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Resampling in network modeling of
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Jonatan Kallus

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

University of Gothenburg and Chalmers University of Technology

Abstract
Network modeling is an effective approach for the interpretation of high-dimen-
sional data sets for which a sparse dependence structure can be assumed.
Genomic data is a challenging and important example. In genomics, network
modeling aids the discovery of biological mechanistic relationships and thera-
peutic targets. The usefulness of methods for network modeling is improved
when they produce networks that are accompanied by a reliability estimate.
Furthermore, for methods to produce reliable networks they need to have a
low sensitivity to occasional outlier observations. In this thesis, the problem of
robust network modeling with error control in terms of the false discovery rate
(FDR) of edges is studied. As a background, existing types of genomic data
are described and the challenges of high-dimensional statistics and multiple
hypothesis testing are explained.

Methods for estimation of sparse dependency structures in single samples of
genomic data are reviewed. Such methods have a regularization parameter that
controls sparsity of estimates. Methods that are based on a single sample are
highly sensitive to outlier observations and to the value of the regularization
parameter. We introduce the method ROPE, resampling of penalized estimates,
that makes robust network estimates by using many data subsamples and
several levels of regularization. ROPE controls edge FDR at a specified level by
modeling edge selection counts as coming from an overdispersed beta-binomial
mixture distribution. Previously existing resampling based methods for network
modeling are reviewed. ROPE was evaluated on simulated data and gene expres-
sion data from cancer patients. The evaluation shows that ROPE outperforms
state-of-the-art methods in terms of accuracy of FDR control and robustness.
Robust FDR control makes it possible to make a principled decision of how
many network links to use in subsequent analysis steps.

Keywords: high-dimensional data, sparsity, model selection, bootstrap, ge-
nomics, graphical modeling
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1 Background

This thesis treats the understanding of high-dimensional genomic data. From a
statistical point of view, a key goal is to be able to make inference regarding the
relevance of, and relation between, covariates (i.e. transcripts or other biological
compounds). The high-dimensionality poses statistical and computational
challenges in itself. Furthermore, the nature of genomic data poses challenges.
Due to technical difficulty to collect such measurements, data is noisy and may
suffer from unwanted variation caused by differences in laboratory procedures.
Complex interactions between covariates, such as feedback loops and non-linear
dependencies, calls for rich statistical models, exacerbating the challenge of
high-dimensionality.

The hope is that novel statistical methods will further contribute to the un-
derstanding of the systems biology of living cells. Associations discovered in
genomic data are used to form hypotheses for biomarkers for improved disease
diagnosis or development of disease treatments. In order for statistical results
to be useful as a guide for biological research it is important that they are
accompanied by estimates of variance and accuracy.

The thesis is structured as follows. This chapter gives, first, a brief background
of genomic data; what it is, why it is interesting to collect and analyse, and
a description of different types of genomic data. Thereafter, the difficulties
of high-dimensional data are introduced, as well as the problem of multiple
hypothesis testing. Lastly, methods for finding associations in genomic data
are reviewed. The second chapter defines and limits the aims of this thesis.
Chapter 3 reviews resampling based methods for network modeling and gives
methodological results not included in paper I. Chapter 4 gives a summary of
paper I and the software package that was published along with it. Paper I and
its supplementary material is included in the thesis.
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2 1. Background

1.1 Genomic data

The diversity of living organisms, and life’s ability to subsist and adapt through
inheritance, are astonishing. It is popularly well known that DNA transfers
information about the constitution of an organism between parent and offspring.
But why are cells within a multi-cell organism so different, when they contain
the same DNA? How is the information in DNA put to use? How do cells
respond to changes in environment and what has gone wrong when a cancerous
cell starts to multiply uncontrollably? All of these questions relate to the
biochemical processes taking place within the cell, from DNA transcription to
protein synthesis and function (Smith and Szathmary, 2000). Genomic data
consists of measurements of the abundance of substances taking part in these
processes. Measurements are made on samples of tissue, on cell colonies cultured
in laboratories, or, recently on single cells.

The central dogma of molecular biology (Crick, 1970) is the theory that genetic
information is primarily transferred in the cell 1) from DNA to DNA through
replication, 2) from DNA to RNA through transcription and 3) from RNA
to protein through translation. Proteins are complex and diverse molecules
responsible for functions within cells. Figuratively, DNA is the blueprint for
making proteins. Due to the role of RNA as a messenger, the abundance of
a specific RNA molecule corresponds to how actively a specific piece of DNA
is being transcribed, and a specific protein is being constructed. A piece of
DNA that gets transcribed as a single RNA molecule is called a gene, thus gene
expression is measured by RNA abundance (Smith and Szathmary, 2000).

Several types of genomic data is being collected, in addition to gene expression.
Variation in DNA between organisms of the same species, or between tissue
within the same organism, is measured in terms of 1) single nucleotide polymor-
phisms (SNP, variation at a single base-pair in the DNA), 2) short insertions or
deletions (indels), and 3) copy number aberrations (CNA, longer DNA regions
missing or being repeated). Epigenetic marks, responsible for the vast differences
between different cell types despite containing identical DNA, are measured by
methylation and chromatin immunoprecipitation (ChIP). These measurements
capture the type and genomic location of chemical modifications in connection
to the DNA. Proteomics, the direct study of protein abundances, is challenging
and cannot be conducted with current technology at a genome-wide scale. It is,
however, a fast-growing field (Richardson et al., 2016).

For roughly two decades it has been possible to collect gene expression data
on a massive scale. First, primarily through microarrays (Schena et al., 1995)
and later through RNA-Seq (Wang et al., 2009). Human gene expression data
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contains measurements of the concentrations of the about 20,000 RNA molecules
in a sample of biological tissue. RNA is known to exhibit complex interactions
with other RNA molecules and with the DNA. TCGA (The Cancer Genome
Atlas Research Network et al., 2013) makes gene expression data from thousands
of cancer patients publicly available.

1.2 High-dimensional statistics

A high-dimensional data set is a data set where the number of covariates
(variables measured for each observation) is far greater than the number of
observations. An example is RNA-Seq gene expression data for the cancer type
glioblastoma multiforme in TCGA. It contains measurements for 20,530 genes
(covariates) in 172 tumour tissue samples from human patients (observations).

The statistical analysis of such data sets has become increasingly important
due to the increased ability to collect, store and transfer vast numbers of mea-
surements. Genomics and other areas in computational biology are important
examples. For the modeling of a high-dimensional data set, even the simple
linear model is too complex. Thus, the complexity of the linear model needs
to be reduced further, e.g. by discarding covariates or otherwise constrain the
linear model (Hastie et al., 2009).

Linear regression assumes the model Y = Xβ+ ε, where the response Y and the
error ε are n-dimensional vectors, the parameters β is a d-dimensional vector
and X ∈ Rn×d is a matrix of n observations and d covariates. The elements in ε
are independent, identically distributed, independent of X and have expectation
equal to zero. We can think of Y as the gene expression of one gene and X as
the gene expression of all other genes. Then β captures association between the
gene represented in Y and all other genes. With the most popular estimation
method least squares, β is estimated by minimizing the sum of squared residuals
(Y −Xβ)T (Y −Xβ). When d ≤ n, X and Y uniquely determines an estimate
of β (assuming that X is full rank). In the high-dimensional case, however, the
problem of estimating β is underdetermined. There exist infinitely many β such
that Y = Xβ and a single solution does not say anything about the relation
between X and Y (Hastie et al., 2009).

To reduce model complexity a constraint can be imposed on β. Common
constraints include the l2-constraint in ridge regression

∑d
i=1 β

2
i < R (Hoerl

and Kennard, 1970) and the l1-constraint in lasso
∑d
i=1 |βi| < R (Tibshirani,

1996). Lasso has the advantage that admissible β that minimize the sum of
squared residuals are, in general, such that many elements in β are equal to
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zero. This property of excluding less relevant covariates from the model is
useful for the estimation of relevant covariates in genomic data sets. The lasso
optimization is often formulated in the equivalent Lagrangian form

min
β

(Y −Xβ)T (Y −Xβ)/2 + λ

d∑
i=1
|βi|

with the l1-constraint changed into an l1-regularization term. The regularization
parameter λ corresponds to the constraining parameter R (Hastie et al., 2009).

Compared to unconstrained least squares, lasso has drawbacks. First, the lasso
estimate of β depends on a parameter λ. Secondly, the lasso estimation accuracy
for β is less well understood (Bühlmann and van de Geer, 2011).

1.3 Multiple hypothesis testing

In mathematical statistics, decision problems are approached using hypothesis
testing. When deciding if data supports an association between the expression
of two genes, the alternative hypothesis that the association is supported is
posed against the null hypothesis that it is not. If the probability of the observed
data, or a more extreme observation, under the null hypothesis is below some
threshold the alternative hypothesis is accepted. This probability is called the
p-value and the threshold is commonly 0.05 (Rice, 2006). When multiple tests
are performed, such as testing the association between a gene and all other
genes or even the association between all pairs of genes, the classical framework
is unsatisfactory. Since the probability of falsely accepting a specific hypothesis
is 0.05 (if the threshold is 0.05 and the alternative hypothesis is false), we
have to expect that 5% of all unassociated genes will be falsely deemed as
associated. Correctly accepted alternative hypotheses risk being lost among a
large number of falsely accepted alternative hypotheses. Instead of focusing on
the error probability in a single test it is relevant to control the total number
of errors. The family-wise error rate (FWER) is the probability that at least
one alternative hypothesis is falsely accepted. The false discovery rate (FDR)
is the expected proportion of accepted alternative hypotheses that are falsely
accepted (Hastie et al., 2009).

Hypothesis testing relies on an assumption of the distribution of the test
statistic under the null hypothesis. In large-scale multiple testing problems
where the proportion of alternative cases is less than 10%, hypothesis tests can be
improved by using an empirical null distribution. Empirical null distributions are
overdispersed relative to a theoretical null distribution, for the following reasons:
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the existence of unobserved covariates, correlations that are not accounted
for in the theoretical null distribution and the existence of many real but
uninterestingly small effects. The use of empirical null distribution makes
an important difference in multiple testing, and rich null distributions (in
comparison to commonly used theoretical null distributions) are needed to
capture overdispersion (Efron, 2004).

When controlling the false discovery rate, a measure of statistical significance
called the q-value (Storey and Tibshirani, 2003) is useful. While performing
multiple hypothesis significance tests, q-values are assigned to each alternative
hypothesis so that if all alternative hypotheses with q < 0.05 were called
significant, an FDR of approximately 0.05 would be achieved. Thus, q-values
have the same relation to FDR as p-values have to false positive rate.

1.4 Finding associations in genomic data

Associations in genomic data can be represented as a network, where each
gene is represented by a node and nodes are connected by a link if the genes
they represent are associated. Such network representations aim to raise the
focus from the local associations between pairs of genes to systemic or global
properties of the whole group of genes and their interactions. Network models of
human gene expressions have proven useful for classification of cancer patients
as well as for finding potential target genes for cancer therapies (Pe’er and
Hacohen, 2011). Features at the network level that are of biological importance
include genes that serve as network hubs and the network distance between
them (Jörnsten et al., 2011), as well as the betweenness-centrality of nodes (i.e.
network bottlenecks) (Kling et al., 2015). Such features can be predictive of
survival time in cancer patients or be cancer type specific (Jörnsten et al., 2011;
Kling et al., 2015).

The terms from applied fields (network, node, link) and corresponding mathe-
matical terms (graph, vertex, edge) are used interchangeably in this thesis. A
graph is defined by a set of vertices V and a set of edges E, where each edge in
E is a pair of vertices in V .

This thesis concerns the estimation, from a genomic data set, of the edge set of a
graph where V consists of all covariates in the data set. The estimation problem
connects to previous sections 1.2 and 1.3 in that procedures based on lasso are
tractable for performing such estimation, while a solution in the framework
of multiple hypothesis testing with high statistical power and asymptotically
correct error control is desirable.
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Estimation of the edge set is a high-dimensional model selection problem. Each
potential edge corresponds to a parameter in a regression model. To set a
parameter to zero corresponds to not selecting the variable or edge. The lasso
and related l1-norm penalized methods are computationally and performance-
wise efficient when sparsity can be assumed. Penalized methods rely on a
choice of amount of penalization, an inherently hard problem. The optimal
amount of penalization depends on the number of observations and variables
as well as several unknown quantities such as noise, true sparsity and variable
interdependence structure. It also depends on the intended use for the network
model. The choice of amount of penalization corresponds to choice of model
complexity in general model selection.

Traditional methods for selecting the amount of regularization, cross-validation
and information criteria, are prone to overfit and sensitive to outliers (Jörnsten
et al., 2011). When the goal of graphical modeling is interpretation (e.g.
biomarker identification, mechanistic understanding) an accurate control of
the rate of falsely discovered edges (FDR) is more important than maximizing
stability or likelihood.

Many methods for estimation of biological interaction networks have been
proposed in literature. Evaluation is usually performed through matching recon-
structed networks with known pathways, using some degree of node closeness
(e.g. path length) (Kling et al., 2015). The following sections review methods
for estimation of interaction networks.

1.4.1 Graphical lasso

Assume that observations follow a multivariate Gaussian distribution, i.e. Xi ∼
N(µ,Σ) ∀i, where Xi is the ith row of X, µ is the mean vector and Σ is the
covariance matrix. Then, if a pair of covariates are conditionally independent
given all other covariates, the corresponding element in the precision matrix Σ−1

is zero. This allows for the modeling of gene expression data as a graph, where
two genes are connected by an edge if their partial correlation is significantly
non-zero. The meaningfulness of exact zeros suggests the construction of an
estimator of Σ−1 that tends to estimate elements to be exactly zero using a
lasso penalty. The log-likelihood for Θ = Σ−1, partially maximized with respect
to µ, is given by log det Θ− tr(SΘ), where S is the empirical covariance of X
and tr is the trace operator. The graphical lasso estimates a sparse graph by
solving

Θ̂ = arg max
Θ�0

log det Θ− tr(SΘ)− λ||Θ||1
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where the constraint Θ � 0 means that Θ is constrained to be positive semidef-
inite and ||Θ||1 is the sum of the absolute values of the elements in Θ. The
maximization problem is convex and computationally tractable, although con-
siderably slower to use than the methods that are reviewed next (Friedman
et al., 2008; Banerjee et al., 2008).

1.4.2 Neighborhood selection

Neighborhood selection was proposed before graphical lasso but is considerably
faster and can be understood as an approximation of graphical lasso. It models
each covariate a with all other covariates using lasso

β̂a = arg min
{β:βa=0}

1
n

(Xa −Xβ)T (Xa −Xβ) + λ

d∑
i=1
|βi|

where Xi is the ith column of X. The set {(i, j) : β̂ij 6= 0 ∨ β̂ji 6= 0} is the
estimated edge set (Meinshausen and Bühlmann, 2006). Compared to graphical
lasso, the optimization problem of neighborhood selection is computationally
simpler. It is a drawback that it does not impose symmetry in gene associations,
i.e. β̂ij = β̂ji . Symmetry is instead enforced after β̂ has been computed.

1.4.3 WGCNA

Weighted correlation network analysis (WGCNA) takes a simpler and more
direct approach. The correlation coefficient measures linear dependence between
covariates. WGCNA estimates the edge set with all pairs of covariates that
have an absolute correlation above a threshold τ . The parameter τ takes a role
similar to the regularization parameter in lasso. A larger value of τ gives sparser
network estimates (Langfelder and Horvath, 2008). This method is even faster
than neighborhood selection and it is symmetric due to the symmetry of the
correlation coefficient. Compared to graphical lasso and neighborhood selection,
WGCNA estimates are local in the sense that the decision of connecting two
covariates is based only on observations of these two covariates. The resulting
correlation based network is less meaningful than a partial correlation network
in the sense that the former cannot distinguish between pairs that are correlated
due to dependencies to observed confounding nodes and pairs that are correlated
due a direct dependency.
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1.4.4 ARACNE

Correlation and linear regression both estimate linear dependencies. Thus
the association of gene pairs may be missed or underestimated if their expres-
sions are non-linearly dependent. Algorithm for the reconstruction of accurate
cellular networks (ARACNE) uses measures from information theory. The
mutual information of two covariates captures dependency, both linear and
non-linear. Similarly to WGCNA, the network is estimated by thresholding
the estimated mutual information between pairs of nodes. A post-processing
step is performed that removes the link in connected triangles that has the
least mutual information. This step aims to approximate a network capturing
conditional dependencies (Margolin et al., 2006).



2 Aims

This thesis aims to further develop statistical methodology for the understanding
of high-dimensional genomic data sets by means of graphical modeling. Several
methods for estimating the edge set of such graphical models exist. The aim
of this thesis is to go beyond methods that estimate a single graph (point
estimates) and also beyond methods that rank edges by how supported they
are by data. Instead, resampling and statistical modeling of estimates from
many resamples will be used to make estimates that are stable to the existence
of outlier observations, and where the false discovery rate of edges is controlled.

Accurate FDR control, in contrast to goals such as likelihood maximization
or predictive performance, facilitates biomarker identification, hypothesis gen-
eration, mechanistic understanding and comparative modeling, i.e. problem
domains where each inferred association needs to be individually trustable
(Kling et al., 2015).

The thesis treats the analysis of single data sets. The integrative analysis of
several types of genomic data (RNA, CNA, methylation etc.) is not considered.
The aim is also limited to exclude special treatment of data sets where obser-
vations are divided into different groups representing e.g. patients that have
different disease types.

9
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3 Resampling based
network modeling

The methods reviewed in section 1.4 are estimators of edge sets of graphs. Given
a data set X ∈ Rn×d and regularization parameter λ they make an estimate
Ŝλ(X) ∈ {0, 1}p of an edge set. With an indexing over all pairs of covariates in
X, Ŝλi (X) = 1 means that the ith pair of covariates is in the estimated edge set.
The number of potential edges is p = d(d−1)/2. When using network estimates
for making biological hypotheses it is beneficial to have an understanding of
the distribution of such estimates. The field of statistical inference concerns
the distribution of estimates such as Ŝλ(X). To what extent can a network
estimate be trusted? Are some or all edges strongly influenced by a few of the
observations in X or are they representative of an entire population? To what
extent can specific properties of the estimated network, or specific locations
in it, be trusted? For non-trivial estimators Ŝλ these questions are difficult to
answer, not only due to the unknown distribution of X.

The distribution of Ŝλ can be estimated using the non-parametric bootstrap
or other resampling methods. The non-parametric bootstrap uses the sample
X to form new samples with approximately the same distribution as X. A
bootstrap sample R(X) consists of n rows drawn randomly among the rows of
X, with replacement. The distribution of the estimator Ŝλ is approximated by
applying it to many resamples R(X). In addition to getting an understanding of
a specific estimator, this procedure can be used to compare different estimators
(i.e. different levels of regularisation for a specific method or different methods).
Furthermore, all of the bootstrap estimates Ŝλ(Ri(X)), where Ri is the ith
resample, constitutes a new data set that can be used for estimating the network.
This route has the potential to improve error control and to improve robustness
by decreasing sensitivity to single observations in X. This chapter reviews
two such existing resampling based network estimators that are state-of-the-art
in terms of control of the false discovery rate (FDR). Paper I contributes a

11



12 3. Resampling based network modeling

new method for resample based network estimation that has more exact FDR
control than existing methods and is considerably more robust than one of the
state-of-the-art methods.

Bootstrapping B times and estimating a graph for each bootstrap sample yields
B graphs, with equal sets of nodes but different sets of edges. Thus, each
potential edge i will have appeared Wλ

i times, Wλ
i ∈ {0, . . . , B}:

Wλ
i =

B∑
j=1

Ŝλi (Rj(X)) ∈ {0, . . . , B}

As suggested by the superscript on W , a specific estimator Ŝλ transforms a
matrix X to a vector while a method Ŝ corresponds to a vector of functions of
λ describing each edge’s response to regularization. Figure 3.3A captures the
former. It shows a histogram of how many edges that was selected k times for
a specific λ. Figure 3.3B captures the latter. It shows how edges respond to
varying regularization.

Simple ways to estimate a network using selection counts Wλ would be to
include all edges with Wλ

i > 0 (edges selected in at least one resample) or edges
with Wλ

i = B (edges consistently selected in all resamples) or something in
between (e.g. edges selected in a majority of resamples). Stability selection and
bootstrap inference for network construction (BINCO), reviewed in sections 3.1
and 3.2, are more sophisticated. Resampling of penalized estimates (ROPE)
introduced in paper I is first to model the sequence Wλ

i with a probability
distribution. Furthermore, these three methods address the problem of selecting
amount of regularization λ, by using several Wλ corresponding to a range of λ
values.

3.1 Stability selection

Stability selection uses the maximum selection count for each edge over the
entire range of λ values. Meinshausen and Bühlmann (2010) derive an upper
FWER bound for a threshold kt where all edges for which maxλWλ

i > kt are
selected (figure 3.1). It is shown in paper I that the achieved FWER is, in many
cases, far below the FWER bound. This results in too conservative choices of
kt and, in turn, too sparse network estimates.
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Figure 3.1: Edge selection counts k after 500 bootstraps over varying penalty
parameter λ. A random subset of all edges are shown. The stability selection
threshold is shown with a dashed red line. Stability selection selects all edges whose
count is above a threshold kt for at least one λ.

3.2 BINCO

BINCO (Li et al., 2013) estimates the null hypothesis distribution of edge
selection counts for each value of λ (figure 3.2). The histogram estimates the
distribution of edge counts, but it contains both null and alternative edges. In
order to estimate a distribution that only includes potential edges that should
not be included in a good network estimate, a range of selection counts is chosen
that is dominated by such edges. The choice of a such range is based on the
histogram having an approximate U-shape.

It is a good sign when edge selection counts are U-shaped. In an ideal case
where the network estimator estimates an identical network for each bootstrap
sample, each edge will get a selection count of either 0 or B. In a slightly less
ideal case, edges will be selected either a small number of times or almost B
times, resulting in a U-shaped histogram. It is often the case that the mode for
the distribution of false edges is larger than zero. Therefore, an assumption of
U-shape in the entire range is too strong. Instead histograms are assumed to
be U-shaped in a range {c, . . . , B}, 0 ≤ c < B.

Li et al. (2013) states the assumption of approximate U-shape precisely as
the proper condition. The proper condition is satisfied when the empirical
probability density function for edge selection counts is U-shaped in the limit
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Figure 3.2: Edge selection count histogram after 500 bootstraps corresponding to
one λ. The red line shows the null hypothesis distribution as estimated by BINCO.
kt shows the threshold by BINCO corresponding to an estimated FDR of 0.05. v2
is the location of the minimum of the asymptotic distribution function estimated by
BINCO.

B →∞, i.e. that when restricting the function to this interval, the function has
local maxima at its end points, global minimum in the interior of its domain
and no other extrema. They show that the proper condition is satisfied by
selection procedures for which the selection probability tends to one uniformly
for alternative edges and has a limit superior strictly less than one for null
edges, as n → ∞. They also show that the condition is satisfied by selection
procedures that are based on resampling of consistent selection procedures, such
as the lasso when the irrepresentable condition (Zhao and Yu, 2006) is satisfied.

Approximate U-shape is a condition for both BINCO and ROPE. This condition
excludes problems where the generating network is either extremely sparse in
relation to the variance in network estimates caused by resampling, or where
several different edge sets with small mutual overlap captures the data similarly
well.

BINCO makes an estimate of the mode of the null population and of the
location of the minimum in the U-shaped range. Edge counts in the interval
from null mode to minimum location are used to estimate the parameters of
a decreasing beta-binomial density function. BINCO uses a modified beta-
binomial distribution to capture overdispersion, see Li et al. (2013) or paper
I.
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Having an estimate of the null hypothesis distribution, and using a decision
rule such that edges with selection count above a threshold kt are accepted, the
FDR corresponding to such thresholds can be estimated. The number of false
selections is estimated by the mass of the null distribution to the right of kt
multiplied by p, the number of potential edges. The total number of selected
edges is given by the sum of the number of edges with each selection count
k > kt (the sum under the histogram to the right of the threshold). Their ratio
estimates the FDR.

With a threshold kt for every λ, each corresponding to the same estimated
FDR, a decision is needed for which λ to use. BINCO uses counts from the
regularization λ for which most edges are selected. That is, λ is selected to
maximize estimated power.

There are drawbacks in using only the decreasing range of the histogram
to estimate parameters of the null distribution. Depending on the shape
of histograms, thresholds corresponding to relevant false discovery rates are
often located outside the range used to fit the model. When that is the case,
extrapolation of the fitted model gives an unnecessarily large variance in choice of
threshold. Furthermore, presence of the alternative population in the decreasing
range, especially its rightmost part, can cause an erroneous estimate of the null
distribution.

3.3 Joint modeling across regularization levels

It is reasonable to assume that the distribution of edge selection counts changes
smoothly when the amount of regularization is changed. Furthermore, an
increase in regularization leads to a sparser network. Thus the mean of the
distribution decreases when regularization increases. Lastly, the proportion of
potential edges that should be included in a correct network is fixed. Instead
of modeling selection counts at each level of regularization individually, these
assumptions and facts can be used to fit a model globally. Such a global model
can decrease variance in the estimation of model parameters that is caused by
the finiteness of the number of bootstraps and observations.

These relationships between selection counts and regularization are illustrated
in figure 3.3. The figure also illustrates the relationship between histograms
and how the curves of individual edges changes as functions of regularization.

Numerical likelihood maximization for such a global model is challenging.
Challenges include the large number of model parameters and a sound and
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efficient formulation of constraints that enforce smoothness in distribution
change. The large number of potential edges and the possibility to perform
many bootstraps ensures that there is much selection count data available to
fit local models at each regularization level. This suggests that gains from
enforcing smoothness across regularization levels are small. In ROPE we enforce
the fact that the proportion of edges that should be included in the network
are fixed regardless of λ. It is shown in paper I that this constraint decreases
bias and increases robustness.
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Figure 3.3: Combined two dimensional histogram of edge selection counts and
penalization parameter values, along with estimated null population density (C). Edge
selection counts for some individual edges are shown as functions of the penalization
parameter (B, C). If all individual edges were shown, the density of curves would
have corresponded to the height of the histogram. This figure shows the relationship
between selection count histograms (A) and curves (B). It also shows how histograms
changes smoothly with λ.
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4 Summary of paper I

In paper I we introduce the method ROPE for robust network modeling with false
discovery rate of edges controlled at a desired level. Like stability selection and
BINCO, our method uses bootstrap samples of data to produce multiple network
estimates for several values of the regularization parameter. These estimates are
aggregated to selection frequencies for all edges and simultaneously analyzed
across all levels of sparsity. Unlike previous methods, this global modeling
approach is based on a joint beta-binomial mixture of edge selection frequencies.
The edge false discovery rate estimates are based on the optimal regularization
parameter value that best separates the mixture components (“true” and “false”
edges) as well as information about the true level of sparsity obtained from a
range of regularization levels. We show that ROPE outperforms state-of-the-art
methods in terms of FDR control and robust performance across data sets. The
evaluation is performed on simulated data sets and on glioblastoma tumor gene
expression data from TCGA.

We propose a statistical model for selection counts, and enable a simultaneous
interpretation of selection counts for different levels of regularization. The
sequence {Wλ

i : i = 1, . . . , p} is modeled as coming from a mixture of beta-
binomial distributions, with components capturing either the population of null
edges or the population of alternative edges. Fitting this distribution makes it
straight forward to choose a threshold kt ∈ [0, B] corresponding to a given false
discovery rate such that edges i with Wλ

i > kt are declared significant. A range
of regularization is chosen to minimize the overlap of mixture components. In
this range, the ratio of alternative edges is constrained to be constant (for any
regularization λ).

19
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Figure 4.1: Edge selection counts histogram after 500 bootstraps corresponding to
one regularization level λ. A mixture distribution with two components is estimated
by ROPE. The red line shows the component that estimates null hypothesis distribu-
tion. The green line shows the component that estimates the alternative hypothesis
distribution. While only the null distribution is needed to estimate the FDR of a
selection threshold, having a model that captures both populations decreases bias and
avoids several model estimation difficulties.
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Figure 4.2: Illustration of procedure to choose which level of regularization to
use for edge selection. The left panel shows the model fitted to an histogram for
one level of regularization. It also shows kacc, the selection count threshold that
maximizes accuracy. Assuming the fitted model as truth, the right panel shows the
difference between numbers of correctly and incorrectly selected edges. The difference
has been normalized to have maximum 1. The procedure estimates how separated
(non-overlapping) the two distributions are.
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The mixture model

z|π ∼ Bernoulli(π)
yj |µj , σj ∼ Beta(µj , σj), j = 0, 1
Wλ
i |y, z ∼ Bin(B, yz)

is fitted to edge counts for each level of regularization λ. The model has
five parameters: π the proportion of true edges, µ1, σ1 the mean and standard
deviation of the probability of true edges to be selected and µ2, σ2 corresponding
mean and standard deviation for false edges. The model is illustrated in figure
4.1. This model is extended to allow for overdispersion, for details see paper I.

Using the fitted models for each λ, we estimate how separated the two compo-
nents are. The estimate g(λ) is based on the difference between the number of
correctly and falsely selected edges, under the fitted model.

g(λ) =
B∑

k=kacc

(fa(k)− fn(k))

where fa and fn are the estimated distributions for alternative and null edges
respectively and kacc is the threshold that maximizes accuracy, given these
distributions (figure 4.2).

There are two main differences between how ROPE and BINCO model selection
counts. First, ROPE uses a model with a higher number of parameters. The
big number of potential edges ensures that there is enough data to warrant a
richer model. Second, ROPE uses a model that captures the relevant range
of high selection counts (i.e. edges that are selected for most or all bootstrap
samples). Thus, ROPE’s threshold will not be based on an extrapolation from
edges with low selection counts, and BINCO’s intermediate estimation of a
range of decreasing selection counts is avoided.

ROPE, BINCO and stability selection are evaluated with extensive simulation
studies under a range of different variable interdependence structures. Re-
sults show consistently far more correct FDR control for simulated problems,
compared to BINCO and stability selection.

The methods are also compared on public gene expression data from TCGA
(The Cancer Genome Atlas Research Network et al., 2013). Selected network
sizes and difference between estimates for different subsets of the gene expression
data suggests that BINCO fails to control FDR while stability selection is too
conservative. In the network selected by ROPE at an estimated FDR of 0.15,
we found all hub genes to have documented cancer related functions.
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Lastly, in the supplementary material to paper I, we apply ROPE for clas-
sification of gene expression profiles according to their primary cancer type,
illustrating that ROPE can also be applied to some variable selection problems
other than graphical models. There, a multinomial logistic regression model
with group lasso penalty is utilized.

4.1 Software package

An implementation of our method is made available as an R package. The
package gives support in choosing a regularization range, using visualizations and
a heuristic for automatically deciding if histograms are U-shaped. The statistical
model is fitted at each regularization step using numerical optimization of the
log-likelihood function. In a second round of fitting the model, information
from the optimal regularization range is used to make an estimate of mixture
component sizes, based on counts from several regularization levels. The package
contains several visualizations to examine goodness of model fit. The package is
available at The comprehensive R archive network https://cran.r-project.
org/package=rope.

https://cran.r-project.org/package=rope
https://cran.r-project.org/package=rope
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Abstract

Network modeling has become increasingly popular for analyzing genomic data, to aid in the
interpretation and discovery of possible mechanistic components and therapeutic targets. However,
genomic-scale networks are high-dimensional models and are usually estimated from a relatively small
number of samples. Therefore, their usefulness is hampered by estimation instability. In addition, the
complexity of the models is controlled by one or more penalization (tuning) parameters where small
changes to these can lead to vastly different networks, thus making interpretation of models difficult.
This necessitates the development of techniques to produce robust network models accompanied by
estimation quality assessments. We introduce Resampling of Penalized Estimates (ROPE): a novel
statistical method for robust network modeling. The method utilizes resampling-based network
estimation and integrates results from several levels of penalization through a constrained, over-
dispersed beta-binomial mixture model. ROPE provides robust False Discovery Rate (FDR) control
of network estimates and each edge is assigned a measure of validity, the q-value, corresponding to
the FDR-level for which the edge would be included in the network model. We apply ROPE to
several simulated data sets as well as genomic data from The Cancer Genome Atlas. We show that
ROPE outperforms state-of-the-art methods in terms of FDR control and robust performance across
data sets. We illustrate how to use ROPE to make a principled model selection for which genomic
associations to study further. ROPE is available as an R package on CRAN.

1 Introduction

Large-scale network modeling has the potential to increase our understanding of complex genomic data
structures. However, the interpretability of such high-dimensional models are limited by their estimation
instability and sensitivity to model tuning parameters. Network modeling is often a preliminary step
toward identifying biomarkers for disease stratification or therapeutic targets (e.g. Pe’er and Hacohen,
2011). It is therefore essential that network modeling is accompanied by reliable measures of validity, e.g.
false discovery rate of detected edges. Here, we focus on the network modeling of gene expression data, but
the methodology is generally applicable to other genomic data sets (Kling et al., 2015). Transcriptional
network models aim to identify genes (transcripts) that are directly connected. How connectivity is
defined depends on the method utilized. For instance, in graphical lasso (Friedman et al., 2008) a network
model is obtained through a penalized Gaussian likelihood estimate of the precision matrix (the inverse
covariance matrix). Non-zero entries of this matrix identify directly connected genes as those for which
the estimated partial correlation exceeds a penalization threshold. Methods like WGCNA (Langfelder
and Horvath, 2008) or ARACNE (Margolin et al., 2006) similarly identify connections as those for
which a metric of gene-gene association (correlation for WGCNA, mutual information for ARACNE)
exceeds a certain penalization threshold. Thus, common to all these methods, the complexity of the
estimated network is controlled by a penalization parameter, λ, regulating the sparsity of the estimates.

1



Figure 1: Summary of ROPE (resampling of penalized estimates) for network modeling with control of the rate of falsely
discovered edges (FDR). 1) The input data is resampled. 2) For each resample, network models are estimated with varying
penalization. 3) The number of resamples in which edges are present is modeled as a mixture of “spurious” and “relevant”
edges with the mixture proportion jointly estimated across penalization levels. 4) From the mixture model, each edge is
assigned a q-value, the minimal FDR target for which the edge is included.

For graphical lasso, much work has focused on estimating the proper penalization for asymptotically
consistent selection or optimal bias variance trade off (Meinshausen and Bühlmann, 2010; Liu et al.,
2010). Specifically, stability selection (Meinshausen and Bühlmann, 2010) performs model selection
based on many subsamples of the data and with different levels of penalization. The method addresses
selection of high-dimensional models in general and can readily be applied for selection of network
models. An upper bound for the expected number of falsely selected variables (edges), family wise error
rate (FWER), is derived. In practice, the estimated bound depends on the range of used penalization
levels. Alternatively, one can approach the problem of proper penalization in terms of controlling false
discovery rate (FDR) using subsampling or bootstrapping. Bootstrap inference for network construction
(BINCO) (Li et al., 2013) models the bootstrap selection frequency for spurious edges, to estimate FDR.

Other methods for selection includes StARS (stability approach to regularization selection) (Liu
et al., 2010) which estimates the expected probability of edges to be selected in one subsample and not
in another, as a function of the penalization level. This estimate, denoted the instability of variable
selection, cannot trivially be extended to control FDR. Bolasso (Bach, 2008) was the first method to
combine bootstrapping and the lasso for variable selection and retains variables consistently selected for
all bootstrap samples. Results focus on selection accuracy rather than false discovery control.

Here, we introduce Resampling of Penalized Estimates (ROPE) to provide robust FDR control for
edge selection accompanied by a measure of validity for each edge: q-values (Storey and Tibshirani,
2003). q-values are assigned to each edge so that if all edges with q < α were retained, an FDR of α
would be achieved. Thus, q-values have the same relation to FDR as p-values have to false positive rate.
This results in a highly interpretable representation where the inferred network is visualized with edge
widths corresponding to edge q-value. We show that ROPE outperforms state-of-the-art FDR-controlling
methods through comprehensive simulation studies and application to RNA-seq expression data from
the Cancer Genome Atlas (The Cancer Genome Atlas Research Network et al., 2013). An easy-to-use R
package is provided through CRAN.

This article is structured as follows. This section has introduced the problem at hand. Section 2 pro-
vides a detailed description of our method and a comparison with the state-of-the-art. Section 3 evaluates
the method with comprehensive simulation studies and includes method comparisons on genomic data
from glioblastoma tumors in TCGA. Our method finds several hub genes known to have glioblastoma
associated functions, and estimates the validity of each of their connections. Section 4 concludes with
the authors’ thoughts on the significance of this work and directions for future research.

2 Methods

Variable selection is central to the understanding of high-dimensional data. In network modeling of
genomic data, variable selection takes the form of selecting which gene-gene direct interactions (edges)
to include. Traditional methods for model selection, e.g. cross validation, are unsatisfactory for high-di-
mensional problems, due to their tendency to overfit (Jörnsten et al., 2011). Furthermore, measurement
errors are expected in genomics data and high-dimensionality makes erroneous observations both in-
fluential and hard to filter. Therefore, single model estimates are not informative and resample based
methods are needed.

In this article we use neighborhood selection (Meinshausen and Bühlmann, 2006) for network mod-
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eling. However, we emphasize that ROPE is applicable to any network modeling where sparsity is
controlled by a tuning parameter. Neighborhood selection provides a good approximation of graphical
lasso and is computationally faster. It models interactions of a gene j to other genes via the lasso.

βj = arg min
{β:βj=0}

1

n
||Xj −Xβ||22 + λ||β||1

where X is a matrix of n rows (observations) times d columns (genes). The parameter λ is the amount of
sparsity inducing penalization. The set {(i, j) : βij 6= 0 ∨ βji 6= 0} is the edge set of the inferred network.
Note that in network modeling of d dimensional data, the network model consists of p = d(d − 1)/2
potential edges.

Due to estimation instability, single network estimates have limited interpretability. Therefore, it
is advisable to repeat network estimation on resampled data and utilize an estimation aggregate for
inference. Here, we use resampling of randomized lasso estimates which randomizes the amount of
penalization for each individual parameter in different resamples in order to break correlations between
variables. Randomized lasso in combination with resampling weakens the so-called irrepresentability
conditions that data need to adhere to for consistent selection (Zhao and Yu, 2006). The amount of
randomization in Randomized lasso is controlled by a weakness parameter. Weakness 1 corresponds to
no randomization, while a lower weakness trades signal strength in data for a lower risk of selecting
irrelevant variables (Meinshausen and Bühlmann, 2010).

Introducing some notation, let Ri be a realization of any uniform resampling procedure, most com-
monly subsampling with sample size m < n or bootstrap, so that Ri(X) is the resampled data set. Let
Ŝλ be any penalized method for variable selection (Ŝλ(X) is the set of variables selected by Ŝλ given
X). Let Ŝλi be randomization i of penalization in Ŝλ. The main algorithmic input of ROPE, stability
selection and BINCO is variable selection counts

Wλ
j =

B∑
i=1

1[j ∈ Ŝλi (Ri(X))] ∈ {0, . . . , B} (1)

for variable (edge) j over B resamples.
We now present a detailed review of the state-of-the-art FDR-controlling methods BINCO and Sta-

bility Selection. BINCO, proposed in Li et al. (2013), selects edges with frequency counts Wλ
j exceeding

a threshold t. Parameters λ and t are chosen to maximize power while controlling FDR. For each λ,
Wλ corresponds to a histogram hλ(w) =

∑
j 1(Wλ

j = w) (Figure 1.3). Ideally, this histogram should
have two clear modes: at count 0 for spurious (null) edges and count B for the relevant (non-null)
edges. For reasonable levels of regularization, hλ(w) is thus ”U-shaped”. In BINCO, the null model is
estimated by fitting a powered beta-binomial distribution to hλ in the range where hλ is decreasing in
w (defined in Equation 2, Section 2.1). By extrapolation of this null into the range of large frequency
counts (dominated by non-null edges), t can be chosen for each λ to control FDR. In practice, the authors
found this results in an overly liberal selection and therefore also propose a conservative modification.
In conservative BINCO, the density function of the powered beta-binomial distribution is modified to be
constant, instead of decreasing, to the right of the estimated minimum of the hλ-model. This results in
a larger t for a given target FDR, thus selecting fewer edges.

Stability selection (Meinshausen and Bühlmann, 2010) selects variables with maxλ∈ΛW
λ
j > t for

some threshold t. That is, as long as an edge j has a frequency count exceeding threshold t for any
penalization λ ∈ Λ, it is included in the model. An upper bound on the expected number of falsely
selected variables, F , when t > B/2 is derived for Ŝλi randomized lasso and Ri subsampling with sample
size bn/2c:

E(F ) ≤ q2
Λ

(2 t
B − 1)p

,

where p is the number of variables and the expected number of selected variables qΛ is estimated by
|Λ|−1

∑
λ∈Λ

∑
jW

λ
j . In Li et al. (2013), an FDR bound is derived from this by dividing both sides

by the number of selected variables
∑
j 1(maxλ∈ΛW

λ
j ≥ t). This estimate depends, not only on the

threshold t, but also on the investigated range of penalization. In Li et al. (2013), the combination of t
and Λ that selects the maximum number of edges while controlling FDR at the desired level is used.
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It is a necessary condition for the applicability of both BINCO (and our method, ROPE) that
the histogram hλ is approximately U-shaped for some λ. Li et al. (2013) connect this condition to
the irrepresentable condition, showing that satisfaction of the latter leads to U-shaped histograms. In
practice, however, the BINCO procedure is sensitive to the histogram shape. First, it is sensitive to
correctly estimating the end points of the decreasing range of hλ, from which the null distribution
is estimated. Second, the estimated null distribution is extrapolated into the increasing range of hλ,
where any relevant FDR controlling threshold will be. This extrapolation leads to an unnecessarily
large variance for the selected threshold. Third, non-uniform presence of the alternative population
(relevant edges) in the decreasing range of the histogram will cause a bias in the estimate of the null
distribution. Forth, the authors warn that the method makes a too liberal selection when the minimum
of the histogram is to the right of 0.8B, which easily happens in problems that are sufficiently sparse.
Stability selection, while not having the issue of sensitivity to histogram shape, has the limitation that
it focuses on a worst-case guarantee, rather than an estimate of the number of false positives.

2.1 ROPE: joint model for resampled, penalized estimates

Recognizing the above limitations of state-of-the-art procedures, we here introduce ROPE, a novel joint
modeling of edge presence counts across multiple penalization levels. Figure 1 summarizes the method.
Specifically,

1. Resampling of input data. B resamples are created by resampling n observations with
replacement.

2. Generation of edge presence counts. Edge presence counts are collected for several levels
of penalization, λj ∈ Λ (Equation 1). Here, we illustrate ROPE for neighborhood selection in
combination with randomized lasso but, as mentioned above, other sparse network models can be
used.

3. Modeling of edge presence counts for each λ, and joint modeling across multiple λs.
We model Wλ

i , for each λ, as coming from a mixture of overdispersed beta-binomial distribu-
tions (Equation 3). For improved robustness and accuracy, we leverage the fact that the mixture
proportion of null to non-null edges is constant across λ.

4. q-value assessment and selection of final model. Integrating information from λs where the
modeled null and alternative populations are most separated (Equation 4), q-values are estimated
for each edge. FDR is estimated by the probability mass of the null component to the right of
threshold divided by mass of the total empirical density to the right of threshold (Equation 5).

In more detail, edge presence counts are modeled as coming from a mixture of overdispersed beta-
binomial distributions. Edge selection probabilities depend not only on them being null or alternative
but also on, at least, the strength of the dependence between the nodes they connect. This warrants
the use of a beta-binomial distribution for each mixture component, where parameters µ represent mean
edge selection probability within each component (null/alternative), and σ the variation of dependence
strengths within components:

fBB(w) =

(
B

w

)
β(w + µ

σ , B − w + 1−µ
σ )

β(µσ ,
1−µ
σ )

,

where β is the beta function.
For large and sparse graphs, each edge frequency count can be assumed to be independent of most

other edges. (Locally, however, edge frequency counts can of course be highly correlated.) Still, the edge
count histograms indicate the presence of overdispersion, likely caused by unobserved covariates, hidden
correlations (not accounted for in the theoretical null distribution) and the existence of many real but
uninterestingly small effects (Efron, 2004). We account for overdispersion with inflation components and
modifications of the beta-binomial components. Inflation is added for both low and maximum selection
counts. Since graphs are assumed to be sparse, most edges will have low selection counts. These edges
are easily classified as belonging to the null so a good model fit is not important in that range. Therefore,
the beta-binomial distribution that captures null edges is inflated in the range {0, . . . , cλ} where cλ is
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chosen so that 75% of edges has selection count cλ or less. The method is not sensitive to the exact
proportion of edges captured by this inflation. The distribution for alternative edges is only inflated at
the maximum count B. Further overdispersion is added by raising the beta-binomial density function
corresponding to the null population by an exponent γ and renormalizing, in the same vein as BINCO,
yielding the density function

fnull(w) =
fBB(w)γ∑B
k=0 fBB(k)γ

. (2)

The beta-binomial density function corresponding to the alternative population is modified to have zero
mass in {0, . . . , cλ} but still be continuous

falt(w) =
(fBB(w)− fBB(cλ))+∑B
k=0(fBB(k)− fBB(cλ))+

.

The modification fits better with observed distributions from simulations and leads to a more conservative
edge selection. Thus, Wλ

i is modeled as coming from a distribution defined by the density function

f(w) = (1− π)f1(w) + πf2(w), (3)

f1(w) = τ1
1(w ∈ {0, . . . , cλ})

cλ + 1
+ (1− τ1)fnull(w),

f2(w) = τ21(w = B) + (1− τ2)falt(w).

We impose two constraints in order to make parameters identifiable. First, the null component, f1(w),
is constrained to be decreasing in its right-most part (corresponding to µ1 + σ1 < 1). Secondly, the
non-null, f2, is constrained to be convex and increasing (corresponding to µ2 = σ2 > 0.5). Data in
{cλ + 1, . . . , B − 1} is described by five parameters θ = (π′, µ1, σ1, γ, µ2 = σ2), where π′ captures the
component sizes within the range. These are estimated with numerical maximization of the log-likelihood
function

l(θ) =

B−1∑
w=cλ+1

hλ(w) log ((1− π′)fnull(w; θ) + π′falt(w; θ)) ,

under the two constraints just mentioned, as well as the constraints implied by density parametrizations.
Remaining parameters π, τ1, τ2 are then given by the estimated parameters and the data hλ.

We have described the method for a given level of penalization λ. The choice of range of penalization
Λ to fit the model for, and the unification of fits for different penalizations, remain. We propose to use
selection counts from different levels of penalization λ simultaneously, in order to decrease variance in
estimates of model parameters. The unknown true π, the proportion of alternative edges, is of course
constant in λ. Nevertheless, we can expect π̂ to have an upward bias for small λ: with too little
penalization null edges will be falsely captured by the alternative mixture component. Conversely, a
large penalization will push the distribution of selection counts for alternative edges leftwards into the
distribution for null edges. We assume the alternative distribution to have its mode at B. Thus the
upper end of Λ is the maximal penalization for which hλ is significantly increasing in the proximity of B,
i.e. hλ is approximately U-shaped. We have included a heuristic algorithm to help identify this point in
the software package. We are interested in which λ that best separates the null and alternative mixture
components and for which we can thus weigh together the evidence of edge presence together across λ
for better accuracy and FDR control. We define the separation of mixture components, for a λ, as the
difference of the amount of correctly and incorrectly selected edges based on the model fit:

g(λ) = p

B∑
w=0

(πf2(w)− (1− π)f1(w))+. (4)

Let λa be the upper end of an approximate 0.95 bootstrap confidence interval for the location of
the maximum of g(λ). Let π∗ = π̂(λa), i.e. a conservative estimate of the proportion of alternative
edges. Next, we update the model fit for each λ with the additional constraint π ≤ π∗, in order to
incorporate the joint estimate of the proportion of alternative edges. Lastly, let λb be the lower end of
an approximate 0.95 confidence interval for the location of the maximum of g(λ) for the new model fits.
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Using a low estimate of λ yields a conservative edge selection since constraint on π is in stronger effect
there. The model fitted to selection counts for penalization λb, constrained to π ≤ π∗ is used for final
edge classification. A simulation presented in the next section illustrates how the simultaneous use of
counts from different levels of penalization results in lower bias and lower variance (Figure 4).

The classification threshold tλ for the given FDR target is found from the fitted model. For tλ ∈
{0, . . . , B} the estimated FDR is given by

F̂DR(tλ) =
p
∑B
w=tλ(1− π)f1(w)∑B
w=tλ h

λ(w)
. (5)

where p is the number of potential edges. The final step of ROPE assigns a q-value to each edge. Given
fitted parameters at the selected penalization, the q-value qi of an edge i is F̂DR(Wλ

i ). We use the upper
limit of a confidence interval for qi in order to ensure conservative estimates. Under our model, the
number of type I errors approximately follows a binomial distribution with

∑B
w=tλ h

λ(w) experiments

and F̂DR(Wλ
i ) success probability. Using the normal approximation of the binomial distribution, the

upper 0.95 confidence bound for qi is given by

F̂DR(Wλ
i ) + z0.975

√√√√ F̂DR(Wλ
i )(1− F̂DR(Wλ

i ))∑B
w=tλ h

λ(w)
.

To conclude this section, we emphasize the methodological differences between ROPE and BINCO.
First, ROPE uses a mixture model that captures both null and alternative edges, while BINCO models
only the null distribution. In practice, the threshold corresponding to any relevant FDR target will be in
a part of the domain where the population of alternative edges dominates. This leads to the estimation
of BINCO to be based on an extrapolation, resulting, as the next section will show, in a lower stability
of estimates. Furthermore, to estimate a model that only captures the null population, BINCO is forced
to select a subset of data where the null population is most prevalent. This intermediate range selection
contributes to the lower stability of estimates. In contrast, by modeling both null and alternative edge
selection counts, ROPE can use the most relevant subset of data to fit its model parameters. Thus,
extrapolation is avoided and the parameter estimates are insensitive to the exact end points of the
subset range. Second, while ROPE simultaneously uses counts from different levels of penalization
where the overlap of null and alternative populations is small, BINCO selects the level of regularization
that selects the most edges while estimating an FDR below target. This results in lower stability of
BINCO’s estimates, since the selection may change due to small perturbations of the data, and in a bias
of BINCO to underestimate FDR, since models with underestimated FDR tends to select more edges
at a fixed FDR target. Third, overdispersion is a main modeling difficulty addressed by BINCO and
ROPE. Our richer model, with greater ability to capture overdispersion, results in ROPE having a more
accurate FDR control than BINCO.

3 Results

We present a comprehensive simulation study to assess the performance of ROPE and compare it with two
state-of-the-art methods: BINCO and stability selection. We also present an application of the methods
to gene expression data from glioblastoma cancer patients, and compare results. An application of ROPE
to variable selection for a non-graphical model is provided in the supplement.

3.1 Comparison of accuracy and robustness of FDR control on simulated
data

Our simulation experiment consists of data from 500-node networks of three topologies: scale-free, hubby
and chain graphs. We sample standard normal data from covariance matrices corresponding to the net-
work topologies. The signal strength is either strong (mean and standard deviation of covariances
between connected nodes is 0.32 respectively 0.13) or weak (mean and standard deviation is 0.25 respec-
tively 0.09). The scale-free networks have 495, 49 (sparse) or 990 (dense) edges. The hubby network
has 20 hub nodes, each connected to between 92 and 4 other nodes. The chain network connects its 500
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Figure 2: Validation of the proposed method on simulated data. Four methods are compared: BINCO, conservative BINCO
(BINCO-c), ROPE and stability selection (StabSel). Each method has been applied for three FDR targets. Columns A-D,
B-E and C-F show results for target FDR 0.05, 0.1 and 0.15, respectively. Panels A, B and C compare FDR with target
FDR. ROPE achieves an FDR closest to the target. BINCO tends to make an increasingly liberal selection as the number
of resamples increases. Stability selection is consistently too conservative. Panels D, E and F show the corresponding
modified F1 score. ROPE scores highest overall. Points show median result (20 simulations) and whiskers represent 1.5
times IQR.
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Figure 3: Examination of parameter sensitivity for the same simulated data as in Figure 2. The number of observations,
weakness and number of steps in the penalization set Λ is varied, in panels A, B and C, respectively. The figure shows
that ROPE performs well and gives consistent results in this parameter subspace, while stability selection is consistently
conservative and BINCO and conservative BINCO give less consistent results. In general, BINCO is too liberal and
conservative BINCO is too conservative. This figure shows results for a target FDR of 0.1. Results for other target FDR
and settings can be found in the supplement and are in agreement with our findings here.
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Figure 4: Comparison of ROPE with and without joint modeling of counts from different penalization levels. When counts
from different levels are used (Global) the estimated FDR is closer to the target FDR and the variance between simulations
is lower.

nodes into one chain of length 500. In all, this constitutes seven simulated model selection problems:
three topologies, five variations of the scale-free topology. Two of these are identical to those in Li et al.
(2013).

We generate edge presence count matrices Wλ
j for each problem by taking B bootstrap samples, and

select edges for each sample using randomized neighborhood selection with penalization ranging from
0.02 to 0.3. The settings for Wλ

j , i.e. B, number of steps in Λ, weakness and n, are varied in order to
assess the methods’ sensitivity. We compare the methods’ selections for three target FDR levels: 0.05,
0.1 and 0.15. Each combination of settings is rerun 20 times in order to assess sensitivity to randomness
in subsampling. We compare target FDR with achieved FDR and score each selection with a modified
F1 score

F1m = 2
(1− FDR)TPR

m(FDR) + TPR
, m(FDR) =

{
1− FDR, if FDR ≤ FDR∗

FDR
FDR∗ − FDR∗, otherwise

where FDR∗ is the target FDR. The denominator is modified to ensure that scores are decreasing with
FDR when FDR is above target.

Results for the scale-free network with 500 nodes, 495 edges and strong signal is presented in Figures 2
and 3. In Figure 2, B is varied, while n = 200, weakness is 0.8 and Λ consists of 15 steps. In Figure 3,
B = 500, while n, weakness and number of steps in Λ is varied. Results for remaining topologies and
parameter combinations are presented in the supplement.

Results show that ROPE performs best in terms of modified F1, FDR and stability for the scale-
free, dense scale-free, small scale-free and weak signal scale-free networks. In the chain network and
the sparse scale-free network ROPE and stability selection perform similarly. Stability selection makes
the most stable selections, but is generally too conservative, which is to be expected since the method
is based on a bound. For the weak signal scale-free network and with a target FDR of 0.05, stability
selection is too conservative to select any edge at all. BINCO and conservative BINCO both make far less
stable selections than ROPE and stability selection. Furthermore, both BINCO methods are sensitive
to the number of bootstraps. Logically, selection should improve when the number of bootstraps is
increased. Instead, BINCO makes an increasingly more liberal selection. Similarly disconcerting, BINCO
performance worsens with increased signal strength (number of observations) (Fig. 3A). Without access
to the true model, it would be difficult to know how many bootstraps that should be performed to
get a correct FDR control. This strong dependency between number of bootstraps, signal strength
and achieved FDR makes BINCO hard to use in practice. The hubby network is the one setting where
stability selection performs better than ROPE. There, ROPE makes no selection since the selection count
histograms are not U-shaped. In order to examine how ROPE would perform for the hubby network
if the signal were stronger, we generated additional observations, increasing the examined range from
150-500 observations to 150-1250 observations. For more than 500 observations, ROPE again yielded
the highest modified F1 and the FDR closest to target.
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ROPE uses selection counts from several penalization levels and, as can be seen in Figure 4, this avoids
a too liberal selection and increases stability. In addition, the Figure indicates that ROPE outperforms
BINCO even without the joint modeling, which emphasizes the need to model both the null and non-null
edge populations as done in ROPE.

In terms of computation time, BINCO and ROPE are slower than stability selection. At each level
of penalization, ROPE fits a five parameter model, while BINCO estimates the end points of an approx-
imately decreasing range and then fits three parameters. Both take only a few seconds per penalization
level on a standard desktop computer. Increasing size of networks or the number of observations does
not increase computation time, since these methods use summary statistics — the number of variables
having a selection count w, for each w ∈ {0, . . . , B}. The computation time of stability selection, BINCO
and ROPE is small compared to the time needed for resampled variable selection.

3.2 FDR controlled edge selection for a graphical model of gene expressions
in the PI3K/Akt pathway of glioblastoma cancer patients

In this section, we apply ROPE to gene expression data and study the selected network. We also
compare ROPE, BINCO and stability selection in terms of size of FDR controlled selections and stability.
We downloaded RNA-Seq gene expressions for 172 glioblastoma multiforme cancer patients from the
USCS Cancer Genomics Browser (Goldman et al., 2014). The data comes from TCGA and had been
normalized across all TCGA cohorts and log transformed. It contains measurements for 20,530 genes.
We downloaded a list of genes in the PI3K/Akt signaling pathway from KEGG (Kanehisa and Goto,
2000). 337 genes in the gene expression data set were found in the PI3K/Akt gene list. We discarded
half of the genes with lowest median absolute deviation (MAD) of expression. Remaining genes were
scaled to have MAD 1. We bootstrapped the data 500 times and estimated graphical models with 12
different levels of penalization for each bootstrap sample. The weakness in randomized lasso was set
to 0.8. Figure 5 shows a visualization of the final network estimated with ROPE. In the visualization
we have kept all edges with an estimated q-value below 0.15, i.e. we expect that 15% of the depicted
edges are false discoveries. The edge widths correspond to estimated edge q-value. Zero degree nodes
are not shown. Highly connected network nodes were the epidermal growth factor receptor (EGFR,
8 links), the platelet-derived growth factor receptor alpha (PDGRA, 6 links), components of the IL2
receptor (IL2RA and IL2RG, with 7 and 3 links), vitronectin (VTN, 7 links) and tenascin R (6 links).
Of these, EGFR and PDGFRA are well established glioblastoma oncogenes. TNR is a tenascin with
neural restricted expression, and is likely a negative marker of glioma invasiveness (Brösicke and Faissner,
2015). By contrast VTN, which is connected to several FGF and FGFR isoforms in our network, is a
pro-migratory/invasion factor (Ohnishi et al., 1998). IL2, finally, has been suggested to promote growth
of glioma cells (Capelli et al., 1999). Our network may thus serve to prioritize hub genes for further
study, as well as their functionally associated genes. Edge q-values, along with properties of methodology
for subsequent analysis, may facilitate the choice of how many associations to study further.

While the correct network model of the pathway is, of course, unknown, a comparison of methods
on this real data shows relevant differences. We subsampled the 500 selected models 20 times without
replacement. Each subsample consists of 400 selected models. Counting edge selections within each
subsample gives 20 subsampled W . Figure 6 shows a comparison of size of FDR controlled selections
and of stability of selections between subsamples. BINCO selects more than 200 edges already at a target
FDR of 0.0125. Stability selection selects the empty model for target FDR 0.25 and below, in agreement
with the conservative behaviour observed in the simulations. BINCO and conservative BINCO show
more variation between selected models for different subsamples, than ROPE and stability selection.
The liberal selection by BINCO agrees with simulation results, suggesting a failure to control FDR.
BINCO’s lack of agreement between selections at low target FDR also suggests a failure to control FDR.
The higher variability in BINCO and conservative BINCO also agrees with simulation results. We have
used Fleiss’ κ, an index of inter-rater agreement among many raters (Fleiss, 1971), to measure agreement
between selections across subsamples.
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shows the number of selected edges by each method for a range of target FDR. While the achieved FDR is unknown,
we note that BINCO is liberal enough to select more than 200 edges even at a low target FDR of 0.0125. As expected,
stability selection is conservative producing empty networks for target FDR 0.25 and below. Conservative BINCO exhibits
substantial variability in network size. Panel B shows agreement within each method across 20 subsamples of W as
measured by Fleiss’ κ. BINCO and conservative BINCO are less stable than ROPE and stability selection. The lack of
agreement for BINCO at low targets combined with a large selection size, makes it unlikely that FDR is controlled. Fleiss’
κ is not defined for empty selections produced by stability selection below FDR 0.25.

4 Discussion

The problem of FDR control in high-dimensional variable selection problems is of great relevance for
interpreting data from molecular biology and other fields with an abundance of complex high-dimensional
data. Many methods for variable selection in high-dimensional problems exist, but they suffer from the
need to tune intermediate parameters of little scientific relevance. We have introduced a method for
false discovery control in network models, and presented results showing that this method outperforms
existing alternatives. With the method and software package presented here, which achieve accurate and
robust FDR control, we have made possible a principled selection of relevant interactions.

We did consider an alternative statistical model for selection counts where the populations of alterna-
tive and null edges were further stratified into sub populations, based on their strength or the structure
of their neighborhood in the graph. We did not find such a richer model to be worth the additional cost
and estimation variability. Moreover, such a model poses the additional challenge of classifying each sub
population as belonging to either the null or the alternative population. We also considered strengthen-
ing the connection between statistical models across all levels of penalization. Power and stability could
potentially be increased by enforcing smoothness of all model parameters across levels of penalization.
But the large number of edges that are represented in each histogram suggests that improvements would
be small. Furthermore, the numerical fitting of such a global model is challenging.

ROPE, BINCO and stability selection use only summary statistics, proportions of variables with each
selection count. Thus, their computational complexity is not affected by an increase in the number of
network nodes. Computational time is completely dominated by the preceding step of resample based
estimation. However, resampling based estimation is necessary to stabilize model selection and this
process is parallelizable.

Recently, methods for assigning p-values to variables in high-dimensional linear models have been
proposed. See Dezeure et al. (2015) for a review and comparison. P-values can be used to approximate
q-values (Storey and Tibshirani, 2003), and thus to control FDR. Nevertheless, due to the high instability
of estimated p-values (the so called “p-value lottery”) resampling is needed when applying the reviewed
methods in practice (Dezeure et al., 2015). The application of this approach to graphical models is studied
in Janková and van de Geer (2015). Dezeure et al. (2016) proposes p-value estimation for linear models
based a combination of the de-sparsified lasso and bootstrap. Here, the bootstrap is not used to aggregate
many, unstable estimates but to improve on p-value estimates that relied on asymptotic arguments. The
dependency on a penalization parameter remains (current implementation uses a fixed penalization
chosen via cross-validation). ROPE can be applied to any resampling based network selection method,
including resampling of p-value based selection, and could thus improve de-sparsified lasso estimates by
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utilizing multiple levels of penalization.
Here, ROPE was used for FDR controlled edge selection in a single penalization parameter setting.

An interesting direction for future work would be to generalize ROPE to more complex modeling settings,
e.g. comparative network modeling, with multiple tuning parameters. One could approach this problem
in either a sequential fashion (across tuning parameters) or generalize the distribution mixture modeling
to a higher-dimensional parameter space.

Lastly, the use of richer summaries of W than histograms hλ may improve model selection. One way is
to view edge presence counts Wλ

i as functional data Wi(λ). We have observed that these functions behave
quite differently for different edges. The location and magnitude of minλ

d
dλWi(λ) are two examples of

quantities that may facilitate edge selection. Another way is to consider correlation between edges.
Edges can compete to explain the node correlation structure in a network neighborhood. Therefore,
selection correlation between pairs of edges over resamples may also facilitate edge selection. Although
computationally infeasible to estimate in full, the possibility to limit focus to edge pairs that are, in some
sense, closely located in the network makes this an interesting direction of future research.
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Dezeure, R., Bühlmann, P., and Zhang, C.-H. (2016). High-dimensional simultaneous inference with the
bootstrap. Preprint arXiv:1606.03940 .

Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal
of the American Statistical Association, 99(465), 96–104.

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological bulletin,
76(5), 378.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3), 432–441.

Goldman, M., Craft, B., Swatloski, T., Cline, M., Morozova, O., Diekhans, M., Haussler, D., and Zhu,
J. (2014). The UCSC cancer genomics browser: update 2015. Nucleic Acids Research.
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1 FDR controlled variable selection for a multinomial logistic
regression classifier of gene expression profiles

In our final experiment, we apply ROPE to model selection for a non-graphical model. In particular, we
demonstrate the use of ROPE for a multinomial logistic regression classifier for classifying the primary
cancer type of a gene expression profile. We downloaded RNA-Seq gene expression profiles consisting
of measurements of 20,530 genes for 9,755 cancer patients from the USCS Cancer Genomics Browser.
The data comes from TCGA. We removed profiles corresponding to cancer types for which less than 100
observations were present in the data set, in order to reduce the chance of drawing bootstrap samples
without all classes represented. The resulting data set consists of 9,256 observations and 20,530 variables.
Each observation is classified as having one of 24 primary cancer types. We drew 100 bootstrap samples
and fitted generalized linear models with lasso penalization and multinomial response to each bootstrap
sample. We used grouped lasso penalization so that each variable is either selected for all classes or
excluded entirely. For each bootstrap sample, one model was fitted for each of 22 levels of penalization,
ranging from 0.015 to 0.039. Lower penalization resulted in non-convergence when fitting the model
and higher penalization resulted in histograms not being U-shaped. The resulting matrix W of 22 times
20,530 variable inclusion counts was used with ROPE to make an FDR controlled selection of genes whose
expression level is predictive of primary cancer type. 86, 118 and 133 genes were selected at the 0.05, 0.1
and 0.15 FDR level, respectively. The selected genes are presented in Table 1. This experiment shows
that ROPE can be applied to some variable selection problems other than edge selection in graphical
models.

2 Additional simulation results

Figures 1 to 56 show results from all simulations. For each simulation setting, four parameters are
varied one by one (number of bootstraps B, number of penalization levels, number of observations n
and weakness in randomized lasso). For each varied parameter, FDR and modified F1 are shown for
each method and three target FDR: 0.05, 0.1 and 0.15. A detailed description of simulation settings and
interpretation of results is given in the main article.
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gene q-value gene q-value gene q-value
1 ATP5EP2 0.025 46 SFTA3 0.025 91 KRT74 0.051
2 AZGP1 0.025 47 SFTPA1 0.025 92 LYPLAL1 0.051
3 BCL2L15 0.025 48 SFTPB 0.025 93 MSX1 0.051
4 C10orf27 0.025 49 SLC6A3 0.025 94 MUC5B 0.051
5 C14orf105 0.025 50 SOX17 0.025 95 PTGER3 0.051
6 C8orf85 0.025 51 SPRYD5 0.025 96 RNF212 0.051
7 CALML3 0.025 52 ST6GALNAC1 0.025 97 SLC5A6 0.051
8 CDH16 0.025 53 TBX5 0.025 98 SLCO1A2 0.051
9 CDHR1 0.025 54 TCF21 0.025 99 C6orf223 0.058

10 CDX1 0.025 55 TFRC 0.025 100 ERBB3 0.058
11 CFHR2 0.025 56 TG 0.025 101 FOXF1 0.058
12 DPPA3 0.025 57 TMEFF2 0.025 102 IRX1 0.058
13 DSG3 0.025 58 TPO 0.025 103 NACAP1 0.058
14 EBF2 0.025 59 TRPS1 0.025 104 PHOX2A 0.058
15 EMX2 0.025 60 TSIX 0.025 105 C2orf80 0.065
16 FLJ45983 0.025 61 TYR 0.025 106 MMD2 0.065
17 FOXE1 0.025 62 UPK1B 0.025 107 SLC22A2 0.065
18 FTHL3 0.025 63 UPK2 0.025 108 APCS 0.071
19 FUNDC2P2 0.025 64 ZNF134 0.025 109 GJB1 0.071
20 FXYD2 0.025 65 ZNF280B 0.025 110 LOC285740 0.071
21 HAND2 0.025 66 FABP7 0.035 111 BCAR1 0.078
22 HOXA9 0.025 67 HOXC8 0.035 112 ACTC1 0.084
23 INS 0.025 68 KRT20 0.035 113 CTAGE1 0.091
24 IRX2 0.025 69 MAP7 0.035 114 ESR1 0.091
25 IRX5 0.025 70 MS4A3 0.035 115 GFAP 0.091
26 ITGA3 0.025 71 MUC16 0.035 116 HKDC1 0.091
27 KIAA1543 0.025 72 NOX1 0.035 117 PLA2G2F 0.091
28 KLK2 0.025 73 NTRK2 0.035 118 SOX10 0.091
29 LGSN 0.025 74 PAX3 0.035 119 PPARG 0.103
30 LOC407835 0.025 75 PRO1768 0.035 120 C21orf131 0.109
31 LOC643387 0.025 76 SERPINB3 0.035 121 DLX6 0.109
32 MAB21L2 0.025 77 SYCP2 0.035 122 GAL3ST3 0.109
33 NACA2 0.025 78 C14orf115 0.043 123 HNF1B 0.109
34 NDUFA4L2 0.025 79 C14orf19 0.043 124 KRT5 0.109
35 PA2G4P4 0.025 80 C1orf172 0.043 125 SPINK1 0.109
36 PAX8 0.025 81 FGL1 0.043 126 ARHGEF33 0.115
37 PHOX2B 0.025 82 GATA3 0.043 127 C1orf14 0.115
38 POU3F3 0.025 83 HOXA11 0.043 128 APOA2 0.121
39 PRAC 0.025 84 KRT7 0.043 129 LRRN4 0.121
40 RFX4 0.025 85 PRHOXNB 0.043 130 SOX2 0.121
41 RPL17 0.025 86 SCGB2A1 0.043 131 WNT3A 0.127
42 RPL39L 0.025 87 FLJ32063 0.051 132 GJB7 0.133
43 RPS4Y1 0.025 88 FOXA2 0.051 133 NASP 0.144
44 SCGB2A2 0.025 89 HECW2 0.051 134 ATCAY 0.150
45 SERPINB13 0.025 90 KLK3 0.051 135 DDR1 0.150

Table 1: The 135 transcripts with lowest q-value as selected with ROPE for a multinomial logistic classifier of expression
profiles by cancer type.
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Figure 1: Network topology: chain, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 2: Network topology: chain, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 3: Network topology: chain, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 4: Network topology: chain, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 5: Network topology: chain, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 6: Network topology: chain, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 7: Network topology: chain, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 8: Network topology: chain, B = 500, steps: 15, n = 200, facet titles: target FDR and method.

6



●
●●

●

●
●

●●

●

●

●●

●

●

●●●
●
●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●●●

●●● ●

●

●

●

●●

●

●●
●

●●

●

●●

●

● ●

●●●●

●

●
●

●

●● ●

0.15

BINCO

0.15

BINCO−c

0.15

ROPE

0.15

StabSel

0.1

BINCO

0.1

BINCO−c

0.1

ROPE

0.1

StabSel

0.05

BINCO

0.05

BINCO−c

0.05

ROPE

0.05

StabSel

50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

B

F
D

R

Figure 9: Network topology: dense, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 10: Network topology: dense, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 11: Network topology: dense, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 12: Network topology: dense, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 13: Network topology: dense, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 14: Network topology: dense, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 15: Network topology: dense, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 16: Network topology: dense, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 17: Network topology: hubby, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.

●●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●● ●
●

●
●●●●●●●●●

●
●

●● ●●●●●●

0.15

BINCO

0.15

BINCO−c

0.15

ROPE

0.15

StabSel

0.1

BINCO

0.1

BINCO−c

0.1

ROPE

0.1

StabSel

0.05

BINCO

0.05

BINCO−c

0.05

ROPE

0.05

StabSel

50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000 50 100 200 300 500 700 1000

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

B

M
od

ifi
ed

 F
1

Figure 18: Network topology: hubby, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 19: Network topology: hubby, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 20: Network topology: hubby, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 21: Network topology: hubby, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 22: Network topology: hubby, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 23: Network topology: hubby, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 24: Network topology: hubby, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 25: Network topology: scale-free, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 26: Network topology: scale-free, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 27: Network topology: scale-free, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 28: Network topology: scale-free, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 29: Network topology: scale-free, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 30: Network topology: scale-free, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 31: Network topology: scale-free, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 32: Network topology: scale-free, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 33: Network topology: small, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 34: Network topology: small, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 35: Network topology: small, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 36: Network topology: small, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 37: Network topology: small, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 38: Network topology: small, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 39: Network topology: small, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 40: Network topology: small, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 41: Network topology: sparse, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 42: Network topology: sparse, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 43: Network topology: sparse, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 44: Network topology: sparse, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 45: Network topology: sparse, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 46: Network topology: sparse, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 47: Network topology: sparse, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 48: Network topology: sparse, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 49: Network topology: weak, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 50: Network topology: weak, steps: 15, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 51: Network topology: weak, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 52: Network topology: weak, B = 500, n = 200, weakness: 0.8, facet titles: target FDR and method.
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Figure 53: Network topology: weak, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 54: Network topology: weak, B = 500, steps: 15, weakness: 0.8, facet titles: target FDR and method.
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Figure 55: Network topology: weak, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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Figure 56: Network topology: weak, B = 500, steps: 15, n = 200, facet titles: target FDR and method.
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