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ABSTRACT 

Over the last decade Anaplastic Lymphoma Kinase (ALK), a receptor tyrosine 
kinase (RTK) has been identified as a translocation partner in diverse cancer 
types. In tumors, where the full-length ALK RTK itself is mutated, such as 
neuroblastoma, the picture is less clear regarding ALKs role as an oncogenic 
driver. Neuroblastoma is a heterogeneous disease of the sympathetic nervous 
system, accounting for 10-15% of all childhood cancer deaths. A number of 
small tyrosine kinase inhibitors (TKIs) have been developed to inhibit ALK 
activity. The data acquired thus far suggests that ALK TKI mono-treatment 
may not be as effective solution for ALK positive neuroblastoma patients. 
Therefore, there is a need for combination therapy using drugs towards 
different targets or signaling pathways to combat the disease. The overall aim 
of this thesis is to identify targets in signaling pathways that can be inhibited 
by specific drugs, as a potential poly-therapy treatment strategy in ALK 

positive neuroblastoma patients. 

Using an MS-based phosphor-proteomics approach, we identified STAT3 as a 
potential downstream target of oncogenic ALK signaling (Paper I). ALK 
activation of STAT3 results in increased phosphorylation of STAT3 in PC12 
cells expressing a gain-of-function ALK mutation. Pharmacologic inhibition 
of STAT3 using FLLL32 and STATTIC resulted in decreased phosphorylation 
levels of STAT3 and MYCN protein and mRNA levels. This study identified 
STAT3 as a target of ALK signaling and showed that inhibition of STAT3 
using FLLL32 and STATTIC decreases proliferation of neuroblastoma cell 
lines and regulates the transcription of MYCN.  

In a subsequent paper, we identified ERK5 as a potential ‘druggable’ target for 
ALK positive neuroblastoma patients (Paper II). Inhibition of ERK5 activity, 



 
 

reduced proliferation of ALK positive neuroblastoma cells as well as MYCN 
mRNA levels. Combination of ALK and ERK5 inhibitors abrogated tumor 
growth and cell proliferation synergistically. Overall, this study showed that 
ALK activates ERK5 via the PI3K pathway and regulates MYCN 
transcriptionally, suggesting that targeting both ALK and ERK5 might be 
beneficial for ALK positive neuroblastoma patients.  

In paper III, we addressed whether MEK inhibition alone or in combination 
with ALK inhibitor(s) has therapeutic value in a large panel of neuroblastoma 
cell lines. MEK inhibition alone in ALK positive neuroblastoma cells or 
xenografts did not abrogate cell or tumor growth. We showed that 
pharmacological inhibition of MEK-ERK pathway in ALK-positive 
neuroblastoma cells results in increased levels of activation/phosphorylation 
of AKT and ERK5. This feedback response is regulated by the mTOR complex 
2 protein SIN1. Our results contraindicate the use of MEK inhibitors as 
effective therapeutic strategy in ALK-positive neuroblastoma.   

Together, this study highlights the importance of full length ALK receptor 
signaling in neuroblastoma. Further, it shows that combination of ALK 
inhibitor with PI3K/Akt/mTOR/ERK5 pathway inhibitors might be a potential 
therapeutic treatment strategy for ALK positive neuroblastoma patients. 

Keywords: Neuroblastoma, Anaplastic Lymphoma Kinase, Akt, ERK5, 
mTOR, MYCN 
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SAMMANFATTNING PÅ SVENSKA 
Anaplastiskt Lymfom Kinas (ALK) är en receptor tyrosin kinas (RTK) och har 
identifierats som en translokationspartner i flera olika cancertyper. Mutationer 
i fullängds ALK blivit också identifierade i neuroblastom. Neuroblastom är en 
heterogen sjukdom som uppstår från det sympatiska nervsystemet. Baksidan 
med neuroblastom är att det står för 10-15% av alla pediatriska dödsfall i väst 
världen och att ALK är muterat i upp till 10% av dessa fall. Ett antal små 
hämmare har utvecklats för att inhibera ALK aktiviteten, såkallade tyrosin 
kinas inhibitorer (TKI). Kliniska prövningar har visat och tyder på att mono-
behandling med ALK inhibitorer mot ALK-positiva neuroblastom patienter 
inte är den optimala behandlingsmetoden. Därför finns det ett behov av att 
utveckla kombinationer av specifika läkemedel för att behandla ALK positiv 
neuroblastom. Det övergripande syftet med avhandlingen är att identifiera 
signalvägar som kan inhiberas parallellt med ALK inhibition för att kunna 
utveckla en potentiell strategi för kombinations terapi av ALK positiva 
neuroblastom patienter.  

Vi har att använda en MS-baserad fosfor-proteomik strategi, här identifierade 
vi STAT3 som ett potentiellt effektor av ALK-signalering (Paper I). ALK 
aktivering av STAT3 resulterade i ökad fosforylering av STAT3 i PC12-celler 
som uttrycker en aktiverande ALK mutation. Farmakologisk hämning av 
STAT3 med specifika STAT3 inhibitorer medförde minskad aktivering av 
STAT3 och reducerad uttrycksnivåerna av nedströms liggande målproteiner, 
likt MYCN. Denna studie visade ett samband mellan ALK-aktivitet och 
STAT3 fosforylering, och att inhibition av STAT3 resulterade i minskad 
tillväxt av neuroblastomcellinjer och reglering av MYCN transkription. 

Vi observerade att proteinet ERK5, ett nedströms målprotein efter ALK 
aktivering, är ett möjligt proteins att inhibera i ALK-positiva neuroblastom 
patienter (Paper II). Hämning av ERK5 aktivitet med hjälp av specifik 
inhibitor, XMD8-92, minskade tillväxten av ALK positiva neuroblastomcell 
linjer och även MYCN mRNA-nivåer, en verifierad onkgen och prognostisk 
faktor i neuroblastom. En kombination av ALK-hämmare och ERK5-hämmare 
hindrar både tumör- och celltillväxt synergistiskt. Studien visade att ALK 
aktiverar ERK5 via PI3K och reglerar MYCN transkription, vilket tyder på att 
inhibitorer riktade både mot ALK och ERK5 kan vara fördelaktigt för ALK 
positiv neuroblastom patienter. 

Vidare observerade vi att inhibering av proteinet MEK, antingen ensam eller i 
kombination med ALK inhibitorer, har ett terapeutiskt värde i en 



 
 

neuroblastomcellinjer med en aktiverad RAS-MAPK signalering. Däremot, 
farmakologisk inhibering av endast MEK stoppar inte tillväxt av ALK positiva 
neuroblastomcellinjer eller xenograft transplanterande tumörer. Vi fann att 
inhibering av MEK-ERK signalleringsvägen i ALK-positiva 
neuroblastomceller resulterar i ökad aktivering/fosforylering av proteinerna 
AKT och ERK5. Detta återkopplingssvar regleras av mTOR-komplexet 2 
protein SIN1. Våra resultat i preklinisk miljö visar att användning av MEK-
hämmare inte är en effektiv terapeutisk behandlingsstrategi i ALK-positiv 
neuroblastom. 

Avhandlingen visar att ERK5 är ett målprotein för ALK aktivering och styr 
avläsningen/transkriptionen av onkgenen MYCN. Vidare visar avhandlingen 
att kombinationen av ALK-hämmare med hämmare av 
PI3K/Akt/mTOR/ERK5 signalvägar kan vara en potentiellt terapeutiskt 
behandlingsstrategi för ALK positiva neuroblastom patienter.
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1 INTRODUCTION 

1.1 General features of cancer 
Several centuries of cancer research have generated a complex body of 
information concerning the cancer disease, revealing it to be a disease 
associated with aggressive changes in the genome [1, 2]. This led to the 
discovery of two gene classes: Oncogenes and tumor suppressor genes. In 
general, oncogenes promote cancer when they have acquired dominant gain of 
function mutations, while tumor suppressor genes are associated with cancer 
in a recessive manner when they become non-functional [1, 2]. 

1.1.1 Oncogenes 

Most cells in our body will be subjected to programmed cell death when their 
normal functions are modified [3]. However, in the presence of activated 
oncogenic signals, these cells grow and ultimately cause cancer (Figure 1) [4]. 
The first oncogene was identified more than forty-five years ago by several 
generations of cell and molecular biologists [5-10]. They discovered a 
filterable agent in chicken as Rous sarcoma virus (RSV) which has a 
transforming potential due to acquisition of a normal cellular gene named c-
src [5-10]. Today, several hundred oncogenes have been discovered.   

Proto-oncogenes generally code for different proteins essential for regulation 
of cellular growth and differentiation [1, 2, 4, 11-14]. A proto-oncogene can 
assume oncogenic function in one of the following ways:  

(i). Point mutations acquired within a proto-oncogene itself, leading to 
conformational changes in the encoded protein (e.g. NRAS, HRAS, KRAS) 

(ii). Gene amplification that leads to increased levels of encoded proteins (e.g. 
MYCN, EGFR, ERBB)  

(iii). Chromosomal translocation, where fusion of a proto-oncogene with 
another gene to form a fusion protein results in enhanced oncogenic activity 
(e.g. BCR-ABL, NPM-ALK, EML4-ALK)  

A well-known oncogene that can be activated by point mutation is RAS. The 
RAS oncogene family consists of three members: H-RAS, K-RAS, and N-RAS 
[15-17]. To date, RAS family members are one of the most mutated oncogenes 
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found in human tumors and account for around 20 to 30% [18-21]. All RAS 
proteins are part of the small GTPase class of proteins, which act as molecular 
switches controlling the intracellular signaling axis [16, 22, 23]. When RAS 
switched conformation to an active state, it is bound to guanosine triphosphate 
(GTP), whereas in the inactive state, RAS is bound to guanosine diphosphate 
(GDP). Switching is mediated through GTPase activating proteins (GAP) and 
guanine nucleotide exchange factors (GEF) [24]. In an active conformation, 
RAS binds to RAF family kinases and signals via its downstream effectors 
such as MEK and ERK pathway to determine the fate of a cell [23, 25-27]. 
Altogether, targeting RAS-MAPK would be a potential therapeutic strategy in 
several cancer types [28-31], although this probably depends on the cancer cell 
type [32], Paper III. 

1.1.2 Tumor Suppressor Genes 

Since tumorigenesis is a multistep process, activation of an oncogene alone 
might not be sufficient for transformation to cancer cells. Combination of 
several other changes in genome together influence the development of human 
tumors [23]. Tumor suppressor genes protect the normal cells from 
transforming into a cancerous cell (Figure 1) [23]. These genes often encode 
proteins that promote apoptosis and/or regulate the cell cycle [23]. Mutations 
in these tumor suppressor genes that lead to loss of function promotes tumor 
development [23]. 

Retinoblastoma protein (RB or pRB) was the first tumor suppressor gene 
identified in retinoblastoma, a rare childhood eye tumor [33-35]. In 1971 
Alfred Knudson suggested that loss of a single RB copy alone was not 
sufficient for tumor development, and that loss of both copies of the RB gene 
is required for the development of retinoblastoma (the ‘two-hit hypothesis’) 
[33]. The RB tumor suppressor gene is deregulated indirectly by upstream 
activators in several cancer types like, lung, breast, melanoma, head, and neck 
cancers [36, 37]. Research on RB as a tumor suppressor gene led to the 
discovery of several other tumor suppressor genes.  

The tumor protein p53 (TP53 in human and Trp in mice) is the second tumor 
suppressor gene that was identified [36, 38, 39].  In normal cells, p53 is 
inactivated by forming a complex with MDM2, an E3 ubiquitin ligase. Upon 
DNA damage, hypoxia, cell cycle deregulation, oncogene activation, or other 
stress activators, p53 dissociates from the p53-MDM2 complex and induces 
apoptosis or cell cycle arrest [36, 38, 39]. p53 has been well studied in colon 
cancer, where 70 to 80% of the cases follow the ‘two-hit hypothesis’, resulting 
in loss of both p53 alleles [38]. Mutations in the p53 tumor suppressor gene 
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are the most common genetic modification observed in human cancers [38], 
implying that targeting p53 may be a potential therapeutic strategy in several 
cancer types. In 1999, Komarov and co-workers identified the first small 
molecule that inhibits p53-induced transcription and protects the mice from 
severe damage of ionizing radiation [40]. Restoration of p53 in tumors lacking 
p53 was challenging, however it has been achieved by genetic as well as 
pharmacological methods [41, 42]. In 1999, Foster and co-workers identified 
compounds that reactivate p53 and display an antitumor activity in mice by 
restoring its transcriptional activity [43]. The current trend of restoring p53 
activity includes the targeting of p53 targets such as CDK family members, 
MDM2, or RAS-MAPK pathway components [42, 44, 45] 

 

1.1.3 Post Translational Modifications (PTMs) 

Post Translational Modification (PTMs) plays a central role in cancer 
progression and as a result, PTMs are of great interest as cancer therapeutic 
targets [46]. Protein biosynthesis is a multi-stage process, were a cell builds up 
a protein product. During biosynthesis or after, proteins may undergo several 
enzymatic modifications to form the mature protein [47] [48]. PTMs can occur 
on both C- and N- terminal region of the protein and exist in large numbers. 
The most well studied PTMs are shown in Figure 2, and include: 

Methylation- Protein methylation is the addition of a methyl group (CH3) to a 
lysine or arginine amino acid residues using specific methyltransferases [49]. 
Methylation has been widely studied in histone modifications and these 
modifications repress or activate gene expression. 

Figure 1- Steps involved in malignant transformation: Basic steps involved 
the development of a normal cell into a malignant tumor are shown here. 
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Acetylation- Protein acetylation is the addition of an acetyl group (CH3 CO) 
to a lysine amino acid residue or to the N-terminal region of the protein [50]. 
N-terminal acetylation plays a key role in protein stability, localization, protein 
metabolism and biosynthesis. Whereas, histone lysine acetylation plays a vital 
role in regulation of gene expression. Acetylation of non-histone proteins like 
STAT3 and p53 has been implicated in several cellular processes such as DNA 
repair, cell cycle regulation, mRNA stability, and apoptosis [51-53]. 
Deregulation of these cellular processes plays a vital role in cancer 
progression. 

Glycosylation- Protein glycosylation is the addition of carbohydrate groups to 
serine, threonine or asparagine amino acid residues, forming a glycoprotein. 
N-linked glycosylation is the most common form of glycosylation and is 
important in protein folding and cellular attachment. Several studies have 
indicated that modifications in cell surface glycosylation can promote 
tumorigenesis [54-59].  

Ubiquitination- Protein ubiquitination is the addition of ubiquitin to lysine 
amino acid residues of a substrate protein. Ubiquitination controls the substrate 
protein function, for example by preventing or inducing protein-protein 
interactions or affecting protein activity by regulating their cellular localization 
and degradation [60-62].   

Phosphorylation- Protein phosphorylation is the addition of a phosphate 
group (PO4) to serine, threonine, tyrosine or histidine amino acid residues. 
Addition of phosphate groups (phosphorylation) to proteins is facilitated by 
kinases, and removal of phosphate groups (dephosphorylation) from the 
proteins is facilitated by phosphatases. Phosphorylation and dephosphorylation 
play important roles in several cellular processes like metabolism, cell 
movement, cell growth, apoptosis, and signal transduction [46, 63-66]. Thus, 
any deregulation in protein phosphorylation process is likely to drive 
oncogenesis. Therefore, targeting receptor tyrosine kinases has become 
popular in recent years and several tyrosine kinase inhibitors or 
serine/threonine kinase inhibitors are now approved by FDA for treatment of 
different cancer types [66-72].  
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1.2 Receptor Tyrosine Kinase superfamily  
Protein tyrosine kinases are enzymes that facilitate phosphoryl transfer from a 
high-energy donor molecule to tyrosine residues of a substrate protein [73, 74]. 
The tyrosine kinase superfamily of ninety members is subdivided into two 
classes: (i) 58 Receptor tyrosine kinases (RTKs) and (ii) 32 Non-receptor 
tyrosine kinases [65, 75]. The RTK superfamily is further subdivided into 20 
sub-families [76]. RTKs generally share a common domain architecture: an 
extracellular domain that contains a ligand binding region, a transmembrane 
domain and an intracellular kinase domain [76-80]. The general paradigm of 
receptor activation includes four main events: (1) ligand binding, (2) ligand-
induced receptor dimerization, (3) tyrosine auto phosphorylation and (4) 
activation of signaling proteins (Figure 3) [76, 79, 81]. RTKs are the key 
regulators of numerous critical cellular processes such as proliferation, 
survival, differentiation, migration, and metabolism (Figure 3) [82, 83]. As 
deregulation of RTK activity- due to chromosomal translocation, 
overexpression or gain-of-function mutations in the kinases contributes to 
tumorigenesis [82], targeting oncogenic kinase signaling is an attractive option 
in the field of cancer- targeted therapy.  

Gleevec/Imatinib was the first tyrosine kinase inhibitor (TKI) approved by 
FDA in 2001 for the treatment of chronic myelogenous leukemia (CML), 
where it blocks the activity of Abl non-receptor tyrosine kinase [84]. Seven 

Figure 2- Post translational modification: A pictorial representation of the most 
important post translational modifications involved in cancer. 
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years later, Gleevec was approved by FDA for use in patients with KIT 
receptor positive gastrointestinal stromal tumors (GISTs) [85]. Based on this, 
several other TKIs entered the pharmaceutical market, including gefitinib, 
erlotinib, lapatinib crizotinib, semaxinib, afatinib and sunitinib [86-94]. The 
modes of action of these TKIs are based on four different mechanisms. They 
either 1) compete with high-energy donor molecules such as ATP, 2) compete 
with the kinase substrate, 3) compete with both or 4) act in an allosteric manner 
[95]. Overall, TKIs are an important class of drugs for targeted therapy to 
inhibit specific malignancies. 

 

 

Figure 3- Activation of receptor tyrosine kinases: The inactive receptor tyrosine kinase 
encounters a signaling molecule (ligand). Upon ligand binding the receptor dimerizes 
(active state) which leads to tyrosine auto- phosphorylation. In turn, tyrosine 
phosphorylation results in the recruitment of other signaling molecules that determine the 
fate of the cell. 
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1.3 The RTK- Anaplastic Lymphoma Kinase 
(ALK) 

Anaplastic Lymphoma Kinase (ALK) was first described in 1994 as a fusion 
partner with nucleophosmin (NPM) in Anaplastic large cell lymphoma 
(ALCL), from which the ALK name was derived [96]. The chromosomal 
rearrangements occur between the chromosomes 2p23 ALK: 5q35 NPM, 
where the region encoding the kinase domain of ALK is linked to the N-
terminal coding region of NPM [96, 97]. The full length ALK receptor was 
first described in 1997 by two independent groups. It consists of an 
extracellular domain, a transmembrane domain, and an intracellular kinase 
domain [98, 99]. ALK shares a high sequence similarity with the Insulin 
receptor (IR) super family and it also shares almost 50% protein sequence 
similarity with leucocyte tyrosine kinase (LTK). Together, ALK/LTK form a 
unique subgroup under the IR superfamily [98, 99]. Human ALK is 1620 
amino acids, encoding a protein of approximately 180kDa. However, post 
translational modifications like N-linked glycosylation results in the full length 
ALK being detected at 220kDa in SDS-PAGE [99]. 

1.3.1 Structure of ALK 

Like other RTKs, ALK consists of an extracellular ligand binding domain, a 
transmembrane domain and an intracellular kinase domain (Figure 4, 5). 

Figure 4- Domain structure of human LTK and ALK: The extracellular region of human 
ALK contains two MAM domains (264-427 a.a and 480-626 a.a), an LDLa domain (453-
471 a.a) and a glycine rich domain (816-940 a.a). A transmembrane domain (1031-1057 
a.a) links the extracellular region with intercellular region containing the tyrosine kinase 
domain (1116-1383 a.a). On the top, leucocyte tyrosine kinase (LTK) domain structure is 
shown. 
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ALK extracellular domain 

The extracellular region of ALK consists of two MAM (Meprin, A-5 protein 
and receptor protein tyrosine phosphatase Mu) domains, an LDLa (Low 
density lipoprotein class A) domain, and a glycine rich domain (GRD) [98-
101]. The functions of the ALK extracellular domain are still unclear. 
However, it has been speculated that these domains might be involved in ligand 
assembly, interaction with substrates (co-receptors), dimerization and 
proteolytic cleavage [102],[103]. Future studies should uncover the importance 
of these domains for keeping the ALK receptor in a stable or quiescent form. 

 

ALK intracellular domain 

Like other kinases, the kinase domain of ALK consists of a conserved small 
N-terminal lobe and a large C-terminal lobe [104-106]. The N-terminal lobe 
consists of five stranded antiparallel β-sheets and a regulatory αC-helix which 
is important for catalysis. The large C- terminal lobe is mainly helical and 
contains the activation loop (A-loop). The N- and C-terminal lobes are linked 
by a hinge region which forms a cleft for ATP or substrate binding (Figure 5) 
[104, 106]. Furthermore, Kornev and colleagues showed that protein kinases 
contain two hydrophobic motifs, termed regulatory (R-spine) and catalytic (C-
spine) spines [105]. Both spines are conserved across all kinases and contain 
residues from both the N- and C- lobes. The R-spine is vital in determining the 
active and inactive conformations of the ALK kinase. The regulatory-spine 
consists of the hydrophobic residues namely I1171, C1182, H1247, F1271, and 
D1311 in ALK. The C-spine regulates catalysis by governing ATP binding. 
The C-spine consists of residues V1130, A1148, L1256, C1255, L1257, 
L1204, L1318, I1322 in ALK [102, 105, 107, 108]. The A-loop in the C-
terminal lobe contains an autophosphorylation motif YxxxYY similar to that 
of the IR super family (Figure 5). However, in the IR the second tyrosine is 
first phosphorylated followed by the first and third. In contrast, in the case of 
ALK fusion oncogenes it has been suggested that Y1278 in ALK is the first 
tyrosine to be phosphorylated followed by the second (Y1282) and third 
(Y1283) [104, 106]. Furthermore, it has been described that Y1278 is vital for 
maintaining the quiescent form of ALK by hydrogen bonding with the C1097 
residue in the N-terminal β-turn motif [104, 106]. Thus, conformational 
changes in this inhibitory structural feature can potentially release ALK from 
its quiescent conformation [104, 106]. 
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1.3.2 ALK in model organisms 
 

Drosophila melanogaster DAlk 

The physiological function of ALK has been thoroughly studied in the 
Drosophila model system. Like mammalian ALK, DAlk also contains several 
putative domains, an extracellular ligand binding domain, a transmembrane 
domain and an intracellular kinase domain, of which kinase domain of DAlk 
shares high sequence similarity with IR superfamily [100]. Lorén and 
colleagues have shown that ALK mRNA is mainly distributed in CNS and 
visceral muscles of Drosophila melanogaster [100]. Further they have shown 
that loss of function Drosophila Alk mutants resulted in gut-less phenotype 
[109]. Overall DAlk plays an important role in formation of visceral 
musculature of the gut during early embryogenesis [100] [109]. Jelly Belly 

Figure 5- Kinase domain of ALK: On the left, possible tyrosine phosphorylation sites 
in the tyrosine kinase domain of ALK are indicated. On the right, crystal structure of 
ALK kinase domain (PDB: 3LCT) is shown. The kinase domain of ALK contains a 
smaller N-terminal lobe and a larger C-terminal lobe. The smaller N-terminal lobe 
(1093-1199 a.a) contains a major αC helix (magenta), the glycine loop (yellow) and five 
anti-parallel β-sheets (green). The larger C-terminal lobe (1200-1399 a.a) is largely 
helical which consists of activation loop (αAL- shown in blue). The activation loop 
includes three auto-phosphorylation sites (Y1278, Y1282, and Y1283- shown in red). 
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(Jeb) is the ligand for Drosophila Alk. The Jeb gene encodes a secreted protein 
containing a LDL receptor motif which mediates its binding to DAlk and 
activates DAlk in the visceral muscle founder cells, leading to the activation 
of ERK signaling [109-112]. ERK activation mediated by Jeb/DAlk regulates 
Duf (dumb-founded)/ Kirre (kin of irregular chiasm), Dpp (decapentalegic), 
Hand and Org-1 (Optomotor-blind-related-gene-1) transcriptionally [110-
114]. DAlk also plays a role in the development of embryonic endoderm by 
regulating the transcription of Dpp (homolog of mammalian TGF-β) [114]. 
Two independent studies have shown that Jeb/DAlk signaling plays an 
important role in the visual system of the fruit fly and synaptic connectivity in 
developing motor circuits [115, 116]. Further in 2011, Cheng and colleagues 
reported that DAlk protects neuroblast growth in starvation conditions via the 
PI3K/Akt pathway [117]. In the same year Gouzi and colleagues showed that 
DAlk signaling plays a vital role in body weight determination and associative 
learning in Drosophila by controlling neurofibromin 1 [118]. Recently, it has 
been shown that DAlk signaling acts in the Drosophila mushroom body and 
negatively regulates sleep [119]. 

Caenorhabditis elegans SCD-2 

In C.elegans SCD-2 (suppressor of constitutive dauer formation) is an ALK 
homologue which plays a critical role in dauer formation, which is a 
developmentally arrested third larval stage in C.elegans [120-122]. SCD-2  was first 
described as a suppressor in a screen of TGF-β signaling mutants which led to 
constitutive dauer pattern, from which SCD name was derived [121]. Hen-1 is the 
ligand for ALK homologue SCD-2 in C-elegans, which lacks a mammalian 
ortholog. Hen-1 gene encodes a secreted protein with similarities to Drosophila Jeb 
containing an LDL receptor repeat [123]. Hen-1 plays a vital role in sensory 
integration and behavioural plasticity [123]. To show that SCD-2 and Hen-1 
function in same genetic pathway, Shinkai and colleagues created a double mutants 
scd-2;hen-1 and showed that double mutants exhibit a similar phenotype as each of 
the single mutants [124]. 

Danio rerio DrAlk/DrLtk 

The zebrafish Danio rerio has two members of the ALK family (DrAlk and 
DrLtk) [125-127]. In zebrafish, DrAlk is found to be highly expressed in the 
developing central nervous system [125]. Inhibition of DrAlk in this organism 
resulted in severe complications in neuronal differentiation and neuron 
survival in the CNS without affecting the neuron progenitor formation [125]. 
However, inhibition of DrLtk resulted in a failure to establish iridophores 
(pigment cells that arise from the neural crest) [127]. As yet no ligand has been 
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reported to activate ALK signaling in zebrafish. Recently, zebrafish has been 
employed as a transgenic model system for neuroblastoma pathogenesis, a 
solid extracranial childhood cancer [128].  

Mammalian ALK 

In mammals, the biological function of ALK is not well known. However, by 
comparing with other model organisms, it has been suggested that ALK might 
play a role in development of the mammalian nervous system. In 1997, Iwahara 
and colleagues showed that ALK mRNA is expressed mainly in the brain and 
spinal cord of the mouse [98]. Furthermore, using RNA in situ hybridization, 
they indicated that ALK mRNA is expressed in different parts of nervous 
system, such as the olfactory bulb, thalamus, and ganglia of embryonic and 
neonatal mice [98]. Vernersson and colleagues have shown that mALK mRNA 
and protein expression overlap in specific regions of central and peripheral 
nervous systems [129]. Pulford and colleagues have shown that human ALK 
is expressed in tissue samples of adult human CNS, consistent with expression 
patterns of mouse and Drosophila melanogaster [130]. However, the role of 
ALK in mammals is still unclear. Several studies have indicated that ALK or 
ALK/LTK knockout mice are viable and do not show any major altered 
phenotype [131-133]. However, a recent study reported that ALK knockout 
males had low testosterone levels in serum and a mild disorder of seminiferous 
tubules, indicating a role of ALK in testis development and function [134]. 
Interestingly, treatment with crizotinib an FDA approved ALK inhibitor in 
metastatic NSCLC patients resulted in low testosterone levels [135, 136].  

The ligand for human ALK had remained a mystery until 2015. Two small 
basic proteins, FAM150A and FAM150B, were recently identified as potential 
ligands for LTK [137]. Further, they have shown that binding of both 
FAM150A and FAM150B in the ECD of LTK, stimulated the receptor 
activation, and activated ERK downstream signaling [137]. LTK shares high 
sequence similarity with ALK and like ALK, it has a unique structural region 
in the membrane proximal region called the glycine-rich domain (GRD). It was 
also reported that mutations in the glycine-rich domain, led to an inactive 
receptor in vivo [110].  Given these similarities, in 2015 Guan and colleagues 
were the first to report that FAM150A and FAM150B are potential ligands for 
human ALK [138]. This was further supported by Reshetnyak and colleagues 
studies which showed that FAM150A (AUGβ) and FAM150B (AUGα) are 
potential ligands for human ALK [139]. Recently, the HUGO gene 
nomenclature committee (HGNC) have designated the ligands as ALKAL1 
(FAM150A) and ALKAL2 (FAM150B) [140]. Several previous studies have 
reported that the heparin binding molecules Pleiotrophin (PTN), Midkine 
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(MK) and heparin itself are ligands for mammalian ALK [101, 141-145]. 
However, subsequent studies have reported that these molecules might not 
have a role in ALK activation [103, 146-148]. Guan and colleagues also 
reported that both FAM150A and FAM150B stimulate ALK signaling in 
neuroblastoma cells and that co-expression of both FAM150 proteins with 
human ALK, was able to drive human ALK activation in Drosophila 
melanogaster. Furthermore, they showed that these molecules bind to the ECD 
of ALK and enhance ALK activity in ALK positive neuroblastoma cells [138]. 
Taken together, the recently described potent ligands of human ALK might 
have significance in human cancers with ALK overexpression, however their 
role in other ALK positive cancers remains a crucial question. 

1.4 Oncogenic ALK signaling core 
Several ALK downstream signaling have been described, however most 
studies are from ALK fusion forms like NPM-ALK and EML4-ALK rather 
than from the mutated full length receptor. Understanding both types of 
signaling events will be beneficial for ALK positive targeted therapies. 

RAS-MAPK 

The RAS-family is the small GTPase class of proteins that control the activity 
of many signaling pathways of which the Mitogen Activated Protein Kinase 
(MAPK) plays a vital role in tumorigenesis [149-153]. Activated RAS 
translocate Raf-1 to the plasma membrane (active form) and activates MAPK 
kinase (MEK) to activate the 41kDa and 43kDa (ERK1/2) MAP kinases 
(Figure 6) [150-154]. 

In ALK fusion proteins such as NPM-ALK, MAPK signaling is mediated by 
binding of adaptor proteins like insulin receptor substrate-1 (IRS-1), growth 
factor receptor-bound protein 2 (Grb2) and src homology 2 containing (Shc) 
to the activated/phosphorylated ALK tyrosine residues. Furthermore, it has 
been shown that Grb2 binds to Y1507 and IRS-1 binds to Y1096 residue site 
[155-157]. In 2007, Degoutin and colleagues showed that adaptor proteins like 
Shc and Fibroblast Receptor substrate-2 (FRS-2) are recruited also upon ALK 
full-length receptor activation [158]. Pharmacological inhibition of the MAPK 
pathway induces apoptosis and reduces cell growth in ALK-positive ALCL 
[159-161]. Recently, it has been suggested that the EML4-ALK fusion protein 
is primarily dependent on RAS-MAPK pathway signaling, which can be used 
as a polytherapy strategy to treat EML4-ALK positive lung cancers [162, 163]. 
Following this study, Eleveld and colleagues suggested that targeting the RAS-
MAPK pathway would be beneficial also for ALK-positive neuroblastoma 
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patients, where ALK is a full-length receptor [164]. However, ALK positive 
neuroblastoma cells are not primarily dependent on RAS-MAPK pathway 
signaling as will be discussed in Paper III. 

JAK/STAT 

The JAK/STAT pathway plays an important role in several cellular processes 
like proliferation, survival, apoptosis, differentiation, and oncogenesis. Upon 
receptor activation, recruited JAKs are activated and create a binding site for 
STATs [165-171]. Tyrosine phosphorylated STATs form dimers and 
translocate to the nucleus [167-171]. The dimerized STATs activate or repress 
several transcription factors (Figure 7) [167-171].  

Figure 6- Activation of RAS-MAPK pathway: The classical RAS-RAF-MEK-ERK 
signaling pathway is shown here. 
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Activation of STAT3 by ALK has been mostly studied for the NPM-ALK 
fusion protein; however, the mechanism of activation is still unclear [172-174]. 
Several studies have shown that NPM-ALK activates STAT3 in a JAK3 
dependent manner [172, 174]. However, Marzec and colleagues have shown 
that NPM-ALK phosphorylates STAT3 independent of JAK3 [173]. Inhibition 
of PP2A activity, a serine/threonine kinase phosphatase positively regulates 
STAT3 in ALK positive ALCL [175]. ALK positive ALCL possesses 
enhanced STAT3 activity due to the absence of its inhibitor PIAS3 in these 
cells [175]. Furthermore, selective inhibition of STAT3 results in induction of 
apoptosis and suppression of proliferation in ALK-positive ALCL [172, 173]. 
In EML4-ALK positive lung cancer, the STAT3 signaling pathway is also 
important for the transforming activity of EML4-ALK [176].  Taken together, 
STAT3 may play an important role in ALK positive cancers. The role of 
STAT3 as a downstream target of full length ALK receptor will be discussed 
in Paper I. 

 

PI3K-AKT 

The PI3K/AKT signaling cascade plays an important role in carcinogenesis. 
PI3K consists of two subunits: (i) a regulatory subunit (p85), and (ii) a catalytic 
subunit (p110) [177, 178]. The PI3K complex activates number of proteins, of 
which Akt plays a vital role in several cellular processes [177, 178]. The 

Figure 7- Activation of JAK/STAT pathway: Basic steps involving the activation of 
JAK/STATs upon receptor activation is shown here. 
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mTOR complexes are important in PI3K/Akt signaling cascade where they act 
both downstream and upstream of Akt (Figure 8) [179].  

PI3K/Akt signaling cascade activation is important for the transforming 
activity of NPM-ALK in ALK-positive ALCL [180-182]. In 2005, Polgar and 
colleagues showed that PI3K activation is mediated by an interaction of NPM-
ALK with the regulatory subunit p85, resulting in decreased apoptosis [181]. 
Further, it has been shown that activated PI3K/Akt signaling activates mTOR 
complexes and glycogen synthase kinase 3beta (GSK3β) to promote 
oncogenesis [183-185]. The NPM-ALK/PI3K/Akt signaling cascade regulates 
survival and proliferation signals through activation of the FOXO3a 
transcription factor [186]. It has also been shown that the PI3K signaling 
cascade regulates the Sonic hedgehog (Shh) signaling pathway in ALK-
positive ALCL [187]. Pharmacological inhibition of PI3K activity using PI3K 
inhibitors resulted in reduced cell proliferation and induction of apoptosis in 
ALK-positive ALCL [180, 182]. The PI3K signaling cascade also plays an 
important role in EML4-ALK positive lung cancers and in ALK-positive 
neuroblastoma [188, 189]. Inhibition of PI3K activity using PI3K inhibitors 
led to reduced tumor growth in mice xenografts and cell growth in vitro in 
EML4-ALK positive lung cancers and in ALK-positive neuroblastoma [188, 
189]. Taken together, the PI3K signaling cascade provides a bonafide target in 
cancers that express ALK fusion proteins or mutated full length ALK receptor. 

 

Figure 8- PI3K-AKT-mTOR signaling pathway: The canonical PI3K-AKT-mTOR 
signaling pathway is shown here. 
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ERK5/BMK1 

The MAPK7 gene encodes the ERK5 protein, identified by two independent 
groups in 1995, as a member of Mitogen activated protein kinases (MAPKs) 
[190, 191]. ERK5 is found to be expressed in many tissue types, particularly 
in lung, brain, heart, kidney, skeletal muscles, and placenta [190, 191]. 
Depending on its activation ERK5 localizes to the cytoplasm or nucleus [192]. 
ERK5 is also called Big MAP kinase 1 (BMK1) due to its unique C-terminal 
region (Figure 9) [192]. The ERK5 protein consists of a kinase domain in the 
N-terminal region and a nuclear localization domain, two proline-rich-domains 
(PR1 and PR2) and a transactivation domain in the C-terminal region (Figure 
9) [190, 193-195]. Similar to ERK1/2, ERK5 also has a dual phosphorylation 
site (TEY) in the kinase domain which is important for activation [192, 194, 
195]. Upon activation ERK5 autophosphorylates in the transactivation domain 
to enhance its transcriptional activity [196].  In the cytosol, the N- and C-
terminal domains of ERK5 are connected together when ERK5 is in an 
unphosphorylated state (inactive form) and when ERK5 is 
activated/phosphorylated it translocate to the nucleus [192, 197]. ERK5 
responds to several mitogenic signals, such as cytokines and growth factors 
(EGF, VEGF, FGF, and NGF) and to cellular stress [198-202]. ERK5 is 
believed to be activated by a linear signaling cascade, where MAPK kinase 
kinase 2/3 (MEKK2/3) activates MAPK kinase 5 (MEK5), which then 
activates Big MAP kinase (BMK1) (Figure 9) [203, 204]. Upon activation by 
MEK5, ERK5 regulates several transcription factors like the MEF2 family of 
transcription factors, c-MYC, SRF accessory protein 1 (SAP1) and cyclic 
adenosine monophosphate (cAMP) [194, 195]. 

ERK5 plays a vital role in the regulation of several cellular processes like 
proliferation, survival, angiogenesis, and differentiation [195, 205]. To 
understand the physiological role of ERK5, several ERK5 knockout mice have 
been generated [201, 206, 207]. Similar to MEKK2/3 or MEK5, ERK5 
targeted deletion results in embryonic lethality in mice due to cardiovascular 
defects and vascular integrity [201, 206, 207]. Hayashi and colleagues also 
showed that ablation of ERK5 in an inducible knockout mouse model leads to 
endothelial cell apoptosis [206]. Kato and colleagues have shown that BMK1 
is required for cell cycle regulation and proliferation stimulated by epidermal 
growth factor (EGF) in HeLa cells [199]. Other studies have also indicated the 
participation of ERK5 signaling in the regulation of cell proliferation of breast 
cancer and prostate cancer cell lines [208, 209]. However, the activation of the 
ERK5 signaling pathway (AKT-MEKK3-ERK5) via oncogenic receptor 
activation in a solid tumor was first described by Umapathy and colleagues in 
2014 [210]. Yang and colleagues had shown that ERK5 interacts with 
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promyelocytic leukemia protein (PML) and controls its antitumor effect [211]. 
Furthermore, they showed that pharmacological inhibition of ERK5 
suppresses tumor growth and cells overcome G1-S transition checkpoint [211]. 
Recently, it has been shown that ERK5 plays an important role in maintaining 
the ‘stemness’ of cancer stem cells (CSCs) and also for maintaining the 
embryonic stem cell identity [212, 213]. Overall, ERK5 marks itself as a vital 
signaling event in several different cancer types and also maintains stem cell 
identity. ERK5 as a downstream target in mutated full length ALK receptor 
will be further discussed in Paper II. Investigation of its role in ALK fusion 
cancers should provide a more complete picture of regulation of ERK5 by ALK 
and a better understanding of ERK5 as a therapeutic target for ALK-positive 
cancers. 

Based on a phosphor-proteomics approach several other targets of ALK have 
been identified, including Crk, CrkL, Dok2, ATIC, VASP, MAPK1, MAPK3, 
FASP and PTPN11 [155, 214-216]. However, future research will tell us more 
about their role in regulating cell proliferation and survival in ALK positive 
cancers. Both ALK fusions and the full-length receptor share common 
downstream targets, however they might regulate different signaling cascades 
based on the tumor type.  Therefore, understanding the oncogenic ALK 
signaling axis will be essential to develop new polytherapy strategies in ALK 
positive cancers 
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A. 

Figure 9- ERK5 structure and signaling: (A) Domain structure of ERK5 is shown. ERK5 
structure (816 a.a) consists of smaller N-terminal region and a larger C-terminal region. 
The N-terminal region consists of a kinase domain (78-406 a.a), which comprises dual TEY 
(T218/Y220) phosphorylation site. The larger C-terminal region consists of two proline 
rich domains (PR1- 434-485 a.a and PR2- 578-701 a.a), a nuclear localization signal 
domain (NLS- 505-539 a.a) and a transactivation domain (TAD- 664-789 a.a). (B) Linear 
signaling cascade of ERK5 is shown. 

 

B. 
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1.5 ALK positive cancers 
ALK can be oncogenic in three ways (Figure 10), 

1.   Chromosomal translocation 

2.   Overexpression 

3.   Point mutations  

1.5.1 ALK chromosomal translocations 

ALK was originally discovered as a fusion protein partner with nuclear protein 
NPM in 1994 in ALCL [96], since then almost 30 different ALK fusion 
partners have been identified (Figure 11), suggesting that the ALK locus is a 
‘hot spot’ for translocation, although the reasons are not clearly understood. 
Almost all ALK fusion proteins share common features, including: (i) the 
promotor of the fusion partner will initiate the transcription, (ii) subcellular 
localization is also facilitated by the fusion partner, (iii) ALK fusion 
dimerization/oligomerization is determined by the fusion partner, which leads 
to trans-auto phosphorylation and by which it signals to its downstream targets 
[102, 217-220]. 

Figure 10- Oncogenic ALK in cancer: Figure represents various ALK positive cancer 
types. 
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Anaplastic large cell lymphoma (ALCL) 

In 1985, Stein and colleagues are the first to describe ALCL as a neoplasm, 
which possess Ki-1 antigen in the abundant cytoplasm [221]. ALCL commonly 
occurs in children and young adults, a rare type of Non-Hodgkin’s lymphoma 
involving T-cell receptor rearrangement [222] [223]. In ALCL, the well-
studied ALK translocation fusion partner is NPM-ALK, which occurs almost 
in 80% ALCL cases [220, 222, 224, 225]. NPM-ALK was first discovered in 
1994 in ALCL, since then several other ALK translocation fusion partners 
have been reported in ALCL like, Moesin (MSN), ALK lymphoma 
oligomerization partner on chromosome 17 (ALO17), TRK-fused gene (TFG), 
Tropomyosin 3 (TPM3), Tropomyosin 4 (TPM4), non-muscle myosin heavy 
chain 9 (MHY9), ATIC, CLTC-1 and TRAF-1 [96, 102, 220, 226-234].  

Inflammatory myofibroblastic tumor (IMT) 

IMT are rare mesenchymal neoplasms that frequently originate in the lung, 
abdomen, and retroperitoneal region and mostly affect young adults [235]. 
Almost 50% of IMT cases have rearrangement involving the ALK locus (2p23) 
of which TPM3-ALK fusion protein is present in the half of the cases [236, 
237]. Similar to ALCL, ALK possess several other fusion partners like, TPM4, 
SEC31 homologue A (SEC31L1), protein-tyrosine phosphatase receptor-type 
F polypeptide-interacting protein-binding protein 1 (PPFIBP1), Ras-related 
nuclear protein-binding protein 2 (RANBP2), cysteinyl-tRNA synthetase 
(CARS), ATIC, CLTC [102, 220, 238-244]. ALK translocations in both ALCL 
and IMT are associated with better prognosis [225, 245, 246]. 

Diffuse large B-cell lymphoma (DLBCL) 

DLBCL is the most common type of lymphoma, which accounts almost around 
30 to 40% lymphoma cases [247]. In which ALK positive DLBCL is very rare, 
however ALK rearrangement in DLBCL is associated with poor prognosis and 
response to chemotherapy treatment is ineffective [248, 249]. This rare type of 
DLBCL ALK positive group might benefit from ALK target therapies. The 
common ALK translocation rearrangements observed in DLBCL are 
sequestosome-1 (SQSTM1), NPM-ALK, CLTC-ALK, SEC31A [233, 250-
255]. 

Non-small cell lung cancer (NSCLC) 

Lung cancer is the leading cause of cancer death worldwide, which is classified 
into two subgroups: (1. Small cell lung cancer (SCLC) and (2) Non-small cell 
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lung cancer (NSCLC) [256-258]. Almost 80% of lung carcinoma belongs to 
NSCLC subgroup. EML4-ALK fusion protein was first described in the year 
2007 by two independent groups, which accounts for around 7 to 9% of all 
NSCLC cases [218, 259]. The fusion is linked by an inversion in 2p 
chromosome locus, which results in the fusion of N-terminal region containing 
coiled coil domain of EML4 gene with tyrosine kinase domain of ALK gene 
[218]. Thirteen different EML4-ALK variants have been described to date 
[102, 260]. Almost all EML4-ALK variants contain exons 20-29 of ALK, 
whereas it contains different exons of EML4, which might play role in stability 
or activity of the fusion protein [102, 261, 262]. Interestingly, Doebele and 
colleagues demonstrated a new ALK fusion variant involving exon 6 of EML4 
to exon 19 of ALK (E6;A19), however significance of these exon 19 of ALK 
fusion variants are currently unknown [263]. ALK targeted therapies shows 
promising results towards ALK positive NSCLC, however understanding the 
resistance mechanisms that arise in response to ALK inhibitor therapy will be 
a challenging in coming years [263-266].  ALK translocation other than 
EML4-ALK reported in NSCLC are, HIP1-ALK, STRN-ALK, PTPN3-ALK, 
TFG-ALK, KLC1-ALK, KIF5B-ALK, and TPR-ALK [102, 220, 259, 267-
271].  

 

Figure 11- ALK fusion proteins in cancer: Figure showing various different ALK fusion 
partners. 
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1.5.2 ALK overexpression 

Overexpression of ALK protein has been described in many cancer forms 
including retinoblastoma, astrocytoma, glioblastoma, melanoma, breast 
cancer, NSCLC, Ewing’s sarcoma, rhabdomyosarcoma, and neuroblastoma 
(Figure 12)  [147, 272-274].The importance of these events in the progression 
of disease is not known. 

Figure 12- ALK overexpression in cancer: A pictorial representation of ALK 
overexpression in different cancer types. 
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1.5.3 ALK point mutations 
Cancer forms like Anaplastic thyroid tumor (ATC), NSCLC, and 
neuroblastoma have been associated with activated ALK point mutations 
(Figure 13) [275-280]. 

 

ALK-L1198F and ALK-G1201E were described as gain-of-function activating 
point mutations in Anaplastic thyroid tumor (ATC) [280]. However, Guan and 
colleagues have recently shown that neither ALK-L1198F nor ALK-G1201E 
are constitutively active [281]. 

ALK point mutations observed in NSCLC are mostly secondary mutations 
occurred after crizotinib treatment, the first ALK inhibitor approved by the 
FDA for treatment of ALK positive NSCLC patients [282]. However, a few 
oncogenic ALK point mutations have also been described in lung 
adenocarcinoma [279]. These include mutations in the MAM domains (S413N, 
V597A), glycine rich domain (G881D), between MAM2, and glycine rich 
domain (H694R) and in the kinase domain (Y1239H, E1384K) [279]. Of these 
V597A, G881D, H694R, E1384K showed high kinase activity and activated 
downstream signaling components such as STAT3, AKT, and ERK [279]. The 
secondary mutations observed after crizotinib treatment are mainly confined 
around ATP binding site of ALK (Figure 14) [276]. These include two 

Figure 13- ALK point mutations in cancer: A pictorial representation of ALK point 
mutations in various cancer types. 
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gatekeeper mutations found in crizotinib resistance patients namely L1196M 
and C1156Y [276]. ALK-G1202R, S1206Y, G1269A, L1152R, L1198P, 
D1203N, I1171T/N/S, F1174C/V, L1198F, E1210K, and V1180L are also 
secondary mutations observed in NSCLC patients after ALK TKI treatment 
(Figure 14) [263, 266, 283-291]. Currently, all described secondary mutations 
can be overcome by current ALK TKI, however understanding the resistance 
mechanisms, and implementing other treatment strategies represent significant 
challenges.  

 

1.6 Neuroblastoma 
Neuroblastoma (NB) is a childhood cancer that gives rise to undifferentiated 
neural crest precursor cells of the sympathetic nervous system. It accounts 
almost 8-10% of all childhood cancer deaths, which makes it a most common 
extra cranial solid tumor [292-297]. NB is a very complex disease which 
affects very young children with median age of 22 months at diagnosis [298, 
299]. Children can develop tumors at any point along the sympathetic chain, 
however it most frequently originates in the adrenal medulla, then originates 

Figure 14- Mutations in ALK kinase domain: ALK tyrosine kinase inhibitor resistance 
mutations in ALK fusions are shown in orange. Activating ALK points found in 
neuroblastoma are shown in blue. Mutations found in both ALK fusions and neuroblastoma 
are shown in red. 
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to nerve tissues of abdomen, chest, pelvis and neck region [292, 300, 301]. NB 
is classified into five stages (stage1-4 and 4S) clinically according to 
International Neuroblastoma Staging System (INSS) [293, 295, 302]. Stage 
1and 2 are designated as Early stage NB tumors which usually do not 
metastasize to bone marrow and usually respond to chemotherapy and 
radiation. Stage 3 and 4 are designated as advanced stage NB tumors that 
usually metastasize and also become resistance to chemotherapy treatment. 
Stage 4S is designated as fifth stage of NB tumors where children go through 
spontaneous regression without treatment [293, 295, 302, 303]. In addition to 
stage classification, NB tumors are divided into three risk groups (low, 
intermediate and high risk) based on age, histology and MYCN status [303]. 
Chromosomal aberrations, age, disease stage, and genetic abnormalities are all 
contributing factors in NB tumorigenesis. 

 

1.6.1 Chromosomal aberrations and genetic lesions 
in NB 

The most common genetic anomalies seen in NB are deletion of parts of 
chromosome arms 1p and 11q, 17q gain, triploidy, MYCN and ALK 
amplifications [295, 304-308].  

Loss of parts of chromosome arm 1 (1p36) usually accounts for 25-35% NB 
tumors [292, 293, 295]. 1p loss of heterozygosity (LOH) correlates with 
amplification of MYCN and leads to unfavorable conditions in NB clinical 
groups [303]. To determine the importance of chromosome 1 in NB, Bader and 
colleagues transferred the normal portions of chromosome 1 short arm into the 
neuroblastoma cell line [309]. Transfer of chromosome led to differentiation 
of neuroblastoma cells and suppression of tumorigenicity [309]. Several 
potential tumor suppressor genes reside in this region which includes chromo-
domain helicase DNA-binding domain 5 (CHD5), kinesin superfamily protein 
1B beta (KIF1Bβ), microRNA-34a (mir-34a) calmodulin binding transcription 
activator 1 (CAMTA1) and p73. Introduction of CHD5, KIF1B, mir-34a or 
CAMTA1 decreased cell proliferation and leads to apoptosis [303, 310-313]. 
However, further studies indicate that there is no correlation between tumor 
suppressor gene p73 and NB development [314].   

Loss of parts of chromosome arm 11 (11q23) usually accounts for 30-40% of 
NB tumors and inversely correlated with MYCN amplification [303]. 11q 
LOH is usually correlated with unfavorable clinical outcome in NB patients 
[303]. Similar to chromosome 1, transfer of chromosome 11 also induced NB 
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cell line differentiation [309]. Potential tumor suppressor genes that localize to 
this region are immunoglobulin superfamily 4 (IGFSF4) and Tumor suppressor 
in lung cancer/cell adhesion molecule 1 (TSLC1/CADM1) [303, 315, 316]. 
Transfer of TSLC1 gene into NB cell lines expressing low TSLC1, led to 
decreased NB cell proliferation [316]. 

Gain of parts of chromosome arm 17 (17q22) usually accounts for 40-50% NB 
cases and associated with poor prognosis [303]. Gain of 17q correlates with 
MYCN amplification and leads unfavorable conditions in NB patients [293, 
295, 303, 317]. Genes localized in this region include survivin, NM23A, 
PPM1D [303]. Survivin (inhibitor of apoptosis) is associated with poor 
prognosis and is frequently overexpressed in NB tumors [303, 318]. 

Another important prognostic marker in NB is near diploidy or hyper diploidy 
(triploidy) state. Triploidy is correlated with less aggressive tumors and 
malignant NB is associated with near diploidy [293, 295]. 

Amplification of MYCN gene on chromosome 2p24 is the one of the main 
hallmarks of NB. Amplification of MYCN gene is usually accounts between 
20-30% of all NB cases and associated with poor survival [293, 295, 319]. 
MYCN is involved in several cellular process like cell proliferation, apoptosis, 
survival, and differentiation [320]. As in NB, MYCN has been reported to be 
overexpressed in several other cancer forms like glioblastoma, retinoblastoma, 
and SCLC [321-323]. To study NB tumorigenesis several transgenic mice have 
been developed. In this system, overexpression of MYCN acts as an initiator 
of NB tumor progression, however several studies have indicated that MYCN 
cooperates with other oncogenes to drive NB tumorigenesis [324, 325]. 
Targeting MYCN in these cancer forms might improve clinical outcome. 

Amplification of the ALK gene or overexpression of ALK protein has also been 
described for the development of NB [326, 327]. Amplification of ALK gene 
can lead to ALK activation which correlates with poor survival in NB patients 
[326, 327].  Other than amplification of the ALK gene or overexpression, ALK 
point mutations were also been reported in both familial and sporadic NB [304, 
305, 328-330]. Most of these described mutations are confined within the ALK 
kinase domain and are reported to be around 7-9% of all NB cases [331]. 
Mutations in ALK-F1174 (V, L, S, I, C) and ALK-R1275 (L or Q) are the two 
most frequently observed hot spot mutations in the kinase domain, accounting 
for 70-80% of all ALK mutant cases [304, 305, 328-330]. These two hot spot 
mutations or ALK-K1062M mutations resulted in transforming phenotypes 
when expressed in nude mice or NIH3T3 cells [328, 329]. Also, in co-
operation with MYCN, ALK-F1174L mutation enhances the tumorigenic 
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activity in NB mouse models [325]. Further in 2011, Schonherr and colleagues 
reported a kinase dead mutant (I1250T) which potentially acts in a dominant-
negative manner [332]. Based on the activation of the receptor ALK mutations 
can be characterized into three groups: (i) Ligand independent mutations 
(F1174L, Y1278S, R1275Q), (ii) Kinase dead mutations (I1250T) and (iii) 
Ligand dependent mutations (A1234, A1099, T1151) [333]. Recently, it has 
been reported that activating ALK point mutations (F1174L/S, Y1278S, 
L1196M and T1151R) are observed in 30-40% relapsed NB cases [164, 334-
336]. Pharmacological inhibition or siRNA knockdown of ALK in NB cells 
results in decreased cell proliferation [330, 337]. Taken together, targeting 
ALK and its downstream target might benefit ALK positive NB patients.  

Other factors which also contribute NB tumorigenesis are, LOH of 14q, 
amplification of DDX1 gene at 2p24, Neurotrophin receptors, ganglioside 
GD2, polycomb complex protein Bmi-1,  micro RNAs (miR-10b, miR-29a/b, 
miR-335), paired-like homebox 2B (PHOX2B) mutations, Alpha 
Thalassemia/Mental Retardation Syndrome X-linked (ATRX), checkpoint 
kinase 2 (CHEK2), BRCA-1 associated RING domain  protein 1 (BARD1), 
loss of cyclin dependent kinase inhibitor 2A (CDKN2A), mouse double minute 
2 homolog (MDM2) and glycosyltransferase (B4GALT3) [303, 338-344]. 
Recently, Pandey and colleagues reported that long noncoding RNA, NBAT-
1 regulates NB tumorigenesis via cell proliferation and neuronal differentiation 
[345]. 

1.6.2 Treatment strategies in neuroblastoma 

Chemotherapy  

Chemotherapy is preferred based on NB risk group. For intermediate NB risk 
group carboplatin, cyclophosamide, doxorubicin, and etoposide are preferred 
[346, 347]. For high NB risk group cisplastin, cyclophosamide, topotectan, 
vincristine and etoposide are preferred [346, 347]. However the cure rates has 
not been changed significantly in recent years [347]. 

Retinoids 

NB is characterized as poorly differentiated cells, therefore induction of 
differentiation in these cells should reduce the proliferation of NB cells. 
Several studies have shown that 13-cis retinoic acid (RA) induces 
differentiation in NB cells in culture [348, 349]. RA has been preferred in 
children with high risk NB due to increases in survival rate and reduced 
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toxicity in those patients [350]. However, combinatorial treatment with RA 
produces even more better survival rates [351]. 

Immunotherapy 

In 1977, Shochat and colleagues reported that NB cells express high levels of 
sialic acid and gangliosides on their surface [352]. However, sialic acid did not 
correlate with the prognosis of NB when compared to gangliosides [352]. 
These agents are required in cell migration, adhesion and metastasis [353]. 
Immunotherapy with the anti-GD2 (disialoganglioside) monoclonal antibody 
dinutuximab,  a tumor-associated surface antigen has been tested in several 
clinical trials alone or in combination with differentiation therapy (13-cis 
retinoic acid) or with granulocyte macrophage colony-stimulating factor GM-
CSF or with IL-2 [351]. Dinutuximab (Unituxin) was approved by FDA in 
2015 as a first-line therapy for treating high risk NB patients [354]. 

Radionuclide therapy 

131I-metaiodobenzylguanidine (131I-MIBG), a radionuclide has also been 
implicated as a therapeutic agent in NB. NB cells actively take up 131I-MIBG 
and improve the response of NB patients [355]. However, long-term toxicity 
can be severe in these cases [355]. 

Programmed cell death (Apoptosis) 

An alternative way to reduce the proliferation of NB cells is by inducing 
apoptosis. Fenretinide, is a retinoid which induces apoptosis in a caspase 
dependent manner in NB cells [356]. Combination of fenretinide with 
chemotherapeutic drugs had a synergistic induction of apoptosis in NB cells 
[357]. Targeting neurotrophin receptors also induce apoptosis in NB cells 
[358]. Expression of TrkB, a neurotrophin receptor, correlates with MYCN 
amplification and together leads to clinically unfavourable NB cases [303]. 
The FDA has provided Orphan Drug designation to a Trk inhibitor 
(Entrectinib) for treating NB patients [359]. 

Targeting MYCN 

MYCN status has been a bonafide prognostic marker in NB [293, 295]. 
Targeting of MYCN would be beneficial for high risk NB cases. Similar to 
other Myc proteins, MYCN lacks appropriate motifs for drugs to bind to its 
DNA binding domain [360]. Therefore, targeting MYCN indirectly to regulate 
its activity has been a widely accepted approach in recent times. There are few 
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indirect MYCN targeting approaches including Aurora kinase A/B inhibitors, 
BET bromodomain family members inhibitors, inhibitors of the MYCN/MAX 
interaction, ornithine decarboxylase (ODC1) inhibitors, PI3K/AKT/mTOR 
inhibitors, ERK5 inhibitors and ALK inhibitors [210, 351, 361]. Recent studies 
have indicated that ALK regulates MYCN transcriptionally via AKT/ERK5 
pathway [210, 325, 361], suggesting that targeting ALK and its downstream 
targets (AKT/ERK5) in ALK positive NB cells might be a potential therapeutic 
target. 

Other possible NB therapies include inhibition of Heat shock protein 90 
(Hsp90), targeting non coding RNAs, DNA methylation, checkpoint inhibitors 
and also protein glycosylation [299, 351]. Altogether, following the ‘triangle 
theory’ would benefit the NB patients in the near future (Figure 15). 

Figure 15- Triangle Theory: 
(A). A pictorial representation 
of triangle theory. (B). 
Experimental platforms to 
treat NB patients in near 
future. Patient derived 
xenograft (PDX). Genetically 
modified mouse models 
(GEMMS). Figure adapted 
from (363). 

 

A. 

B. 
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1.7 Targeting ALK: Treatment of ALK positive 
cancers 

Since oncogenic ALK signaling is involved in several cancer forms, targeting 
ALK and its downstream partners should be therapeutically beneficial in ALK 
positive cancer patients. NVP-TAE684 was one of the first ALK specific 
inhibitors identified to target the ATP binding site of ALK. Several studies 
have shown that treatment with ALK specific inhibitor NVP-TAE684 reduced 
cell proliferation of ALK positive ALCL, NSCLC, and NB cell lines [337, 
362]. However, treatment with NVP-TAE684 is toxic over time [337]. To date, 
several other ALK inhibitors have been developed and explored in clinical 
trials with ALK positive patients. 

Crizotinib 

Crizotinib was the first ALK targeted TKI to enter into clinics, even though it 
was initially described as a potent MET kinase inhibitor (Figure 16) [363]. In 
2011, the FDA approved crizotinib for treatment of ALK positive NSCLC 
patients based on the remarkable results of phase I/II clinical studies [363]. 
Further, in phase III clinical studies, crizotinib was superior to conventional 
chemotherapy in advanced ALK positive NSCLC [363]. The common adverse 
effects described for crizotinib treatment are diarrhoea, visual disturbances, 
nausea, vomiting, constipation, dizziness and peripheral edema [265]. Similar 
to NSCLC, efficacy of crizotinib has been tested in other ALK positive cancer 
forms. The response to crizotinib has been encouraging in both paediatric and 
adult ALCL patients [364, 365]. However, it had a partial response in patients 
with ALK positive NB and ALK rearranged IMT [364]. Across all clinical 
trials, crizotinib responds with 8 to 11 months of median progression free 
survival (PFS) [265]. However, response to crizotinib is transient due to 
acquisition of secondary mutations or by ALK copy number gain or bypass 
survival signaling via alternative oncogenes (Table 1) [263, 265]. Several 
studies have also indicated the ineffectiveness of crizotinib on brain metastasis 
in ALK rearranged NSCLC cases [366].  Due to poor activity of crizotinib in 
brain and acquiring several secondary mutations, second generation ALK TKIs 
have been developed.  
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Ceritinib 

In 2014, FDA approved the second generation ALK TKI ceritinib for crizotinib 
resistance ALK positive NSCLC patients. However, as with other second 
generation ALK TKI, ceritinib has not yet been approved as a first line therapy 
for ALK positive NSCLC patients [265]. Similar to crizotinib, ceritinib is an 
ATP competitive inhibitor which binds to the ATP binding pocket (Figure 17). 
Ceritinib is a derivative of the ALK specific inhibitor NVP-TAE684 and in 
addition to inhibiting ALK is effective against the activity of IGF-1R, 
STKK22D, and INSR [283, 286]. Since the expression of IGF-1R correlates 
with NB tumorigenicity [367], ceritinib might offer therapeutic advantages in 
ALK positive NB patients. The common adverse effects seen with ceritinib 
are, diarrhoea, vomiting, fatigue, abdominal pain, rash, arthralgia, 
transaminases, and dyspnoea [265]. Several studies have indicated that 
ceritinib is able to overcome both ALK-crizotinib resistance mutations 
(G1269A, L1196M, I1171T/N, and S1206C/Y) and ALK-alectinib resistance 
mutations (I1171T/N/S and V1180L) (Table 1) [285, 286]. Similar to ALK 
positive NSCLC, ceritinib is effective in ALK rearranged ALCL [368]. The 
median PFS with ceritinib in ALK positive NSCLC is 7 to 8 months, after 
which ALK secondary mutations arise and response to ceritinib significantly 
decreases [287].  

Figure 16- ALK TKI-Crizotinib: On the left, the chemical structure of crizotinib is shown. 
On the right, binding of crizotinib into the ATP- binding pocket of the ALK kinase domain is 
shown. 
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Alectinib 

Alectinib is a potent ALK inhibitor with greater specificity towards ALK than 
crizotinib and also activity against some ALK-crizotinib resistance mutations 
(Figure 18) [265]. The exceptional success of alectinib in phase I/II trial in 
Japanese patients with ALK rearranged NSCLC led to its approval in 2014 in 
Japan [265]. In 2013, FDA granted breakthrough therapy designation (BTD) 
for alectinib for patients with ALK positive NSCLC who progressed with ALK 
TKI crizotinib. Alectinib has a high potency towards the gatekeeper mutation 
ALK-L1196M and also with two NB hot spot mutations ALK-R1275Q and 
ALK-F1174L (Table 1) [369]. Since the frequency of hot spot mutations in NB 
is between 70-80%, alectinib might improve the clinical outcome of NB 
patients. The median PFS with alectinib in crizotinib naive NSCLC is 28 
months and 8 to 9 months in crizotinib resistance NSCLC [265]. Similar to 
other ALK TKIs, alectinib confers resistance with two ALK mutations ALK-
V1180L and ALK-I1171T having been reported (Table 1) [285]. In 2014, 
Isozaki and colleagues established two alectinib-resistance cell lines. The first 
alectinib-resistance cell line showed increased activity of IGF1R and human 
epidermal growth factor 3 (HER3) and also neuregulin 1 (HER3 ligand) [370]. 
The second alectinib-resistance cell line showed stimulation of MET receptor 
by hepatocyte growth factor (HGF) in an autocrine aspect [370]. Taken 
together, alectinib acquires resistance in both ALK dependent and independent 
resistance mechanisms. 

Figure 17- ALK TKI-Ceritinib: On the left, the chemical structure of ceritinib is shown. 
On the right, binding of ceritinib into the ATP- binding pocket of the ALK kinase domain 
is shown. 
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Brigatinib 

Brigatinib is a potent inhibitor of ALK and other kinases including EGFR and 
ROS1 (Figure 19). In phase I/II trails, brigatinib showed 72% of overall 
response with a median PFS of 11 to 13 months in crizotinib resistance ALK 
NSCLC patients [265]. The common adverse effects seen with brigatinib are, 
nausea, fatigue, dyspnoea, vomiting, pyrexia, arthralgia and diarrhoea [265]. 
Recently, it has been shown that brigatinib inhibits ALK receptor activity more 
effectively than crizotinib in NB cell lines, xenograft models and a Drosophila 
model system [371]. Further, brigatinib confers resistance to 
E1210K+S1206C, E1210K+D1203N ALK secondary mutations (Table 1) 
[363].  

 

Figure 18- ALK TKI-Alectinib: On the left, the chemical structure of alectinib is shown. 
On the right, binding of alectinib into the ATP- binding pocket of the ALK kinase domain is 
shown. 

Figure 19- ALK TKI-Brigatinib: On the left, chemical structure of brigatinib is shown. On 
the right, the binding of brigatinib into the ATP- binding pocket of the ALK kinase domain 
is shown. 
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Entrecitinib 

Entrecitinib is an oral, potent inhibitor of ALK, NTRK, and ROS1 (Figure 20). 
Entrecitinib is currently being evaluated in phase I/II trials (ALKA-372-001 
and STARTRK-1) for patients with ALK, ROS1, NTRK alterations [265]. 
Recently, Iyer and colleagues have shown that treatment with entrecitinib 
reduces NB cell proliferation and tumor growth [359]. Entrecitinib has 
received an orphan drug designation for treating NB patients as well as for 
NTRK, ALK, ROS1 alterations in NSCLC and metastatic colorectal cancer 
(mCRC). The most common adverse effects seen with entrecitinib are, 
diarrhoea, nausea, dizziness, fatigue, constipation, and peripheral neuropathy 
[265]. Entrecitinib confers resistance to the G1202R ALK secondary mutation 
(Table 1) [363]. 

 

 

 

 

 

 

Figure 20- ALK TKI-Entrecitinib: On the left, the chemical structure of entrecitinib is 
shown. On the right, binding of entrecitinib into the ATP- binding pocket of the ALK kinase 
domain is shown 
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Lorlatinib 

Lorlatinib is a novel, highly potent ALK/ROS1 inhibitor that can pass through 
the blood-brain barrier (Figure 21).Lorlatinib overcomes almost all known 
ALK resistance mutations observed with other ALK TKIs [363]. In both in 
vitro and in vivo systems, lorlatinib is more potent than other ALK TKIs [372]. 
Furthermore, it leads to regression of ALK rearranged NSCLC brain metastasis 
[372]. Recently it has been shown that lorlatinib had superior potency towards 
ALK activity and also reduced ALK positive NB cell proliferation and tumor 
growth [373, 374]. A phase I/II trial of lorlatinib is currently being investigated 
in ALK/ROS1 positive NSCLC [265]. The common adverse effects seen with 
lorlatinib are, fatigue, slowed speech, hypercholesterolemia, peripheral edema 
and neuropathy. Recently, Shaw and colleagues reported that therapeutic use 
of lorlatinib in a patient with crizotinib resistant ALK positive NSCLC led to 
the appearance of the ALK-L1198F+C1156Y resistance mutation (Table 1) 
[287]. Interestingly, in the same study it was shown that this lorlatinib 
resistance mutation is sensitive to crizotinib treatment [287]. Due to its high 
efficacy, lorlatinib can serve as a perfect partner for combinatorial treatments 
to overcome the emergence of resistance clones in ALK positive cancers. 

 

 

 

 

Figure 21- ALK TKI-Lorlatinib: On the left, the chemical structure of lorlatinib is shown. 
On the right, binding of lorlatinib into the ATP- binding pocket of the ALK kinase domain 
is shown.  
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1.8 Mechanism of resistance to ALK TKIs in 
ALK positive cancers 

Based on several drug screens, in vitro, and in vivo models, ALK TKI 
resistance mechanism can be classified into two major groups [263, 363, 375]: 
(i) ALK positive mechanism (ALK dependent), which includes ALK 
secondary resistance mutations or ALK copy number gain, (ii) ALK negative 
mechanism (ALK independent), which includes the activation of alternative 
oncogene (EGFR, IGFR, MET, KIT) and lineage alterations [263, 363, 375]. 

 

ALK positive resistance mechanism   

The gatekeeper mutations ALK-L1196M and ALK-C1156Y are the first ALK 
resistance mutations reported in ALK positive NSCLC [276]. Further this 
mutation was also identified in a crizotinib resistance cell line which confers 
resistance to crizotinib by altering the gatekeeper residue and hinders crizotinib 
binding to the ATP pocket [265, 376]. Similar to gatekeeper mutation, ALK-
G1269A mutation also impairs crizotinib binding to the ATP-binding cleft 
[263]. The other ALK secondary resistance mutations resides around C-
terminal end of αC helix (F1174C/V/L) and in N-terminal end (I1151Tins, 
C1156Y, and L1152R) [263, 276, 285, 286, 363]. The L1152 residue appears 
on β3 strand which interacts with αC helix of the C-terminal, mutation to 

Figure 22- Mechanism of ALK TKI resistance: A pictorial representation of different 
classes of acquired ALK TKI resistance. 
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arginine might hinder crizotinib binding to wild type auto-inhibitory 
conformation (Figure 14, Table 1)[237, 289]. Whereas, the C1156 residue 
appears to be very far to crizotinib binding, however C1156 residue binds to 
L1152, and thereby mutation to tyrosine might impair the crizotinib binding 
[237, 377]. Alterations in I1151 residue might disrupt the bonding with the 
residue G1129, which might alter the αC helix and hinder the binding of ALK 
TKIs [237, 285, 363, 378]. The F1174 appears to be in C-terminus end of αC 
helix, mutations at this site distorts ALK structure by which it impairs the 
binding of crizotinib [237]. The G1202R, D1203N, and S1206C/Y are the 
other class of ALK secondary mutations which hinder ALK TKI binding most 
likely through steric impediment [288, 363]. Several similar mutations have 
also been described in other cancer forms like neuroblastoma, ALCL and IMT 
[102, 278]. However, mutations described in NB are primary mutation rather 
than the ALK TKI resistance mutations. Mostly, all ALK secondary mutations 
can be overcome by second and third generation ALK TKIs. However, 
sequential treatment of ALK TKIs in patients leads to dual mutation 
(C1156Y/I1171N, E1210K/D1203N, and C1156Y/L1198F) which confers 
resistance to second and third generation ALK TKIs [363]. The dual mutation 
C1156Y/L1198F was recently found in ALK positive NSCLC patient (Table 
1). The patient was sequentially treated with first, second and third generation 
ALK TKIs (crizotinib, ceritinib and lorlatinib). Interestingly, in vitro study 
demonstrated that ALK mutation L1198F was sensitive to crizotinib, the 
patient was retreated with first generation ALK TKI crizotinib and had an 
enduring response [287]. This case serve as a proof for ‘triangle theory’, which 
led to the benefit of the patient.  

Other than ALK secondary mutations, ALK copy number gain (CNG) can also 
confer resistance to ALK TKIs. ALK amplification occurs around 8 to 15% in 
ALK TKI resistance NSCLC cases [263, 283, 363]. In an in vitro study, ALK 
amplification together with gatekeeper mutation ALK-L1196M resulted in 
high-level resistance to crizotinib [376]. However, ALK CNG have not been 
observed with second generation ALK TKIs [288]. 

ALK negative resistance mechanism  

The ALK independent resistance mechanism includes the activation of 
alternative signaling pathway or lineage alterations [263, 363, 375]. There are 
numerous examples of activation of alternative oncogene, of which EGF 
receptor activation was the first identified resistance mechanism to ALK TKIs 
[283, 289, 363]. Analysis of phosphor-RTK array in crizotinib resistance cell 
line showed increased EGFR tyrosine phosphorylation and also associated 
with activation of downstream survival signaling like AKT and ERK [289, 
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379]. EGFR ligand upregulation might have resulted to the activation of the 
receptor, since mutation or amplification of EGFR was not observed in these 
cell lines [289, 379]. Neuregulin-1 (NRG1), the ligand for ERBB3/4 RTK was 
also observed as a vital driver for ALK TKIs resistance [380]. Brigatinib, a 
TKI inhibitor which inhibits the activity of both ALK and EGFR might be 
beneficial for EGFR bypass signaling. MET amplification was another bypass 
signaling recently observed in NSCLC patient treated with second generation 
inhibitor alectinib. Biopsy did not show any alterations in ALK or EGFR, but 
showed MET amplification, however patient responded to crizotinib, an 
ALK/MET inhibitor [381]. KIT amplification, activation of IGF1R and SRC, 
mutations in PIK3CA, TP53, BRAF, DDR2, FGFR2, NRAS, and MET are the 
other examples of bypass signaling which confers resistance to ALK TKIs 
[363]. Recently, it has been reported that activation of another bypass signaling 
via AXL receptor which also mediates the resistance to ALK inhibitor TAE684 
in neuroblastoma [382]. However, the use of next generation inhibitors will 
provide us the complete picture of ALK resistance mechanism in full length 
ALK receptor. Reactivation of downstream signaling pathway over time might 
also contribute to the development of ALK TKI resistance [163]. Recently, it 
has been reported that KRAS copy number gain or loss of DUSP6 leads to 
reactivation of MAPK which confers resistance to ALK inhibitors [163]. 

Epithelial-to-mesenchymal transition (EMT) phenotypic changes might also 
be responsible for the development of resistance to ALK TKIs [363]. Few 
studies have reported that ALK inhibitor resistant cell lines and tumor samples 
express high levels of vimentin (mesenchymal marker) and low levels of E-
cadherin (epithelial marker) [363, 383]. However the mechanism of resistance 
to ALK TKIs with EMT phenotypic changes is still unclear [363, 383]. Recent 
studies have indicated that drug tolerant persister cells leads to TKI resistance 
and clinical relapse [384, 385]. However, the role of drug tolerant persister 
cells in ALK TKI resistance is yet to be resolved. Multidrug resistance 1 
(MRD1) gene encodes a protein called P-glycoprotein (P-gp) have also been 
identified as a potential driver for ALK inhibitor resistance [386].   
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Table 1: ALK TKIs in clinical testing. Adapted from (363)  
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1.8.1 Combinatorial treatment  

Even though all ALK TKIs have high potency towards the ALK activity, each 
ALK TKI have a unique way of acquiring the ALK resistance mutations. So, 
combination of ALK TKI with ALK downstream targets or other bypass 
pathway inhibitors could be beneficial for ALK positive cancer forms and also 
prevents the ALK resistance mutations. Choosing the right target for poly-
therapy is vital, since negative feedback signaling mediate by the target over 
time might lead to the development of resistance [387] (Paper III). Successful 
combinatorial treatments should not only show efficacy against mono-
treatment, but also in tolerability of dosing levels in patients. Several 
combinations of ALK TKI with chemotherapy agents, immunotherapy agents 
and downstream target agents are currently being evaluated (Table 2). 

Several preclinical studies have indicated the importance of combination of 
ALK and MEK inhibitors in ALK positive NSCLC, which led to the 
development of ALK and MEK combination in clinics [163, 363]. In a phase 
I trial combination of ALK inhibitor, ceritinib is combined with everolimus, 
an mTOR inhibitor or with LEE011, CDK4/6 inhibitor in NSCLC [363]. 
Combination of second generation ALK inhibitor alectinib with bevacizumab, 
an angiogenesis inhibitor is also currently being tested in ALK positive 
NSCLC patients (NCT02521051) [363]. Other than the targeted agents, ALK 
TKI are combined with immunotherapy agents like ipilimumab or nivolumab 
(NCT01998126) or nivolumab (NCT02584634) or pembrolizumab 
(NCT02511184) or avelumab (NCT02584634), however preclinical data for 
immunotherapy combinations are limited [363]. Several studies have indicated 
that use of anti- PD-1 (programmed cell death protein 1), nivolumab can 
produce durable activity in several cancer forms [363, 388]. However, Gainer 
and colleagues study shows that ALK rearranged NSCLC have low expression 
of PD-L1 in the tumor microenvironment [389]. Furthermore, they have shown 
that ALK positive NSCLC are associated with low response to PD-1 therapy 
[389]. Preclinical studies associated with combination of ALK TKI and other 
downstream target inhibitors have also been evaluated in mutated ALK full-
length receptor. In 2014, Moore and colleagues have shown that combination 
of ALK inhibitor with PI3K/mTOR inhibitors reduce the proliferation of NB 
cells effectively when compared to the mono-treatment [189]. In same year 
Umapathy and colleagues have shown that combination of crizotinib, an ALK 
inhibitor with XMD8-92, an ERK5 inhibitor reduce the cell proliferation 
synergistically in ALK positive NB [210]. A recent study has shown that 
combination of ALK inhibitor and CDK4/6 inhibitor suppresses the cell 
growth of ALK positive NB. Similar to ALK positive NSCLC, it has been 
suggested that combination of ALK inhibitors with MEK inhibitors might be 
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beneficial for ALK positive NB [163, 164]. However, combination of ALK 
inhibitor and MEK inhibitor does not synergistically reduce NB cell 
proliferation (Paper III). Furthermore, MEK inhibition leads to increased AKT 
pathway activation via mTORC2 (Table 2) (Paper III). Taken together, 
combination of ALK inhibitor with PI3K/mTOR/ERK5 pathway inhibitors 
might be beneficial for ALK positive NB patients.   

Table 2: Outcome of combinatorial treatment in ALK positive cancers 
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2 AIMS 
The overall aim of this thesis is to increase our understanding the oncogenic 
signaling events downstream of the full-length ALK receptor in 
neuroblastoma.  Further, we aimed to identify potential therapeutic 
target/pathways for poly-therapy treatment for ALK positive neuroblastoma. 

Specific aim 
 

Paper I.  We aimed to identify putative downstream signaling targets of ALK 
in neuroblastoma using phosphor-proteomic mass spectrometry analysis. 
Further, we aimed to investigate whether ALK activates STAT3 in ALK 
positive NB cells. 

Paper II. We aimed to investigate the mechanism underlying ALK activation 
of ERK5 in ALK positive NB cells. Further, we investigated whether the 
combination of ERK5 and ALK inhibitors exhibited therapeutic synergy in 
ALK positive NB cell proliferation and tumor growth. 

Paper III. We aimed to investigate the importance of targeting RAS-MEK-
MAPK in ALK positive neuroblastoma. Further, we investigated whether 
MEK inhibitor alone or in combination with ALK inhibitor has therapeutic 
value in ALK positive NB. 
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3 RESULTS AND DISCUSSION 
This section highlights the main findings of this thesis. 

Paper I.  Phosphoproteomic analysis of anaplastic lymphoma kinase 
(ALK) downstream signaling pathways identifies signal transducer and 
activator of transcription 3 as a functional target of activated ALK in 
neuroblastoma cells (Sattu K et al.,2013) 

Previous studies have indicated the importance of STAT3 activation in ALK 
fusion cancer forms. In this study we aimed to investigate the importance of 
STAT3 activation in full length ALK receptor signaling. 

Activated ALK phosphorylates STAT3 at Y705 in PC12 cells 

Based on the phosphor-tyrosine proteomics screen, we identified STAT3 as 
significantly tyrosine phosphorylated upon ALK activation. To examine 
whether STAT3 is activated by full length ALK receptor, we initially 
employed PC12 cells expressing doxycycline –inducible wild type ALK and 
the ALK F1174S mutant. Activation of wild type ALK using mAb31 for 24 
hours led to visible tyrosine phosphorylation of STAT3, this was not clearly 
observed after 30 minutes of mAb31 stimulation. In contrast, robust activation 
of STAT3 was observed upon expression of ALK F1174S mutant. In both the 
cases, inhibition of ALK activity using crizotinib abrogated STAT3 tyrosine 
phosphorylation. To further investigate the activation process, we explored 
whether ALK could interact with STAT3 and regulate its activation. In PC12 
cells we were unable to observe an interaction between endogenous STAT3 
and doxycycline-induced ALK. However, we were able to show an interaction 
when FLAG-tagged STAT3 was transiently co-transfected with wild-type 
ALK or ALK F1174S mutant. Upon stimulation of wild type ALK, interaction 
between ALK and STAT3 was enhanced and was abrogated by addition of 
crizotinib. 

STAT3 activation is important for initiation of transcription of MYCN in 
response to ALK activation 

Recent studies have indicated that ALK regulates MYCN transcriptionally in 
neuroblastoma cells and also co-ordinate with MYCN in neuroblastoma 
pathogenesis. Therefore we investigated a role for STAT3 in the regulation of 
MYCN. To examine this, we employed several ALK positive neuroblastoma 
cell lines. These neuroblastoma cell lines contain either constitutively activated 
ALK mutations (CLB-GE ALKF1174V, CLB-GA ALK R1275Q, and Kelly 
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ALKF1174L) or overexpressed ALK with an extracellular domain deletion 
(CLB-BAR Δexon 4-12). RNA interference (siRNA) mediated inhibition of 
STAT3 in ALK positive neuroblastoma cells led to reduction of MYCN 
protein expression. Further, pharmacological inhibition of STAT3 activation 
using FLLL32 and STATTIC also showed reduced MYCN protein expression 
in ALK positive neuroblastoma cells. To confirm the importance of STAT3 in 
ALK mediated MYCN transcription, we transfected neuroblastoma cells with 
a MYCNP-luciferase reporter. Using STAT3 inhibitors to inhibit STAT3, we 
observed reduced luciferase activity. This was further confirmed with 
quantitative RT-PCR (qRT-PCR). In keeping with these results, ALK positive 
neuroblastoma cells treated with STAT3 inhibitors for 24 hours showed a 
significant decrease in MYCN mRNA levels.  

Inhibition of STAT3 activity suppress neuroblastoma cell growth 

We next investigated whether STAT3 activity is important for neuroblastoma 
cell proliferation. To examine this, we treated neuroblastoma cells with STAT3 
inhibitors and assessed proliferation over 5 days. Treatment with STAT3 
inhibitors reduced neuroblastoma cell proliferation 30-50%. This result was 
further confirmed using small interference RNA targeting STAT3.  

Altogether, our data implicates STAT3 as a potential downstream target of full 
length ALK. Activated ALK results in activation of STAT3 at Y705 in PC12 
cells expressing either wild type ALK or ALK F1174S mutant, as well as in 
ALK positive neuroblastoma cells. Further, we have shown that STAT3 
activity is important for MYCN transcription and that inhibition of STAT3 
activity reduces neuroblastoma cell proliferation.     
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Paper II. The kinase ALK stimulates the kinase ERK5 to promote the 
expression of the oncogene MYCN in neuroblastoma (Umapathy G et al., 
2014) 

Previous studies have indicated that treatment with ALK TKI alone is not an 
effective solution for ALK positive neuroblastoma patients, so combination 
with ALK downstream targets might be beneficial. In this study we aimed to 
investigate whether oncogenic ALK activates ERK5 in ALK positive NB cells. 
Further, we investigated whether the combination of ERK5 inhibitor and ALK 
inhibitor have synergy effect in ALK positive NB cell proliferation and tumor 
growth. 

ALK activates ERK5 via the PI3K pathway 

Based on the phosphor-tyrosine proteomics screen, we identified ERK5 as a 
putative ALK downstream signaling target. To examine whether ERK5 is 
activated by full length ALK, we initially employed PC12 cells expressing 
doxycycline –inducible wild type ALK or the ALK F1174S mutant. Upon 
ALK activation, ERK5 is phosphorylated at T218/Y220 and phosphorylation 
of these sites was abrogated by the addition of either ALK or PI3K inhibitors. 
We next decided to investigate the role of ALK and ERK5 in ALK positive 
neuroblastoma cell lines, where ALK is constitutively activated. Similar to 
PC12 cells, ALK activates ERK5 in ALK positive neuroblastoma cell lines and 
this activation was abrogated in the presence of either ALK inhibitor 
(crizotinib), PI3K inhibitor (NVP-BEZ235), mTOR complex inhibitor 
(AZD8055) or ERK5 inhibitor (XMD8-92). Further, activation of ERK5 by 
ALK was confirmed in IMR-32 cells, where ALK is amplified in exon 3-4. 
Upon ALK activation in IMR-32 cells using activating monoclonal antibody 
(mAb46) led to robust activation of ERK5 and the activation was abrogated by 
ALK/PI3K pathway inhibitors. 

Since ERK5 activation by ALK was sensitive to PI3K pathway inhibitors, we 
next wanted to investigate whether PI3K activity is important for ERK5 
activation in ALK neuroblastoma cell lines. To examine the importance of 
PI3K activity, we transfected constitutively active (p110CAAX) or kinase 
dead (p110KD) variants of p110 in PC12 cells and ALK positive 
neuroblastoma cells. The kinase dead variant of p110 significantly reduced the 
activation of ERK5 in both PC12 cells and ALK positive neuroblastoma cell 
lines. 
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AKT phosphorylates MEKK3 to activate ERK5 

Previous studies have indicated that ERK5 is activated via the linear signaling 
cascade (MEKK2/MEKK3 activates MEK5 activates ERK5). The data 
accumulated thus far suggests that ALK activates ERK5 via PI3K/AKT 
pathway. To examine whether AKT phosphorylates MEKK3, an upstream 
activator of ERK5, we used AKT substrate antibody to immunoprecipitate the 
AKT substrate proteins from ALK positive neuroblastoma cell lines. 
Immunoprecipitates were subject to immunoblotting with MEKK3 and GSK3β 
(a known AKT substrate) antibody. Addition of either ALK inhibitor or PI3K 
inhibitor abrogated the phosphorylation of both GSK3β and MEKK3 in ALK 
positive neuroblastoma cells, indicating that MEKK3 is a downstream 
signaling target of AKT. To examine the importance of MEKK3 activity in 
ERK5 activation by ALK, we used small interference RNA (siRNA) targeting 
MEKK3. RNA mediated inhibition of MEKK3 in ALK positive 
neuroblastoma cells led to a reduction in ERK5 phosphorylation. 

ERK5 activation is important for initiation of transcription of MYCN 

We next investigated the role of ERK5 in the regulation of MYCN expression, 
since previous work has shown that ALK activity is important for the initiation 
of MYCN transcription and also that PI3K pathway activity is important for 
MYCN protein stability. To examine this, we employed SHEP neuroblastoma 
cell lines, which stably express MYCN under the control of the CMV 
promotor. We observed that treatment with the PI3K inhibitor (NVP-BEZ235) 
abrogated the expression of both phosphorylated and total MYCN protein 
levels. Interestingly, the ERK5 inhibitor (XMD8-92) does not inhibit 
exogenously expressed MYCN protein levels, indicating that ERK5 activity 
might not be important for MYCN protein stability. Further, treatment with 
XMD8-92 significantly reduced MYCN mRNA levels in ALK positive 
neuroblastoma cell lines. Taken together, our results indicated that ERK 
activity is important for the initiation of transcription of MYCN, rather than 
MYCN protein stability. 

Combining ERK5 and ALK inhibitors reduces neuroblastoma cell growth 
synergistically 

Having established that ERK5 is activated by ALK in NB cells, we next wanted 
to investigate whether ERK5 activity plays a vital role in neuroblastoma cell 
proliferation. Pharmacological inhibition or siRNA mediated inhibition of 
ERK5 reduced the neuroblastoma cell proliferation up to 20 to 30%. Further, 
combination of ERK5 (XMD8-92) and ALK (crizotinib) inhibitors suppress 
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neuroblastoma cell growth synergistically.  To examine the effectiveness of 
XMD8-92 and crizotinib as a combinatorial treatment in vivo, we injected 
human neuroblastoma cells (CLB-BAR) subcutaneously into BalbC/NUDE 
mice and treated with either crizotinib alone or XMD8-92 alone or in 
combination of both. Combination of XMD8-92 and crizotinib resulted in 
greater inhibition of tumor growth than the mono-treatment. 

 Altogether, our data indicates that ALK activates ERK5 via the 
PI3K/AKT/MEKK3 pathway and initiates the transcription of MYCN in 
neuroblastoma cells. Further, we have shown that combination of ALK 
inhibitor with ERK5 inhibitor was much more effective than the mono-
treatment in both cells and xenograft models. 

  

Figure 23- ERK5 is a target of ALK: Schematic representation of activation of ERK5 by 
ALK in neuroblastoma. 
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Paper III. Anaplastic lymphoma kinase addictive neuroblastoma cell lines 
are associated with growth upon treatment with MEK inhibitor 
trametinib (Umapathy G et al., 2014) 

Recent studies have indicated that targeting the RAS-MEK-MAPK pathway 
might benefit the neuroblastoma patients. In this study we aimed to investigate 
whether MEK inhibitor alone or in combination with ALK inhibitors has 
therapeutic value in ALK positive neuroblastoma through evaluation of a large 
panel of NB cell lines. 

Effectiveness of the MEK inhibitor trametinib in neuroblastoma cell lines 
and xenograft models 

Recent studies have suggested that combined inhibition of ALK and MEK-
ERK pathway targets may be beneficial as a poly-therapy in ALK positive 
neuroblastoma patients. To address this, we initially treated a large panel of 
neuroblastoma cell lines with the MEK inhibitor trametinib and assessed the 
proliferation over 12 days. The RAS-MAPK pathway activated neuroblastoma 
cell lines (SKNBE (2) and SKNAS) were sensitive to trametinib treatment. 
However, ALK-positive neuroblastoma cell lines (CLB-BAR, CLB-GE, CLB-
GAR and Kelly) and p53 mutated cell lines (CLB-PE and SKNDZ) continued 
grow upon treatment with MEK inhibitor trametinib, indicating that trametinib 
treatment alone might not be beneficial for neuroblastoma patients. Further, to 
examine the effectiveness of trametinib in vivo, we injected human 
neuroblastoma cells (CLB-BAR, SKNAS) and EML4-ALK positive NSCLC 
cells (H3122) subcutaneously into BalbC/NUDE mice and treated with 
trametinib. Similar to in vitro assays RAS mutated and EML4-ALK positive 
NSCLC were sensitive to trametinib treatment, however tumor growth 
inhibition was not observed upon treatment of ALK addicted NB xenografts 
with trametinib. 

Previous work has suggested that combining MEK inhibitor with ALK 
inhibitors synergistically reduces EML4-ALK positive NSCLC cell 
proliferation and tumor growth. Therefore, we investigated whether 
combination of ALK and MEK inhibitors would synergistically reduce ALK 
positive neuroblastoma cell proliferation. To examine this, we treated CLB-
BAR and CLB-GE ALK positive NB cell lines with either lorlatinib alone or 
trametinib alone or a combination of both. Combination of lorlatinib and 
trametinib did not result in synergistic cell growth inhibition in ALK addicted 
NB cell lines when compared to single agent treatment. Taken together, our 
data indicates that treatment with trametinib alone or in combination does not 
offer additional benefit for ALK positive NB patients.  
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AKT pathway dependence in ALK positive neuroblastoma cell lines 

We next set to investigate the mechanisms underlying the lack of effectiveness 
of trametinib treatment in ALK positive neuroblastoma cell lines. Since 
previous work has indicated that PI3K/AKT/mTOR/ERK5 pathway is vital for 
the survival of ALK positive NB cells, we investigated the activity of the AKT 
signaling pathway in response to trametinib treatment. To address the role of 
the AKT signaling core, ALK positive neuroblastoma cell lines were treated 
with either trametinib or lorlatinib. Treatment with trametinib in ALK positive 
neuroblastoma cells led to a 2-fold increased phosphorylation levels of both 
AKT (S473) and ERK5, indicating the importance of AKT-ERK5 signaling 
core in ALK positive neuroblastoma cells. To further evaluate the dependence 
of the AKT-ERK5 signalling pathway, we treated ALK positive 
neuroblastoma cells with PI3K (BEZ 235) and ERK5 (XMD8-92) inhibitors 
and checked for increased activation of MAPK. As expected both PI3K and 
ERK5 inhibitors reduce the phosphorylation levels of AKT (S473) and ERK5 
and increased activation of MAPK was not observed. Altogether, our data 
reveal the importance of AKT-ERK5 signalling core in ALK positive 
neuroblastoma cells. 

To evaluate the importance of ALK signal in AKT ‘super-activation’, we 
employed the IMR-32 neuroblastoma cell line, which does not contain kinase 
domain mutations of ALK. We observed that stimulation of ALK in IMR-32 
cells with FAM150A led to the phosphorylation of both AKT (S473) and 
ERK5, but treatment with trametinib increased the phosphorylated levels of 
both AKT (S473) and ERK5 up-to 3- fold; supporting the involvement of ALK 
full length receptor in the increased activation of AKT signaling core. 

mTOR complex 2 drives the super-activation of AKT in ALK positive NB 
cells upon treatment with trametinib 

To examine whether increased activation of AKT is caused by reactivation of 
Receptor Tyrosine Kinase (RTK) signaling following MEK inhibition, ALK-
positive neuroblastoma cell lines were treated with trametinib and reactivation 
of RTKs was investigated using phospho-RTK array. However, treatment with 
trametinib in ALK-positive neuroblastoma cells was unable to show any 
significant reactivation of specific additional RTKs. Since RAS could interact 
with PI3K and enhance the AKT signaling, we treated ALK positive NB cells 
with trametinib and investigated the RAS-GTP levels. However, increase in 
RAS-GTP levels was not detected upon treatment with trametinib. Further, we 
also examined the lipid ratio of PIP3/PIP2 in ALK positive NB cells treated 
with trametinib. Similar to the RTK array and RAS-GTP assays, no decrease 
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or increase of the PIP3/PIP2 lipid ratio was observed, indicating that crosstalk 
between MAPK and AKT signaling pathways may be responsible for super-
activation of AKT signaling axis. 

Previously it has been shown that mTOR complexes are involved in many 
feedback mechanisms, ALK positive NB cells were treated with MEK 
inhibitor (trametinib), PI3K inhibitor (BEZ 235), mTORC1 & mTORC2 
inhibitor (AZD 8055) and mTORC1 inhibitor (everolimus). Both NVP-BEZ 
235 and AZD 8055 efficiently blocked the activation of AKT, critically we 
also found that blocking mTORC1 using everolimus also super-activate AKT 
similar to the treatment of trametinib, indicating another feedback mechanism 
via S6K- Rictor (T1135) dependent manner. Interestingly, we also found that 
super-activation of AKT (S473) following MEK inhibition is Rictor (T1135) 
independent.  Furthermore, combination of trametinib with PI3K or mTOR 
complex inhibitors abrogated the activation of AKT when compared to the 
combination of trametinib with mTORC1 inhibitor, suggesting the role of 
mTOR complex 2 in the increased activation of the AKT signaling axis in ALK 
positive neuroblastoma cell lines. To confirm the involvement of mTORC2 in 
super-activation of AKT signaling axis in ALK positive neuroblastoma cell 
lines, we inhibited mTORC2 activation using small interference RNA (siRNA) 
targeting Rictor. Compared with scrambled control siRNA, two independent 
Rictor siRNAs abrogated the phosphorylation of AKT (S473), whereas 
treatment with trametinib resulted in super-activation of AKT in scrambled 
siRNA, but not in Rictor siRNA treated ALK addicted NB cells. 

Targeting MEK-ERK signaling pathway super-activates AKT via Sin1 
T86 phosphorylation 

Our data thus far indicates that MEK-ERK pathway inhibition in ALK positive 
neuroblastoma cells super-activates AKT signaling axis via mTORC2 in a 
Rictor (T1135) independent manner. Since previous studies have indicated that 
Sin1 phosphorylation is important for mTORC2 kinase activity, we 
investigated Sin1 (T86) phosphorylation upon treatment with trametinib or 
SCH 772984 (ERK1/2 inhibitor) in ALK positive NB cells. We observed that 
Sin1 T86 phosphorylation was increased following MEK and ERK inhibition, 
whereas in combination with BEZ 235 super-activation of Sin1 T86 
phosphorylation was reduced when compared to MEK or ERK inhibitors 
alone. We also verified these results with small interference RNA (siRNA) 
targeting Sin1. We observed that ALK positive neuroblastoma cells in which 
Sin1 was knocked down showed a significant reduction in super-activation of 
AKT (S473) phosphorylation following MEK inhibition when compared to 
scrambled siRNA controls. 
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 Altogether, our data indicate that blocking MEK-ERK signaling pathway in 
ALK positive NB cells leads to an increased activation of AKT signaling axis 
via increased Sin1 T86 phosphorylation.  

     

 

Figure 24- Feedback activation in ALK positive neuroblastoma: A pictorial 
representation of different feedback activation in ALK positive neuroblastoma upon 
inhibition of its downstream targets. 
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4 CONCLUSION 
 

Paper I. 

• STAT3 was identified as an important target of ALK 
signaling. 
 

• Activated ALK phosphorylates STAT3 at Y705 in both PC12 
cells and neuroblastoma cell lines. 
 

• STAT3 activity is important for neuroblastoma cell 
proliferation. 
 

• Upon ALK activation STAT3 regulates the initiation of 
transcription of MYCN and may therefore be a potential 
therapeutic target in NB. 
 

Paper II. 

• ERK5 is a target of ALK signaling in neuroblastoma. 
 

• ALK activates ERK5 through a pathway mediated by PI3K, 
AKT and MEKK3. 
 

• ERK5 activity is important for initiation of transcription of 
MYCN in neuroblastoma. 
 

• Pharmacological or siRNA mediated abrogation of ERK5 
suppresses neuroblastoma cell proliferation and may 
therefore be a potential poly-therapy target in ALK positive 
NB. 
 

• Combination of ALK and ERK5 inhibitors synergistically 
reduce neuroblastoma cell proliferation. Therefore targeting 
ERK5 and ALK may be beneficial in NB patients. 
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Paper III. 

• Inhibition of MEK signaling was not effective in ALK 
positive neuroblastoma cell lines. 
 

• MEK inhibition in ALK positive NB cell lines leads to 
increased activation of AKT and ERK5. 
 

• Increased activation of AKT is mediated via the mTOR 
complex 2 protein SIN1. 
 

• Combination of ALK and MEK inhibitors does not 
synergistically reduce ALK positive NB cell proliferation. 

• Our results contraindicate use of MEK inhibitors as effective 
single and poly-therapeutic strategy in ALK-positive 
neuroblastoma. 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            

54 
 

ACKNOWLEDGEMENTS 
Welcome to the most read page of the thesis. 

First and foremost, I want to thank my supervisor Professor Bengt Hallberg 
for providing me this opportunity to work with him in this exciting field of 
ALK. Thanks for your encouraging words and coming along with me through 
every step of my PhD studies. Thanks for bearing me all these six years. I am 
not pretty sure that all PhD students will get freedom which you gave me, that 
made me to think and work independently. Despite of your busy schedule, 
thanks for having time for discussions, suggestions, manuscript preparation 
and more importantly giving suggestions for my future carrier. You are an 
amazing person with lot of energy. Certain quotes from you will remain with 
me wherever I go, Black is Black (western blotting), for ------- sake, connect 
with ALK, how is the cellssssssss, positive and negative controls, Running 
Gelssss, where is the Fikaaa and finally, love you my love (to Jennifer). 
Finally, a big thank you for having belief in me over these years.  Professor 
Ruth H. Palmer, also my co-supervisor and reviewer. Thanks for your 
valuable suggestions on my projects/presentation/manuscript and guiding me 
throughout my PhD studies. Your passion towards science is amazing, I am 
grateful that I had an opportunity to work in a project with you. I also admire 
the way of your thinking when it comes to critical experiments.  Thanks for 
your time and sharing your technical knowledge despite your very busy 
schedule. Bengt and Ruth, your dedication to science and the way you 
complement each other is your greatest strength, keep on going. THANKS. 

When I started out my Master thesis, I hardly had any technical experience in 
the field. I want to really thank Christina Schönherr and Rutan for 
introducing me to molecular biology techniques. Getting nicer western blots 
was not that easy until I met the ‘western guy’ Kamaraj. Thanks for your 
suggestions and being patient with me in my ups and downs throughout the 
stay in Umeå and also now. I learned quite a lot of things from you, 
especially the tasty briyani which you cook. I want to thank you from my 



                                                                                                                            

55 
 

bottom of heart the help you provided me during my worse phases.  Damini, 
my colleague and friend, we both started our studies together, when I look back 
those years we had quite a lot of fun filled memories. Thanks for your time, 
our chit chat, gossips and our teaching combo will stay with me forever. Thank 
you Abeer, for your critical suggestions and introducing me too the in vivo 
field, you’re an amazing person and I wish you all the success in your future 
endeavors. Barbara thanks for your time and suggestion during my ERK5 
paper. Thanks, Jiqui for sharing your technical experience and knowledge. 
Thanks for bearing me in the office cabin. I had a great experience working 
with you in several projects and thanks for your time. I wish you a great success 
in your future endeavors. Thanks Yasuo, when you’re around positive energy 
will be surrounded, thanks for sharing your technical knowledge. I wish you 
all success in your scientific carrier. Thanks Joachim, my student  I have 
seen your growth in last three years it’s amazing, I wish you all success in your 
PhD. Thanks Georg, for sharing your technical experience and your vital 
inputs during the project presentation and I always admire your passion 
towards science. Thanks Kathrin, for your fun chats and your critical 
suggestions during JC and project presentation. I wish you both all success in 
your future endeavors. Thanks Diana, for your ‘jokes’ which will remain in 
my memory wherever I go. You are the one who I have annoyed the most in 
the lab, thanks for that freedom which you gave me.   Thank you, Asha my 
fellow Indian friend  in the lab. You are very kind and nice person, it was 
always nice talking to you. I wish you all success in your PhD. Thanks Dan, 
for your help during the mice experiments and it always nice talking to you. 
Also, not allowing us to lift heavy things. Wasi, Ezgi, Martin and Maite 
thanks for your suggestions during journal club and project presentations and 
for the fika. Overall, it was an amazing experience in both the labs, once 
again thank you all. 

Professor Tommy Martinsson, also my co-supervisor, thanks for your 
collaboration and critical suggestions throughout my PhD studies 



                                                                                                                            

56 
 

Thanks Professor Anne Uv, for your time and helping us to set up the lab in 
Gothenburg, it was helpful for us when we initially came in. It was always fun 
when you’re around. 

I want to thank all my collaborators for their vital inputs in my manuscript, 
Mikeal Johansson, Sameul, Louis Chesler, Nathanael S. Gray and Per 
Kogner. A special thanks to Per Kogner. I also want to thank my funding 
agencies- barncancerfonden, Assar Gabrielssons Fond, Albertska 
Forskningsstiftelsen for supporting my projects. 

Edvin and Chinmay, my best buddies back in Umeå and now as well. 
Thanks for the wonderful late evening parties, gossips, food, badminton and 
also memory game. It’s always nice speaking to you guys and I wish you all 
success in your future scientific carriers. Radha, Geetanjali, Swarupa, 
Vivek, Saravana, Fazil, Brijesh, Vimal, thanks for your memories during my 
stay in Umeå.  

Thuccani family (Anna, Gayu, Meenamma, Hari-the ten pack boy, Joey), you 
are the main reason that we are staying in Gothenburg so long. Your 
encouraging words and your support to us was vital for our carrier which will 
remain in our memory forever. Thanks for the lovely time you provided us, 
especially the late evening chit chat, gossips, games, tasty food, parties and 
also introducing us to the ‘gothenburg nanbargal group’ which made us feel 
like home. Nanbare (Netaji -the photographer, komagal,Yuma), I want to 
thank you for the memories which you gave me was truly amazing. I remember 
the day we met for the first time, you’re the same lovely person till now. Lidl 
family (Vaide-Yummy, Rev-always right, chella kuty-coming soon), Cake 
family (Hermus-silent killer, Steffi-pasamana thangachi, Hayren-car boy), 
IKEA family (Arun-my fellow counter, Sasi-one and only universal cop, 
Advaith-little hero), Pravin family (Pravin-buisness kantham, Selva-cinema 
kantham, Sunil-Phone kantham, Suriya-FB live kantham, Siva-car 
kantham)thanks for your lovely moments, late night gossips, chit chat, games, 
cake, food, parties and end of the day we had only fun. Lakshmi, 



                                                                                                                            

57 
 

Marimuthu Anna, Anand, Grace, Raji, Vettri, Brindha, Ashwin, 
Kasthuri, Rajesh, Subazini, Ashok, Sravani, Murali, Narthana, thanks for 
your time and for your wonderful moments. Thanks, Vignesh ji, my friend, we 
had a quiet a lot of funny movie discussions and also some scientific 
discussions, it was always nice speaking to you. Thanks, Priya and Taral- 
machan, my friends, who shared many fun filled moments during these years. 

I want to specially thank Radhakrishnan, Dhanalakshmi, 
Santhanakrishnan, Meera Bai, for their love and affection which they have 
given me in the past, you are always special. I also want to thank,  
Mohanakrishnan family, Chinnikrishnan family, Padhu family, Periya 
atthai family, Rukumani family, Bommi atthai family, Chandar family, 
Suresh family, Ashok family, Jaikumar family and Murali Mohan Vittal 
family for their memories. I also want to thank Dr.Srinivasan family and 
Nandagopal family for their love and support they shown these years, 
especially nandagopal sir for your contribution during my school days. 

Last but not the least, my family (Appa dei, Mummy, Papa, Appu, Ramu), 
you people are my strength. You people always supported me in critical 
situations and who kept belief in me all these years.  Without your love and 
support, I would have not reached this stage. Especially Mummy you are 
amazing, you are such a gem of a person, I am really very lucky. The struggle 
which you went in my earlier stages was unexplainable. You always supported 
my decisions and sacrificed lot of things only for me. Finally, love you my 
love. 

 



                                                                                                                            

58 
 

REFERENCES 
1. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 

100(1): p. 57-70. 
2. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next 

generation. Cell, 2011. 144(5): p. 646-74. 
3. Green, D.R., Means to an end : apoptosis and other cell death 

mechanisms. 2011, Cold Spring Harbor, N.Y.: Cold Spring Harbor 
Laboratory Press. 

4. Croce, C.M., Oncogenes and cancer. N Engl J Med, 2008. 358(5): p. 
502-11. 

5. Rous, P., A Sarcoma of the Fowl Transmissible by an Agent Separable 
from the Tumor Cells. J Exp Med, 1911. 13(4): p. 397-411. 

6. Rubin, H., Quantitative relations between causative virus and cell in 
the Rous no. 1 chicken sarcoma. Virology, 1955. 1(5): p. 445-73. 

7. Rubin, H. and H.M. Temin, Infection with the Rous sarcoma virus in 
vitro. Fed Proc, 1958. 17(4): p. 994-1003. 

8. Martin, G.S., Rous sarcoma virus: a function required for the 
maintenance of the transformed state. Nature, 1970. 227(5262): p. 
1021-3. 

9. Czernilofsky, A.P., et al., Corrections to the nucleotide sequence of 
the src gene of Rous sarcoma virus. Nature, 1983. 301(5902): p. 736-
8. 

10. Martin, G.S., The hunting of the Src. Nat Rev Mol Cell Biol, 2001. 
2(6): p. 467-75. 

11. Bishop, J.M., Molecular themes in oncogenesis. Cell, 1991. 64(2): p. 
235-48. 

12. Weinberg, R.A., Oncogenes and tumor suppressor genes. CA Cancer 
J Clin, 1994. 44(3): p. 160-70. 

13. Dyson, N. and A. Balmain, Oncogenes and cell proliferation. Curr 
Opin Genet Dev, 1999. 9(1): p. 11-4. 

14. Todd, R. and D.T. Wong, Oncogenes. Anticancer Res, 1999. 19(6A): 
p. 4729-46. 

15. Wong-Staal, F., et al., The v-sis transforming gene of simian sarcoma 
virus is a new onc gene of primate origin. Nature, 1981. 294(5838): p. 
273-5. 

16. McGrath, J.P., et al., Structure and organization of the human Ki-ras 
proto-oncogene and a related processed pseudogene. Nature, 1983. 
304(5926): p. 501-6. 

17. Shimizu, K., et al., Isolation and preliminary characterization of the 
transforming gene of a human neuroblastoma cell line. Proc Natl Acad 
Sci U S A, 1983. 80(2): p. 383-7. 



                                                                                                                            

59 
 

18. Parker, L.A., et al., Clinical validity of detecting K-ras mutations for 
the diagnosis of exocrine pancreatic cancer: a prospective study in a 
clinically-relevant spectrum of patients. Eur J Epidemiol, 2011. 26(3): 
p. 229-36. 

19. Bos, J.L., ras oncogenes in human cancer: a review. Cancer Res, 
1989. 49(17): p. 4682-9. 

20. Jiang, W., et al., Rapid detection of ras oncogenes in human tumors: 
applications to colon, esophageal, and gastric cancer. Oncogene, 
1989. 4(7): p. 923-8. 

21. Tabin, C.J., et al., Mechanism of activation of a human oncogene. 
Nature, 1982. 300(5888): p. 143-9. 

22. Marshall, C.J., A. Hall, and R.A. Weiss, A transforming gene present 
in human sarcoma cell lines. Nature, 1982. 299(5879): p. 171-3. 

23. Weinberg, R.A., The biology of cancer. 2007, New York ; London: 
Garland Science. 

24. Wittinghofer, A. and N. Nassar, How Ras-related proteins talk to their 
effectors. Trends Biochem Sci, 1996. 21(12): p. 488-91. 

25. Kolch, W., et al., Raf-1 protein kinase is required for growth of 
induced NIH/3T3 cells. Nature, 1991. 349(6308): p. 426-8. 

26. Troppmair, J., et al., Ras controls coupling of growth factor receptors 
and protein kinase C in the membrane to Raf-1 and B-Raf protein 
serine kinases in the cytosol. Oncogene, 1992. 7(9): p. 1867-73. 

27. Kolch, W., et al., Protein kinase C alpha activates RAF-1 by direct 
phosphorylation. Nature, 1993. 364(6434): p. 249-52. 

28. Yang, J.J., et al., ZAK inhibits human lung cancer cell growth via ERK 
and JNK activation in an AP-1-dependent manner. Cancer Sci, 2010. 
101(6): p. 1374-81. 

29. Morris, E.J., et al., Discovery of a novel ERK inhibitor with activity in 
models of acquired resistance to BRAF and MEK inhibitors. Cancer 
Discov, 2013. 3(7): p. 742-50. 

30. Gilmartin, A.G., et al., GSK1120212 (JTP-74057) is an inhibitor of 
MEK activity and activation with favorable pharmacokinetic 
properties for sustained in vivo pathway inhibition. Clin Cancer Res, 
2011. 17(5): p. 989-1000. 

31. Dong, Q., et al., Discovery of TAK-733, a potent and selective MEK 
allosteric site inhibitor for the treatment of cancer. Bioorg Med Chem 
Lett, 2011. 21(5): p. 1315-9. 

32. Turke, A.B., et al., MEK inhibition leads to PI3K/AKT activation by 
relieving a negative feedback on ERBB receptors. Cancer Res, 2012. 
72(13): p. 3228-37. 

33. Knudson, A.G., Jr., Mutation and cancer: statistical study of 
retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3. 



                                                                                                                            

60 
 

34. Dunn, J.M., et al., Identification of germline and somatic mutations 
affecting the retinoblastoma gene. Science, 1988. 241(4874): p. 1797-
800. 

35. Goddard, A.D., et al., Infrequent genomic rearrangement and normal 
expression of the putative RB1 gene in retinoblastoma tumors. Mol 
Cell Biol, 1988. 8(5): p. 2082-8. 

36. Sherr, C.J. and F. McCormick, The RB and p53 pathways in cancer. 
Cancer Cell, 2002. 2(2): p. 103-12. 

37. Liu, H., et al., New roles for the RB tumor suppressor protein. Curr 
Opin Genet Dev, 2004. 14(1): p. 55-64. 

38. Levine, A.J., J. Momand, and C.A. Finlay, The p53 tumour suppressor 
gene. Nature, 1991. 351(6326): p. 453-6. 

39. Matlashewski, G., et al., Isolation and characterization of a human 
p53 cDNA clone: expression of the human p53 gene. EMBO J, 1984. 
3(13): p. 3257-62. 

40. Komarov, P.G., et al., A chemical inhibitor of p53 that protects mice 
from the side effects of cancer therapy. Science, 1999. 285(5434): p. 
1733-7. 

41. McCormick, F., Cancer gene therapy: fringe or cutting edge? Nat Rev 
Cancer, 2001. 1(2): p. 130-41. 

42. Lane, D.P. and S. Lain, Therapeutic exploitation of the p53 pathway. 
Trends Mol Med, 2002. 8(4 Suppl): p. S38-42. 

43. Foster, B.A., et al., Pharmacological rescue of mutant p53 
conformation and function. Science, 1999. 286(5449): p. 2507-10. 

44. Bottger, A., et al., Molecular characterization of the hdm2-p53 
interaction. J Mol Biol, 1997. 269(5): p. 744-56. 

45. Bottger, A., et al., Design of a synthetic Mdm2-binding mini protein 
that activates the p53 response in vivo. Curr Biol, 1997. 7(11): p. 860-
9. 

46. Krueger, K.E. and S. Srivastava, Posttranslational protein 
modifications: current implications for cancer detection, prevention, 
and therapeutics. Mol Cell Proteomics, 2006. 5(10): p. 1799-810. 

47. Alberts, B., J.H. Wilson, and T. Hunt, Molecular biology of the cell. 
5th ed., Reference ed. ed. 2008, New York, N.Y. ; Abingdon: Garland 
Science. 

48. Hunter, T., The age of crosstalk: phosphorylation, ubiquitination, and 
beyond. Mol Cell, 2007. 28(5): p. 730-8. 

49. Walsh, C., Posttranslational modification of proteins : expanding 
nature's inventory. 2006, Eaglewood, Colorado: Roberts and Co. ; 
[Bloxham : Scion, distributor]. 

50. Sadoul, K., et al., Regulation of protein turnover by acetyltransferases 
and deacetylases. Biochimie, 2008. 90(2): p. 306-12. 



                                                                                                                            

61 
 

51. Glozak, M.A., et al., Acetylation and deacetylation of non-histone 
proteins. Gene, 2005. 363: p. 15-23. 

52. Spange, S., et al., Acetylation of non-histone proteins modulates 
cellular signalling at multiple levels. Int J Biochem Cell Biol, 2009. 
41(1): p. 185-98. 

53. Kaypee, S., et al., Aberrant lysine acetylation in tumorigenesis: 
Implications in the development of therapeutics. Pharmacol Ther, 
2016. 162: p. 98-119. 

54. Christiansen, M.N., et al., Cell surface protein glycosylation in cancer. 
Proteomics, 2014. 14(4-5): p. 525-46. 

55. Dube, D.H. and C.R. Bertozzi, Glycans in cancer and inflammation--
potential for therapeutics and diagnostics. Nat Rev Drug Discov, 
2005. 4(6): p. 477-88. 

56. Wei, T., et al., The role of N-acetylglucosaminyltransferases V in the 
malignancy of human hepatocellular carcinoma. Exp Mol Pathol, 
2012. 93(1): p. 8-17. 

57. Julien, S., et al., Selectin ligand sialyl-Lewis x antigen drives 
metastasis of hormone-dependent breast cancers. Cancer Res, 2011. 
71(24): p. 7683-93. 

58. Kim, Y.S., et al., Overexpression and beta-1,6-N-
acetylglucosaminylation-initiated aberrant glycosylation of TIMP-1: 
a "double whammy" strategy in colon cancer progression. J Biol 
Chem, 2012. 287(39): p. 32467-78. 

59. Hoja-Lukowicz, D., et al., L1CAM from human melanoma carries a 
novel type of N-glycan with Galbeta1-4Galbeta1- motif. Involvement 
of N-linked glycans in migratory and invasive behaviour of melanoma 
cells. Glycoconj J, 2013. 30(3): p. 205-25. 

60. Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome 
proteolytic pathway: destruction for the sake of construction. Physiol 
Rev, 2002. 82(2): p. 373-428. 

61. Mukhopadhyay, D. and H. Riezman, Proteasome-independent 
functions of ubiquitin in endocytosis and signaling. Science, 2007. 
315(5809): p. 201-5. 

62. Schnell, J.D. and L. Hicke, Non-traditional functions of ubiquitin and 
ubiquitin-binding proteins. J Biol Chem, 2003. 278(38): p. 35857-60. 

63. Cohen, P., The regulation of protein function by multisite 
phosphorylation--a 25 year update. Trends Biochem Sci, 2000. 
25(12): p. 596-601. 

64. Johnson, S.A. and T. Hunter, Kinomics: methods for deciphering the 
kinome. Nat Methods, 2005. 2(1): p. 17-25. 

65. Manning, G., et al., The protein kinase complement of the human 
genome. Science, 2002. 298(5600): p. 1912-34. 



                                                                                                                            

62 
 

66. Cohen, P., The role of protein phosphorylation in human health and 
disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem, 2001. 
268(19): p. 5001-10. 

67. Ashman, K. and E.L. Villar, Phosphoproteomics and cancer research. 
Clin Transl Oncol, 2009. 11(6): p. 356-62. 

68. Harsha, H.C. and A. Pandey, Phosphoproteomics in cancer. Mol 
Oncol, 2010. 4(6): p. 482-95. 

69. Hochgrafe, F., et al., Tyrosine phosphorylation profiling reveals the 
signaling network characteristics of Basal breast cancer cells. Cancer 
Res, 2010. 70(22): p. 9391-401. 

70. Machida, K., et al., Characterizing tyrosine phosphorylation signaling 
in lung cancer using SH2 profiling. PLoS One, 2010. 5(10): p. e13470. 

71. Reimand, J., O. Wagih, and G.D. Bader, The mutational landscape of 
phosphorylation signaling in cancer. Sci Rep, 2013. 3: p. 2651. 

72. Hunter, T., A thousand and one protein kinases. Cell, 1987. 50(6): p. 
823-9. 

73. Hunter, T., The role of tyrosine phosphorylation in cell growth and 
disease. Harvey Lect, 1998. 94: p. 81-119. 

74. Hunter, T., The Croonian Lecture 1997. The phosphorylation of 
proteins on tyrosine: its role in cell growth and disease. Philos Trans 
R Soc Lond B Biol Sci, 1998. 353(1368): p. 583-605. 

75. Robinson, D.R., Y.M. Wu, and S.F. Lin, The protein tyrosine kinase 
family of the human genome. Oncogene, 2000. 19(49): p. 5548-57. 

76. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor 
tyrosine kinases. Cell, 2010. 141(7): p. 1117-34. 

77. Schlessinger, J., Cell signaling by receptor tyrosine kinases. Cell, 
2000. 103(2): p. 211-25. 

78. Hanks, S.K., A.M. Quinn, and T. Hunter, The protein kinase family: 
conserved features and deduced phylogeny of the catalytic domains. 
Science, 1988. 241(4861): p. 42-52. 

79. Schlessinger, J., Signal transduction by allosteric receptor 
oligomerization. Trends Biochem Sci, 1988. 13(11): p. 443-7. 

80. Schlessinger, J., et al., Signal transduction by epidermal growth factor 
receptor. Cold Spring Harb Symp Quant Biol, 1988. 53 Pt 1: p. 515-
9. 

81. Jiang, G. and T. Hunter, Receptor signaling: when dimerization is not 
enough. Curr Biol, 1999. 9(15): p. R568-71. 

82. Blume-Jensen, P. and T. Hunter, Oncogenic kinase signalling. Nature, 
2001. 411(6835): p. 355-65. 

83. Ullrich, A. and J. Schlessinger, Signal transduction by receptors with 
tyrosine kinase activity. Cell, 1990. 61(2): p. 203-12. 



                                                                                                                            

63 
 

84. Shawver, L.K., D. Slamon, and A. Ullrich, Smart drugs: tyrosine 
kinase inhibitors in cancer therapy. Cancer Cell, 2002. 1(2): p. 117-
23. 

85. Debiec-Rychter, M., et al., KIT mutations and dose selection for 
imatinib in patients with advanced gastrointestinal stromal tumours. 
Eur J Cancer, 2006. 42(8): p. 1093-103. 

86. Arora, A. and E.M. Scholar, Role of tyrosine kinase inhibitors in 
cancer therapy. J Pharmacol Exp Ther, 2005. 315(3): p. 971-9. 

87. Thomas, S.M. and J.R. Grandis, Pharmacokinetic and 
pharmacodynamic properties of EGFR inhibitors under clinical 
investigation. Cancer Treat Rev, 2004. 30(3): p. 255-68. 

88. Moyer, J.D., et al., Induction of apoptosis and cell cycle arrest by CP-
358,774, an inhibitor of epidermal growth factor receptor tyrosine 
kinase. Cancer Res, 1997. 57(21): p. 4838-48. 

89. Rusnak, D.W., et al., The effects of the novel, reversible epidermal 
growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on 
the growth of human normal and tumor-derived cell lines in vitro and 
in vivo. Mol Cancer Ther, 2001. 1(2): p. 85-94. 

90. Mendel, D.B., et al., Development of SU5416, a selective small 
molecule inhibitor of VEGF receptor tyrosine kinase activity, as an 
anti-angiogenesis agent. Anticancer Drug Des, 2000. 15(1): p. 29-41. 

91. Yang, J.C., et al., Afatinib versus cisplatin-based chemotherapy for 
EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and 
LUX-Lung 6): analysis of overall survival data from two randomised, 
phase 3 trials. Lancet Oncol, 2015. 16(2): p. 141-51. 

92. Christensen, J.G., et al., Cytoreductive antitumor activity of PF-
2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, 
in experimental models of anaplastic large-cell lymphoma. Mol 
Cancer Ther, 2007. 6(12 Pt 1): p. 3314-22. 

93. Zou, H.Y., et al., An orally available small-molecule inhibitor of c-
Met, PF-2341066, exhibits cytoreductive antitumor efficacy through 
antiproliferative and antiangiogenic mechanisms. Cancer Res, 2007. 
67(9): p. 4408-17. 

94. Demetri, G.D., et al., Efficacy and safety of sunitinib in patients with 
advanced gastrointestinal stromal tumour after failure of imatinib: a 
randomised controlled trial. Lancet, 2006. 368(9544): p. 1329-38. 

95. Posner, I., et al., Kinetics of inhibition by tyrphostins of the tyrosine 
kinase activity of the epidermal growth factor receptor and analysis 
by a new computer program. Mol Pharmacol, 1994. 45(4): p. 673-83. 

96. Morris, S.W., et al., Fusion of a kinase gene, ALK, to a nucleolar 
protein gene, NPM, in non-Hodgkin's lymphoma. Science, 1994. 
263(5151): p. 1281-4. 



                                                                                                                            

64 
 

97. Shiota, M., et al., Hyperphosphorylation of a novel 80 kDa protein-
tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, 
AMS3. Oncogene, 1994. 9(6): p. 1567-74. 

98. Iwahara, T., et al., Molecular characterization of ALK, a receptor 
tyrosine kinase expressed specifically in the nervous system. 
Oncogene, 1997. 14(4): p. 439-49. 

99. Morris, S.W., et al., ALK, the chromosome 2 gene locus altered by the 
t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor 
tyrosine kinase that is highly related to leukocyte tyrosine kinase 
(LTK). Oncogene, 1997. 14(18): p. 2175-88. 

100. Loren, C.E., et al., Identification and characterization of DAlk: a novel 
Drosophila melanogaster RTK which drives ERK activation in vivo. 
Genes Cells, 2001. 6(6): p. 531-44. 

101. Stoica, G.E., et al., Identification of anaplastic lymphoma kinase as a 
receptor for the growth factor pleiotrophin. J Biol Chem, 2001. 
276(20): p. 16772-9. 

102. Hallberg, B. and R.H. Palmer, The role of the ALK receptor in cancer 
biology. Ann Oncol, 2016. 27 Suppl 3: p. iii4-iii15. 

103. Moog-Lutz, C., et al., Activation and inhibition of anaplastic 
lymphoma kinase receptor tyrosine kinase by monoclonal antibodies 
and absence of agonist activity of pleiotrophin. J Biol Chem, 2005. 
280(28): p. 26039-48. 

104. Bossi, R.T., et al., Crystal structures of anaplastic lymphoma kinase 
in complex with ATP competitive inhibitors. Biochemistry, 2010. 
49(32): p. 6813-25. 

105. Kornev, A.P. and S.S. Taylor, Defining the conserved internal 
architecture of a protein kinase. Biochim Biophys Acta, 2010. 
1804(3): p. 440-4. 

106. Lee, C.C., et al., Crystal structure of the ALK (anaplastic lymphoma 
kinase) catalytic domain. Biochem J, 2010. 430(3): p. 425-37. 

107. Kornev, A.P., S.S. Taylor, and L.F. Ten Eyck, A helix scaffold for the 
assembly of active protein kinases. Proc Natl Acad Sci U S A, 2008. 
105(38): p. 14377-82. 

108. Taylor, S.S. and A.P. Kornev, Protein kinases: evolution of dynamic 
regulatory proteins. Trends Biochem Sci, 2011. 36(2): p. 65-77. 

109. Loren, C.E., et al., A crucial role for the Anaplastic lymphoma kinase 
receptor tyrosine kinase in gut development in Drosophila 
melanogaster. EMBO Rep, 2003. 4(8): p. 781-6. 

110. Englund, C., et al., Jeb signals through the Alk receptor tyrosine 
kinase to drive visceral muscle fusion. Nature, 2003. 425(6957): p. 
512-6. 



                                                                                                                            

65 
 

111. Lee, H.H., et al., Jelly belly protein activates the receptor tyrosine 
kinase Alk to specify visceral muscle pioneers. Nature, 2003. 
425(6957): p. 507-12. 

112. Stute, C., et al., Myoblast determination in the somatic and visceral 
mesoderm depends on Notch signalling as well as on 
milliways(mili(Alk)) as receptor for Jeb signalling. Development, 
2004. 131(4): p. 743-54. 

113. Varshney, G.K. and R.H. Palmer, The bHLH transcription factor 
Hand is regulated by Alk in the Drosophila embryonic gut. Biochem 
Biophys Res Commun, 2006. 351(4): p. 839-46. 

114. Shirinian, M., et al., Drosophila Anaplastic Lymphoma Kinase 
regulates Dpp signalling in the developing embryonic gut. 
Differentiation, 2007. 75(5): p. 418-26. 

115. Bazigou, E., et al., Anterograde Jelly belly and Alk receptor tyrosine 
kinase signaling mediates retinal axon targeting in Drosophila. Cell, 
2007. 128(5): p. 961-75. 

116. Rohrbough, J. and K. Broadie, Anterograde Jelly belly ligand to Alk 
receptor signaling at developing synapses is regulated by Mind the 
gap. Development, 2010. 137(20): p. 3523-33. 

117. Cheng, L.Y., et al., Anaplastic lymphoma kinase spares organ growth 
during nutrient restriction in Drosophila. Cell, 2011. 146(3): p. 435-
47. 

118. Gouzi, J.Y., et al., The receptor tyrosine kinase Alk controls 
neurofibromin functions in Drosophila growth and learning. PLoS 
Genet, 2011. 7(9): p. e1002281. 

119. Bai, L. and A. Sehgal, Anaplastic Lymphoma Kinase Acts in the 
Drosophila Mushroom Body to Negatively Regulate Sleep. PLoS 
Genet, 2015. 11(11): p. e1005611. 

120. Liao, E.H., et al., An SCF-like ubiquitin ligase complex that controls 
presynaptic differentiation. Nature, 2004. 430(6997): p. 345-50. 

121. Inoue, T. and J.H. Thomas, Suppressors of transforming growth 
factor-beta pathway mutants in the Caenorhabditis elegans dauer 
formation pathway. Genetics, 2000. 156(3): p. 1035-46. 

122. Inoue, T. and J.H. Thomas, Targets of TGF-beta signaling in 
Caenorhabditis elegans dauer formation. Dev Biol, 2000. 217(1): p. 
192-204. 

123. Ishihara, T., et al., HEN-1, a secretory protein with an LDL receptor 
motif, regulates sensory integration and learning in Caenorhabditis 
elegans. Cell, 2002. 109(5): p. 639-49. 

124. Shinkai, Y., et al., Behavioral choice between conflicting alternatives 
is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor 
tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis 
elegans. J Neurosci, 2011. 31(8): p. 3007-15. 



                                                                                                                            

66 
 

125. Yao, S., et al., Anaplastic lymphoma kinase is required for 
neurogenesis in the developing central nervous system of zebrafish. 
PLoS One, 2013. 8(5): p. e63757. 

126. Lopes, S.S., et al., Leukocyte tyrosine kinase functions in pigment cell 
development. PLoS Genet, 2008. 4(3): p. e1000026. 

127. Fadeev, A., et al., Zebrafish Leucocyte tyrosine kinase controls 
iridophore establishment, proliferation and survival. Pigment Cell 
Melanoma Res, 2016. 29(3): p. 284-96. 

128. Zhu, S., et al., Activated ALK collaborates with MYCN in 
neuroblastoma pathogenesis. Cancer Cell, 2012. 21(3): p. 362-73. 

129. Vernersson, E., et al., Characterization of the expression of the ALK 
receptor tyrosine kinase in mice. Gene Expr Patterns, 2006. 6(5): p. 
448-61. 

130. Pulford, K., et al., Detection of anaplastic lymphoma kinase (ALK) and 
nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and 
neoplastic cells with the monoclonal antibody ALK1. Blood, 1997. 
89(4): p. 1394-404. 

131. Pulford, K., S.W. Morris, and F. Turturro, Anaplastic lymphoma 
kinase proteins in growth control and cancer. J Cell Physiol, 2004. 
199(3): p. 330-58. 

132. Bilsland, J.G., et al., Behavioral and neurochemical alterations in 
mice deficient in anaplastic lymphoma kinase suggest therapeutic 
potential for psychiatric indications. Neuropsychopharmacology, 
2008. 33(3): p. 685-700. 

133. Weiss, J.B., et al., Anaplastic lymphoma kinase and leukocyte tyrosine 
kinase: functions and genetic interactions in learning, memory and 
adult neurogenesis. Pharmacol Biochem Behav, 2012. 100(3): p. 566-
74. 

134. Witek, B., et al., Targeted Disruption of ALK Reveals a Potential Role 
in Hypogonadotropic Hypogonadism. PLoS One, 2015. 10(5): p. 
e0123542. 

135. Weickhardt, A.J., et al., Symptomatic reduction in free testosterone 
levels secondary to crizotinib use in male cancer patients. Cancer, 
2013. 119(13): p. 2383-90. 

136. Weickhardt, A.J., et al., Rapid-onset hypogonadism secondary to 
crizotinib use in men with metastatic nonsmall cell lung cancer. 
Cancer, 2012. 118(21): p. 5302-9. 

137. Zhang, H., et al., Deorphanization of the human leukocyte tyrosine 
kinase (LTK) receptor by a signaling screen of the extracellular 
proteome. Proc Natl Acad Sci U S A, 2014. 111(44): p. 15741-5. 

138. Guan, J., et al., FAM150A and FAM150B are activating ligands for 
anaplastic lymphoma kinase. Elife, 2015. 4: p. e09811. 



                                                                                                                            

67 
 

139. Reshetnyak, A.V., et al., Augmentor alpha and beta (FAM150) are 
ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and 
specificity of ligand-receptor interactions. Proc Natl Acad Sci U S A, 
2015. 112(52): p. 15862-7. 

140. Gray, K.A., et al., Genenames.org: the HGNC resources in 2015. 
Nucleic Acids Res, 2015. 43(Database issue): p. D1079-85. 

141. Murray, P.B., et al., Heparin is an activating ligand of the orphan 
receptor tyrosine kinase ALK. Sci Signal, 2015. 8(360): p. ra6. 

142. Stoica, G.E., et al., Midkine binds to anaplastic lymphoma kinase 
(ALK) and acts as a growth factor for different cell types. J Biol Chem, 
2002. 277(39): p. 35990-8. 

143. Powers, C., et al., Pleiotrophin signaling through anaplastic 
lymphoma kinase is rate-limiting for glioblastoma growth. J Biol 
Chem, 2002. 277(16): p. 14153-8. 

144. Kuo, A.H., et al., Recruitment of insulin receptor substrate-1 and 
activation of NF-kappaB essential for midkine growth signaling 
through anaplastic lymphoma kinase. Oncogene, 2007. 26(6): p. 859-
69. 

145. Lu, K.V., et al., Differential induction of glioblastoma migration and 
growth by two forms of pleiotrophin. J Biol Chem, 2005. 280(29): p. 
26953-64. 

146. Motegi, A., et al., ALK receptor tyrosine kinase promotes cell growth 
and neurite outgrowth. J Cell Sci, 2004. 117(Pt 15): p. 3319-29. 

147. Dirks, W.G., et al., Expression and functional analysis of the 
anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int J 
Cancer, 2002. 100(1): p. 49-56. 

148. Mathivet, T., P. Mazot, and M. Vigny, In contrast to agonist 
monoclonal antibodies, both C-terminal truncated form and full length 
form of Pleiotrophin failed to activate vertebrate ALK (anaplastic 
lymphoma kinase)? Cell Signal, 2007. 19(12): p. 2434-43. 

149. Hilger, R.A., M.E. Scheulen, and D. Strumberg, The Ras-Raf-MEK-
ERK pathway in the treatment of cancer. Onkologie, 2002. 25(6): p. 
511-8. 

150. Nishida, E. and Y. Gotoh, The MAP kinase cascade is essential for 
diverse signal transduction pathways. Trends Biochem Sci, 1993. 
18(4): p. 128-31. 

151. Cobb, M.H. and E.J. Goldsmith, How MAP kinases are regulated. J 
Biol Chem, 1995. 270(25): p. 14843-6. 

152. Seger, R. and E.G. Krebs, The MAPK signaling cascade. FASEB J, 
1995. 9(9): p. 726-35. 

153. Hoshino, R., et al., Constitutive activation of the 41-/43-kDa mitogen-
activated protein kinase signaling pathway in human tumors. 
Oncogene, 1999. 18(3): p. 813-22. 



                                                                                                                            

68 
 

154. Avruch, J., X.F. Zhang, and J.M. Kyriakis, Raf meets Ras: completing 
the framework of a signal transduction pathway. Trends Biochem Sci, 
1994. 19(7): p. 279-83. 

155. Crockett, D.K., et al., Identification of NPM-ALK interacting proteins 
by tandem mass spectrometry. Oncogene, 2004. 23(15): p. 2617-29. 

156. Fujimoto, J., et al., Characterization of the transforming activity of 
p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with 
chromosomal translocation t(2;5). Proc Natl Acad Sci U S A, 1996. 
93(9): p. 4181-6. 

157. Riera, L., et al., Involvement of Grb2 adaptor protein in 
nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-mediated 
signaling and anaplastic large cell lymphoma growth. J Biol Chem, 
2010. 285(34): p. 26441-50. 

158. Degoutin, J., M. Vigny, and J.Y. Gouzi, ALK activation induces Shc 
and FRS2 recruitment: Signaling and phenotypic outcomes in PC12 
cells differentiation. FEBS Lett, 2007. 581(4): p. 727-34. 

159. Staber, P.B., et al., The oncoprotein NPM-ALK of anaplastic large-
cell lymphoma induces JUNB transcription via ERK1/2 and JunB 
translation via mTOR signaling. Blood, 2007. 110(9): p. 3374-83. 

160. Marzec, M., et al., Oncogenic tyrosine kinase NPM/ALK induces 
activation of the MEK/ERK signaling pathway independently of c-Raf. 
Oncogene, 2007. 26(6): p. 813-21. 

161. Lim, M.S., et al., The proteomic signature of NPM/ALK reveals 
deregulation of multiple cellular pathways. Blood, 2009. 114(8): p. 
1585-95. 

162. Hrustanovic, G. and T.G. Bivona, RAS-MAPK signaling influences the 
efficacy of ALK-targeting agents in lung cancer. Mol Cell Oncol, 
2016. 3(2): p. e1091061. 

163. Hrustanovic, G., et al., RAS-MAPK dependence underlies a rational 
polytherapy strategy in EML4-ALK-positive lung cancer. Nat Med, 
2015. 21(9): p. 1038-47. 

164. Eleveld, T.F., et al., Relapsed neuroblastomas show frequent RAS-
MAPK pathway mutations. Nat Genet, 2015. 47(8): p. 864-71. 

165. Ruwanpura, S.M., et al., IL-6/Stat3-driven pulmonary inflammation, 
but not emphysema, is dependent on interleukin-17A in mice. 
Respirology, 2014. 19(3): p. 419-27. 

166. Hebenstreit, D., J. Horejs-Hoeck, and A. Duschl, JAK/STAT-
dependent gene regulation by cytokines. Drug News Perspect, 2005. 
18(4): p. 243-9. 

167. Igaz, P., S. Toth, and A. Falus, Biological and clinical significance of 
the JAK-STAT pathway; lessons from knockout mice. Inflamm Res, 
2001. 50(9): p. 435-41. 



                                                                                                                            

69 
 

168. O'Shea, J.J., M. Gadina, and R.D. Schreiber, Cytokine signaling in 
2002: new surprises in the Jak/Stat pathway. Cell, 2002. 109 Suppl: 
p. S121-31. 

169. Aaronson, D.S. and C.M. Horvath, A road map for those who don't 
know JAK-STAT. Science, 2002. 296(5573): p. 1653-5. 

170. Kisseleva, T., et al., Signaling through the JAK/STAT pathway, recent 
advances and future challenges. Gene, 2002. 285(1-2): p. 1-24. 

171. Rawlings, J.S., K.M. Rosler, and D.A. Harrison, The JAK/STAT 
signaling pathway. J Cell Sci, 2004. 117(Pt 8): p. 1281-3. 

172. Amin, H.M., et al., Selective inhibition of STAT3 induces apoptosis 
and G(1) cell cycle arrest in ALK-positive anaplastic large cell 
lymphoma. Oncogene, 2004. 23(32): p. 5426-34. 

173. Marzec, M., et al., Inhibition of ALK enzymatic activity in T-cell 
lymphoma cells induces apoptosis and suppresses proliferation and 
STAT3 phosphorylation independently of Jak3. Lab Invest, 2005. 
85(12): p. 1544-54. 

174. Zamo, A., et al., Anaplastic lymphoma kinase (ALK) activates Stat3 
and protects hematopoietic cells from cell death. Oncogene, 2002. 
21(7): p. 1038-47. 

175. Zhang, Q., et al., Multilevel dysregulation of STAT3 activation in 
anaplastic lymphoma kinase-positive T/null-cell lymphoma. J 
Immunol, 2002. 168(1): p. 466-74. 

176. Takezawa, K., et al., Role of ERK-BIM and STAT3-survivin signaling 
pathways in ALK inhibitor-induced apoptosis in EML4-ALK-positive 
lung cancer. Clin Cancer Res, 2011. 17(8): p. 2140-8. 

177. Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 
296(5573): p. 1655-7. 

178. Liu, P., et al., Targeting the phosphoinositide 3-kinase pathway in 
cancer. Nat Rev Drug Discov, 2009. 8(8): p. 627-44. 

179. Laplante, M. and D.M. Sabatini, mTOR signaling at a glance. J Cell 
Sci, 2009. 122(Pt 20): p. 3589-94. 

180. Bai, R.Y., et al., Nucleophosmin-anaplastic lymphoma kinase 
associated with anaplastic large-cell lymphoma activates the 
phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. 
Blood, 2000. 96(13): p. 4319-27. 

181. Polgar, D., et al., Truncated ALK derived from chromosomal 
translocation t(2;5)(p23;q35) binds to the SH3 domain of p85-PI3K. 
Mutat Res, 2005. 570(1): p. 9-15. 

182. Slupianek, A., et al., Role of phosphatidylinositol 3-kinase-Akt 
pathway in nucleophosmin/anaplastic lymphoma kinase-mediated 
lymphomagenesis. Cancer Res, 2001. 61(5): p. 2194-9. 



                                                                                                                            

70 
 

183. Marzec, M., et al., Oncogenic tyrosine kinase NPM/ALK induces 
activation of the rapamycin-sensitive mTOR signaling pathway. 
Oncogene, 2007. 26(38): p. 5606-14. 

184. Vega, F., et al., Activation of mammalian target of rapamycin 
signaling pathway contributes to tumor cell survival in anaplastic 
lymphoma kinase-positive anaplastic large cell lymphoma. Cancer 
Res, 2006. 66(13): p. 6589-97. 

185. McDonnell, S.R., et al., NPM-ALK signals through glycogen synthase 
kinase 3beta to promote oncogenesis. Oncogene, 2012. 31(32): p. 
3733-40. 

186. Gu, T.L., et al., NPM-ALK fusion kinase of anaplastic large-cell 
lymphoma regulates survival and proliferative signaling through 
modulation of FOXO3a. Blood, 2004. 103(12): p. 4622-9. 

187. Singh, R.R., et al., Sonic hedgehog signaling pathway is activated in 
ALK-positive anaplastic large cell lymphoma. Cancer Res, 2009. 
69(6): p. 2550-8. 

188. Chen, Z., et al., Inhibition of ALK, PI3K/MEK, and HSP90 in murine 
lung adenocarcinoma induced by EML4-ALK fusion oncogene. 
Cancer Res, 2010. 70(23): p. 9827-36. 

189. Moore, N.F., et al., Molecular rationale for the use of 
PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in 
ALK-mutated neuroblastoma. Oncotarget, 2014. 5(18): p. 8737-49. 

190. Zhou, G., Z.Q. Bao, and J.E. Dixon, Components of a new human 
protein kinase signal transduction pathway. J Biol Chem, 1995. 
270(21): p. 12665-9. 

191. Lee, J.D., R.J. Ulevitch, and J. Han, Primary structure of BMK1: a 
new mammalian map kinase. Biochem Biophys Res Commun, 1995. 
213(2): p. 715-24. 

192. Buschbeck, M. and A. Ullrich, The unique C-terminal tail of the 
mitogen-activated protein kinase ERK5 regulates its activation and 
nuclear shuttling. J Biol Chem, 2005. 280(4): p. 2659-67. 

193. Lochhead, P.A., R. Gilley, and S.J. Cook, ERK5 and its role in tumour 
development. Biochem Soc Trans, 2012. 40(1): p. 251-6. 

194. Drew, B.A., M.E. Burow, and B.S. Beckman, MEK5/ERK5 pathway: 
the first fifteen years. Biochim Biophys Acta, 2012. 1825(1): p. 37-48. 

195. Nithianandarajah-Jones, G.N., et al., ERK5: structure, regulation and 
function. Cell Signal, 2012. 24(11): p. 2187-96. 

196. Morimoto, H., et al., Activation of a C-terminal transcriptional 
activation domain of ERK5 by autophosphorylation. J Biol Chem, 
2007. 282(49): p. 35449-56. 

197. Kondoh, K., et al., Regulation of nuclear translocation of extracellular 
signal-regulated kinase 5 by active nuclear import and export 
mechanisms. Mol Cell Biol, 2006. 26(5): p. 1679-90. 



                                                                                                                            

71 
 

198. Abe, J., et al., Big mitogen-activated protein kinase 1 (BMK1) is a 
redox-sensitive kinase. J Biol Chem, 1996. 271(28): p. 16586-90. 

199. Kato, Y., et al., Bmk1/Erk5 is required for cell proliferation induced 
by epidermal growth factor. Nature, 1998. 395(6703): p. 713-6. 

200. Kesavan, K., et al., MEKK2 regulates the coordinate activation of 
ERK5 and JNK in response to FGF-2 in fibroblasts. J Cell Physiol, 
2004. 199(1): p. 140-8. 

201. Hayashi, M. and J.D. Lee, Role of the BMK1/ERK5 signaling pathway: 
lessons from knockout mice. J Mol Med (Berl), 2004. 82(12): p. 800-
8. 

202. Watson, F.L., et al., Neurotrophins use the Erk5 pathway to mediate a 
retrograde survival response. Nat Neurosci, 2001. 4(10): p. 981-8. 

203. Chao, T.H., et al., MEKK3 directly regulates MEK5 activity as part of 
the big mitogen-activated protein kinase 1 (BMK1) signaling pathway. 
J Biol Chem, 1999. 274(51): p. 36035-8. 

204. Sun, W., et al., MEK kinase 2 and the adaptor protein Lad regulate 
extracellular signal-regulated kinase 5 activation by epidermal 
growth factor via Src. Mol Cell Biol, 2003. 23(7): p. 2298-308. 

205. Wang, X. and C. Tournier, Regulation of cellular functions by the 
ERK5 signalling pathway. Cell Signal, 2006. 18(6): p. 753-60. 

206. Hayashi, M., et al., Targeted deletion of BMK1/ERK5 in adult mice 
perturbs vascular integrity and leads to endothelial failure. J Clin 
Invest, 2004. 113(8): p. 1138-48. 

207. Yan, L., et al., Knockout of ERK5 causes multiple defects in placental 
and embryonic development. BMC Dev Biol, 2003. 3: p. 11. 

208. Esparis-Ogando, A., et al., Erk5 participates in neuregulin signal 
transduction and is constitutively active in breast cancer cells 
overexpressing ErbB2. Mol Cell Biol, 2002. 22(1): p. 270-85. 

209. Ramsay, A.K., et al., ERK5 signalling in prostate cancer promotes an 
invasive phenotype. Br J Cancer, 2011. 104(4): p. 664-72. 

210. Umapathy, G., et al., The kinase ALK stimulates the kinase ERK5 to 
promote the expression of the oncogene MYCN in neuroblastoma. Sci 
Signal, 2014. 7(349): p. ra102. 

211. Yang, Q., et al., Pharmacological inhibition of BMK1 suppresses 
tumor growth through promyelocytic leukemia protein. Cancer Cell, 
2010. 18(3): p. 258-67. 

212. Song, C., et al., Inhibition of BMK1 pathway suppresses cancer stem 
cells through BNIP3 and BNIP3L. Oncotarget, 2015. 6(32): p. 33279-
89. 

213. Williams, C.A., et al., Erk5 Is a Key Regulator of Naive-Primed 
Transition and Embryonic Stem Cell Identity. Cell Rep, 2016. 16(7): 
p. 1820-8. 



                                                                                                                            

72 
 

214. Boccalatte, F.E., et al., The enzymatic activity of 5-aminoimidazole-4-
carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is 
enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis 
and the treatment of ALCL. Blood, 2009. 113(12): p. 2776-90. 

215. Rush, J., et al., Immunoaffinity profiling of tyrosine phosphorylation 
in cancer cells. Nat Biotechnol, 2005. 23(1): p. 94-101. 

216. Sattu, K., et al., Phosphoproteomic analysis of anaplastic lymphoma 
kinase (ALK) downstream signaling pathways identifies signal 
transducer and activator of transcription 3 as a functional target of 
activated ALK in neuroblastoma cells. FEBS J, 2013. 280(21): p. 
5269-82. 

217. Bischof, D., et al., Role of the nucleophosmin (NPM) portion of the 
non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma 
kinase fusion protein in oncogenesis. Mol Cell Biol, 1997. 17(4): p. 
2312-25. 

218. Soda, M., et al., Identification of the transforming EML4-ALK fusion 
gene in non-small-cell lung cancer. Nature, 2007. 448(7153): p. 561-
6. 

219. Tort, F., et al., Molecular characterization of a new ALK translocation 
involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab 
Invest, 2001. 81(3): p. 419-26. 

220. Hallberg, B. and R.H. Palmer, Mechanistic insight into ALK receptor 
tyrosine kinase in human cancer biology. Nat Rev Cancer, 2013. 
13(10): p. 685-700. 

221. Stein, H., et al., The expression of the Hodgkin's disease associated 
antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that 
Reed-Sternberg cells and histiocytic malignancies are derived from 
activated lymphoid cells. Blood, 1985. 66(4): p. 848-58. 

222. Stein, H., et al., CD30(+) anaplastic large cell lymphoma: a review of 
its histopathologic, genetic, and clinical features. Blood, 2000. 96(12): 
p. 3681-95. 

223. Ferreri, A.J., et al., Anaplastic large cell lymphoma, ALK-positive. Crit 
Rev Oncol Hematol, 2012. 83(2): p. 293-302. 

224. Amin, H.M. and R. Lai, Pathobiology of ALK+ anaplastic large-cell 
lymphoma. Blood, 2007. 110(7): p. 2259-67. 

225. Campo, E., et al., The 2008 WHO classification of lymphoid neoplasms 
and beyond: evolving concepts and practical applications. Blood, 
2011. 117(19): p. 5019-32. 

226. Feldman, A.L., et al., Novel TRAF1-ALK fusion identified by deep 
RNA sequencing of anaplastic large cell lymphoma. Genes 
Chromosomes Cancer, 2013. 52(11): p. 1097-102. 



                                                                                                                            

73 
 

227. Lamant, L., et al., A new fusion gene TPM3-ALK in anaplastic large 
cell lymphoma created by a (1;2)(q25;p23) translocation. Blood, 
1999. 93(9): p. 3088-95. 

228. Siebert, R., et al., Complex variant translocation t(1;2) with TPM3-
ALK fusion due to cryptic ALK gene rearrangement in anaplastic 
large-cell lymphoma. Blood, 1999. 94(10): p. 3614-7. 

229. Hernandez, L., et al., Diversity of genomic breakpoints in TFG-ALK 
translocations in anaplastic large cell lymphomas: identification of a 
new TFG-ALK(XL) chimeric gene with transforming activity. Am J 
Pathol, 2002. 160(4): p. 1487-94. 

230. Cools, J., et al., Identification of novel fusion partners of ALK, the 
anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and 
inflammatory myofibroblastic tumor. Genes Chromosomes Cancer, 
2002. 34(4): p. 354-62. 

231. Tort, F., et al., Heterogeneity of genomic breakpoints in MSN-ALK 
translocations in anaplastic large cell lymphoma. Hum Pathol, 2004. 
35(8): p. 1038-41. 

232. Lamant, L., et al., Non-muscle myosin heavy chain (MYH9): a new 
partner fused to ALK in anaplastic large cell lymphoma. Genes 
Chromosomes Cancer, 2003. 37(4): p. 427-32. 

233. Touriol, C., et al., Further demonstration of the diversity of 
chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 
cases expressing ALK kinase fused to CLTCL (clathrin chain 
polypeptide-like). Blood, 2000. 95(10): p. 3204-7. 

234. Trinei, M., et al., A new variant anaplastic lymphoma kinase (ALK)-
fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large 
cell lymphoma. Cancer Res, 2000. 60(4): p. 793-8. 

235. Meis, J.M. and F.M. Enzinger, Inflammatory fibrosarcoma of the 
mesentery and retroperitoneum. A tumor closely simulating 
inflammatory pseudotumor. Am J Surg Pathol, 1991. 15(12): p. 1146-
56. 

236. Griffin, C.A., et al., Recurrent involvement of 2p23 in inflammatory 
myofibroblastic tumors. Cancer Res, 1999. 59(12): p. 2776-80. 

237. Roskoski, R., Jr., Anaplastic lymphoma kinase (ALK): structure, 
oncogenic activation, and pharmacological inhibition. Pharmacol 
Res, 2013. 68(1): p. 68-94. 

238. Lawrence, B., et al., TPM3-ALK and TPM4-ALK oncogenes in 
inflammatory myofibroblastic tumors. Am J Pathol, 2000. 157(2): p. 
377-84. 

239. Debiec-Rychter, M., et al., ALK-ATIC fusion in urinary bladder 
inflammatory myofibroblastic tumor. Genes Chromosomes Cancer, 
2003. 38(2): p. 187-90. 



                                                                                                                            

74 
 

240. Bridge, J.A., et al., Fusion of the ALK gene to the clathrin heavy chain 
gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol, 
2001. 159(2): p. 411-5. 

241. Patel, A.S., et al., RANBP2 and CLTC are involved in ALK 
rearrangements in inflammatory myofibroblastic tumors. Cancer 
Genet Cytogenet, 2007. 176(2): p. 107-14. 

242. Debelenko, L.V., et al., Identification of CARS-ALK fusion in primary 
and metastatic lesions of an inflammatory myofibroblastic tumor. Lab 
Invest, 2003. 83(9): p. 1255-65. 

243. Panagopoulos, I., et al., Fusion of the SEC31L1 and ALK genes in an 
inflammatory myofibroblastic tumor. Int J Cancer, 2006. 118(5): p. 
1181-6. 

244. Takeuchi, K., et al., Pulmonary inflammatory myofibroblastic tumor 
expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK 
immunohistochemistry as a tool for novel ALK fusion identification. 
Clin Cancer Res, 2011. 17(10): p. 3341-8. 

245. Chun, Y.S., et al., Pediatric inflammatory myofibroblastic tumor: 
anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr 
Blood Cancer, 2005. 45(6): p. 796-801. 

246. Falini, B., et al., ALK+ lymphoma: clinico-pathological findings and 
outcome. Blood, 1999. 93(8): p. 2697-706. 

247. Lenz, G. and L.M. Staudt, Aggressive lymphomas. N Engl J Med, 
2010. 362(15): p. 1417-29. 

248. Beltran, B., et al., ALK-positive diffuse large B-cell lymphoma: report 
of four cases and review of the literature. J Hematol Oncol, 2009. 2: 
p. 11. 

249. Laurent, C., et al., Anaplastic lymphoma kinase-positive diffuse large 
B-cell lymphoma: a rare clinicopathologic entity with poor prognosis. 
J Clin Oncol, 2009. 27(25): p. 4211-6. 

250. De Paepe, P., et al., ALK activation by the CLTC-ALK fusion is a 
recurrent event in large B-cell lymphoma. Blood, 2003. 102(7): p. 
2638-41. 

251. Delsol, G., et al., A new subtype of large B-cell lymphoma expressing 
the ALK kinase and lacking the 2; 5 translocation. Blood, 1997. 89(5): 
p. 1483-90. 

252. Gesk, S., et al., ALK-positive diffuse large B-cell lymphoma with ALK-
Clathrin fusion belongs to the spectrum of pediatric lymphomas. 
Leukemia, 2005. 19(10): p. 1839-40. 

253. Van Roosbroeck, K., et al., ALK-positive large B-cell lymphomas with 
cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica, 2010. 
95(3): p. 509-13. 



                                                                                                                            

75 
 

254. Adam, P., et al., A case of a diffuse large B-cell lymphoma of 
plasmablastic type associated with the t(2;5)(p23;q35) chromosome 
translocation. Am J Surg Pathol, 2003. 27(11): p. 1473-6. 

255. Takeuchi, K., et al., Identification of a novel fusion, SQSTM1-ALK, in 
ALK-positive large B-cell lymphoma. Haematologica, 2011. 96(3): p. 
464-7. 

256. Collins, L.G., et al., Lung cancer: diagnosis and management. Am 
Fam Physician, 2007. 75(1): p. 56-63. 

257. Jemal, A., et al., Annual report to the nation on the status of cancer, 
1975-2001, with a special feature regarding survival. Cancer, 2004. 
101(1): p. 3-27. 

258. Jemal, A., et al., Cancer statistics, 2004. CA Cancer J Clin, 2004. 
54(1): p. 8-29. 

259. Rikova, K., et al., Global survey of phosphotyrosine signaling 
identifies oncogenic kinases in lung cancer. Cell, 2007. 131(6): p. 
1190-203. 

260. Woo, C.G., et al., Differential protein stability and clinical responses 
of EML4-ALKfusion variants to various ALK inhibitors in advanced 
ALK-rearranged non-small cell lung cancer. Ann Oncol, 2016. 

261. Sanders, H.R., et al., Exon scanning by reverse transcriptase-
polymerase chain reaction for detection of known and novel EML4-
ALK fusion variants in non-small cell lung cancer. Cancer Genet, 
2011. 204(1): p. 45-52. 

262. Sasaki, T., et al., The biology and treatment of EML4-ALK non-small 
cell lung cancer. Eur J Cancer, 2010. 46(10): p. 1773-80. 

263. Doebele, R.C., et al., Mechanisms of resistance to crizotinib in patients 
with ALK gene rearranged non-small cell lung cancer. Clin Cancer 
Res, 2012. 18(5): p. 1472-82. 

264. Shaw, A.T. and B. Solomon, Targeting anaplastic lymphoma kinase 
in lung cancer. Clin Cancer Res, 2011. 17(8): p. 2081-6. 

265. Dagogo-Jack, I., A.T. Shaw, and G.J. Riely, Optimizing Treatment for 
Patients with ALK Positive Lung Cancer. Clin Pharmacol Ther, 2017. 

266. Katayama, R., Therapeutic strategies and mechanisms of drug 
resistance in Anaplastic Lymphoma Kinase (ALK)-rearranged lung 
cancer. Pharmacol Ther, 2017. 

267. Choi, Y.L., et al., A novel fusion of TPR and ALK in lung 
adenocarcinoma. J Thorac Oncol, 2014. 9(4): p. 563-6. 

268. Fang, D.D., et al., HIP1-ALK, a novel ALK fusion variant that 
responds to crizotinib. J Thorac Oncol, 2014. 9(3): p. 285-94. 

269. Jung, Y., et al., Discovery of ALK-PTPN3 gene fusion from human 
non-small cell lung carcinoma cell line using next generation RNA 
sequencing. Genes Chromosomes Cancer, 2012. 51(6): p. 590-7. 



                                                                                                                            

76 
 

270. Takeuchi, K., et al., KIF5B-ALK, a novel fusion oncokinase identified 
by an immunohistochemistry-based diagnostic system for ALK-
positive lung cancer. Clin Cancer Res, 2009. 15(9): p. 3143-9. 

271. Togashi, Y., et al., KLC1-ALK: a novel fusion in lung cancer identified 
using a formalin-fixed paraffin-embedded tissue only. PLoS One, 
2012. 7(2): p. e31323. 

272. Lamant, L., et al., Expression of the ALK tyrosine kinase gene in 
neuroblastoma. Am J Pathol, 2000. 156(5): p. 1711-21. 

273. Salido, M., et al., Increased ALK gene copy number and amplification 
are frequent in non-small cell lung cancer. J Thorac Oncol, 2011. 6(1): 
p. 21-7. 

274. van Gaal, J.C., et al., Anaplastic lymphoma kinase aberrations in 
rhabdomyosarcoma: clinical and prognostic implications. J Clin 
Oncol, 2012. 30(3): p. 308-15. 

275. Cazes, A., et al., Characterization of rearrangements involving the 
ALK gene reveals a novel truncated form associated with tumor 
aggressiveness in neuroblastoma. Cancer Res, 2013. 73(1): p. 195-
204. 

276. Choi, Y.L., et al., EML4-ALK mutations in lung cancer that confer 
resistance to ALK inhibitors. N Engl J Med, 2010. 363(18): p. 1734-
9. 

277. Okubo, J., et al., Aberrant activation of ALK kinase by a novel 
truncated form ALK protein in neuroblastoma. Oncogene, 2012. 
31(44): p. 4667-76. 

278. Sasaki, T., et al., The neuroblastoma-associated F1174L ALK 
mutation causes resistance to an ALK kinase inhibitor in ALK-
translocated cancers. Cancer Res, 2010. 70(24): p. 10038-43. 

279. Wang, Y.W., et al., Identification of oncogenic point mutations and 
hyperphosphorylation of anaplastic lymphoma kinase in lung cancer. 
Neoplasia, 2011. 13(8): p. 704-15. 

280. Murugan, A.K. and M. Xing, Anaplastic thyroid cancers harbor novel 
oncogenic mutations of the ALK gene. Cancer Res, 2011. 71(13): p. 
4403-11. 

281. Guan, J., et al., Anaplastic lymphoma kinase L1198F and G1201E 
mutations identified in anaplastic thyroid cancer patients are not 
ligand-independent. Oncotarget, 2016. 

282. Huang, D., et al., Multiplexed deep sequencing analysis of ALK kinase 
domain identifies resistance mutations in relapsed patients following 
crizotinib treatment. Genomics, 2013. 102(3): p. 157-62. 

283. Katayama, R., et al., Mechanisms of acquired crizotinib resistance in 
ALK-rearranged lung Cancers. Sci Transl Med, 2012. 4(120): p. 
120ra17. 



                                                                                                                            

77 
 

284. Hallberg, B. and R.H. Palmer, Crizotinib--latest champion in the 
cancer wars? N Engl J Med, 2010. 363(18): p. 1760-2. 

285. Katayama, R., et al., Two novel ALK mutations mediate acquired 
resistance to the next-generation ALK inhibitor alectinib. Clin Cancer 
Res, 2014. 20(22): p. 5686-96. 

286. Friboulet, L., et al., The ALK inhibitor ceritinib overcomes crizotinib 
resistance in non-small cell lung cancer. Cancer Discov, 2014. 4(6): 
p. 662-73. 

287. Shaw, A.T., et al., Resensitization to Crizotinib by the Lorlatinib ALK 
Resistance Mutation L1198F. N Engl J Med, 2016. 374(1): p. 54-61. 

288. Gainor, J.F., et al., Molecular Mechanisms of Resistance to First- and 
Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. 
Cancer Discov, 2016. 6(10): p. 1118-1133. 

289. Sasaki, T., et al., A novel ALK secondary mutation and EGFR 
signaling cause resistance to ALK kinase inhibitors. Cancer Res, 2011. 
71(18): p. 6051-60. 

290. Heuckmann, J.M., et al., ALK mutations conferring differential 
resistance to structurally diverse ALK inhibitors. Clin Cancer Res, 
2011. 17(23): p. 7394-401. 

291. Ou, S.H., et al., I1171 missense mutation (particularly I1171N) is a 
common resistance mutation in ALK-positive NSCLC patients who 
have progressive disease while on alectinib and is sensitive to 
ceritinib. Lung Cancer, 2015. 88(2): p. 231-4. 

292. Maris, J.M., Recent advances in neuroblastoma. N Engl J Med, 2010. 
362(23): p. 2202-11. 

293. Maris, J.M., et al., Neuroblastoma. Lancet, 2007. 369(9579): p. 2106-
20. 

294. Smith, M.A., et al., Outcomes for children and adolescents with 
cancer: challenges for the twenty-first century. J Clin Oncol, 2010. 
28(15): p. 2625-34. 

295. Brodeur, G.M., Neuroblastoma: biological insights into a clinical 
enigma. Nat Rev Cancer, 2003. 3(3): p. 203-16. 

296. D'Angio, G.J., A.E. Evans, and C.E. Koop, Special pattern of 
widespread neuroblastoma with a favourable prognosis. Lancet, 1971. 
1(7708): p. 1046-9. 

297. Evans, A.E., G.J. D'Angio, and J. Randolph, A proposed staging for 
children with neuroblastoma. Children's cancer study group A. 
Cancer, 1971. 27(2): p. 374-8. 

298. Kamijo, T. and A. Nakagawara, Molecular and genetic bases of 
neuroblastoma. Int J Clin Oncol, 2012. 17(3): p. 190-5. 

299. Ho, W.L., et al., Protein glycosylation in cancers and its potential 
therapeutic applications in neuroblastoma. J Hematol Oncol, 2016. 
9(1): p. 100. 



                                                                                                                            

78 
 

300. Palmberg, E., et al., Metronomic scheduling of imatinib abrogates 
clonogenicity of neuroblastoma cells and enhances their susceptibility 
to selected chemotherapeutic drugs in vitro and in vivo. Int J Cancer, 
2009. 124(5): p. 1227-34. 

301. Nakagawara, A., Neural crest development and neuroblastoma: the 
genetic and biological link. Prog Brain Res, 2004. 146: p. 233-42. 

302. van Noesel, M.M. and R. Versteeg, Pediatric neuroblastomas: genetic 
and epigenetic 'danse macabre'. Gene, 2004. 325: p. 1-15. 

303. Jiang, M., J. Stanke, and J.M. Lahti, The connections between neural 
crest development and neuroblastoma. Curr Top Dev Biol, 2011. 94: 
p. 77-127. 

304. Caren, H., et al., High incidence of DNA mutations and gene 
amplifications of the ALK gene in advanced sporadic neuroblastoma 
tumours. Biochem J, 2008. 416(2): p. 153-9. 

305. Janoueix-Lerosey, I., et al., Somatic and germline activating mutations 
of the ALK kinase receptor in neuroblastoma. Nature, 2008. 
455(7215): p. 967-70. 

306. De Brouwer, S., et al., Meta-analysis of neuroblastomas reveals a 
skewed ALK mutation spectrum in tumors with MYCN amplification. 
Clin Cancer Res, 2010. 16(17): p. 4353-62. 

307. Michels, E., et al., ArrayCGH-based classification of neuroblastoma 
into genomic subgroups. Genes Chromosomes Cancer, 2007. 46(12): 
p. 1098-108. 

308. Vandesompele, J., et al., Unequivocal delineation of clinicogenetic 
subgroups and development of a new model for improved outcome 
prediction in neuroblastoma. J Clin Oncol, 2005. 23(10): p. 2280-99. 

309. Bader, S.A., et al., Dissociation of suppression of tumorigenicity and 
differentiation in vitro effected by transfer of single human 
chromosomes into human neuroblastoma cells. Cell Growth Differ, 
1991. 2(5): p. 245-55. 

310. Chen, Y. and R.L. Stallings, Differential patterns of microRNA 
expression in neuroblastoma are correlated with prognosis, 
differentiation, and apoptosis. Cancer Res, 2007. 67(3): p. 976-83. 

311. Welch, C., Y. Chen, and R.L. Stallings, MicroRNA-34a functions as a 
potential tumor suppressor by inducing apoptosis in neuroblastoma 
cells. Oncogene, 2007. 26(34): p. 5017-22. 

312. Bagchi, A., et al., CHD5 is a tumor suppressor at human 1p36. Cell, 
2007. 128(3): p. 459-75. 

313. Henrich, K.O., et al., CAMTA1, a 1p36 tumor suppressor candidate, 
inhibits growth and activates differentiation programs in 
neuroblastoma cells. Cancer Res, 2011. 71(8): p. 3142-51. 



                                                                                                                            

79 
 

314. Ichimiya, S., et al., p73 at chromosome 1p36.3 is lost in advanced 
stage neuroblastoma but its mutation is infrequent. Oncogene, 1999. 
18(4): p. 1061-6. 

315. Gomyo, H., et al., A 2-Mb sequence-ready contig map and a novel 
immunoglobulin superfamily gene IGSF4 in the LOH region of 
chromosome 11q23.2. Genomics, 1999. 62(2): p. 139-46. 

316. Ando, K., et al., Expression of TSLC1, a candidate tumor suppressor 
gene mapped to chromosome 11q23, is downregulated in unfavorable 
neuroblastoma without promoter hypermethylation. Int J Cancer, 
2008. 123(9): p. 2087-94. 

317. Schor, N.F., Neuroblastoma as a neurobiological disease. J 
Neurooncol, 1999. 41(2): p. 159-66. 

318. Islam, A., et al., High expression of Survivin, mapped to 17q25, is 
significantly associated with poor prognostic factors and promotes 
cell survival in human neuroblastoma. Oncogene, 2000. 19(5): p. 617-
23. 

319. Schwab, M., et al., Enhanced expression of the human gene N-myc 
consequent to amplification of DNA may contribute to malignant 
progression of neuroblastoma. Proc Natl Acad Sci U S A, 1984. 
81(15): p. 4940-4. 

320. Eilers, M. and R.N. Eisenman, Myc's broad reach. Genes Dev, 2008. 
22(20): p. 2755-66. 

321. Hui, A.B., et al., Detection of multiple gene amplifications in 
glioblastoma multiforme using array-based comparative genomic 
hybridization. Lab Invest, 2001. 81(5): p. 717-23. 

322. Lee, W.H., A.L. Murphree, and W.F. Benedict, Expression and 
amplification of the N-myc gene in primary retinoblastoma. Nature, 
1984. 309(5967): p. 458-60. 

323. Nau, M.M., et al., Human small-cell lung cancers show amplification 
and expression of the N-myc gene. Proc Natl Acad Sci U S A, 1986. 
83(4): p. 1092-6. 

324. Weiss, W.A., et al., Targeted expression of MYCN causes 
neuroblastoma in transgenic mice. EMBO J, 1997. 16(11): p. 2985-
95. 

325. Berry, T., et al., The ALK(F1174L) mutation potentiates the oncogenic 
activity of MYCN in neuroblastoma. Cancer cell, 2012. 22(1): p. 117-
30. 

326. Osajima-Hakomori, Y., et al., Biological role of anaplastic lymphoma 
kinase in neuroblastoma. Am J Pathol, 2005. 167(1): p. 213-22. 

327. Passoni, L., et al., Mutation-independent anaplastic lymphoma kinase 
overexpression in poor prognosis neuroblastoma patients. Cancer 
research, 2009. 69(18): p. 7338-46. 



                                                                                                                            

80 
 

328. Chen, Y., et al., Oncogenic mutations of ALK kinase in neuroblastoma. 
Nature, 2008. 455(7215): p. 971-4. 

329. George, R.E., et al., Activating mutations in ALK provide a therapeutic 
target in neuroblastoma. Nature, 2008. 455(7215): p. 975-8. 

330. Mosse, Y.P., et al., Identification of ALK as a major familial 
neuroblastoma predisposition gene. Nature, 2008. 455(7215): p. 930-
5. 

331. Palmer, R.H., et al., Anaplastic lymphoma kinase: signalling in 
development and disease. The Biochemical journal, 2009. 420(3): p. 
345-61. 

332. Schonherr, C., et al., The neuroblastoma ALK(I1250T) mutation is a 
kinase-dead RTK in vitro and in vivo. Transl Oncol, 2011. 4(4): p. 258-
65. 

333. Chand, D., et al., Cell culture and Drosophila model systems define 
three classes of anaplastic lymphoma kinase mutations in 
neuroblastoma. Dis Model Mech, 2013. 6(2): p. 373-82. 

334. Martinsson, T., et al., Appearance of the novel activating F1174S ALK 
mutation in neuroblastoma correlates with aggressive tumor 
progression and unresponsiveness to therapy. Cancer Res, 2011. 
71(1): p. 98-105. 

335. Schleiermacher, G., et al., Emergence of new ALK mutations at relapse 
of neuroblastoma. J Clin Oncol, 2014. 32(25): p. 2727-34. 

336. Bellini, A., et al., Deep Sequencing Reveals Occurrence of Subclonal 
ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res, 
2015. 21(21): p. 4913-21. 

337. Schonherr, C., et al., Activating ALK mutations found in 
neuroblastoma are inhibited by Crizotinib and NVP-TAE684. 
Biochem J, 2011. 440(3): p. 405-13. 

338. Thompson, P.M., et al., Loss of heterozygosity for chromosome 14q in 
neuroblastoma. Med Pediatr Oncol, 2001. 36(1): p. 28-31. 

339. George, R.E., et al., Investigation of co-amplification of the candidate 
genes ornithine decarboxylase, ribonucleotide reductase, syndecan-1 
and a DEAD box gene, DDX1, with N-myc in neuroblastoma. United 
Kingdom Children's Cancer Study Group. Oncogene, 1996. 12(7): p. 
1583-7. 

340. Mosse, Y.P., et al., Germline PHOX2B mutation in hereditary 
neuroblastoma. Am J Hum Genet, 2004. 75(4): p. 727-30. 

341. Cheung, N.K., et al., Association of age at diagnosis and genetic 
mutations in patients with neuroblastoma. JAMA, 2012. 307(10): p. 
1062-71. 

342. Takita, J., et al., The p16 (CDKN2A) gene is involved in the growth of 
neuroblastoma cells and its expression is associated with prognosis of 
neuroblastoma patients. Oncogene, 1998. 17(24): p. 3137-43. 



                                                                                                                            

81 
 

343. Inomistova, M.V., et al., Prognostic significance of MDM2 gene 
expression in childhood neuroblastoma. Exp Oncol, 2015. 37(2): p. 
111-5. 

344. Chang, H.H., et al., beta-1,4-Galactosyltransferase III enhances 
invasive phenotypes via beta1-integrin and predicts poor prognosis in 
neuroblastoma. Clin Cancer Res, 2013. 19(7): p. 1705-16. 

345. Pandey, G.K., et al., The risk-associated long noncoding RNA NBAT-
1 controls neuroblastoma progression by regulating cell proliferation 
and neuronal differentiation. Cancer Cell, 2014. 26(5): p. 722-37. 

346. Pearson, A.D., et al., High-dose rapid schedule chemotherapy for 
disseminated neuroblastoma. Eur J Cancer, 1992. 28A(10): p. 1654-9. 

347. Matthay, K.K., Chemotherapy for neuroblastoma: does it hit the 
target? Lancet Oncol, 2008. 9(3): p. 195-6. 

348. Sidell, N., et al., Effects of retinoic acid (RA) on the growth and 
phenotypic expression of several human neuroblastoma cell lines. Exp 
Cell Res, 1983. 148(1): p. 21-30. 

349. Reynolds, C.P., et al., Comparison of 13-cis-retinoic acid to trans-
retinoic acid using human neuroblastoma cell lines. Prog Clin Biol 
Res, 1994. 385: p. 237-44. 

350. Matthay, K.K., et al., Treatment of high-risk neuroblastoma with 
intensive chemotherapy, radiotherapy, autologous bone marrow 
transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N 
Engl J Med, 1999. 341(16): p. 1165-73. 

351. Esposito, M.R., et al., Neuroblastoma treatment in the post-genomic 
era. J Biomed Sci, 2017. 24(1): p. 14. 

352. Shochat, S.J., A.B. Abt, and C.L. Schengrund, VCN-releasable sialic 
acid and gangliosides in human neuroblastomas. J Pediatr Surg, 1977. 
12(3): p. 413-8. 

353. Dong, L., et al., Induction of GM1a/GD1b synthase triggers complex 
ganglioside expression and alters neuroblastoma cell behavior; a new 
tumor cell model of ganglioside function. Glycoconj J, 2011. 28(3-4): 
p. 137-47. 

354. Dinutuximab approved for high-risk neuroblastoma. Cancer Discov, 
2015. 5(6): p. OF5. 

355. Garaventa, A., et al., 131I-metaiodobenzylguanidine (131I-MIBG) 
therapy for residual neuroblastoma: a mono-institutional experience 
with 43 patients. Br J Cancer, 1999. 81(8): p. 1378-84. 

356. Lovat, P.E., et al., Effector mechanisms of fenretinide-induced 
apoptosis in neuroblastoma. Exp Cell Res, 2000. 260(1): p. 50-60. 

357. Lovat, P.E., et al., Synergistic induction of apoptosis of neuroblastoma 
by fenretinide or CD437 in combination with chemotherapeutic drugs. 
Int J Cancer, 2000. 88(6): p. 977-85. 



                                                                                                                            

82 
 

358. Huang, E.J. and L.F. Reichardt, Neurotrophins: roles in neuronal 
development and function. Annu Rev Neurosci, 2001. 24: p. 677-736. 

359. Iyer, R., et al., Entrectinib is a potent inhibitor of Trk-driven 
neuroblastomas in a xenograft mouse model. Cancer Lett, 2016. 
372(2): p. 179-86. 

360. Prochownik, E.V. and P.K. Vogt, Therapeutic Targeting of Myc. 
Genes Cancer, 2010. 1(6): p. 650-659. 

361. Schonherr, C., et al., Anaplastic Lymphoma Kinase (ALK) regulates 
initiation of transcription of MYCN in neuroblastoma cells. Oncogene, 
2012. 31(50): p. 5193-200. 

362. McDermott, U., et al., Genomic alterations of anaplastic lymphoma 
kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. 
Cancer Res, 2008. 68(9): p. 3389-95. 

363. Lin, J.J., G.J. Riely, and A.T. Shaw, Targeting ALK: Precision 
Medicine Takes on Drug Resistance. Cancer Discov, 2017. 7(2): p. 
137-155. 

364. Mosse, Y.P., et al., Safety and activity of crizotinib for paediatric 
patients with refractory solid tumours or anaplastic large-cell 
lymphoma: a Children's Oncology Group phase 1 consortium study. 
Lancet Oncol, 2013. 14(6): p. 472-80. 

365. Gambacorti Passerini, C., et al., Crizotinib in advanced, 
chemoresistant anaplastic lymphoma kinase-positive lymphoma 
patients. J Natl Cancer Inst, 2014. 106(2): p. djt378. 

366. Maillet, D., et al., Ineffectiveness of crizotinib on brain metastases in 
two cases of lung adenocarcinoma with EML4-ALK rearrangement. J 
Thorac Oncol, 2013. 8(4): p. e30-1. 

367. van Golen, C.M., et al., Insulin-like growth factor-I receptor 
expression regulates neuroblastoma metastasis to bone. Cancer Res, 
2006. 66(13): p. 6570-8. 

368. Richly, H., et al., Ceritinib in patients with advanced anaplastic 
lymphoma kinase-rearranged anaplastic large-cell lymphoma. Blood, 
2015. 126(10): p. 1257-8. 

369. Sakamoto, H., et al., CH5424802, a selective ALK inhibitor capable of 
blocking the resistant gatekeeper mutant. Cancer Cell, 2011. 19(5): p. 
679-90. 

370. Isozaki, H., et al., Non-Small Cell Lung Cancer Cells Acquire 
Resistance to the ALK Inhibitor Alectinib by Activating Alternative 
Receptor Tyrosine Kinases. Cancer Res, 2016. 76(6): p. 1506-16. 

371. Siaw, J.T., et al., Brigatinib, an anaplastic lymphoma kinase inhibitor, 
abrogates activity and growth in ALK-positive neuroblastoma cells, 
Drosophila and mice. Oncotarget, 2016. 7(20): p. 29011-22. 



                                                                                                                            

83 
 

372. Zou, H.Y., et al., PF-06463922, an ALK/ROS1 Inhibitor, Overcomes 
Resistance to First and Second Generation ALK Inhibitors in 
Preclinical Models. Cancer Cell, 2015. 28(1): p. 70-81. 

373. Infarinato, N.R., et al., The ALK/ROS1 Inhibitor PF-06463922 
Overcomes Primary Resistance to Crizotinib in ALK-Driven 
Neuroblastoma. Cancer Discov, 2016. 6(1): p. 96-107. 

374. Guan, J., et al., The ALK inhibitor PF-06463922 is effective as a single 
agent in neuroblastoma driven by expression of ALK and MYCN. Dis 
Model Mech, 2016. 9(9): p. 941-52. 

375. Camidge, D.R., W. Pao, and L.V. Sequist, Acquired resistance to TKIs 
in solid tumours: learning from lung cancer. Nat Rev Clin Oncol, 
2014. 11(8): p. 473-81. 

376. Katayama, R., et al., Therapeutic strategies to overcome crizotinib 
resistance in non-small cell lung cancers harboring the fusion 
oncogene EML4-ALK. Proc Natl Acad Sci U S A, 2011. 108(18): p. 
7535-40. 

377. Lovly, C.M. and W. Pao, Escaping ALK inhibition: mechanisms of and 
strategies to overcome resistance. Sci Transl Med, 2012. 4(120): p. 
120ps2. 

378. Toyokawa, G., et al., Secondary mutations at I1171 in the ALK gene 
confer resistance to both Crizotinib and Alectinib. J Thorac Oncol, 
2014. 9(12): p. e86-7. 

379. Miyawaki, M., et al., Overcoming EGFR Bypass Signal-Induced 
Acquired Resistance to ALK Tyrosine Kinase Inhibitors in ALK-
Translocated Lung Cancer. Mol Cancer Res, 2017. 15(1): p. 106-114. 

380. Wilson, F.H., et al., A functional landscape of resistance to ALK 
inhibition in lung cancer. Cancer Cell, 2015. 27(3): p. 397-408. 

381. Gouji, T., et al., Crizotinib can overcome acquired resistance to 
CH5424802: is amplification of the MET gene a key factor? J Thorac 
Oncol, 2014. 9(3): p. e27-8. 

382. Debruyne, D.N., et al., ALK inhibitor resistance in ALK(F1174L)-
driven neuroblastoma is associated with AXL activation and induction 
of EMT. Oncogene, 2016. 35(28): p. 3681-91. 

383. Kim, H.R., et al., Epithelial-mesenchymal transition leads to crizotinib 
resistance in H2228 lung cancer cells with EML4-ALK translocation. 
Mol Oncol, 2013. 7(6): p. 1093-102. 

384. Hata, A.N., et al., Tumor cells can follow distinct evolutionary paths 
to become resistant to epidermal growth factor receptor inhibition. 
Nat Med, 2016. 22(3): p. 262-9. 

385. Ramirez, M., et al., Diverse drug-resistance mechanisms can emerge 
from drug-tolerant cancer persister cells. Nat Commun, 2016. 7: p. 
10690. 



                                                                                                                            

84 
 

386. Katayama, R., et al., P-glycoprotein Mediates Ceritinib Resistance in 
Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung 
Cancer. EBioMedicine, 2016. 3: p. 54-66. 

387. Breuleux, M., et al., Increased AKT S473 phosphorylation after 
mTORC1 inhibition is rictor dependent and does not predict tumor cell 
response to PI3K/mTOR inhibition. Mol Cancer Ther, 2009. 8(4): p. 
742-53. 

388. Philips, G.K. and M. Atkins, Therapeutic uses of anti-PD-1 and anti-
PD-L1 antibodies. Int Immunol, 2015. 27(1): p. 39-46. 

389. Gainor, J.F., et al., EGFR Mutations and ALK Rearrangements Are 
Associated with Low Response Rates to PD-1 Pathway Blockade in 
Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin Cancer 
Res, 2016. 22(18): p. 4585-93. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                            

85 
 

APPENDIX 


	Sammanfattning på svenska
	LIST OF PAPERS
	Additional publications not included in this thesis:

	Abbreviations
	1 Introduction
	1.1 General features of cancer
	1.1.1 Oncogenes
	1.1.2 Tumor Suppressor Genes
	1.1.3 Post Translational Modifications (PTMs)

	1.2 Receptor Tyrosine Kinase superfamily
	1.3 The RTK- Anaplastic Lymphoma Kinase (ALK)
	1.3.1 Structure of ALK
	ALK extracellular domain
	ALK intracellular domain

	1.3.2 ALK in model organisms
	Drosophila melanogaster DAlk
	Caenorhabditis elegans SCD-2
	In C.elegans SCD-2 (suppressor of constitutive dauer formation) is an ALK homologue which plays a critical role in dauer formation, which is a developmentally arrested third larval stage in C.elegans [120-122]. SCD-2  was first described as a suppress...
	Danio rerio DrAlk/DrLtk
	Mammalian ALK


	1.4 Oncogenic ALK signaling core
	RAS-MAPK
	JAK/STAT
	PI3K-AKT
	ERK5/BMK1

	1.5 ALK positive cancers
	1.5.1 ALK chromosomal translocations
	Inflammatory myofibroblastic tumor (IMT)
	Diffuse large B-cell lymphoma (DLBCL)
	Non-small cell lung cancer (NSCLC)

	1.5.2 ALK overexpression
	1.5.3 ALK point mutations

	1.6 Neuroblastoma
	1.6.1 Chromosomal aberrations and genetic lesions in NB
	1.6.2 Treatment strategies in neuroblastoma
	Chemotherapy
	Retinoids
	Immunotherapy
	Radionuclide therapy
	Programmed cell death (Apoptosis)
	Targeting MYCN


	1.7 Targeting ALK: Treatment of ALK positive cancers
	Crizotinib
	Ceritinib
	Alectinib
	Brigatinib
	Entrecitinib
	Lorlatinib

	1.8 Mechanism of resistance to ALK TKIs in ALK positive cancers
	ALK positive resistance mechanism
	ALK negative resistance mechanism
	1.8.1 Combinatorial treatment


	2 AIMS
	Specific aim

	3 RESULTS AND DISCUSSION
	4 Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

