity based models
for τ , and in Subsection 3.2 we describe how we calibrate our default probabilities
using piecewise constant CDS spreads.

3.1 Intensity Based Models

Here we introduce a so-called intensity based model for the default time τ . The
intuition behind an intensity based model is the following:

Assuming that τ > t and given the information available on the market at time
t, denoted by Ft, the probability that a corporation’s default time τ occurs in the
time interval (t, t+ ∆t) is approximately equal to λt∆t for small values of ∆t, i.e.:

P [τ ∈ [t, t+ ∆t)|Ft] ≈ λt∆t if τ > t (12)

where the stochastic process λt is positive for all values of t.
To give a rigorous construction of such a random variable τ , we proceed as follows:

First, we let Xt be a d -dimensional stochastic process, which includes all the factors
that drives the random variable τ . We then consider a function λ, which given Xt

is the stochastic process λt(ω) = λt(Xt(ω)). Finally, we let E1 be an exponentially
distributed random variable with a mean of 1 and define τ as (Lando, 2009):

τ = inf
{
t ≥ 0 :

∫ t

0

λ(Xs)ds ≥ E1

}
(13)

which tells us that τ is the first time at which the positive function
∫ t
0
λ(Xs)ds equals

the random level E1. One can show that if τ is constructed as in Equation (13),
then τ will satisfy the relation in Equation (12).

Using the construction in Equation (13) we can derive the probability of survival
up to time t as:

P[τ > t] = E

[
exp

(
−
∫ t

0

λ(Xs)ds

)]
. (14)

We use Equation (14) to calibrate our CDS spread function later. One can model
λt in different ways depending on what version of Xt one uses, for example:

1. λt can be a deterministic constant, say λ.
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2. λt can be a deterministic function that is dependent on time t.

3. λt can be a stochastic process, e.g. a CIR-process.

If the default intensity is a constant then we get P(τ > t) = e−λt since:∫ t

0

λdt = [λ · s]t0 = λ · t− λ · 0 = λ · t

and P(τ < t) = 1− e−λt. This expression is then used in place of F (t) in Equation
(10) to derive a simple expression for λ as a function of the CDS spread ST :

ST = 4(eλ − 1)(1− φ)⇒ ST
(1− φ)

= 4(eλ − 1). (15)

For small values of λ we can use so-called Taylor-expansion in Equation (15) to
get the approximation:

ST
(1− φ)

= λ. (16)

For a complete proof of Equation (15) and (16) see in Herbertsson (2016). If one
would to use any of the two other approaches, where λ is either deterministically
dependent on time or a stochastic process, then Equation (10) will in general not
be possible to simplify to an easy formula, such as in Equation (15) or (16). In
this thesis we assume so-called piecewise constant default intensities in order to
mimic reality as well as possible without a too complicated equation. Usually, but
not always, the spread of a CDS contract with maturity 3 years is lower than the
spread of a CDS contract with a maturity of 10 years, which is not the case if one
assumes constant default intensities. We can calibrate a more realistic function that
is deterministic and time-dependent, if we base our calibration on the CDS spreads
of different maturities.

3.2 Bootstrapping and Calibration

When calibrating the default intensities using bootstrapping, we consider a model
where the default intensities λ(t) for the default time τ , is piecewise constant between
the time-points T1, T2, ..., TJ . Hence, λ(t) is given by:

λ(t) =



λ1 if 0 ≤ t < T1

λ2 if T1 ≤ t < T2
...

λJ if TJ−1 ≤ t < TJ
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We defined the probability of τ being larger than time t in Equation (14), there-
fore we can also easily define the probability of τ being smaller than t as:

1− P[τ > t] = 1− exp

(
−
∫ t

0

λ(s)ds

)
= F (t). (17)

Using Equation 17 together with market CDS spreads for J maturities T1 . . . TJ ,
we can calculate the probability of default in each time t:

F (t) =



1− e−λ1t if 0 ≤ t < T1

1− e−T1λ1−(t−T1)λ2 if T1 ≤ t < T2
...

1− e−
∑J−1

j=0 λj(Tj−Tj−1)−λJ (t−TJ−1) if TJ−1 ≤ t < TJ

(18)

In order to calibrate the parameters λ1, λ2, . . . λJ , we insert F (t) in Equation
(10) and set ST equal to the market spread for that maturity, and then change λj
so that the equality holds. Each calibration means that we solve an equation with
one unknown parameter. The expression of F (t) depends on what time period t

we are in. If for example we want to calculate F (t) quarterly, for each quarter up
to the first maturity, when 0 ≤ t < T1, we use the equation 1 − e−λ1t, and when
T1 ≤ tj < T2 we use 1− e−T1λ1−(t−T2)λ2 and so on.

When we have calibrated our λj:s for each maturity Tj, we use them in Equation
(18) above to compute the probability that the entity defaults in any given quarter.
Remember that F (t) = P[τ ≤ t] is the probability of default up to time t, so the risk
of default happening in one specific quarter j is the difference between the default
probability for quarter j subtracted by the default probability for quarter j − 1,
or F (tj) − F (tj−1) as was used in Equation (10) and will also be utilised in our
CVA-calculation in the next section. The results of the derivation of the default
probabilities are presented in Subsections 5.1 and 5.2.

4 CVA Formula

In this section we describe the credit valuation adjustment (CVA) formula, and its
components, loss given default and expected exposure, and present the differences
between the official CVA formula and the formula used in practice where the default
intensities are assumed to be piecewise constant. We also present the method we
use to calculate EE, the internal model method and we end the section by briefly
discussing wrong-way risk.

Unilateral CVA is defined as the difference between the value of a portfolio
assuming that the counterparty is default-free and the value of the portfolio including
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the risk of counterparty default (Brigo et al., 2013).
Consider a bilateral OTC derivative with maturity T between counterparties A

and B. From the perspective of counterparty A, let V (t, T ) represent the risk-free
value of the derivative at time t, 0 ≤ t ≤ T , assuming that neither party can default.
Moreover, let V D(t, T ) represent the corresponding value of the defaultable version
of the same contract, assuming that A is default free and B can default before time
T . Then the CVA for the above contract at time t, is given by:

CV A(t, T ) = V (t, T )− V D(t, T ).

We are only interested in calculating CVA at time t = 0, so:

CV A(0, T ) = V (0, T )− V D(0, T ). (19)

As proven by Brigo et al. (2013, p. 95), it is possible to rewrite Equation (19) as:

CV A(0, T ) = E
[
(1− φ) · 1{τ≤T}D(0, τ)(NPV (τ))+

]
(20)

where φ is the recovery rate, which means that (1 − φ) is the loss given default
(LGD). Here (x)+ denotes the positive part of (x), i.e. (x)+ = max(x, 0). The time
of default for the party that can default is given by τ . Moreover, NPV (τ) is a
shorthand notation for NPV (τ, T ) representing the expected value of future cash
flows between time τ and T (Brigo et al., 2013, pp. 94-96), where NPV (t, T ) is
defined as:

NPV (t, T ) = E [Π(t, T )|Ft] .

Here, Π(t, T ) is the discounted net cash flows of the bilateral derivatives contract
between the investor and the counterparty seen from the investors point of view at
time t and Ft is the available market information at time t, see e.g. in Brigo et al.
(2013). We make the following assumptions:

• τ is independent of NPV (t, T ), i.e. independent of Π(t, T ).

• The time period [0, T ] is divided into J intervals: 0 = t0 < t1 < ... < tJ = T .

• The default time τ is replaced with the next tj in the grid, so if tj−1 < τ < tj

then NPV (τ) is approximated by NPV (tj).

• LGD is constant, or equivalently, the recovery rate φ is constant.

These assumptions enables us to approximate Equation (20) by the following for-
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mula, (see e.g. in Brigo et al. (2013, p. 96)):

CV A0 ≈ (1− φ)
J∑
j=1

(P[τ ≤ tj]− P[τ ≤ tj−1]) ·Dj · EEj

or, if F (t) = P[τ ≤ t]:

CV A0 ≈ (1− φ)
J∑
j=1

(F (tj)− F (tj−1)) ·Dj · EEj. (21)

Furthermore, Dj = E[exp(−
∫ tj
0
r(Xs)ds)] , i.e. the expected discount factor

at time tj. Finally, EEj = E[max(NPV (tj), 0)] i.e. the expected exposure at
time tj, which can also be calculated using the internal model method described in
Subsection 4.2.

In Equation (21) the term (F (tj) − F (tj−1)) equals the probability of a default
occurring between time tj−1 and tj. In Subsection 3.2 we determined that:

F (t) = 1− exp

(
−
∫ t

0

λ(s)ds

)
and in Subsection 3.1 we saw that ST

1−φ = λ. Assuming a constant CDS spread
transforms Equation (21) into:

CV A0 ≈ (1− φ)
J∑
j=1

[
exp

(
−S · tj−1
(1− φ)

)
− exp

(
−S · tj
(1− φ)

)]
·Dj · EEj. (22)

The official CVA formula in Basel III is derived in the same way, but the as-
sumption of constant CDS spreads is dropped, giving:

CV ABIS = (1− φ)
J∑
j=1

max

[
0, exp

(
−Sj−1 · tj−1

(1− φ)

)
− exp

(
−Sj · tj
(1− φ)

)]
·Dj · EEj

(23)
where Sj is the CDS spread for the counterparty with a maturity tj. For the piecewise
model, F (tj) in Equation (21) is derived using the bootstrapping method which we
explained thoroughly in Subsection 3.2.

The difference between Equations (21) and (23) is that the official CVA for-
mula use a mathematically inconsistent assumption that the default intensity is not
constant since it assumes that Sj might change in time. Since it is possible that
Sj > Sj−1 and since the exposure cannot affect the CVA negatively, the official
formula includes the ”max” expression in Equation (23).
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Both formulas are based on the assumption that the default probability and
the market factor are independent. If these parameters are not independent, then
so-called wrong-way risk (WWR) exists. WWR is the risk that arises when coun-
terparty credit exposure during the life of the trade correlates to the credit quality
of the counterparty (Herbertsson, 2016).

4.1 Loss Given Default

The loss given default (LGD) is the amount of capital a financial institution loses
when a borrower defaults on a loan. In other words LGD equals one minus the
recovery rate.

Theoretically, LGD can take any value from 0%, where the default does not
lead to a loss, to 100%, where the entire exposure is lost. It is common, however
not realistic, to assume a deterministic recovery rate. Banks set the value of LGD
themselves. It is very difficult to determine a value, mainly because the sample data
often is too small, and since it requires subjective estimations (Brigo et al., 2013).

The market LGD approach is a quantitative method that allows for an explicit
estimation by looking at bond market prices immediately after default. These prices
are then compared with the original par values. The LGD can be extracted from the
company value, after discounting the observable recoveries and costs (Engelmann
and Rauhmeier, 2011).

We estimate our value of the LGD based on data from Moody’s. The data
illustrates probability distribution of recoveries from 1970 to 2003 for all available
bonds and loans. On average the LGD amounts to 60% which is the value we use
in our calculation of CVA (Schuermann, 2004).

4.2 Internal Model Method

The internal model method (IMM) is a way to compute CVA for firms that have a
regulator approved model for CCR, so-called IMM approval. An increasing number
of banks all over the world are using IMM to calculate regulatory CVA capital as
results obtained in practice from IMM is superior to other methods, according to
a report by Thompson and Dahinden (2013). To calculate the exposure using the
IMM, banks use a Monte Carlo model, which requires regulatory approval. The
Monte Carlo model is presented in Appendix B. Historical data from at least the
three previous years must be included in the Monte Carlo model, and one of those
years has to be a so-called ”stressed” scenario, meaning a particularly economically
unstable period with increased credit spreads (Pykhtin, 2012).

Consider a bank with a portfolio of contracts towards a specific counterparty.
The expected exposure at time t, EE(t), is by definition the expected amount that
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the entity risk losing in an investment in the case of a counterparty default. This
value will depend on V (t), which is the mark-to-market (MTM) value of the portfolio
at time t, and C(t), the amount of collateral available at time t. Hence, EE(t) is
given by:

EE(t) = E[max{V (t)− C(t), 0}]. (24)

In Equation (24), the exposure depends on whether the contract is an asset or
a liability. The quantity V (t) is the risk free value from the banks perspective.
A negative value of Ci(t) implies that the bank has posted collateral at time t,
meaning an obligation to the counterparty. Should the counterparty default, this
amount will still be due and has to be paid to the creditors of the defaulted company.
A positive value implies that the bank holds collateral at time t, meaning it is an
asset for the bank, and is expected to be received from the counterparty. If the
counterparty defaults, this value will not be fully paid, so the exposure equals the
present value (PV) of the asset. Therefore, the exposure is equal to the PV of the
asset if Vi(t) > Ci(t) and zero otherwise (Pykhtin, 2012). In our calculations we
assume that no collateral has been posted, i.e. Ci(t) = 0.

4.3 Expected Exposure

In the CVA-formula given by Equation (21), the expected exposure (EE) is the
value of the derivative and is the most difficult part of CVA to calculate since it
is based on many different parameters. It may often require a massive amount of
simulations depending on how many derivatives you hold. So in Equation (21),
EE is the expected risk-neutral value of the exposure to the counterparty at future
time t and is independent of counterparty default event, i.e. we assume there is no
wrong-way risk.

These simulations of the distribution of counterparty-level potential future credit
exposure are performed by using three main components:

1. Scenario Generation. Future market scenarios are simulated using evolution
models of the risk factors for a fixed set of simulation dates.

2. Instrument Valuation. Valuation is performed for each trade in the counter-
party portfolio for each simulation date and each realization of the underlying
market risk factors.

3. Portfolio Aggregation. Counterparty-level exposure is obtained for each sim-
ulation date and each realization of the underlying market risk factors by
applying Equation (25):
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EE(t) = E
[∑

k

max

[ ∑
i∈NAk

Vi(t), 0

]
+
∑

i/∈{NA}

max[Vi(t), 0]

]
(25)

where, in the first term, the sums inside the brackets are only for the values of
all trades covered by the k -th netting agreement (hence, the i ∈ NAk notation).
The sum outside the brackets sums the exposures over all netting agreements. The
second term in Equation (25) is the sum of contract-level exposures of all trades not
belonging to a netting agreement (hence, the i /∈ NAk notation) (Pykhtin and Zhu,
2007).

4.4 Calculating the Expected Exposure

Calculating the expected exposure (EE) for an interest rate swap (IRS) normally
requires a stochastic interest rate model, such as e.g. the Cox–Ingersoll–Ross (CIR)
model (Herbertsson, 2016). We will use a CIR-process to model the interest rate.
According to the CIR model, the instantaneous interest rate follows the stochastic
differential equation, also known as the CIR-process. The simplest version of this
model describes the dynamics of the interest rate rt as the solution of the following
stochastic differential equation:

drt = κ(θ − rt)dt+ σ
√
rt dZt

where θ is the average of the 1-month OIS rates over the last year, κ represents the
speed of adjustment to the long term mean θ. In other words, it is the continuous
drift and is always positive. Here, Zt is a standard Brownian motion, meaning it is
a stochastic process where for each t, Zt ∼ N(0, t), i.e. Zt is normally distributed
with mean zero and variance t, and dZt represents a normally scaled random number
multiplied with the square root of the time step, at time t. The σ is the continuous
volatility of the process and dt = 1

360
, i.e. a daily time step assuming a 360 day

year. Continuous time variables have a particular value for only an infinitesimally
short amount of time. Between any two points in time there are an infinite number
of other points in time. The model has a condition that 2θκ > σ2, which puts a
nonnegative restriction on rt, hence rt ≥ 0 and θ is the equilibrium interest rate
(Cox et al., 1985).

To value the EE we first have to simulate the path of the floating rate in the IRS
and value the floating leg in the IRS.

To derive the EE, the following procedure is followed:

• The CIR method is used in order to simulate the interest rate path for a
10-year period.

28



• The interest rate simulation is used to value our instrument, the IRS.

• The IRS gives the exposure through Equation (24):

EE(t) = E[max{V (t)− C(t), 0}]

where V (t) is the value of the IRS contract at time t and as mentioned in
Subsection 4.2, we set C(t) = 0.

4.4.1 Simulating the Interest Rate

In this subsection we describe the way we simulate the interest rate using the CIR
model as described by Farid (2014). We first have to calibrate the CIR model
parameters; the continuous drift denoted by κ, the continuous volatility σ, and
average of the 1-month OIS rates θ, based on actual data.

We start by collecting data of the 1-month OIS rate from 5/5-16 to 5/5-17 from
the archive of the Bank of England1. Each observation is denoted by rt∗ , i.e. 1-month
OIS rate r, at time t∗.

As in Farid (2014), we now proceed as follows: To derive the values of κ and σ,
we first need to calculate the value of the residual sum of squares (RSS). We want
the RSS to be as small as possible. We need to transform the short rates rt by
subtracting the average of the short rates, denoted by θ, from each observation rt∗ .
The transformed short rate is denoted by r̃t and equals rt∗ − θ. The discrete drift
term ψ, represents the values of the stochastic drift occurring at distinct, separate
points in time, where the stochastic drift is the change of the average value of a
stochastic (i.e. random) process. At first, ψ is taken as an arbitrary number and
the altered in order to calibrate the minimum of RSS. RSS is given by:

RSS =
T∑
t=1

r̃t − ψ · r̃t−1)2

r̃t + θ

where the sum includes all observations of r̃t we have, i.e. from a year back.
The next stage of the calibration process is to calculate the following terms:

• The discrete volatility parameter, σa is given by:

σa =

√
RSS

N − 1

where N is the number of residual terms.
1Retrieved from http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx
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• The continuous drift, κ is given by:

κ = ln
1

ψ
.

• The continuous volatility, σ is given by:

σ =

√
2κσ2

a

1− exp(−2κ)
.

Through this calibration we obtain the CIR model parameters we need in order
to simulate the interest rate path over the next 10 years. The calibration gives κ =
0.02, σ = 4.07% and θ = 0.60%. We also need today’s2 1-month OIS rate, which
we retrieve from the Bank of England, r0 = 0.73%. We plug in these parameters
into the built in CIR function in Matlab that simulates the interest rate paths.
The simulation of the interest rate path is made 100 000 times. For simplicity we
only illustrate 10 interest rate path simulations over 10 years in Figure 5 where the
interest rate rt follows a CIR process with κ = 0.02, σ = 4.07%, θ = 0.60% and r0
= 0.73%.

2At 5/5 -17
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Figure 5: Simulation of 10 interest rate paths where the rate follows a CIR-process

This interest rate simulation enables us to now value the IRS.

4.4.2 Valuing the Interest Rate Swap

As mentioned in Subsection 2.5 the value of the IRS contract Πpayer(t) is calculated
using Equation (7) at all points in time t until maturity Tβ, i.e. for all t ≤ Tβ. The
calculation is based on the arbitrage-free price of a default-free zero coupon bond
P (t, T ) which is given by (Björk, 2009):

P (t, T ) = A(t, T ) · exp(−B(t, T )) (26)

A(t, T ) =

(
α · exp (β(T − t))

β(exp (α(T − t))− 1) + α

)γ
B(t, T ) =

α · exp(T − t)− 1

β(exp(α(T − t))− 1) + α
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where α =
√
k2 + 2σ2, β = k+α

2
and γ = 2kθ

σ2 .
The value of the swap for the payer is given by Equation (7):

Πpayer(t) = N · P (t, Tα)−N · P (t, Tβ)−N ·
β∑

i=α+1

δ ·KIRS · P (t, Ti) (27)

where P (t, T ) is given by Equation (26).
We let α depend on t, where t goes from 0 to Tβ. For each time point t, α = α(t)

equals the integer such that the time point Tα(t) is the closest point in time to t, i.e.
Tα(t)−1 < t ≤ Tα(t).

In the formula for Πpayer(t) above, N is the notional value and N · P (t, Tα)

is equivalent to a floating rate note. N · P (t, Tα) equals N when t equals Ti for
i = α, α + 1, α + 2, ... , β (Brigo and Mercurio, 2006).

The term −N · P (t, Tβ)−N ·
∑β

i=α+1 δ ·KIRS · P (t, Ti) represents all remaining
cash flows of the payment from the fixed leg, discounted at time t. Naturally, the
sum decreases as the contract approaches maturity. N · P (t, Tβ) is the discounted
value of the fixed leg notional, which approaches N as the contract matures. Here
KIRS is the swap rate that makes the PVFIX = PVFLOAT and is only calculated once,
at t = 0, and δ represents the year fraction between Ti−1 and Ti (Björk, 2009).

Using Equation (27), valuation of an IRS with t going from 0 to Tβ, can be made
at any time t since Tα is assumed to follow the coupon payments. Since α depends
on t, the present value of the IRS is calculated by discounting all cash flows from
t ≤ 0 to t = Tβ, We assume a contract length of Tβ = 10 years, and δ · (Ti, Ti+1)

is set to 0.25 since we assume quarterly coupon payments. After the payment of
the first coupon is made at 0 < t ≤ 0.25 and Tα = 0.25, the swap is calculated as
a contract with a maturity of 9.75 years. This procedure is repeated until t = Tβ.
Since α is a function of the time, the calculations are made on shorter and shorter
swaps as time passes.

When t = 10 = Tβ, there are no coupons left and this means that there are no
remaining cash flows of the fixed leg, given by −N · P (t, Tβ)−N ·

∑β
i=α+1 δ ·KIRS ·

P (t, Ti). Since t is now equal to both Tα and Tβ, both P (t, Tα) and P (t, Tβ) are
equal to 1. Hence, at t = 10, the contract has a value of N · 1 – N · 1 – 0 = 0.

Simulations of the IRS value with Tβ = 10 years are presented in the Figure 6
below.
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Figure 6: Simulation of 10 Interest Rate Swaps with a ten-year maturity

4.4.3 Valuing the Expected Exposure

Using the swap contract we can derive the expected exposure (EE) using the internal
model method described in Subsection 4.2. We assume that there is no collateral
posted, so C(t) in Equation (24) will be 0 for all values of t. Hence the exposure is
given by the value of the swap if it is positive and zero otherwise.

In Matlab we simulate the EE using the built in Euler method 100 000 times,
where we use the CIR parameters estimated as in Subsection 4.4.1 as our inputs.
The Euler method is complicated but in short it is a method in numerical analysis for
solving stochastic differential equations with a given initial value. If we do not have
small enough steps, then the function produces complex numbers, which means that
EE also becomes a complex number. A complex number is an imaginary unit, for
example the square root of −1. Because CIR contains the square root, the discrete
approximation process becomes negative and thus undefined for real numbers.

As the discount rate we use the simulated interest from Subsection 4.4.1. We
arbitrarily set the swap rate to 10% and the notional to 1, for simplicity. That
gives us the total exposure. EE is obtained by dividing the total exposure by the
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number of simulations (Pykhtin and Zhu, 2007). The EE curve for our interest swap
is shown in Figure 7 below.

Figure 7: Simulation of the Expected Exposure

4.5 Wrong-way Risk

When calculating CVA, the probability of the counterparty defaulting is assumed
to be independent of the dealer’s exposure to the counterparty. Wrong-way risk
(WWR) refers to the situation when there is a positive dependence, meaning the
probability of counterparty default is high when counterparty exposure is high.
When these two are negatively dependent, then so-called right-way risk exists (Rosen
and Saunders, 2012).

Knowing the counterparty’s business, with its surrounding risks, is vital when
making a subjective estimation of the amount of wrong-way or right-way risk in a
transaction. Knowledge of the transactions the counterparty has entered with others
is also useful, but difficult to determine, although it has been made easier by the
post-crisis legislation (Hull and White, 2012).

WWR tends to exist in situations where a company sells credit protection to
the dealer, since the credit spreads are correlated. When the spreads are high,
so is the value of the protection to the dealer. As a result the dealer has a large
exposure to the company. Simultaneously, the credit spreads of the company are
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likely high, suggesting a relatively high default probability for the company (Rosen
and Saunders, 2012).

Right-way risk tends to appear when a company buys credit protection from the
dealer. Consider a situation where a company is speculating by conducting many
similar trades with one or more dealers. This will likely lead to WWR for the dealers
because the company’s financial position and thereby its probability of default, will
likely be affected unfavourably if the trades move against the company (Rosen and
Saunders, 2012).

If a counterparty enters into a transaction as a way of hedging against an exist-
ing exposure, then right-way risk occurs since, if the transaction move against the
counterparty, it will gain from the unhedged part of its exposure and the probability
of default will be relatively low (Hull and White, 2012).

5 Results

In this section we present the results of our comparison between the Basel model
and the piecewise constant model discussed in Section 4, where the computations are
done for an interest rate swap, following a CIR process, as described in Subsection
4.4. The results of the comparison are then discussed in Section 6.

We compare the models using default probabilities implied from market CDS
spreads in Subsection 5.1. The spreads are gathered from markets with low and
high risk as well as when the CDS spread is inverted. In Subsection 5.2, we compare
the models using fictive data where in the first scenario, the CDS spread is constant.
In the second scenario, the spread changes drastically. We show the difference in
CVA value between the models for all scenarios in Subsection 5.3.

Since the expected exposure does not depend on which default risk model we
use, only on the CIR parameters, we do not present a comparison between the two
models in this section. Instead we compute a sensitivity analysis in Subsection 5.4,
where we alter the different inputs in the CIR model, namely the continuous drift
κ, the continuous volatility σ and the average of the short term rates θ.

5.1 Default Intensity with Market Data

The default intensity or hazard rate is roughly defined as the rate of a default
occurring in any time period, given no default up to a specific time. The probability
of default between time tj−1 and tj is calculated using three scenarios in which we
gather our data of CDS spreads. Figure 8 displays time series of CDS spreads with
maturities 3, 5 and 10 years for the Swedish bank Swedbank to illustrate the different
levels of spreads. For the low risk scenario we use data from March 2017, when the
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CDS spreads were relatively low, and for our high risk scenario we use data from
November 2011. The CDS spreads from March 2009 are noteworthy since the CDS
spreads for shorter maturities were higher than for longer maturities, see in Figure
8, which occurs during especially uncertain times. The interpretation of this is that
the market believes that the main risk of a default is in the short term, and if the
business survives this period the risk for default will decrease. When the shorter
term instrument is yielding a higher rate of return than the longer term instrument
it is said that the spread is inverted (Hull, 2015).
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Figure 8: CDS spreads with maturities 3, 5 and 10 years for Swedbank during the
period July 2009 - May 2017

When deriving our piecewise constant default intensities using bootstrapping we
use data on Swedbank CDS spreads for five different maturities, 1, 3, 5, 7, and 10
years, see in Table 1 below, where the CDS spreads for the low risk scenario are from
March 2017, the spreads used in the high risk scenario are from November 2011, and
the inverted spreads are from March 2009.
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Table 1: CDS spread data (in basis points)

Maturity 1 Year 3 Year 5 Year 7 Year 10 Year
Low risk 14.8 28 40.7 49.3 58
High risk 207.5 213 246.3 259.8 267.5

Inverted spreads 360.4 336.2 325.2 326.4 326.8
Constant spreads 200 200 200 200 200
Drastic change 10 50 150 300 450

In our calibration we apply Equation (10):

ST =
(1− φ)

∑4T
n=1D(tn) (F (tn)− F (tn−1))∑4T
n=1D(tn)1

4
(1− F (tn))

with (1− φ) = LGD = 0.6.
As mentioned in Subsection 2.11.2, the reference rate is equal to the discount

rate. Therefore, the discount factor is given by D(tn) = e−r·tn , where the discount
rate r is derived from the simulation made in Subsection 4.4. Here, 10 years is
the longest maturity available, so we end our calibration there. Our implied default
intensities are shown in Table 2 together with the corresponding Basel model default
intensities. The Basel model default intensities are calculated as ST

LGD
, where ST is

the market spread and LGD = 0.6.

Table 2: Implied default intensities using Swedbank CDS market data

Low risk scenario High risk scenario Inverted spreads scenario
Piecewise Basel Piecewise Basel Piecewise Basel

0 < tj < 1 0.0025 0.0025 0.0345 0.0346 0.0599 0.0601
1 ≤ tj < 3 0.0058 0.0047 0.0359 0.0355 0.0537 0.0560
3 ≤ tj < 5 0.0100 0.0068 0.0502 0.0411 0.0509 0.0542
5 ≤ tj < 7 0.0119 0.0082 0.0498 0.0433 0.0549 0.0544
7 ≤ tj ≤ 10 0.0133 0.0097 0.0483 0.0446 0.0545 0.0545

We calculate the probability of default occurring in any quarter by using the
implied default intensities in Table 2. We explained how this is done for the piecewise
model in Section 3. The Basel default probability in the period [tj−1, tj] is calculated
as max

(
0, e−λj ·tj − e−λj−1·tj−1

)
. Each scenario’s default probabilities F (tj)−F (tj−1)

are shown in Figure 9, where F (t) = P[τ ≤ t].
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Figure 9: Implied probability of default in the interval [tj−1, tj] for the two models
plotted on the y-axis for each market scenario with time in years on the x-axis.

When calculating the default probabilities in the low risk scenario we can see in
Figure 9 that the Basel model greatly overestimates the default probabilities when
tj is close to the maturities. When tj is not close to any maturity, the Basel formula
underestimates the probabilities compared to the piecewise constant model.

The same holds for the high risk scenario. The difference between the first two
scenarios is that in the low risk scenario the model difference increases with the
maturity, whereas the opposite holds for the high risk scenario.

In the scenario when the spreads are inverted, the Basel model underestimates
the default probability for swaps with short maturities, compared to the piecewise
constant model.

Both in the high risk scenario and in the inverted spreads scenario, both models
appear to decline towards a long term value.

5.2 Default Intensity with Fictive Data

We will now use fictive data to examine the difference between the models in two
extreme scenarios. In the first example, all maturities have the same spread of 200
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basis points. In the other scenario we examine the difference between the models
when the CDS spread changes drastically, meaning the CDS premium increases by
more than it normally does, between two maturities. The default intensities are
calculated the same way as in Subsection 5.1 and are presented in Table 3. The
default probabilities for each time interval tj−1 ≤ tj are plotted in Figure 10.

Table 3: Implied default intensities using fictive data

Constant spread Drastic change
Piecewise Basel Piecewise Basel

0 < tj < 1 0.0333 0.0333 0.0017 0.0017
1 ≤ tj < 3 0.0333 0.0333 0.0117 0.0083
3 ≤ tj < 5 0.0333 0.0333 0.0518 0.0250
5 ≤ tj < 7 0.0333 0.0333 0.1279 0.0500
7 ≤ tj < 10 0.0333 0.0333 0.1753 0.0750
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Figure 10: Implied probability of default in the interval [tj−1, tj] for the two models
plotted on the y-axis for each fictive scenario, with time in years on the x-axis.

As expected, the two models give approximately the same result when the spread
is constant. When the spread changes drastically, the result is similar to the low
risk scenario, except that default probabilities in the piecewise constant model are
declining for long maturities.

5.3 Credit Value Adjustment

We now have all the values we need in order to compute the CVA value using both
formulas.

As mentioned in Section 4, the official CVA formula in Basel III is given by:
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CV ABIS = (1− φ)
J∑
j=1

max

[
0, exp

(
−Sj−1 · tj−1

(1− φ)

)
− exp

(
−Sj · tj
(1− φ)

)]
·Dj · EEj

where Sj is the CDS spread at the time tj. The formula for calculating CVA with
piecewise constant default probabilities is given by:

CV A0 ≈ (1− φ)
J∑
j=1

[F (tj)− F (tj−1)] ·Dj · EEj.

As mentioned in Subsection 2.11.2, the discount rate we use is the same rate as
the simulated reference rate in the IRS. The IRS simulation is made 100 000 times
whereas we only have one value of the EEj for every point in time tj. Since EEj
is the expected value of the exposure at tj, it is also the average of all exposures
derived from the simulated IRS. The IRS’s are based on the simulated values of the
reference rate. Therefore, for each time point, we use an average of our simulated
reference rate as our discount factor, Dj.

Table 4: Comparison of CVA calculation between the two models (in 10−4)

CVA
Piecewise Basel % Difference

Low risk 1.1167 1.1207 0.36%
High risk 3.8694 3.7786 2.40%

Inverted spreads 4.0274 4.0741 1.15%
Constant spreads 2.8236 2.8267 0.11%
Drastic change 8.1854 7.4403 10.01%

The fourth column in Table 4 illustrates the percentage difference between the
Basel and the piecewise model, calculated as |Piecewise−Basel|

Basel
· 100%. The values in

the first two columns in Table 4 are presented in 10−4, so for example the CVA in
the low risk scenario calculated using the piecewise model amounts to 0.00011167.

By observing the two CVA formulas, it is clear that the bigger the exposure and
the discount factor, the bigger the absolute difference between the two measures of
CVA, since Dj and EEj are multiplied with the default probability. The biggest
relative difference between the models is observed for the scenario with drastic dif-
ference in CDS spreads for the different maturities. In practice, this scenario means
that the market believes that an entity is not at all likely to default in the short run.
However, in the long run default is a strong possibility. Even though the relative
difference between the models is large in the drastic change scenario one should also
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consider the possibility of such a scenario occurring. In reality, the CDS spreads rise
no matter the maturity in case of a drop in confidence of a corporation’s survival.
For example, by comparing the market CDS spreads to the drastic change scenario,
we see that the difference between the first and the last maturity in the drastic
change scenario is 440 basis points, which is several times larger than the difference
in any other scenario.

Furthermore, looking at Table 4 we can see that the scenarios with high risk,
inverted spreads and drastic change have the biggest relative differences. One could
be inclined to believe that the higher the CDS spreads the bigger the difference.
However, the constant spread scenario, which has substantially higher spreads than
the low risk scenario, actually has the smallest relative difference. In addition to
this, if the level of the CDS spreads was the only factor for the differences then we
would have seen a constant difference in default intensities in Figures 9b, 9c and
10b.

It may be more relevant to look at the change in CDS spreads from maturity
to maturity, since the larger the jump in spread level is, the larger the difference in
default intensities seems to be. The largest changes in CDS spreads occurs in the
high risk scenario and in the drastic change scenario of 60 basis points and 440 basis
points, respectively. This is matched by the highest relative difference in CVA value.
The low risk scenario actually has a higher change in spread level over the whole
period of 10 years than the total change for the inverted spreads scenario (43.2 basis
points versus 36.8 basis points), so this theory is not completely consistent with the
results in Table 4.

However, one has to account for the discount factor in the calculations, which
causes differences in default intensities between the models at an early time point
to have a bigger impact than later differences. By comparing the default intensities
and CDS spreads for the first half of the contract, i.e. up to 5 years, we find
that the change in CDS spreads is consistent with the difference in CVA value. The
difference in spreads for years 0-5 is 25.9 basis points in the low risk scenario, whereas
the inverted spreads scenario has a spread difference of 35.2 basis points. The
corresponding spread differences for the high risk scenario and the drastic change
scenario are 41.8 basis points and 140 basis points, respectively.

5.4 Sensitivity Analysis

In this subsection, we compute a sensitivity analysis where we alter the different
inputs in the CIR model, namely the continuous drift κ, the continuous volatility
σ and the average of the 1-month rates θ. Sensitivity analysis of the percentage
difference between the models is presented in this subsection, and in Appendix
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A we present sensitivity analysis of the models, where the models are presented
separately.

These CVA values are relatively low and are for simplicity counted on a notional
of one. In reality the notional ranges up to billions of USD, so if N = 108, (100
million USD), then a CVA value of for example 3.8694 ·10−4 means a CVA value of
38,694 USD.
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Figure 11: Sensitivity Analysis of σ (left), θ (right) and κ (bottom) on the
percentage difference between CVA calculated using the Basel and the piecewise

constant default intensity formula

The only factor that has any significant effect on the relative difference in CVA
value between the models is σ. For low σ the difference is very large in the low risk
scenario and the drastic change scenario.

In Appendix A we present the CVA values for each scenario in our sensitivity
analysis. Neither θ nor κ, presented in Figures 13 and 14, has any large effect on the
CVA values or the difference in CVA values between the models, as seen in Figure
11. Figure 12 shows that a larger σ yields a higher expected exposure. However, as
seen in Figure 11, this has little effect on the difference in CVA values.

6 Discussion

In this section, we discuss the assumptions we make in calculating CVA, our findings
from our numerical studies in Section 5 and provide a conclusion of our thesis.
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6.1 Assumptions

We make the assumption that only one party is at risk of default, and the other
party is risk-free, so-called unilateral counterparty risk. It is possible to calculate an
entity’s own CVA, as seen from its counterparty, called debit valuation adjustment
(DVA). As mentioned in Section 2.8, Brigo et al. (2013) amongst others explain that
this model leads to some controversial effects since it could lead to a positive change
to the balance sheet of one party even though their risk of default is rising. Our
calculations therefore do not contain DVA.

As discussed by Sokol (2012), the key problem with DVA is that it is only possible
to monetise in theory but in practice it is impossible to unwind a complex derivatives
portfolio prior to default, since DVA is the reduced value of a derivative payment
obligation to a counterparty, which requires trades to be unwound and monetised.

We give our reasoning for using a recovery rate of 40% in Subsection 4.1. Having
a lower recovery rate would lead to higher values of CVA. It is valid to assume that
the LGD is not constant over all counterparties and can even change for the same
counterparty over time. In reality LGD is a stochastic variable, so we could have
simulated LGD values over time, but for this we need a model. Also, since our focus
in this thesis is on the default probability we choose to assume a constant value of
the LGD. Furthermore, it has proven by e.g. Altman et al. (2004) and Altman et al.
(2005) that LGD is in fact positively correlated with the probability of default.

One issue with the Basel model is that it assumes that no WWR exists. As
discussed by Rosen (2012), WWR can have a strong impact on CVA and capital
calculations, but it is difficult and computationally intensive to estimate in practice
since the exposure calculations are expensive and the systems in place often handle
exposures and default simulations separately.

In this thesis we only research the case of CVA for one single interest rate swap,
whereas in reality two counterparties usually have a portfolio of different swaps
between them. As we briefly explain in Sections 2.9 and 4.3 the case is different when
one has a portfolio of swaps with exposure to one counterparty. Our conclusions
does not hold for a portfolio of swaps, but that would be an interesting subject to
research in the future.

6.2 Scenario Analysis

Following the discussion in Section 5.3, we draw the conclusion that there exists a
difference between the Basel model and the piecewise model, according to our data
and results. We can also conclude that the size of this difference in our results is
dependent on both the change in CDS spreads between maturities and the assumed
discount rate.
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6.3 Sensitivity Analysis

From our sensitivity analyses in Section 5.4 it is evident that changing the underlying
variables of the expected exposure has little effect on the difference in CVA value.
This is fairly intuitive since the same EE is used when calculating CVA for both
models. The only factor that affects the relative differences of the models is low
values of σ.

6.4 Conclusion

The main conclusion of our findings is that based on our data the default probabili-
ties using the Basel model are overestimated, compared to the default probabilities
calculated using the piecewise constant model, when tj is close to the maturities.
When tj is not close to any maturity, the Basel formula underestimates the actual
probabilities, compared to the piecewise constant model. Our results show that
there is a difference in the CVA values between the Basel model and the piecewise
model in our scenarios, and that the size of this difference is dependent on the size
of the change in CDS spreads from one CDS maturity to another.
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Appendices

A Additional Figures
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Figure 12: Sensitivity Analysis of σ on CVA calculated using the Basel formula
(left) and the Piecewise formula (right)
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Figure 13: Sensitivity Analysis of θ on CVA calculated using the Basel formula
(left) and the Piecewise formula (right)
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Figure 14: Sensitivity Analysis of κ on CVA calculated using the Basel formula
(left) and the Piecewise formula (right)
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B Monte Carlo Simulation

Let X be a stochastic variable with expected value µ = E[X] and variance σ2 =

V ar(X). Assume that we want to calculate µ = E[X] but there is no closed formula
for E[X]. A good way to find µ = E[X] is through Monte Carlo simulations. Thanks
to the law of large numbers, Monte Carlo simulations may provide an approximation
of E[X] computed arbitrarily and is close to the true and unknown value of E[X].

Let us illustrate an example of Monte Carlo simulation:

1. Simulate n independent and equally distributed stochastic variablesX1, X2, . . . , Xn,
with all having the same distribution as X, with the expected value µ = E[X]

and the variance σ2 = V ar(X).

2. Calculate 1
n

∑n
i=1Xi

3. Let 1
n

∑n
i=1Xi represent an approximation of the expected value µ = E[X].

The fact that 1
n

∑n
i=1Xi truly is a good approximation of the expected value µ

= E[X] follows the law of large numbers since it, for arbitrarily ε > 0, holds that

P

[∣∣∣∣ 1n
n∑
i=1

Xi − µ
∣∣∣∣ ≥ ε

]
→ 0 if n→∞

i.e the stochastic variable 1
n

∑n
i=1Xi likely converges towards the constant µ = E[X]

when n approaches infinity.
In practice, this means that for enough simulations n, the stochastic variable

1
n

∑n
i=1Xi will be very close to the expected value µ = E[X] (Herbertsson, 2016).
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