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Abstract Visualization of Algorithms and Data Structures
Chalmers University of Technology & Gothenburg University

Abstract

Within the field of visualization it is common to distinguish between Algorithm
Visualization (AV) and Program Visualization (PV). AV uses high level abstrac-
tions to demonstrate how algorithms works, while PVs are debugger-like and
display low level information about programs.

There exists a variety of visualization tools within both AV and PV today. How-
ever, few tools provide a good combination of the two. There is a lack of tools
which can produce visualization with a high abstraction level from code in
common programming languages. Moreover, most tools are either restricted
to a certain programming language or a set of algorithms. Therefore users
have to learn a variety of tools for different programming languages and algo-
rithms.

The goal of this project is to combine AV and PV in a single system. The
system is based around a communication contract which connects programs
written in any language to any visualization tool. In this way, a programming
language will immediately have a rich selection of visualizations available once
an interface has been implemented for it. At the other end, new visualizations
and visualization tools can be constructed without concern for how program
execution will be recorded.

As a proof of concept, we have developed interface prototypes for Java and
Python programs. Accompanying these are visualization tool prototypes, one
written in Java and the other in HTML5.

Keywords: Algorithm Visualization; AV; Program Visualization; PV; Education;
Visualization Tool
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Sammanfattning

Det är vanligt att inom visualiserings-fältet att skilja mellan Algoritm Visualis-
ering (AV) och Program Visualisering (PV). AV använder sig av en hög abstrak-
tionsnivå för att visa hur en algoritm fungerar, medan Program Visualiseringar
innehåller mer låg-nivå information på ett sätt som liknar en debugger.

Idag finns det existerande verktyg inom både AV och PV. Det är dock få som
kombinerar dessa väl. Det saknas verktyg som kan producera visualiseringar
av hög abstraktionsnivå från källkod, skrivna i vanligt förekommande pro-
gramspråk. Utöver detta så brukar dessa verktyg vara begränsade till ett
visst språk eller ett fixt antal algoritmer. Detta tvingar användare att lära sig
en mängd olika verktyg för olika programspråk och algoritmer.

Målet med detta projekt är att kombinera både AV och PV i ett och samma sys-
tem. Systemet bygger på ett kommunikationskontrakt (Communication Con-
tract) som kopplar ihop ett program, skrivet i ett godtyckligt programspråk,
med ett visualiseringsverktyg. Detta betyder att ett programspråk kommer
direkt att ha tillgång till en stor mängd visualiseringar efter att ett gränssnitt
har skapats för det. På samma gång kan visualiseringsverktyg byggas och an-
vändas, utan att behöva ta hänsyn till hur exekveringen av program ska spelas
in.

Vi har utfört en konceptvalidering där vi har utvecklat gränssnitts-prototyper
för Java och Python program. Vi har också byggt två prototyper av visualiser-
ingsverktyg, ett skrivet i Java och det andra i HTML5.

Nyckelord : Algoritm Visualisering; AV; Program Visualisering; PV; Utbildning;
Visualiseringsverktyg
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1
Introduction

Courses within computer science are often programming intensive. It is usu-
ally expected of students to learn the practices of the field through hands-on
experience. Beside the practical elements, students also have to acquire a
fairly large body of knowledge. This is usually related to core knowledge and
abstractions, like data structures, algorithms and underpinning theories of the
field. More importantly students have to be able to grasp and implement the
inner workings of algorithms such as sorting and searching, and their support-
ing data structures [1].

To succesfully implement algorithms in code, experience and knowledge is
required. It is important to grasp the nuances and possible pitfalls of the
algorithm as well as the technical implementation. Students often lack this
knowledge and experience, which means that a lot of mistakes are usually
made. Some tools to help fixing and finding these mistakes are low-level tex-
tual debuggers and industrial development environments. While these provide
good language and platform dependent detail, they lack any abstraction for
the algorithms. The behaviour of the algorithm is overshadowed by irrelevant
program details [2].

In recent decades tutors as well as students of computer science have started
turning to different kinds of visualization tools in an attempt to ease the learn-
ing process [3, 4, 2]. In the field of visualization, it is common to distinguish
between two areas, namely AV (Algorithm Visualization) and PV (Program Vi-
sualization) [4, 5]. AV rarely has anything to do with code for the end user.
It usually provides a visualization with high level abstraction which should be
easy to understand. PV on the other hand is always related to code, usually in
some programming language. The visualizations in PV tend to be debugger-
like, providing a low abstraction level to expose details about the program
execution.

Today there exists a variety of tools within both of these areas, easily avail-
able on the web. Thanks to significant advancements within the field in recent
years, tools have quickly advanced and gone from outdated technologies like
Java Applets to modern and powerful technologies like HTML5 [4, 6]. Regard-
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1. Introduction

less of recent advancements, decades old issues regarding usability and ex-
tendability remain. In addition to these issues, we have discovered that there
is a lack of tools which provide a good combination of AV and PV. Especially
tools that are simple to use and that provides a visualization with a relevant
abstraction level.

1.1 Research background

In recent years there has been some research efforts devoted to improve the
field of visualization [2]. The majority of this research have pinpointed a lot of
existing problems. However, new visualization technology so far has largely
been unable to resolve these issues.

There is currently no widespread adoption of visualization tools in computer
science education. There are several issues that plague visualization tools and
we have found no programs that adequately solve these issues. If these issues
are solved we are much more likely to see widespread use of visualization
tools [5]. Overall there are three identified areas in which visualization tools
usually are lacking:

1. Algorithm prototyping mechanism

2. Provided visualizations

3. Level of visualization abstraction

1.1.1 Prototyping Mechanism

When using algorithm visualization it is important to be able to modify and
change the code and see how it changes the visualization. Lack of good algo-
rithm prototyping mechanism means that visualization tools do not provide a
good way interface between code and visualization. The process of prototyp-
ing an algorithm can often be so complex or impractical that people simply
refrain from using visualization tools [2, 4, 5, 7]. This problem usually embod-
ies itself as one or a combination of three typical cases:

1. To generate visualizations from code, one is required to rebuild or clutter
it with visualization specific constructs.

2. The whole visualization has to be built from scratch in an, to the user,
unknown language or technology.

2



1. Introduction

3. In order to visualize a program, parts of the program code must be mi-
grated and built in foreign environments. This process may introduce
new errors and cut off dependencies.

1.1.2 Provided visualizations

Many of the existing visualization tools are products of small scale scientific
efforts [7, 6]. They are usually specialized in small set of visualizations and
are limited in the way that they can be used. There exists some modern web
based tools which provide a larger collection of visualizations. However, even
these tools are limited to certain types of visualizations and are hard to ex-
tend. Because tools are limited, one has to learn a variety of tools to visualize
different algorithms in different ways.

One way to solve the issue with lacking visualizations is providing a tool allow-
ing for easy extendability, and there has been some previous efforts in over-
coming the issue of extendability. ANIMAL is one prominent example. ANI-
MAL is a Java application that can produce visualizations from user defined
scripts [8, 9]. Some applications have integrated the animal scripts and can
produce visualizations on the ANIMAL system, most of which were produced
in the late 90´s. The ANIMAL system, along with many other visualization
tools from that time, seem to have faded and been replaced by modern and
more engaging visualization tools [4, 6].

We believe that one of the main reasons why systems like ANIMAL and other
tools gradually disappear after being put into use, is that they are tied to a
certain implementation. Again, taking ANIMAL as an example: There are
ways of producing the visualization scripts from different sources, but in the
end, only ANIMAL is capable of producing visualizations from them.

1.1.3 Abstraction Level

In this project we have been working within the definitions of both AV and PV.
As mentioned earlier AV rarely has anything to do with code. PV, on the other
hand, generates visualization from program code. The difference between
these types of tools becomes problematic because there exists no tools which
can provide a visualization from a users own code with a high abstraction
level, the closest we found was the tool PyAlgoViz. However, using PyAlgoViz,
one has to merge the visualization code with the program implementing the
algorithm. This is time consuming and introduces a lot of potential errors.

3



1. Introduction

1.2 Purpose

Our purpose is to combine AV and PV in a single system that works for any
programming language. This should enable programmers of any skill-level to
easily visualize their programs in a variety of ways using the same system.

1.2.1 System Architecture

The system is constructed around a communication contract. In this system,
the tools for prototyping an algorithm has been separated from the tools for vi-
sualization, making them independent modules. Overall, this system consists
of four major modules:

Programming Language Interfaces: Interfaces can be developed for any
imperative programing language. Using these interfaces, users should
be able to specify how an algorithm should be visualized.

Communication Contract: The contract is the shared language of the dif-
ferent modules in the system. Programming language interfaces log the
execution of a program according to a communication contract. This log
can then be read by Visualization and Interpreter type modules.

Visualization Tools: Tools can be implemented in any programming language
to consume a log and produce visualizations from the logged operations.

Interpreters: An interpreter combines groups of logged operations into op-
erations of higher abstraction level. Interpreted logs will generally result
in visualizations which are easier to understand than those produced by
their uninterpreted counterparts.

The modules and their relationship is summarized in figure 1.1.

Program
Language
Interfaces

Communication
Contract

Visualization
Tools

Interpreter

Figure 1.1: Overview of the main modules and how they relate to each other.
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1. Introduction

This separated architecture has enabled a PV/AV-system which is independent
of the implementations of the communicating modules. In this way it is easier
to extend the system for additional languages as well as adding new visualiza-
tions and keeping the system updated with the latest technologies.

1.3 Delimitations

This report argues for a form of visualization which combine the benefits of
AV and PV. This is meant to serve as a proof of concept for the visualization
community. The main goal is not to supply the field with a ready to use prod-
uct. It is rather to supply the visualization community with an initial prototype
which successfully incorporates our separated architecture and works as good
combination of both AV and PV. In this section we will further discuss the lim-
itations of each module in our system.

1.3.1 Communication Contract

The communication contract will only handle a basic set of operations on prim-
itive types and primitive type arrays. The contract log will be strictly deter-
ministic. If further functionality is to be added, the log has to be extended.

1.3.2 Programming Language Interfaces

Programming language interfaces have been implemented for Java and Python.
The specifics of each implementation are dependant on the technical details of
each language. Both will produce a log according to the contract. The way the
users interacts with the interfaces will however differ. Further, our interfaces
will only handle primitive types and primitive type arrays. Objects will not
be supported by the system prototypes. This project is only concerned with
imperative languages. No efforts have been made to produce interfaces for
languages in any other paradigm.

1.3.3 Visualization Tools

The visualization tools have been implemented as a Java desktop application
and an HTML5 application. These tools are only able to consume the log ac-
cording to the contract and produce visualizations from the logged operations.

5



1. Introduction

1.3.4 Interpreter

The interpreter has been implemented in Java. The prototype module does not
provide the system with any core functionality. The purpose is strictly to show
that it is possible to incorporate such a module.

6



2
Project Stages

Our main channels for communications were the web and one to two weekly
meetings. During the weekly meetings we discussed our progress and handled
planning and workload distribution. Extra workshops was set up to facilitate
sharing of knowledge, collaborative work and handling of development related
issues.

2.1 Research Stage

Research and initial requirements analysis made up the majority of the first
stage of the project. The goal of this stage was to identify user needs and gain
an overall understanding of the current state of the field. The results of this
research served as a base for our initial vision and main high level features of
the system.

2.2 Development Stage

Early stages of development consisted of small prototypes. We intended to get
a firm grasp of the various technologies needed to complete the project. Many
of these proto-applications were completely scrapped and others were built
upon to create the final framework.

7



2. Project Stages

2.3 Usability Testing

Small scale user testing was conducted. The tests were summative in na-
ture. The subjects were first exposed to another visualization tool and then
our framework. They were then interviewed about what tool they preferred.
The sample size of the user tests were too small to draw any conclusions.
They served more as a way to gather feedback and indicator of interest in the
project.

8



3
Technical Background

The following sections are about the general background of the tools and con-
cepts we have used to achieve our goals. The practical usage might not be
apparent at first, but this will be clarified further down in the report.

3.1 Communication Contract

This section briefly describes the technology behind the communication con-
tract.

3.1.1 JavaScript Object Notation

JavaScript Object Notation (JSON) is a human-readable markup language. The
highly extensible and widely used format stores data in key-value pairs. Be-
cause of its widespread use, libraries parsing JSON have been developed by
most languages in use today. JSON is language independent, but developers
experienced in C-family languages will likely recognize the format and syntax.

JSON supports objects, arrays, strings and values. Values is a string, number,
boolean, object, or array [10]. This means that you technically could have
an unlimited number of layers wrapping and organizing the data. In reality
however, many parsers are unable to deserialize data which is stored "too
deep".

3.2 Programming Language Interfaces

To keep the modularity it is important that the visualization can be done in sev-
eral programming languages. The way the programming language interface
is written is almost always unique to the individual language. This allows the

9



3. Technical Background

interface to utilize and adapt to the peculiarities of each language, allowing
the addition of the visualization to be as unobtrusive as possible. The intent
is for the interface to capture the intended operations without modifying the
result of the program which is being executed.

This approach allows prototyping and execution in the user’s own environ-
ment. Some tools (such as Python Tutor) require users to migrate, build and
run code in foreign environments in order to produce a visualization. Depend-
ing on the project set-up, this may be difficult or even impossible. In some
cases (especially commercially), users may not be willing or able to expose
their program in this way.

Java has long been one of the most frequently used programming languages
in computer science education [11], and it is the single largest language in all
major fields in the industry [12]. However, studies have shown that Python
is becoming increasingly popular in education and has surpassed Java as the
number one programming language for beginners at US universities [13]. We
chose to cover both Java and Python to reach as many users as possible.

3.2.1 Abstract Syntax Tree

In order to easier process source code one can generate what is called an
Abstract Syntax Tree (AST). For example, an assignment of 1 + 2 to a varaible
x would translate into the AST shown in Figure 3.1. The tree retains the
structure of the code and could potentially be parsed back into source code
given the tools.

assign

binary operation "+"

integer 1 integer 2

x

Figure 3.1: x := 1 + 2 processed into an AST

3.2.2 Java Annotations

Java provides a form of syntactic metadata called annotations [14, 15]. These
are used to mark programming constructs for them to later be processed dur-
ing compile or runtime. As it turns out, this is a fairly simple and efficient way

10



3. Technical Background

of providing the user with a method of extracting operations, thus allowing
prototyping of visualizations.

Annotations are used for three main purposes:

1. Provide information to the compiler.

2. Compile-time and deployment-time processing.

3. Runtime processing

Annotations have a single ‘@’ in the beginning to indicate to the compiler that
what follows in an annotation. Annotations can be placed at declarations of
classes, fields, methods, and other program elements.

There are three types of annotations in Java: Normal annotation, Marker an-
notation, and Single element annotation. A normal annotation specifies the
name of the annotation together with a list of key value pairs as follows:

1 @TypeName( key_1 = value_1, .., key_n = value_n )

The other two are short-hand versions of normal annotation, marker being
without a key-value pair list for example: @TypeName, and Single Element
Annotation takes only one value so the key is discarded: @TypeName(value).

There are some predefined annotations in the Java SE API. Some are used by
the compiler and some apply to other annotations. For example, the prede-
fined in the java.lang package are the following: @Override, @Deprecated, and
@SuppressWarnings.

Custom annotation processing was standardized in Java 6 through JSR269
with the purpose of making annotation processing simple and available to the
user through a standard Java API [16]. An annotation processor is just another
Java program running on the Java virtual machine (JVM). The processor class
has to implement the javax.annotation.processing interface and is run by the
compiler [17]. Since the introduction of annotation processing users have
been able to declare their own annotations. It is then necessary to create a
program that will be used to process these annotations during compile time.
This can for example be used to generate new source files and integrate user
code into third party frameworks. Many large scale industrial Java APIs such
as Java EE frameworks and JUnit are making heavy use of this [17, 18, 19].
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3. Technical Background

3.2.3 Python Abstract Syntax Tree Module

The documentation for the Python Abstract Syntax Tree module explains that
“The AST module helps Python applications to process trees of the Python
abstract syntax grammar” [20]. To extend the meaning of this: An abstract
syntax tree is generated from python source code [21]. This can then be used
to analyze and/or modify the source code. See section 3.2.1 for more informa-
tion on ASTs.

For example, if one has the given file called main.py detailed in listing 3.1.
This source code would be processed into an AST containing a root node for
the python Module, in this case named main [22]. This root node contains
a body element which lists all statement-nodes in given order. In main.py
the two statement-nodes would be, in order: An Assign node containing one
target node Name with id "a" and a value List node with three Num child
nodes (see figure 3.2). Another Assign node with one Subscript node as a
target and a Num node containing the integer 5 as the value to be assigned.
The Subscript node has two children, one Name node that is indexed by a Num
node representing the integer 0 (see figure 3.3).

Listing 3.1: main.py

1 a = [1,2,3]
2 a[0] = 5

Assign

value - List

target - Num 1 target - Num 2 target - Num 3

target - Name a

Figure 3.2: a = [1,2,3] processed into an AST

Assign

value - Num 5 target - Subscript

value - Name a slice - Num 0

Figure 3.3: a[0] = 5 processed into an AST
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3. Technical Background

The AST module contains two helper classes to traverse and visit nodes of
these trees. One is called NodeVisitor and this class visits nodes of the tree
without modifying it, this can be used to analyze the code structure without
accidental modification. The other is a subclass of NodeVisitor called Node-
Transformer that allows for modification of the tree on top of traversal.

3.3 Visualization Tools

This section briefly describes the technologies behind the visualization tools
which have been implemented for the framework.

3.3.1 JavaFX

JavaFX is a Java API for building applications of many different types. The li-
brary offers rich functionality for building applications swiftly and easily while
still providing a wide range of functionality. Among these are advanced 2D
and 3D transformations such as affine transformations, rotation and scaling.

JavaFX uses the Prism engine, which has pipelines to high-performance APIs
such as Direct3D and OpenGL. This allows JavaFX programs to render detailed
3D graphics in real time [23].

Our decision to use JavaFX was based on the the libraries’ powerful render-
ing capabilities and Java’s cross-platform support. The ability to deploy FX
applications on browsers may also prove useful in the future, though it is not
a concern at this stage.

3.4 Programming by Multiset Transformation

When learning programming it is a common issue that a programming lan-
guage also has to be learned. Learning technical details that is specific to the
language instead of focusing on the general concepts and ideas is not always
a fruitful endeavour. When learning programming it is thus important that
the language being learned is as easy and simple as possible, while still being
powerful. If the language fulfills these criteria it makes it a lot easier for the
student, not having to learn about an additional area.

Programming using multiset transformations was originally conceived of as a
concept in a paper written in 1993 [24]. The authors of the paper developed
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3. Technical Background

a language that they called GAMMA, allowing a user to express concepts and
algorithms using relatively pure mathematical notation.

One of the goals when programming with multiset transformations is to allow
the user to express algorithms and solve problems using a language that is
widely known and understood; mathematics. This allows a user to explore and
try out different algorithms and get an idea of how to solve a problem. This
solution can then be used as a tool and help when implementing a solution in
a language. This is a different way to express algorithms.

Programming with multisets is done using three different parts: the input, the
result and a conditional. The input specifies two sets which share the same
structure. The conditional is then applied to these two sets, either evaluating
to true or false. If the conditional evaluates to false nothing happens, if it
evaluates to true then the two input sets are removed and replaced by the
contents of result. Looking at listing 3.2, the input is two elements, m and n.
The output is m if the conditional is true, which it is if m is bigger or equal to
n. If we let arbitrary collisions occur between elements in the starting set, we
know that we will sooner or later end up with one element. This element will
have the property that it is the biggest of the original elements.

Listing 3.2: The "max" algorithm implemented using multiset transformation.

1 m, n -> m if m >= n

Programming with multiset transformations has several similarities with both
functional languages and parallel programming. By the very nature of an
algorithm written using multiset transformations it is capable of being run in
parallel. There is no determined sequential order that the algorithm processes
data in, this is useful as it among other things allows the user to avoid being
locked down in a style of thinking similar to that of imperative programming.
In fact, this was one of the goals and purposes when the original authors
conceived and developed programming using multiset transformations and
their implementation of it [24].
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4
Implementation

This chapter briefly describes how the different parts of the implementation
come together. The appendix contains more detailed descriptions of some
selected modules.

4.1 Implementation Overview

The implementation of the system can be separated into four major parts:

1. Programming Language Interface

2. Communication Contracts (PEL and IL)

3. Interpreter

4. Visualization Tool

Figure 4.1: System overview.

The programming language interface observes the execution of a program, re-
sulting in a log-file. This log-file is specified by the Communication Contract.
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4. Implementation

The Interpreter uses the contract to interpret the log-file. A Visualization Tool
is used to visualize an interpreted or uninterpreted log-file. Figure 4.1 sum-
marizes the relationships between these different modules.

4.2 Communication Contract

Communication
Contract

Program
Execution Log

Interpreter
Interpreted

Log

Figure 4.2: Communication Contract Overview. The Communication Con-
tract specifies the format of the logs. The Program Execution Log can be
interpreted into an Interpreted Log.

The Communication Contract specifies how the Programming Language Inter-
faces communicate with the Visualization Tools. This is done by specifying the
format of a log-file based on a set of rules. Programming Language Interfaces
generates this log-file from executed source code. This log can be visualized
by any visualization tool that uses the Communication Contract. Figure 4.2
gives an overview of the Communication Contract and what it specifies. The
components of this figure are explained further in this section.

There are two types of logs specified by the Communication Contract: The
Program Execution Log (PEL) and the Interpreted Log (IL), as seen in Figure
4.2. The PEL is generated by the programming language interfaces in the
form of a log-file. It stores the execution of a program as low-level operations.
These operations contain information about some statement in the program,
such as an assignment to a variable (see listing 4.1).

Listing 4.1: Example of a low-level operation

1 variable_x := 3

Metadata about the source code and the execution is also stored as a part
of the log-file. This is, for example, information about variables contained
within the logged operations. The log has been implemented using JSON (see
subsection 3.1.1 for more information about JSON).
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The IL is on the same format as the PEL, with some additional operations. It is
created by interpreting some of the low-level operations in a PEL and creating
operations of higher abstraction.

Listing 4.2: Three low-level operations creating a swap operation between x
and y.

1 swap :=
2 tmp := x
3 x := y
4 y := tmp

As an example, see listing 4.2. Here three sequential low-level operations form
a swap of two values. This is stored in the IL as a single operation "swap". For
more information about interpretation, see section 4.4.

To summarize: The Program Execution Log, or PEL, contains low-level oper-
ations capturing some statement in a program using a Programming Language
Interface. The Interpreted Log, or IL, contains both low-level operations and
operations of higher abstraction. These are created by grouping the low-level
operations together forming one operation, again see Listing 4.2 for an ex-
ample. The Communication Contract specifies what is contained within both
logs. The logs are implemented using JSON.

See the Operation section (B.4.1) of the Appendix for a detailed description of
the PEL and IL.

4.3 Programming Language Interfaces

Program execution must be logged without altering the original program. This
section explains how we have implemented our interfaces for creating a PEL,
specified by the Communication Contract (see section 4.2 for an explanation
of the Communication Contract), in Java and Python.

4.3.1 Java Interface

The Java Interface is built on the Java annotation processing API and consists
of three major parts:

1. A set of annotations (coding/prototyping)

2. Annotation processor (compile-time processing)
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3. Generated visualization classes (runt-time processing)

The interface between a user and a visualization is strictly through a set of
predefined annotations. This provides a simplistic and straightforward way
of prototyping visualizations from a Java program. Annotated programming
constructs are processed during compile-time and provides the API with in-
formation such as names and types of variables and data structure related
metadata. This information is used to generate visualization classes which are
the main program for generating a PEL of the program.

Because constructs in Java programs can take on a very complex behaviour
such as side effects when manipulating objects, the initial version of the API
can only handle primitive types and primitive type arrays. It will only be pos-
sible to visualize those constructs within a Java program.

The processing of a user program happens in three major stages: Annotation
processing, program parsing, and code generation and compiling. During the
annotation processing stage, annotated constructs are passed by the standard
Java processing API to the processor. The processor records information about
the constructs, such as identifiers, types and scope. This information is then
used during parsing.

In the second stage, all annotated classes are reloaded by the API. In this
stages we use a third party API called Java Parser to parse the source files and
generate an in-memory representation of the program Abstract Syntax Tree
(AST) [25].

In the third and final stage of the processing, the AST is traversed and manip-
ulated using information provided by the annotations. This is done to capture
the operations performed on the annotated constructs. After the entire AST
has been traversed, a new source file is generated from the AST and written
to the source folder alongside the original source files. The sources are then
picked up by the compiler and compiled to class files. These files are identical
to the originals, with four exceptions:

• Operations which access an annotated variable have been replaced with
method calls to record the operation.

• Additional dependencies relating to the methods logging these opera-
tions have been added.

• The files have been given the Visual suffix. For example, Main.java be-
comes MainVisual.java

• The annotations have been removed.
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To generate the PEL file, the user must run one of the newly generated Visual
files as opposed to the annotated originals. So, if a user has chosen to visualize
Main.java, she must run the MainVisual.java file for a PEL to be generated.

For this to work either one of the generated classes must have come from
an executable class in the original program, or the user invokes the classes
in some other way. If only a subset of all involved classes in a program are
annotated, the program will still work through the original classes, however
visualization data might be lost. Of course, this also means the user can choose
not to annotate classes which perform operations the user does not wish to
visualize.

The Java interface is made up of a set of two predefined annotations: @Visual-
ize and @VisualClass. Both have to be applied to the right constructs in order
to produce a meaningful visualization.

The @VisualClass annotation is applied to classes which are part of the vi-
sualization program. Classes annotated with @VisualClass will be picked up
by and processed by the annotation processor. Dependencies to this class
will also be swapped for the generated class in all parts of the visualization
program.

The @Visualize annotation is the most interesting one from a user perspec-
tive. It is applied to the constructs that a user want to visualize. Due to limi-
tations of the Java Annotation API, the annotation can only be applied to class
fields and method parameters. Constructs which are marked with @Visual-
ize are passed to the annotation processor and later tracked in the generated
visualization program.

The @Visualize annotation is applied in the following way:

1 @Visualize(abstractType = "some_type")

The annotation takes one argument where the user can define the abstract
type of the construct, for example array, matrix or tree.

4.3.2 Python Interface

The Interface in Python takes some user-specified settings as input and pro-
duces a PEL based on these settings. The settings used is specified by what is
called a Settings Variable. This variable contains the following:

• Root Directory of program

• Files to be observed
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• Variables to be observed

• A Main File or start-up script to be executed

• Output Destination the PEL file

The Root Directory contains all necessary files to run the program. Files con-
tain the code that should be observed and produce the PEL. For example, a
program with an observed file running a sorting algorithm would produce op-
erations in the PEL from statements executed by this algorithm. The Python
Interface will observe only statements containing Variables specified by the
user. These Variables must be contained within previously specified Files.

The Main File is the file that when compiled and run by the Python Interpreter
will run the user-program. An Output Destination is specified in the form of a
path to some directory in the users local environment.

Generation of the PEL uses a specified Settings Variable to copy the entire pro-
gram from given Root Directory and create a temporary environment which
will be used to generate a PEL. The general procedure is outline below:

1. Generation of Abstract Syntax Trees using AST module

2. Modify Abstract Syntax Trees and translating back into source code

3. Execution of modified user program resulting in a PEL

Files from Settings Variable is transformed into Abstract Syntax Trees. The
ASTs are traveresed and statements containing observed Variables are mod-
ified to generate an operation in the PEL. The trees are traversed and modi-
fied by using the Python Abstract Syntax Tree Module explained in subsection
3.2.3.

NodeTransformers called OperationTransformers are used for traversing and
finding statements that should be modified. They are modified in a way that
captures the execution of specific statements in a function call. These are
given here, function calls are within quotation marks:

• Write - an assignment, for example x := 1 translates to x := "write 1 to
x, return 1"

• Read - a read from a variable, for example if x = 1 translates to if "read
x, return x" = 1

• Pass - a reference to a variable is passed to a function parameter

ExpressionTransformers iterate through the found statements and translates
the expressions within into something that can be read by a function call cre-
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ated by OperationTransformers. The different expressions are detailed here:

• Name Node translates to (’var’, name of node, evaluated value (during
run-time) or ’Store’ if the node is the target of an assignment). For ex-
ample, variable a would become (’var’,’a’,a).

• Subscript translates to (’subscript’, list or dictionary, index1, ..., indexn).
For example, subscript to variable a with index 1 would become (’sub-
script’,a,1).

The modified ASTs are then translated back into source code and written to
the temporary environment (for more information on how the ASTs are trans-
lated to source code, see appendix C). When a program in this environment is
executed, a PEL is produced.

See figure 5.1 of the Results section (5.2) for an example of how the Python
Interface is used.

4.4 Interpreter

An Interpreter evaluates groups of primitive operations and attempts to con-
solidate them into higher abstraction level operations (see section B.4.9 of the
Appendix for more information about the Interpreted Log). Operation groups
are evaluated sequentially in the order in which they are received, generally
from a log file. Our implementation of interpretation works on a fixed number
of operations and cannot recognize patterns which are not explicitly tested
for.

For example, a loop which runs for n iterations and increments a variable by
one each time could not be consolidated, but it would be possible to detect
a loop which runs exactly k times, if a consolidation grammar was created
specifically for it. This behaviour also makes it unsuitable for interpreting
programs which has not yet finished executing. While possible, behaviour
may be erratic and the resulting visualisation will likely raise more questions
than it answers.

It is important to note that interpretation may not be perfect, with a possi-
bility of producing both false negatives and false positives depending on the
implementation. The Program Execution Log should always be considered the
authoritative party if the final state of a model subjected to a PEL and an IL
diverge.

21



4. Implementation

4.4.1 Example: Interpreting a Swap Operation

A swap is traditionally performed by storing the first operand in a temporary
variable, overwriting it with the the second operand, then transferring the first
operand from temporary storage to the second variable. This is summarized
in figure 4.3.

Figure 4.3: Interpretation of a Swap operation. Two elements in an array are
swapped using the temporary variable at the bottom.

Our implementation uses a kind of hypothesis testing, that is the program
makes a number of assumptions and then tests the veracity of these assump-
tions. If all tests pass, a Swap operation is constructed, replacing the original
operations.

The code snippet shown in listing 4.3 is the "hypothesis testing" part of the
consolidate operation in the Swap class. Checks for null pointers and so on
are done beforehand.
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Listing 4.3: Swap interpretation using "hypothesis testing".

1 Locator var1, tmp, var2;
2 // Operation 1: Set var1 -> tmp
3 var1 = rw0.getSource();
4 tmp = rw0.getTarget();
5 if (tmp.index != null) {
6 return null; // tmp should not be another array.
7 }
8 // Operation 2: x -> var1?
9 if (rw1.getTarget().equals(var1)) {

10 var2 = rw1.getSource(); // Set x = var2
11 } else {
12 return null;
13 }
14 // Operation 3: tmp -> var2?
15 if (!(rw2.getSource().equals(tmp) &&

rw2.getTarget().equals(var2))) {
16 return null;
17 }
18 //Create and return Swap operation..

4.5 Visualization Tools

This section goes through the visualization tools we have implemented. Two
tools have been developed, one made in Java as a desktop application and the
other was made using HTML5 and Javascript.

The desktop application is more sophisticated, with additional features aimed
at making the visualizations more engaging and easier to understand. It is
also capable of drawing some operation types (such as Swap) that the web
version does handle. Finally, only the Java version does animation.

4.5.1 Desktop Visualization

The desktop application is based on JavaFX, the spiritual successor to Swing.
FX was chosen primarily because it is easy to use, and while performance
is not good enough for heavy duty 3D work (though JavaFX performance is
generally much better than Swing) it was assumed this would not be an issue
with the type of drawing for which the framework will be used. In addition,
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JavaFX applications have the capability of being deployed on the web. This is
not something we’re planning to do in the near future, but may be done in the
future.

The guiding principle when creating animations is that they should make it as
easy as possible for the user to understand what the program which produced
the log is doing. This is primarily achieved using animation. For example, a
Swap operation might be visualised by the two elements moving across the
screen until they’ve reached their destination. This is shown in figure 4.4.

Figure 4.4: A Swap being performed on a K-Tree (with K=2) implemented
using an array. The elements are traversing the canvas to reach their target
locations ([1] and [13]) in the tree.

The nodes in the tree have been scaled according to their value relative to the
other elements. In figure 4.4, the largest element, having a value of ten, is
twice the radius of the smallest elements at zero. Both animation and relative
node sizes can be turned on and off at will.

4.5.2 Web Visualization

The web-based visualization tool was created in HTML5 in combination with
the three.js JavaScript 3D Library. HTML5 applications make great consumers
as well as producers of the communication contract because it is implemented
in JSON, which is basic JavaScript object notation. Due to the vast variety of
graphics APIs, HTML5 is a powerful technology to building visualization tools
on. Most modern visualization tools are now being developed as HTML5 or
other types of web applications [4, 6].

We have made the web interface as simple as possible, only focusing essential
details. The only initial functionality provided to the user, is uploading files in
a drag and drop manner.
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Because of the wide support of graphics in HTML5, 2D as well as 3D visual-
izations are possible in the web tool.

4.6 Programming by Multiset Transformation

We feel confident in the system we have built. However, it does require a
fair amount of programming knowledge. As a bit of a sidetrack we decided to
build a standalone application that had basic support for programming with
multiset transformations. Our implementation allows a user to visualize basic
algorithms without a need for any programming languages. All that is required
by the user is some basic knowledge of mathematics.

There is a stark difference between the programming with these multiset
transformations and programming using the Java language. Especially as a
beginner programmer there is a lot of terms, concepts and ideas around the
Java language that need to be learned. In comparison, with Multiset pro-
gramming there is very few concepts, and those that need to be learned are
expressed in a language that is already known.

When using what we refer to as the multiset program, the user is required to
fill in four fields before a simulation can be started. We call these fields: input,
output, conditional, and range. The purpose of range is to allow the user to
define the ranges that define how values are generated. The input, output and
conditional fields are three different split up parts of the

In order to visualize the multiset transformations we have a visualization
where each entry in the starting set is represented by a ball. It was inspired
and is very similar to a type of visualization done in chemistry when modelling
chemical reactions [26]. Whenever two balls collide, we solve the collision and
then send the two balls as entry values to the multiset representation. The
multiset transformation returns any elements to be kept, and any balls not re-
turned in this way will be removed from the visualization. The implementation
supports basic simple comparisons in the conditional such as "greater than",
"equals" etc. The visualization of the balls is done on a canvas in JavaFX, the
balls are modelled using simple physics based collision calculations. At start
each element (or ball) recieves a random movement vector at their preset po-
sitions, independent of the values of any elements contained within the ball.
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Results

We have created a framework which combines AV and PV and is capable of
producing visualizations from programs implemented in Java or Python. The
way the framework has been constructed, it is possible to add interfaces for
additional programming languages. This enables users to easily visualize an
algorithm implementation using familiar constructs within the programming
language of choice. Users work in their own environment, keeping their pro-
grams and dependencies intact. The Java and Python interfaces produces ex-
ecution logs of annotated programs. These logs can in turn be consumed and
visualized by any visualization tool within the framework, regardless of their
implementation language. This enables easy visualization of the user’s own
code at a variety of abstraction levels using different visualization tools.

5.1 Java Interface

The Java interface enables users to visualize an algorithm implementation us-
ing annotations within the Java language. Because of the common occurrence
of annotations, users familiar with the language are able to quickly adopt the
interface. Listing 5.1 shows an example of an annotated Java program. Here
the class as well as the parameter "intArray" in the sort function have been
annotated. The user have chosen to visualize the parameter as an array by
passing a string to the @Visualize annotation.

26



5. Results

Listing 5.1: An annotated bubble sort implementation in Java

1

2 @VisualClass
3 public class BubbleSort {
4

5 public static void sort(
6 @Visualize(abstractType="array") int intArray[]) {
7 ...
8 }
9

10 public static void main(String [] args){
11 sort(new int []{1,5,9,11,5,8,3,14,4});
12 }
13 }
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5.2 Python Interface

from context import sample
from sample import pylogger
from os . path import abspath

i f __name__ == ’__main__ ’ :
# API for create_settings and Variable needed
# to create PEL.
#
# pylogger . create_settings Parameters
# root_directory , − root directory of program
# fi les , − f i l e s to observe
# variables , − variables to observe
# main_file , − main f i l e of program
# output − where to wite PEL output
# pylogger . Variable Constructor
# name, − name of variable
# rawType, − type of variable
# attributes=None,
# abstractType=None
settings = pylogger . create_settings (

abspath( ’ . / test ’ ) ,
[ ’ /main.py ’ ] ,
sample . pylogger . Variable ( ’array ’ , ’ l i s t ’ , attributes={’ size ’ : [10]}) ,
’ /main.py ’ ,
abspath( ’ . / test ’ )

)
pylogger . run( settings )

Figure 5.1: Wrapper script for example-program located in /test

Usage of the resulting python interface is shown in Figure 5.1. This wrapper
script creates a settings variable by calling create_settings supplied by the py-
logger module. Then it uses the run method to generate a PEL file in specified
output-folder based on the other paramters given about the source code. For
a more detailed explanation of the settings variable, see subsection 4.3.2.
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Figure 5.2: Image of pylogger wrapper gui, containing a fully specified set-
tings variable

A prototype of a GUI wrapping the pylogger-module is shown in Figure 5.2. To
the right all parameters of a settings variable has been specified for a program
called quicksort.py. The program is contained within the directory quicksort.
One variable is observed, called "lst" of type array. The output location is
specified to a folder called output.

The interface is fully operational, however, user-interaction has not been taken
into full consideration. The prototype exemplifies how usage of the pylogger
module could be simplified over the script written in figure 5.1.
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5.3 Desktop Visualization

The visualization module for the desktop is built on JavaFX. Figure 5.3 shows
the animation of a read operation without a target. Node sizes have been set
relative the other elements in the data structure. In the picture, the largest
element is twice the size of the smallest element. This can be turned on and
off, just like animation.

Figure 5.3: A Read operation without a target being visualized in the desktop
application. The animated element will slowly shrink and fade until it is no
longer visible.

Data structures can be scaled and moved where ever the user prefer them to
be, or she may let the program place the visualizations for her. Two minimized
data structures are visible in the upper right corner. To the right is a control
panel, along with an operation queue. The operation which is currently being
animated has been highlighted by the program. The blue filling of the play/-
pause button indicates the time left until the next operation, while the one
below it indicates overall model progression. The slider is used to set auto-
matic playback pace; it has been turned all the way down to make it easier to
take screenshots of the animation.
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5.4 Web Visualization

Figure 5.4: Breadth First Search visualized with the web application.

We have implemented a visualization applet for the web which is shown in
figure 5.4. The component to the left is the source code and controls used to
control model progression. In the middle column the array that contains the
resulting path of the algorithm is displayed. To the right the graph is drawn
with current path is represented by lines between the nodes.
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5.5 Multiset Implementation

We have built a standalone application that serves as a prototype of program-
ming using multiset transformations (see figure 5.5). It is a rather rudimentary
implementation, but it serves as a proof of concept giving the user an idea of
the possibilities. It is possible for the user to implement and define simple
algorithms such as Max, Min, Primes etc. While more advanced algorithms
such as sorting is currently unavailable. The application has several different
examples that can be loaded, to help the user understand how the application
is used.

Figure 5.5: Programming using multiset transformations visualized as mov-
ing balls in our standalone application. The image shows an algorithm that
finds every prime number between 2 and 10.
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5.6 User Evaluation

We have performed small-scale summative testing of our framework on stu-
dents within computer science. This included that subjects got to compare
our tool to Python Tutor. We found that subjects preferred our framework
over Python Tutor.

Working with python Tutor, subjects often experienced build failures. This was
mainly due to lost dependencies or constraints imposed by the foreign system.
Subjects often had a hard time understanding and fixing the errors because of
their unusual character. Examples of these error are shown in Figure 5.6

(a) Timeout Error in Python Tutor. (b) Unknown Error in Python Tutor.

Figure 5.6: Examples of errors encountered in Python Tutor.

Subjects also found visualizations with a higher level of abstraction easier
to understand with our framework. Python Tutor, as most other PV tools,
provides a very low level of abstraction. This is a good way to describe the
inner workings of the program, but not always the algorithm. Subjects were
able to see the different values of all variables for each step of the algorithm
in Python Tutor. They were however unable to determine what an algorithm
was actually doing. Important changes were often lost in the mist of detail.

Using our framework, it is possible to choose which variables to visualize in a
program as well as how they should be visualized. This can be exemplified by
comparing the representation of a bubblesort in Figure 5.7 and Figure 5.8 and
a Knapsack implementation in Figure 5.9 and 5.10. The Python Tutor versions
are shown in Figures 5.7 and 5.9. Our web-based bubblesort visualization
is shown in Figure 5.8 and our desktop application knapsack visualization is
shown in Figure 5.10.
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Figure 5.7: Bubble sort implementation visualized in Python Tutor.

Figure 5.8: Bubble sort implementation visualized in our web based visual-
ization module.
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Figure 5.9: Knapsack implementation visualized in Python Tutor.

Figure 5.10: Knapsack implementation visualized in an early version of our
desktop based visualization module.
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6
Discussion

This chapter discusses the results of the project with regard to what has been
done but also what can be done. First topic is a comparison of our results to
what already exists within the field. Then, current issues and various possible
extensions are presented. Lastly, a short conclusion.

6.1 Comparison With Other Visualization Tools

There already exists a lot of visualization tools. What we felt was lacking
among those tools was a solid connection between the abstract concepts and
the practical implementation. Our framework can, given any source code,
create a customizable visualization of a program with minor to no modification
of the original source files.

Pure AV tools are capable of explaining the different steps of an algorithm to a
degree that our tool cannot. We receive very little information about what the
visualized algorithm is supposed to do beforehand. Because of this its hard to
predict how to best visualize the algorithm; that decision is left to the user.

However, this is an effect of what we wanted to create: A combination of AV
and PV, user code visualized with little effort by the user. An abstract and pure
AV say nothing about what the users code does, only what it should do. PV
has a heavy reliance on the user code and presents little abstraction of the
execution, aiming to be as exact as possible.

6.2 Issues

While we think that our system fills a needed niche in the visualization toolkit
there are several issues with the system that we have found. Some of these
issues are impossible to solve without making major changes to the system
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architecture itself.

When we started implementing the multiset we quickly realised that using
the communication contract for this feature was almost completely pointless.
The log does not have the capacity to handle stochastic algorithms in a good
way. We can save runs of the algorithm, but when the user wants to run the
same algorithm again there is a lot of overhead for what should be a simple
process. Because of these issues our implementation of multiset programming
is built directly into the Java application. We’ve also had discussions if it would
not be better to make the multiset application into a completely standalone
application.

Another issue is the fact that currently there are several steps that need to be
taken before a visualization appears. This is a problem since it breaks up the
flow of the programmer and causes a loss in productivity [27]. However, some
of the possible extensions that we suggest in the next section could solve this
issue.

6.3 Possible Extensions

These are possible extensions we would attempt to make if given more time.
They are generally focused on making our framework smarter and more com-
petent at predicting and interpreting what is happening in the execution.

6.3.1 Interface Extensions

One possible extension is to let the user specify what algorithm she has imple-
mented and provide information about the different components. For example,
lets say a person called Lisa has implemented a quicksort as shown in Listing
6.1. She can then tell the interface that the variable on line 10 is the pivot and
should be visualized as such by creating annotations as shown on lines 8 and 9.
This gives the visualization more parameters to specialize the representation
of the execution.

Listing 6.1: Implementation of Quicksort with suggested extended Java an-
notations.

1
2 @Algorithm( "quick sort " )
3 @VisualClass
4 public class QuickSort {
5
6 public void quickSort ( ) {
7 . . .
8 @Component( "pivot " )
9 @Visualize (abstractType="variable " )

10 int pivot = arr [middle ] ;
11 . . .
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12 }
13 }

6.3.2 Adding New Programming Language Interfaces

At the moment, only Java and Python is in any way supported. Because the
number of supported languages is an important metric for us, we would prior-
itize wide-spread languages like Ruby and C++.

6.3.3 Observing Objects

For both Java and Python, only primitives and primitive type arrays can be
observed. We wish to build on the current implementations to be able to watch
objects as well. At a minimum, we would like to be able to observe common,
standardized data structures such as array lists in Java.

This is important since most data structures are baked into bigger classes as
per object oriented programming.

6.3.4 Interpreter Development

The current iteration of our Interpreter is only capable of recognizing one type
of operation — the Swap. We would like to add more high level operations,
such as Zig and Zag for Splay Trees.

This is a crucial part of making the visualizations more abstract. Given that
a broad array of these higher-level operations could be found in the PEL, our
tool would be well on the way to creating intuitive visualizations.

Once the Interpreter can detect operations such as ZigZig, we can let the user
mark sections of the original source as part of a ZigZig. We can then compare
the users implementation of the operation to a correctly implemented one,
showing them where they went wrong or just how it can be done in a different
way.

6.3.5 Networking and Algorithm Sharing

Allowing users to share and upload their visualized algorithms, would have
big use cases and possibilities. You could easily create a competition or ask
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students to send in interesting visualizations. It could be used to allow teach-
ers and assistants to more easily help students that have gotten stuck on their
assignment. It would also help assistants that grade and correct assignments
in programming courses.

6.3.6 Concurrent And Parallel Algorithms

Operation recording is strictly sequential. We would like to build on the oper-
ation body to allow execution and visualisation of multiple operations at once.
If two operations were executed at the same time they should be visualized
as such. In doing so, more interesting and informative visual properties are
achieved.

Once we know the logical order in which operation should be executed, we
can compare program execution flows. For example, a student trying to im-
plement bubble sort could compare her own implementation to a correctly
implemented bubble sort to see where theirs differ.

6.3.7 Programming With Multisets

The implementation of multiset is rather basic and lacks several important
features that a complete implementation should have. The most important of
these lacking features is probably the ability for each element to be a set con-
taining an undefined amount of variables. Currently, each element can only
consist of one variable, which prevents us from implementing more advanced
algorithms such as sorting. The system should also be able to accept more
complex and advanced conditionals, comparing multiple different values and
linking different statements together using boolean logic. With these features
we believe that the multiset part of our implementation could be used with
great effect in getting students of programming interested in the field of algo-
rithms. Our implementation is considerably less capable than to the GAMMA
implementation which the original multiset concept supplied [24]. This is, in
part, intentional as GAMMA focused on a variety of languages while our focus
has been ease of use and quickly producing visualizations.

For example, a program that finds all primes between 2 and a finite number is
implemented with both multiset and Java (see listing 6.2 and 6.3, respectively).
When comparing these two implementations, multiset has a clear advantage in
terms of readability; especially for persons who are more familiar with mathe-
matics than imperative languages. However, the comparison is not completely
fair as the Java program can be simplified or use another algorithm.
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Listing 6.2: An example algorithm for finding prime numbers implemented
using multiset transformation. Note that this implementation needs a set of
numbers from 2 to b, where b is an integer.

1 m, n -> m if n % m = 0

Listing 6.3: A program for finding prime numbers from 2 to and including n,
implemented in Java.

1 import java.util.*;
2

3 public class Sieve {
4 /**
5 * Calculate all primes in [2, n].
6 */
7 public static List<Integer> sieve (int n) {
8 // Generate interval numbers.
9 List<Integer> numbers = new ArrayList<Integer>();

10 for (int i = 2; i <= n; i++) {
11 numbers.add(i);
12 }
13

14 // Sieve for primes.
15 List<Integer> primes = new ArrayList<Integer>();
16 numbersLoop: for (Integer candidate : numbers) {
17 for (int i = 2; i < candidate; i++) {
18 if (candidate % i == 0) {
19 continue numbersLoop; // Candidate non-prime.
20 }
21 }
22 primes.add(candidate); // Found a prime!
23 }
24

25 return primes;
26 }
27 }

6.3.8 Integration with IDE

Our system currently suffers from the issue that there is a significant delay
between writing code and being able to see the result of this code in a visual-
ization. If the system was adapted into a plugin for popular IDEs it would allow
a more seamless experience. When programming it is important to have a fast
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and quick feedback loop, allowing the user to quickly iterate and experiment
without having to wait [27].

6.4 Closing Thoughts

If we want our tool to be competitive we need to further develop it in the
areas discussed in the previous section. But it serves as a proof of concept
of what can be done. A more fleshed out interpreter could lead to powerful
visualizations with little effort required by the user. Our assessment, based on
what we have seen in the current field, is that something like our tool is what
needs to be done if AV and PV are to become mainstream in computer science
education.
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A
Supporting Library

This appendix briefly describes the contents of our Java supporting library.

A.1 Log Stream Manager (input/output)

The LogStreamManager class provides methods for producing and intercept-
ing data streams produced by the various components of this project. Data
sent is assumed to be on either a JSON or native (serialized Java objects) for-
mat. The class also reads and writes log files. It is used by both the Java and
Python interceptors to stream data to the desktop based visualization, as well
as in the visualization module itself.

The class provides methods to stream strings, used primarily when using the
manager with languages other than Java, or members of the wrapper package
(see A.2).

A.2 Wrapper (Communication Contract Java Im-

plementation)

The Wrapper package is our Java implementation of the contract. It is used
by the LogStreamManager class as well as by the desktop based visualization.
Most fields are implemented using enumeration rather than strings to make
it easier to use, as well as wrapping additional data about what the different
enumerated values.
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B
Communication Contract

This appendix specifies what fields are defined by the contract and how they
are used. It is intended for persons who wish to implement the contract them-
selves. Please note this specification is not yet final.

B.1 Introduction

All data is encoded using JavaScript Object Notation (JSON). JSON does not
require any white spaces or line breaks, these are included to increase human
readability.

B.1.1 How To Read the Specification

All field names are written with lower case letters. Names and field values are
case sensitive. The log files use standard JSON notation.

B.1.2 Mandatory fields

Field names in bold must be included (non-null).

B.1.3 Specific Format

Some fields require values on a special format. These are referenced by the
"<>" tags. For example, <Header> refers to data on the Header (see B.3)
format.
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B.1.4 Whitelisted Values

The ’|’ character indicates that one of the declared options must be chosen.
For example,

1 "visual": "box" | "bar" | "tree"

indicates that the visual field must contain a String with the value "box", "bar",
or "tree".

If the field name is bolded, unlike our example here, the field must be present
and non-null. Otherwise it may contain one of the permitted values, null, or it
may be excluded entirely.

B.2 Root

This is the top-level object for the serialized log. The header contains infor-
mation about version, variables etc. The body contains a list of Operation (see
B.4.1) items.

Note especially that neither the header nor the body are required. That is, you
can parse a log file with no data at all. This is especially useful when streaming
operations as soon as they are produced. Including a complete header every
time a single operation is streamed is, in fact, strongly discouraged. This is
because the header will likely be several times larger than the operation itself,
causing vast amounts of useless overhead to be sent.

1 {
2 "header":<Header>,
3 "body":<Body>
4 }

B.3 Header

The header contains basic information about the contents of the log.

1 {
2 "version":<int>,
3 "annotatedVariables": Map(<AnnotatedVariable.identifier>,

<AnnotatedVariable>),
4 "sources": Map<String, List(String))
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5 }

B.3.1 Version

The version is an integer which denotes version number for the IO-file. It is
included to ensure the file is parsed correctly, as field names and values may
differ between versions.

B.3.2 Sources

Sources are source files stored in a Map. The key is the name of the source
file, the value is a list of strings containing the lines of the source code. The
Example section (B.5) demonstrates sources and their use by the Operation
object class.

B.3.3 annotatedVariables

An Annotated Variable is a data structure which is to be drawn when visualis-
ing. An undeclared data structure may still be part of an operation, however
the operation may be rendered differently than intended, or not at all.

1 {
2 "identifier":<String>,
3 "rawType": "array" | "independentElement"
4 "abstractType": "tree"
5 "visual": "box" | "bar" | "tree"
6 "attributes": Map(String, Object)
7 }

B.3.4 Identifier

The literal name of the data structure. For example, the declaration

1 int myVar = 1337

would result an an Annotated Variable with identifier myVar, if it were ob-
served. The value cannot be stored in the Annotated Variable itself. Instead,
an operation is used to initialise the value. Identifiers must be unique.
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B.3.5 Raw Type

The Raw Type indicates the actual type of the data structure. This determines
how the structure is parsed and how it may be accessed when applying Oper-
ations to the data structure.

Permitted values: "array" | "independentElement"

B.3.6 Abstract Type

The Abstract Type determines the logical view of the data structure. For ex-
ample, a binary tree implemented using an array would have "rawType" set to
"array" and "abstractType" set to "tree".

B.3.7 Visual

Determines how the data structure is drawn. If null or unknown, the default
visual for the Raw Type will be used.

Permitted values: "box" | "bar" | "tree"

B.3.8 Attributes

The Attributes field contains meta data for the data structure, generally out
of convenience. Currently, the only value for this field is the "size" field, indi-
cating the length of arrays. For example, the data structure generated when
observing int[][] myVar = new int[4][2] would declare "size": [4, 2].

B.4 Body

The body is a list containing Operation items. These can be executed by the
visualizer by applying them to the affected Annotated Variable(s) declared in
the header.
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B.4.1 Operation

An operation is typically a function which is applied to one or several Anno-
tated Variables to drive the visualisation forward. A notable exception is the
Message operation, which simply displays a text message.

The Operation object class contains the following fields:

1 {
2 "operation":<String>,
3 "source": <String>
4 "beginLine": <int>,
5 "endLine": <int>,
6 "beginColumn": <int>,
7 "endColumn": <int>,
8 "operationBody": Map(String, List<Number> | <Locator>)
9 }

B.4.2 Operation Body

The Operation Body is a map containg the Locators, specifying affected ele-
ments and data structures, and the value which was the result of the operation
(if applicable). The value is always identified by the "value" key. The value is
a list of doubles, though there is only one element present in most cases.

See also: Locator (B.4.3).

B.4.3 Locator

This object is used by operations to identify an element in a specific data
structure. In some cases, a Locator which specifies an identifier but not an
index will apply the operation to the entire data structure.

The keys for the Locators vary depending on the operation type. However,
most operations use the keys "source" and "target".

See also: Operation Body (B.4.2).

1 {
2 "identifier": <String>,
3 "index": List(int)
4 }
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B.4.4 Source Code References

These fields indiciate the source file and lines/columns which produced this
Operation. Note that line numbers and columns begin counting at one, not
zero.

The fields beginLine, endLine, beginColumn and endColumn are ignored if
source is null.

The beginLine is considered the master value, meaning endLine, beginColumn
and endColumn are ignored if beginLine is set to -1.

If the beginColumn and endColumn are set to -1, all rows specified by the
[beginLine, endLine] interval will be highlighted. Note also that beginLine
will always result in a row highlighting unless it is set to -1.

B.4.5 Atomic Operations

These are the operation types which programming language interfaces are
expected to be capable of producing. Simply producing read and write opera-
tions would be enough for most applications though.

B.4.6 Read

The Read operations sets the value of the target element to the value supplied
by the operation. This should be the same value as the value of the element
identifier of the "source" Locator in a correctly implemented IO, but no such
correcting checking is performed.

1 {
2 "operation": "read",
3 "source": <String>
4 "beginLine": <int>,
5 "endLine": <int>,
6 "beginColumn": <int>,
7 "endColumn": <int>,
8 "operationBody": {
9 "source": <Locator>,

10 "target": <Locator>,
11 "value": List<Number>
12 }
13 }
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B.4.7 Write

The Write operation sets the value of the target element to the value supplied
by the operation. This should be the same value as the value of the element
identifier of the "source" Locator in a correctly implemented IO, but no such
correcting checking is performed.

1 {
2 "operation": "write",
3 "source": <String>
4 "beginLine": <int>,
5 "endLine": <int>,
6 "beginColumn": <int>,
7 "endColumn": <int>,
8 "operationBody": {
9 "source": <Locator>,

10 "target": <Locator>,
11 "value": List<Number>
12 }
13 }

B.4.8 Message

The Message operation prints a text message.

1 {
2 "operation": "message",
3 "source": <String>
4 "beginLine": <int>,
5 "endLine": <int>,
6 "beginColumn": <int>,
7 "endColumn": <int>,
8 "operationBody": {
9 "value": <String>

10 }
11 }

B.4.9 Interpreted Operations

Interpreted operations are operations consisting of several Read and Write
operations. They can be constructed by an Interpreter (see 4.4) in a voluntary
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step before visualizing program execution.

B.4.9.1 Swap

A Swap changes the values of the two variables identified by var1 and var2.
The value field denote the values of var1 and var2 after the Swap has been
completed. Not especially that both var1 and var2 must be present.

1 {
2 "operation": "swap",
3 "source": <String>
4 "beginLine": <int>,
5 "endLine": <int>,
6 "beginColumn": <int>,
7 "endColumn": <int>,
8 "operationBody": {
9 "var1": <Locator>,

10 "var2": <Locator>,
11 "value": [Number, Number]
12 }
13 }

B.5 Example

The following is a simple example showing the Read, Write, Message, and
Swap operations. You may copy and paste the contents into a file called "some-
thing.json" and load it into a visualizer to render it.

1 {
2 "header": {
3 "version": 0,
4 "annotatedVariables": {
5 "myArray": {
6 "identifier": "myArray",
7 "rawType": "array",
8 "attributes": {
9 "size": [2, 3]

10 }
11 },
12 "myTempVar": {
13 "identifier": "myTempVar",
14 "rawType": "independentElement",
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15 "attributes": {}
16 }
17 },
18 "sources": {
19 "Composite.psuedo": [
20 "SWAP: myArray[0, 2] <-> myTempVar"
21 ],
22 "Atomic.psuedo": [
23 "WRITE: myArray <- [0, 0, 0, 1, 1, 1]",
24 "READ: myArray[0, 2] -> myTempVar",
25 "MESSAGE: \"JavaFX is the future!\"",
26 "REMOVE: myArray[1, 1]"
27 ]
28 }
29 },
30 "body": [{
31 "operation": "write",
32 "operationBody": {
33 "value": [
34 [0, 0, 0],
35 [1, 1, 1]
36 ],
37 "target": {
38 "identifier": "myArray"
39 }
40 },
41 "source": "Atomic.psuedo",
42 "beginLine": 1,
43 "endLine": 1,
44 "beginColumn": -1,
45 "endColumn": -1
46 }, {
47 "operation": "read",
48 "operationBody": {
49 "value": [0],
50 "source": {
51 "identifier": "myArray",
52 "index": [0, 2]
53 },
54 "target": {
55 "identifier": "myTempVar"
56 }
57 },
58 "source": "Atomic.psuedo",
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59 "beginLine": 2,
60 "endLine": 2,
61 "beginColumn": -1,
62 "endColumn": -1
63 }, {
64 "operation": "message",
65 "operationBody": {
66 "value": "JavaFX is the future!"
67 },
68 "source": "Atomic.psuedo",
69 "beginLine": 3,
70 "endLine": 3,
71 "beginColumn": -1,
72 "endColumn": -1
73 }, {
74 "operation": "swap",
75 "operationBody": {
76 "var1": {
77 "identifier": "myArray",
78 "index": [1, 2]
79 },
80 "var2": {
81 "identifier": "myTempVar"
82 },
83 "value": [0, 1]
84 },
85 "source": "Composite.psuedo",
86 "beginLine": 1,
87 "endLine": 1,
88 "beginColumn": -1,
89 "endColumn": -1
90 }, {
91 "operation": "remove",
92 "operationBody": {
93 "target": {
94 "identifier": "myArray",
95 "index": [1, 1]
96 }
97 },
98 "source": "Atomic.psuedo",
99 "beginLine": 4,

100 "endLine": 4,
101 "beginColumn": -1,
102 "endColumn": -1
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103 }]
104 }

XII



C
Codegen

The codegen module is an open-source project aimed to complement the na-
tive AST module in python. It takes an AST node and converts it back into the
source code as a string. This string can in turn be written to a file, generating
a file that can be run by the python interpreter [28].

It does this by visiting each node of the AST and by building a string buffer
based on the type of node and its children. A Name node would for example
appended to the buffer as its id. The indentation level is kept track of and is
increased as nodes such as function definitions are visited.

The end result is a string object containing source code parsed from the AST.
This string can now be written to a file as is or compiled and executed by
native provided functions.
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