
Thesis for The Degree of Licentiate of Engineering

Addressing Traceability Challenges in the
Development of Embedded Systems

Salome Maro

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Göteborg University
Göteborg, Sweden, 2017

Addressing Traceability Challenges in the Development of Embed-
ded Systems

Salome Maro

Copyright ©2017 Salome Maro
except where otherwise stated.
All rights reserved.

Technical Report No 164L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Göteborg University
Göteborg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Göteborg, Sweden 2017.

ii

To my family

iv

Abstract

Context: Currently, development efforts in embedded systems development
lead to a large number of interconnected artifacts. Traceability enables under-
standing and managing these artifacts as they evolve. However, establishing
traceability is not a trivial task, it requires the development organization to
plan how traceability will fit into its processes and provide tools to support
traceability establishment. In practice, guidelines for how traceability should
be established are lacking. Therefore, companies struggle with establishing
traceability and making the most of traceability once it is established.

Objective: The overall objective of this research is to improve traceabil-
ity processes and tools for embedded systems development. In this thesis, we
started with first understanding the domain and practical traceability chal-
lenges and also investigated how traceability tools can be improved.

Method: Since establishing traceability is a practical problem, our research
is conducted in close collaboration with industry partners. We conducted
qualitative empirical studies to understand which traceability challenges exist
in reality and designed solutions for some of these challenges. Concretely, we
used action research, case study and design science methods for the different
studies.

Results: Our studies show that establishing traceability in practice still
has several challenges, the most prominent ones being: the manual work of
establishing traceability is high; the engineers responsible for creating the links
perceive it as an overhead; lack of tools to enable using traceability; lack of
methods and tools to measure its quality; no universal standards for traceabil-
ity to be shared and exchanged and it is difficult to measure the return on
investment of establishing traceability.

To reduce the amount of manual work needed to maintain traceability links,
we designed guidelines that can be followed by tool developers. We also show
the feasibility of a configurable and extendable traceability management tool
through a prototype implementation.

Contributions: As part of this thesis, we have elicited persistent trace-
ability challenges in development of embedded systems development. This list
of challenges can also be used by other researchers who are interested in the
topic of traceability for embedded systems development. As a first initiative
towards solving these challenges, we propose important factors and guidelines
for traceability tool developers and organizations that need to acquire trace-
ability tools. Lastly, we have demonstrated the feasibility of these factors and
guidelines through a prototype implementation. This implementation is open
source and available for industry to use in their development and for other
researchers to use for studies and extend the tool.

Keywords Traceability, Software Traceability, Embedded Systems

Acknowledgment

I would like to thank my supervisors, Jan-Philipp Steghöfer and Miroslaw Staron.
To Jan-Philipp, thanks for the ideas, guidance, discussions and extensive
feedback (including code reviews). To Miroslaw, thanks for providing great
support, feedback and steering me to the right research directions.

I would also like to thank my previous supervisor Matthias Tichy for the
support provided during the time he acted as my supervisor.

Lots of thanks go to Anthony Anjorin, for the development effort and great
ideas on Capra (the tool). To Rebekka Wohlrab, thanks for being such a hard
worker and a good colleague to work with.

To my office mate, Grischa Liebel, thanks for the good discussions and
answering countless questions from me.

I would also like to thank my fellow PhD students, faculty and administration
of the software engineering division for being great collaborators and providing
help whenever needed. Special thanks go to Rodi and Truong, the good and
helpful neighbors.

Behind every successful person, there is a supporting family and a group
of great friends. I would like to thank my parents (Honest and Radegunda
Maro) and my sisters (Judy, Rose and Vicky), for their continuous support and
encouragement. To my friends, especially Jacky(Boko) and Asna, thanks for
the love and encouragement. Most important, to Seif Hamad, my love, thanks
for your support, encouragement and patience.

Majority of the work reported in this thesis was conducted as part of the
AMALTHEA4Public project, funded by the ITEA EUREKA Cluster program.

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] S. Maro, J.-P. Steghöfer, A. Anjorin, M. Tichy, L. Gelin “On Integrating
Graphical and Textual Editors for a UML Profile Based Domain Specific
Language: An Industrial Experience”
13th International Conference on Software Language Engineering(SLE
2015), Pittsburg, USA, October 23-27, 2015.

[B] S. Maro, M. Staron, J.-P. Steghöfer “Persisting Software Traceability
Challenges in the Automotive Domain”
In submission to Journal of Systems and Software.

[C] S. Maro, A. Anjorin, R. Wohlrab, J.-P. Steghöfer “Traceability Mainte-
nance: Factors and Guidelines”
31st International Conference on Automated Software Engineering (ASE
2016), Singapore, Singapore, September 3-7, 2016.

[D] S. Maro, J.-P. Steghöfer “Capra: A Configurable and Extendable Trace-
ability Management Tool”
24th International Conference on Requirements Engineering (RE2016),
Beijing, China, September 12 - 16, 2016.

ix

x

Other publications

The following publications were published during my PhD studies. However,
they are not appended to this thesis, due to contents overlapping that of
appended publications or contents not related to the thesis.

[a] R. Wohlrab, J.-P. Steghöfer, E. Knauss, S. Maro, A. Anjorin “Collabora-
tive Traceability Management: Challenges and Opportunities”
24th International Conference on Requirements Engineering (RE 2016),
Beijing, China, September 12 - 16, 2016.

[b] M. Trei, S. Maro, J.-P. Steghöfer, T. Peikenkamp “An ISO 26262 Com-
pliant Design Flow and Tool for Automotive Multicore Systems”
17th International Conference on Product Focused Software Process
Improvement (PROFES, 2016), Trondheim, Norway, November 22-24,
2016.

[c] S. Maro, M. Staron, J.-P. Steghöfer “Challenges of Establishing Trace-
ability in the Automotive Domain”
9th International Conference on Software Quality (SWQD 2017), Vienna,
Austria, January 17-20, 2017.

Research Contribution

The work reported in this thesis was done in collaboration with other people.
For paper A and B, I took responsibilities for the study design, implementation
and analysis of the results. I also wrote a majority of the text in the papers
and the co-authors acted as internal reviewers through giving feedback.

In paper C, I was responsible for collecting data on the tools and interviewing
tool experts. I also wrote a majority of the sections referring to the tools.

Paper D, reports on a tool that was developed with me in collaboration with
other developers. I am currently the project leader for the tool development.

xii

Contents

Abstract v

Acknowledgment vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Traceability Definition . 2

1.1.1 Example . 5
1.2 Traceability Activities . 6
1.3 Traceability Tools . 9
1.4 Traceability Challenges and Research Motivation 10
1.5 Research Scope . 11
1.6 Research Methodology . 13
1.7 Threats to Validity . 14
1.8 Contributions . 16

1.8.1 Paper A: On Integrating Graphical and Textual Editors
for UML Profile Based Domain Specific Language: An
Industrial Experience 16

1.8.2 Paper B: Persisting Software Traceability Challenges in
the Automotive Domain 18

1.8.3 Paper C: Traceability Maintenance: Factors and Guidelines 19
1.8.4 Paper D: Capra: A Configurable and Extendable Trace-

ability Management Tool 21
1.9 Conclusions . 22
1.10 Future Work . 23

2 Paper A 25
2.1 Introduction . 26
2.2 Industrial Case . 27
2.3 Challenges . 29

2.3.1 Storage and Versioning of Models in Repositories 29
2.3.2 Synchronization of Models 29
2.3.3 Graphical Layout of the Model and Pretty Printing . . 29
2.3.4 Model References . 30
2.3.5 Minimal DSL . 30

xiii

xiv CONTENTS

2.3.6 Names in Model Elements 30

2.3.7 Inconsistent Models . 31

2.4 Approach . 31

2.4.1 Obtaining the Text Editor 31

2.4.2 Switching between Graphical and Textual Views 34

2.5 Evaluation . 38

2.6 Discussion . 40

2.6.1 Addressed Challenges 40

2.6.2 Proposed Solutions for Non-Addressed Challenges . . . 41

2.7 Related Work . 42

2.7.1 Graphical and Textual Editing for UML 42

2.7.2 Bridging UML Profiles and Ecore DSLs 43

2.8 Conclusion and Future Work 45

3 Paper B 47

3.1 Introduction . 48

3.2 Software Development in the Automotive Domain 49

3.3 Research Method . 50

3.3.1 Tertiary literature review 52

3.3.1.1 Definition of Research Questions 52

3.3.1.2 Conducting the Search 52

3.3.1.3 Screening of Papers 52

3.3.1.4 Data Extraction and Classification 53

3.3.2 Case Study Design . 53

3.3.2.1 Case and Subject Selection 54

3.3.2.2 Data collection procedure 54

3.3.2.3 Analysis procedure 55

3.4 Results . 55

3.4.1 Preparation and Planning 55

3.4.1.1 Knowledge of Traceability 55

3.4.2 Creation and Maintenance 59

3.4.2.1 Tool Support 59

3.4.2.2 Human Factors 62

3.4.2.3 Organization and Processes 63

3.4.3 Outcome . 64

3.4.3.1 Uses of Traceability 64

3.4.3.2 Measurement 66

3.4.4 Exchange of Traceability Information 68

3.4.4.1 Exchange between Teams 68

3.4.4.2 Exchange between Companies 69

3.5 Discussion . 70

3.6 Threats to Validity . 74

3.6.1 External Validity . 75

3.6.2 Construct Validity . 75

3.6.3 Reliability . 75

3.7 Related Work . 75

3.8 Conclusion . 76

CONTENTS xv

4 Paper C 79
4.1 Introduction and Motivation . 80
4.2 Foundations . 81
4.3 Influential Factors and

corresponding Guidelines . 84
4.3.1 Factor 1: Versioning . 85
4.3.2 Factor 2: Tool Boundaries 86
4.3.3 Factor 3: Configurable Semantics 89
4.3.4 Factor 4: Consistency Specification 91

4.4 Strategies in existing TM tools 95
4.4.1 Rational DOORS . 95
4.4.2 SystemWeaver . 96
4.4.3 YAKINDU Traceability 97

4.5 Related Work . 98
4.6 Threats to Validity . 99
4.7 Conclusion and Future Work 99

5 Paper D 101
5.1 Introduction . 102
5.2 Architectural Design . 102

5.2.1 Traceability Link Types 103
5.2.2 Supported Artifact Types 103
5.2.3 Persistence Extension Point 104

5.3 Functionalities of Capra — The Default 104
5.4 Conclusions and Future Work 105

Bibliography 107

xvi CONTENTS

Chapter 1

Introduction

Embedded systems have been around for a long time, with the first mass
release dated back to 1961: the Autonetics D-17 guidance computer developed
at MIT [1]. But with the decrease in the price and size of hardware, and
increased performance, embedded systems are now present in more and more
domains. Compared to the Autonetics D-17 which only had one programmable
computer, today, a modern car contains contains software distributed over
100 Electronic Control Units (ECUs).The adoption and growth of embedded
systems is not only observed in the automotive domain but also in other
domains such as health-care and telecommunications.

Embedded systems are becoming increasingly complex and used for safety-
critical functions such as adaptive cruise control systems in the automotive
domain. With this increase in complexity of the systems, during development,
a large amount of artifacts such as requirements, models, code and tests are
being produced. For instance, the software in a modern car consist of around
100 million lines of code, while the requirements were already up to 20,000
pages in 2004 [2]. This complexity can also be observed in other domains like
the telecommunication domain where the software in the telephone switches
contains around 200 million lines of code [3] while their requirements were
already over 10,000 in 2008 [4].

Managing such large amounts of artifacts is difficult for developers and other
stakeholders involved in the system development. This is because these artifacts
do not exist in pure isolation but are related to each other and consistency
needs to be ensured during their evolution. Traceability which is the ability to
relate different development artifacts is therefore very important as it can be
used to reason about the relationships between the different artifacts. Some of
the benefits of traceability are: increasing program comprehension, facilitating
impact analysis, facilitating tracking of project progress and supporting change
propagation [5–8]. However for these benefits to be realized, a development
organization needs to invest in establishing traceability. This means putting
in place processes on how traceability links will be created, maintained and
used and providing tools to support these activities. Establishing traceability
in practice still remains a challenge as in many development organizations,
traceability practices are poor, mainly due to lack of well-defined processes and
tool support for establishing traceability links [9, 10]. The overall goal of this

1

2 CHAPTER 1. INTRODUCTION

research is therefore to improve traceability processes and tools for embedded
systems development. As first steps towards achieving this overall goal, in this
licentiate thesis we will address the following goals:

Goal 1: Investigate current traceability challenges in the development of
embedded systems

Goal 2: Propose conceptual tool solutions that can solve the identified
challenges

Goal 3: Develop prototypes that demonstrate how traceability solutions
can be implemented

In order to improve the practices, there is a need to first understand the
current state of practice within the embedded systems domain and understand
the challenges that need to be dealt with to improve the current status. This
is what Goal 1 will address. With these challenges as a starting point, in
Goal 2, we investigate and propose solutions for some of these challenges.
While proposing conceptual solutions is a valuable contribution, to be able to
transfer these solutions to industry, there is a need to test that the solutions
actually work in practice. This will be addressed in Goal 3, where we develop a
traceability management tool based on requirements from industry practitioners
developing embedded systems. The goal of improving traceability processes
will be addressed in our upcoming research.

The rest of this Chapter is structured as follows: First a background on
the topic of traceability is given by Section 1.1, 1.2 and 1.3 where we discuss
definitions of traceability, traceability activities and tools for traceability. This
is followed by a discussion on existing traceability challenges and motivation
for our research discussed in Section 1.4. The scope and methodology for
the research and how the threats to validity were mitigated are reported in
Section 1.5, 1.6, and 1.7 respectively. The contribution of the thesis are given
in Section 1.8. Section 1.9 gives a discussion on how the research questions
were answered and Section 1.10 outlines our future work.

1.1 Traceability Definition

In literature, there are a number of definitions of traceability. This section gives
an overview of the most cited traceability definitions, analyses the definitions
and gives our definition of traceability that is used in this thesis. This analysis
is summarized in Table 1.1.

Gotel et al. [11] give a general definition of traceability as “the potential
for traces (a specified triplet of elements comprising: a source artifact, a target
artifact and a trace link associating the two artifacts) to be established (created
and maintained) and used”. The authors define a trace artifact as a “traceable
unit of data”. This definition explicitly mentions the use of trace links implying
that links should only be established if they will be used. The shortcoming of
this definition is that it is recursive as traceability is defined using the term
traces and trace artifact is defined using the word traceable.

In line with the Gotel et al. [11] definition, the Center of Excellence for
Software and System Traceability (COEST) [12] defines software traceability
as “the ability to interrelate any uniquely identifiable software engineering
artifact to any other, maintain required links over time, and use the resulting

1.1. TRACEABILITY DEFINITION 3

network to answer questions of both the software product and its development
process”. This definition states that the artifacts need to be unique which is
a characteristic of a traceable artifact [13] and also that the traces should be
maintained over time and used in the development process. However from the
definition, it is not clear what the authors mean by “maintain required links”.
This may imply that some links that are not required may be created but not
maintained. Also the “over time” is very generic and may be interpreted in
several ways, e.g., to mean forever or for a certain period of time.

Another definition is by Spanoudakis and Zisman [6] who define traceability
as “the ability to relate artifacts created during the development of a software
system to describe the system from different perspectives and levels of abstrac-
tion with each other, the stakeholders that have contributed to the creation of
the artifacts, and the rationale that explains the form of the artifacts”. Like
the previous definition, this one also stresses the use of traceability links and
even which these uses are; for instance being able to explain the rationale
of the artifacts. However, making the uses explicit in the definition gives an
impression that these are the only uses of traceability while in reality there are
many more, for instance facilitating tracking of project progress and reuse of
artifacts [5].

Older definitions are given in the IEEE standard glossary of software
engineering terminology [14] which gives two definitions of traceability:

[a] “The degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another;
for example, the degree to which the requirements and design of a given
software component match”. This definition does not mention anything
suggesting that these relationships must be useful. Additionally, even
though the example given may give an idea of what “product” means in
this case, the word “product” may be interpreted as a complete software
or system implying a certain level of granularity for the traced artifacts.

[b] “The degree to which each element in a software development product
establishes its reason for existing; for example, the degree to which each
element in a bubble chart references the requirement that it satisfies”. Like
the first definition, this one also does not mention that the relationships
should be useful. On the other hand, this definition uses the term
“element” which could refer to a more fine grained granularity compared
to the term “product” in the previous definition.

There are also definitions which are explicitly from a requirements perspec-
tive. Gotel & Finkelstein [15] define requirements traceability as “the ability
to follow the life of a requirement in both forwards and backwards direction
(i.e., from its origins through its development and specification, to its subse-
quent deployment and use, and through all periods of on-going refinement and
iteration in any of these phases).” This is the only definition that discusses
refinement and iterations of artifacts. This implies not only being able to
“follow” a requirement to other artifacts but also being able to follow and track
the different versions. However this definition is only focused on requirements.
It does not explicitly mention the need to connect intermediate artifacts that

4 CHAPTER 1. INTRODUCTION

Table 1.1: Analysis of Traceability Definitions

Source Trace What? To what? Trace when? Why?

[11] Development
artifact

Development
artifact

– To be used

[12] uniquely
identifiable
software
engineering
artifact

uniquely
identifiable
software
engineering
artifact

over time use the resulting network
to answer questions of
both the software prod-
uct and its development
process

[6] Development
artifact

Development
artifact

to describe the system,
the stakeholders and the
rationale of artifacts

[14] product of
software
development
process

product of
software
development
process

– –

[14] element in a
software
development
process

element in a
software
development
process

– –

[15] Requirements development
artifacts

Development life
cycle including
use in the field

–

[16] Requirements development
artifacts

Development life
cycle

–

may not be related to requirements. Also the definition only informs about
being able to follow the life of a requirement but does not mention anything
about the use of traceability. A similar definition that is requirements-oriented
is that by Spanoudakis [16] which defines requirements traceability as the
“ability to relate requirements specifications with other artifacts created in the
development life cycle of a software system”

Analyzing all these definitions, we can deduce that there are three aspects
that are important to be able to define traceability. These are: artifacts
involved, which point in the development and the purpose of the links. We can
reduce this into what, when and why questions (Table 1.1). The question of
how traceability links are established is orthogonal to all of these and thus not
included in this classification.

Based on this analysis, we deduce a definition that will be used throughout
the thesis. Since the scope of our research is not only software development but
system development, we need to also consider other artifacts created during
system development that are not software related, for example hardware models.
Therefore we define system traceability as follows:

System Traceability. The ability to relate uniquely identifiable system en-
gineering artifacts created and evolved during the development of a system,
maintain these relationships throughout the development life cycle and use them
to facilitate system development activities.

System development artifacts in this case include requirements, design

1.1. TRACEABILITY DEFINITION 5

Figure 1.1: A simplified example of artifacts in a lane keeping system and
traceability links involved.

models, behavior models, hardware models, code, test cases, test results,
stakeholders and all other artifacts that are related to the system. We stress
inclusiveness of development artifacts because in many cases there have been
confusion on the scope of traceability where most practitioners seem to think
that it is only limited to requirements artifacts [17]. We also stress the usefulness
of the links because it is possible to create links to arbitrary artifacts but this
is not only a waste of time when the links have no purpose, but also creates a
lot of noise and may make the actual useful links difficult to find and use. This
definition is similar to the one in [12], but substitutes software with system
to include other artifacts such as hardware models. Substitution of software
with system has also been suggested by the authors in [12] for practitioners or
researchers interested in system traceability rather than software traceability.
Our definition also substitutes “over time” with development life cycle to make
the when explicit and includes the word “evolved” to mean that artifacts can
have different versions and these versions should be traceable.

1.1.1 Example

Let us take an example of a lane keeping system from the automotive domain.
This is a system that is used to detect lanes on the road and help the driver
keep the car within the lane by sending warnings when deviation occurs and
applying a small force to steer the car back to the lane. During the development
of such a system, the following artifacts may be produced:

• A high level description of the lane keeping system as a whole and which
other systems it interacts with, e.g., the steering wheel. The results of
this can be stored as textual requirements (Figure 1.1 top left) as well as
a system model (Figure 1.1 top right). A system model is an abstract
description of system components and how they are connected to each

6 CHAPTER 1. INTRODUCTION

other.

• The system model is then broken down into discipline-specific subsystems
that can be handled by the different domains, for instance mechanical,
electrical, electronic and software.

From a software perspective further artifacts produced are:

• Software requirements, which can be in form of free text (Figure 1.1 mid
left) or formal models such as use case models.

• Design models such structural models (models that describe the software
components and their connections) (Figure 1.1 mid right) and behavior
models (models that describe the control flow of the software) such as
state charts.

• Implementation in form of code (Figure 1.1 bottom left).

• Tests such as unit tests (Figure 1.1 bottom right) and integration tests.

Traceability in such a scenario will be the ability to relate a system requirement
to its component realization in the system model, the software requirements it
affects, its corresponding software components in the software model, the code
that realizes this requirement and the tests validating the requirement. It may
also include the ability to relate artifacts like change requests, task tickets and
bug reports to the specific development artifact that concerns them, depending
on if this information is later useful.

Figure 1.1 shows a simplified example of the development artifacts produced
and the lines between the artifacts represent the traceability links that can be
established between them. Note the arrows that are from the same element
type to the same element type. These indicate that traceability links can also
be between elements of the same type, for instance a relationship between a
requirement and a requirement or a model element and a model element.

1.2 Traceability Activities

Several activities are involved in establishing traceability in practice. The
development organization needs to plan which links will be created, how they
will be created, how they will be maintained, how they will be used and how
they will be checked for quality. All these activities also need to fit into the
existing development process of the company, be it agile or plan-driven. For
these activities to be efficiently conducted, it is not only important for the
company to invest in defining the traceability process, but also make sure that
tools to support these activities are available. This section gives an overview
of traceability activities and how they depend on each other. A discussion of
the traceability tools is given in Section 1.3.

To facilitate easy understanding of the activities, we derive a traceability
model depicted in Figure 1.2. This model is inspired by a generic traceability
process model by Gotel et al. [11] which has further been used in several
traceability research projects to describe traceability activities. Our model
contains the four activities from the model in [11] which are preparation &

1.2. TRACEABILITY ACTIVITIES 7

Figure 1.2: A traceability model showing the different categories of traceablity
activities.

planning, creating, maintaining, and using traceability and two additional
activities discovered during our research which are measuring and exchanging
of traceability. This model has also been used as a basis for the study reported
in Chapter 3.

The first activity in the model is preparation and planning for traceabil-
ity. This activity includes all tasks involved in preparing and planning for
a traceability strategy. These tasks include, but are not limited to, eliciting
the needs of the development organization, searching for fitting solutions, ac-
quiring tools, documenting and disseminating the traceability strategy. For
a development organization to be able to succeed with traceability a proper
strategy needs to be derived and followed. Traceability does not just happen,
it has to be planned for and resources need to be allocated for the traceability
activities. Planning a traceability strategy involves identifying what are the
needs in the development organization and allocating resources including tools
and man-hours. It is also important that the traceability strategy is assessed
periodically and improved according to the needs of the organization [11]. The
main input for the preparation and planning activity is the purpose for which
traceability is established. This is inline with our definition that there should
always be an intended use for the traceability links created. Reported examples
of traceability purposes are: for certification purposes (e.g., in safety-critical
industries) [18], for impact analysis [19], for change management [5], etc.

The second activity in the model is the creation of traceability links. Trace-
ability links can be implicit or explicit. Implicit traceability refers to traceability
that is established based on conventions. For instance a traceability link exists
if a requirement ID is similar to an ID of a model element. While implicit
traceability may seem easy to establish, it is hard to enforce conventions, as
conventions can be violated leading to either no links at all or existence of a
partial set of potentially erroneous traceability links [20]. Explicit traceability
means that the links between the different artifacts are created as separate
artifacts. For instance a traceability link may be represented as an element
in a model containing information of artifacts that it connects. Explicit links
are advantageous because compared to implicit links they are can be easily
checked for quality with tools. Explicit links can also be provided as input to
visualization tools for analysis purposes. Where implicit links exist, automation
techniques such as information retrieval techniques can be used to make the
links explicit. The quality of the resulting explicit links will depend on the

8 CHAPTER 1. INTRODUCTION

performance of the algorithms used and also on the quality of the implicit links
(i.e., the conventions of creating implicit links and if they were followed) [21].

The third activity is maintaining the traceability links which means making
sure that the links are up-to-date. As artifacts connected by traceability links
evolve, the traceability links also need to be updated otherwise they quickly
become outdated and therefore useless [22]. Maintenance of traceability links
without tool support is difficult because artifacts constantly evolve. While
Version Control Systems (VCS) can check for changes in the artifacts, trace-
ability tools need to use these changes to also check if they affect the existing
traceability links. Current traceability tools for instance IBM DOORS1 provide
a notification framework that allow users to be notified of changes to artifacts
that are connected by traceability links. This makes it easier for the users to
know which links they have to update.

The fourth activity in the model is using traceability. As mentioned in
our definition of traceability, the links created need to be useful during the
development of the system. Just having the traceability links in place is not
enough. For the links to be useful, tool support is needed for navigation and
visualization purposes. For instance if a product manager wants to see how
many requirements already have tests, it will be very difficult to navigate
through all requirements one by one to their tests. The traceability tool should
be able to provide this report based on a few clicks. The traceability strategy
therefore should also elicit how these links will be used and provide the required
tool support.

The fifth activity in the model is measuring the quality of traceability links.
Since traceability links are used to facilitate other development activities like
change impact analysis, it is important that the maintained set of links is both
correct and complete. To ensure this, there needs to be methods in place that
can enable the development organization to measure the quality of their links.
There are two relevant metrics for traceability, completeness and correctness.
The definition of completeness varies and is defined differently in different
development organizations. For instance a completeness definition could be
that every test has a link to a requirement. This can then be measured by
checking if indeed all tests are linked to requirements. Correctness on the
hand is harder to check for, as it relies on domain-specific semantics and also
human interpretation of the artifacts. Semantics can be formalized and checked
by tools through definition of domain-specific traceability metamodels. For
instance in the case of linking tests to requirements, a tool can check if the link
actually connects a test and a requirement. What is difficult to check is if the
requirement is actually related to the test it is connected to.

The sixth activity is exchanging traceability information. This refers to
situations where different organizations or different departments in the or-
ganization need to exchange traceability information. Due to the numerous
tools used in different departments and different companies, there is a need
for the development organizations to plan for how traceability information will
be shared and exchanged. This may mean agreeing to use certain tools that
are compatible with each other. Other issues that need to be considered are
technical and legal issues on whether the different organizations have access to
artifacts that are traced to.

1http://www-03.ibm.com/software/products/en/ratidoor

1.3. TRACEABILITY TOOLS 9

1.3 Traceability Tools

As discussed in Section 1.2, tooling is an important aspect as it enables the
different traceability activities to be carried out. There are several tools that
are used for supporting traceability activities and according to [17] they can be
classified into three main categories: dedicated traceability management tools,
life cycle tools and general purpose tools. Based on our own research, we add
a fourth category which is standalone traceability tools. This fourth category
is also supported by [23] and [9]. The four categories are as follows:

Dedicated Requirements Management Tools – These are tools whose
main purpose is requirement management. Most of these tools provide
traceability between requirements. Even though the main functionality of
the tools are requirements management, they may have functionality to
facilitate traceability from requirements to other artifacts such as design
models, task tickets and code. An example of such a tool is IBM Rational
DOORS2, which is a requirements management tool with capabilities to
connect to other artifacts providers through OSLC [24].

Life Cycle Tools – This category of tools is also known as Application Life
Cycle Management (ALM) tools. They provide functionality for creation
and management of the different development artifacts in the development
life cycle. Life cycle tools support requirements management, design,
implementation, testing and other development activities. All artifacts
are stored in one repository and traceability between the different artifacts
is provided. The advantages of life cycle tools is that it is comparably
easier to establish traceability between different artifacts. However in
many cases companies have a variety of tools in place due to fear of being
dependent on one vendor, unwillingness to use a certain development
methodology (e.g., model driven development) or the fact that developers
prefer tools that are task focused over generic ones [17, 25, 26]. Examples
of life cycle tools are Systemweaver3 and IBM ALM4.

General Purpose Tools – These are tools that are designed to be used for
many purposes. These tools can also be used for traceability. For instance
one of the most common general purpose tools used for traceability is
Microsoft Excel. It is used to record the links between the different
artifacts. The advantages of general purpose tools is that they are widely
available and provide a cheaper traceability option for organizations.
However, the disadvantage with such tools is that the tools do not scale
for traceability maintenance. The tools are not aware of the actual
artifacts and traceability is managed separately from the artifacts. The
chances that the links and the actual artifacts become inconsistent is
high.

Standalone Traceability Management Tools – These are tools that are
built for the purpose of managing traceability only. Such tools need
to be able to integrate and access artifacts from the development tool

2http://www-03.ibm.com/software/products/en/ratidoor
3http://www.systemweaver.se
4https://www-01.ibm.com/software/rational/alm/

10 CHAPTER 1. INTRODUCTION

chain to allow creation of traceability links. They also need to provide
notification mechanisms when artifacts in the different tools change in
order to facilitate maintenance of the links. These tools use tool inte-
gration technologies such as Open Services for Life Cycle Collaborations
(OSLC) [24] or Eclipse Modeling Framework (EMF) [27] to integrate the
different tools. The advantage of such tools is that they are configurable
to include various artifacts and therefore do not force a company to
change their current tools. The disadvantage is that the customization
requires effort and may be costly especially in a company where tools
are added or changed frequently. Examples of such tools are Yakindu
Traceability5 and Capra6.

1.4 Traceability Challenges and Research Mo-
tivation

In this section we give an overview of traceability challenges that currently
exist and describe the motivation for this research.

In 1994, Gotel and Finkelstein [28] reported an empirical study with over
100 practitioners that identified challenges of traceability in industry. 18 years
later, Gotel and a group of traceability researchers published an updated version
of challenges known as the grand challenges of traceability with a vision on
how these challenges can be tackled by researchers [29]. The existence of these
challenges serve as a motivation for our research. Since our overall objective is
to improve traceability processes and tools, we aim to understand how these
challenges manifest in practice and find solutions to address these challenges.
Therefore, in this section, we give a summary of these grand challenges of
traceability. A more detailed description can be found in Gotel et al. [29].
There are eight challenges described as follows:

Purposed: This challenge entails that traceability should be created for a
reason (meaning that traceability is linked to the needs of the various
stakeholders inside and outside the company).

Cost-effective: Currently there is a lack of methods for measuring the return
of investment on establishing traceability. This means that for develop-
ment organizations, it is hard to know which traceability practices and
tools are the most economical and in which situations they deliver the
most.

Valued: In order for traceability to be established and used in a development
organization, all the stakeholders involved in the planning, creation,
maintenance and use of the links need to value traceability. If traceability
is not valued, it is treated as optional and of low priority and therefore
poorly established.

Portable: In embedded systems development, a system needs to be developed
across several departments and sometimes across development organiza-

5https://www.itemis.com/en/yakindu/traceability/
6https://projects.eclipse.org/projects/modeling.capra

1.5. RESEARCH SCOPE 11

tions. Traceability needs to be shared and efficiently exchanged between
departments and organizations.

Trusted: For traceability to be used to facilitate development activities such
as impact analysis or change management, the users need to be able to
trust these links. Therefore it is important for the process and tools used
for establishing traceability to be trusted and guarantee that the links
are correct and complete.

Configurable: Different development organizations and even different projects
in the same organization may have varying needs for traceability. The
traceability purpose that the development organization or project has,
drives these traceability needs. There is therefore no silver bullet solution
for traceability. Traceability tools need to be able to handle different
needs by allowing the link types and artifacts types to be configured
according to the needs of the different stakeholders.

Scalable: Traceability solutions both in terms of processes and tools need to
be able to scale to larger projects. This is very important for the use
of traceability links. As projects grow larger the network of traceability
links also grows. Tools and processes are needed to allow the end users
to create, maintain and use traceability in such scenarios.

Ubiquitous: This challenge is referred to as the grand traceability challenge.
It suggests that developers and other stakeholders should not think about
establishing traceability links because traceability should be automatically
established as they work. Traceability should always be there. This is
the dream for perfect and seamless traceability that is established in the
background with automation tools.

From the challenges above, the overall aim of traceability research to
make traceability ubiquitous. And for this to be possible further research
on solving these challenges is needed. As our overall goal is to improve
traceability practices and tools, we will be contributing to solving some of these
challenges. Our research is mainly directed towards ensuring that traceability
is configurable, scalable, trusted and cost-effective. As the challenges are not
completely orthogonal but interdependent, other challenges may also be solved
by our research as well. For example, making sure traceability is trusted also
contributes to making sure that it is valued, as people will use the tracebility
links if they can trust them.

1.5 Research Scope

As mentioned in the previous section, our research is motivated by the fact
that there are a number of traceability challenges that still need researchers’
attention. In this section, we describe the research scope of this thesis and the
research questions that we answer.

Our research started with a tool integration problem in which a textual
editor needed to be introduced and integrated with an existing graphical editor.
In this, we investigated how to integrate the editors in such a way that models

12 CHAPTER 1. INTRODUCTION

in the two notations (graphical and textual) do not become inconsistent as
the models evolve. This is in general a traceability challenge, as in many
companies the tool environment is heterogeneous, with different tools and
notations used for the different tasks in the development life cycle [25]. To
keep track of the different artifacts and their evolution in the different tools,
traceability is important and to achieve traceability, the different tools need to
be integrated [26,30]. Therefore the first research question answered by this
thesis is:

RQ1 How can editors be integrated in a development environment in a way
that is cost-efficient and avoids inconsistencies as models evolve?

Answering RQ1 led to the discovery of several challenges that companies
encounter when integrating editors. While some of the challenges were specific
to the tools we integrated, others were more general traceability challenges. For
instance challenges of maintaining consistency between models and challenges
of being able to transfer links from one model notation to another. With
respect to the grand challenge, these challenges fall in the category of making
traceability cost-effective (automatic means of ensuring consistency) which
also implies ubiquitous and portable (how to maintain links between different
notations). This led us expand our research focus and derive a second more
general research question which is as follows:

RQ2 What are the current traceability challenges for embedded systems
development?

The study conducted to answer RQ2, led to formation of further research
questions. One of the challenges identified was that traceability is expensive to
create and without proper maintenance, the links quickly become outdated. We
therefore decided to investigate how traceability maintenance can be supported
by traceability tools in order to make activities of maintaining traceability links
less manual and less error prone. Our aim was to answer the following research
question:

RQ3 What are the primary factors that affect how and to what extent a
traceability management solution can provide traceability maintenance?

The study not only revealed which factors are important, but based on
empirical evidence we were able to derive guidelines that can be followed by
traceability tool developers in order to develop tools that will allow for efficient
maintenance of traceability links. The answers to RQ3 also provided insights
on challenges of cost-effective, configurable and trusted traceability.

Since we are working in close contact with industry, we collected require-
ments for a traceability solution with the aim of developing a traceability tool.
The requirements collected were very diverse implying that the solution should
be flexible and extendable. Therefore the last research question investigated in
this thesis is directed towards solving the configurable and scalable challenges
and is as follows:

RQ4 How can a traceability tool be implemented in such a way that it is
configurable and extendable?

1.6. RESEARCH METHODOLOGY 13

In relation to the three goals previously stated, RQ1 and RQ2 are directed
towards achieving Goal 1 (Investigate current traceability challenges in the
development of embedded systems). RQ3 is towards achieving Goal 2 (Propose
conceptual tool solutions that can solve the identified challenges) and RQ4 is
towards achieving Goal 3 (Develop prototypes that demonstrate how traceability
solutions can be implemented).

1.6 Research Methodology

To achieve reliable results in research, research methods need to be followed
systematically and justified as to why the selected methods fit the purpose of
the research. In software engineering empirical research methods are common
due to the fact that the field is a multi-disciplinary one that spans both social
and technological aspects [31] and does not only involve tools but also humans
who are using these tools. For this research, the studies have been conducted
using qualitative empirical research methods. The overall research methodology
is depicted in Figure 1.3.

The research started with a tool integration problem, specifically how
graphical and textual modeling editors can be integrated and used in the same
environment. Since this is a practical problem that had to be investigated in
the company, we chose action research as our research method. Action research
is a research method where the researchers and practitioners together identify
a problem and implement several actions in order to solve the problem [32].
Action research is an iterative process which involves defining the problem,
implementing an action and then evaluating the effect of this action on the
problem. This is repeated until a solution to the problem has been found.
Action research is mainly used to solve practical problems in industry and
requires the researchers and practitioners to collaborate on solving the problem.
We worked together with a telecommunication company that had this problem
and performed several iterations to find a fitting solution. The details on how
the study was conducted is reported in Paper A (Chapter 2).

As previously stated, the results of the first study led to an expansion of
our research focus to traceability in general. To be able to answer RQ2, we
conducted an exploratory study to systematically identify traceability challenges
that exist both in practice and in literature. To identify the challenges and
solutions in literature, we conducted a systematic literature review. Systematic
literature reviews give the researcher knowledge on the research that already
exists in the topic of interest and also helps to identify gaps for which further
research can be directed to. When current literature reviews already exist in
the topic, they can be used as starting points for researchers. As part of this
research we aimed to find out which traceability challenges have been reported
in literature and if there are any solutions proposed or implemented for these
challenges. The overall aim was to compare these challenges and solutions
with the ones found in practice in order to figure out which challenges need
further investigations and which ones have already been solved at least from
the literature point of view. Due to the existence of recent literature reviews
on traceability [33–35], we conducted a systematic tertiary literature review
on existing literature reviews to get this information. The tertiary literature

14 CHAPTER 1. INTRODUCTION

Figure 1.3: Research Methodology

review followed the same protocol as a systematic literature review [36].

Having the challenges from literature, we now wanted to investigate if
these challenges are also found in practice. To achieve this, we conducted a
case study with a large automotive supplier developing embedded systems.
A case study is an empirical research method that is aimed at investigating
contemporary phenomena in their context [37]. A case study can be descriptive,
exploratory, explanatory or improving. We conducted an exploratory case
study. An exploratory case study is aimed to collect information on what is
happening so as to generate new research questions [37]. Our case study was
conducted in a company that was following A-SPICE [38] and therefore was
required to implement traceability. Selecting a company which is not required
to have traceability may not have revealed the real challenges as the rigor in
which traceability is established and used may have been low. The details
of the tertiary literature review and the case study are reported in Paper B
(Chapter 3).

From the identified challenges, we conducted further case studies in order to
propose solutions that could work in practice. This led us to propose guidelines
that can be followed by traceability tool developers in order to allow for more
efficient traceability maintenance. These guidelines together with the details of
how the study was conducted are reported in Paper C (Chapter 4).

To test the validity of our guidelines, we elicited further traceability re-
quirements from industrial practitioners and used design science to develop a
prototype tool for a traceability management solution based on the guidelines
and requirements. Design science is defined as the design and investigation of
artifacts in context [39]. Design science is an iterative process in which the
researchers conduct several cycles of problem investigation, implementation of
artifacts (e.g., software prototypes) that will solve the problem and evaluation
of the artifacts in a given context to find out if the artifacts solve the problem.
This prototype tool is now an open source Eclipse project [40] and the details
of its implementation are reported in Paper D (Chapter 5).

1.7 Threats to Validity

In this section, we give an overview of the threats to validity for the studies
included in this thesis. A more detailed description of the threats to validity
can be found in the individual papers reporting the studies.

1.7. THREATS TO VALIDITY 15

To answer RQ1, action research methodology was used (see Section 1.2).
According to Checkland and Holwell [41], the main threat to validity with action
research is the reliability of the study. Since action research can not achieve
the same level of replicability as experiments, it is important for researchers
to document their theories and methods and how the methods were used in
the study. Even though the circumstances for the study can not be completely
replicated, other researchers can get details on how the study was carried out
and be able to repeat the study in other situations. In our study (reported in
Paper A), we documented our research motivation, the tools and methods used
and the environment in which the study was conducted.

Another threat to validity regarding RQ1 is generalizability. This refers
to whether the results of the study can be generalized. Since we conducted
the study in one company, we can not say that the results will hold for all
other companies. To mitigate this threat we used standard technologies in
our solution (e.g., EMF [27]) to ensure that our study can be generalized in
situations that use similar standard technologies.

In order to answer RQ2, we conducted a tertiary literature review and a
case study. Since a tertiary literature review is a systematic literature review
conducted on other systematic literature reviews there is a chance that we
missed some challenges that were not reported in the reviews. To mitigate
this threat we used snowballing to include other papers that were reporting
traceability challenges.

For the case study, there are four types of threats to validity as classified
by Yin [42]: construct, internal, external and reliability.

Construct validity refers to whether the concepts of the study are understood
by both the researcher and the participants in the same way. Since we used
interviews and observations as our data collection techniques, we had to make
sure that our concepts are understood by the participants. We achieved this
by having meetings with the participants to discuss the study before the
study began and made the intentions of the study clear through discussions
in the meetings. For participants who were not available for the meeting, a
similar discussion was held with them before their interviews. We also sent the
interview guide a week before the study and performed member checking [43]
with the results we obtained.

External validity questions to what extent the results of the study be
generalized. To mitigate this we conducted the interviews with participants
of different roles and departments to be able to triangulate our data sources.
However, we cannot generalize the results before replicating the study since all
the interviews were conducted in one company.

Reliability pertains to the replicability of the study. Replicating the setting
in which the interviews and observations were conducted is not possible, but
to ensure that the study can be repeated we documented the artifacts used in
the study (interview guide, notes etc.) and also the process that was followed.

Internal validity questions if there other factors that have an influence on
the studied factors that the researcher has no knowledge of. Since we base
our conclusions on the interviews, there is a chance that the interviewees did
not give honest answers with the fear that the answers would reflect badly on
the company if the results were published. To mitigate this, we guaranteed
the anonymity of both the interviewees and the company when publishing

16 CHAPTER 1. INTRODUCTION

the results. Complimenting the interviews with observations also helped to
mitigate this threat.

The data to answer RQ3 was also collected through interviews, but in this
case, multiple case studies were used. Construct validity and reliability was
mitigated in the same manner as in the study used to answer RQ2. External
validity was mitigated by having multiple cases from different domains. Since
this study was exploratory, to mitigate internal validity, we showed our results
to developers and expert users of traceability tools for confirmation. The
participants were also guaranteed anonymity when we publish the results.

Design science was used to answer RQ4. We collected requirements for a
traceability solution using the two focus groups. To mitigate construct validity
and ensure reliability of the study, we used similar methods as those described
for RQ2. To mitigate internal validity, we underwent several iterations of design,
implementation and validation with our stakeholders. To mitigate external
validity our focus groups involved participants from both industry and academia.
However, all of our industrial participants were from the automotive domain.
To make sure that our results are not specific to the automotive domain, we
have open sourced our prototype to get feedback from other domains as well.

1.8 Contributions

In this section we outline the contribution of this thesis by stating which
challenges our research is addressing. To recap, according to Gotel et al. [29]
the grand challenges of traceability that require research effort are towards
achieving purposed, cost-effective, configurable, trusted, scalable, portable,
valued and ubiquitous traceability. Table 1.2 gives an overview of which
challenges each paper touches upon. The contributions of each paper are
discussed in the following sub-sections.

1.8.1 Paper A: On Integrating Graphical and Textual Ed-
itors for UML Profile Based Domain Specific Lan-
guage: An Industrial Experience

In this paper, we investigated how to integrate graphical and textual editors
so that they can be used by developers in the same environment. While
there are several advantages of graphical modeling such as increasing the ease
of understanding and reducing chances of errors [44], textual modeling also
has advantages such as increasing the speed of editing and wide availability
of editors [44]. To harness both advantages, both notations are needed and
developers should be able to switch between the two notations. Unfortunately
for UML modeling, most tools only provide graphical editors and we therefore
investigated how to add a textual editor in such an environment and report on
how this was done and the challenges encountered during the study.

The textual editor was implemented through a transformation of the existing
UML Profile in the company to a corresponding Ecore model and using Xtext
to generate the textual grammar. Two more transformations were generated
using higher order transformations. These transformations allowed switching
from the graphical model to the textual model and vice versa. With regards to

1.8. CONTRIBUTIONS 17

Purposed Cost-Effective Configurable Trusted Scalable Portable Valued Ubiquitous

Paper A
Paper B
Paper C
Paper D

Table 1.2: Research Contributions

this approach, we identified seven main challenges which are:

C1: Storage and Versioning of models – When having both graphical and
textual models, which models should be persisted in the repository in a
way that they are accessible in both notations?

C2: Synchronization of models – How can both models be in sync to ensure
that they are not evolving separately?

C3: Layout and Formatting of models – How can one switch between the
two notations and keep the original layout (for graphical models) and
formatting (for textual models)?

C4: Model references – How can links between models be preserved and
maintained as developers switch between different notations?

C5: Minimal DSL – Since the UML metamodel is huge and therefore hard to
maintain as the DSL evolves, how can a minimal set of classes that are
used be identified and maintained?

C6: Names in Model Elements – How can graphical elements that have no
names but rather XMI IDs be converted to textual editors that require
readable names?

Analyzing the above challenges we can see that apart from the tool-specific
challenges such as C3, C5, and C6, the rest of the challenges are actually
traceability challenges. For instance, C2 is on how to ensure that the graphical
and textual models do not evolve separately and our proposal for this to use the
transformations to switch between one model to the other. The transformation
rules contain mappings between elements in the textual notation and elements
in the graphical notation which act as implicit traceability links. In other
words having transformations that are executed every time a model is saved
can ensure consistency between the models without the users having to do
anything. This is towards making traceability ubiquitous and cost-effective. C5
is also a traceability challenge on how to maintain the links between different
models when the developers switch between the different notations. This is in
connection to making traceability portable. There should be a way to transfer
the inter-model links (traceability links in this context) from the graphical
notation to the textual notation and vice versa. Identification of these challenges
led to widening the scope of the next studies to traceability in general rather
than tool integration.

18 CHAPTER 1. INTRODUCTION

1.8.2 Paper B: Persisting Software Traceability Challenges
in the Automotive Domain

While we are aware of the grand challenges of traceability that have already been
identified, we wanted to understand how the challenges reported in literature
compare to the challenges currently found in practice, especially in the context of
embedded systems development. Since embedded system development is a wide
scope, we narrowed down our study to first only study traceability challenges
for embedded systems developed in the automotive domain. To achieve this,
we conducted a tertiary literature review on existing traceability literature. We
examined 20 papers and extracted a list of challenges and solutions they report.
We then conducted a case study with an automotive supplier where we used
interviews and observations to collect data on their traceability processes and
challenges. We interviewed a total of seven participants from different roles
including developers, architects and traceability experts. The participants were
also from two different departments each developing embedded systems. This
allowed for data triangulation. We compared the challenges and solutions from
literature with those we found at the company.

Our study revealed the challenges that have been solved, partially solved
or remain unsolved. Our interest is in the unsolved challenges as it is where
further research can be done. The unsolved challenges are as follows:

C1: Manual work – For traceability to be established a lot of manual work
is needed in creating and maintaining the links. This is expensive and
error prone.

C2: Traceability is perceived as an overhead – Developers need to create and
maintain traceability links on top or their daily work. This is perceived as
an overhead since the creators and users of traceability links are different
groups of people.

C3: Lack of visualization tools – When traceability has been established,
especially in large projects, the resulting traceability network becomes
large. The users of traceability need visualization tools to be able to
comprehend and use the links.

C4: Difficulty of assessing traceability – There is a lack of methods and tools
for assessing the quality of the maintained traceability. When methods
are available they are manual and error prone.

C5: Difficulty to measure return on investment – for each investment one
expects to gain a return. Since traceability benefits are not visible
immediately but over time, it is difficult to evaluate these benefits.

C6: Lack of universal standards – Sometimes traceability needs to be ex-
changed between departments and even between development organiza-
tions. Without a standard on how the links should be created and stored,
exchanging traceability is difficult.

With respect to the grand challenges, this paper gives a detailed description
of the challenges of making traceability cost-effective (C1, C5), trusted (C4),
scalable (C3) and portable (C6). It describes how the challenges are experienced

1.8. CONTRIBUTIONS 19

in practice with respect to the automotive domain and why some of the existing
solutions in literature do not work in this context.

1.8.3 Paper C: Traceability Maintenance: Factors and
Guidelines

From our previous study (Paper B), we know that one of the persisting chal-
lenges is, establishing traceability is expensive as it requires manual work for
both the creation and maintenance of the links. While a lot of effort is invested
in companies to create the links, if the links are not updated as the artifacts
they connect evolve, the links become outdated and thus useless. It is therefore
as important to put effort in maintaining the links as in creating them. Creation
of the links is harder to automate or semi-automate because the initial set of
links does not exist and needs to be created from scratch. Maintenance on the
other hand is comparably easier to automate or semi-automate because the
links and information on the artifacts they connect already exist. However,
the extent to which tool support for traceability maintenance can be provided
varies depending on a number of factors. It is therefore important for the
development organizations (when selecting traceability tools) and tool vendors
(when developing traceability tools) to understand these factors.

We conducted a study to identify the important factors that affect the extent
to which a traceability tool can provide maintenance support. We analyzed data
from two sources: two focus group sessions that were aimed to elicit traceability
requirements for a traceability solution and 24 semi-structured interviews from
a study aimed at investigating collaborative traceability management practices.
We formulated guidelines from each of these factors and validated our guidelines
with interviews of expert users and developers of industry used traceability
tools.

Our results identified the following four influential factors of traceability
maintenance:

F1: Versioning – traceability maintenance is affected by whether or not a
Version Control System (VCS) is used. The granularity of the changes that
can be extracted from a VCS influences the extent to which traceability
maintenance can be supported. From this factor, we suggest the following
guidelines: G1) Version your traceability model just like all other artifacts
and G2) Ensure that you are able to extract explicit deltas for all models
from your chosen VCS.

F2: Tool Boundaries – In a practical scenario, it is expected that multiple
tools are used to manage the different development artifacts. Maintaining
traceability between artifacts in different tools is difficult as the tools are
not connected to each other in any way. We elicited three tool-boundaries
scenarios that can be possible. One scenario is where a holistic tool is
used to support manipulation of all artifacts. While traceability becomes
relatively easier in this case, in practice finding a holistic tool that
supports all development activities is difficult. The second scenario is
having a dedicated traceability management tool to connect the different
tools. While this is feasible, it requires the tool is able to connect to the
existing tools in the development tool chain. This can be done through

20 CHAPTER 1. INTRODUCTION

tool adapters. However, for each new tool, an adapter needs to be
created which is not a trivial task. A third scenarios is a mixed scenario
where a traceability tool is combined with tools for other functions e.g.,
requirements management tools. This scenario inherits all the negative
aspects from the other two scenarios. From this factor we derive the
following guidelines: G3) Traceability tools should provide well defined
interfaces and easy, direct access to managed traceability links; G4) Aim
for either a holistic solution or a completely separate traceability tool
with a carefully designed tool adapter concept, avoid combining strategies
and G5) Use a common standard as “glue” to simplify the development
of adapters.

F3: Configurable Semantics – The degree to which a traceability metamod-
el/information model captures domain-specific semantics and whether
the links are explicit or implicit influences how the consistency of trace-
ability can be defined. This is because consistency must be defined and
tailored to specific domains. For instance, ensuring that a traceability
link from a requirement to a test is truly linking a requirement and a
test, one needs to be able to define the semantics of the concept of a
requirement and a test within the link in the traceability metamodel.
From this factor we derive the following guidelines: G6) Avoid implicit,
convention-based traceability links and strive instead for explicit links
that can be checked with tool support and G7) Prefer domain-specific,
semantically rich traceability metamodel as this simplifies traceability
maintenance.

F4: Consistency Specification – The solution space for consistency specification
spans two dimensions: the process by which traceability is maintained
and the type of functions that are used to maintain traceability. From
the process dimension, there are two ends of the spectrum: 1) traceability
is maintained in a top-down approach and inconsistencies in traceability
links are fixed immediately and 2) is a bottom-up and ad-hoc process of
maintaining the traceability links where the links are fixed on demand.
From this dimension, we derive the following guideline: G8) Ensure that
your TM solution supports a flexible combination of both top-down and
bottom-up maintenance approaches.

The other dimension of consistency specification is the type of consistency
function specified. This can be manual, semi-automatic or automatic.
For this dimension, we derive the following guidelines: G9) Support an
integrated mix of manual and complementary automated approaches to
consistency specification and G10) For automatically generated links,
prefer no links at all over (possibly) inconsistent links.

The factors we identified and the guidelines we formulated are aimed towards
making traceability more configurable (G3, G4,G5, G7, G8, G9) and trusted
(G1, G2, G6, G10). The combination of all the guidelines aims to solve the
traceability maintenance problem by reducing the manual work of maintaining
the links and therefore supporting a cost-effective way of managing traceability
links.

1.8. CONTRIBUTIONS 21

1.8.4 Paper D: Capra: A Configurable and Extendable
Traceability Management Tool

From the previous studies, we gathered knowledge on the challenges of trace-
ability and also specific requirements for a traceability solution. Analyzing
the requirements, we discovered that there is no one solution that could cover
all the requirements as they greatly varied depending on the development
organization. In some cases some of these requirements were contradictory,
for instance, where the links should be stored and which links should be in
the metamodel. With these requirements in mind we developed a traceabil-
ity solution that can be customized and extended to support the diversity
in the requirements. This was done using design science where we gathered
requirements from both our industrial and academia partners, implemented
a prototype and did demonstrations to validate the prototype. From these
demonstrations we got feedback and more requirements for another iteration.
The tool was developed starting in September 2015 and is still being actively
developed. Since August 2016, the tool is an Eclipse open source project7

making it available to a larger community.
In our solution, we followed the concepts described in Paper C to ensure

that the tool will support maintenance as much as possible but also as another
way to validate some of the guidelines we proposed. As a result, the tool is
extendable in three different perspectives:

The traceability link types – It is possible to create link types with different
semantics depending on the needs of the development organization. The
tool allows for the links to be defined in a traceability metamodel and
this can be extended with domain-specific links, thus following guideline
G7.

The artifacts that can be traced – Since different development organizations
use different tools one cannot develop a traceability tool that is complete.
There are always going to be more tools that are not supported. To
overcome this problem, our tool is a dedicated traceability management
tool and therefore follows G4. It allows for tool adapters to support
different tools to be added on a need to need basis. Therefore it is
extendable. The tool uses EMF [27] as a common standard for the
adapters which follows guideline G5. As adding adapters requires some
technical expertise, the tool ships with adapters to support common
a languages such as EMF and UML, programming languages such as
Java, C/C++ and PHP and general purpose tools such as MS Office.
Adapters for more specific formats such as ReqIF and task tickets from
common task management tools such as JIRA and Bugzilla are also
available. Since the tool is also an open source tool, more adapters can
be contributed by the open source community. As the adapters can be
turned on and off, the tool is both configurable and scalable.

The storage of the artifacts – The needs for storage of traceability links can
differ depending on the development organization. For instance, in some
cases the participants in our study preferred to store the links per project,

7https://projects.eclipse.org/projects/modeling.capra

22 CHAPTER 1. INTRODUCTION

while other participants preferred to store the links per workspace and
others per repository. Therefore, the tool allows this to be configured.
This makes it possible for the tool to adhere to G1 and G2 depending on
the storage and VCS choice of the end users.

Following guideline G3, the tool also provides interfaces to expose the
traceability model to various tools that, e.g., provide visualization. To show the
feasibility of this, Capra currently has two different visualization options, one
utilizing PlantUML [45] and one using the Eclipse Graphical Editing Framework
(GEF) [46].

The development of the tool therefore aims to address challenges of achieving
configurable and scalable traceability.

1.9 Conclusions

In this section we discuss how we addressed our research goals and how the
research questions were answered by the studies appended in Chapter 2 to
Chapter 5. The first goal of the thesis was to investigate current traceability
challenges in the development of embedded systems. As discussed in Section 1.5
and 1.6, our research first started with a tool integration problem which is only
a subset of the traceability topic in general. The first research question (RQ1)
was therefore; how can editors be integrated in a development environment in a
way that is cost-efficient and avoids inconsistencies as models evolve? To solve
this problem we implemented a model transformation from the metamodel of
the graphical model to the metamodel of the textual model. Using the textual
metamodel we implemented a textual concrete syntax that could be used to
create models in text. To ensure that users can switch between graphical and
textual views, we implemented two transformations that facilitate transforming
from graphical to textual models and vice versa. In order to make sure that
the same version of the graphical model is consistent with the corresponding
textual model, the transformations were executed every time a model is saved.
To make sure that our solution is cost-effective, we implemented Higher Order
Transformations (HOT) which generate other transformations. This way, in
case of change to the initial graphical metamodel, the transformations that
allow switching from graphical to textual models do not have to be manually
written and can be generated instead. To summarize, in this study, model
transformations were enablers for both consistency maintenance and traceability
between models. We also uncovered traceability challenges that manifest in
practice in such model-driven developments scenarios, for instance, how to
ensure that links can be established between the different notations and how
to keep all models synchronized.

Further addressing the first goal, we conducted a tertiary literature review
and a case study to identify traceability challenges from literature and also
investigate how they are experienced in reality. Our aim was to answer RQ2
(What are the current traceability challenges for embedded systems devel-
opment?). From this study we identified that creation and maintenance of
traceability is done manually which makes the process expensive and error
prone. It also makes the engineers who create these links feel like it is an
unnecessary overhead. When traceability is established, we identified that

1.10. FUTURE WORK 23

there is a lack of methods to asses the quality of the links. The existing
techniques are still manual and error prone. Another challenge is the lack
of visualization tools which makes it hard to use the traceability links. Also
when the development of the system is done across organizational boundaries,
the lack of universal standards for traceability makes it difficult for the links
to be shared and exchanged. The last challenge identified is the difficulty of
measuring the return on investment of traceability.

With RQ1 and RQ2 answered, we decided to first look into the challenges
that are tool related. This was to address Goal 2 (Propose conceptual tool
solutions that can solve the identified challenges). We decided to investigate
the manual work invested in maintaining the links and how this work can be
minimized through tool support. We therefore investigated RQ3 (What are
the primary factors that affect and to what extent a traceability management
solution can provide traceability maintenance?). We identified four important
factors which are: 1) versioning, 2) tool boundaries 3) configurable semantics
and 4) consistency specification. From these factors we also formulated ten
guidelines that can be used by traceability tool developers when developing
traceability solutions to ensure that their solutions can provide traceability
maintenance support.

To address Goal 3 (Develop prototypes that demonstrate how traceability
solutions can be implemented), we used results from Goal 2 as input and con-
ducted a study using design science. In this study, we collected requirements
for a traceability solution and elicited differing requirements from several devel-
opment organizations. We therefore investigated RQ4 (How can a traceability
tool be implemented in such a way that it is configurable and extendable?). Our
study revealed that a configurable and extendable traceability management tool
needs to be flexible in three ways: 1) allow for custom traceability metamodels
(traceability information models) to be defined by the development organization,
2) provide mechanisms for additional artifacts types to be supported and 3)
allow the storage of the traceability links to be determined by the development
organization. To demonstrate the feasibility of this, we implemented Capra8

which is a prototype traceability solution. This is only an initial step for our
research and in the near future we plan to investigate how the tool can be used
in a practical environment and how many of the challenges identified it will
address.

1.10 Future Work

As mentioned in at the start of this chapter, the overall goal of the research is
to improve traceability processes and tools for embedded systems development.
In this thesis, we took first steps towards this goal by identifying current
challenges, proposing conceptual tool solutions and implementing a prototype
to demonstrate the feasibility of the proposed solutions. To be able to reach
our goal we also need to investigate traceability processes (comprising of the
different traceability activities such as creation, maintenance and use) and
how these processes can be integrated in existing development environments
to ensure that traceability is established and maintained in a cost-effective

8https://projects.eclipse.org/projects/modeling.capra

24 CHAPTER 1. INTRODUCTION

manner. Concrete steps that we will take to achieve our goal are as follows:
Firstly, since we already have a prototype tool, we intend to use it and

conduct case studies with development organizations in order to investigate
how the tool will be used, how it fits in their processes and how we can improve
the current solution. We plan to conduct such studies with development
organizations from different domains to be able to compare their processes and
how traceability fits in their environments.

Secondly, we already have knowledge that the traceability metamodel can
differ from development organization to development organization and even
from project to project. We therefore aim to collect traceability metamodels
according to the domains and development environments in which they are
used. The idea is to come up with a catalog of traceability metamodels mapped
to domains and development environments. This catalog can act as a starting
point for practitioners who want to establish traceability in their companies.

Lastly, one of the reasons companies implement traceability is because of the
standards that they have to follow. This applies to safety-critical domains such
as automotive in which development organizations have follow ISO 26262 [47],
the medical domain in which development organizations have to follow the
IEC 62304 safety standard [48] and the avionics domain where development
organizations have to follow DO-178B/ED-12B [49]. Other domains such as
avionics also have their standards. As part of our future work, we plan to
investigate these standards in order to identify traceability requirements that
they impose. This will enable us to compare the standards from a traceability
perspective and also give us insights on further requirements that can be used
to tailor traceability processes, metamodels and tools for use in the different
domains.

Chapter 2

Paper A

On Integrating Graphical and Textual Editors for a UML
Profile Based Domain Specific Language: An Industrial
Experience

S. Maro, J.-P. Steghöfer, A. Anjorin, M. Tichy, L. Gelin

13th International Conference on Software Language Engineering(SLE
2015), Pittsburg, USA, October 23-27, 2015.

25

Abstract

Domain Specific Languages (DSLs) are an established means of reducing the
gap between problem and solution domains. DSLs increase productivity and
improve quality as they can be tailored to exactly fit the needs of the problem to
be solved. A DSL can have multiple notations including textual and graphical
notations. In some cases, one of these notations for a DSL is enough but
there are many cases where a single notation does not suffice and there is a
demand to support multiple notations for the same DSL. UML profile is one of
several approaches used to define a DSL, however most UML tools only come
with graphical editors. In this paper, we present our approach and industrial
experience on integrating textual and graphical editors for a UML profile-based
DSL. This work was conducted as part of an explorative study at Ericsson.
The main aim of the study was to investigate how to introduce a textual editor
to an already existing UML profile-based DSL in an Eclipse environment. We
report on the challenges of integrating textual and graphical editors for UML
profile-based DSLs in practice, our chosen approach, specific constraints and
requirements of the study.

26 CHAPTER 2. PAPER A

2.1 Introduction

The term Domain Specific Language (DSL) refers to a language that is created
for specific tasks [50]. A DSL captures design patterns that are common in a
particular domain. Compared to General Purpose Languages (GPLs), a DSL
focuses on the patterns that are used in a specific domain therefore avoiding
all the general notations that are not needed within the domain. This makes
creation of applications easier and designers can write less code (as little as
2%) than when using a GPL [51]. Applications developed using DSLs tend
to be more concise, easier to maintain and reason about and above all can be
developed quickly [52].

At Ericsson, DSLs are used to raise the abstraction level with which engineers
create applications. This gives the engineers an opportunity to focus on the
problem at hand and not worry about implementation details. Moreover, the
fact that software at Ericsson is usually deployed on various hardware platforms
is another main reason for the adoption of DSLs. It would be inefficient for
engineers to write different code for every hardware platform. With DSLs they
can reuse the logic models which are platform independent and this proves to
be more efficient.

A DSL can have a textual notation or a graphical notation. When a DSL
is large, covers a wide aspect and has different types of users like Ericsson’s
DSL, having one notation often does not suit the needs of all its users. This
is because some cases are easier to specify when using a graphical notation
while others can be conveniently specified using a textual notation [44]. On
the one hand, a graphical notation for modelling applications has advantages
like reducing the chances of errors, providing visualization and hence easing
understanding of the system being created. On the other hand, using text
based modelling has advantages such as speed of creation and editing, speed of
formatting and a wide availability of editors [44].

Unfortunately, when opting to use UML profile-based DSLs, only graphical
editors are provided by most out-of-the-box UML tools. At the moment,
Ericsson has a UML profile-based DSL for modelling applications for baseband
switches. The company is using the Rational Software Architect (RSA) tool
from IBM which only provides a graphical editor for UML models. Based
on the cases that they model, some engineers have requested a textual editor
to be provided because it would simplify their modelling tasks. At the same
time, these engineers have to work and share models with other engineers who
are using the graphical editor. Therefore, the company is investigating the
possibility of adding a textual editor for the existing DSL.

Having a DSL with both textual and graphical editors being used simulta-
neously raises several problems. One of the main problems is how to maintain
the two editors (textual and graphical) without adding substantial maintenance
effort to the company. This means that when the DSL needs to be updated
one should not have to do a lot of manual work. Another problem that arises is
how to avoid information loss when users switch between graphical and textual
views.

The main contribution of this paper is to present a practical approach on
how to semi-automatically obtain a textual editor for a UML profile-based DSL
and how to enable users to switch from one view of a model to another, i.e.,

2.2. INDUSTRIAL CASE 27

to switch from the graphical view to the textual view and vice-versa without
losing any information. Since the study was carried out in industry, we present
the challenges that arise when having both textual and graphical editors for
the same DSL.

The rest of the paper is organized as follows. Section 2 gives an overview of
the DSL at Ericsson and Section 3 outlines the challenges of having textual
and graphical editors for the same DSL. Section 4 describes our approach while
Section 5 gives an evaluation of our tooling. Section 6 is a discussion on the
approach in relation to the challenges. The paper concludes with Section 7 that
discusses related work and Section 8, which gives a conclusion and proposes
future work.

2.2 Industrial Case

Ericsson uses an in-house developed DSL to create applications for its baseband
switches. This DSL is built using UML and UML profiles. Their UML profile
is known as Hive profile and is divided into three major parts: Behaviour,
Structure and Deployment. These serve different purposes when it comes to
creating applications. The Hive DSL in total is made up of 17 stereotypes, 1
Enumeration and 1 class from the Hive Behaviour profile, 2 stereotypes from
the Hive Structure profile and 14 stereotypes from the Hive Deployment profile.

At Ericsson, developers create models of applications using this DSL and
later use model transformation tools to transform the models into C code (.c and
.h files), which can be compiled into working applications. The transformations
are done in three steps:

[a] A Hive instance model is subjected to a model to model transformation
that transforms it to a Dive model. Dive is another Ericsson in-house
DSL which is XML-based. The Dive model is never manually edited by
the user but always has to come from a corresponding Hive model using
this model to model transformation.

[b] From the Dive model, another model to model transformation is done
that transforms the Dive model into a C instance model that conforms
to the C Abstract Syntax Tree (AST).

[c] From the C AST, a model to text transformation is performed to get .c
and .h text files which can be compiled into working applications.

Figure 1 illustrates the above three steps.
The company uses RSA from IBM as their main editor which only provides

a graphical editor for creating and editing UML models. As this does not suit
the needs of all users, the company wants to add a textual editor so that their
developers can have the option of modelling using text or graphics. For this
the company has the following requirements:

[a] Add a textual editor for the already existing DSL.

[b] The company should not have to maintain the graphical and textual
editors separately.

28 CHAPTER 2. PAPER A

Figure 2.1: Transformation Tool Chain

[c] The engineers should be able to switch between textual and graphical
views without losing any information.

One of the cases that we investigated at the company was how to model
the behaviour part of the Hive profile using text. To model behaviour, the
company uses activity diagrams extended with the Hive Behaviour profile. An
activity diagram in UML is a behaviour diagram which shows flow of control
or object flow with emphasis on the sequence and conditions of the flow [53].
Figure 2 shows an extract of the Hive Behaviour profile with two stereotypes:
HiveAction and HiveVectorAction. Both the stereotypes have two tagged
values which are taskPriority and operation. Both stereotypes extend the
CallOperationAction metaclass from the UML metamodel.

«Stereotype»
HiveAction

 + operation: Operation [1]
 + taskPriority: Property [1]

«Stereotype»
HiveVectorAction

 + operation: Operation [1]
 + taskPriority: Property ...

«metaclass»
CallOperationAction

Figure 2.2: Extract from the Hive Behaviour Profile

2.3. CHALLENGES 29

2.3 Challenges

This section describes the challenges that we identified during the study. These
are mainly general challenges related to having a textual and graphical ed-
itor used in a working environment and some specific challenges related to
integrating a UML profile-based DSL with Xtext.

2.3.1 Storage and Versioning of Models in Repositories

In many companies it is common that more than one designer works on the same
model and this is facilitated by using collaboration and versioning tools such as
Git [54]. When some designers can edit the same model in text and some edit
it graphically, the choice of which format (textual or graphical) to store in the
repository is not a trivial one. Storing the models as graphical models means
putting in place tools that can help designers to version, merge and resolve
conflicts on a graphical model level. On the other hand storing them in text
means using tools for versioning, merging and resolving conflicts that are on a
textual level. Either way, deciding to store one version means that designers
working in the other version need to first convert their models before committing
their changes. This leads to other challenges such as synchronization and issues
of maintaining the layout, which are discussed next. Storing both versions of
the model is also an option that can be considered, but this means that one
has to make sure that both models (textual and graphical) can be versioned
and synchronised.

2.3.2 Synchronization of Models

When a user is editing a model in graphical format and decides to switch to
textual notation, both the textual and graphical models should be in sync.
This means that the tool should be aware of which text model represents which
graphical model. This is a challenge if the graphical and textual views are not
linked to each other as the source and target models can evolve separately and
become out of sync. There is therefore a need to be able to link a transformed
model to its source model in order to keep them synchronized.

2.3.3 Graphical Layout of the Model and Pretty Printing

When a user creates models in graphical format, they can arrange/format the
diagram in a way that is suitable for them. For instance they can make the
icons bigger, move the model elements to certain positions or arrange them in a
particular way. When these models are transformed to textual models and then
back to graphical models the user expects the layout of the original graphical
model to be maintained. This is a challenge as the textual model does not
store any information about the graphical layout of the model elements unless
additional measures to facilitate this are put in place. As models get bigger,
the layout that a user has modified becomes important and the auto-layout
provided by the tool does not suit the user. Moreover, when a designer styles
his or her text in a certain format using the text editor and then transforms
the file to a graphical model and then back to text, the custom text formatting
is also lost.

30 CHAPTER 2. PAPER A

2.3.4 Model References

It is common that developers create several models that are linked to each
other instead of creating one big model. This means that most models have
model references to other models. This is a problem, as when switching from
one view to another, one has to decide on whether to switch only the current
model that is being worked on or also switch all models linked to the current
model. Switching only the model being worked on means that we end up with
a model containing a mixed grammar, i.e., a graphical model with links to a
text model or vice versa. Switching the current worked on model, and all its
referenced models may result to a bunch of models being transformed, which
is not efficient when having many linked models.

2.3.5 Minimal DSL

The UML metamodel is a very huge one. For instance UML 2.0 has 265 model
elements and 763 relationships [55]. This makes it quite complex to work with
and in many cases, companies only use a small part of this metamodel. In order
to come up with a small concise metamodel representing the UML profile, it is
necessary to identify which parts of the metamodel the profile uses and which
other classes the company uses from the UML metamodel. This is a difficult
task because in many cases it is not clear which classes are actually used by
the company and also because the UML metamodel contains many elements
that are connected to each other and sometimes these connections are implicit.

2.3.6 Names in Model Elements

This challenge is mainly related to UML. The EMF implementation of UML
uses special IDs called XMI IDs to identify model elements. This means that
when a user creates an element in UML this element is assigned an ID by
default. Even when a user does not give the element a name, UML can still
identify that element with the ID it has. This has led to a habit that many
designers do not give names to UML elements unless the names are necessary
to them. For instance when modelling activity diagrams, most of the designers
give names to the actions but not to the fork nodes or join nodes. However,
when it comes to EMF textual editors, all elements are identified by using
qualified names. If a designer creates a model element in text, the editor does
not assign any ID to the element, it is the designer that needs to give unique
names to the elements. This is a challenge as when transforming UML models
to textual models, the produced text model elements are also unnamed. In
text models we cannot have a reference to an element with no name so the
resulting model breaks.

The main challenge here is that introducing the textual editor means that
either the designers have to start giving names to all model elements in their
models or the names should be automatically generated for elements that have
no names when transforming to text models. Generating names also implies
that when a user switches from text to graphics and back, the graphical model
will have the generated names added. The XMI IDs from the UML models
could also be considered for use as unique model element names in text but
these have a format that is not user friendly.

2.4. APPROACH 31

2.3.7 Inconsistent Models

An inconsistent model is a model that does not adhere to the constraints of
the metamodel, it has errors. When switching from a graphical model to a
text model, if the transformation produces an inconsistent model then this
model cannot be serialized in the Xtext syntax. The designer therefore needs
to make sure that when transforming a graphical model, this model should
not lead to an inconsistent text model. For example in the Hive case, the join
node in textual metamodel has a constraint that it can have several inputs
and only one output. So if a designer tries to transform a join node that is not
connected to any input or any output then the result of this transformation
cannot be serialized in Xtext textual syntax. The error must be fixed first for
the serialization to work.

2.4 Approach

This section describes the approach that we used to address the problem of
integrating textual and graphical editors in an Eclipse environment. It should
be noted that the approach described here has been taken due to the fact that
the company was already using a UML profile-based DSL. The approach also
aims to address some of the challenges discussed in the previous section. This
section is divided into two parts, the first part describes how to obtain the
textual editor and the second part describes how to switch between graphical
and textual views.

2.4.1 Obtaining the Text Editor

There are several EMF based plugins that can be used to generate textual
editors with little effort. Since the company is already using RSA, which is
also EMF based, going for one of these text editor generator plugins is a good
solution. However, all these plugins need an Ecore model behind them in order
to generate the textual editor. This Ecore model can be manually written but
this means that every time the profile evolves, the Ecore model would need to
be changed manually. To avoid this, we transformed the UML profile-based
DSL into an Ecore model. The idea being that once the profile evolves, the
Ecore model will be derived automatically.

The Ecore model obtained from the transformation could now be used with
one of the text editor generator plugins to generate a textual grammar and
editor for the DSL. For our case we used Xtext [56] to generate the grammar
and the textual editor.

EMF comes with a functionality that can export UML models into Ecore
models. Using this functionality was the first approach to transform the Hive
profile to an Ecore metamodel for a DSL. This functionality worked well but it
had one huge drawback since it also exports the whole UML metamodel to the
exported Ecore model. This gives a very huge DSL with a lot of entities that are
not needed. To overcome this we wrote our own ATL transformation and used
a UML subset in our transformation instead of the whole UML metamodel.

To be able to obtain the UML subset, we need to know exactly which meta-
classes are used. These metaclasses include those extended by the stereotypes

32 CHAPTER 2. PAPER A

in the profile and also those that are used without any stereotypes. For some
DSLs this set of metaclasses is known and for some DSLs it may not be so
obvious which metaclasses are used. This is especially true when users use part
of UML that is not extended by any stereotype in the profile. In such cases
this list of classes that are needed can be obtained by running a transformation
that takes an instance model of the DSL and returns a collection of all UML
metaclasses used on that instance model. This will give a correct list of classes
needed only if the instance models cover 100% of the DSL.

In case no such instance models exist, one can identify the needed UML
metaclasses manually and create a list of these classes either as an Ecore or
as another UML profile that will only be used to identify these metaclasses.
Once these classes have been identified a transformation can be written that
copies only these classes from UML to create a subset UML metamodel. This
UML subset can also be created manually as an Ecore model that contains
all the classes of the subset and their attributes. However if the DSL changes
frequently then this subset can be hard to maintain. For the case of Ericsson, we
used a manual approach to get a list of classes used from the UML metamodel.
This was done by examining various existing models and identifying classes
that were implicitly used from the UML metamodel. This worked as a solution
because their profile does not evolve frequently.

Since we created the UML subset manually, we had the flexibility to get rid
of model elements that we considered unecessary in our final textual language
or add some model elements. However this change needs to be noted so that
when transforming back to UML models, we know how to re-create UML model
elements from the changes made. The mapping for this are stored in a trace
model [57] because the relationship of UML and the Ecore model will no longer
be a direct one to one relationship. A trace model is a model that defines the
relationship between a source model and a target model. In our case since one
of the diagrams we modelled in text is activity diagrams, instead of having
controlflows with source nodes and target nodes elements we added an attribute
called ”dependsOn” to activity nodes. This was done to make modelling of the
flow from one node to another easier in text.

We wrote an ATL transformation that takes the UML profile and UML
subset as input and produces an Ecore model as output. We used the produced
Ecore model from the transformation as input to the Xtext plugin to generate
the grammar and textual editor. This transformation could also be written
using any transformation language. The mappings used to convert UML to
Ecore follow the ones used in the UML to Ecore eclipse plugin [58] and also
according to the relationship between UML and Ecore as described in [59]. The
mappings are summarized in Table 1.

Figure 3 shows an extract of the Hive profile, part of the subset needed
and the resulting Ecore model that was obtained from the transformation. In
the figure, a stereotype called HiveAction is transformed to an EClass called
HiveAction. The property of the HiveAction stereotype called operation

which has a type of the UML Operation metaclass is transformed to an
EReference called operation whose type is also an EClass called Operation.
This Operation EClass comes from the Operation metaclass in the UML
subset. The UML extension relationship that is represented by the property
named base CallOperationAction of type CallOperationAction, is also

2.4. APPROACH 33

Table 2.1: UML to Ecore Mappings

UML Ecore

Profile EPackage
Stereotype EClass
Metaclass EClass
Property(Primitive Type) EAttribute
Property EReference
DataType EClass
Enumeration EEnum

transformed to an EReference named base CallOperationAction of type
CallOperationAction. Similarly, the EClass called CallOperationAction,
comes from the UML subset. This is done for all the stereotypes and their
properties. From the UML subset, all the classes and their attributes are copied
to the Hive Ecore model. So a class named Activity in the UML subset is
transformed to a class named Activity in the Hive Ecore model.

Hive Profile UML Subset

Hive Ecore

Figure 2.3: Hive Profile to Hive Ecore Metamodel

The grammar generated by Xtext from the Ecore metamodel of the DSL
was not very usable because it had a lot of unnecessary syntactical structures
and all the enumerations literals were missing. This is an Xtext specific issue
for grammars that are automaticaly generated. Therefore, we manually edited
the grammar in order to come up with something that is actually readable and
usable.

34 CHAPTER 2. PAPER A

Figure 4 shows our approach to obtain the textual editor from the Hive
profile. It also shows which parts have to be done manually every time the
Hive profile evolves and which parts have to be done only once.

With the setting shown in Figure 4, when the profile evolves, the following
needs to be done to update the editor. First, one needs to check if the profile is
using a metaclass that is not included in the UML subset and add all missing
metaclasses and their attributes. Then the new profile and the UML subset
will be used as input to the already existing ATL transformation to produce
the new Hive metamodel. To update the grammar there are two choices, the
first choice is to re-generate the whole grammar and the editor, but this means
also re-doing the entire manual editing that was done to the grammar before.
The second option is to replace the old Hive metamodel with the new one, this
way when the editor is compiled, the changes will be detected and one can
update the grammar to match the new Hive metamodel manually.

Figure 2.4: Generating the textual editor from the Hive profile

2.4.2 Switching between Graphical and Textual Views

Once the text editor was in place, it was now possible to create models using
text. To switch from Xtext to UML and vice versa, two transformations are
required: one is to transform graphical models to text models and the other is
to transform text models to graphical models. Xtext also provides a mechanism
to obtain an XMI version of the model written in text. This way the model
could be used as an input to a transformation so that it can be transformed
to its UML version. Figure 5 shows an example of a UML model in graphical
format and Listing 1 shows its corresponding text model.

2.4. APPROACH 35

Figure 2.5: Graphical view of an activity diagram.

1 Act iv i ty myActivity {
2 nodes{
3 I n i t i a l node i n i t
4 Cal lOperat ionAct ion act i on1 dependsOn i n i t t e s tOperat ion

HiveAction t e s tVa r i ab l e
5 Cal lOperat ionAct ion act i on2 dependsOn act i on1 te s tOperat ion

HiveVectorAction t e s tVa r i ab l e
6 Cal lOperat ionAct ion act i on3 dependsOn act i on1 te s tOperat ion

HiveVectorAction t e s tVa r i ab l e
7 MergeNode m1 merges (act ion2 , ac t i on3)
8 Act iv i tyFina lNode f1 dependsOn m1
9 }

10 }

Listing 2.1: Textual view of the activity diagram shown in Figure 5.

Because we did not want to have any effort applied to these transforma-
tions when the Hive profile evolves, we used ATL HOT to generate these
transformations instead of writing them manually.

Keeping in mind that the metamodel that was used for the Xtext language
is generated from the UML profile and UML subset, most of the information
needed for our instance model transformations is available in these two models
(UML profile and UML subset). We therefore wrote a HOT that takes the
UML profile and the UML subset as input and produces instance model

36 CHAPTER 2. PAPER A

Bindings
Matched Rule

Helper

Source Model

Target Model

Figure 2.6: Structure of an ATL Transformation.

transformations as output.
Generally, an ATL transformation is composed of matched rules. Matched

rules define what the source element is and what target element it should be
transformed to. Also the rule contains bindings, which define how attributes
of a source model element should be transformed into attributes of a target
model element. ATL transformations also have helpers, which are functions
that can be called within ATL rules. Generating an ATL transformation means
generating the rules, bindings in the rules and helpers as well. The code snippet
in Figure 6 shows an example of the structure of an ATL transformation.

To generate the matched rules of our transformations, we use information
from the Hive profile and UML subset. For example, when generating a
transformation that will transform a UML model to an Xtext model the
following is done.

• From the Hive profile, each stereotype that is not abstract is transformed to
an ATL matched rule. This matched rule will have one source which is
an instance of the metaclass extended by the stereotype and two outputs,
one corresponding to the extended metaclass and one corresponding to
the stereotype itself.

For example Listing 2, shows an example of a generated rule from a
stereotype called HiveMapToFunction which extends a metaclass called
Transition. This rule (Listing 2) will transform an instance of a UML
Transition which has the stereotype HiveMapToFunction applied to it
(Line 3-5 in Listing 2) to two model elements in the Ecore model. The
first element is an instance of a class called Transition (line 7 in Listing
2) which corresponds to the UML metaclass and an instance of class
called HiveMapToFunction (line 14 in Listing 2) which corresponds to
the stereotype.

• Each stereotype that is not abstract is also transformed to a helper that iden-
tifies the stereotype by name from the Hive profile in the transformation.
An example of a helper function generated is shown in listing 3 and this
helper function is generated from a stereotype called HiveMapToFunction

and is used to identify this stereotype from the profile. This helper func-
tion is called in the generated matched rule in line 4 of Listing 2.

• Properties in the stereotype are transformed into ATL bindings. Examples
of these ATL bindings can be seen in line 15 to 19 of Listing 2).

2.4. APPROACH 37

For instance line 15 shows that the value stored in the property called
threadId from the HiveMapToFunction stereotype will be stored in an
attribute called threadId in the resulting Ecore model.

• Similarly, properties from the UML metaclasses are transformed into ATL
bindings. Examples of these ATL bindings can be seen in line 8-11 of
Listing 2.

For instance line 8 shows that the value of the property named kind in
UML will be stored in an attribute called kind in the resulting Ecore
model.

1 r u l e HiveMapToFunctionStereotypedClass {
2 from
3 s : UML! Trans i t i on (
4 s . i sS t e r eo typeApp l i ed (thisModule .

HiveMapToFunctionStereotype)
5)
6 to
7 t : XTEXT! Trans i t i on (
8 kind <− s . kind ,
9 source <− s . source ,

10 t a r g e t <− s . ta rget ,
11 name <− s . name ,
12 extension HiveBaseMapToBehavior <− t1
13) ,
14 t1 : XTEXT! HiveMapToFunction (
15 threadId <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ threadId ’) ,
16 newTask <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ newTask ’) ,
17 t a s kP r i o r i t y <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ t a skPr i o r i t y ’) ,
18 act ionPackageF i l e <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ act ionPackageFi l e ’) ,
19 actionPackageName <− s . getValue (thisModule .

HiveMapToFunctionStereotype , ’ actionPackageName ’)
20)
21 }

Listing 2.2: Matched Rule created from a Stereotype

• For the metaclasses in the UML subset, each metaclass that is not abstract
is transformed into an ATL matched rule. For example in listing 4, the
UML metaclass named Class from the subset generated a rule called
ClassToClass. (line 1 in listing 4). This generated rule is used to transform
UML classes that are not extended by any stereotype. This constraint
can be seen in line 4 of Listing 4.

• Attributes and references of the classes in the UML subset are all transformed
into ATL bindings. This works well as long as there is a direct one to one
relationship of the attributes from UML to Xtext and vice versa (line 10
to 13 of listing 4).

1 he lpe r de f : HiveMapToFunctionStereotype : PROFILE! Stereotype =
2 PROFILE! P r o f i l e . a l l Ins tancesFrom (’ IN1 ’) −>s e l e c t (p | p . name=’

HivePro f i l e ’)

38 CHAPTER 2. PAPER A

3 −> f i r s t () . ownedStereotype−>s e l e c t (s | s . name=’HiveMapToFunction
’)−> f i r s t () ;

4 \end{Code}
5

6 \begin {Code } [{ATL Matched ru l e generated from a Class in the UML
subset . }]

7 r u l e ClassToClass {
8 from s : UML! Class (
9 s . ge tApp l i edSte reotypes () −> isEmpty ()

10)
11 to t : Xtext ! Class (
12 name <− s . name ,
13 ownedAttribute <− s . ownedAttribute ,
14 ownedOperation <− s . ownedOperation ,
15 ownedBehavior <− s . ownedBehavior
16)
17 }

Listing 2.3: ATL Helper generated from a Stereotype.

If the bindings from UML to Xtext do not have a direct one to one rela-
tionship (for example name to name), the HOT transformation needs more
information in order to create these bindings. This extra information is related
to the manual change that was made to the UML subset (discussed in Sec-
tion 4.1) that affected the Hive metamodel (in Ecore). These mappings are
stored in a trace model. The trace model we used is based on the ATL trace
metamodel [57].

For example if we are transforming from a UML model to an Xtext model
we know that the controlflow element in UML is not represented as a controlflow
in text but as a dependsOn attribute. Therefore in our trace model, we create
a trace rule called ControlFlow and add one link to it which has the source
element as the source of the controlflow and the target element as the dependsOn
attribute. Figure 7 shows an example of this trace model.

Figure 2.7: Example of a trace model.

Figure 8 summarizes how the two model transformations are obtained from
HOT.

2.5 Evaluation

To evaluate our approach we applied it to two parts of the Hive DSL at Ericsson:
the Hive Behaviour profile and the Hive Structure profile.

2.5. EVALUATION 39

Figure 2.8: Generating Model Transformations.

The transformation from UML profile to an Ecore model with the help of
a UML subset (as described in Section 4) worked for both the profiles. To
further test the solution, we had to analyse if there is any information that
gets lost or is added during the switch. To achieve this, we used three demo
models that are available at Ericsson which are created using the Hive profile
DSL. The demo models were provided as input to the transformation from
UML to Xtext to obtain an Xtext model. We then converted the Xtext model
back to UML using the transformation from Xtext to UML. The original UML
model was compared with the one generated from Xtext using EMF Compare
(see Figure 9). EMF Compare is an eclipse plugin that is used for comparison
and merging of EMF models [60].

Figure 2.9: UML to Xtext evaluation process.

From the comparison done, we found out that even though the models were
semantically equal, in some cases there were slight differences noted between
the UML models and the ones obtained after switching to text and back to
UML. On analyzing this we discovered that elements that had no names in
UML were causing problems when switching to text. This has been discussed
in details in Section 3.6. To overcome this we added an extra helper function
to the transformations that generates arbitrary names for model elements in
UML that were not named. This also implied that when switching back to
UML from the generated Xtext model, these names also appeared in the UML
model.

40 CHAPTER 2. PAPER A

Another issue with our approach was the loss of graphical layout of the UML
models. This is because we only transformed the semantic model and did not
store the layout information anywhere. After a transformation the diagrams are
lost and need to be re-generated. Regeneration uses the auto-layout that RSA
provides. We did not implement a solution for this but propose that one can use
incremental model transformations to solve the problem. Incremental model
transformation is the kind of transformation where instead of the transformation
creating a new target model every time, it checks which model elements are
changed and updates only those elements in the target model. The target
model is not recreated but rather updated with changes from the source model.
Section 6.2 provides a further discussion on this.

Another comparison was made when switching from instance models created
using the Xtext editor to UML and again back to Xtext. Since there were
no models available in text, new ones were created for the purpose of this
comparison. The comparison was made using the textual quick diff functionality
in Eclipse (see figure 10). This is a functionality that lets a user compare text
files side by side.

Figure 2.10: Xtext to UML evaluation process.

From this comparison, if a textual model had no comment inserted then the
resulting model transformed to UML and back to Xtext was identical to the
original text model. But when the text model had comments, these comments
were lost and making the resulting model not identical to the original model
during comparison. All the custom pretty printing that the user had made
in the text is also lost after transforming to UML and back to Xtext. This
challenge has been discussed in Section 3.3 and is due to the fact that the
transformation created a new model every time it was run. Here we also suggest
the use of incremental model transformations to solve this problem.

2.6 Discussion

This section discusses our approach in relation to the challenges that have been
identified in Section 3.

2.6.1 Addressed Challenges

Our approach addresses four challenges so far: Challenge 2.3.2, 2.3.5, 2.3.6
and 2.3.7. Challenge 2.3.2 is about synchronization, how can we keep graphical
and textual models in sync. With our current approach, for instance, when a

2.6. DISCUSSION 41

user is editing a model in one graphical view and decides to switch to textual
view, all the information that was in graphical view is transformed to a textual
version of the model. The vice versa is also true. This ensures that the models
are always in sync if the user does not edit the two different notations of the
same model at the same time.

Challenge 2.3.5 is about how to achieve a metamodel for a textual DSL
from the UML metamodel that has only the elements that are actually used
by the company. This has been done by manual identification of metaclasses
that are extended by the Ericsson DSL and metaclasses that are in use without
being extended by any stereotypes. This worked because Ericsson’s DSL
rarely changes. However for companies where their DSLs change frequently
automation of this step is a more suitable solution. There are approaches
being researched on how to obtain this subset of UML automatically. For
instance [55] suggested a way to split the UML metamodel into sub-metamodels
according to the diagram type. But this still requires the users to identify key
elements that are used in each diagram type. It also requires a user to build a
tool that can do the splitting.

In [61], the authors propose a model shrinking approach that preserves the
model elements’ types. In this approach, an instance model that contains all
the elements of the desired metamodel subset is needed. From this model, a
selector tool is written that can extract the classes from the metamodel and
create a metamodel subset. The metamodel subset is then shrunk to only the
necessary elements needed. This method is usable if one has existing instance
models that use all the classes that are needed in the subset of the UML.

Challenge 2.3.6 is about the fact that textual editors use qualified names to
make references between elements. In our approach this has been solved by
having a validation in the transformation that checks if model elements have
names. If not we generate unique names for these elements. The names that
we generate follow a pattern that corresponds to the type of model element
so that a user reading the text model is able to understand it. For example if
merge nodes are missing names we generate the names m1, m2, m3 and so on.

Challenge 2.3.7 is about how one can switch between models that have
errors. In our approach this has been addressed by putting a layer of validation
in the tool chain. Before transforming a model, one should validate the model
first. If the model is inconsistent, then all errors have to be fixed before the
model is switched. This is a prevention measure, thus future work is still needed
on this.

2.6.2 Proposed Solutions for Non-Addressed Challenges

Our approach does not solve three challenges, which are challenge 2.3.1, 2.3.3
and 2.3.4 . However, during the study, developed a proposal on how these
challenges can be addressed.

Challenge 2.3.1 which is about storage and versioning of models can be
addressed in the following manner. First by the organisation putting in place
a policy on which version of the model should be stored. For example they
can decide to store the text or graphical version or both. Either way, all the
designers should be aware of this policy. Second, with the policy in place then
Version control software to support versioning of the stored models should

42 CHAPTER 2. PAPER A

be put in place. Lastly if only one version is stored, automation mechanisms
should be implemented to make sure those working with the other version that
is not stored can work as smoothly as possible.

Storing both versions of the models also automatically solves challenge 2.3.4,
which is model references since all the references in graphical models will be
to graphical model elements and the links in textual models will be to textual
model elements.

We propose addressing challenge 2.3.3 which is about graphical layout
of the model and pretty printing using incremental model transformations.
Incremental model transformations will work if both versions of the models
(graphical and textual) are stored in the repository. Since the graphical and
textual models are related by transformations, making these transformations
incremental means that every time a transformation is executed, the target
model will only be updated on parts that have changed. This will keep the
layout of existing model elements in place.

Since we did not implement this solution, we cannot give definite answers
about its effectiveness. Moreover, we are aware of the limitations that incre-
mental transformation has, for instance when adding new model elements.
These elements do not have any layout information and they could be placed
anywhere in the diagram. The developer will have to arrange them manually
when the transformation is run. This problem can be addressed by using
automatic layouts which can be applied to the new and deleted model elements
and preserve the layout of the already existing model elements as much as
possible. This kind of auto-layout expands the model to make room for new
elements and shrinks it when elements are deleted from the model [62].

Also incremental transformations sometimes fail to maintain consistency
between models due to reasons like erroneous models, or changes in the source
model that have more than one way of being propagated in the target model.
This problem has been discussed in detail in [63].

2.7 Related Work

Due to the nature of the problem we explored, our related work is divided into
two parts. The first part discusses related work on using both graphical and
textual editors for a UML profile-based DSL while the second part is on how
to integrate/combine UML profiles with Ecore-based tools.

2.7.1 Graphical and Textual Editing for UML

There are various approaches that have been investigated for editing UML
models using textual syntax. Tools such as PlantUML [45], TextUML [64] and
PlantText [65] all aim at establishing a standard textual language for UML as
a GPL but none of them mention the use of profiles.

Other prototypes have been implemented to represent parts of the UML
metamodel as text. For instance in [66], a textual editor for the Action Language
for Foundational UML (Alf) has been developed based on Xtext. The textual
editor is implemented in such a way that it can be used to edit only parts of a
UML model and not the whole UML model. A different approach is proposed
in [67], where textual editors are embedded in graphical editors. This way

2.7. RELATED WORK 43

when modelling using graphics, designers have an option to bring up a text
editor as a pop-up box that they can use to edit model elements of graphical
models. Our approach differs from these, as we want to be able to view and
edit the whole model as a graphical or in textual model.

In [68] the authors describe an approach to use a textual editor to correct
UML models that have errors. They implement a prototype using tUML, which
is a textual concrete syntax for a specific UML subset. The subset supports
class diagrams, state charts and composite structure diagrams. In this case
the UML models are transformed to text and constraints are implemented in
the textual editor. The developer fixes the errors in the textual editor and
transforms the model back to graphical UML models. In this approach the
transformations are not generated but written manually.

When it comes to switching between graphical and textual views, [69]
proposes two approaches to facilitate the transformation of models that have
both graphical and textual notation (i.e. one model containing parts written
in UML and parts in text). The first approach is called Grammarware and
refers to a text to text transformation of the models. With this approach the
models are exported as text and transformation is done from text conforming
to one metamodel to text conforming to another metamodel. The second
approach is called Modelware and refers to a model to model transformation.
In this approach, a model containing the graphical and textual content is
transformed to a fully graphical model. This is done by converting the text
part to its corresponding model element in the graphical metamodel. Our
approach however proposes a way to have a DSL supporting both graphical and
textual views and the possibility to switch between them but not combining
text and graphics in the same model.

Projectional editing is another research area which investigates the use
of various concrete notations for editing models. Projectional editing is a
technology that displays the concrete syntax of models as projections. The
concrete syntax of the model is not stored but only the abstract syntax of the
model is persistent [70]. With projectional editing, the user edits the AST of
the model directly and what the user sees on the screen is merely a projection.
The main advantage of this technology is that the model can be projected
in various notations depending on what the user prefers (textual, graphical,
tabular or even a combination of these). However, this technology was not
adopted in this study because it adds a lot of overhead to developers when
it comes to learnability and familiarization [71]. Since projectional editing
does not rely on parsers and hence has no grammar, it provides a different
way of editing for which designers who are used to grammar based editors
need time to get used to. Also, current reasonably mature projectional editors
such as Jetbrains MPS [72] are also not yet integrated into Eclipse. For these
reasons our approach uses Xtext which allows the use of grammar and provides
functionality such as code completion and syntax highlighting out-of-the-box.

2.7.2 Bridging UML Profiles and Ecore DSLs

Due to the fact that one of the problems we had was how to combine UML
profiles and Ecore, we also include related work on how to bridge UML and
Ecore. The state of the art in this area is described in the following.

44 CHAPTER 2. PAPER A

Most research on the field of bridging UML and Ecore DSLs have focused on
the automatic generation of UML profiles from an Ecore-based DSL metamodel.
Some notable examples in this context is research done in [73], [74], [75]. In
these papers the main idea is how to systematically derive a UML profile from
an existing DSL metamodel.

There also exists research on how UML profiles and Ecore DSLs can be
used together. In [76] the author proposes a way to bridge UML and Ecore
using model to model transformations. They use ATL HOTs and Atlas Model
Weaver (AMW) for the transformation of models from UML profiles to Ecore
and vice versa. This approach is quite similar to our approach but they do not
generate the Ecore metamodel but assume that it already exists. In [77] another
similar approach has been presented to bridge UML profiles and Ecore DSLs.
In this work, the authors use a dedicated bridging language which is based on
the AMU metamodel. The bridging language defines a model with mappings
(weaving model) from UML profiles to an Ecore DSL and transformations are
generated from this weaving model. Our work is different from this because we
do not generate the UML profile but start with an existing profile. We also do
not use the AMW model but a trace model whenever the mappings from UML
to the Ecore DSL are not one-to-one mappings.

In [78], the authors describe how to interchange DSL and UML models using
UML profiles. They propose an approach of first automatically generating
a UML profile from a DSL metamodel (which can be in Ecore) using an
integration metamodel. The integration metamodel is used to create models
that define the relationship between the DSL metamodel and UML. From
such an integration model, a UML profile representing the DSL metamodel
is generated. During the generation of the UML profile, mappings from the
integration model to the profile are also generated. The transformation from
UML models to models conforming to the integration metamodel is done using
the mappings generated when generating the profile. The transformation from
the intermediate model to a model conforming to the Ecore DSL metamodel
is done using the mappings from the Ecore DSL to the intermediate model
which were manually created. This approach has the advantage of generating
mappings from UML to the intermediate metamodel automatically but since
the profile is generated from the DSL, it also means that the users using UML
can only use classes that are extended by the profile. Any un-extended class
will lack its mapping back to the Ecore DSL metamodel. Our approach solves
this by including a subset of the UML metaclasses that are used even when
the metaclasses are not extended by any stereotype.

In conclusion, most of the research on integrating textual and graphical
editors for UML profile-based DSL is still on prototype level. Even though there
are several text based tools implemented for UML as a GPL, the adaptation
of these tools has not been reported in an industrial context, making it hard
to know to what extent they can be used and what challenges they bring.
Furthermore, the work reported on bridging UML and Ecore is also on a
theoretical level accompanied with toy examples. None of the approaches
report an industrial application of the bridge except the work of Jouault and
Delatour in [68].

2.8. CONCLUSION AND FUTURE WORK 45

2.8 Conclusion and Future Work

In this paper we have presented an approach to integrate textual and graphical
editors for a UML profile-based DSL using model transformations. We have
shown that it is possible to have the two editors working in the same Eclipse
environment. Even though this study has been carried out in one company,
the results can be generalized to any company using a UML profile-based
DSL that wants to additionally have a textual editor for it. We have also
presented challenges that are encountered in industry when combining a UML
profile-based graphical editor with a textual editor.

For future work we propose further research on how to effectively and
automatically obtain a UML subset from the UML metamodel. Also research
should be done to investigate ways to maintain the layout of graphics and
format of text when using multiple editors. As mentioned previously this
information is lost once a designer switches from one view to another and then
back. Another aspect that should be researched is how to store models and
how to keep these models in sync when working with version control tools such
as Git. As some designers can decide to model using text and others decide to
model using graphics, there has to be a standard policy for storage of these
models. Should they be stored as text or as graphics or should one store both
versions of the model? The research here could also shed light on what are the
challenges when storing textual models or graphical models or both.

In connection to storage of models, strategies should be developed for
merging models written using the different notations. For instance if one
designer is editing the model in text and the other one is editing the same
model using the graphical format, how will they merge these changes.

Inter-model referencing is also another area that requires further research.
Inter-model references here means that one model has references to one or more
elements in other models. For instance a graphical model can have references
to other graphical models. When it comes to switching between views this has
to be considered. Investigations are required on whether only one model should
be switched to textual syntax and keep its references to the graphical models,
or whether the referenced models will need to be converted to text as well.

Our study also investigated an efficient way of updating the DSLs and
textual editor using transformations. However we did not look into how the
updated DSL will affect the already existing models and how these existing
models can be migrated to conform to the new DSL. This is a very important
aspect and is also crucial future work.

46 CHAPTER 2. PAPER A

Chapter 3

Paper B

Persisting Software Traceability Challenges in the Auto-
motive Domain

S. Maro, M. Staron, J.-P. Steghöfer

In submission to Journal of Systems and Software

47

Abstract

In the automotive domain, the development of all safety-critical systems has to
comply to safety standards such as ISO 26262. Such safety standards require
traceability to be established between artifacts to ensure that resulting systems
are well tested and therefore safe. Traceability which is the ability to relate
artifacts created during development of a system, is therefore not only needed
to keep track of the large number of artifacts produced but also required for
safety certification. Despite the large body of knowledge on traceability, in
practice establishing traceability in the automotive domain is still challenging.
The aim of this paper is to understand what challenges still persist in practice,
the solutions used, and how these relate to the published state of the art.
To achieve this, we conducted a case study with a large automotive supplier
and a tertiary literature study on the challenges of traceability. We found 19
challenges from the literature of which 16 were also found in our case company.
Five of the challenges have been solved with solutions proposed in literature,
five are partially solved, while six remain unsolved. We focus our discussion on
unsolved challenges and propose solutions which could be feasible in practice.

48 CHAPTER 3. PAPER B

3.1 Introduction

Over the past 20 years, the automotive domain has witnessed a tremendous
increase of software deployed in cars. In today’s modern car, software con-
stitutes up to 40% of the production cost [79]. With upcoming trends such
as autonomous driving, the software is not only getting more complex but
also controls more and more safety-critical functions. The type of software
has also shifted from small isolated functions to systems that contain several
functions that interact and depend on each other [80]. Such complex systems
can cause life threatening accidents when not properly specified, designed,
implemented and tested. The number of artifacts produced during development
(e.g., requirements, design models, behaviour models, simulations and tests)
is large and their creation is usually distributed over various teams, including
teams from different companies due to the OEM-Supplier relationship. With
regards to the size of the systems, a typical high-end car consists of features
that amount to about 100 million lines of code. This is a very large number
as software in other domains has much less lines of code. For example, the
F-22 fighter jet has about two million lines of code and the Boeing 787 has
around 14 million lines of code [81]. In addition, it is not only the number
of lines of code which is high in this domain but also the number of other
artifacts. For instance the specifications of the systems in a 2004 car had
already reached 20000 pages at that time [2]. This can be overwhelming if
there are no standardized methods established to keep track of these artifacts,
their relationships and how they evolve.

In such situations, traceability, plays an important role. In this paper,
we define traceability as the ability to relate artifacts created during the
development of a system, thus following [6]. Traceability helps in understanding
which artifacts are connected to each other and how to keep track of which
features have already been specified, implemented and tested. Traceability
plays an even bigger role for maintenance tasks by facilitating change impact
analysis and improving understandability of the system for the developer who
needs to make changes in the system [82,83].

In order to realize the benefits of traceability, software development compa-
nies need to establish a traceability strategy that is aligned with their goals.
Defining and implementing a traceability strategy is not a trivial task, since it
requires a good understanding of the artifacts to be traced as well as the ability
to define meaningful links and to make sure the created links are useful [11].

On the one hand, there exists a large body of knowledge on traceability;
for instance between 1999 and 2012, 70 studies on traceability were published
in just the Requirements Engineering (RE) conference [35]. On the other hand,
in practice, traceability is either not established at all [84] or only established
since standards demand it [85] even in large software development companies.
Our study therefore investigated the following research question:

RQ 1: How are the solutions proposed in traceability literature relevant for
solving the challenges found in practice in the automotive domain?

To be able to answer this research question, we divided it into three smaller
research questions as follows:

RQ 1.1: What are the traceability challenges and solutions reported in

3.2. SOFTWARE DEVELOPMENT IN THE AUTOMOTIVE DOMAIN 49

literature?

RQ 1.2: What are the traceability challenges and solutions in practice in
the automotive domain?

RQ 1.3: Which of the traceability challenges in literature are also evident
in practice in the automotive domain and how have they been solved?

To obtain data for our study, we conducted a case study at an automotive
supplier company and reviewed 20 secondary publications on traceability. We
found 19 challenges from the literature of which 16 were also found in our case
company. Five of the challenges have been solved with solutions proposed in
literature, five are partially solved while six remain unsolved even though there
are proposed solutions in literature. This paper extends our work reported
in [86] in which we discussed challenges related to creation, maintenance
and exchange of traceability. This paper discusses additional traceability
challenges related to preparation and planning for traceability and the use and
measurements of traceability. We also discuss in detail persisting challenges
and give proposals for solutions viable in the automotive domain.

The rest of the paper is structured as follows: Section 2 describes the
characteristics of software development in the automotive domain and Section
3 describes our research method in detail. Section 4 presents the the challenges
and describes them from the perspective of the literature and what was found
at the case company. Section 5 provides a discussion of the results focusing on
the unsolved challenges. Section 6 discusses previous similar work, limitations
of the study are discussed in Section 7 and Section 8 concludes the paper and
outlines future work.

3.2 Software Development in the Automotive
Domain

As previously mentioned in Section 3.1, the amount of software in cars is
increasing at a fast pace. Software development in this domain is thus becoming
important due to the economic value it contributes. Compared to other
embedded systems development domains, development on the automotive
domain has the following challenging characteristics:

[a] Heterogeneous nature of systems developed, ranging from comfort systems
such as infotainment systems to safety-critical systems such as braking
systems;

[b] Inter-dependencies between various functions deployed. There is an
increase in the amount of sub-systems that need to communicate to make
a certain functionality work. Krüger and colleagues give an example of the
central locking system that has to interact with over 13 subsystems such
as individual door controls, speed monitors, light controls and security
alarms [87]. When not properly managed, this high-interdependency
can lead to unintentional feature interactions that in turn results to
failure [88].

50 CHAPTER 3. PAPER B

[c] Large number of variants which makes it hard to manage, especially during
maintenance where one car can have different versions of different systems
installed. It is difficult to determine which versions are compatible [88].

[d] Development of long life products with a short time to market, and
real-time systems that have special constraints on safety, security and
reliability. This means that although there is a need to deliver fast inorder
to remain competitive in the market, there are also very strict safety
standards (e.g., ISO 26262) that need to be followed to ensure only safe
products are released.

[e] OEM-Supplier relationship. Although some components are developed
inhouse by the OEM, most of the components are developed by suppli-
ers [89]. Due to the fast time to marker constraint, the components are
usually developed by various suppliers and all these need to be integrated
at the OEM. The task of the OEM has therefore evolved from assembling
hardware parts to also integrating software systems [90,91]. Due to this
setting, the whole development process becomes complex since there
are many people involved and likely located in different geographical
locations which makes communication difficult. In addition, the OEM
gives blackbox requirements to the suppliers which means that in case of
failure during integration it is difficult to find errors in these subsystems
and also harder to modify them [79, 88]. One way to reduce the com-
plexity is having more than one level of suppliers for the OEM, the first
tier supplier (also known as system suppliers [92]) have direct contact
with the OEM and get contracts to deliver larger systems. These first
tier suppliers then outsource parts or some of the components to second
tier suppliers. Second tier suppliers can also outsource parts or some of
the components to third tier suppliers [93]. This requires standardized
interfaces that need to be agreed upon with all parties involved in order
to ease the integration tasks. For safety-critical components, it is also
important for OEMs to make sure that the suppliers involved do follow
the safety standards in place.

3.3 Research Method

The aim of our study is to answer the following research question:
RQ 1: How are the solutions proposed in traceability literature relevant for

solving the challenges found in practice in the automotive domain?
To answer this research question, we needed to collect the challenges from

literature and from the real world. Therefore we used two types of research
methods: a case study with an automotive supplier and a tertiary literature
review. The case study provided data on which challenges exist in practice
and their solutions if any. We conducted the case study according to the
guidelines proposed in [37]. The tertiary literature review provided data on
the challenges and solutions in the literature. Before conducting these two
studies, we defined the scope that is relevant to us and which both studies
will cover. Our scope (depicted in Figure 3.1) indicates that we distinguish
three different traceability categories(Preparation and Planing, Establishment

3.3. RESEARCH METHOD 51

ExchangePreparation	
 and	
 Planning Establishment Outcome

Purpose	
 of	
 Trace	

Links

Trace	
 Link	
 Types

Artifact	
 Types

Creation

Update/Maintenance Exchange	
 between	

Teams

Exchange	
 between	

CompaniesUses

Measurements

Challenges

Processes	
 and	
 Tools

Figure 3.1: The scope of the study

Planning	

Case	

Study

Observation	

and	

Interviews

Data	

Analysis	
 and	

Synthesis

Database	

Search	
 for	

Papers

Excluding	

by	
 Title	
 and	

Abstracts

Excluding	

by	

Screening

Inclusion	
 by	

Snowballing

Extraction	

of	

Challenges

Comparison	
 of	

Challenges Results

List	
 of	

Challenges	

in	
 Literature

List	
 of	

Challenges	

at	
 Company

Case Study

Tertiary Literature Review

Figure 3.2: Summary of the Research Method

and Outcome) which are inspired by the generic traceability process model
defined by Gotel et al. [11]. We used this model because it contains most of the
activities needed for establishing traceability. This model is also well-known in
the traceability community and since its definition it has been used in other
research for instance in [26, 94, 95] as a basis for understanding and describing
traceability.

In the model, the Preparation and Planing category, focuses on the processes
and tools involved when preparing to include traceability in a company or a
particular project. The Establishment category deals with the processes and
tools involved in the actual creation and maintenance of traceability links. The
Outcome category focused on how the links are stored and how they are actually
used after they have been established. Since we are studying the automotive do-
main where the OEM-Supplier relationship means that artifacts are exchanged
between companies, we added a fourth category called Exchange with the
sub-categories exchange between teams and exchange between companies.

The details of the tertiary literature review are described in Section 3.3.1
and of the case study are described in Section 3.3.2. The entire research process
is summarized in Figure 3.2.

52 CHAPTER 3. PAPER B

3.3.1 Tertiary literature review

Our tertiary literature review followed the guidelines for conducting a systematic
mapping study as proposed by [96]. The guidelines indicate that a systematic
literature study should include five steps which are Definition of research
questions, Conduct search, screening of papers, Keywording using abstracts and
Data extraction & mapping process. The subsections below describes how these
steps were carried out in our study.

3.3.1.1 Definition of Research Questions

Since the main aim of our research is to answer the this question “How are the
proposed solutions in traceability literature relevant for solving the challenges
found in practice in the automotive domain?”, from the literature study we had
to identify both traceability challenges and solutions. Therefore our literature
study has to answer the following sub research question:

RQ 1.1: What traceability challenges and solutions are reported in
literature?

3.3.1.2 Conducting the Search

Since this is a tertiary literature review, our aim was to find literature reviews
published on traceability in the domain of computer science. We searched three
databases : Scopus, ACM Digital Library and IEEE Xplore. The search string
used was “Traceability AND (Literature Review OR Review OR Literature
Survey OR Survey)” for Scopus and ACM Digital library and for IEEE Xplore
the string used was “(“Literature Review” OR “Review” OR “Survey” OR
“Literature Survey”) AND Traceability”. This search led to a total of 222 papers
which were reduced to 199 by removing duplicates.

3.3.1.3 Screening of Papers

By reading the title and abstract, we selected papers that are relevant to our
study using the following inclusion criteria:.

[a] The paper reviews literature on traceability.

[b] The paper is published in a peer-reviewed venue.

[c] The paper is in the field of computer science.

[d] The paper mentions challenges of traceability and give a description of
the challenges.

[e] The paper is in English.

The initial screening in which we read the title and abstracts left us with 21
relevant papers. After this we further read the introduction and conclusion of
the papers and excluded eleven more papers because they did not fulfill criteria
number one (The paper is reviewing literature on traceability) and four (The
paper mentions and discusses challenges of traceability). From the remaining
papers we also followed the citations (snowballing) to look for papers that

3.3. RESEARCH METHOD 53

Preparation	
 and	

Planning

OutcomeCreation	
 and	

Maintenance

Knowledge	
 of	

Traceability Tool	
 Support

Human	
 Factors

Organization	

and	
 Processes

Exchange	
 of	

Traceability

Uses

Measurement

Exchange	

between	
 Teams

Exchange	

between	

Companies

Challenges	
 of	
 Establishing	
 Traceability

Figure 3.3: Categories of Challenges of Establishing Traceability

specifically researched challenges of traceability. This led to an addition of ten
more papers. In the end, we had identified a set of 20 relevant papers.

3.3.1.4 Data Extraction and Classification

We examined all 20 papers, extracted the challenges and solutions they report
and listed them in a spreadsheet. After this process, we reviewed all the
challenges in the list and and devised the classification scheme depicted in
Figure 3.3. In the Preparation and Planning category, all of the challenges
found were related to the general understanding of traceability. For the
Establishment category, the challenges related to Creation and Maintenance
sub-categories overlapped significantly. We therefore merged the challenges of
these sub-categories. Afterwards we reviewed the challenges and discovered
that they could be further distinguished by technical issues in particular with
the tool support, human factors that involved employee personality and others,
and the organisational setting and established processes. The remaining two
categories Outcome and Exchange of Traceability remained the same as in our
conceptual model.

3.3.2 Case Study Design

This sub-section describes in detail how the case study was carried out. As
previously mentioned, the study followed the guidelines on how to conduct case
studies reported in [37]. The aim of the case study was to answer the following
sub-research questions:

RQ 1.2: What are the traceability challenges and solutions in practice in
the automotive domain?

RQ 1.3: Which of the traceability challenges in literature are also evident
in practice in the automotive domain and how have they been solved?

54 CHAPTER 3. PAPER B

3.3.2.1 Case and Subject Selection

The study was conducted in one of the world’s largest suppliers of automo-
tive components located in Germany. The company is multi-national which
means that development is distributed in various locations. The company
develops various types of automotive components ranging from hardware-only
components to software-only components to embedded systems which include
a software deployed on a certain hardware component. For this study we were
interested in traceability during embedded systems development.

Our case study has two units of analysis within the same company. These
are two departments both developing embedded systems at the company. We
selected these two departments because they already implement traceability in
their projects and develop safety-critical embedded systems for which traceabil-
ity is a mandatory requirement. The two departments were also interested in
improving their traceability practices, thus the topic was relevant and of interest
to them. To be able to understand how traceability is implemented throughout
the development life cycle, we conducted the study with seven participants in
the following roles: two senior experts working on traceability (one from each
department), four software system architects (two from each department) and
one functional developer who belongs to one of the departments. We selected
these roles in order to get a full picture on how development is done from
when a requirement is received to when it is implemented and tested. The first
role of senior expert is responsible for understanding what traceability needs
the department has, surveying feasible solutions, acquiring these solutions and
making sure that they are used in the department. The second role, system
architect is responsible for receiving requirements from the customer, break-
ing them down and assigning them to development teams. This role is also
responsible for managing the architecture of the systems that the department
is developing. The last role, developer is responsible for implementing the
features and testing them. In one department, the role of a developer and a
tester are split into two separate roles assumed by separate people.

3.3.2.2 Data collection procedure

We collected data through observing demonstrations and conducting semi-
structured interviews. Observations enabled us to understand the development
process and how traceability activities are carried out and the semi-structured
interviews enabled us to gather comparable data on the challenges. The model
describing the scope of our study and interview questions were sent to the
participants a week before the study took place. This was to allow them time
to prepare for the demonstrations and interviews. For each participant, we
started with the participant giving a demonstration on how they implement
traceability using the scope model as a guide. This was followed by a semi-
structured interview. The interviewer only asked questions which were not
answered by the demonstration part. Due to legal issues, the interviews were
not recorded but the interviewer took notes. The interviews and observation
for each person lasted between 90 minutes to four hours with breaks in between.
The longer sessions were with senior experts who explained and demonstrated
the traceability process in detail. The interview guide for these interviews is

3.4. RESULTS 55

available online1.

3.3.2.3 Analysis procedure

The data analysis started immediately after the observations and interviews
were completed. This was to ensure that all relevant information was recorded
for later analysis since the interviews were not recorded for legal reasons. The
interviewer drafted a summary of the sessions and what was learned from the
study and presented it to one of the senior experts for confirmation purposes.
During this presentation, the interviewer described the development process
and outlined the challenges that were learned from the interview. The senior
expert could then confirm the findings or correct the findings when things were
misinterpreted by the interviewer. The senior expert could also ask questions
anytime during the presentation. This exercise led to few changes meaning
that most of the initially collected information was correct. After this, we went
through the interview notes and identified all the challenges. We used the
categories in the interview model as analysis codes and placed each challenge
found in the appropriate category.

3.4 Results

This section reports findings both from the tertiary literature review and the
case study. The challenges found and their relationships are summarized in
Figure 3.4. For each challenge, we first describe the challenge, discuss the
solutions in literature and then compare them with the challenges and solutions
at the company.

3.4.1 Preparation and Planning

This sub-section describes the challenges and solutions in that are encountered
when companies are preparing to include traceability either in a specific project
or the entire company. In this category, all the challenges identified are
concerned with the availability and perception of the knowledge of traceability
either by management of the company or the employees.

3.4.1.1 Knowledge of Traceability

We found four challenges related to knowledge of traceability from the literature
and all these four were also found at the company. Two of the challenges have
been solved by solutions that were also found in literature while two have only
been partially solved using work-around solutions.

Lack of Knowledge and Understanding about Trace-
ability

Description: In order to prepare and plan for traceability in a company, both
the managers and developers need to have an understanding of what traceability

1http://tinyurl.com/za392b6

56 CHAPTER 3. PAPER B

Exchange	between	
Companies

Lack	of	Universal	
standards

Legal	Constraints

Conflicting	
Objectives

Organization	and	
Processes

Distributed	
Development

Human	Factors

Misuse	of	
Traceability	Data

Perceived	as	an	
Overhead

Tools							

Diverse	Artifacts	
and	Tools

Manual	Work

Lack	of	Flexible	
Tools	

Inaccessibility	 of	
Artifacts

Exchange	between	
Teams

Lack	of	Coordination

Knowledge	on	
Traceability

Lack	of	
Understanding

No	pre-defined	
metamodel

Level	of	granularity

Unclear	Traceability	
Process

Uses	of	Traceability

Lack	of	Visualization	
Tools

Traceability	Links	
Unused

Measurement	of	
Traceability

Assessment	 of	
traceability

Return	on	
Investment

Legend:

Solved UnsolvedPartially	Solved Not	Found A B A leads to B

Figure 3.4: Summary of Traceability Challenges. The solved challenges have a
green background, the partially solved challenges have a yellow background
and the unsolved challenges have a red background. The challenges that have
no background color were only in the literature and not identified in the case
study. This means that the data collected was not sufficient to say if these
challenges exist in the company. The directed arrows mean that one challenge
leads to the presence of another challenge.

is and its purpose. This understanding also needs to be aligned, meaning that
all the people in the company should have a common interpretation of what
traceability is. For companies, if the concept of traceability is not clear, then
the chances of failure are high.

Challenge and its Solutions in Literature: This challenge has been
reported by seven papers from our review [9, 26, 35, 85, 97–99]. In [26], for
instance, the authors report that some companies, especially those not working
in safety-critical domain, have no notion of the term traceability. Another issue
is that different individuals in the company have a different understanding of
what traceability is for [9]. The most common is that managers see it as a
mandatory task that needs to be done for certification purposes while developers
perceive it as simply bureaucracy and a waste of time [85,99]. In some cases
where traceability tools are well established, developers may perceive it as
important and useful for tasks such as impact analysis [98]. The literature
proposes that in order to achieve a common understanding of traceability
among all stakeholders, training is important. Early on, the company should
invest some time and effort to train its employees on what traceability is and
why they should do it. The training should also discuss what traceability

3.4. RESULTS 57

links are, what is complete traceability, what is traceability link quality and so
on [99].

Comparison to Case Company: This challenge exists at the company
but has already been solved. Given that the company operates in a safety-
critical domain, employees are already aware of the concept of traceability.
They base their understanding of traceability on the requirements defined by
the safety standard they need to comply to (A-SPICE). They even have expert
roles whose job is to understand what the standards require, form a strategy
on what they need to do to comply, and communicate this to the rest of the
company.

No Pre-defined Metamodel for Traceability in
the Company

Description: Traceability links can be of different types depending on their
purpose and which artifacts they connect. The link types can differ from
domain to domain. Traceability link types are usually defined in what is known
as a traceability information model or a traceability metamodel. Link types
can be generic and carry little or not semantics at all (for instance a link type
called “related to” that allows connecting arbitrary artifacts) or they can also
be specific and carry meaningful semantics (for instance a link type named
“tested by” that can only connect a requirement and a test in a sense that the
requirement is tested by the connected test). Defining traceability links that
carry domain specific semantics is advantageous as it allows for analysis of the
links based on the semantics. In order to define the traceability information
model, one needs to understand which types are needed and useful in the
specific domain.

Challenge and its Solutions in Literature: This challenge was re-
ported by three of the reviewed papers [9,25,100]. One of the solutions proposed
is to define a standard traceability information model which has been done
by [8] after making an observation in various companies. This model can indeed
be used as a starting point for companies to define their traceability metamodel.
However, since this is a domain-specific problem, another solution proposed is
to document domain-specific guidelines on how to define metamodels [9]. This
can be done through reporting case studies or experience reports.

Comparison to Case Company: At the company, this challenge exists
and its is partially solved. In both the two departments, the traceability
metamodel has already been defined. However, this has been done following
the A-SPICE standard. This is a good start for the company as there is no other
definition that they could currently follow. The downside is that the links are
designed to fulfill the standard but there is no guarantee that this is sufficient
to actually be useful to developers and architects developing the system. The
standard also only suggests generic links that do not take into account the
type of development the company has. For instance for systems developed as
product lines, there is no information on what links should be added. The two
architects interviewed reported that the company has product lines with a lot
of variants but they do not know how to include traceability links that take
into account variability. Another issue that is not addressed in the standard is

58 CHAPTER 3. PAPER B

how to trace to non-functional requirements such as performance and security.
The plan in the company is to use the current metamodel and collect data
from its users on what is missing or which links are not working in order to
customize the model for the company.

Level of Granularity

Description: When designing and planning for a traceability solution in a
company or even a project, one question that arises is “what level of granularity
should the traceability links created on?” For instance, should you link a
requirement to a test file, a test case or a particular line of code in the test
case? This is a challenge as if the links are too coarse grained then they do
not give enough information and if they are too fine grained their number can
become overwhelming and confusing to the end users.

Challenge and its Solutions in Literature: This challenge was re-
ported in two studies [100, 101]. The solution suggested is that the granularity
of the links should be defined explicitly in the traceability metamodel and
the traceability links should be checked regularly to ensure that the links are
created with the right level of granularity. This solution however does not
suggest which level of granularity a project or company should use.

Comparison to Case Company: At the company, this was observed as
a solved challenge. The company adopted the level of granularity suggested by
the V-Model which is also suggested by the A-SPICE standard. As a solution,
the system requirements are derived from customer requirements. The system
requirements are then broken down into functional requirements which could
be software requirements or hardware requirements. Software requirements
are further refined into detailed software requirements. The developer is then
assigned a detailed software requirement for implementation. Traceability links
are created from customer requirements to software requirements to detailed
software requirements. The detailed software requirement is then linked to
an implementation file that actually contains the code. The detailed software
requirement is also linked to a test.

Unclear Traceability Process

Desciption: Establishing a traceability strategy requires a traceability process
(how links are created and maintained) to be put in place. Such a traceability
process should be aligned with the software development process that already
exists in the company. It is important for the traceability process to refer
to work products of the existing development process. For instance, if a
company defines requirements as user stories, then the traceability to and from
requirements should refer to user stories and not something else that is not
created in the development process. If such a process does not exist or is
vaguely defined, links will be created in an ad hoc manner which results in low
link quality.

Challenge and its Solutions in Literature: Three of the papers
reviewed report this as a challenge [25,98,101]. In [101], the authors propose
that the solution is to create a traceability process based on the traceability

3.4. RESULTS 59

metamodel defined at the company. This process should be documented and
communicated to all stakeholders early on. Managers should be assigned
the role of making sure that this process is followed. In [25], the authors
propose putting in place an automated process of creating traceability links by
generating skeletons of artifacts from requirements and their traceability links
and let these skeletons be filled as development goes on.

Comparison to Case Company: At the company, this challenge exists
and has been partially solved. A traceability process already exists and although
it is a completely manual process, the developers and architects are aware of
which links need to be created based on the breakdown of the requirements
as discussed previously. In one department the requirements are defined as
use cases and therefore traceability links are created from use cases to design,
implementation and tests. In the other department the requirements are defined
as user stories and therefore the links are created from low-level user stories to
design, implementation and test. This challenge is partially solved as there are
currently no roles that can check if the process for creating traceability links
was followed. Sometimes during review meetings flaws of traceability links can
be detected and fixed.

Table 3.1: Challenges associated with Preparation and Planning for Traceability

Challenge from Literature Papers Found at
Company

Challenge
Solved?

Solutions
Match?

Lack of knowledge and
understanding about
traceability

[6, 9, 26,35,
85,98,99]

Yes Yes Yes

No pre-defined metamodel for
traceability in the company

[9,25,100,101] Yes Partially No

Level of granularity [100,101] Yes Yes Yes
Unclear traceability process [25,98,101] Yes Partially Yes

3.4.2 Creation and Maintenance

This section reports on challenges that are associated with the activities of
creating and updating the traceability links. The challenges are divided into
three categories which are tool support, human factors and organization &
processes.

3.4.2.1 Tool Support

We found five major challenges in the literature which were reported in this
category. Four of these challenges were also found at the case company. On
further analysis (as shown in Table 3.2) only two of these challenges have been
solved, one has a workaround solution, while two of them still remain unsolved.

Diversity of Artifacts and Tools

Description: In the software development life cycle there are a number of
activities such as requirements engineering, system design and so on. In many

60 CHAPTER 3. PAPER B

cases each of these activities utilizes a different tool and produces artifacts
in different formats. Most traceability tools either do not support linking to
artifacts located outside the tool or only support linking to specific tools and a
specific format [6, 99].

Challenge and its Solutions in Literature: Eight of our reviewed
studies report this challenge [6,9,82,85,98,99,102]. From the studies, there are
two different solutions for this challenge. The first option is to use one tool that
supports all the development activities. The advantage of such a holistic tool is
that since all the artifacts are stored in one database they can be accessed for
traceability link creation. The second solution is to integrate all the existing
tools so that it is possible to create traceability links between them. This is
however not a trivial task and requires a considerable effort especially if there
are many tools that need to be integrated [20].

Comparison to Case Company: In the case company, there are a total
of eight tools that are used for the different development activities. Tool
integration is a technically challenging task. Therefore, the company currently
uses implicit links to link to artifacts in different tools which are created by
copying IDs from one tool to another. This is not only time consuming, but
also error prone and does not allow for any analysis to be done on the links. To
overcome this problem, the company is planning to acquire a holistic tool that
will be able to store all of their artifacts and thus make them accessible for
creating traceability links. The main drawback of this solution as reported by
one of the architects is that it is hard to find a holistic tool that fully supports
all the activities the development life cycle. Currently, there are no holistic tools
supporting activities like simulations which means that even with the holistic
tool in place, other tools will still be used. Therefore this challenge is partially
solved as linking to tools outside the holistic tool requires implementation of
special plugins, which is costly in terms of time and might require rework as
the involved tools evolve.

Manual Link Creation and Maintenance

Description: The task of creating traceability links is one that is time con-
suming especially when it is done manually. Moreover, traceability links
immediately become outdated when the artifacts they connect evolve. This
means that they also need to be updated in order to remain correct. Updating
them is also time consuming and most of the time error prone.

Challenge and its Solutions in Literature: This is one of the most
frequently reported challenges in the literature. In our review it has been
reported by ten out of 15 papers [6, 9, 10,19,26,35,82,85,99,100]. To overcome
this challenge, the literature proposes the use of automated techniques to
generate and update the traceability links. Examples of these techniques are
machine learning [103], information retrieval [104], event-based techniques [99]
or model-driven techniques [105]. Most of the studies reporting these approaches
have been on a theoretical level with small examples and using students as
test subjects. For instance the literature review conducted by Borg et al. on
information retrieval approaches for recovering traceability links show that out
of 34 publications studied, only one had an industrial evaluation [104].

3.4. RESULTS 61

Comparison to Case Company: Interestingly, none of these solutions
was viable for the company. Generally machine learning, information retrieval
and event-based techniques have a low precision and therefore the chance
that false traceability links are generated is high. Given that the company
produces safety-critical systems and the traceability links are also used for the
certification process, false links are not tolerable. Model-driven techniques,
on the other hand, require that all the artifacts being linked to and from are
represented as models which is not the case for the company, where only some
of the artifacts are models.

Lack of Flexible Tools

Description: Since traceability link types can greatly differ from company to
company or even project to project, it is crucial for the tools to allow for custom
traceability link types to be defined. Providing a tool that can only be used in
a specific context is a limiting factor. Tools need to allow for customization of
which links can be created depending on the users’ needs.

Challenge and its Solutions in Literature: This challenge was only
reported by one study in our review [85]. The solution described is urging
developers of traceability tools to take into account how flexible the tool should
be. For instance traceability tools should be flexible in a sense that they allow
definition of custom links, allow linking to arbitrary artifacts, be able to define
which reports should be created from the links and so on. The more flexible
the tool, the better as companies can tailor it to fit their project needs.

Comparison to Case Company: This is one of the challenges that
the company has solved. For requirements management, they have adopted
DOORS2, a tool that is flexible and allows for definition of custom traceability
links. Out of the box, the tool allows definition to different types of links to link
to and from requirements. Linking to other artifacts that are stored outside
the tool can be done through OSLC3 (Open Services for Lifeycle Collaboration)
which is a standard for sharing artifacts across tools. For artifacts that do
not have OSLC representations, special attributes in the requirements can be
defined to store IDs or names of artifacts that are outside the tool. While OSLC
enables creating links to artifacts in external tools, maintaining consistency of
these external links is a challenge as when artifacts evolve in their tools, these
changes are not propagated to DOORS for the links to be updated accordingly.

Inaccessibility of Artifacts

Description: When creating or updating a traceability link, it is crucial to
have access to the artifacts that need to be connected by the traceability link.
In a situation where a project contains a large number of artifacts, tool support
is needed to assist in locating the different artifacts. It is very cumbersome if
one has to search through hundreds or even thousands of elements manually.

Challenge and its Solutions in Literature: Only one of the reviewed
papers mentioned this challenge [15]. The solutions proposed is that the com-

2http://www.ibm.com/software/products/en/ratidoor
3http://open-services.net

62 CHAPTER 3. PAPER B

pany, through tools, should ensure that users have all the necessary information
and access to the artifacts needed to create traceability links. Tools should
provide features such as search by ID or keywords, to make it easy for the users
to find the artifacts they need.

Comparison to Case Company: For the case company, this is not a
challenge as the tools they use have the ability to search for and locate specific
artifacts in an easy way. For traceability links involving artifacts stored in
different tools the user still needs to copy the ID from one tool to another.
Moreover, every tool has a search functionality.

Table 3.2: Challenges associated with tools

Challenge from Literature Papers Found at
Company

Challenge
Solved?

Solutions
Match?

Diversity of Artifacts and
Tools

[6, 9, 82,85,
98,99,102]

Yes Partially Yes

Manual Link Creation and
Maintenance

[6, 9, 10,19,
26,35,82,85,
99,100]

Yes No

Lack of Flexible Tools [85] Yes Yes Yes
Inaccessibility of Artifacts [15] Yes Yes Yes

3.4.2.2 Human Factors

In this category we found two main challenges that have been reported in the
studied literature. As shown in Table 3.3, only one of these challenges was
found at the case company.

Misuse of Traceability Data

Description: This challenge refers to the fact that in some situations, people
responsible for creating and maintaining the traceability links have a fear that
this data may be used against them, e.g., during performance appraisals. This
happens especially when developers need to create links from artifacts they are
responsible for to for example bugs reported by users.

Challenge and its Solutions in Literature: This challenge has been
reported by three of our reviewed literature [9, 85,98]. The authors describe
that employees have a fear that traceability data can be used against them and
threaten their job security. This is an inappropriate use of traceability data
as the data is supposed to be used for quality assurance of the system rather
than used for judging employees’ performance. The studies propose that both
management and employees need to be educated on what traceability is and
what the potential benefits are.

Comparison to Case Company: At the case company, this was not part
of the challenges that we identified. However, the company has a system that
already logs user activities with respect to creating and modifying development
artifacts. If there is a problem in the system it is easy to identify who was
working on the artifact and contact them about the problem. This data is

3.4. RESULTS 63

not used for performance appraisals. This indicates that the development
environment is already very transparent thus employees do not have this fear
of misuse of traceability links.

Perceived as an Overhead

Description: In situations where traceability links are created manually,
developers usually perceive this as an extra activity that they need to do on
top of their daily work. Since the people creating the links are often not the
ones that end up using them, they see it as doing a job that only benefits
other people. This is a problem as they become demotivated and assign a low
priority to this task, which can lead to either wrong or missing links.

Challenge and its Solutions in Literature: Four of our reviewed
studies report this challenge [15,26,98,99]. Proposed solutions for this problem
are to ensure that the traceability links created provide immediate benefit to
the user who is creating the links. This can be done with tools that enable
quick navigation from one artifact to another or visualization techniques that
give users an overview of the connection between different artifacts.

Comparison to Case Company: At the case company this is a chal-
lenge, due to the break between tools and the fact that implicit links are created
between artifacts in different tools. It is hard for developers to get an overview
of the traces. Across tools they still have to find artifacts by searching for ID
thus do not see the immediate benefits of traceability. All of the interviewees
pointed out that being able to navigate easily using the traceability links
and having graphical representations of how everything is connected would
be a feature that would encourage them to create more correct and complete
traceability links. Allowing for easy navigation across tools requires integrating
the tools which is also not a trivial task as previously discussed.

Table 3.3: Challenges associated with Human Factors

Challenge from Literature Papers Found at
Com-
pany

Challenge
Solved?

Solutions
Match?

Misuse of Traceability data [9, 85,98] No
Perceived as an overhead [15,26,98,99] Yes No

3.4.2.3 Organization and Processes

In this category, we found only one challenge and this challenge has been solved
(see Table 3.4).

Complexity Added by Distributed Software De-
velopment

Description: In large organizations, it is a common phenomenon that devel-
opment activities are carried out at multiple sites. This adds complexity to

64 CHAPTER 3. PAPER B

traceability especially when the different sites need to share the development
artifacts. If the development infrastructure is not well set up, it can be very
hard to create traceability links between artifacts that are produced in different
locations.

Challenge and its Solutions in Literature: This challenges has been
reported by two of the reviewed papers. These papers propose a centralized
repository for storage of all the development artifacts [9, 15]. This way the
location of the developers will not matter as everything is centrally stored and
shared. Such a repository also needs to be guarded by an access control system
to make sure that the right people have access to the artifacts they need.

Comparison to Case Company: Essentially, this is not only a trace-
ability problem, but a distributed software development problem in general.
The company has solved this challenge by having centralized repositories where
the artifacts can be stored and different developers are given access rights
accordingly. This is in line with what the literature proposes.

Table 3.4: Challenges associated with Organization and Processes

Challenge from Literature Papers Found at
Com-
pany

Challenge
Solved?

Solutions
Match?

Distributed software
development

[9, 15] Yes Yes Yes

3.4.3 Outcome

In this section, we report on challenges that are related to the outcome of the
traceability process. The section is divided into two subsections which are Use
of Traceability containing challenges encountered when using traceability links
and Measurement containing challenges associated with measuring the quality
of the traceability links.

3.4.3.1 Uses of Traceability

For this category, we found two challenges. One of this challenge has been
partially solved and one challenges is unsolved.

Lack of Proper Visualization Tools

Description: When traceability is properly established, it can result in a
large number of links, in particular if the project consists of a large number
of artifacts. The end users of these links need proper visualization tools in
order to understand them. This is currently a challenge as traceability links
are usually presented in large tables or lists where it is hard to comprehend
what they mean and even harder to detect flaws in them.

Challenge and its Solutions in Literature: This challenge was re-
ported by three of the reviewed papers [35, 99, 106]. In [106], the authors

3.4. RESULTS 65

point out that especially with automatically generated traceability links, it is
important to have meaningful graphical representations so that traceability
links can be easily inspected for inconsistent and outdated links. Visualization
techniques that will facilitate development activities are proposed in [35]. For
instance, it is useful to have a visualization that will allow the user to see which
requirements are already implemented and tested or which tests do not have
corresponding requirements.

Most common visualizations of traceability links are the matrix, hyper links
and graphical notations. In the matrix view artifacts are displayed in a table
with a mark on the cell where the artifact in the column and that in the row
are connected by a traceability link. In the hyperlinks view, traceability links
are displayed as hyperlinks from an artifact and can be clicked to navigate
to the connected artifacts. The graphical view represents the artifacts as
nodes and the links as edges in a graph. The authors in [99], propose that a
traceability tool should have a combination of the three representation as all
have advantages and disadvantages and are used for different purposes. The
authors illustrate that a project manager may need only an overview of the
project but a developer making a change to the system may find hyperlinks
more useful as navigation to and from artifacts is facilitated [99].

Comparison to Case Company: In the case company, this was also
reported as a challenge that is not solved. This was mainly noted by the
developer and the architects who suggested that the traceability links would
be more useful for them if they had better graphical representation. They
specifically asked for visualization where one is able to get an overview of the
project or a specific feature through the traceability links. Also the traceability
links that are created manually, for example by copying an ID of one artifact
and adding it in another, are not supported by the visualization available in
the requirements management tool used in the company.

Traceability Links are Almost Never Used

Description: It has already been discussed that establishing traceability
links takes a lot of effort and time. However, even with the amount of time
invested, apart from certification purposes, traceability links are either not
used at all or under-utilized. This is mainly due to lack of tools that facilitate
utilization (for instance, good visualizations) and lack of trust in the quality of
the traceability links maintained.

Challenge and its Solutions in Literature: This challenge has been
reported by two of the reviewed papers [99, 101]. In [99], it is reported that
traceability links are not used either because the links recorded are not helpful
to support development activities or because the tools do not provide an
efficient way of using the links. The authors point out the importance of
tailoring traceability according to the needs of the users and not just creating
traceability links for every artifact. In [101], the authors point out common
flaws that cause traceability links to be ignored. These flaws are for instance,
redundant traceability paths (mulltiple ways to define tracebility links from one
artifact type to another) which may be inconsistent, missing links, out-dated
links and traceability links being presented in large tables that are hard to

66 CHAPTER 3. PAPER B

comprehend.
Comparison to the Case Company: At the company, the main drive

for establishing traceability is due to the requirement from OEMs who need to
be A-SPICE compatible. Therefore the main use of the traceability links is for
certification purposes. During the interviews we also found that traceability
links are used to mainly track the progress of the project, for instance, to check
how many requirements already have test cases. The architects and developers
however noted that they would like to utilize the links more but that there is
no convenient way to do that at the moment. For instance, it is sometimes
necessary to copy IDs from one tool to another to search for the connected
artifact. This makes it very hard to get an overview of the system or feature
through the traceability links. This challenge is therefore partially solved and
would be fully solved if better tools that facilitate usage of traceability links
are put in place.

Table 3.5: Challenges associated with Uses of Traceability

Challenge from Literature Papers Found at
Com-
pany

Challenge
Solved?

Solutions
Match?

Lack of proper visualization
tools

[35,99,106] Yes No

Trace links are almost
never consulted or used

[99] Yes Partially Yes

3.4.3.2 Measurement

For this category, we found two challenges and all of them are unsolved.

Difficult to Assess of the Quality of Traceability
Links

Description: As previously mentioned, when traceability is properly estab-
lished, it can result in a large number of links. In order to trust and use the
traceability links, it needs to be possible to assess their quality by for instance
measuring how correct and complete the set of traceability links is. This is a
challenge as the most reliable assessment method is still manual checking.

Challenge and its Solutions in Literature: Three of our reviewed
papers note this as a challenge [6,35,101]. It is hard to assess if the traceability
maintained is of high quality as reported in [101], where the authors note that
even in safety-critical domains the traceability links submitted for certification
contain either missing links or redundant links. In [6], it is reported that
especially for generated traceability links, it is a challenge to evaluate their
correctness and completeness. One proposed solution is to attach confidence
values to the generated link and have a threshold based on the confidence
value to determine which links are correct. However, this approach does
not guarantee that the links will be complete or correct. Another solution

3.4. RESULTS 67

is to use the semantics defined in the traceability metamodel to assess the
traceability links. For instance if the metamodel defines that every requirement
should be linked to a test, then completeness can be assessed by checking if all
requirements have a link to a test. This however only guarantees completeness
and correctness will still need to be checked manually.

Comparison at the Case Company: At the case company, this is
currently one of the unsolved challenges. For traceability links that are created
between artifacts in DOORS, there is a possibility to check for completeness
easily since the tool allows identifying requirements with no links. Also since
the tool supports defining custom trace links, it is possible to limit which kinds
of artifacts a link can connect. The advantage of this feature is that it prevents
the creation of links that are semantically wrong. For links that are created
with artifacts that are not in DOORS this kind of check is harder as it requires
implementation of extra plugins that can do such checks. Correctness on the
other hand is still a problem and needs to be checked manually. This can be
done during review meetings but consumes a lot of time and effort.

Difficult to Measure the Return on investment

Description: Since the most common way of establishing and maintaining
traceability in practice is manually, this is a cost-intensive task that requires
the company’s investment both in terms of money for the tools and in terms of
time. It is therefore important for a company to be able to measure what is the
return-on-investment of the traceability links established. This is a challenge
as the cost is significant while the benefits of it cannot be easily measured.

Challenge and its Solutions in Literature: Seven out of the reviwed
papers report that traceability establishment is an expensive process [9, 10,
15, 82, 85, 99, 100]. This is because developers need to spend extra time to
create and maintain traceability links. Most managers think that a project
that implements traceability is more expensive than one which does not [85].
Currently there are no measurements that can provide evidence of these direct
benefits of traceability. Research proposes cost-benefit models that can be used
to show how much traceability has contributed to activities such as maintenance
and understandability [82], but these still need to be validated in practice.
This is not a trivial task as such benefits are mostly visible at the end of the
project. To minimize the effort spent on traceability creation and maintenance,
researchers have proposed Value-Based Traceability, which means tracing to
only high priority requirements as compared to full traceability [85].

Comparison to Case Company: The results of the case study indicated
that this challenge has not been solved. All of the interviewees including the
managers confirmed that they think traceability is expensive and they do not
have evidence of the value it adds to the projects. The only reason that justifies
investing in traceability is because it is a mandated task, they have to do
it. Value-Based Traceability is also not a feasible solution for them as full
traceability is a mandatory requirement for safety-critical applications. It is
also hard to maintain an exclusive list of high priority requirements that need
traceability as priorities can rapidly change over time.

68 CHAPTER 3. PAPER B

Table 3.6: Challenges associated with Measurements

Challenge from Literature Papers Found at
Com-
pany

Challenge
Solved?

Solutions
Match?

Assessing the traceability
maintained

[6, 35,101] Yes No

Return on Investment
(ROI).

[9, 10,15,82,
85,99,100]

Yes No

3.4.4 Exchange of Traceability Information

In this category we found three challenges from the surveyed literature. Two of
these challenges were also found at the company where one is partially solved
and one is unsolved as shown in Table 3.7.

3.4.4.1 Exchange between Teams

Lack of Coordination in traceability activities

Description: During software development different people with different roles
need to coordinate in order to work together. This becomes more important
in system development because various parts of the system are developed by
different teams and have to be integrated in the end. For example the software
team needs to coordinate with the hardware team to make sure that their
software will work on the hardware. This coordination is also important when
it comes to updating the traceability links. Different teams working on artifacts
connected by traceability links need to coordinate when maintaining the links.

Challenge and its Solutions in Literature: This challenge was ob-
served by two of the papers we reviewed [10,95]. In [10], value-based traceability
is proposed as a means to reduce the amount of links created and hence reduce
the time people need to coordinate on traceability link maintenance. In [95], the
authors report that change notification is a very useful feature for coordination.
When an artifact connected by a traceability link has been changed, then the
person responsible for the connected artifact should get a notification of the
changed artifact in order to make a decision on how the link should evolve.

Comparison to Case Company: At the company this was not observed
as a challenge. On further analysis this can be due to the fact that the require-
ments management tools has a feature called “suspect links”. It highlights the
links that connect artifacts which have changed. The user can thus investigate
the change and decide how to update the traceability link and the connected
artifacts. When working as a team, the suspect links are also propagated to a
developers local workspace when they pull changes from the repository. The
developers can navigate to see what has changed in connected artifacts by
clicking the suspect links.

3.4. RESULTS 69

Table 3.7: Challenges associated with with Exchange of Traceability between
Teams

Challenge from Literature Papers Found at
Com-
pany

Challenge
Solved?

Solutions
Match?

Lack of Coordination in
traceability activities

[10,95] No

3.4.4.2 Exchange between Companies

In this category, we found three challenges, two of which were also identified at
the company. One of the challenge has been partially solved even though there
was no proposed solution in literature and one is still unsolved.

Legal Constraints

Description: As mentioned before, in the automotive industry, development
activities are distributed between the OEM and different suppliers. This
implies that the different artifacts produced are also distributed. Establishing
traceability links that cross the organizational boundaries is a challenging task
due to legal and privacy implications. Some artifacts can be inaccessible to the
supplier because they are confidential to the OEM.

Challenge and its Solutions in Literature: In the reviewed literature,
two of the papers [95,107] mention this challenge but there are no proposals
for how to establish traceability when the artifacts are restricted due to legal
reasons.

Comparison to Case Company: The company also faces this challenge
when some of the artifacts they want to trace to cannot be shared by the OEMs.
Currently they do not have a solution for this. For some OEMs, the company
shares requirements (for instance in XML format) via web interfaces. The
OEMs can then limit which has fields can only be visible to the OEM and
fields that can be visible to both the supplier and OEM. This is an initiative
towards a sharing of confidential information.

Lack of Universal Standards

Description: To facilitate the sharing and transfer of traceability information
from one company to another, there is a need for a common standard. Currently
this does not exist and traceability information exists in various forms ranging
from implicit links established through copying IDs from one artifact to another,
to explicit traceability links that utilize formal notations such as models. Some
links are also stored together with the artifacts while others are stored in a
separate trace model with only references to the connected artifacts. Depending
on the tool the formats of the traceability links can also vary substantially.

Challenge and its Solutions in Literature: The literature proposes
the need for one standard that can be used by companies in order to facilitate

70 CHAPTER 3. PAPER B

this sharing and exchange of traceability information [82].
Comparison to Case Company: This is a challenge that the company

faces. For instance, OEMs can send requirements which could have traceability
links as well. But if the tools at the company cannot identify these links then
that information is lost and has to be created from scratch.

Conflicting Objectives

Description: When more than one company is involved in the development of
a system, it is important to align organizational objectives of all the companies.
This is true also for traceability. If the objectives for traceability in one company
contradict the ones in another, there might be a conflict. For example if the
supplier requests traceability information that is conflicting with the OEMs
objectives (for instance violates privacy policies), then this will not work.

Challenge and its Solutions in Literature: Only one of the reviewed
papers [107] reports this challenge. In [107], it is proposed that at the beginning
of the project, all the stakeholders need to align their objectives, including
traceability objectives. It is important to define early on what each stakeholder
requires and is expected to deliver in terms of traceability.

Comparison to Case Company: This challenge did not come up in the
study at the company. Since the company is a supplier, one of their objectives
is to satisfy the OEM. In this case, the demand for traceability actually comes
from the OEMs. The OEMs specifically asks the company to be compliant to
the A-SPICE standard in which traceability is one of the requirements.

Table 3.8: Challenges associated with Exchange of Traceability between Com-
panies

Challenge from Literature Papers Found at
Com-
pany

Challenge
Solved?

Solutions
Match?

Legal Constraints [95,107] Yes Partially
Lack of universal standards [82] Yes No
Conflicting objectives [107] No

3.5 Discussion

From the findings reported in Section 3.4, the challenges fall into three dif-
ferent categories: solved challenges, partially solved challenges, and unsolved
challenges. An overview of this is given in Figure 3.4. Although the partially
solved challenges are also interesting to analyze, in this discussion we focus on
the unsolved challenges to understand why they are not solved and propose
solutions that could be investigated to solve these challenges. Our analysis
is based on the case studied and therefore limited to the automotive domain.
Table 3.9 gives a summary of the persistent challenges and the solutions that
we propose.

3.5. DISCUSSION 71

In the Tools category the unsolved challenge is Manual work of establishing
and maintaining the traceability links. Several studies have focused on machine
learning [103,108], information retrieval [109] and rule-based techniques [110]
for automating the creation and maintenance of traceability links. However,
the chance that incorrect links are generated or links are missing is still high
which is a hindering factor for applications of such techniques in a safety-critical
domain, like the automotive domain. To overcome the problem of incorrect links,
researchers have proposed a solution where the generated links are manually
inspected by humans to remove links that are not correct. However, this is not
guaranteed, as in [111] the authors show that giving a set of generated links to
humans to sort out incorrect links, can lead to a worse set of traceability links.
Therefore, due to the fact that automated techniques can generate incorrect
links, which is in violation to safety standards such as ISO 26262, they have
not been adopted in the automotive domain.

Other automation techniques in literature are model-based techniques for
which traceability links are generated as a by-product of the transformation.
The drawbacks of model-driven traceability is that first it assumes that all
the artifacts are models, which is not the case in the automotive industry.
Even if models exist, they are independent, not connected by transformations.
Secondly, many transformation tools that support the generation of traceability
links have their own pre-defined notion of what the links should be. This
makes it hard to integrate them in existing traceability tools already used in
companies [25].

To practically solve this challenge, traceability tools have to enable the
combination of manual, semi-automatic and automatic techniques for creation
and maintenance of tracebility links. This is because all these approaches
have their advantages and disadvantages and can complement each other. For
instance to make sure the links are correct, one can rely on manual creation, but
to reduce the effort of maintenance automatic and semi-automatic techniques
can be used. Semi-automatic techniques include sending notifications and
warnings to users on traceability issues and suggesting probable solutions on
how to fix issues. This kind of solution has been investigated in [22,112] and
the authors show that the solution is promising when properly integrated into
the traceability tools. Moreover, to leverage model-driven approaches of link
creation and maintenance, the tools need to be able to combine links created
from transformations with the manually generated links so that they can all
be used together.

In the Exchange of Traceability category, the unsolved challenge is that
there is no common standard for exchanging of traceability links. To solve such a
challenge, both practitioners and researchers need to work together to establish
a traceability standard. For requirements, there is already a Requirements
Interchange Format (ReqIF)4, which is being adopted and provided as exports
from several requirements management tools. Extending such a standard or
creating a similar standard for traceability exchange will resolve this challenge.
It should be noted that, having the standard in place will not solve the diversity
of tools problem as data will still need to be exported from one company and
shared with another which can cause inconsistency issues as the data evolves.
Where not legally constrained we encourage suppliers and OEMs to share the

4http://www.omg.org/spec/ReqIF/1.1/

72 CHAPTER 3. PAPER B

Table 3.9: Proposed solutions for the unslved challenges

Challenge Solution in Literature Proposed Extensions

Manual
Work

Machine Learning [103],
Information Retrieval [104],
Rule-based [110] and Model-based
techniques [105]

Combine manual links with model-
based techniques to create links.
Use semi-automatic approaches for
maintenance (e.g., to push notifi-
cations of artifact changes to re-
sponsible users and suggest how
links should be updated)

Perceived
as an
overhead

Develop tools that require less
effort and produce immediate
benefits (e.g, ease of navigation),
training on importance of
traceability [15,26,98,99] .

Complement the traceability pro-
cess with gamification features.
For instance developers can be
rewarded based on the num-
ber of correct links they cre-
ate and projects can be awarded
points/badges based on complete-
ness of traceability links.

Lack of
visualiza-
tion
tools

Matrix view, Graphical view and
Hyperlinks [99]

Provide visualizations suitable for
end users needs. This can be done
by developing tools that enable
visualizations to be customised.
Users should be able to create dif-
ferent views (graphs, charts, matri-
ces, etc.) based on different data
from traceability links.

Assessment
of trace-
ability

Using a well-defined traceability
metamodel that can facilitate
completeness checks and prevent
invalid link creation [101],
event-based maintenance [112],
text-matching

Extend event-based techniques to
enable notifications to be sent to
artifact owners when links are cre-
ated involving these artifacts in or-
der to facilitate correctness checks

Return on
invest-
ment

Value-based traceability [113] Monitoring activities supported
by traceability to automatically
collect evidence on advantages of
traceability. Communicating this
evidence in the company

Lack of
Universal
standards

Create a traceability standard [82]

3.5. DISCUSSION 73

data repository to avoid such inconsistencies.

In the Use of Traceability category, the unsolved challenge is Lack of
Visualization Tools. At the case company, all the interviewees were not satisfied
with the visualization provided by their traceability tool. Our analysis shows
that this is attributed to the fact that most tools are not well adapted to
the requirements of using links in different scenarios. Instead, much of the
effort in developing these tools is dedicated to the functionality of creation
and maintenance of the links, rather than visualization. To solve this problem,
we propose that there is a need to first analyze different use cases in which
traceability links are used. An old study by Gotel et al. investigated different
scenarios in which traceability links are used. Conducting such a study in the
automotive domain will lead to usage scenarios that can be used to determine
which kind of visualization is appropriate for each use case. When this is clear,
it will be possible to add such visualizations to existing tools and support the
users when using traceability links.

In the Measurement of Traceability category, both challenges identified are
unsolved. The first challenge is Assessment of Traceability which refers to how
the quality of the maintained traceability links can be measured to ensure that
the links are both correct and complete. Measuring completeness is attainable
as long as the definition of completeness is clear in the organization and the
tools are able to include this definition. For instance a completeness metric
of traceability can be “every requirement should be linked to a test case”. If
there is a traceability link defined that links requirements to tests, then the
tools are able to filter out requirements with no links to test cases and flag
these for the people responsible.

Correctness on the other hand is harder to assess with tools. For instance a
requirement can indeed be linked to a test but in order to tell if the test is a
correct test for the requirement, manual assertion needs to be performed. This
is a very time consuming task. To tackle this problem, text-matching [114] is
one of the solutions that can be used to reduce the time spent on this task.
For instance a set of traceability links can be analyzed by a text-matching
algorithm to get a similarity score between the connected artifact. The links
with no similarity at all can be shown to the user for a manual check of their
correctness. This solution will only work if there are naming standards in place
and that ensure that there is always a text similarity between two connected
artifacts. Another solution to check for correctness is to have notifications when
links are created. This means that if a user creates a traceability link between
A and B, both the owners of artifacts A and B are notified of this traceability
link and can raise their concern if they think the link is incorrect and discuss
the link with the user who created it. This approach is similar to event-based
traceability proposed in [115] where the authors propose notifications to be
sent to the owners of connected artifacts when one connected artifact evolves in
order to update their artifacts too. We propose an extension of this event-based
traceability approach to include notifications when the traceability links are
created.

The second challenge in the Measurement of Traceability category is Return
on investment. This refers to measuring the benefit that traceability brings to
a project and the company in general. Most literature on traceability points
out benefits such as saving time and effort during impact analysis, tracking

74 CHAPTER 3. PAPER B

progress and improving understandability of the system. However, measuring
these benefits in an industrial setting is not a trivial task because it is hard
to isolate the effect of traceability. Also traceability benefits are visible once
the project has been going on for a while as developers leave the project and
those who remain forget things about the project. Here traceability is seen as
beneficial as it saves time by helping developers to understand the system and
easily navigate to artifacts. Value-based traceability is one solution proposed
to reduce the cost of creating traceability links [113, 116]. This means that
when planning for traceability, the companies need to assess why the links are
needed and how they will benefit from them. This will lead to links that are
actually useful for the project and thus beneficial.

In the automotive domain, the main reason for adopting traceability is
due to safety standards that demand traceability. This is however not a
good motivation as traceability is adopted because people are forced to do
it and not because they want to do it. Being able to quantify the benefits
of traceability is one way to show that traceability is indeed useful. For
this we propose monitoring the activities that are supported by traceability
links in the company in order to get data on how traceability links are useful.
Additional data can be obtained by conducting surveys with users of traceablity
and publicizing the results internally in order to promote its adoption in the
company even for projects that are not safety-critical and thus controlled by
safety standards.

In the Human Factors category, the unsolved challenge is that traceability
is perceived as an overhead. This challenge has two aspects: an organizational
and a technical one. The organisational issue is that the people creating and
maintaining the traceability links are not the ones using them. A relation to
the challenge of understanding traceability thus exists and sufficient training as
well as the realization of the immediate benefits of traceability links can help in
this regard. The technical aspect is related to the tools that are in use and that
offer little support in terms of visualisation, navigation, and analysis. If, based
on traceability links, the tools used in the industry can offer features such as
easy navigation, visualization, customized reports or even recommendation
for artifacts that can be re-used, then the developers creating the links will
see their benefits. It should be possible to customize the tools in a way that
benefits the creators of the links as well [117]. Another idea which we propose
is complimenting traceability tools with aspects of gamification to make the
task of creating and maintaining the traceability links more motivating and
engaging. This has been shown to work with other software engineering tasks
such as requirements analysis and testing [118].

3.6 Threats to Validity

In this section we discuss the threats to validity of our study and ways in which
we minimized these threats. We use the categories described in [37] but do not
discuss internal validity as our study was not not examining a causal relation.

3.7. RELATED WORK 75

3.6.1 External Validity

This threat refers to how generalizable the results of the study are. In our
case study, we applied data triangulation and interviewed seven employees
of three different roles to get data from different sources. However, since we
conducted the study in only one company, we cannot generalize the obtained
results without further replication of the study which is discussed as future
work in Section 3.8.

With regards to the literature review, the most recent publication was
published 2014, which reviewed papers up to 2013. There is a chance that
papers that propose newer solutions to our identified challenges have been
published since then.

3.6.2 Construct Validity

To minimize this threat we had to make sure that what we wanted to study
(Challenges of establishing traceability) was understood by the participants of
the study. To achieve this we first had a meeting with the two experts from
the two departments where we explained the intentions of the study. In return,
they also explained what their departments do. We also sent the interview
guide and scope to the participants one week before the study. As mentioned in
Section 3.3, the interviews we conducted were not recorded due to legal matters
but the interviewer took notes. To make sure that we did not misinterpret
our findings, we showed our initial analysis to one of the senior experts for
confirmation. This is known as member checking [119].

3.6.3 Reliability

To ensure that the results of a study are reliable it is important to make sure
that the study can be repeated by other researchers and get the same results.
While the settings of the interview cannot be replicated, the artifacts used such
as the definition of the scope of the study and the interview guide were well
documented and can be used for replication of the study.

3.7 Related Work

Regan and colleagues [9], conducted a literature review to identify the barriers
of traceability and their solutions from literature. In their work, they propose a
framework which consists of the categories of the challenges and their solutions.
Their framework is quite similar to the categories of challenges that we have
proposed. However, their work does not investigate if these proposed solutions
work in practice, which is something that our research does by complementing
the literature review with an industrial case study.

Further related studies are those by Torkar et al. [10] and Cleland et
al [26]. In [10], the authors performed a systematic literature review, with
the aim of identifying requirements traceability definitions, tools, practices
and challenges. They also complement their work with a case study in two
companies. In their results, they give a list of challenges and how they are
relevant for the two companies. That study is similar to ours but their literature

76 CHAPTER 3. PAPER B

review only includes papers up to 2007 while ours includes studies of up to
2014. Also in their research the studied companies are not in the automotive
domain but in the telecommunication domain and mobile applications domain.
In [26], the authors reviewed four recent industrial studies and interviewed eight
practitioners on traceability practices. The authors propose several research
questions that need to be investigated in order to achieve the seven desired
qualities of traceability proposed in [82]. These qualities are that traceability
needs to be purposed, cost-effective, configurable, trusted, scalable, portable
and valued. These quality attributes correspond to the findings in our study, for
instance for traceability to be trusted, there needs to be methods for assessing
the quality of links. Also in the study, one of the conclusions is that more
collaboration with industrial practitioners and researchers is needed in order
to ensure that the solutions from research are actually applicable in practice.
Our study is an example of the research proposed here.

Another study is by Kannenberg & Saiedian [85] where the authors study
the existing literature to investigate why software requirements traceability
still remains a challenge. They conclude that manual traceability methods
and existing tools are inadequate for the needs of the software development
companies.

3.8 Conclusion

The aim of this paper was to investigate which traceability challenges exist in
the automotive domain and how solutions proposed in literature are applicable
for solving these challenges. We conducted a case study with an automotive
supplier and a tertiary literature study on traceability research. Our study
found that there is a large overlap between the challenges generally reported in
literature with those found at the automotive company. 16 of the 19 challenges
found in literature were also observed at the company. However, only five
of these challenges have been fully solved at the company, five are partially
solved while six remain unsolved. The unsolved challenges are; 1) Manual
work of creating and maintaining traceability links, 2) Traceability activities
perceived as an overhead, 3) Lack of visualization tools, 4) Manual assessment
of links, 5) Hard to measure the return on investment of traceability and 6)
Lack of universal standards for exchange of traceability links. Based on these
unsolved challenges, we can conclude that current traceability practices are
costly and inefficient, with a return on investment that remains difficult to
prove in practice. For traceability to be widely adopted, there is a need for
both researchers and practitioners to investigate effective and cost efficient
techniques for traceability.

From the literature, there already exists some solutions proposed for most
of the partially solved and unsolved challenges, however, for the case we
investigated, these solutions were either tried and did not fully solve the
problem (for instance holistic tools to solve the diversity of tools problem) or
the solutions could not be applied due to constraints that are specific to the
automotive domain such as the requirement to follow safety standards such
as ISO 26262 (for instance using machine learning to generate links for safety
critical applications). It is therefore important to investigate how the proposed

3.8. CONCLUSION 77

solutions in literature can be tailored and made applicable to this domain. In
cases where tailoring of the solutions will not be enough, new approaches to
solve these challenges can be investigated.

In Section 3.5 of this paper, we have made some proposals on how the
existing solutions can be extended. For future work, we plan to investigate
how such extensions will be able to work in practice, by implementing and
trying them with practitioners. As part of our research we have developed an
open source traceability tool5 that allows manual creation of links to arbitrary
artifacts. Our concrete plans are to investigate how to combine automatically
created links (for instance from model transformations) with manually created
links. We will also investigate how to support users with semi-automatic
maintenance of traceability links through notifications and collaborative features
such as commenting on links. Furthermore, we will investigate how such a
dedicated traceability tool can be integrated in the development process of a
company. To contribute to the best practices of traceability, we also plan to
work together with our industrial partners mainly from the automotive domain
to provide different traceability metamodels for the different systems found in
this domains. For instance we will provide metamodels for traceability when
developing product lines and when developing multi-core systems.

Acknowledgements

This work has been sponsored by an ITEA project, AMALTHEA4Public6.

5https://projects.eclipse.org/projects/modeling.capra
6http://www.amalthea-project.org

78 CHAPTER 3. PAPER B

Chapter 4

Paper C

Traceability Maintenance: Factors and Guidelines

S. Maro, A. Anjorin, R. Wohlrab, J.-P. Steghöfer

31st International Conference on Automated Software Engineering
(ASE 2016), Singapore, Singapore, September 3-7, 2016.

79

Abstract

Traceability is an important concern for numerous software engineering activ-
ities. Establishing traceability links is a challenging and cost-intensive task,
which is uneconomical without suitable strategies for maintaining high link
quality. Current approaches to Traceability Management (TM), however, often
make important assumptions and choices without ensuring that the conse-
quences and implications for traceability maintenance are feasible and desirable
in practice. In this paper, therefore, we identify a set of core factors that
influence how the quality of traceability links can be maintained. For each
factor, we discuss relevant challenges and provide guidelines on how best to
ensure viable traceability maintenance in a practical TM approach. Our results
are based on and supported by data collected from interviews conducted with:
(i) 9 of our industrial and academic project partners to elicit requirements
for a traceability tool, and (ii) 24 software development stakeholders from 15
industrial cases to provide a broader overview of the current state of the practice
on traceability maintenance. To evaluate the feasibility of our guidelines, we
investigate a set of existing TM solutions used in industry with respect to our
guidelines.

80 CHAPTER 4. PAPER C

4.1 Introduction and Motivation

Traceability can be defined as the ability to relate different artefacts created
during the development of a software system. This also includes the ability to
identify stakeholders that have contributed to the creation of artefacts, and the
rationale that explains the need of these artefacts [6]. Traceability Management
(TM) incorporates the creation, maintenance, and use of traceability links. It
is an important concern that cuts across numerous domains and application
scenarios including tool integration [120], requirements management (RM) [28],
software product line management [121,122], model driven engineering [123–
125], and compliance with standards such as CMMI [126] and ISO 26262 [47].

All activities associated with keeping traceability links up to date and
consistent are referred to as traceability maintenance. Traceability links rapidly
become obsolete and effectively useless if they are not maintained as other
artefacts evolve [22]. As the manual maintenance of links is error prone and
expensive, a tool-supported approach to traceability maintenance is required
if the benefits of traceability are to be realised. The main contribution of
this paper are factors that impact traceability maintenance and guidelines on
how to address them when designing TM tools. This contribution is based
on an analysis of the spectrum of possible solutions extracted from interviews
with industry practitioners. A further contribution is an overview of how the
guidelines are realised in existing TM tools.

The promised benefits of traceability include improving the quality of
software systems by supporting tasks related to maintenance, evolution, docu-
mentation, testing, and reuse. Traceability makes these tasks less dependent
on individual experts and improves system acceptance by increasing under-
standability [6,11,82] A current challenge is, however, to cost-effectively enable
these promised benefits [22]. To ensure this, it is of the utmost importance to
guarantee that a high traceability link quality can be maintained in the face of
changes to connected artefacts.

Traceability link “quality” is typically quantified by a combination of
measurable properties including completeness, correctness, accuracy, precision,
confidence, etc. [11]. These properties can only be defined precisely in a
specific context and will thus be referred to collectively in the following as
the general level of consistency of all traceability links. There are some
automated approaches to maintain consistency, e.g., constraint-based [125],
grammar-based [127], or based on machine learning techniques [128]. In practice,
however, it often remains unclear why the particular chosen approach is feasible
or desirable. The data from our interviews reveals two main challenges: (i)
traceability links are still mostly created manually in practice as there is not
yet sufficient trust in the quality of automation techniques, and (ii) one must
cope with connected but highly heterogeneous artefacts across tool boundaries.

When designing and developing a TM solution that combines manual
and automated traceability maintenance techniques, multiple factors must
be considered. It is crucial to understand their consequences on traceability
maintenance. Our aim is to provide a systematic set of guidelines that can
be applied when establishing traceability maintenance as a crucial part of a
practical TM approach. These guidelines are based on a set of primary factors
that influence how the consistency of traceability links can be maintained.

4.2. FOUNDATIONS 81

For each factor, we discuss relevant challenges and suggest solution strategies
together with their respective consequences and implications. These factors
and guidelines constitute a novel contribution based on empirical evidence.
Thus, the main research question for this paper is as follows:

What are the primary factors that affect how and to what extent a TM solution
can provide traceability maintenance?

We conducted semi-structured interviews with 9 industrial practitioners to elicit
requirements for a traceability tool, and with 24 additional software development
stakeholders from 15 companies to provide a broader understanding of the
practical challenges involved in establishing a viable and flexible TM solution.

The rest of the paper is structured as follows: In Section 4.2 we introduce
basic terminology. Our main contribution, important factors and guidelines to
consider when addressing traceability maintenance, is presented in Section 4.3.
In Section 4.4 we evaluate the feasibility of our guidelines in practice by
investigating a set of existing TM solutions with respect to our guidelines. Our
paper concludes with an overview of related work in Section 4.5, threats to
validity in Section 4.6, and future areas of research in Section 4.7.

4.2 Foundations

As TM is a task that cuts across multiple application domains and technological
spaces, our terminology is chosen to be generic enough to incorporate both
manual and informal TM strategies. Research on bidirectional transformations
(bx) has many parallels to TM, including the central concept of consistency for
a given set of artefacts, as well as the requirement to be as technology agnostic
as possible. Our definitions are thus inspired by work on bx such as [129].

Let us refer to the “things” that we want to work with (modify, trace to
and from) as models. We do not care what exactly models are (this can be
very different from one domain to another), only that they can be modified
to result in other models. Let us refer to such a modification as a delta. We
are also interested in different “kinds” of models, which we shall refer to as
model spaces. A model space basically groups together all possible states of a
kind of model, connected by deltas. Again we do not care how such a model
space is exactly induced as there are many ways to do this (using metamodels,
constraints, grammars, etc.). Finally, we expect deltas to be composable and
that it be possible to get from any model to any other model in the same model
space. This is summarised succinctly in the following definition.

Definition 1. (Model Space) A model space M = (M,∆) consists of a set M
of models, a set ∆ of deltas, and functions src : ∆ → M , trg : ∆ → M that
map a delta to its source and target model, respectively. For A,A′ ∈ M , we
denote a ∈ ∆ as a : A→ A′, if src(a) = A and trg(a) = A′.

Every model space M = (M,∆) is connected: ∀A,A′ ∈ M ∃ a : A → A′,
and reflexive: ∃ id : M → ∆, a function mapping every model A to idA : A→ A,
a special identity delta. Finally, deltas can be composed via a binary operator
; : ∆ × ∆ → ∆, which is associative: (a; a′); a′′ = a; (a′; a′′), ∀ a : A →
A′, a′ : A′ → A′′, a′′ : A′′ → A′′′, and for which identity deltas are neutral:
idA; a = a = a; idA′ .

82 CHAPTER 4. PAPER C

Example. As our running example we consider a software development
project with (i) requirements in the ReqIF1 format, (ii) implementation models
as UML statecharts, and (iii) tests in form of C code. In terms of model
spaces we thus have three model spaces: (i) Mreq of all possible requirement
models connected by deltas representing all possible changes (e.g., addition,
deletion, and all means of editing a requirement), (ii) Muml of all possible
statechart models and deltas on statecharts, and (iii) Mc of all C programs
and deltas on C programs. One could additionally restrict the model spaces
to “well-formed” models, e.g., only considering C programs that compile, and
requirements/statecharts that comply to the ReqIF/UML metamodel (and all
constraints).

The concept of a “traceability link” is relatively difficult to fix, ranging
in the literature from typed to untyped, binary to n-ary, and interconnected
to isolated. In this paper, we choose not to define what a traceability link is
but rather to view a distinguished model space as a special kind of traceability
model space for connecting models from other model spaces. This means that
traceability models and deltas are just as simple or as rich as any other models
and deltas:

Definition 2. (Traceability Model) A traceability model space is a distinguished
model space Mτ = (Mτ ,∆τ). Models T ∈ Mτ are referred to as traceability
models.

Example. For our running example, we take a model-based approach, defin-
ing a traceability model spaceMτ via a meta-model with an n-ary traceability
“link type” connecting a requirement, multiple states and transitions in a state-
chart, and multiple tests (files with C code) together. We also decide to connect
such traceability links with an association “isRelatedTo”, effectively grouping
related traceability links. The point here is that traceability models can be
chosen to be just as rich as any other model.

The exact manner in which a traceability model “connects” a set of other
models is also left open and can range from explicit edges (assuming a graph-
based representation of models), implicit connections based on attribute values
(IDs), and connections based on auxiliary structures such as tables, etc. For this
paper, it suffices to introduce a consistency function that hides all such details,
and decides how consistent a given set of models together with a connecting
traceability model is. We choose to allow levels of consistency as opposed
to “fully consistent” or “completely inconsistent”, as a viable traceability
maintenance solution should be able to cope with partially consistent models
[130]:

Definition 3. (Consistency Function) Given model spaces M1 . . . ,Mn, and
a traceability model space Mτ , a consistency function is a function R : M1 ×
. . .×Mn ×Mτ → [0, 1].

Example. Given model spaces Mreq,Muml,Mc and traceability model
space Mτ from our running example, a consistency function R : Mreq ×
Muml ×Mc ×Mτ → [0, 1] can be specified as a pragmatic combination of
automated sanity checks and decisions to be made by a domain expert:

1Requirements Interchange Format (omg.org/spec/ReqIF/)

4.2. FOUNDATIONS 83

- Validity: R(mreq,muml,mc,mτ) := 0 if mτ is invalid, i.e., does not conform
to its metamodel. This means that “broken” traceability links (wrong types,
violated multiplicities, etc.) are not to be tolerated.

- Completeness and Correctness: if mτ is valid, then
R(mreq,muml,mc,mτ) := 0.2 · comp+ 0.8 · corr, where comp is the number
of “covered” requirements, i.e., requirements connected to a traceability link,
divided by the total number of requirements, and corr is the number of
correct traceability links divided by the total number of traceability links.
Correctness of a traceability link is manually determined by consulting a
domain expert.

Note that this consistency function penalises incorrect links more than missing
links, and can be extended analogously to handle uncovered elements also in
the statecharts and tests.

Given that it is possible to gauge the consistency of a set of models connected
by a traceability model, we can now define the task of traceability maintenance.
The central idea is to define a traceability maintainer on deltas instead of
just models, i.e., to supply information on how a set of models has evolved,
together with the old traceability model. The task of traceability maintenance
is then to compute a suitable delta on the traceability model. This is depicted
schematically in Fig. 4.1 as “completing the square” and is subsequently
formalised in Def. 4. This differs from general consistency restoration, where
the input deltas can also be manipulated [129]. In the case of traceability
maintenance, the expectation is that only the traceability model is changed.

...

...

...

A0
1 A0

n

T

...

...

...

A0
1 A0

n

T

7!$
R:

T 0

AnA1 A1 An

Figure 4.1: Completing the square

Definition 4. (Traceability Maintainer) Given model spaces M1 . . . ,Mn,
and a traceability model space Mτ , a traceability maintainer is a function
↔
R: ∆1 × . . .×∆n ×Mτ → ∆τ .

Example. For the consistency function R defined previously, the following

represents a traceability maintainer
↔
R:

[a] Delete all broken traceability links (fully automatic).
[b] Request a review of all traceability links by a domain expert to evaluate

correctness, supplying exactly what was changed as input. Incorrect
traceability links that cannot be fixed should be deleted (manual).

[c] Determine uncovered requirements and ask a domain expert to add
missing links (semi-automatic).

The assumption in Step (2), which is reasonable but does not hold in general,
is that a domain expert (or some software component if this step is automated)
does not need to review all links if provided with detailed change information.

A basic property of a useful traceability maintainer is that the maintainer
either improves (or retains) the current situation, or does nothing at all. This
expectation holds for manual and fully/semi-automated traceability mainte-
nance alike; if manipulating the traceability model worsens the current situation
then the changes are not worth applying.

84 CHAPTER 4. PAPER C

Definition 5. (Consistency Improving) For model spacesM1 . . . ,Mn, a trace-
ability model space Mτ , and a consistency function R : M1× . . .×Mn×Mτ →
[0, 1], a traceability maintainer

↔
R: ∆1 × . . .×∆n ×Mτ → ∆τ is consistency

improving if R(A1, . . . , An, T) ≤ R(A′
1, . . . , A

′
n, T

′), where δ1 : A1 → A′
1 ∈

∆1, . . . , δn : An → A′
n ∈ ∆n, and δT =

↔
R (δ1, . . . , δn, T) : T → T ′ ∈ ∆τ .

Further properties concerning, e.g., how “much” of the traceability model
is changed (the assumption being that “smaller” changes are preferred), can be
specified. The interested reader is referred to, e.g., [131] for a related discussion.

4.3 Influential Factors and
corresponding Guidelines

This section presents our findings and discussion based on data collected from
the following sources:

(S1) Two focus groups2 aimed at identifying traceability problems and
collecting requirements for a traceability tool from both industrial and academic
partners in the Amalthea4public project. The first session was with 5 partners
from 2 companies developing embedded systems for forest automotives in
Sweden and the second session was with 3 academic partners from 2 universities
and one industrial partner (automotive supplier) from Germany. The collected
traceability requirements were later refined through phone calls with project
partners outside Sweden, and face-to-face meetings with one industrial partner
in Sweden.

(S2) Semi-structured interviews3 with 24 software development stakeholders
from 15 industrial cases in Germany and Sweden. This was part of a larger
case study aimed at investigating general traceability management practices
in industry [132]. For this paper, we only use data related to traceability
maintenance collected from the study.

The majority of the cases (cases 1-6) are from the automotive domain,
followed by the domains of software development (cases 7-8) and telecom-
munications (cases 9-10). Other domains are IT services (Case 11), banking
self-service automation (Case 12), electrical equipment (Case 13), embedded
systems (Case 14), and industrial automation (Case 15). All interviewees had
working experience of at least one year in their current roles, including devel-
opment managers, quality managers, system software architects, and product
managers. The interviewees worked in projects varying in size, from four to
more than one hundred employees.

The interviews from S1 and S2 were recorded and transcribed. The data was
used in several analysis sessions with four researchers to identify key factors and
guidelines. We conducted cross case analysis to examine differences between
cases and identify practical needs. In the following, we present our findings,
referring to respective sources to support our arguments.

2http://tinyurl.com/jotqagy
3http://tinyurl.com/ht2hmzk

4.3. INFLUENTIAL FACTORS AND
CORRESPONDING GUIDELINES 85

4.3.1 Factor 1: Versioning

A realistic application scenario will involve multiple users working together
more or less concurrently on a common set of models. This implies that a
Version Control System (VCS) of some kind is most probably already present
and in use. The conclusion that versioning is a primary factor to consider is
supported by (S1), as our project partners require explicitly that versioning
be addressed appropriately in a proposed TM solution, and by (S2) as change
propagation and VCS solutions play an important role in all 15 cases.

The effect of versioning on traceability maintenance can be explained by
considering the possible input to a traceability maintainer, depicted in Figure 4.2
with labels ¶, ·, ¸. If versioning information is completely ignored ¶,
traceability maintenance becomes relatively challenging as the maintainer is in
effect presented with some versions (perhaps the latest versions) of all models
and is expected to update the traceability model. Without any provided
deltas, however, a maintainer can only assume that everything was created
from scratch meaning that all models, including the traceability model, must
be fully inspected. This corresponds to a so called batch or non-incremental
scenario, well-known from research on model synchronisation (cf. [133] for a
classification of application scenarios for model synchronisation). This situation
is problematic as it is difficult, if not impossible, to guarantee consistency
improvement in any way (the consistency of the previous “state” cannot be
determined as previous versions are unavailable). We are ready to formulate
our first guideline concerning versioning:

(G1) Version your traceability model just like all other models, especially
ensuring that it is included in any consistent tags (beta, release, etc.).
Strive to provide the same level of support and integration with your VCS
for your traceability models as for any other models.

Ample support for (G1) is provided by (S2) as the majority of our intervie-
wees explicitly stated that it would be beneficial to have a versioning solution
for traceability models. In some cases (3 of 15), a traceability model is indeed
versioned, connecting models in specific versions. This is stated by a software
architect from Case 2 to be a major advantage as “correct” traceability links
do not get “automatically incorrect”, but rather “outdated”.

We interpret this as meaning that the task of traceability maintenance is
well-defined in the sense that a traceability model T can be evaluated with
respect to the correct set of connected models without imposing automatic
updates, i.e., forcing a potentially problematic evaluation of T in the context

2
no versioning all models are

versioned
deltas can be

extracted from version
control system

1 3

...

...

... AnA1

A0
1 A0

n

T

T 0

$
R (�, T)

� {{
...

...

...

A0
1 A0

n

; ;

...

? ... ?

... AnA1

A0
1 A0

n

TT

T 0T 0

Figure 4.2: How versioning affects consistency

86 CHAPTER 4. PAPER C

of A′
1, · · · , A′

n (cf. ¶ in Figure 4.2).
Even if all models are versioned and tagged together with the traceability

model, the task of traceability maintenance remains challenging if explicit
deltas are not provided. This situation is depicted as · in Figure 4.2 and
corresponds to a so-called state-based scenario, where the traceability maintainer
is only provided with the previous and current versions of all models, and
must somehow determine the missing deltas (depicted as question marks in
the diagram). This is better than the batch case, but is still suboptimal as
the deltas have to be determined, e.g., by comparing the two versions. This is
problematic as it entangles consistency improvement with delta recognition,
two difficult tasks that should best be handled and controlled separately [129].
This brings us to our second guideline on versioning:

(G2) Ensure that you are able to extract explicit deltas for all models from
your chosen VCS.

Following this guideline means that you are able to provide all deltas
required for traceability maintenance. This is depicted as ¸ in Figure 4.2,
representing the ideal situation required for traceability maintenance as all
deltas are present.

Guideline (G2) is supported by (S2) as multiple interviewees describe their
expectations of how a traceability maintainer should work as follows: a main-
tainer must check if there are implications caused by evolving connected models.
If a versioning solution exists, the traceability model must be appropriately
updated with respect to the new versions of the models, i.e., one must decide if
there should (still) be a link or not. Furthermore, the vast majority of intervie-
wees attributed the most common source of inconsistencies to missing “deltas”
and corresponding change propagation. For example, a software architect from
Case 2 stated that most inconsistencies are probably introduced when perform-
ing changes (changing a signal) for which no information is provided about
what is connected and potentially affected (e.g., connected requirements). The
point here is that without explicit deltas, the entire traceability model must
be inspected, regardless of if the consistency maintainer is fully automated,
semi-automated, or manual. Even in an optimal situation with all deltas, there
is still no general guarantee that necessary updates to the traceability model
are “local” in any sense, but the chances of providing an “incremental” and
more efficient traceability maintainer are increased.

4.3.2 Factor 2: Tool Boundaries

A typical application scenario for traceability will involve multiple model spaces
and often many tools, with which the different models are managed. Planning
the scope and boundaries of a TM tool is, therefore, a crucial factor that has a
substantial impact on traceability maintenance.

Our requirements (S1) show that project partners require integration of
different VCS approaches, RM tools, development environments, and modelling
standards, to name just a few of the models spaces and tools involved.

Our interviews (S2) show an equally wide variety of stakeholders from
several disciplines, often organised in separate departments with several tools.
14 of our 24 interviewees stated that the heterogeneous nature of the used tools
makes traceability management in general, and traceability maintenance in

4.3. INFLUENTIAL FACTORS AND
CORRESPONDING GUIDELINES 87

particular, quite difficult in practice. Due to inadequate tool integration, it is
often difficult to establish connections between models stored in different tools.

In some cases, workarounds are provided using the manual mapping of
IDs (such as in Case 12 or Case 10). In Case 11, the developers reference the
requirements specification with the current version number as a source code
comment. Such ad-hoc solutions negatively impact traceability maintenance:
the relevant interviewees confirmed that the traceability links established in this
manner can only be managed manually and can get easily outdated. It is thus
important to plan for a heterogeneous tool landscape, with an understanding
of how this impacts traceability maintenance.

The range of choices is depicted schematically in Figure 4.3. On one end of
the spectrum ¶ is a holistic tool environment that directly supports all relevant
tasks, including traceability management. Everything is fully integrated in
essentially the same tool. On the other end of the spectrum ¸ is a separate
TM tool that only manages traceability models and must establish links to
models managed by other tools.

In between these extremes are hybrid solutions · where a mix is chosen.
While eliciting requirements from our project partners (S1), we were confronted
with contradicting requirements: some partners were interested in traceability
to and from primarily requirement specifications and thus suggested that the
envisioned TM solution incorporate direct support for RM. This was essentially
demanding a hybrid solution combining TM and RM in the same tool. Other
partners, however, were already using established RM tools and ruled out
changing or switching to a new RM tool.

Interviewees from 6 of our 15 cases from (S2) state that interorganisational
collaboration would benefit from using a common tool. For example, a developer
from Case 1 stated that it would be helpful to have a common platform to
communicate with suppliers. The problem is that there is no standard way
to communicate. Different suppliers work with different tools and approaches
(e.g., document-based, model-based). With a common tool or platform, one
would not have to worry about different standards.

Although a holistic environment might work in some cases — e.g., for
smaller companies such as in Case 14, where the collaboration with customers
is very close and they can get direct access to development artefacts — in
many scenarios this will not be feasible. In Case 6, for example, external
collaboration is accomplished using the export of specification documents and
e-mail exchange. It was stated that due to legal and intellectual property issues,

2
holistic, everything in the
same tool environment

mixed separate TM tool with
clear, narrow focus

1 3

TM

RM

VCS

Testing

Implementation

......

RM

VCS

Testing

Implementation

...... TM

Figure 4.3: Setting tool boundaries

88 CHAPTER 4. PAPER C

it is infeasible to use one central platform with other organizations. Even in
supposedly holistic solutions, such as Case 13 and Case 9, some traceability
links still exist that point to bugs or issues reported by the customer and are
thus “external” to the tool.

The Head of Software Quality Assurance from Case 12 points out that
having an “orthogonal tool that only takes care of traceability” ¸ might be
the solution. Such a tool would need to have good interfaces to existing tools
(for RM, test management, etc.) and allow the creation of links between models
managed by different tools. Our next guideline, therefore, encourages TM
solutions to provide direct access to their managed traceability models, as this
opens up the TM tool, simplifying integration with external tools:

(G3) Provide well-defined interfaces and easy, direct access to managed trace-
ability models.

Holistic and separate TM solutions both have advantages and disadvantages,
many of which were stated by our interviewees. With respect to traceability
maintenance, a holistic tool environment is able to guarantee a certain minimal
consistency, e.g., by forbidding changes that break traceability links, and by
forcing the user to first of all delete or adjust affected traceability links before
making changes that might cause inconsistencies. One could also weave trace-
ability link creation into a given process supported by the TM tool, ensuring
that certain traceability links are created eagerly, i.e., “captured” immediately
at certain steps in the process. This is advantageous and significantly simplifies
the task of traceability maintenance. Establishing such a holistic tool and
acquiring adequate acceptance for it is, however, challenging, especially in the
context of a multi-partner, open-source project such as Amalthea4public.

For a separate TM tool, every model apart from the traceability model is
external in the sense that the TM tool does not control where these models
are persisted and how/when they are changed. To enable this, a strategy
is required to connect elements in such external models to elements in the
traceability model. Possible solutions include establishing proxies for these
elements, whose creation and maintenance are handled by corresponding (tool)
adapters. With respect to consistency, this means that the maintainer has to
be able to deal with traceability links that can become broken due to changes
(no minimal consistency can be guaranteed), as well as support the delayed
creation (“recovery”) of new traceability links due to changes. This can be
substantially more difficult and less scalable than in a holistic situation.

Mixing these strategies, however, tends to amplify the disadvantages, leading
to a situation where there is an internal concept not only of traceability
models, but also of, for example, requirement models. This means that some
import/export mechanism must be provided to get existing requirements
specification into the TM tool, paired with the possibility of linking to external
models in other tools (e.g., implementation and test models). This results
in a complex and potentially confusing workflow, where some models are
treated differently than others. In the worst case, imported models might
still be changed externally, demanding some additional form of update or
synchronisation mechanism. Our guideline in this respect is thus as follows:

(G4) Aim for either a holistic solution, or a completely separate TM tool with
a carefully designed tool adapter concept. Avoid combining both strategies.

4.3. INFLUENTIAL FACTORS AND
CORRESPONDING GUIDELINES 89

Support for (G4) is provided by our interviews (S2): interviewees from 9 of
15 cases stated that having one common platform across disciplinary borders
would be beneficial.

To address the challenges of establishing a separate TM solution and
numerous tool adapters, we suggest:

(G5) Use a common standard and/or technological space as “glue” to simplify
the development of tool adapters.

This is supported by (S2) as, for example, a product manager from Case 5
and a system software architect from Case 6 state that having one tool for all
tasks is not feasible but that one should rather try to achieve traceability using
better interfaces across tool boundaries (such as OSLC4 or EMF5).

4.3.3 Factor 3: Configurable Semantics

The types and semantics of traceability links vary depending on the domain.
It is therefore impossible to implement generic but still adequately useful TM
consistency functions as consistency is defined based on the type and semantics
of the links. This means that “consistency” must be defined and tailored
to each domain, possibly even to specific processes, companies, and projects.
Defining consistency functions and corresponding traceability maintainers is
thus a central and recurring task for TM and should be supported as much as
possible by any TM approach.

Support for regarding such diversity as an important factor is provided
by (S1): Different project partners require different traceability link types. For
instance, partners having a product line approach express the need for links
related to variability management while those developing multi-core systems
require traceability links for task mapping purposes. Such diverse consistency-
related requirements cannot be addressed with a single, fixed definition of
a traceability model space, indicating that a suitably flexible configuration
process is crucial.

The data collected from our interviews (S2) also reveals a desire for diverse
semantics of links e.g., “satisfies”, “transferred from”, and “refers to” mentioned
by a quality manager from Case 7 or “verifies” and “fulfils” mentioned by a
system software architect from Case 6, to mention a few.

As motivation for configurable semantics, our interviewees stated: (i) im-
provement of traceability maintenance (the Head of Software Quality Assurance
from Case 12), (ii) to support understandability, especially for new developers
(a developer from Case 1), (iii) to simplify reviews and creation of status reports,
especially for large models (a project manager from Case 14), and (iv) to enable
better search and filter functions (a system software architect from Case 6).

A factor that greatly influences the complexity of consistency functions
and corresponding maintainers is the degree to which the traceability model
space captures domain-specific semantics and whether the links are explicitly
stored or exist implicitly based on, e.g., naming conventions. The spectrum
of choices ranges from traceability model spaces without any domain-specific
semantics at all (any connection is possible), to traceability model spaces

4http://open-services.net/
5https://eclipse.org/modeling/emf/

90 CHAPTER 4. PAPER C

with a rich domain-specific semantics (connections are restricted to only what
makes sense). The former simplifies TM tool support but shifts all complexity
to the consistency function and maintainer, while the latter captures some
level of consistency already in the traceability models, thereby simplifying
corresponding consistency functions and traceability maintainers.

To discuss the effect of implicit vs. explicit semantics on consistency mainte-
nance in more detail, Figure 4.4 depicts the range of choice divided into implicit
links ¶, e.g., based on conventions, and explicit links, which are further divided
into generic ·, fixed ¸, and domain-specific ¹.

Implicit links ¶ are connections between traceability models and other
models based on conventions such as naming schemes, identifiers, etc. For
example, when committing code for a bug fix into a VCS, the ticket number of
the bug report should be written in the commit message. Such conventions
are problematic as they can be hard to enforce and are often regarded only
as “best practice” leading to numerous violations or alternative and possibly
conflicting conventions.

Implicit links can be very difficult to check for programmatically, e.g., if
the referenced fixed bug is described textually (in a manner that is clear for a
human reader) instead of entering its unique ticket number (similar examples
could be observed in Case 10, Case 11, and Case 12). Explicit links, represented
by elements in the traceability models, are easier to analyse and keep consistent.
This brings us to our first guideline on configurable semantics:

(G6) Avoid implicit, convention-based traceability links and strive instead for
explicit links that can be checked with tool support.

Explicit links can vary substantially regarding the degree to which domain-
specific semantics can be captured. Generic links ·, are all of the same basic
“type” and can be used to establish connections between anything. This is
advantageous for two reasons: (i) it is easy to provide generic tool support,
and (ii) such links are flexible in the sense that connections can be established
even in unforeseen situations.

From the point of view of consistency maintenance, however, almost all
complexity is shifted to the consistency function and maintainer, which have
to determine consistency based on the context of established connections. This
is not only challenging but can even be impossible in some cases, if there
is not enough context information present to retrospectively determine what
such a generic link actually means. The disadvantages of generic links can be
addressed by allowing additional meta-information to be embedded in links.

In an attempt to retain the advantages of generic links with respect to generic
tool support, a common strategy is to provide a rich, but fixed traceability
model space ¸. This means that the TM solution provides, e.g., numerous

2
implicit, based
on conventions

generic domain-specific
1 43

fixed

explicit

Figure 4.4: How rich are your traceability models?

4.3. INFLUENTIAL FACTORS AND
CORRESPONDING GUIDELINES 91

attributed link types and relations that are, however, fixed with no or only
very limited possibilities of extension. This is certainly an improvement over
implicit or generic links, but the fixed model space might be either too complex
or not rich enough for a certain domain, process, or company. In such a case,
complexity is again shifted to the traceability maintainer as it is impossible
to embed the required semantics into traceability models. The advantage of
this approach is that the TM solution can provide a substantial amount of
functionality and consistency checking out-of-the-box.

Finally, explicit links can be completely domain-specific ¹ if the TM solu-
tion allows the underlying traceability model space to be swapped. This enables
domain-specific semantics to be represented, e.g., by appropriate attributes,
types and relations. The advantage of this approach is that the TM solution
can be adapted to a wide range of domains and applications without sacrificing
semantics. Traceability model spaces can be chosen to be very rich, making
it impossible, e.g., to create “wrong” links. A challenge with this approach is
that generic functionality provided by a TM solution is limited. Substantial
effort must be spent on re-implementing domain-specific parts, in particular
in relation to traceability maintenance. In practice, therefore, some aspects
are typically fixed such as the general “shape” of a traceability link. This
discussion is summed up in the following guideline:

(G7) Prefer domain-specific, semantically rich traceability model spaces as this
simplifies traceability maintenance.

Support from our interviews (S2) is provided by a quality analyst from Case
4, who describes the current usage of generic links as “immature” and “work in
progress”, and would prefer to be able to attach more semantics. An interesting
observation is made by a product manager from Case 5, who mentions that it
is virtually impossible to get the exact semantics perfectly right at the start of
a project. The semantics must thus be adapted and updated continually during
the lifetime of the project, not only by adding new “types” of links, but also
by refining and even deactivating existing types. Concerning tool boundaries,
the Head of Test Management from Case 7 states that especially links to
external tools should be as “rich” as possible. A quality manager from Case 7
describes the current usage of a commercial TM tool with a fixed semantics
as unsatisfactory; the TM tool “knows nothing” about extra semantics that
users in the company have decided upon and that (hopefully) everyone in the
company is aware of and adheres to. Such a fallback to relying on conventions
has of course similar disadvantages as using implicit links.

4.3.4 Factor 4: Consistency Specification

Our final factor concerns how consistency is specified and consequently main-
tained. Support for considering this as a primary factor is provided by (S2), as
numerous interviewees expressed the need to establish trust in the consistency
of traceability links. For example, the Chief Technical Officer from Case 8
stated that the quality of traceability links must be so high that their bene-
fit becomes obvious to all stakeholders. If the stakeholders do not trust the
traceability links, then they will not be used, and will not be improved.

The solution space for consistency specification as depicted in Figure 5.1 is
spanned by two orthogonal dimensions: a dimension concerning the manner in

92 CHAPTER 4. PAPER C

which traceability maintainers are applied (the vertical axis), and a dimension
characterising the possible classes of their underlying consistency functions
(the horizontal axis).

From our interviews, we have identified two main strategies of maintaining
consistency: a top-down, process-oriented, mostly eager (consistency violations
are fixed immediately) strategy ¶, and a bottom-up, ad-hoc, mostly delayed
(consistency violations are fixed only on-demand) strategy ·. Both strategies
appear to be equally successful in practice and are often mixed, with the choice
mainly depending on the primary users of the TM solution. We thus suggest
the following guideline for this dimension:

(G8) Ensure that your TM solution supports a flexible combination of both
top-down and bottom-up strategies.

Support for this guideline is mainly provided by (S2): 7 of our 15 cases all
have a strong focus on requirements management when it comes to applying
traceability. All of these cases except Case 9 use a dedicated RM tool and
already organise requirements and their breakdown with it. Integration and
system test cases are usually also stored in the tool (or a connected test tool) and
linked to the requirements. Many of these cases are part of bigger organizations,
in which several companies work together on projects where safety and quality
certification is often highly relevant. This demands organised, fixed processes
and clear responsibilities. In Case 7, for example, formal reviews are conducted
before a milestone is completed. In Case 9, connections between requirements
and the design of a measurement system are recorded in spreadsheet files and
documents, following a strict and well-defined process. In all these mainly
requirements-centred cases, TM in general, and traceability maintenance in
particular, is handled in a top-down fashion initiated by project management.
Often, but not always, consistency is maintained as part of a defined process,
e.g., creating or updating traceability links immediately after the connected
artefacts are created or changed in a certain step.

Many other cases feature a more developer-driven, ad-hoc approach. In
these cases, traceability links are created and updated on-demand by developers,
while focussing on software implementation. This typically involves a software
configuration management system handling source code management, tracking
of defects (issues, bug reports), and the management of implementation tasks

fuzzy open world closed worldmanual

semi-automated fully-automated

top-down,
process-oriented,

eager

bottom-up,
ad-hoc,
delayed

2

1

3 4 5 6

Figure 4.5: How is consistency specified?

4.3. INFLUENTIAL FACTORS AND
CORRESPONDING GUIDELINES 93

(tickets) in a project. These cases typically drive their development based on
implementation tasks, and require traceability, e.g., from source code commits
to tickets.

There exist some cases that cannot be assigned to exactly one of the two
approaches mentioned above. This involves attempts to handle TM in a
structured, top-down way — and at the same time, bottom-up approaches
invariably arise from the developers’ side. In 3 cases, both approaches are
clearly present and coexist harmoniously and complementarily. In Case 15, for
example, there exists both a requirements-centred approach to connect features
and test cases, while a more developer-driven approach is used to link bugs or
defects to the respective code commits.

Coming back to the horizontal dimension of Figure 5.1, consistency is in
practice often defined manually ¸, i.e., involving a domain expert who has to
decide to what extent a given traceability model is consistent or not. As this
is, however, quite expensive, considerable research has been conducted with
the goal of (fully) automating this task, e.g., [127,128].

Some of these approaches are fuzzy ¹, i.e., similarity metrics and machine
learning techniques are applied to detect patterns and suggest probable con-
nections [128]. Such techniques are often combined with a manual approach
resulting in a semi-automatic approach, providing support for a domain expert
to make the final decision.

Although semi-automatic approaches already improve the situation, a fully
automated approach has the advantage that traceability links can be regarded
as “derived”, i.e., created on demand and never persisted. This avoids incon-
sistencies completely by simply re-creating all links as soon as any changes
are made. To achieve scalability in cases where this is necessary, numerous
incremental and caching strategies can be applied to determine the (potentially)
affected set of traceability links and avoid updating or re-creating all links. An
underlying assumption that might be necessary, however, is that all traceability
links can be (re)created automatically given the current state of all models.

From this discussion, it would appear as though fully-automated strategies
are to be clearly preferred; we suggest, nonetheless, taking a hybrid solution
instead:

(G9) Support an integrated mix of manual and complementary automated
approaches to consistency specification.

This pragmatic guideline is supported by (S2), indicating that there is
simply not yet enough trust and acceptance for full automation. As a quality
analyst from Case 4 puts it, automatically creating and updating traceability
links is a difficult task; some form of validation or evidence is required to
convince users that such traceability links are actually consistent. Especially
interviewees from the automotive domain state that it would be very disturbing
to have inconsistent traceability links in a system. A manual inspection of
traceability links might be expensive, but at least avoids a false sense of
high-quality traceability links.

Other interviewees are more open, stating that it would be interesting
to improve traceability maintenance via automation strategies; they would,
however, still use this more “as an input for a final manual step”, as stated by
the Chief Technical Officer from Case 8.

94 CHAPTER 4. PAPER C

There is, at the same time, a clear wish for more automation expressed by
numerous interviewees: based on clear naming and structural rules, the Head
of Test Management from Case 7 would have no problem maintaining at least
a subset of the traceability links automatically. In fact, a team leader from
Case 3 mentions basic automation as an important point; simple rules based
on steps in a well-defined process should ideally be automated to avoid tedious,
repetitive, and manual TM-related tasks.

A well-accepted pragmatic strategy of how to combine manual and auto-
mated consistency maintenance appears to be the concept of suspect links [22,
134]. A product manager from Case 5 states that this technique of applying
automatic consistency checks to identify “suspect links” is applied by numerous
TM-related tools. Such suspect links are presented to the user for a final
decision, possibly together with a set of standard “quick-fix” maintenance
strategies that can be applied at the click of a button.

Fully-automated consistency specification approaches can be broadly clas-
sified into adhering to either the Open World Assumption (OWA) º, or the
Closed World Assumption (CWA) ». In an OWA approach, traceability links
that the traceability maintainer cannot classify as inconsistent are assumed to
be consistent and retained. The maintainer is considered to be incomplete and
the language of consistent traceability models is assumed to initially include
all possible traceability models (everything would be accepted without a main-
tainer), and is progressively restricted as necessary. Suitable OWA strategies
include constraint-based approaches, i.e., providing a set of constraints that
must not be violated by any consistent link [125]. Links that are not referenced
in any constraint are by default consistent.

In a CWA approach, links that cannot be classified as consistent are assumed
to be inconsistent. The maintainer is considered to be complete and the
language of consistent traceability models is assumed to be initially empty
(everything would be rejected as inconsistent without a maintainer) and is
progressively extended as necessary. Suitable strategies include generative,
grammar-based approaches, i.e., a set of rules that generate all consistent
traceability models [127]. Links that cannot be recognised by the maintainer
as consistent are by default inconsistent.

Although there are numerous studies on successfully applying machine
learning techniques to traceability management and maintenance [128], based
on our requirements and interviews, we tend towards CWA approaches:

(G10) For automatically generated links, prefer no links at all to (possibly)
inconsistent links.

This final guideline is certainly contentious and might not be valid in every
application domain, but in the automotive domain and for the development
of embedded and safety-critical systems, stakeholders appear to demand both
a high confidence in traceability links and a zero tolerance for (possibly)
inconsistent traceability links. As a team leader from Case 13 aptly states,
users that encounter inconsistent traceability links tend to be utterly confused
by connections that do not make sense at all. Having no link at all is actually
better than having an inconsistent link — in addition to eventually having to
search in some other way for the desired connection, an inconsistent link forces
you to first evaluate and conclude that it is indeed inconsistent and unhelpful.

4.4. STRATEGIES IN EXISTING TM TOOLS 95

4.4 Strategies in existing TM tools

We now discuss strategies for traceability maintenance employed by three TM
tools currently used in industry. The discussion, structured with our proposed
guidelines, is based on semi-structured interviews6 with expert users (in one
case) and the developers of the tool (other two cases).

4.4.1 Rational DOORS

IBM Rational DOORS,7 also known as DOORS Classic, is a requirements
management tool that is widely used in industry. It offers traceability features
that allow tracing to different types of requirements, e.g., customer requirements,
system requirements, software requirements, etc.

Versioning. Both requirements and traceability links are versioned (stored
in a database) and can be included in tags. Deltas on requirements are recorded
and are available to users. When an artefact connected by a traceability link
changes, the user is informed and the delta is presented to the user, who should
decide how to update the traceability model. The tool thus adheres to both
(G1) and (G2).

Tool Boundaries. As the core functionality of DOORS is RM, traceability
links from requirements to requirements are supported out-of-the-box. To
address linking to model spaces other than requirements, DOORS provides an
OSLC adapter for accessing the requirements. This is currently problematic,
as changes to the models in external tools cannot be detected via such OSLC
links. The clients of the OSLC adapter provided by DOORS also need to be
implemented for each tool which takes substantial effort. Guideline (G3) is
followed as links can be accessed via plugins/addons. DOORS, however, does
not strictly follow guideline (G4) as it combines RM and TM. Although OSLC
has its limitations, (G5) is followed by using OSLC as a common standard for
linking to external tools.

Configurable Semantics. The traceability links created with the tool are
explicit links, adhering to (G6). Semantics can be configured to a certain
extent, as new link types with attributes and restricted source and target types
can be created but, for example, n-ary links are impossible. Guideline (G7) is
thus followed but with limitations.

Consistency Specification. DOORS allows both top-down and bottom-
up consistency management strategies, adhering to (G8). Semi-automatic
traceability maintenance is supported by the use of “suspect link detection”,
i.e., marking a link as “suspicious” as soon as one of the models it connects
changes. This is well in accordance with (G9). In addition to manual links,
DOORS supports the automatic creation of links for some generated models.
For instance, test case skeletons (in form of Excel sheets) can be generated with
a link back to the requirements the tests originated from. As the Excel sheets
are, however, maintained manually after the generation step they can become
inconsistent over time. This means that (G10) is adhered to, but without a
viable means of maintaining consistency.

6http://tinyurl.com/htvusac
7http://www-03.ibm.com/software/products/en/ratidoor

96 CHAPTER 4. PAPER C

4.4.2 SystemWeaver

SystemWeaver8 is a commercial holistic information management solution that
aims to support the entire development life-cycle for software and systems
engineering. SystemWeaver supports traceability by providing a means of
connecting elements of models that reside within the tool.

Versioning. Every model in SystemWeaver is versioned and stored in a
common database. The tool has its own VCS and is able to keep track of and
provide all deltas. When a model is changed, SystemWeaver checks for any
traceability links that are connected to modified elements and imply a potential
inconsistency. If such links are found, the relevant deltas are presented to the
user who decides if the link is to be updated to point to the newer versions of
the models.

With respect to (G1), traceability information is not stored and versioned
in an independent traceability model, but as part of the models residing in the
tool. The versions of the models containing traceability links implicitly reflect
the versions of the traceability links. As the tool implements its own VCS for
all models residing in the tool and is able to provide explicit deltas, it adheres
quite well to (G2).

Tool Boundaries. SystemWeaver is clearly a holistic tool, adhering to (G4).
For models residing in the tool, it is relatively easy to keep track of what
has been changed and propose corresponding changes to affected traceability
links. It is also possible to configure workflows to prompt the user to create
traceability links when certain model elements are created. Since traceability
links are parts of the models in the tool, there is a need to traverse the models
to get an overview of all traceability links. The tool provides visualization
features out of the box and the user is able to get an overview of all the links.
Guideline (G3) is thus partly followed. The tool is meant to be sufficient on its
own, but some of its customers use it with other tools such as simulation tools.
In such cases OSLC is used as glue technology for integration as suggested
by (G5). According to an application engineer from the team developing
SystemWeaver, ensuring and maintaining consistency to external tools requires
a substantial amount of effort. This is done by creating tool-specific adapters
that are typically not reusable.

Configurable Semantics. SystemWeaver provides considerable flexibility as
metamodels can be used to configure the tool to a particular domain or project.
By enabling explicit and domain-specific links, the tool is well in line with
both (G6) and (G7). According to SystemWeaver’s fixed meta-metamodel,
however, the concept of a “connection” is defined as having a single source and
a maximum of two targets. An application engineer of the tool stated, however,
that this does not appear to be a major limitation for most use cases.

Consistency Specification. SystemWeaver allows the definition of workflows
enforcing when links should be updated, as well as ad-hoc link creation. This
adheres to (G8) as both top-down and bottom-up approaches are possible.

The tool was originally designed for manual link creation. It is, however,
also possible to define rules controlling when and how traceability links are
created. Maintenance of links is semi-automatic; when a change is detected
in a model element that has a link, the link is flagged as a “suspect link” and

8http://www.systemweaver.se

4.4. STRATEGIES IN EXISTING TM TOOLS 97

the user has to resolve this manually. This is in coherence with (G9). For
(G10), as the tool is configurable, it is up to the final user to decide on suitable
mechanisms for automatically generating links.

4.4.3 YAKINDU Traceability

YAKINDU Traceability (YT)9, is a commercial, Eclipse- and EMF-based TM
tool. It is a dedicated traceability tool.

Versioning. Traceability models in YT are EMF models, which can be
persisted as XML files and thus versioned using any standard VCS. The tool
strives to follow (G1) by providing extra diff and merge procedures implemented
specially for traceability models.

Concerning (G2), however, version and delta information of the models
connected by a traceability link must be obtained from the VCS that is used to
store these models. The quality and availability of the deltas thus depend on
the chosen VCS. For file types where version and fine-grained delta information
cannot be accessed, YT computes a version based on the content of the model.
If the model changes, YT analyses the current model and the information
stored in the traceability link. If they no longer match, the user is prompted
to update the traceability link.

Tool Boundaries. Traceability models are EMF models and can be accessed
and used for activities such as impact analysis and change management. This
correlates with (G3). YT is a dedicated TM tool, thus adhering to (G4).

All models apart from the traceability model are handled as external models
by the tool. To create traceability links to these external models, an EMF
representation is required. For non-EMF models, this is handled by tool
adapters that create EMF representations of models from different tools. A
tool adapter makes a specific type of file format available to YT, for instance,
an Excel adapter makes Excel files (up to cell level) available to the tool, while
a DOORS adapter makes DOORS requirements available to the tool. This
follows (G5), as EMF acts as “glue” technology.

Configurable Semantics. All traceability links are stored in an explicit
traceability model (G6). When there is an implicit connection between models
(e.g., from one UML component to another), YT provides a rule-based language
that can be used to specify how explicit links can be automatically derived.
If feasible, such derived links can be stored in memory and not persisted to
simplify maintenance.

YT was designed to be a highly configurable tool. Consequently, it must
be configured according to the needs of a client. A technical project leader
from the company stated that default configurations are not provided as needs
differ substantially between companies and even between projects in the same
company. Traceability models can be configured for each customer, with a few
restrictions concerning the general shape of a link (e.g., a “link” can connect
only two things). Another obvious restriction is that all model types to be
connected must be supported by corresponding tool adapters. If required, new
tool adapters can of course be developed for a customer who is ready to pay
for it. YT thus adheres to (G7) with a few constraints.

9http://www.yakindu.de/traceability/

98 CHAPTER 4. PAPER C

Consistency Specification. YT does not dictate which approach should be
used for traceability maintenance. According to the technical project leader,
the tool can be used to support several processes in combination with other
tools (G8). In combination with a VCS, for example, YT can enforce access
restrictions for editing the traceability model.

Both manual and automatic creation of traceability links is possible (G9).
Automatic links are defined by a rule-based language as opposed to employing
machine-learning techniques, indicating that (G10) is desired by clients.

4.5 Related Work

Most of the research on traceability maintenance is in the area of (semi-
)automatic maintenance of traceability links. These approaches can be cate-
gorised as Transformation-Driven, Event-Driven and Rule-Based.

Transformation-Based Approaches take advantage of the fact that (model)
transformations can be suitably enriched to additionally produce traceability
links. In general, traceability maintenance in this context requires incremental
transformation approaches, for which the case when both source and target
models evolve separately is challenging [33, 34]. This approach also assumes
that all artefacts are created via model transformations, which is often not the
case in practice (yet). An example for this approach has been proposed by
Fockel et al. [125], who describe an approach for semi-automatic establishment
and maintenance of traceability links in the automotive domain. Another
example is [135], where the authors use a graph-transformation based approach
to define, identify, and maintain traceability links.

Event-Driven Approaches leverage events occurring during software devel-
opment activities to maintain traceability links. As a simple example, deletion
of an artefact can be used as a trigger to delete all traceability links connected
to it. Research employing this techniques include [136], where a publish and
subscribe mechanism is used to connect traceability maintenance tasks to
certain events.

Rule-Based Approaches use rules to determine when traceability links
should be generated. For example, Spanoudakis et al. [137] define rules based
on attributes of artefacts, for creating traceability links between requirements,
use cases, and analysis object models. Traceability links are maintained by re-
evaluating the rules. Rule-based approaches can be combined with event-driven
approaches such as in [22, 112], where traceability maintenance is conducted in
two phases: recognising changes based on events, and (re-)evaluating the rules
governing link updates.

Even though some of the factors discussed in this paper have been men-
tioned in the literature (e.g., as requirements in [138]), we are not aware of any
categorisation of primary factors together with guidelines for traceability main-
tenance such as we provide. In an experience report, Kirova et al. [23] propose
technology recommendations for a traceability tool. These recommendations
support our proposed guidelines especially on versioning and configurable se-
mantics. However, their research was not focused on traceability maintenance
and is based on data from only one company. The research by Gotel and
Mäder [17] provides guidelines for selecting a TM tool. Their guidelines are

4.6. THREATS TO VALIDITY 99

directed at end users, while ours are aimed more at developers of such TM
tools.

4.6 Threats to Validity

With regards to data source (S1), the elicited traceability requirements were
from industrial and academic partners in the automotive industry. It is thus
questionable to what extent the requirements can be generalised to other
domains.

Data source (S2) was part of a larger traceability study whose main focus was
on TM in general. This broader scope could have influenced the interview parts
related to traceability maintenance. To minimise this threat, we complemented
the data with an analysis of existing TM tools and interviews with TM tool
developers and expert users (Section 4.4).

A further threat to the validity of our study is that nine of the interviews
from S2 were conducted in German and then translated as accurately as
possible to English. For consistency and readability, all interview quotes were
also rephrased using our established terminology in the paper (e.g., model
instead of artefact, document, or file).

Lastly, researchers’ bias in identification of the factors could have affected
the results. We mitigated this threat by involving four researchers during
analysis and discussing the results with TM tool developers and expert users.

4.7 Conclusion and Future Work

In this paper, we presented factors that greatly influence to what extent
a TM solution can support viable traceability maintenance. We suggested
guidelines for each factor, which should be followed to avoid potentially negative
consequences of certain (combinations of) design decisions.

To evaluate our guidelines, we analysed existing commercial and fairly
established or at least reasonably successful TM tools. Our results show that
while our guidelines are mostly adhered to (indicating that this is necessary for
successful traceability maintenance), configurability and the level of automation
can be improved.

Our results and conclusions are backed by interviews with our project
partners, a broad range of software development stakeholders, and expert TM
tool users and developers.

Our findings can be used by practitioners to develop and select TM tools.
Researchers can build up on our findings to create more applicable (automated)
TM methods and techniques that take practitioners’ needs into consideration.

As future work, we plan to continue ongoing development on an open
source TM tool Capra,10 which will be used and evaluated in the context of
the Amalthea4public project. To cater for the wide range of project partners,
we aim to address especially configurability (G7) and integrating manual
and automation techniques (G9) better than existing TM solutions, applying
model-driven technologies to enable truly domain-specific traceability solutions.

10http://salome-maro.github.io/TraceabilityManagement

100 CHAPTER 4. PAPER C

Chapter 5

Paper D

Capra: A Configurable and Extendable Traceability Man-
agement Tool

S. Maro, J.-P. Steghöfer

24th International Conference on Requirements Engineering (RE2016),
Beijing, China, September 12 - 16, 2016.

101

Abstract

Traceability is a known problem both in academia and industry. One of the
main challenges is that there is no one solution that will solve traceability
problems for everyone in industry. Traceability needs are dependent on the
context of the organization and can differ from project to project in the same
organization. To cater for this problem we have developed Capra, an open
source, flexible, configurable and extendable traceability management tool.
Capra can be tailored according to specific traceability needs of individual
projects and organizations.

102 CHAPTER 5. PAPER D

5.1 Introduction

Traceability in software development refers to the ability to link software
artifacts like requirements, code, and tests throughout the development life
cycle [6]. Traceability facilitates impact analysis, verifying that requirements
have been implemented and tested and in some domains, e.g. in the automotive
domain, it is required for fulfillment of safety standards such as ISO 26262 [47].
A major challenge for traceability tool developers is that traceability needs
differ from company to company and even from project to project [23,123]. To
build a tool that fits a certain company, one needs to analyze the needs of that
company and in most cases the solution will be feasible for that company only.
This is not a good business model for commercial tool vendors or open source
tool developers who want the same tool to be used in multiple companies. To
solve this, a traceability tool needs to be configurable and extendable in such a
way that it can be customized specifically to fit the needs of various companies.
This is also referred to as traceability fit for purpose [82].

We collected requirements for a traceability tool that can integrate into a
workflow for the development of embedded systems from a number of industrial
partners, mostly in the automotive domain. Based on the collected requirements,
Capra1 has been developed. The choice of which parts of the tool should be
configurable is based on the variations that we encountered in the requirements
from the different companies. The requirements with the highest priority are
the following:

[a] As a user, I want to create traceability links to arbitrary artifacts.
[b] As a project manager, I want to define custom traceability link types for

projects.
[c] As a user, I want to visualize artifacts connected by traceability links

through a matrix or graph view.

Our current implementation of Capra supports all these requirements by
allowing the end user to create, update, and visualize traceability links. It also
allows defining custom link types and extending the tool to support arbitrary
artifacts.

In comparison to existing tools, Capra supports traceability between ar-
bitrary artifacts (as compared to, e.g., DOORS2 that, at least off the shelf,
only supports traceability between requirements) and a higher degree of cus-
tomisability (as compared to other tools such as ReqCycle3 that does not allow
modifying storage of traceability links and extending the targets of traceability
links easily).

This extended abstract describes the architecture of the tool and an imple-
mentation of its default configuration.

5.2 Architectural Design

Capra is an Eclipse plugin and uses the Eclipse Modelling Framework (EMF)
as its base technology. It stores the traceability model as an EMF model.

1http://salome-maro.github.io/TraceabilityManagement/
2http://www-03.ibm.com/software/products/en/ratidoor
3http://www.polarsys.org/projects/polarsys.reqcycle

5.2. ARCHITECTURAL DESIGN 103

The tool relies on the Eclipse Extension mechanism4 and provides extension
points for parts of the tool that can be customized. Based on requirements we
collected from our project partners, the tool is customisable at three points: i)
the types of links to be supported; ii) which types of artifacts can be traced to;
and iii) how the links should be stored. Figure 5.1 depicts the extension points
and the rationale for each of them is described in the following.

Core	
 layerArtifact	
 Handler

Traceability	
 Metamodel

Persistence	
 Handler
1..*

1..1

1..1 Legend
Extension Point

Extension

Figure 5.1: Extension points in Capra

5.2.1 Traceability Link Types

Depending on the company, development context, and process used, the trace-
ability links required can differ [82,139]. For example, traceability links for a
company developing web-based solutions are not the same as links for compa-
nies developing embedded software. To address the different link types, the tool
offers an extension point for the traceability metamodel (see Figure 5.1). Here
the end user (company), can define the types of links through a metamodel
and supply it to the tool. Examples of link types are “verifies”, “implements”,
“refines”, “related to” etc.

5.2.2 Supported Artifact Types

Software development usually involves a number of activities such as require-
ments engineering, design, implementation and testing. In most cases, each of
these activities use different tools and produce artifacts of different formats. A
traceability tool needs to ensure that the different formats can be traced to
and from. Since different companies use different tools, it is not easy to foresee
which formats a traceability tool should support. This problem of diverse
artifacts existing in the development environment has been noted by several
studies on traceability [6, 121]. Our tool offers an extension point for Artifact
Handlers which allows adding artifact formats based on the needs of the end
users.

As discussed, Capra stores the traceability links as an EMF model. To be
able to support tracing to other formats, EMF representations of these other
formats are required. Implementing an extension for a certain format means
providing an EMF representation of that format to the tool using the artifact
handler extension point.

4https://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points

104 CHAPTER 5. PAPER D

5.2.3 Persistence Extension Point

The storage of traceability links is another factor that can vary depending
on company policies or project set-ups. For some cases it makes sense that
there is a traceability model per project while in some cases there can be one
traceability model for the whole workspace. The extension point Persistence
Handler allows defining such storage locations. It will also allow integrating
the traceability model with versioning solutions such as EMF Store, CDO or
Git.

5.3 Functionalities of Capra — The Default

One of the challenges of creating a configurable tool is that it cannot be used
out of the box without a considerable effort going into the configuration first.
Since Capra is also very flexible, its core is not usable without any extensions
provided to the extension points. To deal with this, we have implemented a
default configuration that offers basic extensions to the tool.

Currently, the default configuration of the prototype offers a simple trace-
ability metamodel that supports creation of traceability links that have source
and target of any supported artifact type. As shown in Figure 5.2, there are
six supported artifact types: Java code (up to method level), C/C++ code
(up to function level), files (such as PDF or MS Word), task tickets supported
by Mylyn, and test case execution from a continuous integration tool such as
Hudson. For storage of the traceability links, the prototype implements an
extension to the persistence extension point that stores all links created in the
same work space in one folder.

The tool also has functionality for visualization of the traceability links. The
links can be visualized in a matrix as well as a graphical format with artifacts
represented as nodes and links represented as edges. Figure 5.3 shows such
a graphical view extracted from a Heating Ventilation and Air Conditioning
(HVAC) system. The example shows a requirement specification about a
“blower” connected to a feature represented by a class. The class is connected
to a component and a PDF file, and lastly the component is connected to a
state machine and another component.

Capra
emf

Figure 5.2: Artifact types currently supported by Capra

5.4. CONCLUSIONS AND FUTURE WORK 105

Figure 5.3: Graphical representation of artifacts connected by traceability links

5.4 Conclusions and Future Work

The main contribution of Capra is to provide a configurable and extendable
open-source traceability solution. In order to build a flexible tool, one needs
to design for flexibility from the start. For future work we aim to incorporate
features such as versioning to support trace link maintenance and collaboration
features such as discussion, chats and voting in the context of a traceability
link in order to improve trace link quality.

Acknowledgment

This work is part of the AMALTHEA4Public project funded by the ITEA
Eureka Cluster programme.

106 CHAPTER 5. PAPER D

Bibliography

[1] D. B. Waghmare, B. V. Arun, K. R. Tiwari, and P. M. Jadhav, “Embed-
ded system & design,” 2010.

[2] N. Heumesser and F. Houdek, “Experiences in managing an automotive
requirements engineering process,” in Requirements Engineering Con-
ference, 2004. Proceedings. 12th IEEE International. IEEE, 2004, pp.
322–327.

[3] R. Purushothaman and D. E. Perry, “Toward understanding the rhetoric
of small source code changes,” IEEE Transactions on Software Engineer-
ing, vol. 31, no. 6, pp. 511–526, 2005.

[4] B. Regnell, R. B. Svensson, and K. Wnuk, “Can we beat the complexity
of very large-scale requirements engineering?” in International Work-
ing Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 2008, pp. 123–128.

[5] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in International Working Con-
ference on Requirements Engineering: Foundation for Software Quality.
Springer, 2013, pp. 158–173.

[6] G. Spanoudakis and A. Zisman, “Software traceability: a roadmap,”
Handbook of Software Engineering and Knowledge Engineering, vol. 3,
pp. 395–428, 2005.

[7] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “A software trace-
ability validation for change impact analysis of object oriented software.”
in Software Engineering Research and Practice, 2006, pp. 453–459.

[8] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE transactions on software engineering, vol. 27, no. 1,
pp. 58–93, 2001.

[9] G. Regan, F. McCaffery, K. McDaid, and D. Flood, “The barriers to
traceability and their potential solutions: Towards a reference framework,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th
EUROMICRO Conference on. IEEE, 2012, pp. 319–322.

[10] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kam-
ran, “Requirements traceability: a systematic review and industry case

107

108 BIBLIOGRAPHY

study,” International Journal of Software Engineering and Knowledge
Engineering, vol. 22, no. 03, pp. 385–433, 2012.

[11] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder,
“Traceability fundamentals,” in Software and Systems Traceability.
Springer, 2012, pp. 3–22.

[12] COEST, “Center of excellence for software traceability (coest),” 2015,
accessed : 2016-05-18. [Online]. Available: http://www.coest.org

[13] “Ieee recommended practice for software requirements specifications,”
IEEE Std 830-1998, pp. 1–40, Oct 1998.

[14] J. Radatz, A. Geraci, and F. Katki, “Ieee standard glossary of software
engineering terminology,” IEEE Std, vol. 610121990, no. 121990, p. 3,
1990.

[15] O. C. Gotel and A. C. Finkelstein, “An analysis of the requirements
traceability problem,” in Requirements Engineering, 1994., Proceedings
of the First International Conference on. IEEE, 1994, pp. 94–101.

[16] G. Spanoudakis, “Plausible and adaptive requirement traceability struc-
tures,” in Proceedings of the 14th international conference on Software
engineering and knowledge engineering. ACM, 2002, pp. 135–142.

[17] O. Gotel and P. Mäder, “Acquiring tool support for traceability,” in
Software and systems traceability. Springer, 2012, pp. 43–68.

[18] J. Cleland-Huang, “Just enough requirements traceability,” in Computer
Software and Applications Conference, 2006. COMPSAC’06. 30th Annual
International, vol. 1. IEEE, 2006, pp. 41–42.

[19] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management for
impact analysis,” in Frontiers of Software Maintenance, 2008. FoSM
2008. IEEE, 2008, pp. 21–30.

[20] S. Maro, A. Anjorin, R. Wohlrab, and J.-P. Steghöfer, “Traceability main-
tenance: factors and guidelines,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 414–425.

[21] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
“Best practices for automated traceability,” Computer, vol. 40, no. 6, 2007.

[22] P. Mäder, O. Gotel, and I. Philippow, “Enabling automated traceability
maintenance through the upkeep of traceability relations,” in Model
Driven Architecture-Foundations and Applications. Springer, 2009, pp.
174–189.

[23] V. Kirova, N. Kirby, D. Kothari, and G. Childress, “Effective requirements
traceability: Models, tools, and practices,” Bell Labs Technical Journal,
vol. 12, no. 4, pp. 143–157, 2008.

BIBLIOGRAPHY 109

[24] open services.net, “Open services for lifecycle collaboration,” 2017,
accessed : 2017-03-20. [Online]. Available: https://open-services.net

[25] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni,
“Model traceability,” IBM Systems Journal, vol. 45, no. 3, pp. 515–526,
2006.

[26] J. Cleland-Huang, O. C. Gotel, J. Huffman Hayes, P. Mäder, and A. Zis-
man, “Software traceability: trends and future directions,” in Proceedings
of the on Future of Software Engineering. ACM, 2014, pp. 55–69.

[27] N. Skrypuch, “Eclipse modeling-emf-home,” 2014, accessed : 2014-06-13.
[Online]. Available: http://www.eclipse.org/modeling/emf/

[28] O. C. Gotel and A. C. Finkelstein, “An analysis of the requirements
traceability problem,” in Requirements Engineering, 1994., Proceedings
of the First International Conference on. IEEE, 1994, pp. 94–101.

[29] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, and J. Maletic, “The grand
challenge of traceability (v1. 0),” in Software and Systems Traceability.
Springer, 2012, pp. 343–409.

[30] A. I. Wasserman, “Tool integration in software engineering environments,”
in Software Engineering Environments. Springer, 1990, pp. 137–149.

[31] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to advanced
empirical software engineering. Springer, 2008, pp. 285–311.

[32] P. S. M. Dos Santos, G. H. Travassos, and M. V. Zelkowitz, “Action
research can swing the balance in experimental software engineering,”
Advances in Computers, vol. 83, pp. 205–276, 2011.

[33] I. Galvao and A. Goknil, “Survey of traceability approaches in model-
driven engineering,” in Enterprise Distributed Object Computing Confer-
ence (EDOC’07). IEEE, 2007, pp. 313–324.

[34] I. Santiago, A. Jiménez, J. M. Vara, V. De Castro, V. A. Bollati, and
E. Marcos, “Model-driven engineering as a new landscape for traceability
management: A systematic literature review,” Information and Software
Technology, vol. 54, no. 12, pp. 1340–1356, 2012.

[35] S. Nair, J. L. de la Vara, and S. Sen, “A review of traceability research
at the requirements engineering conference re@ 21,” in Requirements
Engineering Conference (RE), 2013 21st IEEE International. IEEE,
2013, pp. 222–229.

[36] S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” in Technical report, Ver. 2.3 EBSE Technical
Report. EBSE. sn, 2007.

[37] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

110 BIBLIOGRAPHY

[38] VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE
Process Assessment / Reference Model,” Automotive Special Interest
Group, Tech. Rep., 2015.

[39] R. Wieringa, “Design science methodology: principles and practice,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2. ACM, 2010, pp. 493–494.

[40] S. Maro and J.-P. Steghöfer, “Capra,” 2017, accessed : 2017-03-07.
[Online]. Available: https://projects.eclipse.org/projects/modeling.capra

[41] P. Checkland and S. Holwell, “Action research: Its nature and validity,”
Systemic Practice and Action Research, vol. 11, no. 1, pp. 9–21, 1998.

[42] R. K. Yin, Case Study Research: Design and Methods. 3rd edition. Thou-
sand Oaks, CA: Sage, 2003.

[43] J. W. Creswell and D. L. Miller, “Determining validity in qualitative
inquiry,” Theory into practice, vol. 39, no. 3, pp. 124–130, 2000.

[44] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel,
“Textbased modeling,” in 4th International Workshop on Software Lan-
guage Engineering, 2007.

[45] Plantuml.sourceforge.net, “Plantuml,” 2015, accessed : 2015-06-01.
[Online]. Available: http://plantuml.sourceforge.net

[46] Eclipse.org, “Graphical editing framework,” 2017, accessed: 2017-03-13.
[Online]. Available: https://eclipse.org/gef/

[47] International Organization for Standardization, “Road vehicles – func-
tional safety,” ISO26262:2011, Nov. 2011.

[48] P. Jordan, “Standard iec 62304-medical device software-software lifecycle
processes,” 2006.

[49] R. F. S. 167, Software considerations in Airborne Systems and equipment
certification. RTCA, Incorporated, 1992.

[50] R. C. Gronback, Eclipse modeling project: a domain-specific language
(DSL) toolkit. Pearson Education, 2009.

[51] D. S Wile, “Supporting the DSL spectrum,” CIT. Journal of computing
and information technology, vol. 9, no. 4, pp. 263–287, 2001.

[52] P. Hudak, “Domain-specific languages,” Handbook of Programming Lan-
guages, vol. 3, pp. 39–60, 1997.

[53] www.uml diagrams.org, “Activity diagrams,” 2014, accessed: 2015-04-13.
[Online]. Available: http://www.uml-diagrams.org/activity-diagrams.
html

[54] git scm.com, “Git,” 2014, accessed : 2014-06-25. [Online]. Available:
http://git-scm.com/

BIBLIOGRAPHY 111

[55] J. H. Bae, K. Lee, and H. S. Chae, “Modularization of the UML meta-
model using model slicing,” in Information Technology: New Generations,
2008. ITNG 2008. Fifth International Conference on. IEEE, 2008, pp.
1253–1254.

[56] S. Efftinge, “Xtext - language development made easy!” 2014, accessed:
2014-06-13. [Online]. Available: http://www.eclipse.org/Xtext/

[57] Eclipse.org, “File:ATL EMFTVM trace.png,” 2015, accessed : 2015-05-18.
[Online]. Available: https://wiki.eclipse.org/File:ATL EMFTVM Trace.
png

[58] Gentleware.com, “UML-to-ecore plug-in,” 2014, accessed : 2014-06-
30. [Online]. Available: http://www.gentleware.com/fileadmin/media/
archives/userguides/poseidon users guide/ecoreguide.html

[59] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[60] Eclipse.org, “Emf compare - compare and merge your emf
models,” 2014, accessed : 2014-06-30. [Online]. Available: http:
//www.eclipse.org/emf/compare/overview.html

[61] A. Bergmayr, M. Wimmer, W. Retschitzegger, and U. Zdun, “Taking the
pick out of the bunch-type-safe shrinking of metamodels,” Fachtagung
des GI-Fachbereichs Softwaretechnik, p. 85, 2013.

[62] C. Seybold, M. Glinz, S. Meier, and N. Merlo-Schett, “An effective layout
adaptation technique for a graphical modeling tool,” in Proceedings of
the 25th International Conference on Software Engineering, ser. ICSE
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 826–827.

[63] P. Stevens, “Bidirectionally tolerating inconsistency: partial transforma-
tions,” in Fundamental Approaches to Software Engineering. Springer,
2014, pp. 32–46.

[64] Github.io, “Textuml toolkit,” 2015, accessed : 2015-06-01. [Online].
Available: http://abstratt.github.io/textuml/readme.html

[65] Plaintext.com, “Planttext,” 2015, accessed : 2015-06-01. [Online].
Available: http://www.planttext.com

[66] C.-L. Lazăr, “Integrating alf editor with eclipse uml editors.” Studia
Universitatis Babes-Bolyai, Informatica, vol. 56, no. 3, 2011.

[67] M. Scheidgen, “Textual modelling embedded into graphical modelling,”
in Model Driven Architecture–Foundations and Applications. Springer,
2008, pp. 153–168.

[68] F. Jouault and J. Delatour, “Towards fixing sketchy uml models by lever-
aging textual notations: Application to real-time embedded systems,” in
14th International Workshop on OCL and Textual Modeling: Applications
and Case Studies. CEUR-WS, 2014, pp. 73–82.

112 BIBLIOGRAPHY

[69] L. Engelen and M. van den Brand, “Integrating textual and graphical
modelling languages,” Electronic Notes in Theoretical Computer Science,
vol. 253, no. 7, pp. 105–120, 2010.

[70] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: an extensi-
ble c-based programming language and ide for embedded systems,” in
Proceedings of the 3rd annual conference on Systems, programming, and
applications: software for humanity. ACM, 2012, pp. 121–140.

[71] M. Voelter, J. Siegmund, T. Berger, and B. Kolb, “Towards user-friendly
projectional editors,” in Software Language Engineering. Springer, 2014,
pp. 41–61.

[72] JetBrains, “Jetbrains :: Meta programming system - language oriented
programming environment and dsl creation tool,” 2014, accessed :
2014-06-15. [Online]. Available: http://www.jetbrains.com/mps/

[73] G. Giachetti, B. Maŕın, and O. Pastor, “Using UML as a domain-specific
modeling language: A proposal for automatic generation of UML profiles,”
in Advanced Information Systems Engineering. Springer, 2009, pp. 110–
124.

[74] G. Giachetti, M. Albert, B. Maŕın, and O. Pastor, “Linking UML and
MDD through UML profiles: a practical approach based on the UML
association.” J. UCS, vol. 16, no. 17, pp. 2353–2373, 2010.

[75] S. Walderhaug, E. Stav, and M. Mikalsen, “Experiences from model-
driven development of homecare services: UML profiles and domain
models,” in Models in Software Engineering. Springer, 2009, pp. 199–
212.

[76] A. Abouzahra, J. Bézivin, M. D. Del Fabro, and F. Jouault, “A practical
approach to bridging domain specific languages with UML profiles,” in
Proceedings of the Best Practices for Model Driven Software Development
at OOPSLA, vol. 5. Citeseer, 2005.

[77] M. Wimmer, “A semi-automatic approach for bridging DSMLs with
UML,” International Journal of Web Information Systems, vol. 5, no. 3,
pp. 372–404, 2009.

[78] G. Giachetti, B. Maŕın, and O. Pastor, “Using UML profiles to interchange
DSML and UML models,” in Research Challenges in Information Science,
2009. RCIS 2009. Third International Conference on. IEEE, 2009, pp.
385–394.

[79] M. Broy, “Challenges in automotive software engineering,” in Proceedings
of the 28th international conference on Software engineering. ACM,
2006, pp. 33–42.

[80] J. Dannenberg and J. Burgard, “Car innovation: A comprehensive study
on innovation in the automotive industry,” 2015.

BIBLIOGRAPHY 113

[81] A. Busnelli, “Car Software: 100M Lines of Code
and Counting,” https://www.linkedin.com/pulse/
20140626152045-3625632-car-software-100m-lines-of-code-and-counting,
2014, [Online; accessed 07-10-2016].

[82] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman, A. Egyed,
P. Grünbacher, and G. Antoniol, “The quest for ubiquity: A roadmap for
software and systems traceability research,” in Requirements Engineering
Conference (RE), 2012 20th IEEE International. IEEE, 2012, pp. 71–80.

[83] C. Lee, L. Guadagno, and X. Jia, “An agile approach to capturing
requirements and traceability,” in Proceedings of the 2nd International
Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE 2003), 2003.

[84] F. Blaauboer, K. Sikkel, and M. N. Aydin, Deciding to Adopt Require-
ments Traceability in Practice. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 294–308.

[85] A. Kannenberg and H. Saiedian, “Why software requirements traceabil-
ity remains a challenge,” CrossTalk The Journal of Defense Software
Engineering, vol. 22, no. 5, pp. 14–19, 2009.

[86] S. Maro, M. Staron, and J.-P. Steghöfer, “Challenges of establishing trace-
ability in the automotive domain,” in Proceedings of the 9th International
Conference on Software Quality. Springer, 2017.

[87] I. H. Krüger, E. C. Nelson, and K. V. Prasad, “Service-based software
development for automotive applications,” SAE Technical Paper, Tech.
Rep., 2004.

[88] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software engi-
neering for automotive systems: A roadmap,” in 2007 Future of Software
Engineering. IEEE Computer Society, 2007, pp. 55–71.

[89] K. Grimm, “Software technology in an automotive company: major chal-
lenges,” in Proceedings of the 25th international conference on Software
Engineering. IEEE Computer Society, 2003, pp. 498–503.

[90] C. Salzmann and T. Stauner, “Automotive software engineering,” in
Languages for system specification. Springer, 2004, pp. 333–347.

[91] J. Mossinger, “Software in automotive systems,” IEEE software, vol. 27,
no. 2, p. 92, 2010.

[92] D. Tang and X. Qian, “Product lifecycle management for automotive
development focusing on supplier integration,” Computers in industry,
vol. 59, no. 2, pp. 288–295, 2008.

[93] G. Volpato, “The oem-fts relationship in automotive industry,” Inter-
national Journal of Automotive Technology and Management, vol. 4, no.
2-3, pp. 166–197, 2004.

114 BIBLIOGRAPHY

[94] P. Rempel and P. Mäder, “A quality model for the systematic assess-
ment of requirements traceability,” in 2015 IEEE 23rd International
Requirements Engineering Conference (RE). IEEE, 2015, pp. 176–185.

[95] S. F. Königs, G. Beier, A. Figge, and R. Stark, “Traceability in systems
engineering–review of industrial practices, state-of-the-art technologies
and new research solutions,” Advanced Engineering Informatics, vol. 26,
no. 4, pp. 924–940, 2012.

[96] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping
studies in software engineering,” in 12th international conference on
evaluation and assessment in software engineering, vol. 17, no. 1. sn,
2008, pp. 1–10.

[97] M. F. Bashir and M. A. Qadir, “Traceability techniques: A critical study,”
in 2006 IEEE International Multitopic Conference. IEEE, 2006, pp.
265–268.

[98] B. Ramesh, “Factors influencing requirements traceability practice,” Com-
munications of the ACM, vol. 41, no. 12, pp. 37–44, 1998.

[99] S. Winkler and J. Pilgrim, “A survey of traceability in requirements engi-
neering and model-driven development,” Software and Systems Modeling
(SoSyM), vol. 9, no. 4, pp. 529–565, 2010.

[100] M. A. Javed and U. Zdun, “A systematic literature review of traceability
approaches between software architecture and source code,” in Proceedings
of the 18th International Conference on Evaluation and Assessment in
Software Engineering. ACM, 2014, p. 16.

[101] P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang, “Strategic
traceability for safety-critical projects,” IEEE software, vol. 30, no. 3, pp.
58–66, 2013.

[102] A. Von Knethen and B. Paech, “A survey on tracing approaches in
practice and research,” Frauenhofer Institut Experimentelles Software
Engineering, IESE-Report No, vol. 95, 2002.

[103] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A
machine learning approach for tracing regulatory codes to product specific
requirements,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. ACM, 2010, pp. 155–
164.

[104] M. Borg, P. Runeson, and A. Ardö, “Recovering from a decade: a system-
atic mapping of information retrieval approaches to software traceability,”
Empirical Software Engineering, vol. 19, no. 6, pp. 1565–1616, 2014.

[105] I. Galvão and A. Goknil, “Survey of traceability approaches in model-
driven engineering,” Proceedings - IEEE International Enterprise Dis-
tributed Object Computing Workshop, EDOC, pp. 313–324, 2007.

BIBLIOGRAPHY 115

[106] R. M. Parizi, S. P. Lee, and M. Dabbagh, “Achievements and challenges
in state-of-the-art software traceability between test and code artifacts,”
IEEE Transactions on Reliability, vol. 63, no. 4, pp. 913–926, 2014.

[107] P. Rempel, P. Mäder, T. Kuschke, and I. Philippow, “Requirements
traceability across organizational boundaries-a survey and taxonomy.” in
REFSQ. Springer, 2013, pp. 125–140.

[108] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability
with topic modeling,” in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1. ACM, 2010, pp.
95–104.

[109] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 16, no. 4, p. 13, 2007.

[110] G. Spanoudakis, A. Zisman, E. Pérez-Minana, and P. Krause, “Rule-based
generation of requirements traceability relations,” Journal of Systems
and Software, vol. 72, no. 2, pp. 105–127, 2004.

[111] D. Cuddeback, A. Dekhtyar, and J. H. Hayes, “Automated requirements
traceability: The study of human analysts,” in Requirements Engineering
Conference (RE), 2010 18th IEEE International. IEEE, 2010, pp. 231–
240.

[112] P. Mäder and O. Gotel, “Towards automated traceability maintenance,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2205–2227, 2012.

[113] A. Egyed, P. Grünbacher, M. Heindl, and S. Biffl, “Value-based require-
ments traceability: Lessons learned,” in Design requirements engineering:
a ten-year perspective. Springer, 2009, pp. 240–257.

[114] V. Gaur and A. Soni, “A fuzzy traceability vector model for require-
ments validation,” International Journal of Computer Applications in
Technology, vol. 47, no. 2-3, pp. 172–188, 2013.

[115] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-based
traceability for managing evolutionary change,” IEEE Transactions on
Software Engineering, vol. 29, no. 9, pp. 796–810, 2003.

[116] J. Cleland-Huang, G. Zemont, and W. Lukasik, “A heterogeneous solution
for improving the return on investment of requirements traceability,” in
Requirements Engineering Conference, 2004. Proceedings. 12th IEEE
International. IEEE, 2004, pp. 230–239.

[117] P. Arkley and S. Riddle, “Overcoming the traceability benefit problem,”
in Requirements Engineering, 2005. Proceedings. 13th IEEE International
Conference on. IEEE, 2005, pp. 385–389.

[118] O. Pedreira, F. Garćıa, N. Brisaboa, and M. Piattini, “Gamification in
software engineering–a systematic mapping,” Information and Software
Technology, vol. 57, pp. 157–168, 2015.

116 BIBLIOGRAPHY

[119] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” Software Engineering, IEEE Transactions on, vol. 25, no. 4,
pp. 557–572, 1999.

[120] B. Aichernig, K. Hormaier, F. Lorber, D. Nickovic, R. Schlick, D. Si-
moneau, and S. Tiran, “Integration of requirements engineering and
test-case generation via OSLC,” 14th International Conference on Qual-
ity Software, pp. 117–126, 2014.

[121] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. C. Royer, A. Rumm-
ler, and A. Sousa, “A model-driven traceability framework for software
product lines,” Software and Systems Modeling, vol. 9, no. 4, pp. 427–451,
2010.

[122] L. Lamb, W. Jirapanthong, and A. Zisman, “Formalizing traceability
relations for product lines,” in 6th Int. Workshop on Traceability in
Emerging Forms of Software Engineering. ACM, 2011, p. 42.

[123] S. Winkler and J. von Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” pp. 529–565.

[124] S. Walderhaug, U. Johansen, E. Stav, and J. Aagedal, “Towards a generic
solution for traceability in MDD,” in ECMDA Traceability Workshop,
2006, pp. 41–51.

[125] M. Fockel, J. Holtmann, and J. Meyer, “Semi-automatic establishment
and maintenance of valid traceability in automotive development pro-
cesses,” 2nd Int. Workshop on Software Engineering for Embedded Sys-
tems (SEES’12), pp. 37–43, 2012.

[126] CMMI Product Team, “CMMI for Development, version 1.3,” Software
Engineering Institute, Tech. Rep. CMU/SEI-2010-TR-033, November
2010.

[127] A. Seibel, R. Hebig, and H. Giese, “Traceability in model-driven en-
gineering: Efficient and scalable traceability maintenance,” 2012, pp.
215–240.

[128] A. de Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk, “Information
retrieval methods for automated traceability recovery,” 2012, pp. 71–98.

[129] Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas,
“From state- to delta-based bidirectional model transformations: the
symmetric case,” in MODELS’11, ser. LNCS, J. Whittle, T. Clark, and
T. Kühne, Eds., vol. 6981. Springer, 2011, pp. 304–318.

[130] P. Stevens, “Bidirectionally tolerating inconsistency: Partial transfor-
mations,” in International Conference on Fundamental Approaches to
Software Engineering (FASE’14), ser. LNCS, S. Gnesi and A. Rensink,
Eds., vol. 8411. Springer, 2014, pp. 32–46.

[131] J. Cheney, J. Gibbons, J. McKinna, and P. Stevens, “Towards a principle
of least surprise for bidirectional transformations,” in BX 2015, ser.
CEUR Workshop Proceedings, A. Cunha and E. Kindler, Eds., vol. 1396.
CEUR-WS.org, 2015, pp. 66–80.

BIBLIOGRAPHY 117

[132] R. Wohlrab, J.-P. Steghöfer, E. Knauss, S. Maro, and A. Anjorin, “Col-
laborative traceability management: Challenges and opportunities,” in
Proceedings of 24th IEEE International Requirements Engineering Con-
ference (RE’ 16), 2016, p. 10.

[133] Z. Diskin, A. Wider, H. Gholizadeh, and K. Czarnecki, “Towards a ra-
tional taxonomy for increasingly symmetric model synchronization,” in
International Conference on Theory and Practice of Model Transforma-
tions (ICMT 2014), ser. LNCS, D. D. Ruscio and D. Varró, Eds., vol.
8568. Springer, 2014, pp. 57–73.

[134] N. Drivalos-Matragkas, D. S. Kolovos, R. F. Paige, and K. J. Fernandes,
“A state-based approach to traceability maintenance,” in Proceedings of
the 6th ECMFA Traceability Workshop. ACM, 2010, pp. 23–30.

[135] H. Schwarz, J. Ebert, and A. Winter, “Graph-based traceability: a
comprehensive approach,” Software & Systems Modeling, vol. 9, no. 4,
pp. 473–492, 2010.

[136] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-based
traceability for managing evolutionary change,” Transactions on Software
Engineering, vol. 29, no. 9, pp. 796–810, 2003.

[137] G. Spanoudakis, A. Zisman, E. Pérez-Minana, and P. Krause, “Rule-based
generation of requirements traceability relations,” Journal of Systems
and Software, vol. 72, no. 2, pp. 105–127, 2004.

[138] I. Pete and D. Balasubramaniam, “Handling the differential evolution
of software artefacts: A framework for consistency management,” in
22nd Int. Conf. on Software Analysis, Evolution, and Reengineering
(SANER’15), 2015, pp. 599–600.

[139] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” TSE, vol. 27, no. 1, pp. 58–93, 2001.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 2.83 points
 Normalise (advanced option): 'original'

 32

 D:20160801092955
 677.4803
 GU
 Blank
 479.0551

 Tall
 1
 0
 No
 1237
 160

 Fixed
 Down
 2.8346
 0.0000

 Both
 79
 AllDoc
 96

 CurrentAVDoc

 None
 17.0079
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 117
 141
 140
 141

 1

 HistoryList_V1
 qi2base

