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CDS INDEX OPTIONS UNDER INCOMPLETE INFORMATION

ALEXANDER HERBERTSSON AND RÜDIGER FREY

Abstract. We derive practical formulas for CDS index spreads in a credit risk model under
incomplete information. The factor process driving the default intensities is not directly
observable, and the filtering model of Frey & Schmidt (2012) is used as our setup. In this
framework we find a computationally tractable expressions for the payoff of a CDS index
option which naturally includes the so-called armageddon correction. A lower bound for
the price of the CDS index option is derived and we provide explicit conditions on the
strike spread for which this inequality becomes an equality. The bound is computationally
feasible and do not depend the noise parameters in the filtering model. We outline how to
explicitly compute the quantities involved in the lower bound for the price of the credit index
option as well as implement and calibrate this model to market data. A numerical study is
performed where we show that the lower bound in our model can be several hundred percent
bigger compared with models which assume that the CDS index spreads follows a log-normal
process. Also a systematic study is performed in order to understand the impact of various
model parameters on CDS index options (and on the index itself).

Keywords: Credit risk; CDS index; CDS index options; intensity-based models; depen-
dence modelling; incomplete information; nonlinear filtering; numerical methods

JEL Classification: G33; G13; C02; C63; G32.

1. Introduction

The development of liquid markets for synthetic credit index products such as CDS index
swaps has led to the creation of derivatives on these products, most notably credit index
options, sometimes also denoted CDS index options. Essentially the owner of such an option
has the right to enter at the maturity date of the option into a protection buyer position in
a swap on the underlying CDS index at a prespecified spread; moreover, upon exercise he
obtains the cumulative loss of the index portfolio up to the maturity of the option. Credit
index options have gained a lot interest the last turbulent years since they allow investors to
hedge themselves against broad movements of CDS index spreads or to trade credit volatility.

To date the pricing and the hedging of these options is largely an unresolved problem.
In practice this contract is priced by a fairly ad hoc approach: it is assumed that the loss-
adjusted spread of the CDS index at the maturity of the option is lognormally distributed
under a martingale measure corresponding to a suitable numeraire, and the price of the
option is then computed via the Black formula. Details are described for instance in Morini
& Brigo (2011) or Rutkowski & Armstrong (2009). However, beyond convenience there is
no justification for the lognormality assumption in the literature. In particular, it is unclear
if a dynamic model for the evolution of spreads and credit losses can be constructed that
supports the lognormality assumption and the use of the Black formula, and there is no
empirical justification for this assumption either.
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Jan Wallanders and Tom Hedelius Foundation and by Vinnova.
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2 ALEXANDER HERBERTSSON AND RÜDIGER FREY

In this paper we therefore propose a different route for pricing and hedging credit index
options, which is based on a full dynamic credit risk model. We use a new, information-
based approach to credit risk modelling proposed in Frey & Schmidt (2012) where prices of
traded credit derivatives are given by the solution of a nonlinear filtering problem. Frey &
Schmidt (2012) solve this problem using the innovations approach to nonlinear filtering and
derive in particular the Kushner-Stratonovich SDE describing the dynamics of the filtering
probabilities. Moreover, they give interesting theoretical results on the dynamics of the credit
spreads and on risk minimizing hedging strategies.

Our paper use the filtering model of Frey & Schmidt (2012) in order to derive computa-
tionally practical formulas for a CDS index under the market filtration. The market filtration
represents incomplete information since the background factor process driving the default
intensities is observed with noise. Furthermore, in this model we derive computationally
tractable formula for the payoff of a CDS index option. The formula naturally includes the
so-called armageddon correction and is obtained without introducing a change of pricing
measure, which is the case in the previous literature, see e.g. in Morini & Brigo (2011) or
Rutkowski & Armstrong (2009). We also derive a lower bound for price of the CDS index
option and provide explicit conditions on the strike spread for which this inequality becomes
an equality. The lower bound is computationally tractable and do not depend on any of
the noise parameters in the filtering model. We then outline how to explicitly compute the
quantities involved in the lower bound for the price of the credit index option. Furthermore, a
systematic study is performed in order to understand the impact of various model parameters
on these index options (and on the index itself).

Options on a CDS index have been studied in for example Pedersen (2003), Jackson (2005),
Liu & Jäckel (2005), Doctor & Goulden (2007), Rutkowski & Armstrong (2009), Morini &
Brigo (2011), Flesaker, Nayakkankuppam & Shkurko (2011) and Martin (2012). In all of
these papers it is assumed that either the CDS index spread or the so called loss-adjusted
CDS index spread at the maturity of the option is lognormally distributed under a martingale
measure corresponding to a suitable numeraire, and the price of the option is then computed
via the Black formula. For a nice and compact overview of some of the above mentioned
papers, see pp.577-579 in Morini & Brigo (2011).

The idea of using filtering techniques in credit risk modelling to price credit derivatives and
defaultable bonds is not new. For example, Capponi & Cvitanic (2009) develops a structural
credit risk framework which models the deliberate misreporting by insiders in the firm. In
this setting the authors derive formulas for bond and stock prices which lead to a non-linear
filtering model. The model is calibrated with Kalman filtering and maximum likelihood
methods. The authors then apply their setup to the Parmalat-case and the parameters are
calibrated against real data.

The paper Fontana & Runggaldier (2010) considers an intensity based credit risk model
where default intensities and interest rates are driven by a partly unobservable factor process.
In this setup they state formulas for contingent claims given the filtration generated by the
unobservable factor process and the default times. The authors then derive a nonlinear filter
system describing the dynamics of the filtering distribution which is needed for pricing the
derivatives in their framework. The parameters in the model are obtained via an expected
maximum (EM) algorithm which includes solving the nonlinear filter system by using the
extended Kalman filter and a linearization of the framework. The model and estimation
method is applied on simulated data with successful results.
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In Frey & Runggaldier (2010) the authors develops a mathematical framework for handling
filtering problems in reduced-form credit risk models.

The rest of the paper is organized as follows. First, in Section 2 we give a brief introduction
to how a CDS index works and then present a model independent expression for the so called
CDS index spread. Section 2 also introduces options on the CDS index and provides a formula
for the payoff such an option which holds for any framework modelling the dynamics of the
default times in the underlying credit portfolio. Then, in Section 3 we briefly describe the
model used in this paper, originally presented in Frey & Schmidt (2012). Section 4 gives
a short recapitulation of the the Kushner-Stratonovich SDE describing the dynamics of the
filtering probabilities in the models, where we in particular focus on a homogeneous portfolio.
Next, Section 5 describes the main building blocks that will be necessary to find formulas
for portfolio credit derivatives such as e.g. the CDS index as well as credit index options.
Examples of such building blocks are the conditional survival distribution, the conditional
number of defaults and the conditional loss distribution. In Section 6 we use the results from
Section 5 to derive computational tractable formulas for the CDS index in the model presented
in Section 3. This will be done in a homogeneous portfolio. Continuing, in Section 7 we derive
a practical formula for the payoff of a CDS index option in the nonlinear filtering modell. This
formula will be used with Monte Carlo simulations in order to find approximations to the price
of options on a CDS index in the filtering framework. Further, a lower bound for the price
of the CDS index option is derived and we provide explicit conditions on the strike spread
for which this inequality becomes an equality. The bound is computationally feasible and do
not depend the noise parameters in the filtering model. We then outline how to explicitly
compute the quantities involved in the lower bound for the price of the credit index option.

Finally, in Section 8 we discuss how to estimate or calibrate the parameters in the filtering
model introduced in Section 3 and also calibrate our model and present different numerical
results for prices of options on a CDS index.

2. The CDS index and credit index options

In this section we will discuss the CDS index and options on this index. First, Subsection
2.1 gives a brief introduction to how a CDS index works. Then, in Subsection 2.2 we outline
model independent expression for the CDS index spread. Finally, Subsection 2.3 introduces
options on the CDS index, sometimes denoted by credit index options, and uses the result
form Subsection 2.2 to provide a formula for the payoff such an option which holds for any
framework modelling the dynamics of the default times in the underlying credit portfolio.

2.1. Structure of a CDS index. Consider a portfolio consisting of m equally weighted
obligors. An index Credit Default Swap (often denoted CDS index or index CDS ) for a
portfolio of m obligors, entered at time t with maturity T , is a financial contract between
a protection buyer A and protection seller B with the following structure. The CDS index
gives A protection against all credit losses among the m obligors in the portfolio up to time
T where t < T . Typically, T = t+ T̄ for T̄ = 3, 5, 7, 10 years. More specific, at each default
in the portfolio during the period [t, T ], B pays A the credit suffered loss due to the default.
Thus, the accumulated value payed by B to A in the period [t, T ] is the total credit loss in the
portfolio during the period from t to time T . As a compensation for this A pays B a fixed fee
S(t, T ) multiplied what is left in the portfolio at each payment time which are done quarterly
in the period [t, T ]. The fee S(t, T ) is set so expected discounted cash-flows between A and
B is equal at time t and S(t, T ) is called the CDS index spread with maturity T − t. For
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t = 0 (i.e. ”today”) so that T = T̄ we sometimes denote S(0, T ) by S(T ) and the quantity
S(T ) can be observed on a daily basis for standard CDS indexes such as iTraxx Europe and
the CDX.NA.IG index, for maturities T = 3, 5, 7, 10 years. The quarterly payments from
B to A are done on the IMM dates 20th of March, 20th of June, 20th of September and
20th of December. Standardized indices such as iTraxx are updated twice a year on so called
”index-rolls” which takes place on the two IMM dates 20th of March and 20th of September.
The most recent rolled CDS index is referred to the ”on-the-run-index”. Indices rolled on
previous dates are refereed to as ”off-the-run-indices”. A T̄ -year on-the-run index issued on
20th of March a given year will mature on 20th of June T̄ years later. Similarly, a T̄ -year
on-the-run index issued on 20th of September a given year will mature on 20th of December
T̄ years later. Thus, the effective protection period will be somewhere between T̄ − 0.25 and
T̄ − 0.25 years. For example, a 5-year on-the-run CDS index entered on 20th of March will
have a maturity of 5.25 years but if it is entered on the 16th of September the same year it
will have a maturity of around 4.75 years. As we will see later, these maturity details will
play an important role when pricing options on CDS indices. For more on practical details
regarding the CDS index, see e.g Markit (2016) or O’Kane (2008).

In order to give a more explicit description of the CDS index spread S(t, T ) we need to
introduce some further notations and concepts which is done in the next subsection.

2.2. The CDS index spread. In this subsection we give a quantitative description of the
CDS index spread. First we need to introduce some notation. Let (Ω,G,Q) be the underlying
probability space assumed in the rest of this paper. We set Q to be a risk neutral probability
measure which exist (under rather mild condition) if arbitrage possibilities are ruled out.
Furthermore, let F = (Ft)t≥0 be a filtration representing the full market information at
each time point t. Consider a portfolio consisting of m equally weighted obligors with default
times τ1, τ2 . . . , τm adapted to the filtration (Ft)t≥0 and let ℓ1, ℓ2, . . . , ℓm be the corresponding
individual credit losses at each default time. Typically ℓi = (1−φi)/m where φi is a constant
representing the recovery rate for obligor i. The credit loss for this portfolio at time t is then
defined as

∑m
i=1 ℓi1{τi≤t}. Similarly, the number of defaults in the portfolio up to time t,

denoted by Nt, is Nt =
∑m

i=1 1{τi≤t}. Note that if the individual loss is constant and identical
for all obligors so that ℓ = ℓ1 = ℓ2 = . . . = ℓm then the normalized credit loss Lt is given by
Lt =

ℓ
m
Nt. In the rest of this paper we will assume that the individual loss is constant and

identical for all obligors where 1− φ = ℓ = ℓ1 = ℓ2 = . . . = ℓm and we therefore have that

Lt =
1− φ

m
Nt where Nt =

m∑

i=1

1{τi≤t}. (2.2.1)

Finally, for t < u we let B(t, u) denote the discount factor between t and u, that isB(t, u) = Bt

Bu

where Bt is the risk free savings account. Unless explicitly stated, we will assume that the
risk free interest rate is constant and given by r so that Bt = ert and B(t, u) = e−r(u−t).

Let T > t and consider an CDS index entered at time t with maturity T on the portfolio
with loss process Lt. In view of the above notation we can now define the (stochastic)
discounted payments VD(t, T ) from A to B during the period [t, T ], and VP (t, T ) from B to
A in the timespan [t, T ], as follows

VD(t, T ) =

∫ T

t

B(t, s)dLs and VP (t, T ) =
1

4

⌈4T ⌉∑

n=nt

B(t, tn)

(
1− Ntn

m

)
(2.2.2)
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where nt denotes nt = ⌈4t⌉ + 1 and tn = n
4 . We here emphasize that we have dropped the

accrued term in VP (t, T ) and also ignored the accrued premium up to the first payment date
in VP (t, T ). The expected value of the default and premium legs, conditional on the market
information Ft are given by

DL(t, T ) = E [VD(t, T ) | Ft] and PV (t, T ) = E [VP (t, T ) | Ft] (2.2.3)

that is

DL(t, T ) = E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
(2.2.4)

and

PV (t, T ) =
1

4

⌈4T ⌉∑

n=nt

B(t, tn)

(
1− 1

m
E [Ntn | Ft]

)
. (2.2.5)

In view of structure of a CDS index described in Subsection 2.1, the CDS index spread S(t, T )
at time t with maturity T is defined as

S(t, T ) =
DL(t, T )

PV (t, T )
(2.2.6)

or more explicit, using (2.2.4) and (2.2.5)

S(t, T ) =
E
[∫ T

t
B(t, s)dLs

∣∣∣Ft

]

1
4

∑⌈4T ⌉
n=nt

B(t, tn)
(
1− 1

m
E [Ntn | Ft]

) . (2.2.7)

The definition of S(t, T ) in (2.2.6) is done assuming that not all obligors have defaulted in
the portfolio at time t, that is S(t, T ) is defined on the event {Nt < m}. In the event of a
so-called armageddon scenario at time t where Nt = m (i.e. all obligors in the portfolio have
defaulted up to time t), we see that the premium leg VP (t, T ) in (2.2.2) is zero at time t,
which obviously makes the definition of the spread S(t, T ) invalid. Note that for t = 0 (i.e.
today) the quantity S(0, T ) can be observed on a daily basis for standard CDS indexes such
as iTraxx Europe and the CDX.NA.IG index, for maturities T = 3, 5, 7, 10 years.

We here remark that the outline for the CDS index spread presented in this subsection
holds for any framework modelling the dynamics of the default times in the underlying credit
portfolio. Consequently, the filtration Ft used in this subsection can be generated by any
credit portfolio model.

2.3. The CDS index option. In this subsection we introduce options on the CDS index
and discuss how they work. Then we use the result form Subsection 2.2 in order to provide
a formula for the payoff of such an option, which holds for any framework modelling the
dynamics of the default times in the underlying credit portfolio. First, let us give the definition
of a payer CDS index option, which is the same as Definition 2.3 in Morini & Brigo (2011)
and Definition 2.4 in Rutkowski & Armstrong (2009).

Definition 2.1. A payer CDS index option (sometimes called a put CDS index option)
with strike κ and exercise date t written on a CDS index with maturity T is a financial
derivative which gives the protection buyer A the right but not the obligation to enter the
CDS index with the protection seller B at time t with a fixed spread κ and protection period
T − t. Moreover, at the exercise date t, the protection seller B also pays A the accumulated
credit loss occurred during the period from the inception time of the option (at time 0, i.e.
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”today”) to the exercise date t, that is B pays A the loss Lt at time t, which is referred to as
the front end protection.

The payoff Π(t, T ;κ) at the exercise time t for a payer CDS index option seen from the
protection buyer A’s point of view, is given by

Π(t, T ;κ) =
(
PV (t, T ) (S(t, T )− κ) 1{Nt<m} + Lt

)+
(2.3.1)

where PV (t, T ) is defined as in (2.2.5). For an analogues expression of (2.3.1), see e.g.
Equation (2.18) on p.1045 in Rutkowski & Armstrong (2009) or Equation (2.3) on p.577
in Morini & Brigo (2011). Note that the CDS index at time t is entered only if there are
any nondefaulted obligors left in the portfolio at time t, which explains the presence of the
indicator function of the event {Nt < m} in the expression for the payoff Π(t, T ;κ) in (2.3.1).
However, the front end protection Lt will be paid out by A at time t even if the event
{Nt = m} occurs. From (2.2.6) we have that

PV (t, T ) (S(t, T )− κ) 1{Nt<m} = DL(t, T )1{Nt<m} − κPV (t, T )1{Nt<m}. (2.3.2)

However, since Nt is a non-decreasing process where Nt ≤ m almost surely for all t ≥ 0 we
have from the definitions in (2.2.4) and (2.2.5) that

DL(t, T )1{Nt=m} = E

[∫ T

t

B(t, s)dLs

∣∣∣∣Ft

]
1{Nt=m} = 0 and PV (t, T )1{Nt=m} = 0

(2.3.3)
so we can use (2.3.3) to simplify (2.3.2) according to

PV (t, T ) (S(t, T )− κ) 1{Nt<m} = DL(t, T )− κPV (t, T ). (2.3.4)

We here remark that the observations (2.3.3) and (2.3.4) has also been done in Rutkowski &
Armstrong (2009) and Morini & Brigo (2011), see e.g Equation (2.6) on p. 1040 in Rutkowski
& Armstrong (2009) and Proposition 3.7 on p. 582 in Morini & Brigo (2011). By using (2.3.4)
we can rewrite the payoff Π(t, T ;κ) in (2.3.1) as

Π(t, T ;κ) = (DL(t, T )− κPV (t, T ) + Lt)
+ . (2.3.5)

The model outline for payer CDS index option presented in this subsection holds for any
framework modelling the dynamics of the default times in the underlying credit portfolio.
Consequently, the filtration Ft used in this subsection can be generated by any credit portfolio
model.

Before ending this section we briefly discuss some properties of CDS index options that are
not shared with e.g. standard equity options. First, we note that (2.3.1) or (2.3.5) implies
that

lim
κ→∞

Π(t, T ;κ)1{Nt<m} = 0. (2.3.6)

Secondly, since the individual loss 1 − φ is constant and identical for all obligors and since

Lt = (1−φ)Nt

m
, we have Lt1{Nt=m} = (1 − φ)1{Nt=m} which in (2.3.5) together with (2.3.3)

implies that

Π(t, T ;κ)1{Nt=m} = Lt1{Nt=m} = (1− φ)1{Nt=m} for all κ (2.3.7)

and consequently

lim
κ→∞

Π(t, T ;κ)1{Nt=m} = Lt1{Nt=m} = (1− φ)1{Nt=m}. (2.3.8)
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So combining (2.3.6) and (2.3.8) renders

lim
κ→∞

Π(t, T ;κ) = (1− φ)1{Nt=m} a.s. (2.3.9)

For s ≤ t, the price Cs(t, T ;κ) of a payer CDS index option at time s with strike κ and
exercise date t written on a CDS index with maturity T , is due to standard risk neutral
pricing theory given by

Cs(t, T ;κ) = e−r(t−s)E [Π(t, T ;κ) | Fs] . (2.3.10)

Furthermore, since

Π(t, T ;κ) = Π(t, T ;κ)1{Nt<m} +Π(t, T ;κ)1{Nt=m} = Π(t, T ;κ)1{Nt<m} + (1− φ)1{Nt=m}

then for s ≤ t, the price Cs(t, T ;κ) can be expressed as

Cs(t, T ;κ) = e−r(t−s)E
[
Π(t, T ;κ)1{Nt<m}

∣∣Fs

]
+ (1− φ)e−r(t−s)Q [Nt = m | Fs] . (2.3.11)

From (2.3.6) and (2.3.8) together with the dominated convergence theorem, we conclude that
if s ≤ t then

lim
κ→∞

Cs(t, T ;κ) = (1− φ)e−r(t−s)Q [Nt = m | Fs] (2.3.12)

which is in line with the results in (2.3.9). Also note that the results in this section holds for
any framework modelling the dynamics of the default times in the underlying credit portfolio.
In this paper our numerical examples will be performed for s = 0 which in (2.3.12) implies
that

lim
κ→∞

C0(t, T ;κ) = (1− φ)e−rtQ [Nt = m] (2.3.13)

Recall that in the standard Black-Scholes model the call option price converges to zero as
the strike price converges to infinity but due to the front end protection this will not hold for
payer CDS index option, as is clearly seen in Equation (2.3.11), (2.3.12) and (2.3.13).

2.4. Some previous models for the CDS index option. In this subsection we will discuss
some previously studied models and one of these models will be used as a benchmark to the
framework developed in this paper.

Options on a CDS index have been studied in for example Pedersen (2003), Jackson (2005),
Liu & Jäckel (2005), Doctor & Goulden (2007), Rutkowski & Armstrong (2009), Morini &
Brigo (2011), Flesaker et al. (2011) and Martin (2012). In all of these papers it is assumed
that either the CDS index spread or the so called loss-adjusted CDS index spread at the
maturity of the option is lognormally distributed under a martingale measure corresponding
to a suitable numeraire, and the price of the option is then computed via the Black formula.
For a nice and compact overview of some of the above mentioned papers, see pp.577-579 in
Morini & Brigo (2011).

We will here give a very brief review of the results in some of these papers since these
will introduce formulas that we will use as a comparison when benchmarking with our model
presented in Section 7.

As discussed in Morini & Brigo (2011), in the initial market approach for pricing CDS
index options, the price CIM

s (t, T ;κ) at time s ≤ t of a payer CDS index option with strike
κ and exercise date t written on a CDS index with maturity T , is modelled as (see also e.g.
Equation (2.4) in Morini & Brigo (2011)))

CIM
s (t, T ;κ) = e−r(t−s)E [VP (t, T ) | Fs]C

B (S(s, T ), κ, t, σ) + e−r(t−s)E [Lt | Fs] (2.4.1)
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where we have used the same notation as in Subsection 2.3 and where C(B) (S,K, T, σ) is the
Black-formula, i.e.

CB (S,K, T, σ) = SN(d1)−KN(d2)

d1 =
ln(S/K) + 1

2σ
2T

σ
√
T

, d2 = d1 − σ
√
T

(2.4.2)

and N(x) is the distribution function for a standard normal random variable. As pointed
out by Pedersen (2003), and also emphasized in Morini & Brigo (2011), the formula (2.4.1)
does not incorporate the front end protection in a correct way given the payoff expression in
Equation (2.3.1). To overcome the problem of a wrong inclusions of the front end protection in
the option formula, several papers proposed an improvement of the Black-framework, see for
example Doctor & Goulden (2007). The idea is to introduce a so called loss-adjusted market
index spread defined, see e.g. Equation (2.6) in Morini & Brigo (2011)). More specific, let t
be the exercise date for a CDS index option and for u < t < T let DLt(u, T ) and PVt(u, T )
denote

DLt(u, T ) = E [B(u, t)VD(t, T ) | Fu] and PVt(u, T ) = E [B(u, t)VP (t, T ) | Fu] (2.4.3)

where VD(t, T ) and VP (t, T ) are given by (2.2.2). Next, define loss-adjusted market index

spread S̃t(u, T ) for u ≤ t ≤ T as

S̃t(u, T ) =
DLt(u, T ) + E [B(u, t)Lt | Fu]

PVt(u, T )
. (2.4.4)

Note that if u = t then B(t, t) = 1, PVt(t, T ) = PV (t, T ) and Lt is Ft-measurable which

reduces S̃t(t, T ) in (2.4.4) to

S̃t(t, T ) = S(t, T ) +
Lt

PV (t, T )
(2.4.5)

where S(t, T ) is defined as in (2.2.6). Also, if t = 0 then L0 = 0 so (2.4.5) then gives

S̃0(0, T ) = S(0, T ) (2.4.6)

which makes perfect sense. The benefit with using the loss-adjusted market index spread
S̃t(u, T ) in (2.4.4) is that payoff Π(t, T ;κ) at the exercise time t > 0 for a payer CDS index
option as given in (2.3.5) can via (2.4.5) be rewritten as

Π(t, T ;κ) = PV (t, T )
(
S̃t(t, T )− κ

)+
. (2.4.7)

Hence, by using PVt(u, T ) as a numeraire for u ≤ t ≤ T and assuming that S̃t(u, T ) is
lognormally distributed under a martingale measure corresponding to the chosen numeraire,
one can at time s ≤ t price a payer CDS index option with exercise time t via (2.4.7) and the
Black formula according to

C̃s(t, T ;κ) = e−r(t−s)E [VP (t, T ) | Fs]C
B
(
S̃t(s, T ), κ, t, σ̃

)
(2.4.8)

where we assumed a constant interest rate r. Furthermore, σ̃ is the constant volatility of the
loss-adjusted market index spread S̃t(u, T ) and the quantity C(B) (S,K, T, σ) is the same as
in (2.4.2), see also e.g. Equation (2.8) on p.578 in Morini & Brigo (2011).
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Remark 2.2. As pointed out on pp.578-579 in Morini & Brigo (2011), there are three main
problems with the formula (2.4.8) and the definition of the loss-adjusted market index spread

in (2.4.4). The first problem is that loss-adjusted market index spread S̃t(u, T ) in (2.4.4)
is not defined when PVt(u, T ) = 0, i.e. when Nu = m. The second problem is that when
PVt(u, T ) = 0, the formula (2.4.8) is undefined and will not be consistent with the expression
in (2.3.12) which must holds for any framework modelling the dynamics of the default times
in the underlying credit portfolio for the CDS index. The third problem with (2.4.4) is that
since PVt(u, T ) = 0 on {Nu = m} and if Q [Nu = m] > 0 (which is true for most standard
portfolio credit models when u > 0), then PVt(u, T ) will not be strictly positive a.s. and will
therefore as a numeraire not lead to a pricing measure that is equivalent with the risk-neutral
pricing measure Q.

Rutkowski & Armstrong (2009) and Morini & Brigo (2011) have independently developed
an approach which overcomes the three problems stated in Remark 2.2 connected to the the
loss-adjusted market index spread in (2.4.4) and the pricing formula (2.4.8). The main ideas in
Rutkowski & Armstrong (2009) and Morini & Brigo (2011) work as follows (following mainly

the notation of Morini & Brigo (2011)). Let τ (1) ≤ τ (2) ≤ . . . ≤ τ (m) be the ordering of the
default times τ1, τ2 . . . , τm in the underlying credit portfolio that creates the CDS index. For
example, τ (m) is the maximum of {τi}, that is

τ̂ := τ (m) = max (τ1, τ2 . . . , τm) (2.4.9)

where we for notational convenience denote τ (m) by τ̂ . So with Nt defined as in previous
sections, i.e. Nt =

∑m
i=1 1{τi≤t} we immediately see that

{τ̂ > t} = {Nt < m} and {τ̂ ≤ t} = {Nt = m} . (2.4.10)

Next, both Rutkowski & Armstrong (2009) and Morini & Brigo (2011) assumes the exis-

tence of an auxiliary filtration Ĥt such that underlying full market information Ft can be
decomposed as

Ft = Ĵt ∨ Ĥt (2.4.11)

Ĵt = σ (τ̂ ≤ s; s ≤ t) (2.4.12)

where τ̂ is not a Ĥt-stopping time. Rutkowski & Armstrong (2009) and Morini & Brigo

(2011) remarks that one possible construction of (2.4.11)-(2.4.12) is to let Ĥt be given by

Ĥt = Gt ∨m−1
k=1 J (k)

t (2.4.13)

where for each k the filtration J (k)
t is defined as

J (k)
t = σ

(
τ (k) ≤ s; s ≤ t

)
(2.4.14)

and Gt in (2.4.13) is a filtration excluding default information, i.e Gt is the ”default free”
information. Typically Gt is a sigma-algebra generated by a d-dimensional stochastic process
(Xt)t≥0 so GX

t = σ(Xs; s ≤ t) where Xt = (Xt,1,Xt,2, . . . ,Xt,d) do not contain the random
variables τ1, τ2 . . . , τm in their dynamics. Such constructions are standard in conditional
independent dynamic portfolio credit models, see e.g in Lando (2004) or McNeil, Frey &

Embrechts (2005). From the construction in (2.4.11)-(2.4.13) it is clear that τ̂ is not a Ĥt-
stopping time. In Remark 3.5 on p.580 in Morini & Brigo (2011) the authors point out that
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the construction in (2.4.11)-(2.4.12) may under certain, not unreasonable model assumptions,

not be possible to construct. Now, for u < t < T let D̂Lt(u, T ) and P̂ V t(u, T ) denote

D̂Lt(u, T ) = E
[
B(u, t)VD(t, T ) | Ĥu

]
and P̂ V t(u, T ) = E

[
B(u, t)VP (t, T ) | Ĥu

]

(2.4.15)

where VD(t, T ) and VP (t, T ) are given by (2.2.2). Next, define Ŝt(u, T ) as (see Rutkowski &
Armstrong (2009) or Morini & Brigo (2011))

Ŝt(u, T ) =
D̂Lt(u, T ) + E

[
1{τ̂>t}B(u, t)Lt

∣∣ Ĥu

]

P̂ V t(u, T )
(2.4.16)

where t typically is the exercise date for a CDS index option. Furthermore, Morini & Brigo
(2011) assumes that

Q
[
τ̂ > s | Ĥs

]
> 0 a.s. for any s > 0 (2.4.17)

and Rutkowski & Armstrong (2009) makes a similar assumption but on a bounded interval
for s. The reason for the assumption (2.4.17) is that in the derivations of the formulas for
the CDS-index spreads presented in Morini & Brigo (2011) and Rutkowski & Armstrong

(2009) the quantity Q
[
τ̂ > s | Ĥs

]
will emerge in the denominator of several expressions.

More specific, the choice (2.4.11)-(2.4.12) together with (2.4.17) will for s ≤ t make the

quantity P̂ V t(u, T ) = E
[
B(u, t)VP (t, T ) | Ĥu

]
to be strictly positive a.s. (see e.g. p.581

in Morini & Brigo (2011)) and can thus be used as a numeraire, which was observed both
in Rutkowski & Armstrong (2009) and Morini & Brigo (2011) independently of each other.
Furthermore, Morini & Brigo (2011) and Rutkowski & Armstrong (2009) also shows that

under the condition (2.4.17) the spread Ŝt(u, T ) in (2.4.16) is well defined which thus solves
the first and third problem specified in Remark 2.2. By using assumption (2.4.17) together

with the assumption that Ŝ(u, T ) in (2.4.16) follows a lognormal distribution under a measure

defined via P̂ V t(u, T ), Morini & Brigo (2011) and Rutkowski & Armstrong (2009) prove that
for s ≤ t the price for a payer CDS index option at time s with exercise date t via (2.4.7) is
given by

Ĉs(t, T ;κ) = 1{τ̂>s}e
−r(t−s)E [VP (t, T ) | Fs]C

B
(
Ŝt(s, T ), κ, t, σ̂

)

+
1{τ̂>s}

Q
[
τ̂ > s | Ĥs

]E
[
1{s<τ̂≤t}e

r(t−s)(1− φ)
∣∣∣ Ĥs

]
+ 1{τ̂≤s}(1− φ)e−r(t−s) (2.4.18)

where σ̂ is the volatility of Ŝt(u, T ) under a suitable measure (see e.g. Corollary 4.3 in

Rutkowski & Armstrong (2009)). The quantity C(B) (S,K, T, σ) in (2.4.18) is the same as in
(2.4.2). We assumed a constant interest rate r while Morini & Brigo (2011) and Rutkowski &
Armstrong (2009) allows for a stochastic discount factor in (2.4.18), see e.g. Equation (2.29)
in Rutkowski & Armstrong (2009) and Equation (4.1) and (4.4) in Morini & Brigo (2011).
We note that if s > 0, then the second term in (2.4.18) is nontrivial to compute in practice.

However, an important practical case is to compute Ĉs(t, T ;κ) when s = 0, i.e. Ĉ0(t, T ;κ)
(the numerical examples in Morini & Brigo (2011) are only done for the case s = 0 while
Rutkowski & Armstrong (2009) do not provide any numerical examples of their formulas).
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So letting s = 0 in (2.4.18) implies that Ĉ0(t, T ;κ) is given by the following expression

Ĉ0(t, T ;κ) = e−rtE [VP (t, T )]C
B
(
Ŝt(0, T ), κ, t, σ̂

)
+ e−rt(1 − φ)Q [Nt = m] (2.4.19)

where we used that {τ̂ ≤ t} = {Nt = m}. So we clearly see that formula (2.4.19) is consistent
with (2.3.13) which must holds for any framework modelling the dynamics of the default times
in the underlying credit portfolio for the CDS index. Hence, this solves the second problem
pointed out in Remark 2.2. Also note that Ŝt(0, T ) will via (2.4.16) simplify to

Ŝt(0, T ) =
D̂Lt(0, T ) + E

[
1{τ̂>t}B(0, t)Lt

]

P̂ V t(0, T )

=
DLt(0, T ) + E

[
1{τ̂>t}B(0, t)Lt

]

PVt(0, T )

=
DLt(0, T ) + E [B(0, t)Lt]− E

[
1{τ̂≤t}B(0, t)Lt

]

PVt(0, T )

=
DLt(0, T ) + E [B(0, t)Lt]

PVt(0, T )
−

E
[
1{τ̂≤t}B(0, t)Lt

]

PVt(0, T )

= S̃t(0, T ) −
(1− φ)E

[
B(0, t)1{Nt=m}

]

PVt(0, T )

(2.4.20)

where the second equality follows from (2.4.3) and (2.4.15) with u = 0 and last equality is

due to the definition of S̃t(u, T ) in (2.4.4) and the fact that 1{τ̂≤t}Lt = (1− φ)1{Nt=m}. Also
note that if t = 0 then 1{N0=m} = 0 a.s. which together with (2.4.5) gives

Ŝt(0, T ) = S̃0(0, T ) = S(0, T ) (2.4.21)

which makes perfect sense. Furthermore, if we assume that the interest rate is deterministic
we can rewrite (2.4.20) as

Ŝt(0, T ) = S̃t(0, T ) −
(1− φ)Q [Nt = m]

E [VP (t, T )]
(2.4.22)

where VP (t, T ) is defined in (2.2.2).
There are several numerical issues to be considered in (2.4.19). First, as pointed out

on p.1051 in Rutkowski & Armstrong (2009), since the loss adjusted spread Ŝt(u, T ) is not
directly observable on the market at any time point u ≥ 0, it is quite challenging to estimate
the volatility σ̂ of Ŝt(u, T ) where σ̂ is used in the Black-formula present in (2.4.19). Secondly,
computing the quantity Q [Nt = m] for large m (for example, m = 125 both in the iTraxx
Europe and CDX NAG index) is numerically nontrivial and requires special attention even in
simple standard portfolio credit models such as the one-factor Gaussian copula model. Note
that Q [Nt = m] emerges both in the second term of (2.4.19) aswell as in Ŝt(0, T ) used in the
Black-formula present in (2.4.19), as seen in (2.4.20) or (2.4.22).

While Rutkowski & Armstrong (2009) do not provide any numerical examples, Morini
& Brigo (2011) uses a one-factor Gaussian copula model but do not specify which numer-
ical method they use to compute Q [Nt = m]. There exists many methods for computing
Q [Nt = k], 0 ≤ k ≤ m, in conditional independent models such as copula models, see for
example in Gregory & Laurent (2003) and Gregory & Laurent (2005).
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In order to numerically benchmark the CDS index model presented in Section 3-7 against
Morini & Brigo (2011), we will also implement the model in Morini & Brigo (2011) using a
one-factor Gaussian copula model just as Morini & Brigo (2011) do. Our choice of numerical
method when computing Q [Nt = m] in (2.4.19) and (2.4.22) will be based on the normal ap-
proximation of the mixed binomial distribution, similar to the method in Frey, Popp & Weber
(2008). To be more specific, for any integer 1 ≤ k ≤ m we use the following approximation
for Q [Nt ≤ k] in the one-factor Gaussian copula model

Q [Nt ≤ k] ≈
∫ ∞

−∞
N

(
k + 0.5−mpt(z)√
mpt(z)(1 − pt(z)

)
1√
2π

e−
z
2

2 dz for k ≤ m (2.4.23)

where pt(z) is given by

pt(z) = N

(
N−1 (Q [τ ≤ t])−√

ρz√
1− ρ

)
(2.4.24)

and N(x) is the distribution function for a standard normal random variable, ρ is the cor-
relation parameters and τ has the same distribution as the exchangeable default times {τi}
in the underlying credit portfolio, see e.g. Corollary 2.5 in Frey et al. (2008). The term 0.5
in (2.4.23) is a so-called ”half-correction” which seem to produce better approximations that
the ordinary normal approximation of a binomial distribution. Next, since

Q [Nt = m] = Q [Nt ≤ m]−Q [Nt ≤ m− 1] (2.4.25)

we use (2.4.23) with k = m − 1 and k = m in the right hand side of (2.4.25) to retrieve
an approximation to the quantity Q [Nt = m] in (2.4.19) and (2.4.22). Next we need to find
an expression for Q [τ ≤ t] used in (2.4.23) via (2.4.24). A standard assumption made in
the homogeneous portfolio credit risk one-factor Gaussian copula model is that the default
times {τi} have constant default intensity λ, that is they are exponentially distributed with
parameter λ, i.e. if τ has the same distribution as {τi} then

Q [τ ≤ t] = 1− e−λt (2.4.26)

where λ is given by

λ =
SM(T̄ )

1− φ
(2.4.27)

and SM(T̄ ) is the market quote for the T̄ -year CDS-index spread today and φ is the recovery
rate. The relation (2.4.27) is the so-called credit triangle, frequently used among market
practitioners assuming a ”flat” CDS term structure, i.e. assuming that the default intensity
will be constant for all time points after t.

A derivation of the relation (2.4.27) in the case with quarterly payments is given in Propo-
sition B.1 in Appendix B, since the existing proofs of (2.4.27) found in the litterature are only
done in the unrealistic case when the CDS index premium is paid continuously. In practice
the CDS premiums are done quarterly.

Furthermore, note that we have used the CDS index spread SM(T̄ ) in (2.4.27) because this
spread will in a homogeneous credit portfolio be identical to the the individual CDS spread
for an obligor in the reference portfolio, see e.g. Proposition Lemma 6.1 in Herbertsson, Jang
& Schmidt (2011). This ends the specification of how we compute Q [Nt = m]. In Figure 1
we plot Q [Nt = m] for t = 9 months and m = 125 as function of the correlation parameter ρ
where we used (2.4.23)-(2.4.27) to compute Q [Nt = m] with φ = 40% and SM(5) = 200 bps.
As can be seen in Figure 1, the effect of ρ on Q [Nt = m] will only come in to play when ρ
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is bigger than 95% and for smaller ρ, the armageddon probability Q [Nt = m] will in practice
be neglible, see also Figure 5.1 in Morini & Brigo (2011)

ρ

0.7 0.75 0.8 0.85 0.9 0.95 1

Q
[N

0.
75

=
12

5]

0

0.005

0.01

0.015

0.02

0.025
Armageddon probability Q[N

0.75
=125] as function of ρ  for S(5)=200 bp

Figure 1. The Armageddon probabilityQ [N0.75 = 125] as function of the correlation
ρ = where S(0, 5) = 200 and φ = 40% bp.

So what is left to compute in (2.4.19) is Ŝt(0, T ). This is done in the following proposition.

Proposition 2.3. Consider a CDS index with maturity T on a homogeneous credit portfolio

where the obligors have constant default intensity λ. Then, with notation as above

Ŝt(0, T ) = 4(1 − φ)e−rt
(
1− e−

(r+λ)
4

)
(

λ
λ+r

(
e−(r+λ)t − e−(r+λ)T

)
+ 1− e−λt −Q [Nt = m]

)

e−
(r+λ)nt

4 − e−
(r+λ)(⌈4T⌉+1)

4

(2.4.28)
where nt = ⌈4t⌉+ 1.

Proof. From (2.4.22) we have

Ŝt(0, T ) = S̃t(0, T ) −
(1− φ)Q [Nt = m]

E [VP (t, T )]
(2.4.29)

so we need explicit expressions for the quantities E [VP (t, T )] and S̃t(0, T ). First, to find
E [VP (t, T )] we use the exchangeability of the default times {τi} all having the same distri-
bution as in (2.4.26), which in the definition of VP (t, T ) given by (2.2.2) with properties for
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geometric series and some computations yields

E [VP (t, T )] =
ert
(
e−

(r+λ)nt

4 − e−
(r+λ)(⌈4T⌉+1)

4

)

4
(
1− e−

(r+λ)
4

) (2.4.30)

where nt denotes nt = ⌈4t⌉ + 1 as in (2.2.2). Next, we provide an explicit expression for

S̃t(0, T ) given by (2.4.4) with u = 0 and constant interest rate r, that is

S̃t(0, T ) =
DLt(0, T ) + e−rtE [Lt]

PVt(0, T )

=
DLt(0, T ) + e−rt(1− φ)Q [τ ≤ t]

PVt(0, T )

=
E [VD(t, T )]

E [VP (t, T )]
+

(1− φ)Q [τ ≤ t]

E [VP (t, T )]

=
ertE

[∫ T

t
e−rsdLs

]

E [VP (t, T )]
+

(1− φ)Q [τ ≤ t]

E [VP (t, T )]

=
(1− φ)ert

∫ T

t
e−rsfτ (s)ds

E [VP (t, T )]
+

(1− φ)Q [τ ≤ t]

E [VP (t, T )]

(2.4.31)

where the second equality follows the definition of the loss Lt in (2.2.1) together with the
exchangeability of the default times {τi} all having the same distribution as τ and the third
equality comes from the definition of DLt(u, T ) and PVt(u, T ) in (2.4.3) with u = 0 using
that the interest rate is constant, given by r. The fourth equality is due to the expected value
of VD(t, T ) in (2.2.3) and that B(t, s) = er(s−t) since the interest rate is constant. The last
equality in (2.4.31) follows from Equation (6.3.3) in Lemma 6.1, p.1203 in Herbertsson et al.
(2011) where fτ (s) is the density of the default time τ . So plugging (2.4.31) into (2.4.29) we

get that Ŝt(0, T ) can be rewritten as

Ŝt(0, T ) =
1− φ

E [VP (t, T )]

(
ert
∫ T

t

e−rsfτ (s)ds +Q [τ ≤ t]−Q [Nt = m]

)
. (2.4.32)

Note that (2.4.32) holds for any distribution of τ , and to make Ŝt(0, T ) more explicit we use
that τ in this paper (as in most articles treating homogeneous one-factor Gaussian copula
models applied to portfolio credit risk) has constant default intensity λ, i.e. τ is exponentially
distributed with parameter λ as in (2.4.26) which implies

∫ T

t

e−rsfτ (s)ds =

∫ T

t

λe−(r+λ)sds =
λ

λ+ r

(
e−(r+λ)t − e−(r+λ)T

)
. (2.4.33)

So (2.4.26), (2.4.30) and (2.4.33) in (2.4.32) renders an explicit formula for Ŝt(0, T ) given by

Ŝt(0, T ) = 4(1 − φ)e−rt
(
1− e−

(r+λ)
4

)
(

λ
λ+r

(
e−(r+λ)t − e−(r+λ)T

)
+ 1− e−λt −Q [Nt = m]

)

e−
(r+λ)nt

4 − e−
(r+λ)(⌈4T⌉+1)

4

which concludes the proposition. �
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Note that in the expression for Ŝt(0, T ) given by (2.4.28) we will in this paper compute
Q [Nt = m] via the equations (2.4.23)-(2.4.27) as outlined above, and λ will be given by
(2.4.27).

In Subsection 8.2 we will use (2.4.19), (2.4.28) and (2.4.23)-(2.4.27) as a benchmark against
the model developed in the next sections.

We here remark that Morini & Brigo (2011) do not provide any explicit expression of

Ŝt(0, T ) given on the form (2.4.28), see e.g. the equation under Table 5.1 on p.589 in Morini
& Brigo (2011). But as will be seen in Subsection 8.2, our numerical values for (2.4.19),
roughly coincide with those presented in Table 5.1-5.2 in Morini & Brigo (2011). We have
not done any numerical benchmark against Rutkowski & Armstrong (2009) since there are
no numerical results presented in Rutkowski & Armstrong (2009).

Furthermore, we will also show that the filtering modell presented in this paper will for the
same CDS index spread S(0, T ) create CDS index option prices that can be several hundred
percent, or even several thousands percent bigger (depending on the value of ρ and t and the
strike κ) than those given by (2.4.19) with the same CDS index spread S(0, T ), and at the
same time it will hold that Q [Nt = m] = 0 in the filtering model while Q [Nt = m] > 0 in the
one-factor Gaussian copula as used in Morini & Brigo (2011).

3. The model

In this section we shortly recapitulate the model of Frey & Schmidt (2012). Thus, we
will consider a reduced-form model driven by an unobservable background factor process
X modelling the ”true” state of the economy. For tractability reasons X is modelled as
finite-state Markov chain. The factor process X is not directly observable. Instead model
quantities are given as conditional expectation with respect to the so called market filtration
FM = (FM

t )t≥0. The filtration FM is generated by the factor process X plus noise, which will
be specified in detail below. Intuitively speaking, this means that the model quantities are
observed given an incomplete history of the state of the economy. Furthermore, in the model
of Frey & Schmidt (2012) the default times of all obligors are conditionally independent given
the information of the factor process X. This setup is close to the one found in e.g. Graziano
& Rogers (2009).

Frey & Schmidt (2012) treat the case with stochastic recoveries in a general theoretical
setting. In this paper we will take a simplified approach and only consider deterministic
recoveries, which up to the credit crises of 2008-2009 has been considered as standard in the
credit literature.

3.1. The factor process. In this section we introduce the model that we will consider under
the full information.

LetXt be a finite state continuous time Markov chain on the state space SX = {1, 2, . . . ,K}
with generator Q. Let FX

t = σ(Xs; s ≤ t) be the filtration generated by the factor process
X. Consider m obligors with default times τ1, τ2 . . . , τm and let the mappings λ1, λ2 . . . , λm

be the corresponding FX
t default intensities, where λi : S

X 7→ R+ for each obligor i. This
means that each default time τi is modeled as the first jump of a Cox-process, with intensity
λi(Xt). It is well known (see e.g. Lando (1998)) that given an i.i.d sequence {Ei} where Ei

is exponentially distributed with parameter one, such that all {Ei} are independent of FX
∞,

then

τi = inf

{
t > 0 :

∫ t

0
λi(Xs)ds ≥ Ei

}
. (3.1.1)



16 ALEXANDER HERBERTSSON AND RÜDIGER FREY

Hence, for any T ≥ t we have

Q
[
τi > t | FX

T

]
= exp

(
−
∫ t

0
λi(Xs)ds

)
(3.1.2)

and thus

Q [τi > t] = E

[
exp

(
−
∫ t

0
λi(Xs)ds

)]
. (3.1.3)

Note that the default times are conditionally independent, given FX
∞.

The states in SX = {1, 2, . . . ,K} are ordered so that state 1 represents the best state and
K represents the worst state of the economy. Consequently, the mappings λi(·) are chosen to
be strictly increasing in k ∈ {1, 2, . . . ,K}, that is λi(k) < λi(k+1) for all k ∈ {1, 2, . . . ,K−1}
and for every obligor in the portfolio.

3.2. The market filtration and full information. In this subsection we formally introduce
the market filtration, that is the information observed by the market participants. Recall
that the prices of all securities are given as conditional expectations with respect to this
filtration. We also shortly discuss the full information F = (Ft)t≥0, which is the biggest
filtration containing all other filtrations, where (Ω,G,P) with G = F∞ will be the underlying
probability space assumed in the rest of this paper.

Let Yt,i denote the random variable Yt,i = 1{τi≤t} and Yt be the vector Yt = (Yt,1, . . . , Yt,m).

The filtration FY
t = σ(Ys; s ≤ t) represents the default portfolio information at time t,

generated by the process (Ys)s≥0. Furthermore, let Bt be a one-dimensional Brownian motion
independent of (Xt)t≥0 and (Yt)t≥0 and let a(·) be a function from {1, 2, . . . ,K} to R. Next,
define the process Zt as

Zt =

∫ t

0
a(Xs)ds +Bt. (3.2.1)

We here remark that Frey & Schmidt (2012) allows for multivariate Brownian motion Bt

in (3.2.1) as well as a vector valued mapping a(·) with same dimension as Bt and in the
numerical studies of Frey & Schmidt (2012) they use a one-dimensional Brownian motion Bt.
In this paper we restrict ourselves to only one source of randomness in the noise representation
(3.2.1). Extending to several sources of randomness in (3.2.1) will in principle not change the
main ideas in this paper. Intuitively Zt represents the noisy history of Xt and the functional
form of Zt given by (3.2.1) is a representation that is standard in the nonlinear filtering
theory, see e.g. Davis & Marcus (1981). Following Frey & Schmidt (2012), we define the
market filtration FM = (FM

t )t≥0 as

FM
t = FY

t ∨ FZ
t . (3.2.2)

We set the full information F = (Ft)t≥0 to be the biggest filtration containing all other
filtrations with G = F∞. We can for example let Ft be given by

Ft = FX
t ∨ FY

t ∨ FB
t (3.2.3)

where (FB
t )t≥0 is the filtration generated by the Brownian motion Bt. Note that FX

t is not
a subfiltration of FZ

t , and similarly, FB
t is not contained in FZ

t .
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4. Applying the Kushner-Stratonovic SDE in the credit risk model

In this section we study the Kushner-Stratonovic SDE in our filtering model. We use the
same notation as in Frey & Schmidt (2012). First, define πk

t as the conditional probability of
the event {Xt = k} given the market information FM

t at time t, that is

πk
t = Q

[
Xt = k | FM

t

]
(4.1)

and let πt ∈ RK be a row-vector such that πt =
(
π1
t , . . . , π

K
t

)
. In the sequel, for any Ft-

adapted process Ut we let Ût denote the optional projection of Ût onto the filtration FM
t , that

is Ût = E
[
Ut | FM

t

]
. To this end, we have for example

λ̂i(Xt) = E
[
λi(Xt) | FM

t

]
=

K∑

k=1

λi(k)π
k
t

â(Xt) = E
[
a(Xt) | FM

t

]
=

K∑

k=1

a(k)πk
t .

Next, define Mt,i and µt as

Mt,i = Yt,i −
∫ t∧τi

0

̂λi(Xs−)ds for i = 1, . . . ,m (4.2)

µt = Zt −
∫ t

0
â(Xs) ds

In Frey & Schmidt (2012) it is shown that Mt,i is an FM
t -martingale, for i = 1, 2, . . . ,m

and that µt is a Brownian motion with respect to the filtration FM
t . Thus, the vector

Mt = (Mt,1, . . . ,Mt,m) is an FM
t -martingale. These results have been proven previously

when considered separately, i.e. for pure diffusion filtering problems, see e.g. Davis & Marcus
(1981), and pure jump process filtering process, see e.g Brémaud (1981).

Furthermore, Frey & Schmidt (2012) also proves the following proposition, which is a
version of the Kushner- Stratonovic equations, adopted to the filtering models presented in
this paper (originally developed in Frey & Schmidt (2012)).

Proposition 4.1. With notation as above, the processes πk
t satisfies the following K-dimensional

system of SDE-s,

dπk
t =

K∑

ℓ=1

Qℓ,kπ
ℓ
tdt+ (γk(πt−))

⊤ dMt + αk(πt) dµt , (4.3)

where (γk(π))⊤ =
(
γk1 (π), . . . , γ

k
m(π)

)
with π = (π1, π2, . . . , πm) and the coefficients γki (π)

are mappings given by

γki (π) = πk
( λi(k)∑K

n=1 λi(n)πn
− 1
)
, 1 ≤ i ≤ m (4.4)

and

αk(πt) = πk
t

(
a(k)−

K∑

n=1

πn
t a(n)

)
, 1 ≤ k ≤ K. (4.5)
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TheK-dimensional SDE-system partly uses the vector notation for theMt vector. However,
as will be seen below, it will be beneficial to rewrite this SDE on component form, especially
when we consider homogeneous credit portfolios. Thus, let us rewrite (4.3) on component
form, so that

dπk
t =

K∑

ℓ=1

Qℓ,kπ
ℓ
tdt+

m∑

i=1

γki (πt−)dMt,i + αk(πt)dµt. (4.6)

Next, let us consider a homogeneous credit portfolio, that is, all obligors are exchangeable so
that λi(Xt) = λ(Xt) and γki (πt) = γk(πt) for each obligor i and define Nt as

Nt =
m∑

i=1

Yt,i =
m∑

i=1

1{τi≤t}. (4.7)

Furthermore, define λ as λ = (λ(1), . . . , λ(K)) and let ek ∈ Rm be a row vector where the
entry at position k is 1 and the other entries are zero. For a homogeneous portfolio the results
of Proposition 4.1 can be simplified to the following corollary.

Corollary 4.2. Consider a homogeneous credit portfolio with m obligors. Then, with notation

as above, the processes πk
t satisfy the following K-dimensional system of SDE-s,

dπk
t = γk(πt−)dNt + πt−

(
Qe⊤k − γk(πt−)λ

⊤ (m−Nt)
)
dt+ αk(πt)dµt (4.8)

where γk(πt) and αk(πt) are given by

γk(πt) = πk
t

(
λ(k)

πtλ
⊤
− 1

)
and αk(πt) = πk

t

(
a(k) −

K∑

n=1

πn
t a(n)

)
. (4.9)

Proof. First, from (4.2) we have dMt,i = dYt,i−1{τi>t}λ̂i(Xt)dt = dYt,i−1{τi>t}

∑K
k=1 λi(k)π

k
t dt

which in (4.6) implies that

dπk
t = πtQe⊤k dt+

m∑

i=1

γki (πt−)dYt,i −
m∑

i=1

γki (πt−)1{τi>t}

K∑

k=1

λi(k)π
k
t dt+ αk(πt)dµt. (4.10)

Since λi(Xt) = λ(Xt) and γki (πt) = γk(πt) for all obligors i, and recalling that Nt denotes
Nt =

∑m
i=1 Yt,i =

∑m
i=1 1{τi≤t} so that

∑m
i=1 1{τi>t} = m−Nt, we can after some computations

rewrite (4.10) as

dπk
t = γk(πt−)dNt + πt−

(
Qe⊤k − γk(πt−)λ

⊤ (m−Nt)
)
dt+ αk(πt)dµt

where γk(πt) and αk(πt) are given by γk(πt) = πk
t

(
λ(k)

πtλ
⊤ − 1

)
and αk(πt) = πk

t

(
a(k) −

∑K
n=1 π

n
t a(n)

)
. �

From the SDE (4.8) in Corollary 4.2 we clearly see that the dynamics of the conditional
probabilities πk

t contains a drift part, a diffusion part and a jump part. The diffusion part is
due to the dµt component and the jump part is due to the defaults in the portfolio, given by
the differential dNt.

Figure 2 visualizes a simulated path of π1
t given by (4.8) in Corollary 4.2 in an example

where K = 2 and m = 125, using fictive parameters for Q and λ assuming a(k) = c · lnλ(k)
for a constant c. From the third Figure 2 we clearly see that π1

t has jump, drift and diffusion
parts. The first and second subfigures in Figure 2 shows the corresponding trajectories for Xt
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Figure 2. A simulated trajectory of Xt, Nt and π1

t
where K = 2 and m = 125.

and Nt. Note how the defaults presented by Nt cluster as Xt switches to state 2, representing
the worse economic state among {1, 2}.

5. The main building blocks

In this section we describe the main building blocks that will be necessary to find formulas
for portfolio credit derivatives such as e.g. the CDS index. Examples of such building blocks
are the conditional survival distribution, the conditional number of defaults and the condi-
tional loss distribution. The conditional expectations are with respect to the market informa-
tion FM

t defined in Equation (3.2.2) in Subsection 3.2. Recall that Yt,i denotes the random
variable Yt,i = 1{τi≤t}, Yt = (Yt,1, . . . , Yt,m) and Nt and Lt are given by Nt =

∑m
i=1 1{τi≤t}

and Lt =
1
m

∑m
i=1(1− φi)1{τi≤t} where φi is the recovery rate for obligor i. Our main task in

this section is to find the following quantities

Q
[
τi > T | FM

t

]
, E

[
NT | FM

t

]
and E

[
LT | FM

t

]

where T > t. These expressions will be useful when deriving formulas for the CDS index
spread S(t, T ) as well as the CDS index option discussed in Section 6.

5.1. The conditional survival distribution. In this subsection we study the conditional
survival distribution Q

[
τi > T | FM

t

]
for T > t in the filtering model. To do this we need to

introduce some notation. If Xt is a finite state Markov jump process on SX = {1, 2, . . . ,K}
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with generator Q, then, for a function λ(x) : SX 7→ R we denote the matrix Qλ = Q − Iλ

where Iλ is a diagonal-matrix such that (Iλ)k,k = λ(k). Furthermore, we let 1 be a column

vector in RK where all entries are 1. The following theorem is a perquisite for all other results
in this paper and is therefore a core result.

Theorem 5.1. Consider a credit portfolio specified as in Section 3 and let λi(Xt) be the

FX
t -intensity for obligor i. If T ≥ t then, with notation as above

Q
[
τi > T | FM

t

]
= 1{τi>t}πte

Qλi
(T−t)

1 (5.1.1)

where the matrix Qλi
= Q− Iλi

is defined as above.

Proof. Since T > t, then

E
[
1{τi>T}

∣∣Ft

]
= E

[
1{τi>T}

∣∣FX
t ∨ FYi

t

]
= 1{τi>t}E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
(5.1.2)

where the first equality is due to the fact that conditionally on X, then τi is independent of
τj for j 6= i. The second equality follows from a standard result for the first jump time of a
Cox-process, see e.g. p.102 in Lando (1998), Corollary 9.1 in McNeil et al. (2005) or Corollary
6.4.2 in Bielecki & Rutkowski (2001). Since T > t and due to the Markov property of X we

can rewrite the quantity E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
as

E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
= E

[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt

]
=

K∑

k=1

E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt = k
]
1{Xt=k}

which implies that (recall that FX
t is not a subfiltration of FM

t )

E
[
E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

] ∣∣∣FM
t

]
=

K∑

k=1

E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt = k
]
πk
t (5.1.3)

where we used the notation πk
t = Q

[
Xt = k | FM

t

]
. By using Theorem A.1 in Appendix A

we have that

E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣Xt = k
]
= eke

Q
λi

(T−t)
1 (5.1.4)

where the matrix Qλi
is defined as previously. So (5.1.4) in (5.1.3) yields

E
[
E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

] ∣∣∣FM
t

]
=

K∑

k=1

eke
Q

λi
(T−t)

1πk
t = πte

Q
λi

(T−t)
1 (5.1.5)

where we recall that πt is a row-vector such that πt =
(
π1
t , . . . , π

K
t

)
. Next, note that

E
[
1{τi>T}

∣∣FM
t

]
= E

[
E
[
1{τi>T}

∣∣Ft

] ∣∣FM
t

]

= 1{τi>t}E
[
E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

] ∣∣∣FM
t

]

= 1{τi>t}πte
Qλi

(T−t)
1

where the second equality is due to (5.1.2) and the third equality follows from (5.1.5). Thus,

for T ≥ t we conclude that Q
[
τi > T | FM

t

]
= 1{τi>t}πte

Qλi
(T−t)

1 which proves the theorem.
�



CDS INDEX OPTIONS UNDER INCOMPLETE INFORMATION 21

Theorem 5.1 allows us to state credit related derivatives quantizes in very compact and
computational convenient formulas, as will seen later in this paper. We also remark that
Theorem 5.1 has previously been successfully used in Herbertsson & Frey (2014) in which the
theorem was stated without a proof, see Theorem 3.1 p. 1416 in Herbertsson & Frey (2014).
Instead Herbertsson & Frey (2014) refers to the proof of Theorem 5.1 in an earlier version of
this paper.

5.2. The conditional number of defaults. In this subsection we derive practical expres-
sions for E

[
Nt | FM

t

]
. We consider an homogeneous credit portfolios where λi(Xt) = λ(Xt)

so that Qλi
= Qλ for each obligor i. Recall that Nt =

∑m
i=1 1{τi≤t}. The main message of

this subsection is the following proposition.

Proposition 5.2. Consider an exchangeable credit portfolio with m obligors in a model spec-

ified as in Section 3. Then, for T ≥ t and with notation as above

E
[
NT | FM

t

]
= m− (m−Nt)πte

Qλ(T−t)1. (5.2.1)

Proof. Let T > t and first note that

E [NT | Ft] = m−
m∑

i=1

E
[
1{τi>T}

∣∣Ft

]
= m−

m∑

i=1

1{τi>t}E
[
e−

∫
T

t
λi(Xs)ds

∣∣∣FX
t

]
(5.2.2)

where the last equality is due to Equation (5.1.2) in Theorem 5.1. Furthermore, in a ho-
mogeneous portfolio we have λi(Xs) = λ(Xs) for all obligors i and this in (5.2.2) implies

that E [NT | Ft] = m − (m−Nt)E
[
e−

∫
T

t
λ(Xs)ds

∣∣∣FX
t

]
. Thus, by using E

[
NT | FM

t

]
=

E
[
E [NT | Ft] | FM

t

]
and following similar arguments as in Theorem 5.1 we conclude after

some computations that E
[
NT | FM

t

]
= m − (m−Nt)πte

Qλ(T−t)1 which proves the propo-
sition. �

A similar proof can be found for inhomogeneous portfolios.

5.3. The conditional portfolio loss: The case with constant recovery. This is trivial
for homogeneous portfolios, given the results from Subsection 5.2. To see this, recall thatNt =∑m

i=1 1{τi≤t} and Lt =
1
m

∑m
i=1(1 − φi)1{τi≤t} where φi are constants and in a homogeneous

portfolio we have φ1 = φ2 = . . . = φm = φ so that Lt =
(1−φ)
m

Nt. Thus,

E
[
LT | FM

t

]
=

(1− φ)

m
E
[
NT | FM

t

]
(5.3.1)

where E
[
NT | FM

t

]
is explicitly given in Subsection 5.2 for homogeneous portfolios. To be

more specific, (5.3.1) with Proposition 5.2 yields

E
[
LT | FM

t

]
= (1− φ)

(
1−

(
1− Nt

m

)
πte

Qλ(T−t)1

)
. (5.3.2)

Similar results can also be obtained in an inhomogeneous portfolio both with identical or
different recoveries.
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6. The CDS index in the filtering model

In this section we apply the results from Section 5 together with Subsection 2.2 to find
formulas for the CDS index spreads in the models introduced in Section 3. This will be done
in a homogeneous portfolio. We will assume that the risk free interest rate is constant and
given by r and for t < s we let B(t, s) denote B(t, s) = e−r(s−t). We can now state the
following theorem.

Theorem 6.1. Consider a CDS index portfolio in the filtering model. Then, with notation

as above

DL(t, T ) = E

[∫ T

t

B(t, s)dLs

∣∣∣∣FM
t

]
=

(
1− Nt

m

)
πtA(t, T )1 (6.1)

and

PV (t, T ) = E
[
VP (t, T ) | FM

t

]
=

(
1− Nt

m

)
πtB(t, T )1 (6.2)

where A(t, T ) and B(t, T ) are defined as

A(t, T ) = (1− φ)

[
I − eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) + r (Qλ − rI)−1

]
(6.3)

B(t, T ) =
1

4

⌈4T ⌉∑

n=nt

eQλ(tn−t)e−r(tn−t). (6.4)

Furthermore, if Nt < m we have

S(t, T ) =
πtA(t, T )1

πtB(t, T )1
. (6.5)

Proof. First we recall the definitions of DL(t, T ), PV (t, T ) and S(t, T ) from (2.2.3), (2.2.4),
(2.2.5) and (2.2.6) with the difference that we now replace Ft with FM

t given by (3.2.2).

Next, the term
∫ T

t
B(t, s)dLs used in DL(t, T ) can be rewritten in a more practical form using

integration by parts (see e.g. Theorem 3.36, p.107 in Folland (1999)), so that
∫ T

t
B(t, s)dLs =

B(t, T )LT − Lt +
∫ T

t
rB(t, s)Lsds and by applying Fubini-Tonelli on this expressions then

renders

E

[∫ T

t

B(t, s)dLs

∣∣∣∣FM
t

]
= B(t, T )E

[
LT | FM

t

]
− Lt +

∫ T

t

rB(t, s)E
[
Ls | FM

t

]
ds. (6.6)

Furthermore, if s > t then (5.3.2) gives

E
[
Ls | FM

t

]
= (1− φ)

(
1−

(
1− Nt

m

)
πte

Qλ(s−t)1

)

so using this in (6.6) and recalling that B(t, s) = e−r(s−t) for s > t, we get

E

[∫ T

t

B(t, s)dLs

∣∣∣∣FM
t

]
= B(t, T )E

[
LT | FM

t

]
− Lt +

∫ T

t

rB(t, s)E
[
Ls | FM

t

]
ds

= e−r(T−t)(1− φ)

(
1−

(
1− Nt

m

)
πte

Qλ(T−t)1

)
− (1− φ)

m
Nt

+

∫ T

t

re−r(s−t)(1− φ)

(
1−

(
1− Nt

m

)
πte

Qλ(s−t)1

)
ds.

(6.7)
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The integral in the RHS of (6.7) can be simplified according to
∫ T

t

re−r(s−t)(1− φ)

(
1−

(
1− Nt

m

)
πte

Q
λ
(s−t)1

)
ds

= (1− φ)
(
1− e−r(T−t)

)

− r(1− φ)

(
1− Nt

m

)
πt

(
eQλ(T−t)e−r(T−t) − I

)
(Qλ − rI)−1

1

(6.8)

where the last equality in (6.8) is due to the fact that
∫ T

t

e−r(s−t)eQλ(s−t)ds =

∫ T

t

e(Qλ−rI)(s−t)ds =
(
eQλ(T−t)e−r(T−t) − I

)
(Qλ − rI)−1 .

Note that (Qλ − rI)−1 exists since Qλ − rI by construction is a diagonal dominant matrix,
implying that det (Qλ − rI) 6= 0 by the Levy-Desplanques Theorem. By plugging (6.8) into
(6.7) and performing some trivial but tedious computations we get

E

[∫ T

t

B(t, s)dLs

∣∣∣∣FM
t

]

= (1− φ)

(
1− Nt

m

)(
1− πt

(
eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) − r (Qλ − rI)−1

)
1
)

= (1− φ)

(
1− Nt

m

)
πt

[
I − eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) + r (Qλ − rI)−1

]
1

=

(
1− Nt

m

)
πtA(t, T )1

where we in the second equality used that 1 = πt1 = πtI1 and where A(t, T ) in the final
equality is given by

A(t, T ) = (1− φ)

[
I − eQλ(T−t)

(
I + r (Qλ − rI)−1

)
e−r(T−t) + r (Qλ − rI)−1

]

which proves (6.1) and (6.3) where we also used (2.2.4) with Ft replaced by FM
t given in

(3.2.2). To derive the expression for the premium leg we use (5.2.1) in Proposition 5.2 with

s > t and obtain 1 − 1
m
E
[
Ns | FM

t

]
=
(
1− Nt

m

)
πte

Qλ(s−t)1 which in Equation (2.2.5), with

Ft replaced by FM
t , then renders that

PV (t, T ) =
1

4

⌈4T ⌉∑

n=nt

B(t, tn)

(
1− 1

m
E
[
Ntn | FM

t

])
=

1

4

(
1− Nt

m

) ⌈4T ⌉∑

n=nt

πte
Qλ(tn−t)1e−r(tn−t)

=

(
1− Nt

m

)
πtB(t, T )1

where B(t, T ) = 1
4

∑⌈4T ⌉
n=nt

eQλ(tn−t)e−r(tn−t) and this proves (6.2) and (6.4). Finally, (6.5)
follows from the definition in (2.2.6) together with the expressions for the default leg and
premium leg in (6.1) and (6.2). �

Note that the term 1 − Nt/m in the right hand side of both (6.1) and (6.2) implies that
the conditional expectations of the default and premium legs will be zero for the armageddon
event Nt = m. This fact is in line with the conclusion in (2.3.3) which holds for any model of
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the default times τ1, . . . , τm. Furthermore, note that the right hand side in (6.5) is still well
defined when Nt = m.

From Theorem 6.1 we conclude that given the vector πt, then the formulas for the default
and premium leg in the filtering model as well as the CDS index spread S(t, T ) are compact
and computationally tractable closed-form expressions in terms of πt and Qλ. Furthermore,
Theorem 6.1 will also help us to find tractable formulas for the payoff of more exotic derivatives
with the CDS index as a underlyer. Example of such derivatives are call options on the CDS
index, which we will treat in the next section.

7. CDS index options in the filtering model

In this section we apply the results from Section 6 and Subsection 2.3 to present a highly
computationally tractable formula for the payoff of a so called CDS index option in the model
presented in Section 3. Furthermore, we derive a lower bound for price of the CDS index
option and also provide explicit conditions on the strike spread for which this inequality
becomes an equality. The lower bound is computationally tractable and do not depend on
any of the ”noise” parameters in the filtering model introduced in Section 3. Finally, we
outline how to explicitly compute the quantities involved in the lower bound for the price of
the CDS index option.

By inserting the explicit expressions for the default and premium legs for the index-CDS
spread given by (6.1) and (6.2) in Theorem 6.1 into the expression of the payoff Π(t, T ;κ) for
the CDS index option in Equation (2.3.5), that is

Π(t, T ;κ) = (DL(t, T )− κPV (t, T ) + Lt)
+ .

we immediately make the payoff Π(t, T ;κ) very explicit in terms of πt, Nt, A(t, T ) and
B(t, T ), as summarized in the following lemma.

Lemma 7.1. Consider a CDS index portfolio in the filtering model. Then, the payoff

Π(t, T ;κ) for an CDS index option with strike κ, exercise date t and maturity T for the

underlying CDS index, is given by

Π(t, T ;κ) =

(
πt

[
A(t, T )− κB(t, T )

]
1

(
1− Nt

m

)
+

(1− φ)Nt

m

)+

(7.1)

where A(t, T ) and B(t, T ) are defined as in Theorem 6.1.

Note that on the event {Nt = m}, the right-hand side in (7.1) reduces to the random
variable (1− φ)1{Nt=m} for any strike spread κ, which is consistent with Equation (2.3.7).

In view of Lemma 7.1 and since the price of the CDS index option C0(t, T ;κ) at time 0
(i.e. today) is given by C0(t, T ;κ) = E

[
e−rtΠ(t, T ;κ)

]
we therefore get

C0(t, T ;κ) = e−rtE

[(
πt

[
A(t, T )− κB(t, T )

]
1

(
1− Nt

m

)
+

(1− φ)Nt

m

)+]
. (7.2)

Since no closed formulas are known for the entries in the vector πt it is difficult to find
analytical expressions for the formulas in the RHS of Equation (7.2). Instead we rely on
Monte Carlo simulations of the filtering probabilities πt together with the compact formula
for the payoff function Π(t, T ;κ) given in (7.1).
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7.1. A lower bound for the CDS index option price. In this subsection we present we
derive a lower bound for price of the CDS index option and also provide explicit conditions
on the strike spread for which this inequality becomes an equality. The lower bound is
computationally tractable and do not depend on any of the ”noise” parameters in the filtering
model introduced in Section 3.

Even if it does not exists any closed formulas for the expected value in (7.2) we can still
derive lower bounds for the price C0(t, T ;K) in our nonlinear filtering model by using Equation
(2.3.11). This is done in the following proposition.

Proposition 7.2. Let C0(t, T ;κ) be the price today of an CDS index option with strike κ,
exercise date t and maturity T . Then, with notation as above,

C0(t, T ;κ) ≥ (1− φ)e−rtQ [Nt = m]

+ e−rt

m−1∑

j=0

(
K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
Q [Xt = k,Nt = j] +

(1− φ) j

m
Q [Nt = j]

)+
(7.1.1)

where

pk(t, T ;κ) =
([

A(t, T )− κB(t, T )
]
1
)
k

(7.1.2)

for A(t, T ) and B(t, T ) defined as in Theorem 6.1.

Proof. From Equation (2.3.11) we have

C0(t, T ;κ) = e−rtE
[
Π(t, T ;κ)1{Nt<m}

]
+ (1− φ)e−rtQ [Nt = m] (7.1.3)

and note that E
[
Π(t, T ;κ)1{Nt<m}

]
can be rewritten as

E
[
Π(t, T ;κ)1{Nt<m}

]
=

m−1∑

j=0

E
[
Π(t, T ;κ)1{Nt=j}

]
. (7.1.4)

We now give a lower bound for the quantity E
[
Π(t, T ;κ)1{Nt=j}

]
and for this we need some

more notation. For each state k in the state space of the underlying process Xt defined in

Section 3, let pk(t, T ;κ) denote the k-th component in the vector
([

A(t, T ) − κB(t, T )
]
1
)
,

that is

pk(t, T ;κ) =
([

A(t, T )− κB(t, T )
]
1
)
k
. (7.1.5)

Furthermore, we remind the reader that πt is a a row-vector given by πt =
(
π1
t , . . . , π

K
t

)
where

each processes πk
t satisfy the K-dimensional system of SDE-s in Equation (4.8) presented in

Corollary 4.2. Hence, this observation together with Equation (7.1) and Equation (7.1.5) then
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implies that we can rewrite the quantity E
[
Π(t, T ;κ)1{Nt=j}

]
as follows

E
[
Π(t, T ;κ)1{Nt=j}

]
= E

[(
πt

[
A(t, T )− κB(t, T )

]
1

(
1− j

m

)
+

(1− φ) j

m

)+

1{Nt=j}

]

= E



(

K∑

k=1

πk
t pk(t, T ;κ)

(
1− j

m

)
+

(1− φ) j

m

)+

1{Nt=j}




= E



(

K∑

k=1

πk
t pk(t, T ;κ)

(
1− j

m

)
1{Nt=j} +

(1− φ) j

m
1{Nt=j}

)+



≥
(
E

[
K∑

k=1

πk
t pk(t, T ;κ)

(
1− j

m

)
1{Nt=j} +

(1− φ) j

m
1{Nt=j}

])+

(7.1.6)

where the last inequality is due to Jensens inequality. The quantity inside the max expression
on the last line in Equation (7.1.6) can be rewritten as

E

[
K∑

k=1

πk
t pk(t, T ;κ)

(
1− j

m

)
1{Nt=j} +

(1− φ) j

m
1{Nt=j}

]

=
K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
E
[
πk
t 1{Nt=j}

]
+

(1− φ) j

m
Q [Nt = j] .

(7.1.7)

Furthermore, since πk
t = Q

[
Xt = k | FM

t

]
we have

E
[
πk
t 1{Nt=j}

]
= E

[
Q
[
Xt = k | FM

t

]
1{Nt=j}

]

= E
[
Q
[
Xt = k,Nt = j | FM

t

]]

= Q [Xt = k,Nt = j]

(7.1.8)

where the second equality follows from the fact that Nt is FM
t -measurable since FM

t =
FY
t ∨FZ

t in view of Equation (3.2.2). Hence, inserting (7.1.8) in (7.1.7) and using (7.1.4) and
(7.1.6), we retrieve the following lower bound for E

[
Π(t, T ;κ)1{Nt<m}

]

E
[
Π(t, T ;κ)1{Nt<m}

]

≥
m−1∑

j=0

(
K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
Q [Xt = k,Nt = j] +

(1− φ) j

m
Q [Nt = j]

)+
(7.1.9)

where pk(t, T ;κ) is given by Equation (7.1.5). Next, plugging (7.1.9) into (7.1.3) finally yields
the following lower bound for the option price C0(t, T ;κ),

C0(t, T ;κ) ≥ (1− φ)e−rtQ [Nt = m]

+ e−rt

m−1∑

j=0

(
K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
Q [Xt = k,Nt = j] +

(1− φ) j

m
Q [Nt = j]

)+

which proves (7.1.1). �
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Thus, Proposition 7.2 establish a lower bound for the option price C0(t, T ;κ) as function
of the probabilities Q [Xt = k,Nt = j] and Q [Nt = j] for each state k and j = 0, 1, . . . ,m.
Furthermore, we also remark that the quantity in the right hand side of (7.1.1) does not
depend on any of the ”noise” parameters in the filtering model introduced in Section 3.
That is, the expression in the right hand side of (7.1.1) is independent of the mapping a :
{1, 2, . . . ,K} 7→ Rl which is used in (3.2.1) to generate the noisy information FZ

t and the
corresponding noisy market information FM

t in (3.2.2), which in turn creates the nonlinear
filtering model introduced in Section 3.

The following corollary to Proposition 7.2 gives conditions for the possibilities of having
an equality in (7.1.1) instead of an inequality.

Corollary 7.3. Let C0(t, T ;κ) be the price today of an CDS index option with strike κ,
exercise date t and maturity T . Then there exists a constant κ∗ such that for κ ≤ κ∗ it holds

C0(t, T ;κ) = (1− φ)e−rtQ [Nt = m]

+ e−rt

m−1∑

j=0

K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
Q [Xt = k,Nt = j] + e−rt

m−1∑

j=0

(1− φ) j

m
Q [Nt = j]

(7.1.10)

where κ∗ is given by

κ∗ = min
k=1,...,K

κ∗k and κ∗k =
ekA(t, T )1

ekB(t, T )1
(7.1.11)

with A(t, T ), B(t, T ) and pk(t, T ;κ) defined as in Proposition 7.2.

Proof. First recall the option pricing formula (7.2)

C0(t, T ;κ) = e−rtE

[(
πt

[
A(t, T )− κB(t, T )

]
1

(
1− Nt

m

)
+

(1− φ)Nt

m

)+]
(7.1.12)

where A(t, T ) and B(t, T ) are given as in Lemma 7.1. From Theorem A.1 in Appendix A,
Proposition 5.2 and Equation (6.2) in Theorem 6.1 we conclude that ekB(t, T )1 ≥ 0 for each
state k. Similarly, from the Equations (6.7) and (6.8) we also conclude that ekA(t, T )1 ≥ 0
for every state k. Therefore, for each k the quantity

ek
(
A(t, T )− κB(t, T )

)
1 = ekA(t, T )1− κekB(t, T )1 (7.1.13)

is the difference of two positive expressions when κ ≥ 0. Consequently, for each state k there
is a smallest strike spread denoted by κ∗k (bounded below by zero) for which the payoff in
(7.1.13) is non-negative for all κ ≤ κ∗k. More explicit, κ∗k is defined by

κ∗k =
ekA(t, T )1

ekB(t, T )1
.

Furthermore, let κ∗ be

κ∗ = min
k=1,...,K

κ∗k.

Then, by the construction of κ∗, we conclude that (7.1.13) is non-negative for all states k and
all strike spreads κ where κ ≤ κ∗ which implies

πt

(
A(t, T )− κB(t, T )

)
1 ≥ 0 a.s. for κ ≤ κ∗, (7.1.14)
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that is

Q
[
πt

(
A(t, T )− κB(t, T )

)
1 ≥ 0

]
= 1 for κ ≤ κ∗.

By using (7.1.14) we conclude that the ”max” expression in (7.1.12) is superfluous for κ ≤ κ∗

and the option price C0(t, T ;κ) can then be rewritten as

C0(t, T ;κ) = e−rtE

[(
πt

[
A(t, T )− κB(t, T )

]
1

(
1− Nt

m

)
+

(1− φ)Nt

m

)+]

= e−rtE

[
πt

(
A(t, T )− κB(t, T )

)
1

(
1− Nt

m

)
+

(1− φ)Nt

m

]

= e−rtE

[
πt

(
A(t, T )− κB(t, T )

)
1

(
1− Nt

m

)]
+ e−rt (1− φ)

m
E [Nt] .

(7.1.15)

Furthermore, by following similar steps as in the Equations (7.1.7)-(7.1.8) we can rewrite the

expression E
[
πt

(
A(t, T )− κB(t, T )

)
1
(
1− Nt

m

)]
as

E

[
πt

(
A(t, T )− κB(t, T )

)
1

(
1− Nt

m

)]
=

m−1∑

j=0

K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
Q [Xt = k,Nt = j]

(7.1.16)
where pk(t, T ;κ) is defined as in (7.1.2). Note that

e−rt (1− φ)

m
E [Nt] = (1− φ)e−rtQ [Nt = m] + e−rt

m−1∑

j=0

(1− φ) j

m
Q [Nt = j] (7.1.17)

and this observation together with (7.1.16) in (7.1.15) for κ ≤ κ∗ then yields that

C0(t, T ;κ) = (1− φ)e−rtQ [Nt = m]

+ e−rt

m−1∑

j=0

K∑

k=1

pk(t, T ;κ)

(
1− j

m

)
Q [Xt = k,Nt = j] + e−rt

m−1∑

j=0

(1− φ) j

m
Q [Nt = j]

which proves (7.1.12). �

Note that Equation (7.1.10) in Corollary 7.3 is simply Equation (7.1.1) with a strict equality
and without a ”max” function for the second expression in the right hand side of (7.1.1). We
therefore conclude that the inequality in (7.1.1) turns into a strict equality when the strike
spread κ satisfies κ ≤ κ∗ with κ∗ defined as in (7.1.11).

It is remarkable that we in the noise model introduced in Section 3 for strike spreads κ such
that κ ≤ κ∗ have derived an semi-explicit expression for the option price C0(t, T ;κ) given
by (7.1.10), which is independent of the mapping a : {1, 2, . . . ,K} 7→ Rl used in (3.2.1) to
generate the noisy information FZ

t .

7.2. Auxiliary tools for computing the lower bounds. In this subsection we outline
how to compute the quantizes involved in the lower bounds presented in Subsection 7.1. The
results derived here are utilized in the implementations that are used in our numerical studies
in later sections of this paper.

Equation (7.1.1) in Proposition 7.2 provides a lower bound for the option price C0(t, T ;κ)
as function of the probabilities Q [Xt = k,Nt = j] and Q [Nt = j] for each state k and j =
0, 1, . . . ,m. Furthermore, (7.1.10) in Corollary 7.3 gives an exact expression for option price
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C0(t, T ;κ) when κ ≤ κ∗ as function of Q [Xt = k,Nt = j] and Q [Nt = j]. Therefore we will
below outline how to compute the probabilities Q [Xt = k,Nt = j] and Q [Nt = j] in our model
presented in Section 3.

Consider a bivariate Markov process Ht on a state space SH defined as

SH = {1, . . . ,K} × {0, 1, . . . ,m} (7.2.1)

where |SH | = K(m + 1). So each state j ∈ SH can be written as a pair j = (k, j) where k
and j are integers such that 1 ≤ k ≤ K and 0 ≤ j ≤ m. The first component of Ht belongs
to {1, . . . ,K} while the second component of Ht is defined on {1, . . . ,m}. The intuitive idea
behind the bivariate Markov process Ht is of course that the first component of Ht should
”mimic” the factor process Xt defined in Section 3.1 while the second component of Ht should
represent Nt, i.e. the number of defaulted obligors in the portfolio at time t, as defined in
previous sections. More specific, for any pair (k, j) ∈ SH and for any time point t ≥ 0, we
want that the events {Ht = (k, j)} and {Xt = k,Nt = j} should have the same probability
under the risk-neutral measure Q, that is

Q [Ht = (k, j)] = Q [Xt = k,Nt = j] where (k, j) ∈ SH and t ≥ 0. (7.2.2)

In view of the above description of the bivariate Markov process Ht we now specify the
generator QH for Ht on SH . For a fixed value k of the first component of Ht we can treat
the second component of Ht as a pure death process on {0, 1, . . . ,m}, i.e. a process which
counts the number of defaulted obligors in the portfolio given that the underlying economy is
in state k, that is Xt = k. Therefore, for any j = 0, 1, . . . ,m−1 the process Ht can jump from
(k, j) to (k, j+1) with intensity (m−j)λ(k) where the mapping λ(·) is defined as in Corollary
4.2. Recall that λ(k) is the individual default intensity when the factor process is in state
k, i.e. Xt = k. Next, for a fixed value j of the second component of Ht (i.e. the number of
defaulted obligors at time t are j) consider two distinct states k and k′ in {1, . . . ,K}. Then,
inspired by the construction of the underlying factor process Xt with generator Q, we let the
bivariate process Ht jump from (k, j) to (k′, j) with intensity Qk,k′ where k 6= k′. These are
the only allowed transitions for Ht. Hence, the generator QH for Ht is then given by

(QH)(k,j),(k,j+1) = (m− j)λ(k) 0 ≤ j ≤ m− 1, 1 ≤ k ≤ K

(QH)(k,j),(k′,j) = Qk,k′ 0 ≤ j ≤ m, 1 ≤ k, k′ ≤ K k 6= k′
(7.2.3)

and for each pair k, j we also have that

(QH)(k,j),(k,j) = −
∑

(k′,j′)∈SH ,k′ 6=k,j′ 6=j

(QH)(k,j),(k′,j′) . (7.2.4)

where the other entries in QH are zero. In view of this construction it is easy to see that it
must hold

Q [Ht = (k, j)] = Q [Xt = k,Nt = j] where (k, j) ∈ SH and t ≥ 0. (7.2.5)

Let αH ∈ RK(m+1) be the initial distribution of the Markov process Ht on the state space
SH with generator QH and consider j ∈ SH . From Markov theory we know that

Q [Ht = j] = αHeQHtej , (7.2.6)

where ej ∈ RK(m+1) is a column vector where the entry at position j is 1 and the other entries

are zero. Furthermore, eQHt is the matrix exponential which has a closed form expression in
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terms of the eigenvalue decomposition of QH . Thus, in view of (7.2.5) and (7.2.6) we have
for any j = (k, j) ∈ SH and t ≥ 0 that

Q [Xt = k,Nt = j] = αHeQHte(k,j). (7.2.7)

So (7.2.7) provides us with an efficient way to compute the probabilities Q [Xt = k,Nt = j]
for any t ≥ 0 and any pair j = (k, j) where k and j are integers such that 1 ≤ k ≤ K and
0 ≤ j ≤ m. Note that there exist over 20 different ways to compute the matrix exponential,
for more on this see e.g in Moeler & Loan (1978) and Moeler & Loan (2003).

Since Q [Nt = j] =
∑K

k=1Q [Xt = k,Nt = j] we retrieve that

Q [Nt = j] = αHeQH t

K∑

k=1

e(k,j) = αHeQH te(·,j) (7.2.8)

where e(·,j) ∈ RK(m+1) is a column vector defined as e(·,j) =
∑K

k=1 e(k,j). Finally, let us

specify the the initial distribution αH ∈ RK(m+1) of the Markov process Ht on the state
space SH , defined as in (7.2.1). First, let α be the initial distribution of the process Xt

defined in Section 3.1. Then αk = Q [X0 = k] but we also know that

πk
0 = Q

[
X0 = k | FM

0

]
= Q [X0 = k] = αk (7.2.9)

which gives a relation between the values πk
0 and αk. Next, let us now the initial distribution

αH ∈ RK(m+1). We assume that all obligors in the portfolio are ”alive” (non-defaulted) at
time t = 0, i.e. today, which implies that the second component must be zero for all states
of the economy background process modelled by the first component of the bivariate Markov
process. Hence, it must hold that

K∑

k=1

(αH)(k,0) = 1 and (αH)(k,j) = 0 for j = 1, 2, . . . ,m (7.2.10)

which in turn guarantees that the sum of the entries in αH are one.
By using the formulas (7.2.7), (7.2.8) and (7.2.10) in (7.1.1) we can efficiently compute

numerical values for the lower bounds of the option price C0(t, T ;κ). Similarly, using (7.2.7),
(7.2.8) and (7.2.10) in (7.1.10) will render exact values of the option price C0(t, T ;κ) when
κ ≤ κ∗ where κ∗ is defined as in (7.1.11).

Since typically m and K are allowed to be large, especially m, we will in general deal with
very high dimensional state spaces of size (m+1)×K, which requires special treatment when
numerically dealing with the matrix exponential of the generator for Ht. Just computing
the matrix exponential with standard algorithms will make the implementation slow and also
inaccurate. Instead we will rely on the so-called uniformization method which has successfully
been utilized in high-dimensional state space applications of portfolio credit risk, see e.g. in
Herbertsson (2007), Herbertsson & Rootzén (2008), Herbertsson (2011), Bielecki, Crépey &
Herbertsson (2011) and Lando (2004). In our case we will also exploit the sparseness of the
transition matrices for Ht which makes the running times even quicker. With the help of
Ht we will also display the loss distribution Q [Nt = k] for k = 0, 1, . . . ,m and in particular
the armageddon probabilities Q [Nt = m] for some calibrated examples in the filtering model
outlined in Section 3 - 7. Finally, we have also performed robustness testes in order to increase
the reliability of the implemented code. For example, we have checked that Q [Xt = k] is the
same via Q and QH .
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8. Numerical studies

In this section we perform various numerical studies of the CDS index spread and CDS
index option prices presented in Section 6 and 7, which in turn are based on the filtering model
outlined in Section 3. The numerical studies are performed by calibration all parameters to
market data

First, in Subsection 8.1 we gives a detailed outline of how the matrix Q and vector λ are
chosen and then discuss how to estimate/calibrate the parameters θ = (Q,λ, a(x)) in the
filtering model introduced in Section 3 - 7.

Next, in Subsection 8.2 we use the results of Subsection 8.1 to calibrate, compute and
display the simulated CDS index option prices as well as the lower bounds derived in Section
7 as functions of varies parameters such as the strike, the maturity and the spot-spread. We
also calibrate the benchmark model 2.4.19 to the same spot CDS index spread. After this we
compare the filtering prices, their lower bound prices and the benchmark prises for different
values of ρ, σ̂ and c. In particular, a numerical study is performed where we show that the
lower bound in our model can be several hundred percent bigger compared with models which
assume that the CDS-spreads follows a log-normal process. Also a systematic study is done
in order to understand the impact of various model parameters on CDS index options (and
on the index itself)

8.1. Specifying the parameters and calibrating the filtering model. In this section
we discuss how to estimate/calibrate the parameters θ = (Q,λ, a(x)) in the filtering model
introduced in Section 3. Recall that a(x) is the mapping used in (3.2.1) when constructing
Zt which is a function of Xt via the integral of the mapping a(Xt) plus noise in form of a
Brownian motion. Just as in Herbertsson & Frey (2014) and Frey & Schmidt (2012) we use
one source of randomness when modelling the noise and in this paper we choose the mapping
a : {1, 2, . . . ,K} 7→ R in (3.2.1) to be on the form

a(Xt) = c lnλ(Xt) that is a(k) = c lnλ(k) for each state k (8.1.1)

where c is a constant. The parametrization (8.1.1) have previously also been used in Herberts-
son & Frey (2014), Frey & Schmidt (2012) and Frey & Schmidt (2011), see e.g. Subsection 5.3
in Frey & Schmidt (2012) and Example 7.6.1 in Frey & Schmidt (2011). For a detailed motiva-
tion of the choice (8.1.1) see on p.1420 in Herbertsson & Frey (2014). Hence, a(k) = c · ln λ(k)
for a constant c, so the parameters θ to be estimated are then given by θ = (Q,λ, c).

Next, for λ = (λ(1), . . . , λ(K)) we will use the following piecewise linear parametrization
of the mapping λ(k) for the individual default intensity,

λ(k) =

{
bk if k ≤ ⌈K2 ⌉
b⌈K2 ⌉(1− β) + βbk if k > ⌈K2 ⌉

(8.1.2)

where β and b are constants such that β > 1 and b > 0. Note that for a continuous version
of λ(·) we see that the left and right limit are the same which motivates the choice of the
parameters for the case k > ⌈K2 ⌉, i.e. these are choosen so that

lim
x↑⌈K

2
⌉
λ(x) = lim

x↓⌈K

2
⌉
λ(x).

We here remind the reader that the states in SX = {1, 2, . . . ,K} are ordered so that state
1 represents the best state and K represents the worst state of the economy. Consequently,
the mapping λ(·) is chosen to be strictly increasing in k ∈ {1, 2, . . . ,K}. This implies that
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β ≥ 1 in (8.1.2) and in our practical implementation we choose strict inequality, i.e. β > 1
so that the slope of the line λ(k) will increase more for k > ⌈K2 ⌉ compared with k ≤ ⌈K2 ⌉.
The parametrization of λ(k) in (8.1.2) is convenient in the sense that it describes the function
λ(k) with only two parameters β and b, regardless of the number of states K. The choice of
the breakpoint ⌈K2 ⌉ can of course be changed, as well as the number of breakpoints, but more
breakpoints forces us to use more parameters when describing λ(k) (for a piecewise linear
function we need a parameter for each slope in each region between the breakpoints etc.).

Next, we will assume that the finite state continuous time Markov chain Xt on the state
space SX = {1, 2, . . . ,K} is a birth-death process with identical up and down transition
intensities given by q. Hence, the generator Q will satisfy

Qi,j =





q if i = j − 1 or i = j + 1
−2q if 2 ≤ i = j ≤ K − 1
−q if i = j = 1 or i = j = K
0 otherwise

(8.1.3)

where q > 0. So (8.1.3) gives us only one parameter describing the generator Q regardless of
the number of states K.

Hence, given the mapping a(x) in (8.1.1) and the parametrization of Q,λ in (8.1.2)-(8.1.3),
the parameters to be estimated/calibrated are then θ = (b, β, q, c). In this paper we will
estimate θ = (b, β, q, c) by calibrating the model spot CDS-index spread S(0, 5) towards the
corresponding observed market spread by using Equation (6.5) for t = 0 and the fact that
π0 = α where α be the initial distribution of the process Xt defined in Section 3.1. This
means that we also need to find the K values of α = (α1, . . . , αK) and the parameters to be
estimated are then θ = (b, β, q,α, c). By using (6.5) with π0 = α we define the T̄ -year model
spot spread S(T̄ ;θ) as

S(T̄ ;θ) =
αA(0, T̄ )1

αB(0, T̄ )1
(8.1.4)

and θ = (b, β, q,α, c) is then calibrated via the following minimization routine

min
θ

(
S(T̄ ;θ)− SM(T̄ )

SM(T̄ )

)2

subject to

α1 = 1

0 ≤ αk ≤ 1 for k = 1, . . . ,K

β > 1, b > 0, q > 0

(8.1.5)

where SM(T̄ ) is the market quote for the T̄ -year CDS-index spread today, i.e. at time t = 0.
We here remark that we can extend the above calibration routine by including market CDS-
index spreads {SM (T̄ )}T∈T for a several maturities such as e.g. T̄ ∈ T = {3, 5, 7, 10}. In
such a case the objective function in (8.1.5) is then replaced with

∑

T̄∈T

(
S(T̄ ;θ)− SM(T̄ )

SM(T̄ )

)2

.

We will in this paper only use one maturity T̄ = 5 which historically has been the most
liquidly quoted CDS-index spread, in particular for the individual entries in the index.
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The calibration of the parameters θ = (b, β, q,α, c) is thus a constrained nonlinear optimiza-
tion problem and such routines are mostly solved numerically using standard mathematical
software packages such as e.g. matlab. Numerical optimization routines typically requires the
user to provide an initial guess θ0 =

(
b0, β0, q0,α

(0), c0
)
before running the scheme. In our

initial guess θ0 we let α
(0)
k = 1

K
for each k.

Note that with t = 0 and for a given α, Equation (6.5), or equivalently (8.1.4) do not contain
the parameter c used in (8.1.1). Hence, the calibration routine in (8.1.5) will not provide an
estimation of c so this parameter must therefore be found by using another method.

If the mapping a(x) is on the form (8.1.1) one can estimate c, or more generally, the param-
eters θ = (Q,λ, c) in several different ways. In Herbertsson & Frey (2014), which uses (8.1.1),
the authors outline a novel approach for estimating the parameters θ = (Q,λ, c) in the fil-
tering model of Frey & Schmidt (2012) under the physical/real measure by using time-series
data on a CDS index and classical maximum-likelihood algorithms. This calibration-approach
naturally incorporates the Kushner-Stratonovich SDE for the dynamics of the filtering prob-
abilities. The computationally convenient formula for survival probability stated in Theorem
5.1 is a prerequisite for the estimation algorithm in Herbertsson & Frey (2014). In Frey
& Schmidt (2012) the authors calibrate the parameter c under the risk-neutral measure by
using the quadratic variation of the diffusion part of the index spread dynamics. Just as
in Herbertsson & Frey (2014), the authors Frey & Schmidt (2012) observe that there were
no defaults within the iTraxx Europe in their observation period for the time series, so the
empirical quadratic variation of the index spreads is an estimate of the continuous part of the
quadratic variation on the same index spread. The value of c obtained in Frey & Schmidt
(2012) is in the same order as the corresponding value of c found via the MLE-estimation
in Herbertsson & Frey (2014) under the real measure, see Section 5 in Herbertsson & Frey
(2014).

Herbertsson & Frey (2014) gives a short literature overview of some papers that develops es-
timation techniques in models with incomplete information applied to credit risk applications.
These are, amongst others Hurd & Zhou (2011), Azizpour, Giesecke & Kim (2011), Capponi
& Cvitanic (2009), Fontana & Runggaldier (2010), Bhar & Handzic (2011), Duffie, Eckner,
Horel & Saita (2009) and Koopman, Lucas & Schwaab (2011). Furthermore, Herbertsson &
Frey (2014) also outline alternative methods to estimate θ = (Q,λ, c) using quadratic pro-
gramming. We refer the reader to Herbertsson & Frey (2014) for more details on all of the
above topics.

In this paper the parameter c will be exogenously given and we can without loss of generality
assume that c has been estimated with some of the above mentioned methods. Nevertheless,
we will perform numerical studies of the price C0(t, T ;κ) for an CDS index option in the
filtering model presented in Section 3 as function of e.g. the parameter c. In particular
we will use Monte-Carlos simulations to study C0(t, T ;κ) as functions of the parameters
θ = (b, β, q,α) and c where (b, β, q,α) are obtained via the calibration (8.1.5). Furthermore,
we will also investigate how far away the simulated prices will deviate from the lower bound of
the price derived in Proposition 7.2. A numerical study of when the inequality in Proposition
7.2 turns to the equality in given by Corollary 7.3 will also be performed.

8.2. Computing prices of options on the CDS index and their lower bound prices

and comparing with lognormal model prices. In this Subsection 8.2 we use the results
of Subsection 8.1 to calibrate, compute and display the simulated CDS index option prices
as well as the lower bounds derived in Section 7 as functions of varies parameters such as
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the strike, the maturity and the spot-spread. We also calibrate the benchmark model 2.4.19
to the same spot CDS index spread. After this we compare the filtering prices, their lower
bound prices and the benchmark prises for different values of ρ, σ̂ and c.

First, for m = 125, and r = 1% we calibrate both the filter modelling for K = 4 with the
parametrization (8.1.2) via (8.1.5) and the benchmark model (2.4.19) via (2.4.27) against a
market spot CDS index spread S(0, 5) = 200 bp. Then we compute the option price (2.4.19)
as function of the strike price κ for different maturities of t = 1, 3, 6, 9 months and different
values of ρ where ρ = 90%, 95% and ρ = 99.9 for σ̂ = 113% and plot these values in Figure 3-
5. In the same figures we also display lower bounds prices as function of κ when calibrated
to the same market spot CDS index spread S(0, 5) = 200 bp. In all cases the we have that
φ = 40%. We also display the relative difference in percent between the option prices without
absolute value in the numerator, and where the denominator is the Morini-Brigo value. In
appendix we also show the difference between these prices without absolute value.

In Figure 3- 5 we clearly see that the lower bound in our model can be several hundred or
thosands percent bigger compared with a model which assume that the CDS index spreads
follows a log-normal process.

In Figure 3- 5 the volatility is kept constant. In order to view the impact of the volatility
σ̂, Figure 6 displays the Morini-Brigo option price 2.4.19 as function of the volatility σ̂ for
the maturities t = 1, 3, 6, 9 months and correlations ρ = 90%, 95%, ρ = 99.9 where §(0, 5) =
200, φ = 40% bp. In the same figure wa also pot the lower bound prices in the filtering model
calibrated against the same spot spread S(0, 5) and same recovery, as well as the relative
difference in percent.

From the above studies we also discover that Q [Nt = m] = 0 for all studied scenarios in this
paper, and with the same market data such as spot-spread S(0, 5), maturity, interest rate, we
will show that the corresponding armageddon probability in the one-factor Gaussian copula
model is much higher when the correlation parameter ρ goes to one. Despite this fact we will
clearly see that the lower bounds for the CDS-index option prices in the filtering modell will
almost always be substantially higher (often several hundred percent higher) than the prices
computed in the model Morini & Brigo (2011), at least for ”at-the-money” strike-spreads,
i.e. when S(0, 5) = κ and the maturity is smaller or equal to 1.5 years. Only in extreme
scenarios, such as ρ ≥ 99.5% jointly with volatilizes σ ≥ 110% and maturities t ≥ 1.5 years
will generate prices in Morini & Brigo (2011) that are slightly above the lower bounds for the
CDS-index option prices in the filtering modell.
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Figure 3. The Morini-Brigo option prices for the maturities t = 1, 3, 6, 9 months
where ρ = 90%, σ̂ = 113%, S(0, 5) = 200, φ = 40% bp and the lower
bound prices in the filtering model calibrated against the same spot spread
S(0, 5) and same recovery.
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Strike spread κ (in bps) 
0 100 200 300 400 500

pr
ic

e 
(in

 b
ps

)

0

500

1000
t=1 months, T-t=5 years, S(0,5)=200 bp

Morini-Brigo prices, σ = 113 % , ρ = 95 %
lower bound prices (filtering modell)

Strike spread κ (in bps) 
0 100 200 300 400 500

re
la

tiv
e 

di
ff 

(in
 %

)

0

1000

2000
relative difference

Strike spread κ (in bps) 
0 100 200 300 400 500

pr
ic

e 
(in

 b
ps

)

0

500

1000
t=3 months, T-t=5 years, S(0,5)=200 bp

Morini-Brigo prices, σ = 113 % , ρ = 95 %
lower bound prices (filtering modell)

Strike spread κ (in bps) 
0 100 200 300 400 500

re
la

tiv
e 

di
ff 

(in
 %

)

0

100

200 relative difference

Strike spread κ (in bps) 
0 100 200 300 400 500

pr
ic

e 
(in

 b
ps

)

0

500

1000
t=6 months, T-t=5 years, S(0,5)=200 bp

Morini-Brigo prices, σ = 113 % , ρ = 95 %
lower bound prices (filtering modell)

Strike spread κ (in bps) 
0 100 200 300 400 500

re
la

tiv
e 

di
ff 

(in
 %

)

-20

0

20

40

60

80

relative difference

Strike spread κ (in bps) 
0 100 200 300 400 500

pr
ic

e 
(in

 b
ps

)

0

500

1000
t=9 months, T-t=5 years, S(0,5)=200 bp

Morini-Brigo prices, σ = 113 % , ρ = 95 %
lower bound prices (filtering modell)

Strike spread κ (in bps) 
0 100 200 300 400 500

re
la

tiv
e 

di
ff 

(in
 %

)

-20

-10

0

10

20

30

relative difference

Figure 4. The Morini-Brigo option prices for the maturities t = 1, 3, 6, 9 months
where ρ = 95%, σ̂ = 113%, S(0, 5) = 200, φ = 40% bp and the lower
bound prices in the filtering model calibrated against the same spot spread
S(0, 5) and same recovery.
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Figure 5. The Morini-Brigo option prices for the maturities t = 1, 3, 6, 9 months
where ρ = 99.9%, σ̂ = 113%, S(0, 5) = 200, φ = 40% bp and the lower
bound prices in the filtering model calibrated against the same spot spread
S(0, 5) and same recovery.
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Figure 6. The Morini-Brigo option prices as function of the volatility σ̂ for the matu-
rities t = 1, 3, 6, 9 months and correlations ρ = 90%, 95%, ρ = 99.9 where
S(0, 5) = 200, φ = 40% bp and the lower bound prices in the filtering
model calibrated against the same spot spread S(0, 5) and same recovery.
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Appendix A. Feyman-Kac formulas for finite-state Markov chains

The purpose of this section is to introduce some useful formulas, that will be used through-
out this paper. We first introduce some notation. Let SX = {1, 2, . . . ,K} and consider a
functions f(x) : SX 7→ R, then we denote f a RK-column vector with f j = f(j) for j ∈ SX .

Next, let Xt be a finite state Markov jump process on SX = {1, 2, . . . ,K} with generator
Q. Then, for a function λ(x) : SX 7→ R we denote the matrix Qλ = Q − Iλ where Iλ is a
diagonal-matrix such that (Iλ)k,k = λ(k) and ex is a row vector in RK where the entry at
position x is 1 and the others entries are zero.

We now state with the following result.

Theorem A.1. Let Xt be a finite state Markov jump process on SX = {1, 2, . . . ,K} with

generator Q. Consider functions λ(x), f(x) : SX 7→ R. Then, with notation as above

E
[
e−

∫
t

0 λ(Xs)dsf(Xt)
∣∣∣X0 = x

]
= exe

Qλ(T−t)f . (A.1)

A proof of Proposition A.1 can be found on pp.273-274 in Rogers & Williams (2000). It is
easy to extend Theorem A.1 to yield the following equality, for T ≥ t

E
[
e−

∫
T

t
λ(XT )dsf(XT )

∣∣∣Xt = x
]
= exe

Qλ(T−t)f (A.2)

where the rest of the notation are as in Theorem A.1. The main point in Theorem A.1 is
that given the matrix Qλ, then the left-hand side in Equation (A.1) (and Equation (A.2) is
straightforward to implement using standard mathematical software.

We note that Theorem A.1 does not hold if the functions λ, f also depend on time t, i.e
λ(t, x), f(t, x) : [0,∞)× SX 7→ R. In such cases, one generally has to rely on numerical ODE

method in order to find the quantity E
[
e−

∫
t

0 λ(s,Xs)dsf(t,Xt)
∣∣∣X0 = x

]
.

Appendix B. Derivation of the credit triangle

The purpose of this section is to derive the relation

λ =
S(T̄ )

1− φ
(B.1)

where S(T̄ ) is the T̄ -year CDS index spread for a homogeneous credit portfolio where the
default times {τi} have constant default intensity λ which means that they are exponentially
distributed with parameter λ, i.e. if τ has the same distribution as {τi} then

Q [τ ≤ t] = 1− e−λt. (B.2)

The existing proofs of (B.1) found in the credit literature are only done for the unrealistic
case when the CDS premium is paid continuously. In practice the CDS premiums are done
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quarterly. Furthermore, formula (B.1) is used repeatedly in portfolio credit risk, see e.g.
Equation (9.11) on p.404 in McNeil et al. (2005). Below, we will for notational convenience
write T instead of T̄ .

Proposition B.1. Consider a CDS index with maturity T on a homogeneous credit portfolio

where the obligors have constant default intensity λ and where the interest rate is r. Then,

S(T ) = 4(1 − φ)
(
1− e−

(r+λ)
4

) λ

λ+ r

1− e−(r+λ)T

e−
r+λ

4 − e−
(r+λ)(⌈4T⌉+1)

4

(B.3)

and if r + λ is small it holds that

λ ≈ S(T )

1− φ
. (B.4)

Proof. First recall that S(T ) is shorthand notation for S(0, T ) and using the definition of
S(0, T ) in Equation (2.2.6) we have that

S(T ) = S(0, T ) =
DL(0, T )

PV (0, T )
(B.5)

where

DL(0, T ) = E

[∫ T

0
e−rsdLs

]
= (1− φ)

∫ T

0
e−rsfτ (s)ds =

(1− φ)λ

λ+ r

(
1− e−(r+λ)T

)
(B.6)

and the last two equations in (B.6) follows from (B.2) and similar computations as in Equation
(2.4.31) and (2.4.33) in Propositon 2.3 with t = 0. Furthermore, (2.2.5) implies that

PV (0, T ) =
1

4

⌈4T ⌉∑

n=1

e−rtn

(
1− 1

m
E [Ntn ]

)
(B.7)

where tn = n
4 and which after identical computations as in (2.4.30) with t = 0, renders that

PV (0, T ) =
e−

(r+λ)
4 − e−

(r+λ)(⌈4T⌉+1)
4

4
(
1− e−

(r+λ)
4

) . (B.8)

Hence, (B.6) and (B.8) in (B.5) then gives

S(T ) = 4(1 − φ)
(
1− e−

(r+λ)
4

) λ

λ+ r

1− e−(r+λ)T

e−
r+λ

4 − e−
(r+λ)(⌈4T⌉+1)

4

(B.9)

which proves (B.3). Next, if r and λ are small we can use the following first order Taylor
expansion

e−
r+λ

4 ≈ 1− r + λ

4
(B.10)

which renders

4(1 − φ)
(
1− e−

r+λ

4

) λ

λ+ r
≈ (1− φ)λ (B.11)

and
1− e−(r+λ)T

e−
r+λ

4 − e−
(r+λ)(⌈4T⌉+1)

4

≈ 1− e−(r+λ)T

1− e−
(r+λ)(⌈4T⌉+1)

4 − r+λ
4

≈ 1 (B.12)
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since ⌈4T ⌉+1
4 ≈ T and r+λ

4 is small compared to 1− e−
(r+λ)(⌈4T⌉+1)

4 when T is larger (typically
T = 5 or T = 10). Hence, under (B.10) the approximations (B.11)-(B.12) inserted in (B.9)
then imply that

S(T ) ≈ (1− φ)λ

that is

λ =
S(T )

1− φ
which proves (B.4). �

We here remark that if one in the single-name CDS spread assumes that the default payment
in the default leg is postponed to the end of the quarter in which the default happens, then,
assuming (B.2), one can prove (B.4) for a general interest rate which not necessary have to
be constant. By Lemma 6.1, p.1203 in Herbertsson et al. (2011) this will therefore also hold
for a CDS-index.

In a perfectly calibrated model we have by definition that SM(T ) = S(0, T ) which in (B.4)
can be used to find a numerical value for λ given that the recovery φ is known.
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