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ABSTRACT 

Type 2 diabetes (T2D) affects at least 285 million people worldwide and its 
prevalence is rapidly increasing. Understanding the molecular mechanisms 
controlling ectopic lipid deposition and insulin response in metabolic tissues 
is essential for developing new pharmacological strategies to effectively treat 
T2D. Obesity and overweigh are the main risk factors for developing T2D, 
but nonalcoholic fatty liver disease (NAFLD) also contributes to the 
pathogenesis of T2D. Today, achieving good glycemic control in T2D 
patients with the current treatment alternatives remains challenging and no 
specific therapy exists against NAFLD. 

In this thesis, we describe protein kinase STK25 as a new key regulator of 
ectopic lipid deposition in skeletal muscle, liver and pancreas as well as 
whole-body metabolism. We have found that STK25 overexpression in mice 
challenged with a high-fat diet (HFD) results in an increased ectopic lipid 
deposition in skeletal muscle and pancreas, accompanied by an aggravated 
fibrosis and inflammation. The overexpression of STK25 also leads to 
impairments in β-oxidation and decrease in in vivo insulin-stimulated glucose 
uptake in skeletal muscle and reduced endurance exercise capacity in mice. 
The pancreas of Stk25 transgenic animals shows a significant decrease in islet 
β/α-cell ratio and alterations in the islet architecture with an increased 
presence of α-cells within the islet core, together with an impaired insulin 
production during IPGTT after a HFD challenge. We also show that 
treatment with Stk25 antisense oligonucleotides in obese mice protects 
against HFD-induced liver steatosis, glucose intolerance and insulin 
resistance. In addition, we found a significant positive correlation between 
nonalcoholic steatohepatitis (NASH) development and STK25 protein 
abundance in human liver biopsies. Furthermore, we have identified four 



 

common non-linked SNPs in the human STK25 gene that are associated with 
altered liver fat: two associated with increased hepatic fat levels and two 
associated with decreased levels. 

Taken together, our studies suggest that pharmacological inhibition of STK25 
potentially provides a new-in-class therapeutic strategy for the treatment of 
NAFLD, T2D and related metabolic complications. 

Keywords: Type 2 diabetes, insulin resistance, ectopic lipid accumulation, β-cell 
dysfunction, NAFLD, NASH, antisense oligonucleotides. 
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SAMMANFATTNING PÅ SVENSKA 
Typ 2-diabetes (T2D) påverkar minst 285 miljoner människor världen över 
och prevalensen ökar snabbt. Övervikt och bukfetma är de väsentliga 
riskfaktorerna för att utveckla T2D. Leverförfettning som inte orsakas av 
överkonsumtion av alkohol (NAFLD) bidrar också till utvecklingen och 
progressionen av T2D. I dag är det fortfarande utmanande att uppnå 
tillfredställande resultat hos T2D-patienter med nuvarande 
behandlingsalternativ och det finns ingen behandling för NAFLD. Att förstå 
de molekylära mekanismerna bakom insulinresistens och lipidinlagring 
utanför fettvävnaden, som leder till T2D och NAFLD, är viktigt för att 
framställa nya farmakologiska strategier för att effektivt behandla dessa 
sjukdomar.  

I denna avhandling beskriver vi enzymet STK25 som en ny nyckelregulator 
av lipidinlagring dels i skelettmuskulatur, lever och bukspottkörtel, samt av 
ämnesomsättningen i hela kroppen. Vi visar att överuttryck av STK25 i 
samband med högfettsdiet resulterar i en ökad lipidinlagring i skelettmuskeln 
och bukspottkörteln, tillsammans med en förvärrad fibros och inflammation. 
Överuttryck av STK25 leder också till försämringar i fettmetabolismen, 
förvärrad insulinkänslighet i skelettmuskel och minskad muskeluthållighet. I 
samband med överuttryck av STK25 uppvisar bukspottkörteln betydelsefulla 
förändringar i uppbyggnaden tillsammans med en försämrad 
insulinproduktion, samt minskning av förhållandet mellan beta- och alfa-
celler i Langerhanska öar.  Vi visar också att behandling med 
antisenseoligonukleotider, där uttrycket av Stk25 tystas, i samband med 
högfettsdieten skyddar mot lipidinlagringen i levern, samt glukosintolerans 
och insulinresistens. Dessutom fann vi en signifikant positiv korrelation 
mellan utveckling av icke-alkoholrelaterad steatohepatitis (NASH) och 
mängden av STK25-protein i leverbiopsier från människa. Vidare har vi 
identifierat fyra vanliga icke-länkade SNP i den humana STK25-genen som 
är associerade med förändrade nivåer av leverfett. 

Sammantaget tyder våra studier på att farmakologisk inhibering av STK25 
möjliggör en ny terapeutisk strategi för behandling av NAFLD, T2D och 
relaterade metabola komplikationer. 
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1 INTRODUCTION 

1.1 Obesity – a well established risk factor for 
type 2 diabetes 

The spreading of obesity is one of the most worrisome problems worldwide. 
Data from 2004 reported that about 2.8 million of the world population died 
due to obesity and overweight and the registers in 2016 raised the numbers to 
3.4 million [1]. Nowadays, overweight and obesity cause more deaths in the 
world compared to underweight, and the risk of children becoming obese has 
also increased [1-3]. Obesity occurs due to a chronic imbalance where energy 
intake exceeds energy expenditure. Obesity is a well-established risk factor 
for metabolic syndrome and several chronic diseases, such as type 2 diabetes 
(T2D), non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease 
[4, 5]. However, there is growing evidence that obesity is not a homogeneous 
condition and obese individuals can remain healthy with no apparent signs of 
metabolic complications [6]. It has also been demonstrated that fat 
distribution plays a central role in determining the risk for obesity-associated 
complications [7, 8].  

T2D is a complex metabolic disorder characterized by hyperglycemia and 
insulin resistance (IR), i.e. the reduced sensitivity of peripheral tissues to a 
physiological concentration of insulin [9-11]. Besides overweight and 
obesity, several other risk factors have been described for T2D, such as 
genetic background and environmental or lifestyle factors, including 
sedentary life, excess food intake, increased stress and sleep disruptions [9, 
12, 13]. However obesity is considered the most common risk factor for 
developing T2D [14-16]. The relative risk for an obese subject to develop 
T2D is approximately 10-fold higher compared to a non-obese subject [5]. 
Untreated T2D is associated with a substantial increased risk of morbidity 
and mortality due to an increased risk of associated cardiovascular 
complications, renal disease, blindness, wound healing problems and its 
consequent risk for amputation [17]. Appropriate lifestyle changes can 
improve insulin sensitivity and also delay or prevent the onset and 
progression of T2D from the IR state [18, 19]. Furthermore, IR is also 
considered to be a predictor of T2D, independent of obesity [6, 7]. 
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The WHO published in 2016 the Global report on diabetes, which 
demonstrates that the number of people with diabetes has almost quadrupled 
in the past four decades. This dramatic rise is mostly due to the increase in 
T2D and the factors driving it, primarily overweight and obesity [20]. In 
2012 diabetes caused approximately 1.5 million deaths, and elevated blood 
glucose caused an additional 2.2 million deaths, by increasing the risks of 
cardiovascular disease and related complications [20]. The global health care 
expenditure for diabetes is suggested to rise by 30−40% between 2010 and 
2035, becoming one of the major worldwide threats to human health in the 
current society [12, 21]. Taken together, there is an urgent need to understand 
the molecular mechanisms underlying the pathology in order to develop 
preventive measures and more efficient treatment strategies for T2D.  

1.2 Insulin resistance and type 2 diabetes 
Insulin is an important anabolic hormone produced by the β-cells in the islets 
of Langerhans in the pancreas and its major action is to lower circulating 
glucose levels by enhancing glucose uptake in the main metabolic tissues 
(Fig. 1). Insulin is released to the circulation as a response of high blood 
glucose levels, stimulating glucose uptake into skeletal muscle and adipose 
tissue, and inhibiting glucose output from the liver (gluconeogenesis). 
Glucose taken up by the liver and skeletal muscle is mainly stored as 
glycogen (9) and in the adipose tissue, glucose is converted to free fatty acids 
(FFAs) (lipogenesis) and further stored as triacylglycerols (TAGs) in lipid 
droplets (LDs) (Fig. 1). Insulin also inhibits lipolysis in the adipose tissue, 
decreasing circulating levels of FFAs. Increased plasma levels of FFAs have 
been shown to decrease glucose uptake in liver and skeletal muscle (10).  
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Figure 1. Scheme of blood glucose and insulin effects in the main metabolic 
tissues. Blue or red arrows indicate up- or down-regulation respectively. 

Briefly, T2D can develop following IR, and IR is defined as the inability of 
metabolic tissues to respond to insulin and hence the uptake of glucose from 
the bloodstream is reduced [22]. As a result of IR the tissues present 
impairments in the intracellular insulin signaling pathway, glucose and lipid 
homeostasis, and the pro-inflammatory response [15, 23]. To compensate the 
IR state, the β-cells need to overproduce insulin, which eventually can result 
in hyperinsulinemia. As long as the β-cells are able to produce enough insulin 
to overcome the IR, blood glucose levels stay in the healthy range [24]. 
However, prolonged IR ultimately leads to β-cells failure, resulting in 
hyperglycemia and clinical onset of T2D [9, 25]. 
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1.3 Obesity-induced adipose tissue 
dysfunction and insulin resistance 

White adipose tissue (WAT) is the first tissue affected by the excess of 
calorie intake, and the whole-body energy homoeostasis critically depends on 
how well WAT remodels in response to overfeeding. WAT expansion can 
happen through two mechanisms: hypertrophy – the enlargement of existing 
adipocytes by lipid accumulation; or hyperplasia – the increase of adipocyte 
numbers by pre-adipocytes recruitment. Both mechanisms are involved in 
WAT expansion, however the hypertrophic expansion and the increase in fat 
cell size are closely associated with the risk of developing T2D [24]. WAT 
expansion is known to be associated with several harmful features, such as 
increased inflammation and fibrosis, dysregulated adipokine secretion, 
hypoxia and high production of reactive oxygen species (ROS), which might 
lead to mitochondrial impairments [24]. 

During hypertrophic obesity, adipose tissue fails to appropriately expand to 
store the excess energy, consequently the surplus lipids spillover to the 
circulation and non-adipose tissues, resulting in a dramatically increased 
level of TAGs and FFAs exceeding the metabolic capacity. At the whole-
body level, this dysfunction results in ectopic fat deposition in non-adipose 
tissues, specially the liver, skeletal muscle and the endocrine pancreas [26]. 
Chronic exposure of the body to elevated levels of endogenous or exogenous 
lipids (lipotoxicity) subsequently causes impairments in cellular insulin 
signaling [24, 27]. Overall, adipose tissue dysfunction has a direct impact on 
the risk of developing systemic IR [28, 29].  

In adipose tissue, insulin is not only important to promote the synthesis of 
lipids but also to shut down the breakdown of TAGs (Fig. 1). In states of IR, 
the breakdown of TAGs to glycerol and fatty acids cannot be properly 
inhibited, which contributes to increased circulating plasma lipid levels [30]. 

1.4 Ectopic fat storage and insulin resistance 
in skeletal muscle 

Fatty acids spillover from WAT contributes to increased lipid content in 
skeletal muscle. When the oxidative capacity in WAT is compromised, the 
increased accumulation of lipids in skeletal muscle augments 
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intramyocellular lipid content [31]. A number of studies provide evidence 
that ectopic accumulation of intracellular lipids in skeletal muscle aggravates 
both organ-specific and systemic IR [32, 33].   

In skeletal muscle, insulin facilitates glucose uptake though the translocation 
of the glucose transporter 4 (GLUT4) to the plasma membrane, lowering the 
plasma glucose levels [22, 34]. Skeletal muscle is responsible for 60−70% of 
the whole-body insulin-stimulated glucose uptake, and therefore, IR in the 
muscle plays a central role in whole-body IR [35]. Furthermore, skeletal 
muscle IR is considered as a predictor of T2D development and preservation 
of adequate muscle glucose disposal is considered to prevent T2D. 

Increased lipid accumulation within skeletal muscle could occur either by 
diminished β-oxidation in muscle mitochondria or by increase in fatty acid 
uptake into muscle from the circulation. Several studies show that a decrease 
in mitochondrial fatty acid oxidation capacity due to mitochondrial 
dysfunction may affect intramyocellular lipid accumulation and IR in T2D 
patients [36-38]. However, increase in mitochondrial fatty acid oxidation in 
response to excess fuel has also been reported in connection to IR 
development in skeletal muscle [39].  

Plasma FFAs play a key role in determining the rate of their own uptake by 
skeletal muscle; hence, higher plasma FFA levels could result in higher FFA 
uptake into muscle. Nevertheless, it has been shown that T2D patients may 
display reduced efficiency in plasma FFA uptake by skeletal muscle, despite 
their high disposal [40, 41]. 

1.5 Non-alcoholic fatty liver disease and insulin 
resistance 

The liver plays a key role in energy metabolism, helping to maintain the 
systemic glucose homeostasis. In the liver, insulin stimulates glucose uptake 
and its conversion to glycogen by the activation of enzymes, such as 
glucokinase and glycogen synthase [15, 22]. Furthermore, insulin inhibits 
hepatic gluconeogenesis and glycogenolysis, resulting in suppressed hepatic 
glucose production, helping the blood glucose levels to get back to normal 
[42].  
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Hepatic IR is a complex metabolic disorder. It is known that hepatic fat 
accumulation, in particular the increased levels of hepatic TAG and 
diacylglycerol (DAG) concentrations are linked to IR [43, 44]. There are 
studies showing that the combination of increased levels of glucose and fatty 
acids in plasma, in the IR state, can lead to development of hepatic steatosis 
by enhancing hepatic fatty acid synthesis and disrupting β-oxidation [43, 45]. 
In contrast, it is has also been suggested that hepatic fat accumulation and IR 
can occur without the development of peripheral IR [45]. 

NAFLD is one of the most common chronic liver diseases. The hallmark of 
NAFLD is hepatic neutral lipid accumulation, in the absence of significant 
alcohol consumption, viral infection or other specific etiologies [46]. NAFLD 
contains a wide range of hepatic diseases, from simple steatosis to non-
alcoholic steatohepatitis (NASH). In addition to fatty infiltration, liver injury 
in NASH is characterized by inflammation, fibrosis, and hepatocyte damage. 
The prevalence of NAFLD is increasing due to the obesity epidemic, with an 
estimated prevalence ranging from 20% to 30% in Europe and the Middle 
East, and one-third of the adult population in the USA [47]. While liver 
steatosis is clinically silent, NASH patients present a high risk of developing 
cirrhosis, liver failure and hepatocellular carcinoma (HCC) [14].   

The development of NAFLD is strongly associated with hepatic IR; patients 
with NAFLD have both increased peripheral and hepatic IR [48]. 
Additionally, more than 90% of obese patients with T2D have NAFLD [14, 
49, 50]. It has also been shown that patients presenting both T2D and 
NAFLD usually have worse glycemic control compared with patients who 
only have T2D [51-53]. Moreover, increased intrahepatic TAG content has 
been shown to be related to decreased production of insulin, which further 
deteriorates the whole-body glycemic control in T2D patients [54]. It is also 
known that obese individuals who develop ectopic lipid accumulation in the 
liver have a higher risk to develop the subsequent whole-body IR [44].  

To date, the mechanisms controlling the progression from simple hepatic 
steatosis to the aggressive liver disease NASH, and the pathogenesis 
underlying the associated systemic IR with T2D, are not fully understood. As 
yet, no pharmacological treatment is available against NAFLD/NASH. 
Therefore, the characterization of the molecular mechanisms underlying the 
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disease and identifying novel treatment targets, are of outermost importance. 

1.6 Non-alcoholic fatty pancreas disease 
The islets of Langerhans are considered micro-organs, they are located in the 
pancreas and are composed of at least four types of endocrine cells. The α- 
and β-cells are the most abundant; they secrete the hormones glucagon and 
insulin, respectively. The correct function of the pancreas is crucial for 
maintaining the whole-body glucose homeostasis.  

A major characteristic of T2D is the loss of the ability of pancreatic β-cells to 
increase insulin secretion to maintain normoglycemia in the context of IR 
[55]. Chronic exposition of β-cells to high levels of FFA could explain 
defects in β-cell function and decreased mass observed in T2D. Indeed, in 
vitro studies have shown that increased levels of circulating FFA are 
associated with a decrease in insulin expression, synthesis and processing 
[56, 57]. Another mechanism that can explain insulin secretion dysfunction in 
T2D is high FFA levels in islets inducing β-cell death [58].  

Lipid accumulation within the pancreas or non-alcoholic fatty pancreas 
disease (NAFPD) is associated with reduced insulin secretion in humans with 
impaired glucose tolerance [59]. Furthermore, a recent study suggests that 
fatty pancreas exacerbate local inflammation in human pancreas [60]. 
NAFPD has become a growing health problem with an estimated prevalence 
ranging between 16 and 35% [61-63]. To date, the exact pathophysiology of 
NAFPD is still unclear and very poorly studied. As described above, obesity 
promotes ectopic fat accumulation in the pancreas (pancreatic steatosis). The 
pancreas is known to accumulate fat intracellularly, as well as through 
adipose tissue replacement of dead acinar cells and/or adipocyte infiltration 
in conditions of an excess of fuel [60, 64]. Even though there is evidence of 
metabolic crosstalk between fatty pancreas and fatty liver [60], the effect of 
steatosis in the pancreas has been less investigated than the liver [65]. 
Interestingly, several studies have shown a relationship between NAFPD and 
NAFLD [60, 66-68]. Individuals with NAFPD present higher frequency of 
NAFLD than healthy individuals [67, 69]. Both NAFLD and NAFPD are 
also strongly linked to obesity and visceral WAT lipid accumulation [59, 68].  
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Additionally, IR decreases insulin inhibition of lipolysis in WAT, leading to 
increased levels of circulating FFAs. The chronic exposure of β-cells to 
glucolipotoxicity (elevated glucose and FFAs levels) results in increased 
TAG accumulation, as well as reduced insulin gene expression and glucose-
stimulated insulin secretion (GSIS), altogether increasing the risk of β-cell 
apoptosis [70, 71]. Consequently, there is accumulating evidence showing an 
intimate link between pancreatic steatosis, increased inflammation and β-cell 
dysfunction and apoptosis [60, 65, 72]. 

1.7 Serine/threonine protein kinase 25 (STK25) 

1.7.1 STK25 – a kinase in STE20 superfamily 
Serine/threonine protein kinase 25 (STK25; also referred to as YSK1 or 
SOK1) is a broadly expressed member of the sterile 20 (STE20) kinase 
superfamily. STK25 was first described in 1996 as a 426 amino acids long 
kinase that belongs to the germinal center of kinases III (GCKIII) subfamily 
of the STE20 proteins [73]. Studies by Pombo et al, as well as our research 
group, have shown that oxidative stress inducers, such as hydrogen peroxide 
(H2O2), the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and 
menadione activate STK25 [73, 74]. STK25 has been shown to interact with 
cerebral cavernous malformation (CCM) 2 and 3 (also known as PDCD10), 
which are part of signaling pathways essential for vascular development and 
cell migration [75]. In several cell types, STK25 is localized to the Golgi 
apparatus, where it functions in regulating cell migration and polarization 
[75-78]. However, in response to chemical anoxia and oxidative stress, 
STK25 has been shown to dissociate from the Golgi complex, and translocate 
to the nucleus, where it induces apoptotic cell death [79, 80]. Matsuki et al 
showed that STK25 participates in neuronal cell polarity and migration by 
interacting with STRADα, an activator of LKB1. Depletion of STK25 
hindered LKB1-STRADα-regulated epithelial cell polarization and 
anomalous neuronal migration, whereas its overexpression restored polarity 
defects observed in LKB1 knockdown neurons [78, 81].  

Previous studies suggested that the expression of Stk25 is regulated by AMP-
activated protein kinase (AMPK) in skeletal muscle in mice [82]. AMPK is 
known as the central energy sensor in cells, and its activation increases 
glucose uptake and fat oxidation in the skeletal muscle, while inhibiting 
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glucose output and TAG synthesis in liver, altogether improving the main 
metabolic disturbances in the metabolic syndrome [83-85]. The findings of 
STK25 being regulated by the metabolic master-switch AMPK, led to the 
hypothesis that STK25 might also have a role in regulation of energy 
homeostasis. Indeed, our recent studies summarized below (Section 1.7.2) 
highlight the role of STK25 in regulation of lipid partitioning and glucose 
and insulin homeostasis. Interestingly, STK25 has also been suggested as a 
candidate for regulating high-density lipoprotein (HDL) levels in mice [86]. 
Recently, MST1, another member of the STE20 kinase family, was identified 
as a critical regulator of apoptotic β-cell death [87].  

Our studies described below potentially open up new avenues of research to 
describe interactions of STE20 superfamily of kinases with known 
components in metabolic control network. 

1.7.2 STK25 – a critical regulator of lipid partitioning 
and whole-body glucose and insulin 
homeostasis 

To study in vivo function of STK25, our research group characterized the 
metabolic phenotype of STK25-overexpressing mice as well as the 
conventional Stk25 knockout mice [74, 88-94]. We found that Stk25 
transgenic mice present impaired systemic glucose tolerance and insulin 
sensitivity compared to wild-type littermates when fed a HFD [93]. 
Reciprocally, Stk25 knockout mice are protected against HFD-induced 
whole-body glucose intolerance and IR compared with their wild-type 
littermates [89]. To study the function of STK25 in the skeletal muscle, our 
research group studied the impact of STK25 inactivation in rat myoblast cell 
line L6 [74].  We found that partial depletion of Stk25 in L6 by small 
interfering RNA (siRNA) increases lipid oxidation and improves insulin-
stimulated glucose uptake [74]. Consistent with those findings, higher STK25 
levels were observed in the skeletal muscle of patients with T2D, compared 
to individuals with normal glucose tolerance [74].  
 
We further characterized the function of STK25 in regulation of liver lipid 
metabolism using the mouse model system, as well as human cultured 
hepatocytes. We observed increased lipid accumulation (steatosis) in liver 
samples of HFD-fed Stk25 transgenic mice compared with wild-type [90]. 
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Furthermore, we observed repressed lipolytic activity, β-oxidation and very-
low-density lipoprotein (VLDL)-TAG secretion in Stk25 transgenic livers, 
while lipid uptake and synthesis in hepatocytes of Stk25 transgenic mice were 
similar to wild-type counterparts. We further studied the subcellular 
localization of STK25 by immunofluorescence, and found that STK25 coats 
hepatic lipid droplets (LDs), where it co-localizes with adipose 
triacylglycerol lipase (ADRP), the main LD-coating protein in mouse liver 
[90]. Furthermore, we found that the main liver lipase, adipose triglyceride 
lipase (ATGL), was displaced from its location around LDs to the cytoplasm 
in Stk25 transgenic liver, which provides the likely mechanisms for the 
observed difference in lipolytic activity. Our in vitro studies in human 
hepatocyte cell lines (IHH and HepG2) are fully consistent with studies in 
mouse model systems and support a cell-specific role of STK25 in the 
regulation of metabolic balance of hepatic lipid usage vs. lipid storage (Fig 2) 
[92]. We also found a statistically significant positive correlation between 
STK25 mRNA expression in human liver biopsies and hepatic fat content 
[92].  

 
      Figure 2. Hypothetical model for STK25 function in regulating lipid 

accumulation in human hepatocytes. Overexpression of STK25 represses LD 
catabolism through suppressed β-oxidation and VLDL-TAG secretion, and 
promotes LD anabolism through enhanced TAG synthesis. Knockdown of 
STK25, conversely, increases β-oxidation and VLDL-TAG secretion and 
reduces TAG synthesis. Adapted from [92]. 
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Based on our findings of the role of STK25 in regulation of liver steatosis, 
we further studied the impact of STK25 on liver inflammation and fibrosis. 
For this, we challenged our mouse models with a methionine and choline 
deficient (MCD) diet to induce NASH. We observed that Stk25 knockout 
mice showed a repression in lipid accumulation, oxidative stress, 
hepatocellular apoptosis, hepatic inflammation and fibrosis, compared with 
wild-type littermates. All these features of steatohepatitis were regulated in 
an opposite manner in the liver of Stk25 transgenic mice (Fig 3) [88]. 

Figure 3. Reciprocal responses to the MCD-diet–induced development of 
NASH in Stk25-knockout and transgenic mice. Stk25 knockout mice fed an 
MCD diet displayed repressed lipid accumulation, reduced oxidative stress, 
and hepatocellular apoptosis, attenuation of hepatic inflammation, HSC 
activation and fibrosis, compared with wild-type littermates. All these 
features of steatohepatitis were regulated in an opposite manner in the liver 
of Stk25 transgenic mice. Adapted from [88]. 

In summary, the previous studies by our research group have shown that 
STK25 is an important regulator of whole-body insulin sensitivity in 
peripheral metabolic tissues prone to diabetic damage, as well as in hepatic 
lipid partitioning and development/progression of NASH. The role of STK25 
in skeletal muscle, liver and pancreas is further studied in this thesis. 
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2 AIMS 
The general aim of this thesis was to elucidate the metabolic impact of the 
protein kinase STK25 in regulation of lipid metabolism, IR and T2D. 

The specific aims of the three Papers included in this thesis were: 

Paper I. Understanding the role of STK25 in control of ectopic fat 
storage and insulin response in skeletal muscle. 

Paper II. Characterizing the role of STK25 in pancreatic β-cell function 
and NAFPD.  

Paper III. Studying the pharmacological reduction of STK25 by 
antisense oligonucleotides (ASOs) as a possible strategy to 
revert diet-induced impairment in glucose and insulin 
homeostasis and progression of NAFLD.  
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3 METHODS 

3.1 Ethical statement 
All participants gave their written informed consent before taking part in the 
studies included in this thesis. All investigations were approved by the Ethics 
Committee of the University of Gothenburg, Sweden (Dnr. 1062-11) and 
were carried out in accordance with the Declaration of Helsinki. All animal 
experiments were performed after prior approval from the local Ethics 
Committee for Animal Studies at the Administrative Court of Appeals in 
Gothenburg, Sweden. 

3.2 Experiments in human subjects 
Paper III contains two studies performed in human cohorts; in the first one, 
the protein abundance of STK25 was measured in liver tissue samples 
obtained from 10 caucasian individuals, who fulfilled the following inclusion 
criteria:  NAFL verified by CT and/or ultrasound, laboratory signs (elevated 
transaminases), and/or liver elastography findings (fibrosis 2-3) suggestive of 
NASH. A typical ultrasound-guided Menghini liver biopsy was performed, of 
which one part was transferred to ice-cold HEPES buffer, and stored at -80°C 
until further preparations. All liver biopsies were collected between 08:00 
and 10:00 h after an overnight fast. The degree of NAFLD activity score 
(NAS) was assessed on liver sections by a certified pathologist, according to 
the Brunt scoring system [95]. These experiments were performed in 
collaboration with Hanns-Ulrich Marschall, Sahlgrenska University Hospital, 
Gothenburg. The second human study was done in the Tübingen Family 
(TÜF) study for T2D [96]. Liver fat was measured by 1H-magnetic resonance 
spectroscopy in 430 healthy subjects with family history of diabetes, BMI ≥ 
27, impaired fasting glycemia and/or previous gestational diabetes, and risk 
of developing T2D. The subjects had a mean age of 43 years (range: 18-69), 
a mean BMI of 30 kg/m² (range: 19-47), a mean liver fat content of 5.9% 
(range: 0.2-30.1), and 65 % were female. This study population was 
genotyped for 15 intronic tagging single nucleotide polymorphisms (SNPs) 
selected based on linkage disequilibrium information from the 1000 
Genomes project covering 97% of the common genetic variation (minor 
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allele frequency ≥ 0.1) in the STK25 gene. Genotyping was performed by 
mass spectrometry using the massARRAY system from Sequenom and the 
manufacturer’s iPLEX software (Sequenom, Hamburg, Germany). Assay 
design for a 16th SNP necessary to cover 100 % of the common variation 
failed. Four of the 15 genotyped SNPs turned out to be not in Hardy-
Weinberg equilibrium and, thus, were excluded from analyses. Our 
collaborator Harald Staiger, University of Tübingen, (Germany) performed 
these experiments. 

3.3 Animal experiments 

3.3.1 Mouse models 
A transgenic mouse model overexpressing STK25 was created by the 
Norwegian Transgenic Center (Oslo, Norway) by pronuclear injection using 
C57BL/6N strain of mice. For further details, see [93]. Stk25 knockout mice 
(a gift from Prof. B. Howell, Department of Neuroscience and Physiology, 
State University of New York Upstate Medical University, Syracuse, NY, 
USA) were generated by the deletion of exons 4 and 5, which causes a 
frameshift and a translational termination, as previously described [81].  

Only male mice were used in the experiments included in this thesis. Briefly, 
mice were weaned at 3-4 weeks of age and housed 3-5 per cage in a 
temperature-controlled (21°C) facility with a 12-h light-dark cycle with free 
access to pelleted food and water. In all studies, transgenic and/or knockout 
mice, and corresponding age-matched wild-type littermates, were fed pelleted 
chow diet or high-fat diet (45 kcal% fat) starting from 6 weeks of age. The 
genetic background of transgenic and knockout mice is not identical, and 
therefore, each strain was only compared to their corresponding wild-type 
littermates. 

3.3.2 Measurement of glucose tolerance and insulin 
sensitivity 

In Papers II and III, intraperitoneal glucose tolerance test (IPGTT) and 
intraperitoneal insulin tolerance test (IPITT) have been used to assess glucose 
tolerance and insulin sensitivity, respectively. Although both IPGTT and 
IPITT have limitations, these methods are widely used since they are easy to 
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use and are considered non-invasive. The mice were fasted 4 hours prior to 
all in vivo tests and blood sampling. 

During IPGTT, a bolus dose of glucose (1 g/kg) was injected 
intraperitoneally and blood glucose and plasma insulin levels were monitored 
over a period of time. IPGTT determines the β-cell capacity of glucose 
stimulated insulin secretion, in combination with efficiency of insulin action 
in systemic glucose clearance [97]. 

During IPITT, a bolus dose of human recombinant insulin (1 U/kg) was 
injected intraperitoneally and blood glucose levels were monitored over a 
period of time. The decrease of blood glucose levels in response to insulin is 
an indicative of whole body insulin response and insulin sensitivity [97].  

Saline solution (NaCl 9 mg/ml) was administrated at the end of these in vivo 
tests as a fluid replacement. The blood glucose and plasma insulin 
concentrations in IPGTT and IPITT were determined using an Accu-Chek 
glucometer and the Ultrasensitive Mouse Insulin ELISA kit, respectively. 

3.3.3 Euglycemic-hyperinsulinemic clamp in conscious mice 
Neither IPGTT nor IPITT determines which organs are responsible for the 
insulin resistant phenotype, a limitation that needs to be considered, because 
a different degree of IR may develop in different tissues. A more sensitive 
method to assess insulin sensitivity is the euglycemic-hyperinsulinemic 
clamp (EHC) technique. EHC is considered the “golden standard” method for 
the assessment of insulin sensitivity in vivo [98].  

In Paper I, the EHC technique was used to assess insulin sensitivity in tissue-
specific manner. Briefly, after 18 weeks on HFD, the mice underwent a 
microsurgery to implant a catheter in the left jugular vein, which was 
tunnulated subcutaneously to the neck, and connected to a vascular access 
button anchored in an incision behind the head. After surgery, the mice were 
single-caged for at least 3-4 days in order to recover before the experiment 
(se below). 

After 4 hours of starvation, the systemic insulin concentration was raised by 
the administration of an intravenous bolus dose of insulin (62.25 mU/kg) and 
maintained by continuous intravenous infusion of insulin (7 mU/min/kg), 
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whereas glucose (30%) was simultaneously infused at a variable rate until 
mice reached a steady state (euglycemia). When the steady state remained 
stable over a period of time (i.e., when blood glucose and GIR were stable for 
approx. 15-20 min), a bolus of [14C]-labelled 2-deoxy-D-glucose (2-DOG) 
was administrated thought the jugular vein catheter. 2-DOG is converted to 
2[14C]-deoxyglucose-6-phosphate (2-DOG-6P) and trapped in the tissues, 
which enables to calculate the rate of insulin-stimulated glucose uptake in 
individual organs [99]. The glucose infusion rate (GIR) provides a 
measurement of the whole-body insulin action [100-102]. Insulin sensitive 
animals rapidly take up and utilize the glucose during the hyperinsulinemic 
condition, while glucose utilization and clearance are impaired in insulin 
resistant animals.  

3.3.4 Systemic administration in mice 
Different routs of systemic administration can be used in mice for acute and 
chronic treatment with hormones, pharmacological small-molecule 
compounds or ASOs. Subcutaneous (SC) injections are easy to use and rarely 
painful, however, the rate of absorption is lower compared to intraperitoneal 
(IP) injections. IP administration is the most widespread route, being easy to 
perform and allowing quite large volumes to be administrated, although it 
requires pH to be within a physiological range. Intravenous (IV) 
administration has many advantages. Solutions with high or low pH, as well 
as irritating substances, can be injected IV. However, this technique requires 
technical expertise and skill, and often involves anesthesia. 

In this thesis, all administrations of glucose, insulin and ASOs to mice were 
performed via IP route except the EHC experiment in Paper I, where the 
administration of all substances was via IV though a jugular catheter. 

3.3.5 Endurance exercise in mice 
In Paper I endurance exercise capacity was assessed by treadmill running 
(Columbus Instruments) until the mice reached fatigue. This procedure starts 
with 3 days of acclimation, for the mice get used to the equipment and learn 
what they are expected to do. They also start getting accustomed to being 
handled, which reduces stress and minimizes variation during the actual 
exercise protocol. After that the mice are ready to perform the endurance 
exercise test. Initial speed was set to 10 m/min and the velocity was increased 
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by 2 m/min every 5 min. Once treadmill speed reached 22 m/min, this speed 
was maintained until fatigue. Fatigue was defined as mice spending ≥20 sec 
at the base of the treadmill despite manual encouragement. 

3.3.6 Tissue collection 
In Papers I, II and III, samples from different tissues have been collected for 
analysis of protein and gene expression, for histological assessment and 
biochemical measurements. Prior to tissue collection, mice were euthanized 
using 5% isofluorane with a mixture of air. Blood was collected by heart 
puncture for analysis of plasma metabolites. Tissue samples were dissected 
and snap frozen in liquid nitrogen and stored at -80ºC for Western blot, qPCR 
and/or biochemical analysis.  

For histological analysis, tissue samples were fixated in 4% vol./vol. 
phosphate-buffered formaldehyde and embedded in paraffin, or embedded in 
optimal cutting temperature (OCT) mounting medium and frozen in in liquid 
nitrogen. 

3.4 Histology 
Hematoxylin and eosin (H&E) staining is one of the most frequently used 
stainings in histopathology. Nuclei are stained blue, whereas the cytoplasm 
and extracellular matrix have varying degrees of pink staining. A limitation 
of hematoxylin staining is that it is incompatible with immunofluorescence. It 
is useful, however, to stain with H&E one-serial paraffin section from a 
tissue in which immunofluorescence will be performed. Hematoxylin, 
generally without eosin, is also used as a counterstain for 
immunohistochemical (IHC) stainings. In addition to H&E staining, tissue 
sections were also stained with Picrosirius Red in order to detect collagen 
fibers responsible for tissue fibrosis, and counterstained with Fast Green. 
Apoptotic cells were detected by TUNEL assay using the Apo-BrdU-IHC In 
Situ DNA Fragmentation Assay kit. Oil Red O (ORO), a diazo-based fat-
soluble dye, was used for staining of neutral lipids and TAG on frozen tissue 
sections. For immunofluorescence, sections were incubated with specific 
antibodies, and counterstained with DAPI (4',6-diamidino-2-phenylindole), a 
fluorescent stain that binds strongly to A-T rich regions in DNA. For detailed 
information about histology, IHC protocols and antibodies used for 



STK25 – a new key regulator of metabolic profile and a possible target for anti-diabetic drug 

18 

immunofluerescence, please see corresponding Material and Methods 
sections for Papers I, II and III. 

Ultrastructural analysis of muscle and pancreas was respectively performed 
in Papers I and II by transmission electron microscopy (TEM) in 
collaboration with the Centre for Cellular Imaging (CCI) Core Facility at the 
University of Gothenburg, as described [103]. 

All the quantifications were performed using the ImageJ 1.49v software.  

3.5 Phosphoproteomic analysis 
Global phosphoproteomics was used in Paper I to characterize the 
differences in the total and phosphoprotein abundance in Stk25 transgenic 
mice vs. wild-type littermates. In brief, gastrocnemius muscles were carefully 
dissected and placed in a Maintainor® tissue card, vacuum packed and heat-
stabilized by a 95ºC heat-shock during 21 sec in an StabilizorTM T1system. 
Heat stabilization is a revolutionary sample preservation technique that 
inactivates enzymes, such as kinases and phosphatases, which might interfere 
in the phosphorylation stage of the samples even after dissection, allowing 
for comparison of true biological variation. Conventional approaches such as 
inhibitor cocktails and pH changes are reversible and may interfere with the 
sample downstream analysis. In contrast, by using heat stabilization, 
enzymatic activity is permanently stopped. 
The downstream analysis of total protein and phosphoprotein changes was 
performed by liquid chromatography mass spectrometry (LC-MS)/MS in 
collaboration with the Proteomic Core Facility (PCF) at the University of 
Gothenburg. For detailed information regarding to this technique see Material 
and Methods section and Supplementary Material in Paper I. 

3.6 Ex vivo measurement of lipid metabolism  
In Paper I, lipid anabolism and catabolism in skeletal muscle was studied by 
an ex vivo technique. The β-oxidation rate of palmitate was measured in 
quadriceps muscle homogenates as described previously [90]. Soleus and 
extensor digitorum longus (EDL) muscle strips were carefully dissected and 
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oleic acid uptake and TAG synthesis were measured as previously described 
[104, 105]. 

3.7 mRNA analysis and qPCR 
Total RNA was first extracted from homogenized tissue samples, using 
commercially available kits and then transcribed into complementary DNA 
(cDNA) by a reverse transcription PCR reaction (RT-PCR). cDNA was used 
as a template for the quantitative real-time PCR (qPCR) reaction. TaqMan 
probes and assays for qPCR technique have been used and analyzed 
according to the Minimum Information for Publication of Quantitative Real-
Time PCR Experiments (MIQE) guidelines [106] in all Papers of this thesis 
work. Gene expression of the ribosomal housekeeping gene 18S was used to 
normalize the data.  

3.8 Western blot 
Throughout this thesis work, protein expression has been evaluated using the 
western blot technique. Briefly, cells or homogenized tissue samples are 
lysed in lysis buffer optimized to maintain protein stability, to avoid protein 
degradation and inhibit phosphatase activity. Proteins were separated based 
on size using gel electrophoresis, and then transferred to a membrane. After 
the transfer of the proteins to the membrane, the membranes were stained 
using Ponceau. The proteins of interest were then identified using specific 
antibodies. In most analyses, hybridization with antibody against 
housekeeping protein, such as actin or glyceraldehyde 3-phosphate 
dehydrogenase, has been included, as endogenous control for equal loading 
and complete transfer. 

3.9 Enzyme-linked immunosorbent assay 
(ELISA) 

ELISA is used to quantify proteins in samples. There are different examples 
of ELISA, but most frequently a primary antibody binds to the protein of 
interest, followed by binding of a secondary antibody to the primary one. The 
secondary antibody carries an enzyme, and when a substrate for that enzyme 
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is added to the working solution, it will lead to a shift in color, which is 
detectable by a spectrophotometer. The color intensity is proportional to the 
amount of the protein of interest in the sample, and is analyzed in relation to 
a standard curve. 

The fasting plasma insulin, C-peptide, leptin, lactate and glucagon 
concentrations were quantified using ELISA techniques as described in 
Papers I, II and II. 

3.10 Statistical analyses 
The experimental data are presented as means ± the standard error of the 
mean (SEM) in all Papers. In Papers I and II, statistical significance between 
the groups was evaluated using the unpaired 2-tailed Students t-test and in 
Paper III, Students t-test, or one-way ANOVA with t-test for post-hoc 
analysis were used. Statistics were calculated using IBM SPSS Statistics 
version 20 or Microsoft Excel. P<0.05 was considered statistically 
significant. 
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4 RESULTS AND DISCUSSION  
In this section, the main results of Paper I, II and III are summarized and 
discussed. For further details, see the full Papers provided at the end of the 
thesis book. 

Paper I 

Overexpression of Protein Kinase STK25 in Mice Exacerbates Ectopic 
Lipid Accumulation, Mitochondrial Dysfunction, and Insulin Resistance 
in Skeletal Muscle 

In this study, we have investigated the potential role of STK25 in control of 
ectopic lipid accumulation and insulin response in skeletal muscle.  

Consistently with our previous investigations in the liver, we found that 
overexpression of STK25 in mice fed a HFD increases ectopic lipid 
accumulation in skeletal muscle [90].  This correlates to our previous 
findings in Stk25 knockout mice, which showed a reduction in intramuscular 
lipid deposition [89]. Notably, the lipid levels were unchanged in transgenic 
mice fed a chow diet, suggesting that a HFD challenge is needed for STK25 
overexpression to lead to metabolic alterations in the skeletal muscle.  

Besides the increased ectopic lipid storage, we found a reduced β-oxidation 
in the skeletal muscle of Stk25 transgenic mice, while the muscle lipid uptake 
and synthesis remained unaltered compared to wild-type mice. In line with 
these findings, we have previously reported reduced β-oxidation rate and 
mitochondrial activity in the liver of Stk25 transgenic mice [90]. 
Reciprocally, previous studies by our group have shown that partial depletion 
of STK25 in the rat myoblast cell line L6 and in human hepatocytes by small 
interfering RNA (siRNA) increases β-oxidation [74, 92].  

The histopathological evaluation of skeletal muscle from transgenic mice fed 
a HFD showed evidence of muscle damage, such as intracellular inclusions, 
small degenerating fibers, necrosis, infiltration of inflammatory cells and 
adipocyte replacement, while these features were rarely seen in wild-type 
muscle. 
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Ultrastructural analysis by TEM confirmed an increase in intramyocellular 
lipid droplets size and number, and showed also a disrupted sarcomere 
ultrastructure and abnormal mitochondria in Stk25 transgenic muscle. We 
also found that overexpression of STK25 in HFD-fed mice resulted in an 
increase in muscle fibrosis. 

We have previously reported a significant increase in acetyl-CoA carboxylase 
(ACC) protein levels in skeletal muscle of Stk25 transgenic mice [93]. ACC 
synthesizes malonyl-CoA, which functions as a precursor for fatty acid 
synthesis, but also represses lipid oxidation through allosteric inhibition of 
mitochondrial fatty acid transporter carnitine palmitoyltransferase 1 (CPT1). 
It is possible that an increase in ACC, and the ultrastructural abnormalities in 
muscle mitochondria observed by TEM, contributed to the decrease in β-
oxidation rate in transgenic muscle. However, no alteration in ACC was seen 
in skeletal muscle of Stk25 knockout mice or in L6 cells where STK25 was 
depleted [74, 89]. 

Mitochondrial dysfunction and altered morphology is known to be involved 
in the pathogenesis of IR both in humans and mice [107, 108]. Previous 
studies using TEM have demonstrated alterations in mitochondrial 
morphology in skeletal muscle of humans and rodent models with IR and 
T2D [109, 110]. The exact mechanism linking mitochondrial dysfunction and 
IR is still unclear, although one probable hypothesis in humans is that 
skeletal muscle disposition to lipid accumulation is caused by impaired β-
oxidation [111]. Based on this evidence, the impaired mitochondrial function 
observed in Stk25 transgenic muscle probably contributed to increased 
myocellular lipid accumulation and development of skeletal muscle IR. 
Furthermore, previous studies by our group have shown that partial depletion 
of STK25 in the rat myoblast cell line L6 by siRNA increases β-oxidation 
[74].  

The observation that STK25 overexpression in mice increased fat storage in 
the muscle prompted us to investigate whether these changes would affect 
skeletal muscle insulin sensitivity. To test this, we performed an EHC 
experiment, which showed a reduced in vivo insulin-stimulated glucose 
uptake in gastrocnemius and quadriceps muscles of Stk25 transgenic mice 
compared to wild-type mice, with a similar tendency in EDL and soleus 
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muscles. Previous studies by our group have shown that partial depletion of 
STK25 L6 cells improves insulin-stimulated glucose uptake [74] and Stk25 
knockout mice display an improved in vivo insulin-stimulated glucose uptake 
in skeletal muscle [89]. Furthermore, the studies in transgenic mice with 
muscle- and liver-specific overexpression of lipoprotein lipase (LPL) suggest 
that the tissue-specific increase in lipid accumulation causes impairments on 
tissue-specific insulin-stimulated glucose uptake and IR [32]. In light of this 
evidence, it is likely that changes in intramyocellular lipid storage by STK25 
contributed to impaired insulin sensitivity, although the underlying 
mechanism remains elusive.  

We also found a markedly reduced endurance exercise capacity in Stk25 
transgenic mice, both in terms of running distance and time, which might be 
a consequence of the disorganized sarcomere structure and the increased 
fibrosis observed in Stk25 transgenic muscle. 

Global phosphoproteomic analysis revealed alterations in the total abundance 
and phosphorylation status of different target proteins located predominantly 
to mitochondria and sarcomere in Stk25 transgenic mice, while no lipases 
where detected above the level of quantification. 

Taken together, our findings suggest that overexpression of STK25, in 
conditions of excess dietary fuels, leads to a shift in the metabolic balance in 
skeletal muscle from lipid oxidation to lipid storage, resulting in IR and 
mitochondrial β-oxidation impairments in skeletal muscle (Fig. 4).  
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Figure 4. Schematic illustration of the metabolic responses at the whole-
body level, as well as in skeletal muscle fibers of Stk25 transgenic mice vs. 
wild-type littermates. Up- or down-regulation is indicated by green and red 
arrows, respectively. Figure adapted from Paper I. 
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Paper II 

Protein Kinase STK25 Aggravates the Severity of Non-Alcoholic Fatty 
Pancreas Disease in Mice 

In this study we investigated the role of STK25 in control of progression of  
NAFPD in the context of chronic exposure to dietary lipids. 

First, we investigated the overall pancreas morphology in tissue sections of 
Stk25 transgenic and wild-type mice fed a HFD. We found no differences in 
the morphometric analysis, nor signs of compensatory hyperplasia as a result 
of previously described insulin resistance in Stk25 transgenic mice compared 
with wild-type mice [93]. We found that pancreases of Stk25 transgenic mice 
displayed a marked decrease in islet β/α-cell ratio and alteration in the islet 
architecture with an increased presence of α-cells within the islet core. Mouse 
β-cells are known to be located to the islet core while α-cells are arranged at 
the periphery of the islet. Islet dysmorphogenesis (i.e. presence of α-cells 
within the islet core) in mouse and humans has been related to impairments 
in insulin secretion [112-114]. It has been suggested that the changes in the 
islet morphology such as increased islet vascularization and infiltration of α-
cells from the periphery to the islet core minimizes the β-cell-to-β-cell 
contact and suppresses the insulin output, which consequently contributes to 
the diabetes phenotype [112, 114]. We observed alterations in β/α-cell 
distribution in Stk25 transgenic mice, but we did not see any changes in islet 
vascularization. 

Next, we evaluated pancreas inflammation and found that Stk25 transgenic 
mice presented an increased amount of mononuclear inflammatory cells 
aggregated on the periphery of the islet, defined as peri-insulitis. We also 
observed an aggravated degree of fibrosis in transgenic pancreas, which was 
evident, both in the exocrine and endocrine pancreas tissue. Additionally, we 
also found an increased number of activated pancreatic stellate cells (PSCs), 
which are the cells responsible for fibrosis, in the pancreas of Stk25 
transgenic mice. Interestingly, our preliminary unpublished investigations in 
the pancreas of Stk25 knockout mice fed a HFD suggest that the level of peri-
insulitis was reduced in Stk25 knockout pancreas compared to the wild-type 
pancreas, reciprocal to our findings in Stk25 transgenic pancreas (Fig. 5). 
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Figure 5. Analysis of inflammatory cell infiltration in the pancreas of HFD-
fed Stk25 knockout and wild-type mice. A: Quantification of non-inflamed 
islets, peri-insulitis and insulitis. Results are shown as a dot plot where each 
point represents one mouse and as a pie chart. B: The degree of insulitis as 
assessed using a semi-quantitative scoring system. Data are mean±SEM from 
6 mice/genotype. *p<0.05; #p=0.07; HFD, high-fat diet; KO, knockout; WT, 
wild-type. 

The molecular mechanisms that cause pancreatic β-cell dysfunction in the 
context of obesity are not fully understood, but it is known that the long-term 
exposure to the combination of FFA and glucose (i.e. glucolipotoxicity) [71, 
115-117] leads to β-cell apoptosis and to decreased insulin secretion. The 
pancreas of HFD-fed Stk25 transgenic mice presented increased intracellular 
lipids visualized by ORO staining as well as increased TAG content 
measured in pancreas homogenates, which is in line with our findings in 
skeletal muscle presented in Paper I. Lipid overload in the β-cells is known 
to correlate with programmed cell death in both animal models and humans 
[118, 119]. We therefore examined the level of cell apoptosis by in situ DNA 
fragmentation within the pancreas tissue and observed an increased apoptosis 
in the pancreas of Stk25 transgenic mice compared to wild-type mice, 
suggesting a role of STK25 in cell survival under HFD-induced lipotoxic 
conditions. Pancreatic β-cell apoptosis is a key event in diabetes progression 
[71, 120-122], which probably contributed to the lost ability to increase in 
vivo glucose-stimulated insulin secretion in Stk25 transgenic mice. 
Interestingly, while the members of STE20 kinase family are generally not 
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described in relation to metabolic profiling, the STE20 protein MST1 (also 
known as STK4 or KRS2) was recently also identified as a critical regulator 
of apoptotic β-cell death [87]. 

To study whether the aggravated fat infiltration, inflammation and fibrosis in 
the pancreas of Stk25 transgenic mice leads to an impairment of the in vivo 
glucose-stimulated insulin release, we performed an IPGTT. We found that 
blood glucose level was higher in Stk25 transgenic mice over the whole time-
course of the IPGTT, which is consistent with our previous observation based 
on a different cohort of mice [93], while insulin secretion was lower, 
suggesting a relative impairment in GSIS. The observed reduction in insulin 
output after the in vivo glucose stimulation might also be related to the 
described islet dysmorphogenesis observed in Stk25 transgenic islets (Fig 6).  

After the 18-week challenge with a HFD, we found lower levels of fasting 
plasma insulin and C-peptide in Stk25 transgenic mice. In contrast, we have 
previously reported hyperinsulinemia in Stk25 transgenic mice compared to 
wild-type mice after 16 and 17 weeks of HFD challenge [93]. Furthermore, 
higher levels of leptin were found in Stk25 transgenic mice; however, we 
have previously reported no differences in body weight or food intake 
compared to wild-type mice [93], suggesting that Stk25 transgenic mice could 
be leptin resistant. Furthermore higher circulating leptin has previously been 
connected to inflammatory processes in the pancreas [123]. Consequently, it 
is possible that increased circulating leptin levels contributed to the more 
severe pancreatic inflammation observed in Stk25 transgenic mice. 

Stk25 transgenic mice present global overexpression of Stk25 gene [93], and 
to evaluate the direct cell-autonomous effect of STK25 in GSIS in mouse 
islets, we incubated isolated islets from HFD-fed mice in vitro with 5.5 or 
16.5 mM glucose. However, there was no difference in GSIS comparing the 
islets of Stk25 transgenic vs. wild-type mice, suggesting the potential 
contribution of systemic factors to regulation of GSIS by STK25.  

In summary, we found that STK25 overexpression in HFD-fed Stk25 
transgenic mice increased lipid storage in pancreas, which was accompanied 
by exacerbated pancreatic inflammatory cell infiltration, stellate cell 
activation, fibrosis and apoptosis (Fig. 6). The GSIS was impaired in HFD-
fed Stk25 transgenic mice, despite of a higher net change in blood glucose 
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concentration compared with wild-type controls, suggesting a β-cell 
dysfunction (Fig. 6). Taken together, this study suggests a role for STK25 in 
determining the susceptibility to diet-induced NAFPD in mice.  

 

Figure 6. Schematic illustration of metabolic alterations in pancreas and 
Langerhans islets of Stk25 transgenic animals vs. wild-type after a HFD 
challenge. Blue or red arrows indicate up- or down-regulation respectively. 
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Paper III 

Stk25 Antisense Oligonucleotide Treatment Reverses Glucose 
Intolerance, Insulin Resistance and Nonalcoholic Fatty Liver Disease in 
Mice  

Chronic exposure to dietary lipids is known to promote ectopic lipid 
deposition in the liver [14]. Our previous findings revealed a key role of 
STK25 in control of liver lipid storage in mouse models and in human 
hepatocytes [88-90, 92, 93]. We have previously shown that Stk25 knockout 
mice are protected against the development of HFD-induced liver steatosis 
and also against MCD diet-induced NASH progression [89-91]. The 
objective of this study was to address whether the treatment with anti-Stk25 
ASOs in mice enables to reverse the diet-induced impairment in glucose and 
insulin homeostasis and ameliorate liver steatosis, inflammation and fibrosis 
in the context of obesity. 

The mice were fed a HFD for 21 weeks and treated with Stk25 ASO#1 or 
ASO#2 or placebo (PBS) twice weekly for the last 6 weeks of the diet. We 
found that hepatic Stk25 mRNA expression was lower in the groups treated 
with Stk25 ASOs compared with the placebo group, whereas the protein 
abundance of STK25 was below the detection limit of Western blot in the 
livers of ASO-treated mice. The plasma insulin level was dramatically 
reduced in mice treated with ASOs, and consistently, the homeostasis model 
assessment of insulin resistance (HOMA-IR) was also lower throughout the 
ASO treatment. However, we have previously reported that HFD fed Stk25 
knockout mice did not completely restore the physiological levels of glucose 
and insulin after the dietary challenge to the levels observed in chow-fed 
controls, nor the HOMA-IR [89], suggesting that Stk25 knockout did not 
fully ameliorate the progression to diet-induced T2D, but Stk25 ASO 
treatment does. 

The fasting levels of circulating glucose and insulin at the end of the 
treatment period with ASO#2 were significantly decreased compared to the 
values measured before the treatment started, and similar to the values before 
the HFD feeding was initiated, indicating that the diet-induced 
hyperglycemia and hyperinsulinemia were fully reversed by ASO#2. During 
the IPGTT experiment, blood glucose levels returned to normal more rapidly 
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in Stk25 ASO-treated mice than in the placebo group, demonstrating a better 
glycemic control, and the glucose-stimulated insulin secretion during the test 
was also improved in both ASO-treated groups. The IPITT revealed an 
improvement in insulin sensitivity in both groups treated with Stk25 ASOs.  

We observed no changes in body weight during Stk25 ASO-treatment. 
Consistent with this observation, we have previously reported that neither 
STK25 overexpression in transgenic mice nor Stk25 depletion in knockout 
mice fed a HFD results in any changes in body weight, compared to their 
respective wild-type controls [89, 93]. These findings suggest that STK25 
inhibition protects against the metabolic consequences of chronic exposure to 
dietary lipids independently of changes in body weight.  

We found that the density and size of intrahepatocellular lipid droplets were 
dramatically reduced in Stk25 ASO-treated mice, showing that Stk25 ASO 
treatment repressed liver steatosis induced by the HFD challenge. In our 
previous studies in Stk25 knockout mice, we also observed a reduction of 
hepatic lipid area [89], but this reduction is markedly greater in the ASO-
treated mice.  In this study, we have used generation 2.5 ASOs, which deplete 
their target in all peripheral tissues [124], even though we only observed 
efficient STK25 depletion in the liver. However, our most recent yet 
unpublished studies using highly hepatocyte-specific GalNAc-conjugated 
anti-Stk25 ASOs also show that liver steatosis can efficiently be inhibited by 
selective repression of STK25 levels in hepatocytes, without any contribution 
from other cell types in the liver (Fig. 7). 
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Figure 7. Effects of GalNAc-Stk25 ASO treatment compared to ASO 2.5 in 
repression of diet-induced liver steatosis. Quantification of stained ORO 
area (%) and representative images of liver sections stained ORO. Data 
are mean±SEM from 3-6 mice/group. Significances are shown as 
**p<0.01; significances to PBS are shown as ††p<0.01; †p<0.05; 
significances to week 16 are shown as ##p<0.01; #p<0.05. 

We also observed that Stk25 ASO-treated mice were protected against HFD-
induced liver fibrosis, both when assessed at histological evaluation and by 
measuring liver hydroxyproline content. Additionally, the inflammation level 
was approximately 2-fold reduced in the livers of Stk25 ASO-treated mice. 
Moreover, mice treated with Stk25 ASOs scored markedly lower both for 
NAS and fibrosis compared with the placebo group, based on the 
Kleiner/Brunt criteria adapted to rodents [125-129]. The findings of this 
study are consistent with our previously published results in Stk25 knockout 
mice [89] and reciprocal to our data published in STK25 overexpressing 
transgenic mice [90] (Fig 8). Interestingly, we have shown that anti-Stk25 
ASO treatment improves insulin and glucose homeostasis and protects 
against liver steatosis to a better extent than the phenotype observer in the 
Stk25 knockout model [89]. 
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One of the main findings in Paper III was the reduction of ACC protein 
amount in the livers of ASO#2 treated mice, which is a key controller of both 
mitochondrial β-oxidation and fat synthesis. This result is consistent with our 
previous observations in HFD-fed Stk25 knockout mice [89], and reciprocal 
to our studies in STK25 overexpressing transgenic mice [93] (Fig 8). This 
finding suggests that not only the liver phenotype, but also the possible 
mechanism underlying the repression of hepatic fat accumulation, are similar 
in Stk25 ASO-treated and knockout mice. There is evidence that a diet-
induced hepatic steatosis can be reversed in mice by reducing ACC 
expression, due to a decreased lipogenesis and an increased β-oxidation 
[130]. Interestingly, reduced liver steatosis, fibrosis and apoptosis have also 
been reported recently in a proof-of-concept trial in NASH patients who were 
given GS-0976 (a liver-specific ACC inhibitor) orally [131]. These results 
suggest that the repression of hepatic ACC levels in connection of STK25 
inhibition, which we observed by Stk25 ASO treatment or by genetic STK25 
depletion [89], may not only constitute a key mechanism for this protein to 
reduce liver steatosis, but also to suppress hepatic fibrosis and hepatocyte 
damage.  

We have previously reported that STK25 mRNA correlates positively with 
liver fat [92] and NASH development in human liver biopsies [91]. 
Consistently, in this study we also found that STK25 protein correlates 
positively with NASH development in human liver biopsies. Furthermore, we 
found that several common non-linked SNPs in the human STK25 gene are 
associated with altered liver fat, suggesting a critical role of STK25 in the 
pathogenesis of NAFLD in human (For details on SNP analyses, see Paper 
III). 
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Figure 8: Schematic illustration of the metabolic responses in the liver and 
at the whole-body level in mice with repressed STK25 function by either 
Stk25 ASO treatment or genetic disruption (indicated by red and black 
arrows, respectively) and transgenic mice overexpressing STK25 (indicated 
by blue arrows) compared with the corresponding control groups of mice. 
The phenotype of Stk25 knockout and transgenic mice has been described 
previously [89-91, 93]. Figure adapted from Paper III. 
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In summary, the results of this study demonstrate that systemic 
administration of Stk25 ASOs in mice significantly suppresses hepatic 
STK25 mRNA and protein abundance compared with the placebo-treated 
mice, which reverts HFD-induced systemic hyperglycemia and 
hyperinsulinemia, improves whole-body glucose tolerance and insulin 
sensitivity, and ameliorates steatosis, inflammatory infiltration, apoptosis, 
and nutritional fibrosis in the liver. The data of the current study demonstrate 
that inhibition of STK25 may provide new-in-class therapeutics for NAFLD, 
type 2 diabetes and related metabolic complications. 
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5 CONCLUSIONS 
Paper I suggests STK25 as a new regulator of the complex interplay between 
lipid storage, mitochondrial energetics and IR in skeletal muscle in mice in 
connection to diet-induced obesity. STK25 overexpression results in a 
reduced endurance exercise capacity in mice challenged with a HFD. 

 

Paper II shows a role for STK25 in determining the susceptibility to diet-
induced NAFPD in mice in connection to diet-induced obesity. STK25 
overexpression in HFD-fed mice results in a significant decrease in islet β/α-
cell ratio and alterations in the islet architecture with an increased infiltration 
of α-cells within the islet core (islet dysmorphogenesis). Furthermore, STK25 
overexpression also caused increased lipid storage in the pancreas and 
impairments in GSIS during IPGTT, suggesting a role of STK25 in islet β-
cell dysfunction. 

 

Paper III demonstrates that repressing STK25 in mice by ASO treatment 
effectively reverses the HFD-induced impairments in glucose and insulin 
homeostasis and ameliorates liver steatosis, inflammation and fibrosis in the 
context of obesity in mice. This finding warrants further investigations of the 
potential therapeutic benefit of pharmacological STK25 inhibitors as new-in-
class drug candidates for NAFLD, T2D and related metabolic diseases in 
humans. 
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6 GENERAL DISCUSION  
In this section, a brief general discussion on the findings of this thesis is 
provided.  

We are the first, and to date the only research group, who has described a role 
of protein kinase STK25 in metabolic regulation [74, 88-90, 92, 93, 132, 
133]. In this thesis, we describe STK25 as a new key regulator of whole-body 
metabolism. In Paper I and II, we have found that STK25 overexpression in 
mice challenged with a HFD results in an increased ectopic lipid deposition 
in skeletal muscle and pancreas accompanied by an increased fibrosis and 
inflammation, consistent with our previous findings in liver [90, 93, 132, 
133]. In Paper I we have shown that the overexpression of STK25 also leads 
to impairments in β-oxidation and decreased in vivo insulin-stimulated 
glucose uptake in skeletal muscle and reduced endurance exercise capacity in 
mice [132]. In Paper II we have shown that the pancreas of Stk25 transgenic 
animals shows higher degree of apoptosis, together with an impaired insulin 
production during IPGTT after a HFD challenge [94]. In Paper III we have 
shown that treatment with Stk25 ASOs in obese mice protects against HFD-
induced liver steatosis, glucose intolerance and IR. Furthermore, we found 
that the metabolic phenotype of Stk25 ASO-treated mice was fully consistent 
with our observations of Stk25 knockout mice [89, 91] (Fig. 8). This 
similarity between treatment with Stk25 ASOs, which have most pronounced 
effect in the liver, and whole-body depletion of STK25 in knockout mice [89, 
91], suggests that inhibition of hepatic expression of STK25 is sufficient for 
systemic metabolic effects of this mediator. Furthermore, our studies with 
Stk25 ASOs demonstrate that STK25 repression is able not only to prevent, 
but also reverse, NAFLD and the metabolic impairments in systemic glucose 
and insulin homeostasis in mice after chronic exposure to dietary lipids. 

One of the most important previous findings by our research group is that 
STK25 coats LDs in mouse liver [90], which has been further confirmed in 
hepatocytes of human origin [90]. Interestingly, our preliminary studies in 
adipocytes suggest that STK25 is also located to LDs in adipose tissue. 
However, in Paper I we have tried to address the subcellular localization of 
STK25 in skeletal muscle fibers, but, due to technical limitations of the 
assay, we were unable to conclude whether STK25 protein co-localizes to 
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LDs also in skeletal muscle. Based on our studies in mouse liver and human 
hepatocytes, we have proposed a mechanism of action of STK25 in liver; 
being associated with hepatic LDs, STK25 limits the association of liver 
lipase ATGL with the LDs, which results in reduced lipolytic activity, 
VLDL-TAG secretion and β-oxidation [90] (Fig. 2). Notably, alterations in 
lipid droplet proteins are increasingly recognized to be associated with 
metabolic abnormalities [134]. 

Several lines of evidence support that STK25 has a similar role in the 
pathogenesis of NAFLD in human liver as described in our mouse models. 
We found a significant positive correlation between STK25 gene expression 
and liver fat content [92], as well as a positive correlation between NASH 
development and STK25 mRNA [91] and protein abundance (Paper III) in 
human liver biopsies. Furthermore, in Paper III we have identified four 
common non-linked SNPs in the human STK25 gene that are associated with 
altered liver fat: two associated with increased hepatic fat and two associated 
with a decreased. Even though these human genetic data need replication and 
deeper functional exploration, they are in line with our findings in mice. 
Furthermore, we have previously reported reduced lipid accumulation and 
improved insulin sensitivity, as well as reduction of NASH feature in human 
hepatocytes where STK25 is depleted by siRNA technology [91, 92]. 

In Paper III we show a reduction in hepatic ACC protein level by Stk25 ASO 
treatment, which is consistent with our previous observations in Stk25 

knockout livers [89] (Fig 8). ACC is known to regulate both lipogenesis and 
β-oxidation though malonyl-CoA production [135]. Interestingly, in a 
recently reported initial proof-of-concept trial in NASH patients, an oral 
treatment with a liver-targeted ACC inhibitor GS-0976, was shown to 
significantly improve liver steatosis as well as circulating biomarkers of liver 
fibrosis and cell death [131]. These data suggest that the repression of hepatic 
ACC levels by Stk25 ASOs that we found in this study, may not only 
constitute a key mechanism for the effect of Stk25 ASOs on reducing liver 
steatosis, but also for suppressing fibrosis and hepatocellular damage.  

In summary, there is an increasing body of evidence suggesting that ectopic 
lipid accumulation in peripheral tissues such as skeletal muscle, liver, and 
pancreas, is one of the main causes of development and aggravation of IR 
and T2D [27]. Therefore, understanding the molecular mechanisms 
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underlying the pathogenesis of ectopic lipid accumulation in the main 
metabolic tissues is of high clinical relevance. The existing pharmacological 
approaches for treating obesity largely act by suppressing food or caloric 
intake, whereas current antidiabetic therapies typically enhance insulin 
sensitivity and/or secretion. Although these agents have proved beneficial, 
there is still a huge unmet need for effective pharmacological interventions 
that are capable of more permanently reversing the diabetic phenotype with 
minimal side effects. With the findings presented in this thesis, STK25 is 
emerging as a key regulator controlling lipid accumulation not only in the 
liver but also in skeletal muscle and pancreas. This work also contributes to 
our overall understanding of the complex and integrated molecular networks 
connecting ectopic lipid deposition and mitochondrial impairments with IR, 
T2D and β-cell dysfunction. Furthermore, the strong results shown in Paper 
III provide preclinical in vivo proof-of-principle for the metabolic benefit of 
pharmacological STK25 inhibitors in conditions of excess dietary fuels in a 
mouse model and suggest that therapeutic intervention aimed at reducing 
STK25 function may provide a new strategy for the treatment of patients with 
NAFLD, T2D and related metabolic diseases. 
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