

API abstraction of Robotic Frameworks

and its usability impact

Bachelor of Science Thesis in Software Engineering and Management

Enrique Cordero Miranda
Alexander Zajac

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

This paper explains the process to design and
develop an API to abstract robotic frameworks away from users.
It also evaluates the API in comparison to a robotic framework
in regards to usability. In order to evaluate usability a systematic
data collection process was done to measure operability, learnability and user error protection. The
results show the API as a more usable point of contact than the robotic framework.

© Enrique Cordero, ​June 2017​.
© Alexander Zajac, ​June 2017​.

Supervisor: Pierguiseppe Mallozzi
Examiner: Christian Berger

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

API abstraction of Robotic Frameworks and its
usability impact

Enrique Cordero
Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

Alexander Zajac
Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

Abstract—This paper explains the process to design and
develop an API to abstract robotic frameworks away from users.
It also evaluates the API in comparison to a robotic framework
in regards to usability. In order to evaluate usability a systematic
data collection process was done to measure operability, learn-
ability and user error protection. The results show the API as a
more usable point of contact than the robotic framework.

Index Terms—REST API, Robotics, ROS, Opendavinci

I. INTRODUCTION

A. Background

The improvement in technology and cheaper access to
hardware has led to an increase in the use of technology to
solve daily tasks. Current trends like the Internet of Things
(IoT) [1] and Cloud Computing [2] [3] aim to digitize a
lot of the comforts people have in their homes. The rise in
popularity of the Internet of Things (IoT) [1] also impacts
the use of robots today. Internet of things (IoT) is a common
term currently used to relate to embedded systems, which are
connected to the Internet to exchange data. This encourages
robots to be more and more engaged in everyday home
activities and require therefore some sort of automation and
decision making capabilities based on their setting and their
task [3] [1].

This has triggered an interest in decision making algorithms
and artificial intelligence in the department of computer sci-
ence and engineering at Gothenburg University. One of these
researches focuses on self-adapting systems for robotics. Self-
adaptive systems are systems that are able to adapt their
behaviour at run-time without human intervention [4] [5]
[6] in response to changes in the environment or in their
internal state. A self-adaptive system gathers knowledge from
the environment, contextualizes it considering also its internal
state and adapts itself to achieve its goals. A well-known
reference model for describing the adaptation processes is the
MAPE-K loop [7]. Self adaptation can be achieved through
machine learning.

The interest in different areas of robotics have triggered
different challenges. The growth in everyday usage of robots
has increased the number of frameworks available to handle
the programming of such robots [8]. With such a broad
availability of frameworks, programmers are faced with the
challenge of having to learn about the technical details and
how to communicate with them. All the different type of

frameworks and robots make the term of ubiquitous computing
to appear as a challenge with interconnecting all robots and
exchange information in order to create a system which is
more context aware and location aware [9]. Also, in order
to validate the performance of machine learning algorithms
on different platforms some technical challenges need to be
addressed.

B. Problem Domain and Motivation

The above mentioned challenges develop into specific prob-
lems. Currently applications are usually programmed to com-
municate with a specific framework, which limits the code to
be used again with other frameworks due to possible compat-
ibility issues. With robotic software becoming complicated, it
is vital to find an option to develop reusable robotic software
[10]. Also robot systems are heterogeneous systems which
change in a fast pace. We need a standardized system of
communication, which web-services offer in a rather mature
and developed platform.

Robots as web-services help avoid several limitations that
current robot solutions have today which usually makes them
language specific, or at least device specific [2]. Finally, to be
able to test the same machine learning algorithm in different
frameworks, abstracting the perception component and the
execution with high level API common to the frameworks is
necessary. Different existing solutions are framework specific,
and therefore we have chosen to create an API. Creating
an API to simplify the interaction with the frameworks will
increase usability for the users and solve the aforementioned
problems. We have chosen protobuf as the standard package
to be exchanged because protobuf enables for less boilerplate
code, and allows for backward compatibility, making the
API more stable to version updates. It also allows for better
performance since it does not parse sequentially bit by bit like
JSON does. It parses the package depending on the package
type and the structure bytewise. We have chose to implement
the methods getCamera, setSpeed and setAngle to cover the
entirety of movement and camera feed needed to choose the
movement. These basic commands allow for image evaluation
and movement once the decision has been made. Furthermore
exposing this API through REST interface would free the
developer to access the source code in order to use the API and
also would enable other IoT scenarios to communicate with

the robot remotely and to have access to the methods through
the cloud and therefore providing a restful webservice.

A literary review has noted a gap in previous work were
similar solutions have been proposed without a mention of
whether or not the solution is actually more usable. This study
will therefore evaluate the API by its usability. The usability of
the API will be evaluated upon three specific variables, which
are learnability, operability and user error protection. The other
characteristics of usability defined by the ISO 25010 [11] are
out of scope for this paper. The objectives of our research are
stated as follows:
• Build the API
• Collect Data comparing the API to ROS as a representa-

tion of one of the frameworks
• Analyze the Data to show an increase in usability

C. Research Goal and Research Questions

The objective of this paper is to explain the design and
implementation of a restful API, to abstract robotic frame-
works and to evaluate the impact upon usability of having a
single point of contact (API) to communicate with a robot.
The main objective of the API is to improve usability by
providing a single point of contact with an established protocol
for applications to interact with the robotic frameworks. The
paper intends to address the following research questions:

1) Main Research Question:
• RQ1: What is the impact on learnability, operability and

user error protection of having a single point of contact
(API) to a robotics system contra direct contact to the
framework itself.

2) Sub-Questions:
• RQ1.1: Can a group of students, already familiar with

robotic frameworks, make a simple application using the
API without prior knowledge of the API?

• RQ1.2: What impact will programming experience have
when evaluating operability, learnability and user error
protection of the API in comparison to the robotic frame-
work?

D. Hypothesis

Our hypothesis is that:
• H1: There will be a significant difference between having

one point of contact to a robotics system contra direct
contact to the framework itself.

• H0: There will not be a significant difference between
having one point of contact to a robotics system contra
direct contact to the framework itself.

The significant difference for the point of contact will be
evaluated upon the three usability aspects mentioned above and
will be considered to be significantly different if the majority
of them have a significant difference.

E. Contributions

The scientific contribution is to conduct an empirical study
to evaluate the impact an API would have on the usability of

programming an application for a robot in comparison to doing
so directly with the robotics framework. More specifically
this paper will evaluate learnability, operability and user error
protection as per defined by the ISO 25010 [11]. It will also be
contributing to the ongoing research at Gothenburg University
regarding self-adapting systems. The technical contribution is
an API that provides the possibility to validate the performance
of machine learning algorithms on different platforms.

F. Scope and Delineation

The usability of the API is evaluated against the ROS
framework upon three specific variables, which are learn-
ability, operability and user error protection. As mentioned
before the other characteristics of usability defined by the ISO
25010 [11] are out of scope for this paper. This study will be
addressing the usability of both ROS and and API within an
educational context. It will be evaluation the movement and
camera capabilities of the robots in the attempt to address a
homogeneous robot. The rest of the possible capabilities of
ROS and robots in general are out of scope.

G. Structure of the Paper

The rest of this paper is divided as follows: Section II
describes the related work and more specifically the work
already done behind service oriented architectures and robots
as web-services. Section III defines the background behind the
API and explains the architecture behind the system and the
API itself. The methodology chosen for the paper is described
in Section IV where you will also find the data collection and
the evaluation techniques. The results are shown in Section V
and a more elaborate discussion on the results is continued on
Section VI. Finally section VII presents the conclusions and
the possible future work to be done on the topic.

II. RELATED WORK

Service Oriented Architecture (SOA) has also become a
popular topic considering the rise in popularity of the IoT.
Yinong et al. [2] reference the concept of SOA to strengthen
the field of robotics by trying to apply the concept and build
what they call Robot as a Service (RaaS). The main idea
is to expose the robotic services to the end user and the
developers in order to have a layer of common services and
standard interfaces. The authors also kept within the margins
of the WEB 2.0 principles of participation to comply with
common service standards. However at the evaluation stage of
the paper they focus on the portability and the flexibility of the
design. Through experiments they show how the software and
hardware efficiency. They do not however evaluate the impact
that this type of architecture would have on the usability for the
end user and developers. Since the end user and developers
are mentioned as the primary users of the framework then
certainly their experience of using the robot should change.

Raas did lay the groundwork for upcoming researches to
look at the SOA paradigm and try to focus on robots as
services.

Doriya et al. [3] continue to exploit the SOA paradigm
to present a model and a simulation of robotic in SOA and
cloud computing. The authors propose a framework and use
Microsoft Robotics Developer Studio (MRDS) to simulate and
test the framework they previously proposed. Through their
proposed framework and the simulator capabilities the authors
were able to use voice recognition to provide some services in
order to give an example of the possibilities of having robots as
Web services. The paper has a theoretical approach to expose
the topic as an interesting one and shows the possibility of
robot virtualization with web services. However there is no
technical implementation nor was there ever an intention of
measuring whether it would have any impact on the developers
or the user.

Osentoski et al. [12] proposed to expose the services of the
ROS framework to the users through rosjs and rosbridge. The
motivation in their paper to create these tools was to be able
to use a tool that is common for everyone as is a web browser
and to give everyone a chance to program for or interact with
robots. The main idea is to have a middleware called rosbridge
to interact with ROS and pass the information along. On the
web browser there is a javascript library called rosjs which
would be able to receive this information and display it on
the web browser. They also use JSON serialized messages to
interact with the web interface which will encode / decode
to ROS serialized messages to interact with the ROS back
end. The biggest milestone this paper covers is the usage
of more popular tools like javascript and JSON messaging.
Also they provided alongside the possibility to connect with
non-Web clients based on sockets (version 1) and websockets
(version 2). As mentioned before this paper laid a strong
practical foundation using a well known framework like ROS
and established WEB tools like javascript and JSON. However
they did not aim to evaluate the impact the tools they had
created had on the developers. Like Yinong et al. these authors
aim at creating something that would aim to help developers
communicate through the web with a robot in order to facilitate
the creation of applications for them, yet failed to evaluate if
there was any help at all by the change.

Kim et al. [9] employ Web services to allow a robot
to access a set of distributed services. The authors discuss
the importance of ubiquitous functions and they explain the
fundamental ubiquitous functions management framework for
a robot. The paper also shows how the different layers and
services would interact as a system to provide the required
services to fulfill a task. However the paper does not mention
the impact this would have on the users or on the developers.
It has abstracted any specific robotic framework away from the
user and created a generic solution in which the services are
modular and independent. The authors have proven therefore
in their paper that web services can be a solution to the
problem of integrating different robotic solutions. The aim of
this paper is to go a step further and try to evaluate the impact
the tool will have on third party developers and users.

In his previous work Koubaa [13] tries to exploit the
advantages of the SOA paradigm to expose robotic resources

as services through the Web. The main idea behind the project
was to allow non-technical user to manipulate robots through
a Web browser. The author created a SOAP based middleware
that exports the topics from the ROS framework to the user and
therefore allows him to manipulate the robot through the Web
browser. The author mentions the aim of the project is to allow
non-technical users to manipulate robots. He even mentions
how a possible experiment might be conducted however he
never mentions what would be the goal of the experiment nor
does he mention in the paper if he achieves in allowing non-
technical users to manipulate the robots. Therefore we see
again the need to evaluate whether the work done to expose
the services of the robot would actually have an impact on the
end user and / or the developers.

More recently Koubaa [14] has developed a more thorough
web-service possibility for ROS. The author relies on the boom
of the IoT and the complexity of developing client applications
for robots as a foundation of why he chose to develop such
a solution. The author chose to integrate web-service solution
into the ROS framework to provide both REST and SOAP so-
lution for developers to rely on. The author’s experimentation
validates their desire to promote portability, reusability and
interoperability between ROS robots and client applications.
Koubaa however aimed to make it easier for developers to
interact with robots and he has not tried to prove just that. His
work was completely aimed at developing the solutions and
evaluating if the code could be more portable and reusable.
The usability of the system he proposed in comparison to the
ROS framework directly has not been evaluated.

III. API BACKGROUND

As mentioned before the reason to create the API is to
assist the current ongoing research at Gothenburg University
regarding self-adapting systems. The research is centered
around ROS and OpenDaVinci as the robotic frameworks to
be used for the evaluation. OpenDaVinci [15] is a realtime-
capable robotic framework written in standard C++. Currently
the framework is platform specific. Currently it offers com-
munication features such as UDP, TCP, shared memory and
serial port. It offers the possibility of time-triggered or data-
triggered software modules. ROS [16] is a flexible robotics
framework aimed to simplify the creation of software for
robots. It has a wide variety of libraries, tools and conventions
to help in the creation of such software. It also aims to
encourage the collaboration of different teams to develop and
share the information with each other through releases of
new libraries. ROS is based on the publish/subscribe pattern
to allow different modules to communicate with each other.
It is considered the main framework for prototyping and
development of robotic software [14].

The idea behind the API is that it will allow test algorithms
to run on different frameworks without the need to change the
source code. Similar to how a webpage can be rendered the
same way regardless of the web-browser used [17]. To be able
to control all mobile robots with the same code it is needed to
be able to control homogeneous robots. This considered, every

framework has done a good job with adapting to the specific
robot capabilities they intend to code for. Therefore it is not the
aim to try to establish a new framework but instead push for a
communications module inside each framework. This module
would communicate with a central communications module
which is referred to as the API. This way robot functionality
can be provided as a web service. Robots as web-services
help avoid several limitations that current robot solutions
have today which usually makes them language and/or device
specific [2]. The proposed architecture of the whole system
can be seen in figure 1. The figure shows both the ROS and
Opendavinci frameworks connecting to the REST interface.
For the sake of this paper focus will only be on the ROS
framework, the ROS connector and the REST interface.

The internal workings of the API is based on three basic
methods to control the robot and to be able to evaluate its
position. The three methods considered are getImage, setSpeed
and setAngle. The idea is to be able to lay the grounds
for basic movement and position evaluation of robots with
the future capability of adding other capabilities offered by
the framework. The API counts with the possibility of being
accessed locally as a library through the methods mentioned
above. It also has the possibility of being accessed through a
server remotely. It has two main components called movement
master and image master which handle the communication of
the components. Each master is in charge of initializing the
subcomponents that will communicate. The subcomponents
have been divided in a way that they do not need to be
deployed in the same machine in case of a distributed system.
Figure 2 shows a more detailed component diagram from the
web server to the ROS framework. It is important to mention
that the Rest Interface layer which holds the movement master
and the image master can also be accessed locally on the same
local area network (LAN) and does not require the web server.

IV. METHODOLOGY

Design science has been chosen as the research method
given the need to develop the API in order to build upon the
ongoing research regarding self adaptive systems. The aim is
to develop an artifact and to test it against the ROS framework
and extract both quantitative and qualitative information from
the participants during our data collection. Given the nature of
the problem and the need for iterations, the aim was to do a
flexible study. It has grown incrementally and has a positivist
point of view starting with the hypothesis of the API being
more usable than using the ROS framework directly. The study
is based on the paper written by Koubaa [14] given that it is
the most extensive paper found and the fact that it covers every
point aimed to be evaluated. A layer of evaluation has been
added to it regarding usability. A REST API was designed
to communicate with the ROS framework which allowed the
researchers to collect data in an easier way. Therefore the
study can be seen as an improvement study to try to complete
previous work with a real life comparison between web service
API vs direct contact with the framework. The evaluation of
the artifact will be done through a case study given the need

to evaluate the API in a real case scenario. The data collection
will be of first degree given that we will be working directly
with the participants to get the information. The researches
have also prepared the goals in advance and have formulated
the questions and metrics according to them. Therefore the
study can be considered to be using Goal Question Metric
method (GQM) for the data collection. At the end of the
data collection there was a small survey performed to evaluate
some basic information from the participants and their general
perspective of the tool they used. Descriptive statistics were
used for data analysis of the quantitative data such as time
and number of errors. The evaluation of qualitative data was
done through pre-defined rules to avoid bias and have an even
evaluation of the data /citeRef 37. The evaluation process will
be described in detail in section IV-B.

The artifact is a RESTful API with a standard protocol
that allows any framework to connect to it. In this way the
API abstracts the framework away from the programmers in
order to simplify the coding of applications that could possibly
interact with the robot. To do this python has been chosen
as the programming language to design a library that would
run alongside ROS and communicate with the already existing
ROS framework. A server in python has also been designed
which provides not only local RESTful services but also allows
these services to be accessed remotely. According to Stefik
and Siebert [18] Python is among the languages that had
a better outcome in their study in comparison to C related
languages based on usability for novices. Given that ROS
supports both C and Python we chose Python as the most
user friendly of them. This allows for a wider connectivity
and interaction as aimed to fulfill the RESTful services and
the possibility to interconnect robots in the IoT scheme. The
API has been designed based on the client/server model [17]
which brings advantages such as scalability, concurrency and
language independence.

It was chosen to design an API instead of using an existing
one given that the existing ones are broad and specific to
a framework. The aim was to design an API that would be
generic enough as to be able to be applied to any framework.
The main existing API in consideration to use was the ros-
bridge API [12] given that it is already launched and has
good tutorials. However this tool is extensive and specific to
the ROS framework. The data collection is aimed at having
an API which relies on web services and could be generic
enough as to apply to a homogeneous robot. The aim is also
to be able to generalize the API enough as to make it a part of
upcoming trends as cloud services and the IoT and not only
have it oriented at a specific framework like ROS. Therefore
the design of the API is as generic as could be imagined for a
robot with movements and the possibility for a camera feed.
The finished product is therefore a basic use of HTTP REST
services through the use of a Get and Post methods.

The data collection is devised to evaluate if the API makes
it more usable for 3rd party developers to develop software
that will communicate with a robot, rather than using the
robotics framework to accomplish the same task. The data was

Fig. 1. System architecture including both ROS and Opendavinci.

collected both quantitatively and qualitatively from students
at the University of Gothenburg who are in their 2nd or 3rd
year of software engineering and management. The process
consisted of 19 students who have or are currently working
with the OpenDaVinci framework [15], which is a robotics
framework for autonomous cars. Each student was given
different tools to solve a series of challenges, some students
were given the API functionality sheet and others the ROS
framework functionality sheet. The challenge was constructed
in such a way that students with no prior knowledge of either
ROS or our API will be able to solve it, or parts of it in the
given time. The parameters measured are:
• time to finish a task
• tasks that were completed correctly
• number of errors made during the challenge.
These parameters focus on measuring usability aspects of

the API and the ROS framework. Usability will be evaluated
in regards to operability, learnability and user error protection
as defined by the ISO 25010 [11].

Pseudo-code has been chosen as the programming language
during the challenge. Given the research by Stefik and Siebert
[18] emphasizing the barrier to novice students on syntax
we thought that pseudo-code would help limit the effect that

different experience levels in programming languages could
have on the outcome of the data collection. The students that
are doing the challenge therefore need no experience in how
to program robots in ROS or how HTTP/REST works. There
is also a time limit when evaluating the API and the ROS
framework. The idea is that using pseudo-code with clear
defined rules (and general documentation on the API and ROS
framework) will lower the amount of time needed for the
evaluation experience.

A. Data Collection Process

The data collection process is set to take 1 hour. During the
first 10 minutes the papers were handed out to each person and
the rules of the activity were explained. Each student received:
• Pseudocode Conventions
• API or ROS specification
• Session Review
The rules of the activity consisted basically on explaining

what the papers they got are. The pseudocode conventions is
basic pseudocode rules that can explain different situations that
may need to be applied. The specification paper (regardless of
API or ROS) contains four tasks to be done. The students are
explained that they will be timed but that this time does not

Fig. 2. Component Diagram showing all the packages and components of the API with the connection to ROS and the server.

play any role on their performance. Also each student will
notify when they are done with a task and they will receive a
time which they will write down in the session review. They
are also explained they will be receive a fourth paper when
they are done with the first set of tasks. There is a time limit of
30 minutes for this first set of tasks however the students are
not aware of this time limit in order to leave this extra stress
out of the way so that it will not affect the results. Once the
30 minutes are done or the students are done they receive a
fourth paper which is a small program in both ROS and API
code. They are explained that both codes do exactly the same
thing. They are asked to write down which of the codes they
preferred to use and was more readable. After they are done
with this last task they can fill out the rest of the session results
which contains some questions with some general information.
For the code evaluation task they are given five minutes and for
filling out the session results paper they are given ten minutes.
The last five minutes in the session were used to thank the
students and to explain the purpose of the session.

During the session the researchers were allowed to answer
questions of a general matter. Students asked some general
things about the task and what exactly they were supposed

to do but in a general sense there was no specific questions.
The most usual answer allowed was to assume anything you
wanted and just do the task as stated on the paper to the best
of your capabilities. By limiting the response of questions we
aimed to limit the bias of the data collected.

B. Evaluation

Evaluation of the study is done in 4 steps. It is tailored to
measure the three usability aspects of ISO 25010 [19] that
were identified previously: operability, user error protection
and learnability. The data collection was designed to elicit
data for all variables.

First, questions related to operability were defined. Ques-
tions five to eight in the questionnaire had a relation to how
operable the system was. It was decided all these questions
have a similar weight and therefore each question has a weight
of 25 points. The scale on the questions extends from very hard
to very easy and is divided into five possibilities measuring
the degree of difficulty. Since each questions had a possible
scale of 1-5 we chose to give each possibility a 5 point value.
Meaning that if the students thought something was very hard
they would get five points for that question. If they chose it

was very easy they would get 25 points for that question. This
score was used to measure operability of the system.

Furthermore errors in the students programming code were
identified. The errors to be considered are the misuses of
the method calls “Publish/Subscribe” and “Post/Get” for the
ROS framework and API respectively, which is specific to
the two systems being compared. This is done in order to
make a fair comparison of the ROS framework and the API
and not the students programming skills in general. However,
programming experience can be a risk that was meant to
be mitigated by the use of pseudo-code in the tasks. Error
identification is to measure user error protection. Table I shows
the division of possible methods divided by tool. The errors
are based on the misuse of the methods. On the ROS tasks we
had a maximum of three possible errors regardless of the task
and on the API side we had two possible errors regardless of
the task. Since task one had to do with a graphic task then the
possible errors are the graphic errors and the general errors.
Task two, three and four have only to do with movement
and therefore the possible errors are the general error and the
movement errors.

The following are the possible commands that were evalu-
ated as possibly wrong for ROS and for the API.

ROS possble functions:
• subscriber = ros.Subscribe(“IMAGE-PATH”, IMAGE-

CONTAINER, CALLBACK)
• define callback(image)
• imageVariable.height (Image Data Format)
• object.linear.x (Movement Data Format)
• cmd = ros.Publish(“MOVEMENT-CMD-PATH”,

MOVEMENT-CONTAINER, QUEUE-SIZE)
• cmd.publish(TWIST)
API possible functions:
• image = http.get(“IMAGE-URL”)
• width: “VALUE”, height: “VALUE” (Visual Data For-

mat)
• angle:”VALUE”, speed:”VALUE” (Movement Data For-

mat)
• result = http.post(“MOVEMENT-URL”, DATA)

ROS API

Graphic Errors Subscribe
Callback Function Image Get

General Errors Data Format
(Visual or Movement)

Data Format
(Visual or Movement)

Movement Errors Publish instantiation
Publish Movement Post

TABLE I
TABLE WITH METHODS DIVIDED BY TOOL AND BY POSSIBLE ERROR.

The amount of time used to complete the tasks was also
evaluated for both ROS and the API. All students were timed
during the experience. The time registered is used to measure
learnability. It is important to note that only time and not
correctness is taken into account. The students were not aware
about the significance of time and were told repetitively that

it was not a race. They were also not aware of the time limit
of 30 minutes and as such we do not expect any race cases in
which a student wanted to beat time.

To mitigate risks of biases, both researchers evaluated all pa-
pers. Both researchers followed the same rules and compared
the data at the end as well as go through the results after
the raw data has been coded. When the researchers did not
agree on something a middle ground would be attempted. If
the numbers did not allow for middle ground both researchers
presented their case and a common decision was taken.

V. RESULTS

In this section the results are discussed in terms of the three
usability aspects (operability, learnability and error protection)
with regards to the API and ROS. The data was gathered dur-
ing our data collection sessions with students and interpreted
with the use of RStudio. There was data correlating to each of
the three usability aspects and they all yielded varying results.

When checking normality of the samples with regards to the
tasks it was noted that the ROS sample is not normal and the
API sample for the same tasks is normal. A nonparametric test
was chosen given the size of the sample being so small and
part of the sample not being normalized. It was considered
that there is only one independent variable with two levels.
The nature of the dependent variables is ordinal since it is a
numeric value. Therefore according to [20] the most suited
test for our purposes is the Wilcoxon-Mann Whitney test.

The results show that there are differences between using
the API and ROS when it comes to usability, however the
differences were more subtle that we initially thought. The
tasks were made to evaluate learnability by the time it took
the students to finish each task. When looking at the means
of the four tasks that the students had to finish, the mean is
higher on average with the students that used ROS, as shown in
8. The variance of the same average was a great deal higher
for ROS then for the API. The standard deviation was also
higher for ROS in comparison to the API, shown in 4, which
indicates that there was more uncertainty in the students doing
the ROS challenges. It was initially thought that the ROS tasks
would be harder than the API tasks, this could also indicates
that they were. When using the Wilcoxx-Mann test on this
sample a difference was noted, but not a statistically significant
difference in the time it took the students to finish the tasks
with ROS and the API. This means that it cannot be said that
there is a difference in learnability between the API and ROS.
However there was an interesting trend when going through
the results. None of the students that did the challenge for
ROS finished the last task in the given amount of time.

To measure error protection the number of errors students
made on the tasks were counted. The mean was higher for the
students that used ROS in comparison to the API, as shown in
9. The variance was slightly higher for the students using the
API and the standard deviation was higher for the students
using ROS as shown in 3. This is an indication that it was
easier to make a mistake with ROS and that within the group
of students that used the API there were many people getting

Fig. 3. Shows the average amount of errors for 1. API and 2. ROS

few errors and some that had many more than average. When
using the Wilcoxx-Mann test on this sample a statistically
significant difference on error protection was found, as shown
in 6. This means that the sample was tolerant enough for the
tests to be successful and the data from each student showed
the anticipated difference.

For the measurement of operability, what the students
thought about the challenge as a whole was examined. Ques-
tions about key events in the experience were devised where
students could express their opinions about the tasks and
events surrounding the tasks. It was found that students that
were using the API found the tasks generally easier than
students using ROS, shown in 5. The students were given two
functionality wise similar pieces of code, one with ROS and
one with the API. All students that used the API for their tasks
found that the API code was easier to understand and would
prefer it over its ROS counterpart. However, in students that
used ROS for their tasks, six out of ten said that they thought
that the API was easier and would prefer it over ROS, shown
in 7. This, again, indicates that the API was more readable
and easier to understand.

VI. DISCUSSION

Through the results, a correlation was identified between
number of finished tasks, amount of errors and amount of time
to finish a task. Students that used ROS and finished the tasks
below average time, had more errors than the students using
the API. This suggests that what the students learned about
ROS was not correct or was harder to implement. It could

Fig. 4. Shows the average time for tasks done with 1. API and 2. ROS

Fig. 5. Shows the average question score for 1. API and 2. ROS

Fig. 6. Shows the p-values for time per task, error per task and question
scores

Fig. 7. Shows the distribution of students that chose API or ROS as the
easiest tool to use

Fig. 8. Shows the mean, variance and standard deviation for learnability (time
per tasks)

Fig. 9. Shows the mean, variance and standard deviation for error protection
(errors per tasks)

also mean that the students that used ROS had a hard time
properly understanding the instructions. There was a tendency
that students using the API had varying levels of experience
while many students using ROS were on a similar level, which
could skew the results in some direction. The sample was
conveniently selected with students of the same university
therefore it was expected to see similar levels of experience.
Students that marked themselves as “Intermediate” and used
the API had a lower average time to finish tasks than the same
group in ROS users, as shown in 10. That could indicate that
intermediates find the API easier or faster to learn.

A. API Evaluation

The initial set of rules for declaring the experiment success-
ful was to have at least 2/3 of the usability aspects confirmed.
In this case that is true. Both the measurement of operability
and error protection gave the anticipated results, however
learnability did not. From this it can be concluded that the
setting, with students of university of Gothenburg, the API is
easier to use than the ROS framework. It is harder to make
mistakes with the API in our setting. It is not statistically
significant, but the numbers for learnability also suggest that
it is easier to learn.

To increase the accuracy of learnability it would be inter-
esting to redo the experiment with some lessons learned about
handling groups. During the data collection people were there
as volunteers which makes it sensitive when the activity might
not be of their interest. Perhaps data collection with individual
sessions would have been easier to handle than having the
group session.

During our literature review similar data collection pro-
cesses were not found which makes it impossible to compare
with already existing work. This could be due to the general
consensus that it is obvious that a simplified API would be
more usable than the framework itself. Another possibility is
that robotics is a relatively young field which makes a lot of
specific topics unexplored.

B. Validity Threats

Threats to internal validity, to construct validity and to
conclusion validity have been found. The selection of the
sample is one of the threats. Since the sample is homogenous
the results may be affected. For the scope of this paper it was
not possible to get a random sample which is why a convenient
sample was chosen. Having a convenient sample is a threat
in itself. Some relationships have been found between level
of experience and amount of time taken to finish tasks. This
could be a sample issue and it is not possible to verify without
a larger sample. Threats that relate to how the data collection
was developed and administered are also a factor. Lack of
experience from the researchers might have caused the study to
miss more qualitative questions which could lead to understand
the differences in results of some participants. The documents
provided, which include how the ROS framework works, were
written by the researchers. The initial thought was to provide
documentation from ROS. However, given that the framework

Fig. 10. Shows the average time of ROS vs API of students with experience
Intermediate and above)

is documented mostly by examples, it made it difficult to
include because it would reveal too much to the participants.
The fact that the researchers wrote the ROS documentation
could have led the results in a specific direction. Another
problem during the data collection was that participants did
not arrive all at the same time. The researchers chose to start
the activity at the proposed time. Given that more participants
were needed the new dropins were accepted and therefore
instructions had to be repeated and thus might have an impact
on how instructions were given to different groups. Finally,
pseudo-code was used to avoid having language specific
bias on how the tools worked. Yet pseudocode in itself can
be considered a specific language. This might have led to
some participants having more experience with the proposed
language than others. The main threat however is of course
the bias the researchers could have to when evaluating and
interpreting the data. Even though rules were implemented to
try to avoid such bias it is clear that both researches have a bias
which could lead the results to point towards the API being
easier to use. Although evaluation is thought to have been
objective, it would be interesting to have other researches try
to reproduce this data collection with ROS or with any other
framework for that matter.

VII. CONCLUSIONS

In this paper the process of designing and building an API
has been explained. The aim has been set as to abstract the
robotics framework away from the user. The API was eval-
uated based on three usability aspects which are operability,
learnability and user error protection. Background to the topics
were introduced and what the contributions would be to the
current research. The data collection was explained in full
detail and could be reproduced with the available instructions.
The literature review showed that usability has not been an
evaluation method for previous work and therefore this could
be considered as new research. The results show that the API
can be considered more usable as a single point of contact than
contacting the framework directly. The results also show that
for more experienced students the difference becomes even
more obvious with the API being particularly more usable.

In future work it would be interesting to be able to use
actual coding with students in a similar level of experience.
This could lead to more accurate values since the code could
be evaluated with more accuracy in terms of what is an error
and what is not. Furthermore it would be interesting to try
to do a communications module with Opendavinci and try to
run the same experiment with it and evaluate if the result is
similar. This could lead to more robust results given that it is
not specific to ROS anymore. It would be interesting to try
to apply this type of data collection with several frameworks
and generalize the results to robotic frameworks in general.
Finally, a more random sample that includes professionals in
the area would lead to more robust results and could increase
the generalizability of the results.

VIII. ACKNOWLEDGMENT

We would like to thank Piergiuseppe Mallozzi for his help
as our supervisor. He guided the way so that this project was a
reality. We would also like to thank everyone at the department
for their input and their time. Finally our deepest gratitude to
the nineteen students who were willing to help us out so that
our study could be realized.

REFERENCES

[1] H. Kopetz, Internet of Things. Boston, MA: Springer US,
2011, pp. 307–323. [Online]. Available: http://dx.doi.org/10.1007/
978-1-4419-8237-7 13

[2] Y. Chen, Z. Du, and M. Garcı́a-Acosta, “Robot as a service in cloud
computing,” in 2010 Fifth IEEE International Symposium on Service
Oriented System Engineering, June 2010, pp. 151–158.

[3] R. Doriya, P. Chakraborty, and G. C. Nandi, “Robotic services in cloud
computing paradigm,” in 2012 International Symposium on Cloud and
Services Computing, Dec 2012, pp. 80–83.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4,
no. 2, pp. 14:1–14:42, May 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1516533.1516538

[5] B. H. Cheng, H. Giese, P. Inverardi, J. Magee, R. de Lemos,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. D. M.
Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns,
and J. Whittle, “08031 – software engineering for self-adaptive
systems: A research road map,” in Software Engineering for Self-
Adaptive Systems, ser. Dagstuhl Seminar Proceedings, B. H. C.
Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee,
Eds., no. 08031. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2008. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2008/1500

[6] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson,
M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, D. Weyns,
L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais,
S. Dustdar, G. Engels, K. Geihs, K. M. Göschka, A. Gorla, V. Grassi,
P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè,
C. Prehofer, W. Schäfer, R. Schlichting, D. B. Smith, J. P. Sousa,
L. Tahvildari, K. Wong, and J. Wuttke, Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–32. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35813-5 1

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[8] J. Kramer and M. Scheutz, “Development environments for autonomous
mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2,
pp. 101–132, 2007. [Online]. Available: http://dx.doi.org/10.1007/
s10514-006-9013-8

[9] B. K. Kim, M. Miyazaki, K. Ohba, S. Hirai, and K. Tanie, “Web services
based robot control platform for ubiquitous functions,” in Proceedings of
the 2005 IEEE International Conference on Robotics and Automation,
April 2005, pp. 691–696.

[10] I. A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon,
T. Estlin, R. Madison, J. Guineau, M. McHenry, I.-H. Shu, and
D. Apfelbaum, “Claraty: Challenges and steps toward reusable robotic
software,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, p. 5, 2006. [Online]. Available: http://dx.doi.org/10.5772/5766

[11] ISO, “Systems and software engineering – Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) – System and software
quality models,” International Organization for Standardization, Geneva,
Switzerland, ISO 25010:2011, 2011.

[12] S. Osentoski, G. Jay, C. Crick, B. Pitzer, C. DuHadway, and O. C.
Jenkins, “Robots as web services: Reproducible experimentation and
application development using rosjs,” in 2011 IEEE International Con-
ference on Robotics and Automation, May 2011, pp. 6078–6083.

[13] A. Koubaa, A Service-Oriented Architecture for Virtualizing Robots in
Robot-as-a-Service Clouds. Cham: Springer International Publishing,
2014, pp. 196–208. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-04891-8 17

[14] ——, “Ros as a service: Web services for robot operating system,”
Journal of Software Engineering for Robotics, vol. 6, no. 1, pp. 1–14,
Dec 2015.

[15] C. Berger, An Open Continuous Deployment Infrastructure for a Self-
driving Vehicle Ecosystem. Cham: Springer International Publishing,
2016, pp. 177–183. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-39225-7 14

[16] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[17] R. T. Vaughan, B. P. Gerkey, and A. Howard, “On device abstractions
for portable, reusable robot code,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003)
(Cat. No.03CH37453), vol. 3, Oct 2003, pp. 2421–2427 vol.3.

[18] A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” Trans. Comput. Educ., vol. 13, no. 4, pp. 19:1–19:40,
Nov. 2013. [Online]. Available: http://doi.acm.org/10.1145/2534973

[19] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability
meanings and interpretations in iso standards,” Software Quality
Journal, vol. 11, no. 4, pp. 325–338, 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1025869312943

[20] UCLA, “CHOOSING THE CORRECT STATISTICAL TEST IN
SAS, STATA, SPSS AND R,” http://stats.idre.ucla.edu/other/mult-pkg/
whatstat/, accessed: 2017-03-30.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

APPENDIX A
DATA COLLECTION

A. Data for the API users

Fig. 11. Shows the data for the students who used the API.

B. Data for the ROS users

Fig. 12. Shows the data for the students who used ROS.

C. Results from the data through R

Fig. 13. Shows the results of the data evaluated with the program R.

APPENDIX B
PSEUDOCODE CONVENTIONS [21]

• Indentation indicates block structure. For example, the body of the for loop that begins on line 1 consists of lines 2–8,
and the body of the while loop that begins on line 5 contains lines 6–7 but not line 8. Our indentation style applies to
if-else statements as well. Using indentation instead of conventional indicators of block structure, such as begin and end
statements, greatly reduces clutter while preserving, or even enhancing, clarity.

• The looping constructs while, for, and repeat-until and the if-else conditional construct have interpretations similar to
those in C, C++, Java, Python, and Pascal.4 In this book, the loop counter retains its value after exiting the loop, unlike
some situations that arise in C++, Java, and Pascal. Thus, immediately after a for loop, the loop counter’s value is the
value that first exceeded the for loop bound. We used this property in our correctness argument for insertion sort. The
for loop header in line 1 is for j = 2 to A.length, and so when this loop terminates, j = A.length + 1 (or, equivalently, j
= n + 1, since n = A.length). We use the keyword to when a for loop increments its loop counter in each iteration, and
we use the keyword downto when a for loop decrements its loop counter. When the loop counter changes by an amount
greater than 1, the amount of change follows the optional keyword by.

• The symbol “//” indicates that the remainder of the line is a comment.

• A multiple assignment of the form i = j = e assigns to both variables i and j the value of expression e; it should be treated
as equivalent to the assignment j = e followed by the assignment i = j .

• Variables (such as i , j, and key) are local to the given procedure. We shall not use global variables without explicit
indication.

• We access array elements by specifying the array name followed by the index in square brackets. For example, A[i]
indicates the i th element of the array A. The notation “..” is used to indicate a range of values within an array. Thus, A[
1 ... j] indicates the subarray of A consisting of the j elements A[1], A[2], ..., A[j].

• We typically organize compound data into objects, which are composed of attributes. We access a particular attribute
using the syntax found in many object-oriented programming languages: the object name, followed by a dot, followed by
the attribute name. For example, we treat an array as an object with the attribute length indicating how many elements it
contains. To specify the number of elements in an array A, we write A.length.

• We treat a variable representing an array or object as a pointer to the data representing the array or object. For all attributes
f of an object x, setting y = x causes y.f to equal x.f . Moreover, if we now set x.f = 3, then afterward not only does x.f
equal 3, but y.f equals 3 as well. In other words, x and y point to the same object after the assignment y = x.

• Our attribute notation can “cascade.” For example, suppose that the attribute f is itself a pointer to some type of object
that has an attribute g. Then the notation x.f.g is implicitly parenthesized as (x.f).g. In other words, if we had assigned y
= x.f , then x.f.g is the same as y.g.

• Sometimes, a pointer will refer to no object at all. In this case, we give it the special value NIL.

• We pass parameters to a procedure by value: the called procedure receives its own copy of the parameters, and if it
assigns a value to a parameter, the change is not seen by the calling procedure. When objects are passed, the pointer to
the data representing the object is copied, but the object’s attributes are not. For example, if x is a parameter of a called
procedure, the assignment x = y within the called procedure is not visible to the calling procedure. The assignment x.f
= 3, however, is visible. Similarly, arrays are passed by pointer, so that a pointer to the array is passed, rather than the
entire array, and changes to individual array elements are visible to the calling procedure.

• A return statement immediately transfers control back to the point of call in the calling procedure. Most return statements
also take a value to pass back to the caller. Our pseudocode differs from many programming languages in that we allow
multiple values to be returned in a single return statement.

• The boolean operators “and” and “or” are short circuiting. That is, when we evaluate the expression “x and y” we first
evaluate x. If x evaluates to FALSE, then the entire expression cannot evaluate to TRUE, and so we do not evaluate y. If,
on the other hand, x evaluates to TRUE, we must evaluate y to determine the value of the entire expression. Similarly, in

the expression “x or y” we evaluate the expression y only if x evaluates to FALSE. Short-circuiting operators allow us to
write boolean expressions such as “x != NIL and x.f = y” without worrying about what happens when we try to evaluate
x.f when x is NIL.

• The keyword error indicates that an error occurred because conditions were wrong for the procedure to have been called.
The calling procedure is responsible for handling the error, and so we do not specify what action to take.

Sample of insertion sort:

INSERTION-SORT(A)

1 for j = 2 to A. length
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1 . . j − 1].
4 i = j − 1
5 while i > 0 and A[i] > key
6 A[i+ 1] = A[i]
7 i = i− 1
8 A[i+ 1] = key

APPENDIX C
ROS

ROS FRAMEWORK PSEUDOCODE SCENARIOS:
The following are scenarios to be implemented in pseudocode. Read the ROS pseudocode rules in order to know how to

implement ROS functionality. Also refer to the pseudocode conventions when in doubt on how to write according to our
standards.

1) Get an image from the camera and visualize it on the screen.
2) Have the robot make a square by making turns to the left and forward movements.
3) Have the robot make a rectangle by making turns to the right and forward movements.
4) Have the robot move in the shape of an 8 (moves can be done either by turns left or right or movements forward and

back).
ROS PSEUDOCODE RULES:

1) To import the library (get the object “ros”): import ros
2) Make an image subscriber object: subscriber = ros.Subscribe(“IMAGE-PATH”, IMAGE-CONTAINER, CALL-

BACK).
• Returns a subscriber object.
• Image-PATH is a ROS topic. For the purpose of this test it can remain unchanged.
• Image-Container is datatype of the image to be received. In this case the format is Image.
• Callback is a function that you have to define which gets called each time you subscribe to an image. Whatever is

in the callback function will be executed at subscription time. The callback has as a parameter the variable name for
the image.

3) Image Object: The image object is composed of a height, width and data (array containing the image). To be able to use
the image object you need to import its library as such: from sensor msgs.msg import Image. To access these variables
you called them from the image instance. Ex: imageVariable.height.

4) To show an image on the screen use the function showImg (height, width, array). The function requires the height,
width and the image array.

5) Make a movement command object (Returns a movement command object): example: cmd = ros.Publish(“MOVEMENT-
CMD-PATH”, MOVEMENT-CONTAINER, QUEUE-SIZE)
• Returns a steering command object which can later be used to call the function publish. Example:

cmd.publish(TWIST)
• Movement-Command-PATH is a ROS topic, in this case taking commands for movement. For the purpose of this test

it can remain unchanged.
• Movement-Container is a variable that defines what type of message will be sent. For the sake of this test we will

call it TWIST.
• Queue-Size takes a size of the messaging queue. For example, queue size=5

6) Making an instance of type TWIST: object = new Twist() Twist objects have two variables of type Vector3. They can
be accessed as object.linear or object.angular. Take into account the variable object is from the example of making a
TWIST instance.

7) Vector3 datatype: The Vector3 object is represented by three points on a 3d space. This object has three variables: x, y, z.
They represent a vector in free space. Access the variables by using v3var.x or v3var.y or v3var.z. NOTE: when turning
positive values are right and negative left. Turning values are in degrees. When moving positive values are forward and
negative values reverse. Zero in both moving and turning mean “no action”.

Tip: Be careful which value you change (x,y,z) when moving and which value to change when turning. You can also use the
“chain” convention by doing object.linear.x.

APPENDIX D
API

API PSEUDOCODE SCENARIOS:
The following are scenarios to be implemented in pseudocode. Read the API pseudocode rules in order to know how to

implement API functionality. Also refer to the pseudocode conventions when in doubt on how to write according to our
standards.

1) Get an image from the camera and visualize it on the screen.
2) Have the robot make a square by making turns to the left and forward movements.
3) Have the robot make a rectangle by making turns to the right and forward movements.
4) Have the robot move in the shape of an 8 (moves can be done either by turns left or right or movements forward and

back).
API PSEUDOCODE RULES:

1) To import a http library for get/post methods: import http
2) To import json handler: import json
3) To get the values from JSON object just use the common JSON notation. Example:

myObj = name:”John”, age:30, car:null
x = myObj.name

4) To get an image (Returns a json message with the format: width: “VALUE”, height: “VALUE”, image: “STRING-
ARRAY”): image = http.get(“IMAGE-URL”).
• Returns a JSON object with the format above.
• Image-URL is the URL of the API containing camera images. For the sake of this test it can remain with that name.

5) To show an image on the screen use the function showImg (height, width, array). The function requires the height,
width and the image array.

6) To set steering commands: result = http.post(“MOVEMENT-URL”, DATA).
• The form of the DATA should be angle:”VALUE”, speed:”VALUE”.
• Return the string “success” or “error”.
• “Movement-URL” is the URL of the API that receives all the movement commands. For the sake of this test it can

remain with that name.
• Data is a variable containing movement values, the form of this data is listed above.

NOTE: when turning positive values are right and negative left. Turning values are in degrees. When moving positive
values are forward and negative values reverse. Zero in both moving and turning mean “no action”.

APPENDIX E
API AND ROS SCENARIO

API
1 importhttp
2 importjson
3 URL = “http : //localhost : 8080/Camera′′

4 imageData = http.get(URL)
5 image[] = imageData.image
6 imageWidth = imageData.width
7 imageHeight = imageData.height
8 if (obstacle.searchForObstacle(cv.IplImage(image[],width, height) == True)
9 angular = “angle : 90, speed : 0′′

10 linear = “angle : 0, speed : 10′′

11 result = http.post(URL, angular)
12 result2 = http.post(URL, linear)
13 if (result == “success′′&&result2 == “success′′)
14 print(“Themessagewassuccessfullysent′′)
15 displayImage(imageWidth, imageHeight, image[])

ROS
1 importros
2 importTwist
3 IMAGECB(image)
4 image[] = imageData.image
5 imageWidth = imageData.width
6 imageHeight = imageData.height
7 cmd = ros.Publish(“cmd vel mux/input/nav′′, Twist, queue size = 10)
8 movement = Twist()
9 turn = Twist()

10 if(obstacle.searchForObstacle(cv.IplImage(image[], width, height) == True))
11 try
12 movement.angular.x = 90
13 cmd.publish(movement)
14 movement.linear.x = 10
15 cmd.publish(movement)
16 catch(MessageExceptione)
17 print(“Error′′)
18 ros.init node(‘robot′)
19 ros.Subscribe(“camera/rgb/image raw′′, Image, imageCb)

APPENDIX F
SESSION REVIEW

Time:
Task 1: Task 2: Task 3: Task 4:
Scenario:

Questions: Please answer the following questions when you are done with the tasks and the scenario.
1) Please write down which exercise sheet you received:
2) What did you find challenging with your task?

3) Please circle your level of expertise in programming:

Beginner Some Exp Intermediate Experienced Expert

4) Please circle your level of expertise with robots or robotic frameworks:

Beginner Some Exp Intermediate Experienced Expert

5) How challenging was it to learn how to use the tools to complete the tasks?

Very easy Easy Average Hard Very hard

6) How challenging to understand were function and variable names in comparison to what they were meant to do?

Very easy Easy Average Hard Very hard

7) How challenging did you feel it was to make a coding mistake with the provided tools?

Very easy Easy Average Hard Very hard

8) Overall how challenging did you find the experience with the tools provided?

Very easy Easy Average Hard Very hard

Additional Notes:

