

Predicting the performance of job
applicants in coding tests

Bachelor of Science Thesis in Software Engineering and Management

RACHELE MELLO

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Predicting the performance of job applicants in coding tests

RACHELE MELLO

© RACHELE MELLO, June 2017 .

Supervisor: JAN-PHILIPP STEGHÖFER
Examiner: ERIC KNAUSS

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Predicting the performance of job applicants in
coding tests

Rachele Mello
Department of Software Engineering and Management

University of Gothenburg
Gothenburg, Sweden

rachelemello@gmail.com

Abstract—Several software companies use some sort of com-
petitive programming to screen job applicants. In this study, the
factors present in job applications are analyzed to find possible
predictors of candidates’ scores in competitive programming
tests. Non parametric statistical tests are used and a logistic
model is built and evaluated.

I. INTRODUCTION

Competitive programming is a “mind sport” in which
participants solve well-defined algorithmic problems by
writing computer programs under specified limits (Halim
and Halim 2013). This discipline is rather popular among
programmers, both as a leisure activity and as a way to
develop stronger programming skills. Additionally, some
forms of competitive programming are also used by software
companies in talent recruitment (McDowell 2011, Jokela
2017).
In the case of Google, for example, the first stage of the
hiring process consists of a phone interview where candidates
are asked to code solutions to defined algorithmic problems,
while thinking aloud1. Other companies use services that
automate this assessment by providing a platform where
candidates need to code the solution to problems similar to
the ones in competitive programming within a given time
limit. These services then automatically evaluate solutions
based on a set of parameters (e.g. correctness, performance,
complexity) and report the candidates’ scores to the company.
The numerous companies providing this sort of service
(e.g. Codility2, InterviewZen3, Tests4Geeks4, HackerRank5)
suggests that this method for screening applicants is widely
used in software companies today.

Whether this initial screening, aided by competitive
programming, is done manually or automatically, it is a
cost for the recruiting company. First of all, in both cases a
pre-screening needs to be done to select the candidates for
the coding test/interview. In the case of Google, it is clear
how having an interviewer prepare, conduct, and evaluate

1https://careers.google.com/how-we-hire/interview/
2https://codility.com/
3https://www.interviewzen.com/
4https://tests4geeks.com/
5https://www.hackerrank.com/

such screening costs significant amount of resources to the
company. Even if it is a cheaper option, companies still need
to pay a fee to send programming tests to candidates through
the services mentioned before, and the output of these tests
still needs to be evaluated manually.

Apart from the costs, another issue with this kind of
talent recruitment process is that, especially when there
is an overwhelming amount of applications for a certain
position, the initial pre-screening cannot be carried out very
meticulously. This might result in the exclusion of valuable
candidates from the hiring process.

Thus, a more cost-effective way to select interviewees
is desirable. This study evaluates whether it is possible to
effectively predict the results of coding tests, given only a
candidate’s job application documents (i.e. resume and cover
letter). A positive result would allow organizations to decrease
the costs of recruitment by providing a much quicker and
effective way to pre-screen candidates, or even skip entirely
the recruitment step involving competitive programming,
directly selecting the interviewees.

This study brings a technical contribution with
methodological guidelines that companies could employ
when screening applications for software developer positions,
as well as a scientific contribution with the extension of the
current research on methods and tools to evaluate candidates
and validating the existing studies on the characteristics of
highly performant software developers.

II. RESEARCH QUESTION

RQ: Are there any factors present in job application
documents that can predict the candidate’s performance in
programming tests?

III. BACKGROUND AND RELATED WORK

A. Improving recruitment

In literature we can find several solution approaches to the
problem of making recruitment of developers easier and more

effective.

Sarma et al. (2016) provide a tool, named Visual Resume,
that aggregates activity traces of developers across different
types of contributions and repositories into a single developer
profile, making them easier to be used in the hiring process.
How GitHub traces are used in the hiring process has also
been studied by Marlow and Dabbish (2013). Specific cues on
contributors’ profiles are seen by employers as indicators of
technical skills, motivation and values. Some of the identified
cues (e.g. side projects) can be present in resumes as well,
making the study relevant for my research.
In both of these studies, the researchers’ starting point is
that developers’ online contributions are used more and more
by managers in their hiring decisions, but this choice is not
challenged. A correlation between certain characteristics of
developers’ online contributions and their skills is inferred
but not proven.

McCuller (2012) analyses the whole recruitment and
hiring process of software engineers, giving guidelines
to organizations. Particularly relevant for this study are
his definitions of “good” and “bad” resumes and what to
specifically look for in them.
In this case as well, the cues that the writer suggests to
pay attention to come from experience rather than empirical
evidence.

Another tool to facilitate the hiring process is designed
by Menon and Rahulnath (2016). Their tool automates the
eligibility check and aptitude evaluation of job applicants by
analyzing their resumes and social media profiles.
In this study a system is built, using machine learning and
regression techniques, which ranks the candidates in the order
of their compatibility score to the job position. The system
accuracy is tested against the ranking given by an experienced
recruiter.
Among the indicators considered in the study there are some
linguistic ones that can be applied to curricula as well.

B. Characteristics of good software developers

Different studies have tried to identify the characteristics of
good software developers and what employers seek in them.
These studies have been useful in determining the factors to
analyze in the job application documents for this study.

Wynekoop and Waltz (2000) propose a methodology for
building a model of the personality traits of top performing
developers. They then conduct a pilot study on students,
where the ones identified as top performing developers are
subjected to a personality test to evaluate if they possess the
identified traits.

The purpose of the study conducted by Ahmed et al. (2012)
is to find whether the soft skills that employers look for in

software developers vary from culture to culture. The result is
that culture does not generally have an impact, but the paper
presents a collection of desired soft skills in programmers.

These two studies, among others, suggest that exceptional
developers possess resembling personality traits and soft
skills. These traits and skills might appear in the style of
writing or the choice of information to include in the job
application documents.

Clark et al. (2003) investigate the differences in experienced
and novice IT professionals, aiming at providing guidelines
for selecting those novice job applicants with the potential
of becoming expert developers. Their results show that
positive extraversion is found in top performing experienced
IT professionals, while negative extraversion is found in IT
students with high GPA. Therefore, their study suggests that
extraversion is more important than academic performance in
the long run in the IT field.

There also exist several posts on technical blogs and
online magazines in gray literature that try to identify the
characteristics of good programmers, such as James (2008).

C. Related works

A few studies have approached the problem in a similar
way as this paper does.

Evans and Simkin (1989) studied predictors of academic
performance in programming courses. Cegielski and Hall
(2006) conducted a study on whether theoretical believes,
cognitive abilities and personality of software developers
related to their performance in object-oriented programming
tests. Bachrach (2015) studied how social media profiles
relate to perceived job-suitability, finding profile components
as well as education, skills and demographic traits to be
predicting factors. Douglas et al. (2013) analyze the situation
in a company, developing an algorithm that can predict
employees’ performance given their biographical information
and entry test scores.

However, the difference between this study and the ones
mentioned above is that they either try to predict something
different, such as job-suitability, academic or job performance,
or/and they use different basis than what is available in job
application documents to study the presence of predictors.
No previous work could be found that studies the possibility
of predicting performance at programming tests given a
candidate’s submitted curriculum.

D. Applied statistics in Software Engineering

Applied statistics is useful in Software Engineering
experimentation.
Both Juristo and Moreno (2013), and Emam and Carleton

(2004) agree on both the importance and lack of
experimentation and proper use of statistical methods in
this field.
Juristo and Moreno (2013) observe that nowadays the Software
Engineering research is not much based on rigorous and
objective data but more on opinions and anecdotal experience.

This study aims at contributing to the Software Engineering
research through an empirical analysis on the contents of job
applications, as opposed to the current practice in recruitment
which is based on subjective criteria.

IV. RESEARCH METHODOLOGY

In order to answer the research question, I conducted a
study on the hiring process of software developer interns in
Opera Software.

Opera Software is a Chinese-owned mid-sized software
company founded in Oslo, Norway, and with worldwide
offices. The company develops and markets web browsers for
both desktop and mobile platforms, reaching more than 350
million users.
Opera’s Gothenburg and Linköping offices focus mainly
on the development of “Opera for Android” and “Opera
Mini” browsers. Every summer, a total of approximately 8
engineering interns are hired to join the teams of software
developers in the two offices. Hundreds of students apply to
these positions every year, and after an initial screening done
by the human resources department and the team leaders, a
limited number of applicants is assessed through some coding
challenges on the Codility platform. The candidates who best
perform in these challenges are finally invited to an on-site
interview, which constitutes the final step of the hiring process.

The study conducted on the hiring process was split into
four phases: data collection, data preparation, analysis and
identification of predictors, and evaluation.
In the first phase, the job application documents and results
from the programming tests are collected.
In the second phase, the job application documents are
described by a series of attributes. Attributes are identified
from previous studies and articles, input from the employees
involved in the selection of candidates. Some attributes are
included due to their easy availability, to maximize the
chances of finding suitable predictors.
In the third phase, dependency of the test from the identified
parameters is tested employing different statistical tools, and
part of the data is used to build a binomial logistic regression
model.
Finally, the predictive ability of the model is evaluated
through the calculation of its accuracy, and visualized through
a ROC plot.

A. Data collection
For this study, both qualitative and quantitative data has

been collected from Opera’s internships recruitment process
of spring 2017.
Qualitative data is constituted by the documents submitted
by each candidate in their job application. Opera requires
candidates to submit a curriculum vitae and (optionally, but
encouraged) a cover letter. No particular format is imposed for
these documents. The results of the programming assessment
tests constitute quantitative data: each test receives an overall
score, and every one of the three tasks in the test is scored
on both correctness and performance, each represented by a
percentage.

The total number of applicants for the developer summer
jobs was 492 (283 applicants for the positions in Gothenburg
and 209 applicants for the positions in Linkoping). Of these,
93 candidates (58 in Gothenburg, 35 in Linkoping) were
selected by the human resources department and the team
leaders to be taken to the next step of the hiring process
and receive a programming test. An additional 25 candidates
were selected randomly among the remaining, to provide a
more generalized sample. In total, 118 candidates received an
invitation from Opera to complete a programming test on the
platform Codility.

Of these 118 candidates who received the test from Opera,
33 did not take the test. Of the 85 tested candidates, 13 could
not be considered for the study for different reasons:

• in 4 cases substantial similarities with previous submis-
sions or with solutions found online were detected by the
platform;

• 3 candidates started the test but did not attempt it (exclu-
sion criteria: less than 15 minutes of effective time spent
on the test and a score of 0);

• 6 candidates submitted their application documents in
Swedish.

Therefore, the sample available for this study consists in 72
job applications and corresponding test results.

B. Data Preparation
1) Input Attributes: The input attributes were chosen based

on previous studies, technical blog posts and books on the
desirable qualities of software developers, and input from
employees involved in the hiring process in the company.
Some miscellaneous and descriptive input parameters were
included as they are easily attainable through text processing
and analysis software or manual screening.

The input attributes and their variable type are shown in
Table I, together with notes on the used scale, reference to
previous studies that take these attributes into account, and
whether or not they have been reported by Opera’s hiring
managers and HR to be part of their selection criteria.

Attribute Variable type Scale / Notes Derived from previous work Used by company

Cover letter Binary 0 = not submitted, 1 = submitted X

Gender Binary 0 = male, 1 = female [12]

Level of studies Binary 0 = bachelor, 1 = master [12] X

Photo Binary 0 = not present, 1 = present

Pages CV Numerical [3] X

Vocabuary density Numerical [4]

Words/Page Numerical [3] X

GitHub/BitBucket Binary 0 = not present, 1 = present [1], [2] X

Programming languages Numerical

Personal projects Binary 0 = not present, 1 = present [1], [2] X

Current field studies Categorical CS = Comp. science, SE = Software eng., O = other [3], [12] X

Education outside Sweden Binary 0 = no, 1 = yes

Languages Numerical [1]

Experience as developer Binary 0 = no, 1 = yes [3] X

Student associations (years) Numerical [7] X

Scholarship Binary 0 = no, 1 = yes [7]

Own company Binary 0 = no, 1 = yes [3]

Teaching/lab assistant Binary 0 = no, 1 = yes

References Binary 0 = no, 1 = yes

Android Binary 0 = no, 1 = yes X

Algorithm Binary 0 = no, 1 = yes X

Selected Binary 0 = no, 1 = yes

TABLE I
INPUT ATTRIBUTES

The next paragraphs provide the definition of the criteria
and tools used for those attributes that require further
explanation.

The attribute ”Level of studies” describes whether an
applicant is currently enrolled in a bachelor’s or master’s
program. For applicants pursuing a comprehensive 5-years
university program (e.g. the Swedish ”civilingenjör”), the
enrollment year is considered to assign this variable: 0-3
years from enrollment is considered as bachelor student, 4-5
years as master student. In case the applicant reports delay
in their studies, or taking a break, these are considered as well.

The text processing and analysis software Voyant tools6

is used to extract the information regarding the vocabulary
density and the total words in the curricula. The attribute
”Vocabulary density” is defined as the ratio between the
number of unique words and the total words in a text.
The attribute ”Words/Page” is the ration between the total
amount of words and the number of pages of the candidate’s
curriculum.

To count the ”Programming languages” present in each
curriculum, an online list of all notable existing programming
languages is used as a reference7. Languages listed under

6https://voyant-tools.org/
7https://en.wikipedia.org/wiki/List of programming languages

”Skills”, ”Programming languages” or other similar sections
of the curricula are considered. As some candidates report a
level of proficiency for each of the programming languages
while others do not, it was decided to count all mentioned
languages.

”Languages” refer to natural languages a candidate claims
to know, at least at an elementary level. For candidates that
do not mention any language in their curricula, the value of
”1” was recorded. In one instance, the candidate reported
knowing ”sign language”, which was considered towards this
count.

As the vast majority of candidates are either students of
computer science or software engineering, the ones who are
not are grouped in the general category ”Other” for ”Current
field of studies”.

The variable ”Projects” indicates whether or not a candidate
describes at least one programming project (academic or
personal) in their curriculum.

Some of the candidates include a link to their GitHub or
BitBucket profiles in their resume. This is indicated by the
variable “GitHub/BitBucket”.

The variable ”References” indicates whether or not a
candidate includes references in their curriculum. The

classical line ”References will be provided upon request.” is
not considered for this variable.

The variables ”Android” and ”Algorithms” refers to whether
or not the applicant mentions these in their curriculum, either
as an interest, or something they have studied or worked with
(both academically or not).

Finally, the variable ”Selected” is true for candidates that
were selected by the HR or team leaders in the company,
and false for those who were randomly chosen among the
discarded ones to be tested anyways for this study.

2) Output Attribute: The output attribute consists in the
overall result of the test. The test used by Opera in the
recruitment is made of 3 tasks. Each task is evaluated on
correctness and performance, both represented as a percentage.
A score on a scale 0-100 is given to each task and an overall
score for the test is given on a scale 0-300 by combining the
scores of the 3 tasks.
The output attribute and its variable type are shown in Table
II.

Attribute Variable type

Test score Numerical

TABLE II
OUTPUT ATTRIBUTE

3) Analysis and validation sets: The data set of 72 job
applications and test results described by the input and output
attributes has been divided into two:

• an analysis set, containing 57 instances (80% of the total);
• a validation set, containing 15 instances (20% of the

total).
The independent variable “Selected” has been excluded from
these data sets.
The division of the instances between the two sets has been
performed randomly, by using a random number generator to
pick candidates out of the complete data set.

C. Data Analysis

The correlation of each single independent variable to the
dependent variable “Test score” is studied by means of an
appropriate statistical test depending on the nature of the
variables and their distribution. These tests are performed on
the complete data set of 72 observations.

The analysis data set is used to construct a binomial logistic
regression model in which the output variable is whether a
candidate scores over 200 points in the test. Binomial logistic
regression models are used to predict a binary dependent
variable given a set of predictors.
The threshold of 200 points over 300 possible is chosen

to match the threshold the hiring managers of Opera
Software adopt when selecting candidates to bring to the next
recruitment stage.

D. Evaluation

The data from the validation set is used to calculate the
reliability of the constructed model.
The regression model is applied to the data and the predicted
booleans of whether a candidate will score higher than 200
points in the test are confronted against the actual results of
the tests. The accuracy of the model, as well as the ROC
curve and AUC value are used to assess its predictive ability.

V. RESULTS

A. Collected data

The tables containing the collected data can be found in
the appendix.

The Shapiro-Wilk normality test on the dependent variable
“Test score” yields a p-value of 0.2739. Given that the p-value
is larger than 0.05, the Shapiro-Wilk test’s hypothesis that
the data follows the normal distribution can not be rejected.
However, the histogram and normal Q-Q plot of “Test score”
shown in Figure 1 suggest that the underlying distribution is
light tailed.

Therefore, it is concluded that the data does not follow the
normal distribution.

B. Correlation

As it can not be assumed that the data follows the normal
distribution, non parametric tests are chosen to evaluate
correlations between each independent variable and the test
score.

1) Correlation between numerical variables and test score:
The non parametric test Spearman’s Rank-Order correlation
has been used to determine the presence, strength and direction
of monotonic correlations between the dependent variable
”Test score” and each of the numerical independent variable.
The general null hypothesis being tested is that true rho = 0,
i.e. no monotonic correlation exists.
Table III shows the results of the Spearman’s Rank-Order
correlation test on the 6 numerical attributes.

2) Correlation between binary variables and test score:
The Mann-Whitney-Wilcoxon test does not assume normality
and can be used to determine whether the population
distributions are identical. The general null hypothesis being
tested is that presenting one or the other characteristic of
each binary attribute does not influence the job applicant’s
score at the programming test.
The results of the Mann-Whitney-Wilcoxon tests on the 15

Fig. 1. Normal Q-Q plot and histogram of dependent variable ”Test score”

Input attribute S p-value rho

Pages CV 73571.0 0.1241 -0.1828972

Vocabulary density 62174.0 0.9976 3.538229E-4

Words/Page 55506.0 0.3685 0.1075656

Programming languages 63163.0 0.8968 -0.01555365

Languages 73746.0 0.1183 -0.1857089

Student associations 51366.0 0.1435 0.1741214

TABLE III
SPEARMAN’S RANK-ORDER CORRELATION TEST RESULTS

binary attributes are reported in Table IV.

3) Correlation between categorical variable and test score:
To investigate the influence of the field of studies on the test
score, the Chi-squared test of independence is used. The null
hypothesis being tested is that the test scores are independent
of the candidate’s field of studies.
Table V shows the result of the test.

Input attribute W p-value

Cover letter 512.5 0.2716

Photo 668.0 0.6133

References 264.5 0.7527

Level of studies 649.5 0.8281

Education outside Sweden 497.0 0.7772

Scholarship 316.0 0.9286

Teaching/lab assistant 411.0 0.8244

GitHub/BitBucket 413.0 0.3456

Projects 534.5 0.5324

Experience as developer 590.5 0.6127

Own company 131.5 0.9216

Android 658.0 0.8024

Algorithms 638.0 0.6432

Gender 336.5 0.672

Selected 638.0 0.6432

TABLE IV
MANN-WHITNEY-WILCOXON TEST RESULTS

Input attribute X-squared df p-value

Field of studies 92.387 104 0.7854

TABLE V
CHI-SQUARED TEST OF INDEPENDENCE RESULT

C. Binomial logistic regression model

1) Model fitting: The binomial logistic regression model
fitted with the data from the analysis data set is shown in
Figure 2.

Fig. 2. Summary of the coefficients of the binomial logistic model

2) Assessing the model: The model is applied to the
observations from the validation data set to predict whether

a candidate will score over 200 points in the programming
test. The decision boundary of 0.5 is used to transform the
outputted probabilities of the model into a binary response.
Table VI shows the outputted probability, the predicted and
actual outcome of a candidate performing over 200 points at
the programming test, for each observation in the validation
data set.

Probability Predicted outcome Actual outcome

5.401709E-12 0 1

8.537966E-4 0 0

0.8386135 1 1

0.8123795 1 0

0.9881359 1 0

0.006419624 0 0

0.6162502 1 1

2.923078E-8 0 0

0.01987276 0 0

0.9797599 1 0

0.8390977 1 0

1.987217E-4 0 0

0.2058407 0 1

2.183347E-10 0 0

0.6479676 1 0

TABLE VI
PREDICTED VS ACTUAL HIGH PERFORMANCE AT TEST

The accuracy of the model on the validation set is 0.53,
calculated as the ratio between the correct predictions (sum
of true positives and true negatives) and the total population.

Figure 3 shows the ROC (Receiver Operating Characteristic)
curve generated by plotting the true positive rate (TPR) against
the false positive rate (FPR) at various threshold settings. The
AUC (i.e. Area Under the Curve) value is 0.45.

VI. ANALYSIS AND DISCUSSION OF RESULTS

A. Analysis

1) Correlations: As shown in Table IV, none of the results
of the Mann-Whitney-Wilcoxon tests reports a p-value lower
than 0.05. Therefore, in none of these tests can the null
hypothesis be rejected, meaning that the test scores of the
two groups for each binary variable are identical populations.
In practice, this result indicates that none of the studied binary
variables can be used as a statistically significant predictor
of the test score. Master students do not score higher than
bachelor students, men do not score higher than women,
candidates including a cover letter do not score higher than
those who do not, etc.

Similarly, all the results of the Spearman’s Rank-Order
correlation tests report a p-value higher than 0.05, as reported
in Table III, and none of the null hypotheses can be rejected.

Fig. 3. ROC plot of the binomial logistic model

Therefore, there is no statistically significant correlation
between any of the numerical independent variables and the
dependent variable ”Test score”.

The field of studies of a candidate is also not useful
in predicting the score of the test, as the p-value of the
Chi-quared test is higher than 0.05 as reported in Table V.

Overall, none of the attributes taken into consideration in
this study can alone be considered a predictor of the score at
the programming test.

2) Logistic model: Most of the independent variables of
the logistic model are not statistically significant (p > 0.05 as
reported in Figure 2), as it was foreseeable from the results
of the correlation tests on the single variables.
The ”other” field of studies has the lowest p-value, suggesting
a strong relationship between candidates who do not study
Software Engineering or Computer Science and their high
performance at the programming test. The positive coefficient
of the predictor indicates that, all other variables being equal,
the candidate who does not study CS or SE has a higher
probability of scoring over 200 points in the test.
Similarly, having had University education outside Sweden
improves the probability of scoring high at the test. On the
other hand, being a master student and reporting experience
or interest in Android lowers the chance of scoring over 200
points.

However, the accuracy of the model is very low. 53%
accuracy means that flipping a coin to predict whether a

candidate will score high at the test would have basically
the same accuracy as applying this model to achieve the
prediction.
This can also be seen from the ROC plot reported in Figure
3: the line plotting the TPR against the FPR runs alongside
the axes diagonal, meaning that trying to increase the TPR
increases the FPR by a similar value, as they go hand-in-hand.
In fact, the AUC value is 0.45, while for a good prediction
model we seek values closer to 1.

The accuracy of the logistic model could be dependent on
the way the data was split into the analysis and validation
sets and a more precise value could be achieved using cross
validation. However, given the low accuracy, seeking a more
precise value is not relevant.

B. Discussion

The results and their analysis give the answer to the
research question: this study could not find any factors
present in the job application documents that can predict the
candidate’s performance in programming tests.
This does not imply that no predictors of coding tests
performance is present in the resume and cover letter of an
applicant. A different approach could identify them, as will
be discussed later in Section VI-D, “Future work”.

It is interesting to notice that when comparing candidates
that have been pre-screened and selected by the HR and team
leaders at Opera Software to the ones that were randomly
selected among the discarded ones, we can not reject the
hypothesis that they come from identical populations in
relation to their scores at the test.
This result indicates that there is no need for companies that
use competitive programming as a mean to select candidates
in the early stages of recruitment to spend man hours on
the screening of application documents: the same results can
be achieved by selecting a random sample of applicants to
test, and time can be more efficiently spend on reviewing the
applications and quality of solutions of the smaller group of
high scorers.

From an ethical point of view, it is arguable whether we
should at all seek an algorithm able to filter job applicants.
While on one side some might argue that being evaluated
by a machine feels impersonal and unappreciative of the
efforts one puts into creating a good resume and cover letter,
others might claim that a busy manager would also just skim
through a job application, and that automating the process
might increase fairness as human biases are removed.

C. Threats to validity

A threat to construct validity is represented by the particular
choice of input attributes. Different attributes might have
shown correlation with the result of the test or improved

the accuracy of the logistic model, potentially changing the
answer to the research question. To reduce this risk, as many
attributes a possible, given the limitations of this study, were
included, with consideration of what could be extracted from
previous literature and the company help (as reported in Table
I).

The chosen statistical tests can also represent a threat
to construct validity. Tests for normality were employed
to choose appropriate methods. Additional and alternative
possibilities for the analysis of the data are discussed in the
next section.

Even though the process of compiling the data set by
reading the job applications and annotating the different
attributes was done carefully and meticulously, it is possible
that some mistakes were made, compromising the reliability
of the findings. It would be advisable to have a partner
researcher validate the data.

Finally, in regards to external validity, it can be argued
whether the results (or lack of thereof) of this study can be
generalized to other processes of recruitment of software
developers that use competitive programming. The candidates
in this study were all students, while companies would more
generally deal with the recruitment of professionals, who
report different information in their resume (e.g. previous
roles and years of experience).

D. Future work

For future work, my suggestion is to try and find more
input attributes that can describe the application documents.
The better the candidate’s job application is described, the
higher the chance of finding predictors among the attributes.
Moreover, it is valuable to look at the interaction among the
variables, as the unique characteristics of top developers are
probably more complex than simple factors alone.
Finally, the use of Bayesian statistics could be investigated,
as it is a valid alternative to logistic regression.

VII. CONCLUSION

The study on the recruitment process of developer interns
in Opera Software could not highlight any factors present in
candidates’ job application documents that serve as suitable
predictors to the candidates’ performance at the programming
tests used as screening tool. Neither single attributes showed
any correlation to the test results, nor a high score could be
effectively predicted through the construction of a logistic
regression model. Notably, no difference in test scores was
found between candidates that had been selected by Opera
Software during the initial screening of the applications, and
candidates that were discarded by the company but tested for
the sake of this study.

Given this last result, software companies which use
competitive programming as a mean to screen the job
applicants are advised to use the test as a first filter and
only then perform a manual selection of the top performing
candidates, based on the application documents and quality
of solutions.
Ideally, the programming test would be sent to all applicants,
but, if this proves to be expensive, a random subset of
candidates can be chosen to be assessed through competitive
programming. An accurate evaluation of the top scorers
can then be performed manually. As this will be a much
smaller number than the total applicants (in the case here
presented only 30% of the tested candidates scored above
66%), selecting interviewees will be considerably cheaper at
this point.

Finally, some of the examined factors are considered by
the Software Engineering research to be characteristics or
cues for top developers. As such factors did not correlate
to high scores in the administered programming test, more
research should be done on whether or not top developers
actually hold such characteristics, as well as studying whether
skills in competitive programming are actually correlated to
high job performance and should be used as a tool to select
candidates.

ACKNOWLEDGMENT

The author would like to express her gratitude to Jan-
Philipp Steghöfer for his guidance throughout this project,
and to Hanna Björk for her help in navigating through the
recruitment process and tools at Opera Software.

REFERENCES

[1] Sarma, Anita, et al. ”Hiring in the global stage: Profiles of online
contributions.” Global Software Engineering (ICGSE), 2016 IEEE 11th
International Conference on. IEEE, 2016.

[2] Marlow, Jennifer, and Laura Dabbish. ”Activity traces and signals in
software developer recruitment and hiring.” Proceedings of the 2013
conference on Computer supported cooperative work. ACM, 2013.

[3] McCuller, Patrick. ”How to Recruit and Hire Great Software Engineers:
Building a Crack Development Team.” Apress, 2012.

[4] Menon, Vishnu M., and H. A. Rahulnath. ”A novel approach to
evaluate and rank candidates in a recruitment process by estimating
emotional intelligence through social media data.” Next Generation
Intelligent Systems (ICNGIS), International Conference on. IEEE, 2016.

[5] Wynekoop, Judy L., and Diane B. Walz. ”Investigating traits of top
performing software developers.” Information Technology People 13.3
(2000): 186-195.

[6] Ahmed, Faheem, et al. ”Soft skills requirements in software development
jobs: a cross-cultural empirical study.” Journal of systems and
information technology 14.1 (2012): 58-81.

[7] Clark, Jan Guynes, Diane B. Walz, and Judy L. Wynekoop. ”Identifying
exceptional application software developers: A comparison of students
and professionals.” (2003).

[8] James, Justin. ”10 traits to look for when you’re hiring a programmer.”
(2008).

[9] Evans, Gerald E., and Mark G. Simkin. ”What best predicts computer
proficiency?.” Communications of the ACM 32.11 (1989): 1322-1327.

[10] Cegielski, Casey G., and Dianne J. Hall. ”What makes a good
programmer?.” Communications of the ACM 49.10 (2006): 73-75.

[11] Bachrach, Yoram. ”Human judgments in hiring decisions based on
online social network profiles.” Data Science and Advanced Analytics
(DSAA), 2015. 36678 2015. IEEE International Conference on. IEEE,
2015.

[12] Augusto, Douglas A., Heder S. Bernardino, and Helio JC Barbosa.
”Predicting the performance of job applicants by means of genetic
programming.” Computational Intelligence and 11th Brazilian Congress
on Computational Intelligence (BRICS-CCI CBIC), 2013 BRICS
Congress on. IEEE, 2013.

[13] Khaled El Emam, Anita D. Carleton, ”Applications of statistics in
software engineering”, Journal of Systems and Software, Volume 73,
Issue 2, 2004, Pages 181-182, ISSN 0164-1212.

[14] Juristo, Natalia, and Ana M. Moreno. ”Basics of software engineering
experimentation.” Springer Science Business Media, 2013.

[15] Halim, Steven, and Felix Halim. ”Competitive Programming 3.” Lulu
Independent Publish, 2013.

[16] McDowell, Gayle Laakmann. ”Cracking the coding interview.”
CarrerCup, 2011.

[17] Jokela, Juho. ”Evaluating and measuring the adequacy of a programming
job applicant: Using code tests as a method of evaluation.” 2017.

APPENDIX A - Complete data set

1

ID
Cover
letter

Pages
CV Photo References

Vocabuary
density

Words/
Page

Level of
studies

Current
field of
studies

Education
outside
Sweden Scholarship

Student
associations
(years)

Teaching/
lab
assistant

01 0 4 0 1 0.49 261.50 1 SE 1 0 0 1
02 1 2 0 0 0.63 259.50 1 O 1 0 3 1
03 1 1 1 0 0.73 154.00 0 SE 0 0 1 0
04 0 2 0 0 0.54 201.00 0 SE 0 0 0 0
05 1 1 0 0 0.72 244.00 1 CS 1 1 0 0
06 0 3 0 0 0.57 132.00 0 CS 0 0 0 0
07 0 2 1 0 0.65 151.50 1 CS 0 0 0 0
08 1 2 1 0 0.61 215.50 1 CS 1 0 2 0
09 0 1 1 0 0.58 454.00 1 CS 1 0 0 0
10 1 1 0 0 0.72 224.00 0 CS 0 0 0 0
11 0 1 1 1 0.68 340.00 0 O 0 0 0 0
12 1 2 1 0 0.62 271.00 1 O 0 0 0 0
13 0 2 0 0 0.59 182.00 1 CS 1 1 0 0
14 0 2 0 0 0.57 388.50 1 CS 0 0 2 1
15 0 1 0 0 0.69 228.00 1 SE 1 0 0 0
16 0 1 1 0 0.68 269.00 1 O 1 0 0 0
17 0 3 0 0 0.55 157.67 0 O 0 0 0 0
18 0 2 1 0 0.63 180.50 0 CS 0 0 2 0
19 0 2 0 0 0.67 238.00 1 O 0 0 0 0
20 0 2 0 0 0.61 169.50 0 SE 0 0 2 0
21 1 2 1 0 0.58 234.00 1 CS 0 0 2 0
22 0 2 0 1 0.63 199.50 1 CS 0 0 0 0
23 0 2 1 0 0.63 236.00 1 CS 0 0 1 0
24 1 2 0 0 0.84 62.50 0 CS 0 0 0 0
25 0 2 1 0 0.63 201.50 0 CS 0 0 0 0
26 0 2 0 0 0.60 186.00 0 CS 0 0 0 0
27 1 2 1 0 0.61 187.00 0 CS 0 1 1 0
28 1 1 0 0 0.68 106.00 1 CS 0 0 0 1
29 1 1 0 0 0.68 106.00 1 CS 0 0 0 1

APPENDIX A - Complete data set

2

ID
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

GitHub/
BitBucket

Programming
languages Projects

Experience
as
developer

Own
company Android Algorithms Gender Languages Selected Test score Test > 200

0 10 0 1 0 1 0 0 3 0 100 0
0 7 0 1 0 1 0 0 3 0 258 1
0 3 0 0 0 0 0 0 3 0 176 0
1 4 0 0 0 0 0 0 2 0 193 0
0 5 0 0 0 1 1 1 4 1 120 0
0 10 0 1 0 0 1 0 3 1 120 0
0 4 0 0 0 0 0 0 3 0 81 0
1 10 0 1 0 1 1 1 5 1 264 1
1 4 0 1 0 1 0 0 1 0 222 1
0 0 1 0 0 0 0 0 2 0 156 0
0 3 0 0 0 1 0 0 4 0 264 1
0 3 0 0 0 1 1 0 5 1 100 0
0 5 0 1 0 0 1 0 3 1 235 1
1 9 0 1 0 0 1 0 2 1 87 0
0 0 0 1 0 0 0 0 3 0 264 1
0 2 0 1 0 1 0 0 4 0 87 0
1 5 1 1 1 1 0 0 3 0 255 1
0 6 1 0 1 1 0 0 3 0 33 0
0 4 0 0 0 0 1 0 3 1 147 0
0 6 0 1 1 1 0 0 3 0 286 1
0 7 0 0 0 0 1 0 1 1 291 1
1 5 0 0 0 0 0 0 2 0 163 0
0 7 0 0 0 0 1 0 3 1 128 0
1 7 0 0 0 0 0 0 1 0 108 0
0 6 0 0 0 0 1 1 3 1 173 0
0 4 0 1 0 1 0 0 2 0 178 0
0 6 0 0 0 0 1 0 2 1 269 1
0 0 0 0 0 1 0 0 2 0 194 0
0 0 0 0 0 1 0 0 2 0 194 0

APPENDIX A - Complete data set

3

ID
Cover
letter

Pages
CV Photo References

Vocabuary
density

Words/
Page

Level of
studies

Current
field of
studies

Education
outside
Sweden Scholarship

Student
associations
(years)

Teaching/
lab
assistant

30 1 3 0 0 0.64 127.00 1 SE 1 0 1 0
31 1 2 0 0 0.51 296.00 1 CS 0 0 3 1
32 1 1 0 0 0.61 293.00 0 CS 0 0 0 1
33 1 2 1 1 0.67 180.50 0 CS 0 0 1 0
34 1 1 1 0 0.70 207.00 1 O 0 0 0 0
35 0 1 1 1 0.60 379.00 1 CS 0 1 3 0
36 1 1 1 1 0.87 121.00 0 CS 0 0 0 0
37 1 3 0 0 0.60 170.00 0 SE 0 0 2 0
38 1 2 0 0 0.61 115.50 0 SE 0 0 0 0
39 0 2 0 0 0.54 227.00 1 CS 1 0 3 1
40 1 2 1 0 0.56 277.50 1 CS 0 0 2 0
41 0 4 0 0 0.49 230.00 1 SE 1 1 0 0
42 0 2 0 0 0.66 186.50 1 CS 0 0 4 0
43 0 2 0 0 0.71 130.50 0 SE 0 0 0 0
44 0 2 1 0 0.56 225.00 1 CS 0 0 0 0
45 0 1 1 0 0.68 211.00 1 CS 0 0 0 0
46 1 2 0 0 0.60 175.50 0 SE 1 0 1 0
47 0 2 0 0 0.66 115.00 1 CS 1 1 0 0
48 0 4 1 0 0.55 171.75 1 O 0 0 4 0
49 0 3 0 1 0.54 221.33 1 CS 1 0 0 0
50 1 2 0 0 0.55 231.50 1 SE 0 0 1 0
51 0 1 1 1 0.60 508.00 1 CS 0 0 0 0
52 1 2 1 0 0.58 233.00 0 CS 0 0 0 0
53 0 1 0 0 0.73 248.00 1 CS 0 0 0 1
54 0 2 0 0 0.49 184.50 0 O 0 0 0 1
55 0 2 1 0 0.61 201.50 0 CS 0 0 0 0
56 1 3 1 0 0.58 157.00 1 SE 0 0 0 0
57 0 2 0 0 0.62 191.00 0 O 0 0 2 1
58 0 1 0 0 0.77 81.00 0 CS 0 0 0 0

APPENDIX A - Complete data set

4

ID
GitHub/
BitBucket

Programming
languages Projects

Experience
as
developer

Own
company Android Algorithms Gender Languages Selected Test score Test > 200

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

0 7 1 0 0 1 0 0 4 0 75 0
1 8 1 0 0 1 1 0 2 1 200 0
1 8 0 0 0 0 1 0 2 1 219 1
0 6 1 1 0 0 0 0 1 0 269 1
0 7 0 0 0 0 0 0 1 0 203 1
1 6 0 1 0 1 0 0 3 0 153 0
0 8 0 1 0 0 0 1 1 0 188 0
0 6 1 0 0 1 0 0 3 0 153 0
0 8 0 1 0 0 0 0 3 0 33 0
0 7 0 1 0 0 0 0 3 0 202 1
0 10 0 0 0 0 1 0 2 1 145 0
0 7 1 1 0 1 0 0 2 0 210 1
0 7 0 0 0 0 0 0 3 0 263 1
0 5 0 0 0 0 0 0 3 0 219 1
0 7 0 1 0 1 1 1 2 1 95 0
0 4 0 1 0 0 1 1 2 1 150 0
0 4 1 0 0 1 0 1 4 0 166 0
0 4 0 1 0 0 0 0 1 0 75 0
1 5 1 0 0 1 0 0 3 0 133 0
0 3 1 0 0 0 0 0 4 0 0 0
1 5 0 0 0 0 1 0 2 1 100 0
0 4 0 1 0 0 0 0 3 0 180 0
0 3 0 0 0 0 0 0 3 0 160 0
0 5 0 0 0 0 0 0 3 0 93 0
0 0 0 0 0 1 0 0 3 0 87 0
1 7 0 0 0 0 0 0 1 0 166 0
1 4 1 0 0 0 0 1 3 0 168 0
0 6 0 0 0 1 1 0 4 1 145 0
0 8 0 0 0 0 0 0 3 0 207 1

APPENDIX A - Complete data set

5

ID
Cover
letter

Pages
CV Photo References

Vocabuary
density

Words/
Page

Level of
studies

Current
field of
studies

Education
outside
Sweden Scholarship

Student
associations
(years)

Teaching/
lab
assistant

59 0 1 0 0 0.86 100.00 1 O 0 0 0 0
60 0 2 1 0 0.54 382.00 0 O 0 0 0 0
61 0 1 1 0 0.64 218.00 0 O 0 0 1 1
62 0 2 1 0 0.73 77.00 1 CS 1 1 0 0
63 0 3 0 0 0.64 144.33 1 CS 1 1 0 0
64 1 1 0 0 0.49 411.00 1 SE 1 0 1 1
65 1 1 1 0 0.83 163.00 0 SE 0 1 0 0
66 0 3 1 0 0.52 263.00 0 CS 0 0 1 0
67 0 1 0 0 0.71 163.00 0 SE 0 0 2 0
68 0 2 0 0 0.64 187.00 1 CS 0 0 5 0
69 0 2 0 0 0.50 331.00 0 CS 0 0 0 1
70 1 2 0 1 0.66 186.50 1 CS 1 1 0 0
71 0 3 0 0 0.62 136.00 1 CS 1 0 0 0
72 0 3 0 0 0.55 243.00 1 CS 1 0 1 1

APPENDIX A - Complete data set

6

ID
GitHub/
BitBucket

Programming
languages Projects

Experience
as
developer

Own
company Android Algorithms Gender Languages Selected Test score Test > 200

59
60
61
62
63
64
65
66
67
68
69
70
71
72

0 5 0 1 0 0 1 0 3 1 205 1
1 4 1 1 0 1 0 0 2 0 210 1
0 4 0 0 0 0 0 1 1 0 120 0
0 12 1 0 0 0 1 0 4 1 87 0
0 9 1 0 0 1 1 0 3 1 201 1
0 8 0 0 0 1 0 0 2 0 280 1
0 6 0 1 1 0 0 0 1 0 97 0
0 9 0 1 0 1 1 0 3 1 62 0
0 4 0 1 0 1 0 1 2 0 153 0
0 4 0 0 0 0 1 0 1 1 252 1
1 6 1 1 0 1 1 0 1 1 136 0
1 4 0 1 0 0 0 0 2 0 191 0
0 10 1 1 0 1 1 0 3 1 50 0
1 7 1 1 0 0 1 0 3 1 241 1

