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“It’s the possibility of having a dream come true that makes life 
interesting” 

“Όταν θέλεις πάρα πολύ κάτι, όλο το σύµπαν συνωµοτεί για να τα 
καταφέρεις” 

Paulo Coelho  

 
 
 
 
 
 
 



 

Abstract 

Preterm delivery (PTD), spontaneous or iatrogenic [1], causes short- and 
long-term morbidity [2, 3] and underlies almost 75% of neonatal deaths 
[4]. The prevalence in the Nordic countries is about 6% [5] but it differs 
among countries. In the USA, for instance, it is around 9.6% [6].  
The origin of spontaneous PTD is mostly unknown [7]. However, infection 
and inflammation are leading causes, mainly at early gestational ages [8]. 
Microbial invasion of the amniotic cavity (MIAC) occurs in 12-14% of 
symptomatic women with preterm labor (PTL) [9] and in 37-43% of 
women with preterm prelabor rupture of membranes (PPROM) [10]. 
MIAC elicits an inflammatory response mediated by cytokines, 
chemokines and other peptides, known as intra-amniotic inflammation 
(IAI). IAI causes early onset of symptoms, early gestational age at delivery 
and, consequently, worse neonatal outcome [11]. Chemokines induce 
chemotaxis in neutrophils and macrophages, enhancing their migration to 
the placenta and fetal membranes. This process, known as histological 
chorioamnionitis (HCA), occurs in more than half of spontaneous PTD 
cases. Early detection of spontaneous PTD presents a challenge because 
most women who deliver preterm have no obvious risk factors that can be 
identified early. Indeed, more than half of spontaneous PTDs occur in low-
risk pregnancies.  
One aim of the studies in this thesis was to study whether non-invasive 
strategies could predict the occurrence of spontaneous PTD within 7 days, 
as well as the rate of MIAC. We found that a combination of maternal 
serum proteins and cervical length constituted the most accurate prediction 
model for spontaneous PTD within 7 days of testing. However, we 
observed few differences between maternal serum protein levels in MIAC-
positive PTL and PPROM cases.  
An additional aim was to study the effect of different pre-analytical 
handling procedures on concentrations of interleukin-6 (IL-6), the cytokine 
most reported as a biomarker of IAI. We found that differences in handling 
procedures did not affect amniotic fluid IL-6 levels.  
Furthermore, these studies investigated the relationship between neonatal 
outcome and placental histological findings in women with PPROM. We 
found that HCA and funisitis increased the risk of early-onset neonatal 
sepsis and retinopathy of prematurity in PPROM pregnancies.  
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Sammanfattning på svenska 

Förtidsbörd innebär att förlossningen sker före fullgången tid, det vill säga 
före graviditetsvecka 37. Förtidsbörd utgör ett betydande globalt 
hälsoproblem och kan vara spontan, med start av egna förlossningsvärkar, 
eller inducerad, det vill säga framkallad på medicinsk indikation. 
Dödligheten och sjukligheten är förhöjda vid förtidsbörd, men framsteg 
inom nyföddhetsvården har gjort att för tidigt födda barn har goda chanser 
att överleva och få ett bra liv. Förekomsten av förtidsbörd är cirka 6% i 
Sverige, att jämföra med Afrika och Nordamerika, där den ligger på 9-
13%.  
Orsakerna till spontan förtidsbörd är fortfarande till stora delar okända, 
men infektioner och inflammation är ofta involverade. Mikrober i 
fostervattnet förekommer hos 12-14% av kvinnor med för tidiga 
sammandragningar och hos 37-43% av dem med för tidig vattenavgång. 
Mikrobutlöst fostervatteninflammation medför ofta tidigare symtomdebut 
och förlossning, vilket ger högre risk för dödlighet och sjuklighet hos 
nyfödda. Vid infektion i fostervattnet transporteras blodcellerna neutrofiler 
och makrofager till moderkakan och fosterhinnorna. Denna process, som 
kallas korioamnionit, förekommer i mer än hälften av fallen med spontan 
förtidsbörd.  
Tidig upptäckt av spontan förtidsbörd är en utmaning, eftersom drabbade  
kvinnor saknar tydliga riskfaktorer. Mer än hälften av fallen inträffar 
dessutom i lågriskgraviditeter, vilket innebär att inga sjukdomar hos 
kvinnan eller risker med graviditeten i övrigt kunnat påvisas före 
förlossningen.  
Ett syfte med studierna i denna avhandling var att undersöka om icke-
invasiva strategier (metoder utan ingrepp i livmodern) kan förutsäga 
spontan förtidsbörd inom sju dagar samt påvisa mikrober i fostervattnet.  
Vi fann att en kombination av ett påvisat äggviteämne i moderns blod och 
förkortad livmoderhals kan förutsäga risken för spontan förtidsbörd inom 
sju dagar efter blodprovstagningen. Dessutom observerade vi förändrade 
nivåer av vissa äggviteämnen i moderns blod när mikrober fanns i 
fostervattnet.  
Ett annat syfte med studierna var att undersöka om olika sätt att hantera 
fostervatten påverkar interleukin-6 (IL-6)-koncentrationerna. IL-6 är ett 
äggviteämne som används för att identifiera inflammation i fostervattnet. 



 

Vi fann att IL-6-nivåerna i fostervattnet inte påverkades av de studerade 
hanteringarna.  
Dessutom ville vi studera vilken påverkan inflammation i moderkakan och 
fosterhinnorna hos kvinnor med för tidig vattenavgång har på det nyfödda 
barnet. Vi fann att denna inflammation ökar risken för tidig blodförgiftning 
samt för kärlförändringar i ögats näthinna hos för tidigt födda barn.  
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1. Introduction  

1.1 Preterm delivery 

1.1.1 Definition and background  

Preterm delivery (PTD), as defined by the World Health Organization (WHO), 
refers to all births occurring before 37 completed weeks (up to 36 weeks + 6 
days) of gestation or at less than 259 days since the first day of the last menstrual 
period [12-14]. The lower limit of PTD is not clearly defined and varies 
internationally [15]. However, according to the WHO International 
Classification of Diseases (ICD-10), the perinatal period commences after 22 
completed weeks of gestation. These lower and upper gestational age limits for 
defining PTD are arbitrary [14]. 

PTD is considered to be one of the most important national health indicators 
[16], as it is the most frequent cause of neonatal death and the second most 
frequent cause of death in children aged <5 years worldwide [13]. Children who 
survive PTD have higher rates of short- and long-term morbidity, compared to 
children born at term [2, 3, 17]. The serious effects of PTD, including on parents 
and society, makes it an important global public health issue [18]. 

The collaborative efforts of obstetricians and neonatologists, together with 
technological advances, have achieved improved survival rates over the last 
decades. However, PTD remains an unresolved entity with complex causes. 
There is an urgent need to develop effective preventive measures to reduce the 
worldwide incidence [15, 19].  

1.1.2 Epidemiology of PTD 

In 2010, the average global PTD rate (based on 184 countries) was 11%, 
yielding a total of 14.9 million PTD cases annually [13]. Disparities in PTD rates 
between countries can also be explained by differences in definition, 
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classification, gestational age assessment and the absence of routinely collected 
data [13, 14]. 

About 60-80% of all PTD cases occur in Africa and Asia [12, 13]. The high rates 
in those regions is mainly linked to the greater number of deliveries, higher 
infection rates, poor maternal nutrition, heavy physical work and lack of 
available drugs, as well as of basic obstetric and neonatal care [12, 20].  

Europe has the lowest PTD rates in the world [12]. Several countries in Northern 
Europe, Sweden included, have rates close to 5% [13]. In the United States, a 
decline has occurred, to 9.63% in 2015 [6], from 2006 when the rates peaked at 
12.8% [12, 15].  

Most PTDs occur in the late preterm period (34 to 36+6 weeks) [6]. Although 
morbidity and mortality rates are relatively low among late-preterm-born babies, 
compared to those born at earlier gestational ages, they still exceed those of 
infants born at term [21, 22]. The overall decline in PTD rates observed in 2015 
in the United States might be attributable in part to a reduction in late PTD. A 
rise in the number of iatrogenic PTDs was one of the causes of the increase in 
PTD rates prior to 2006. In contrast, the decline in PTD rates since 2006 has 
been attributed to a decrease in both spontaneous and iatrogenic PTD [23].  

In 2005, the estimated annual cost of PTD in the United States was 26 billion 
dollars; the economic burden related to the condition was thus very high. This 
estimate included maternal delivery costs; medical care costs up to age 5 years 
for children born preterm; costs of early intervention and disability-specific 
lifetime medical, special education and lost productivity costs [24]. However, 
this cost estimate has limitations because it only includes children with cerebral 
palsy (CP), mental retardation, vision impairment, and hearing loss. Children 
born preterm are also at risk of other long-term morbidities, including asthma, 
learning disabilities, attention deficit disorder and emotional problems [25-28]. 
As adults, children born preterm may also have higher rates of insulin resistance 
and hypertension [29, 30].  

However, the financial burden is only one aspect of the cost of PTD. The 
difficulties experienced by parents and extended family members after the 
preterm birth of a child can be severe. Maternal psychological distress, including 
anxiety and depression, is more often reported by women delivered preterm [31]. 
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1.1.3 Classification of PTD 

PTD can be divided into the following categories, based on gestational age at 
delivery [15, 32] (Table 1): 

1. Extreme: delivery before 28 weeks of gestation  (about 5% of PTD) 

2. Severe: delivery at 28-31 weeks of gestation (about 15% of PTD) 

3. Moderate: delivery at 32-33 weeks of gestation (about 20% of PTD) 

4. Late: delivery at 34-36 weeks of gestation (about 60-70% of PTD) 

Table 1. Classification of PTD by gestational age at delivery. Modified by 
Morken et al., 2005 [33]  

Subgroups (%) <28 
weeks 

28-31 
weeks 

32-33 
weeks 

34-36 
weeks 

<37 
weeks 

Spontaneous PTD 49.5 35.6 42.6 60.6 55.2 
Iatrogenic PTD 17.4 26.7 23.9 18.7 20.2 
Intrauterine fetal 
death 2.3 9.0 4.6 1.4 2.7 
Malformations 4.7 5.5 5.6 4.3 4.6 
Multiple birth 16.0 14.7 16.0 10.1 11.6 
Unknown onset of 
delivery 10.1 8.5 7.3 4.9 5.7 
Total 100 100 100 100 100 

PTD can be also classified in the following groups, based on clinical 
presentation (Figure 1) [12-15, 34]: 

1. Spontaneous: this category represents approximately 55% of PTD and 
includes preterm labor with intact membranes (PTL) and preterm prelabor 
rupture of the membranes (PPROM) [33].  

2. Iatrogenic (medically indicated): approximately 20% of PTD is iatrogenic 
[33]. This category is etiologically heterogeneous and includes labor 
induction or cesarean section indicated by maternal or fetal complications 
before 37 weeks of gestation [13-15, 34]. The most common indications are 
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pregnancy-induced hypertension or preeclampsia, intrauterine growth 
restriction, non-reassuring tests of fetal wellbeing, small for gestational age 
(SGA) and antepartum hemorrhage [14, 32, 34-36]. 

3. Other subgroups: multiple pregnancies (12%), fetal malformations and 
intrauterine fetal deaths (7%) also contribute to PTD [33].  

Figure 1. Classification of PTD by clinical presentation. Modified by Morken et 
al., 2005 [33] 

Classification of PTD based only on clinical presentation has limitations because 
a multitude of heterogeneous conditions may be classified within the same 
category. For example, deliveries due to maternal hemorrhage, fetal growth 
abnormalities or preeclampsia are most often considered to be iatrogenic PTD. 
However, each of these conditions may be associated with different risk factors 
and pathological mechanisms [14].  

Classification systems based on phenotype rather than on gestational age or 
clinical presentation have been proposed in order to overcome the above-
mentioned limitations. Classifications based on phenotype emphasize clinical 
characteristics and minimize the influence of underlying etiologies. It is still 
likely that each phenotype may have multiple underlying etiologic pathways. 
The proposed systems do not classify each case as a single phenotype, since a 
particular case may have more than one phenotype [14, 37-39].  
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The first proposed phenotype classification system, published 2012, was applied 
in a large, international, multicenter, prospective cohort study [39]. Twelve 
distinct PTD phenotype clusters were defined, 11 of which were dominated by a 
single condition. The most frequent cluster (30%) was characterized by 
spontaneous contractions and/or PPROM in >70% of cases [40].  

Another classification system was developed in 2015 through the identification 
of nine potential phenotype categories based on existing research on the 
pathogenesis of PTD. This classification system was tested in a prospective 
cohort study of women with spontaneous PTD. Maternal stress among African-
American women was the most prevalent phenotype (59.8%), while decidual 
hemorrhage and placental dysfunction were more prevalent phenotypes among 
white women. Furthermore, infection/inflammation and decidual hemorrhage 
were more prevalent among women delivered at <28 weeks of gestation. This 
classification system was subsequently applied in another study to identify 
groups of women with similar phenotypic profiles. Women were clustered into 
five distinct phenotypic groups: maternal stress, PPROM, familial factors, 
maternal comorbidities and infection/decidual hemorrhage/placental 
dysfunction, conditions that may have overlapping and related 
pathophysiological pathways [38].    

These phenotype-based classification systems provide a novel framework for the 
evaluation of PTD and require additional validation in other populations.  

1.1.4 Subtypes of spontaneous PTD 

1.1.4.1 PTL  

PTL entails regular uterine contractions accompanied by cervical ripening [15], 
and accounts for 45-50% of all PTDs [12, 15, 32, 36, 41].  

The etiology of PTL includes several epidemiologic, behavioral, environmental, 
and genetic factors. The major well-defined subset of PTL is associated with 
intra-amniotic inflammation (IAI). An overproduction of cytokines apparently 
occurs in PTL, enhancing local prostaglandin production that results in uterine 
contractions [42, 43].   
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Figure 2. PTL and PPROM. Illustration Jan Funke 

When it comes to the preterm cervical remodeling associated with PTL, there is 
broad consensus that it is not simply an acceleration of physiological events. 
Most studies have been performed in animal models, demonstrating that cervical 
ripening can occur by more than one mechanism. One of the most important 
events in PTL, induced by withdrawal of progesterone, is the lack of expression 
of hyaluronan synthase-2 (HAS-2), one of the most important enzymes in 
hyaluronan synthesis. Hyaluronan is a glycosaminoglycan that is increased 
significantly during physiological cervical ripening. Increased expression of 
prostaglandin synthase-2, interleukin-6 (IL-6) and matrix metalloproteinase-8 
(MMP-8) have been demonstrated in a mouse model. MMP-8 in particular might 
be involved in collagen matrix degradation during cervical ripening [44-46].  

There is no evidence that inhibiting or arresting uterine contractility per se 
decreases the rate of PTD or improves neonatal outcome. While tocolytics can 
achieve short-term prolongation of pregnancy, which is useful for steroid 
administration and maternal transfer to tertiary care centers, they address a 
symptom rather than the underlying causes that activate the parturitional process 
[47].   
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1.1.4.2 PPROM  

PPROM is defined as spontaneous rupture of the fetal membranes before 37 
weeks of gestation [15] and accounts for about 25-30% of all PTD cases [12, 15, 
32, 36, 41].  

PPROM is considered a disease of the fetal membranes, which are weakened by 
proteolysis of the extracellular matrix, causing mechanical and functional 
disruption [48-50].  

PPROM can be classified in 3 major groups [51]:  
1. in the absence of cervical changes, with a longer latency to delivery 
2. associated with cervical changes, more similar to PTL and with a shorter 
latency to delivery 
3. involving bleeding disorders or coagulopathies that may be related to 
placental abruption 

Regardless of the PPROM group, the majority of cases are associated with 
microbial invasion of the amniotic cavity (MIAC) and IAI, as well as clinical 
and histological chorioamnionitis (HCA) [52, 53].  

There is controversy concerning the management of PPROM pregnancies. 
However, administration of antibiotics and corticosteroids to diminish the risk of 
respiratory disease in newborns is widely accepted. It has been shown that 
administration of erythromycin in PPROM pregnancies is associated with 
prolongation of pregnancy, reduction of neonatal surfactant treatment and 
decreased oxygen dependence at 28 days of age, as well as with fewer cases of 
neonatal bacteremia and abnormal brain scans. However, the administration of 
antibiotics in PPROM pregnancies has minor adverse effects on the health of 
children at age 7 years [54-58].  

1.1.5 Etiological factors in PTD 

More than one risk factor is associated with PTD, suggesting that it is the final 
common pathway for multiple etiologies [59]. The risk factors of PTD can be 
classified as static or dynamic: 
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1.1.5.1 Static risk factors 

The static risk factors are non-modifiable during pregnancy, i.e. any 
modification of these factors will have minimal to no impact on pregnancy 
outcome:  

1. PTD is familial in nature, as shown by a genetic study of heritability, 
according to which probands with PTD were more closely related to each 
other than to other members of the population [60]. Twin studies suggest that 
heritability for PTD ranges between 17-40% [61, 62]. It has also been shown 
that women who were born preterm have an increased risk of PTD [63].  

2. A history of previous spontaneous PTD or repeated second-trimester 
pregnancy loss is among the most important risk factors, with a recurrence 
risk ranging from 15% to more than 50% [15, 32, 64]. This risk increases 
with the number of previous adverse events [64, 65]. 

3. Uterine anomalies are associated with higher rates of PTD, for as yet unclear 
reasons [66-68]. 

4. Black women have three times higher risk of spontaneous PTD than other 
ethnicities. These women are also three to four times more likely to have a 
very early spontaneous PTD. This racial disparity in PTD remains poorly 
understood [15].  

5. Maternal smoking is a risk factor for spontaneous PTD and other poor 
pregnancy outcomes [69]. The association between spontaneous PTD and 
smoking is not clear but several mechanisms have been suggested. Smoking 
may increase the risk of infections [70] and prostaglandin production, thereby 
increasing the risk of PTL [69]. Moreover, smoking may increase the risk of 
PPROM by reducing the elastic properties of the fetal membranes, via 
lowered serum ascorbic acid levels, important for collagen metabolism [71]. 

6. Heavy alcohol consumption and drug abuse are associated with spontaneous 
PTD [15]. 

7. Maternal stress and low socioeconomic status have been found to increase the 
risk of spontaneous PTD [72-77]. 

8. Specific working conditions (long hours, hard physical work under stressful 
conditions) are related to spontaneous PTD [15, 64]. 
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9. Maternal age is apparently an important risk factor, with a higher risk of 
spontaneous PTD among younger and older mothers [78]. Women aged 
under 20 have an increased risk of spontaneous PTD, a risk that seems to 
increase with parity [78]. 

10. Both low and high pre-pregnancy body mass index (BMI) have been shown 
to increase the risk of spontaneous PTD [79-81]. 

11. Maternal diet can influence the risk of spontaneous PTD. High intake of 
artificially sweetened beverages has been shown to be associated with 
increased risk of spontaneous PTD [82]. The intake of probiotic dairy 
products during pregnancy has been associated with a lowered risk of 
spontaneous PTD, due to healthier vaginal flora [83]. 

12. A short inter-pregnancy interval (under 6 or 12 months) has been associated 
with a higher risk of spontaneous PTD [84-86]. It is hypothesized that the 
inflammatory state in the uterus associated with the previous pregnancy 
requires time to resolve, but the mechanisms are still to clear [15]. 

1.1.5.2 Dynamic risk factors  

The dynamic risk factors are clinical risks or pathological entities associated 
with adverse obstetric outcomes that the static risk factors, independently or in 
combination, could predispose to or cause. Complex interactions between 
various risk factors during pregnancy can generate epigenetic changes and 
consequent altered gene expression that contribute to dynamic clinical risks [59]. 
The phenotypes caused by these interactions include the following:  

1. Infection is the only pathological process with an established causal link with 
spontaneous PTD [15, 43]. Infection plays a more prominent role in the 
pathogenesis of spontaneous PTD at early gestational ages. The lower the 
gestational age at PTD, the higher the frequency of infection-associated 
inflammation and HCA [8, 15, 87]. 

2. A subset of spontaneous PTD is characterized by maternal anti-fetal cellular 
and antibody-mediated rejections [88, 89]. This fetal systemic inflammatory 
response in cases with evidence of maternal anti-fetal rejection has recently 
been described [89].  

3. Multifetal pregnancies and pregnancies with polyhydramnios are expected to 
be shorter due to an abnormal increase in uterine volume or limited capacity 
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of the uterus to expand [15]. Stretching of myometrial cells is associated with 
increased expression of gap junctions that are required for propagation and 
synchronization of uterine contractions [90, 91]. 

4. Placental abruption and consequent bleeding may lead to uterine contractions 
[92] and are associated with PTD in more than half of cases [93]. Altered 
placental vascular flow and chorio-decidual hemorrhage may represent a 
possible pathophysiological pathway initiating uterine contractions and PTD 
[94]. 

5. Short cervical length, diagnosed by vaginal ultrasonography during 
pregnancy, is associated with a high risk of spontaneous PTD [95]. 

Static and dynamic risk factors initiate pathways with unique biomarker profiles, 
contributing to labor-inducing changes and resulting in PTD. 

1.1.6 Pathophysiology of PTD 

PTD is considered to be a complex disease, with multiple pathways leading to a 
common pathway including inflammation and oxidative stress. The maternal-
fetal signals and their causal origins are still to be identified [96].   

1.1.6.1 Inflammation and spontaneous PTD 

Regardless of the underlying risk factor, spontaneous PTD is associated with 
inflammatory changes (leukocyte activation; increased levels of inflammatory 
cytokines and chemokines; degradation by matrix metalloproteinases of the 
myometrial, cervical and fetal membrane extracellular matrix) [42, 97, 98]. 
These inflammatory events result in loss of membrane structural integrity, 
myometrial activation and cervical ripening. PTL and PPROM are host 
responses in which an overwhelming immune reaction can trigger the laboring 
process [99].  

1.1.6.1.1 Infection-associated inflammation  

Under physiological conditions, the amniotic cavity is regarded as sterile. The 
isolation of microorganisms in the amniotic fluid, defined as MIAC, is 
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considered a pathological finding. It is estimated that 25-40% of spontaneous 
PTD is associated with infection [98]. 

1.1.6.1.1.1 MIAC   

Approximately 25-40% of PPROM cases are complicated by MIAC, depending 
on gestational age at sampling, ethnicity and microbiological detection technique 
[10, 52]. Some studies suggest that this rate may be even higher [10, 49, 100]. 
MIAC occurs in 12-14% of women with PTL [9] and, more specifically, in 20-
60% of women with PTL at <28 weeks of gestation and in 10-25% with PTL at 
28-32 weeks of gestation [101, 102].  

Culture-proven MIAC has been associated with early onset of symptoms, early 
gestational age at delivery and shorter latency to delivery. Consequently, higher 
neonatal morbidity has been reported [103]. Exceptionally, MIAC can occur in 
women without symptoms [104].  

Microorganisms may gain access to the amniotic cavity by any of the following 
pathways: ascending from the vagina or cervix (most commonly), hematogenous 
dissemination through the placenta, retrograde from the peritoneal cavity via the 
fallopian tubes or accidentally during invasive procedures (amniocentesis, 
cordocentesis, chorionic villi sampling) [8].  

Microorganisms that gain access to the amniotic cavity from the lower genital 
tract are first localized in the supracervical decidua. Subsequent propagation to 
the chorioamniotic space can lead to MIAC [105, 106]. There is evidence that 
bacteria can cross intact membranes, so membrane rupture is not necessary for 
access to the amniotic cavity [107].  It has been shown that the chorion-decidua 
is not extensively involved in MIAC. Bacteria are primarily found in the amnion 
in cases of IAI, indicating that MIAC is a prerequisite for invasion of the 
membranes. Specifically, bacteria are detected more frequently in the amniotic 
fluid than in the membranes of patients with MIAC [108].  

The most common bacteria found in the amniotic fluid in PPROM cases are 
genital mycoplasmas (Ureaplasma urealyticum, Ureaplasma parvum and 
Mycoplasma hominis) [10, 109]. Polymicrobial invasion of the amniotic cavity 
occurs in approximately 30% of cases [110-114]. Currently, non-cultivation 
techniques should be considered the gold standard in MIAC diagnosis because 
many amniotic fluid microorganisms are difficult to cultivate [115, 116]. The 
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presence of genital mycoplasmas in the amniotic cavity can elicit either an 
intense IAI response, comparable to that generated by other aerobic and 
anaerobic bacteria, or no inflammatory response at all [117, 118]. It has been 
shown that the inflammatory response to different bacteria varies. Exposure in 
vitro of human fetal membranes to Escherichia coli and Gardnerella vaginalis 
(also commonly found in intra-amniotic isolates) produces a stronger cytokine 
response, compared to genital mycoplasmas [119].  

1.1.6.1.1.2   Microbial-associated IAI   

The presence of bacteria in the amniotic fluid may activate an innate host 
immune response through pattern recognition receptors, which detect the 
specific motifs on the microorganisms’ surface and initiate the inflammatory 
response resulting in microbial-associated IAI. Microbial-associated IAI is 
defined as MIAC with IAI [9, 10, 52, 120]. The intensity of IAI depends on the 
microbial load and the types of bacteria in the amniotic fluid [53, 121]. The 
presence of a small amount of bacteria with low virulence, such Ureaplasma 
spp., is unlikely to elicit IAI. This condition is considered instead to be a 
colonization of the amniotic fluid [11].   

Microbial-associated IAI is associated with spontaneous PTD [8, 42, 43]. 
Women with PTL often have IAI (evidenced by elevated amniotic fluid levels of 
inflammatory cytokines and chemokines), even if amniotic fluid cultures are 
negative [102, 122-125]. IAI is associated with short latency to delivery and high 
rates of perinatal morbidity and mortality, regardless of whether amniotic fluid 
cultures are positive [9, 102, 122, 126-129]. One possible explanation for the 
perinatal morbidity associated with culture-negative IAI is that the cultures are 
falsely negative in these cases. Polymerase chain reaction (PCR) amplification 
has revealed prokaryotic 16S subunit ribosomal RNA in amniotic fluid in several 
culture-negative PTL cases, indicating infection and not only microbial 
degradation products. PTL cases with 16S rRNA PCR-verified MIAC have 
similar outcomes as cases with culture-verified MIAC [113, 130, 131].  

Amniotic fluid culture results may take days, while IAI can be rapidly diagnosed 
by analysis of amniotic fluid IL-6. Of a variety of tests, IL-6 performs best in 
detecting IAI, as well as in the identification of patients at imminent risk of PTD 
and adverse neonatal outcomes [127, 129, 132]. Based on recent studies, IAI is 
diagnosed when the amniotic fluid IL-6 concentration, determined by enzyme-
linked immunosorbent assay (ELISA), is ≥ 2600 pg/ml [102, 110, 111]. 
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However, the results take time (an ELISA requires at least eight hours) and are 
often not available in time for clinical decisions. Furthermore, laboratories often 
run these assays only a few times per week, limiting the availability of results for 
acute clinical decisions. In order to address this issue, a lateral flow-based 
immunoassay point of care (POC) test for IL-6 was developed, with results 
available within 20 minutes; IAI is diagnosed when the amniotic fluid IL-6 
concentration is ≥745 pg/ml [133-135]. The results of this test correlate 
significantly with IL-6 levels assessed by ELISA [136].  

MIAC and IAI are distinct entities, each of which can be either present or absent: 
both present, IAI present but MIAC absent, MIAC present but IAI absent or both 
absent [11]. However, the inflammatory process is a continuum, not simply 
present or absent. Clinical outcomes can be correlated with different grades in 
the inflammatory response (amniotic inflammatory response syndrome), with 
categories defined by the number of biomarkers in the amniotic fluid [11, 137].   

1.1.6.1.2 Sterile inflammation  

IAI can be associated either with MIAC or with conditions in which cellular 
stress induce the release of mediators that activate the innate immune system 
[98, 138, 139]. The term “sterile IAI” refers to an inflammatory process in which 
microorganisms cannot be detected [140-144]. The precise causes have not been 
identified but damage-associated molecular patterns (DAMP) could be 
responsible stimuli for this inflammatory process. These cell-derived molecules 
initiate immunity in response to trauma, ischemia and tissue damage, through the 
activation of Toll-like receptors [143-146].  

Sterile IAI is diagnosed when the amniotic fluid IL-6 concentration is ≥ 2600 
pg/mL and there is no evidence of MIAC (negative amniotic fluid culture and no 
PCR detection of microbial footprints) [120].  

It has been shown that sterile IAI is more common (26%) than microbial-
associated IAI (11%) in women with PTL. Furthermore, women with sterile IAI 
have similar rates of placental inflammation and adverse perinatal outcomes as 
women with microbial-associated IAI who give birth at the corresponding 
gestational ages. In pregnancies complicated by PPROM, the incidences of 
sterile IAI and microbial-associated IAI are equal (approximately 30%) [111, 
120].  
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1.1.6.1.3 Oxidative stress  

Risk factors for PTD can cause oxidative stress (important component of the 
inflammatory process), generation of reactive oxygen species and cellular 
damage. These damaged cells respond with cytokine production as part of their 
remodeling mechanism. Cells protect themselves against oxidative stress by 
regulation of redox (balance between pro- and antioxidant) status, by enzymes 
and antioxidants. A redox imbalance could compromise a biological system’s 
ability to detoxify these highly reactive molecules or to repair the damages 
caused by them [59, 99]. 

There is evidence of varying degrees of oxidative stress and inflammation in 
fetal tissues and amniotic fluid in spontaneous PTD cases. The 
pathophysiological pathways of spontaneous PTD are mediated by oxidative 
stress-induced damage to the fetal membranes, not by oxidative stress alone [99, 
147, 148].  

It has been reported that oxidative stress-associated cellular damage can cause 
fetal membrane senescence. Senescence is an irreversible form of cell cycle 
arrest in which cells persist in the tissues and produce sterile inflammation called 
senescence-associated secretory phenotype (SASP). During this inflammatory 
process, molecules with uterotonic activity are produced, triggering the labor 
process as well as matrix-degrading enzymes causing membrane degradation and 
rupture. Aging of fetal membranes is premature in spontaneous PTD, especially 
in PPROM, where redox imbalance and oxidative stress-associated cellular 
damage are more dominant, causing DNA injury that can trigger cell cycle arrest 
and SASP [99, 149-151]. In early PTL, oxidative stress causing cellular damage 
is more balanced, and DNA damage is likely to be repaired [152-154].   

1.1.6.2 HCA and funisitis 

Acute chorioamnionitis is a frequent diagnosis in placental pathology reports and 
represents IAI [155-157], which be either microbial-associated or sterile (40-
60% of cases) [110, 111, 120].  

A small subset of spontaneous PTD patients without IAI has acute inflammatory 
lesions of the placenta. This may be because chorioamniotic inflammation is a 
host defense mechanism against danger signals of non-microbial origin or 
because non-viable microorganisms may release chemotactic factors, leading to 
placental inflammation in these cases [155].   
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Acute inflammatory lesions of the placenta are characterized by the infiltration 
of neutrophils into the placental disc, the chorioamniotic membranes and the 
umbilical cord. When the inflammatory process affects the chorion and amnion, 
it is termed acute chorioamnionitis; if it affects the villous tree, it is termed acute 
villitis. If the inflammatory process involves the umbilical cord, it is referred to 
as acute funisitis, the histological counterpart of the fetal inflammatory response 
syndrome (FIRS) [156, 158].  

In clinical practice, the term chorioamnionitis refers to a clinical syndrome 
characterized by fever, maternal or fetal tachycardia, uterine tenderness and foul-
smelling amniotic fluid. This clinical syndrome is frequently associated with 
HCA on microscopic examination of the placenta [159]. On the other hand, the 
majority of HCA cases are asymptomatic. 

The frequency of HCA in women delivered at 21-24 weeks of gestation is 
approximately 94%, emphasizing the role of acute inflammation in early PTD. 
The prevalences of HCA are 40% in women delivered at 25-28 weeks of 
gestation, 35% at 29-32 weeks of gestation and 11% at 33-36 weeks of gestation 
[160]. HCA is commonly (50-80%) found in pregnancies complicated by 
PPROM. The rate of HCA in PTL is lower (approximately 30%), possibly 
because HCA is associated with MIAC, which is more frequent in PPROM 
pregnancies [109, 161].  

HCA and funisitis are associated with adverse maternal and neonatal outcomes. 
The latter include PTD, perinatal death, neonatal sepsis, retinopathy of 
prematurity (ROP), chronic lung disease and fetal brain injury (intraventricular 
hemorrhage (IVH), cerebral white matter damage), as well as long-term sequelae 
leading to CP [162-167].  

Neutrophils are not normally present in the chorioamniotic membranes; they 
migrate from the maternal decidua into the fetal membranes in cases of HCA. 
Chemotactic molecules induce the migration of neutrophils toward the amniotic 
cavity, from the intervillous space into the chorionic plate of the placenta. Thus, 
inflammation of the chorionic plate is a maternal inflammatory response. Studies 
performed with fluorescence in situ hybridization (FISH) and 
immunohistochemistry have shown that approximately 90% of neutrophils found 
in the membranes are of maternal origin. In contrast, inflammation of the 
umbilical cord and chorionic vessels in the chorionic plate of the placenta is of 
fetal origin [168-170].  
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Several grading (intensity of the acute inflammatory process at a particular site) 
and staging (progression of the process, based on the anatomical regions 
infiltrated by neutrophils) systems have been proposed to describe the severity of 
HCA.  In this thesis, the system proposed by Salafia et al. [171] is used to 
describe the grade and stage of the inflammatory process. According to this 
study, more than one focus with at least 5 neutrophils or at least one focus with 
5-20 neutrophils in the chorion-decidua and the chorionic plate were found in 
95-98% and 84%, respectively, of uncomplicated term deliveries. Therefore, 
only intense neutrophil infiltration can be regarded as pathological and 
definitively diagnostic for HCA. The reproducibility of the grading and staging 
of maternal and fetal inflammation has been investigated in a study concluding 
that there is more agreement among pathologists in identifying the presence or 
absence of inflammation than in grading and staging [156].  

Inflammation of the umbilical vessels begins in the vein (phlebitis) and is 
followed by inflammation of the arteries (arteritis). Infiltration of neutrophils 
into Wharton’s jelly is a common finding in acute funisitis. Differences have 
been found in the genes expressed by the umbilical artery and vein walls, 
suggesting that the wall of the vein is more prone to an inflammatory response 
than that of the arteries. Arteritis is evidence of a more advanced fetal 
inflammatory process. The umbilical cord plasma concentrations of IL-6 and the 
frequency of adverse neonatal outcome are higher in cases of arteritis. Acute 
funisitis begins as a multifocal process along the umbilical cord, with merging of 
the foci as the inflammatory process progresses. The severity of funisitis 
significantly correlates with fetal plasma and amniotic fluid IL-6 concentrations 
[172, 173].  

1.1.6.3 FIRS 

MIAC can gradually progress to fetal invasion. Access ports for bacteria into the 
fetus include the respiratory and gastrointestinal tract, skin, conjunctiva and ear. 
Once bacteria gain access to the fetus, they are recognized by Toll-like receptors, 
and a localized (and subsequently systemic) inflammatory response can be 
elicited. For example, fetuses exposed to bacteria can have severe dermatitis or 
pneumonitis and microorganisms reaching the fetal circulation can subsequently 
lead to a systemic inflammatory response [174]. FIRS is characterized by 
elevated fetal plasma concentrations of IL-6 and is associated with severe 
neonatal complications [89, 158, 175-182].  
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FIRS can also be caused by non-microbial-related insults, for example in cases 
of sterile inflammation. The precise nature of the causing stimuli in these cases 
has not been elucidated [110].  

1.2 Outcomes in preterm-born children  
PTD is the commonest cause of neonatal death worldwide, with about 3.1 
million children per year dying due to complications. Most cases of PTD (about 
84%) occur after 32 completed weeks of gestation. Infants born after this 
gestational age generally survive in high-income countries, while those in low-
income countries are less fortunate. Ninety percent of infants born before 28 
weeks of gestational age survive in high-income countries, compared to 10% in 
low-income countries [183, 184].   

1.2.1 Extremely preterm-born children  

Increased survival in extremely preterm neonates is associated with an increased 
rate of severe acute and chronic morbidities, e.g. bronchopulmonary dysplasia 
(BPD), necrotizing enterocolitis (NEC), ROP, hearing impairment, hypoxic-
ischemic encephalopathy (HIE), IVH and early- (EOS) and late-onset (LOS) 
sepsis [185, 186]. 

BPD is one of the most frequent chronic lung diseases in infants [187]. One 
commonly accepted definition includes oxygen dependence at 28 postnatal days 
[188]. According to the Swedish National Registry for BPD, 80-90% of 
extremely preterm neonates contract this condition. The prevalence decreases to 
approximately 30% at 27 gestational weeks. Both prenatal and postnatal growth 
restriction and inflammation have been suggested as keystones in BPD 
pathogenesis [189]. In a large study of preterm infants with acute respiratory 
disease, an increased risk of BPD associated with long-duration PPROM was 
found, supporting the association between HCA and BPD [190]. Even with 
adequate therapy (e.g. prenatal steroids and antibiotics, early surfactant 
treatment, “gentle” ventilatory strategies, meticulous monitoring of oxygen 
administration), BPD remains a major cause of both short- and long-term 
morbidity [186].  
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NEC is seen almost exclusively in preterm-born neonates and is one of the most 
common gastrointestinal emergencies in this group. Mortality rates range from 
15% to 30%. The estimated incidence ranges between 4 and 7%, with 
approximately one-third of the most severe cases needing surgical management. 
The pathophysiology of this condition is still unclear. However, immature 
intestinal motility and digestion might predispose preterm babies to NEC [191]. 
Infants surviving NEC are at higher risk of the long-term complications 
associated with PTD (impaired gut function and adverse motor, sensory and 
cognitive outcomes), compared with unaffected children born at a similar 
gestational age [192]. 

ROP is a widespread complication of PTD. It is the second leading cause of 
childhood blindness in the world [193]. ROP occurs in up to 3% of children born 
before 28 weeks of gestation and leads to severe visual impairment in up to 8% 
of those born before 26 weeks. Furthermore, children born before 28 weeks of 
gestation are at six-fold risk of myopia and hypermetropia, and 25% of this 
group require glasses by the age of 6 [194]. According to the Swedish National 
Register for Retinopathy of Prematurity (SWEDROP), 16% had mild ROP and 
9% had severe ROP in two cohorts of infants born before 32 weeks of gestation 
[195, 196].  

 
Preterm-born children are also at increased risk of HIE, with an estimated 
incidence of 1.5 per 1000 live births. HIE may be related either to congenital 
brain damage, predisposing to birth asphyxia, or to primary birth asphyxia. Over 
25% of these children have long-term neurodevelopmental problems [197]. 
Therapeutic cooling has been shown to improve outcomes, with a 9% reduction 
in mortality and a 13% reduction in neurodevelopmental disability [198].  

In the United States, about 12 000 preterm-born children develop IVH every 
year. The pathogenesis of IVH is complex and heterogeneous. An inherent 
fragility of the germinal matrix vasculature predisposes to hemorrhage and 
cerebral blood flow fluctuation induces vascular rupture [199].  The incidence of 
the condition has remained almost stationary during the last two decades [200, 
201]. IVH is a major problem in preterm-born children, as a large number of 
them develop neurologic sequelae [202]; approximately 50–75% contract CP, 
mental retardation and/or hydrocephalus [202, 203].  

Sepsis is one of the leading causes of morbidity and mortality among preterm- 
born children [204]. EOS is most consistently defined as occurring in the first 
three days of life. It is caused by bacterial pathogens transmitted vertically from 
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mother to infant before or during delivery [205]. Group B streptococcus (GBS) 
and Escherichia coli account for about 70% of EOS cases [206, 207]. The 
incidence of culture-proven EOS in the United States is estimated to be 0.77 to 1 
per 1 000 live births [208, 209], with a case fatality rate of 16% [209]. A 
Swedish cohort study reported an incidence of GBS-generated EOS of 0.4 per 1 
000 live births, and the total morbidity burden was approximately three times 
higher [210]. LOS is defined as sepsis occurring after 72 hours, and up to the age 
of 90 or 120 days, in preterm neonates. The condition may be caused by 
vertically or horizontally acquired pathogens [205, 211]. Gram-positive 
organisms cause 70% of initial LOS episodes, with coagulase-negative 
Staphylococci accounting for 48% of the infections [212]. The incidence of LOS 
has increased with improved survival in premature infants, especially those with 
very low birth weight, indicating the role of hospitalization and life-sustaining 
medical interventions in its pathogenesis [206, 213]. One study showed that 
36.3% of neonates born before 28 weeks of gestation had at least one episode of 
LOS, compared with 29.6% of moderately preterm, 17.5% of late preterm and 
16.5% of term infants [214]. An increased risk of morbidity and mortality has 
been found among infants with LOS, compared to unaffected infants [205, 212].  

1.2.2 Moderately and late preterm-born children  

Late preterm babies, often considered to be normal newborns by parents and care 
providers, have 3.5 times more morbidity during the perinatal hospitalization 
period than term-born babies, and neonatal mortality is 4.6 times higher. A 
continuous relationship exists between gestational age and neonatal morbidity 
and mortality at between 32 and 36 weeks of gestation [215]. Infants born at 32-
36 weeks of gestation contract respiratory distress syndrome (RDS), transient 
tachypnea of the newborn (TTN), pneumonia and pulmonary hypertension of the 
newborn (PPHN) at higher rates than term infants [216, 217]. Moderate and late 
preterm infants are more likely to develop severe infections such as sepsis, 
meningitis and pneumonia than term infants [21, 208]. A population-based 
Swedish study including infants born at between 30-34 weeks of gestation found 
that acute lung disorders were diagnosed in 28%, hypoglycemia in 16%, 
bacterial infection in 15% and hyperbilirubinemia in 59% [218]. 
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1.2.3 Long-term outcomes  

Long-term sequelae in children born extremely preterm, demonstrated in the 
EpiCure studies, included neurological and psychiatric impairment, adverse 
cardiovascular outcome and impaired lung function [219-224].  

The commonest long-term neurodevelopmental disability associated with PTD is 
CP, affecting an estimated 12% of preterm-born children according to a recent 
systematic review. The same review showed that an additional 19% had motor 
and co-ordination problems not formally classified as CP [225]. A population-
based study performed in Sweden reported that 9.5% of children born extremely 
preterm had CP at the age of 6.5 years [226]. The risk of CP increases with 
decreasing gestational age at delivery, from approximately 1% at 34 weeks to 
20% at ≤ 26 weeks of gestation [227-231]. The pathophysiological mechanisms 
underlying neurodevelopmental disability in PTD survivors are still poorly 
understood and complex. Multiple risk factors may contribute to brain injury and 
abnormal brain development in the extremely preterm-born child. Inflammatory 
cytokines associated with PTD pathways may in combination with genetic 
factors render the preterm infant’s brain vulnerable to injury [232]. Some studies 
have shown that clinical and histological chorioamnionitis are risk factors for CP 
[233, 234], while others have also reported a significantly higher incidence of 
CP in infants exposed to funisitis [235].  

Preterm-born infants have a higher prevalence of neonatal seizures, with an 
estimated prevalence at about 31% [236],  and outcomes are worse in this group, 
compared to term-born babies [237]. Seizures may alter brain development by 
affecting cell division, differentiation, migration, and synaptogenesis [238].  

Approximately one-third of all preterm-born children have some cognitive 
impairment and about 7% are severely impaired [236]. These children are 1.3-
2.8- times more likely to require special education [231].  

1.3 Biomarkers of PTD 
Prediction and prevention remain a challenge in modern obstetrics, mainly 
because spontaneous PTD is considered to be a syndrome with multiple origins. 
The multifactorial nature of this condition requires strategies simultaneously 
identifying multiple markers and assessing clinical and biophysical risk factors. 
Clinical risk factors alone lack the sensitivity required to effectively identify the 
majority of patients at risk of spontaneous PTD [239].  
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A highly effective risk-predicting system would identify high-risk patients, in 
order to avoid overtreatment of low-risk patients. A tool making it possible to 
detect a PTD process in progress or to assess a woman’s risk early in pregnancy 
is required. The early detection of spontaneous PTD is difficult because most 
women who deliver preterm have no obvious risk factors and more than half of 
spontaneous PTDs occur in low-risk pregnancies. Moreover, the initial signs and 
symptoms are most often mild, making early detection difficult [240].  

Biomarkers have been defined as parameters that can be measured in a 
biological sample, and that provide information on an exposure, or on the actual 
or potential effects of that exposure in an individual or group [241].  

The ideal clinical biomarker to predict spontaneous PTD would:  

1. Identify women presenting with all subtypes of the condition 

2. Be measurable in a biological sample that is easily obtained, with minimal 
maternal and fetal risk 

The biomarker test should ideally be inexpensive, reproducible and easy to 
perform early in pregnancy in order to allow for potential interventions. It should 
also have a high positive likelihood ratio (+ LR), increasing the probability that 
women with a positive test result are actually at risk of spontaneous PTD, and a 
low negative likelihood ratio (- LR), in order to confidently rule out the disorder 
with a negative test result. Lastly, the required technological platform for the 
analysis of the samples should be widely available [242, 243].  

Recent systematic reviews have suggested that single biomarkers are neither 
sensitive indicators of spontaneous PTD nor predictors of spontaneous PTD risk. 
The most frequently reported biomarkers for spontaneous PTD in the literature, 
among 116 candidates investigated between 1965-2008, are IL-6, corticotropin-
releasing hormone (CRH), IL-8, C-reactive protein (CRP), beta-human chorionic 
gonadotropin (beta-HCG), alpha fetoprotein (AFP), IL-1β, tumor necrosis 
factor-α (TNF-α), cortisol, ferritin, adrenocorticotropic hormone (ACTH), 
estriol, MMP-9, IL-2 and relaxin. Heterogeneities in study design, sampling 
procedures, study populations, assays and other analyses, as well as improper 
definitions, were limiting factors in the reported studies [244].    

The hypothesis of potential interactions between biomarkers as a possible 
predictor of spontaneous PTD has been also investigated. The conclusion was 
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that biomarker interactions have better predictive potential than single 
biomarkers, even in the absence of a main effect of single biomarkers [245]. For 
instance, the association between cervical length and cervico-vaginal fibronectin 
in asymptomatic women is limited and more capable of detecting women at 
lower risk than those at higher risk of spontaneous PTD [246, 247].  

Proteomics is a newly developed field of research that studies the global set of 
proteins and their expression, function, and structure in a tissue, cell, or 
organism at a given moment [248]. In recent years, proteomics has been 
extensively applied to search for biologically relevant biomarkers and to 
generate protein profiles characteristic of IAI and spontaneous PTD [249-251]. 
Numerous publications have described maternal and fetal biomarker changes in 
biological samples, based on proteomic technologies [137, 251-254]. A 
systematic review of the literature has been conducted to identify proteomic 
biomarkers for spontaneous PTD. Of a total of 64 identified proteins, none was 
reproducible or capable of correctly predict spontaneous PTD. The conclusion of 
this review was that a proteome-based biomarker panel is unlikely to predict 
spontaneous PTD risk. It has been also reported that population-specific panels 
are more likely to be better predictors of spontaneous PTD [255].  

Technological advances have further modernized biomarker discovery and 
multiplex technology, entailing simultaneous analysis of a broad panel of 
biomarkers based on known pathways of spontaneous PTD, has been used in 
research. Multiplex technology permits the use of a small sample volume, it is 
cost effective and it presents minimal technological challenges, compared to 
proteomics. A systematic review of the literature on spontaneous PTD 
biomarkers identified with multiplex approaches has been performed. According 
to this review, 40% of the studies used Luminex technology to identify 
biomarkers in the same sample and the number of analytes reported in the 
studies ranged from 2 to 44. A total of 42 biomarkers were identified as being 
associated to spontaneous PTD. Of the 31 spontaneous PTD-related biomarkers 
assessed in maternal serum, the ones most frequently identified were Regulated 
on activation, normal T cell expressed and secreted (RANTES) and IL-10. This 
systematic review concluded that multiplex assays provide a potential 
technological platform for identifying biomarkers for spontaneous PTD, 
although no single or combination of biomarkers that yielded a better prediction 
of the spontaneous PTD risk was identified [256]. 
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A standardized approach is essential in biomarker research and guidelines have 
been created, aimed at designing combinable biomarker studies in future. 
According to these guidelines [244, 256]:  

1. Biomarker studies should properly define the outcome phenotype (iatrogenic 
PTD or spontaneous PTD with PTL or PPROM onset), based on gestational 
age at delivery. 

2. The objective of the study must be stated clearly in order to understand the 
rationale for selecting the included biomarkers. Biomarkers can be mainly 
classified as (1) those that help understand the biology and mechanistic 
aspects of labor and delivery and (2) risk predictors and indicators.   

3. Testing a hypothesis regarding a mechanistic factor or risk indicator requires 
a proper epidemiological study design. Designing the study with appropriate 
epidemiological methods is essential to properly recruit subjects and collect 
and analyze samples. 

4. Studies should clearly report essential study details (type of facility for 
conducting studies, participant recruitment, consent methods, gestational age 
at recruitment, enrollment period), baseline characteristics of study 
population in terms of a priori risk status for PTD, race and ethnicity and 
clinical status at sample collection. 

5. Studies should provide a detailed report of sample type and collection timing, 
sample processing procedures and storage details. The success of a biomarker 
study is directly dependent on specimen collection quality and on processing 
before assay, as well as on appropriate storage conditions, in order to avoid 
variations in biomarker level. 

6. Biomarker discovery depends on the quality of the selected assay for sample 
analysis. Prior to its selection, investigators must judge the appropriateness of 
an assay. Assay procedure and methodology, biomarker recovery methods 
from the biological specimen, sensitivity, specificity and inter- and intra-
assay variations should be reported in detail. 

7. Statistical analysis should address the hypothesis and objectives established 
prior to the study performance and design. Statistical assessment of 
biomarker concentration distribution (normal or non-normal); selection of the 
appropriate data presentation form, based on distribution (mean and standard 
deviation or median and interquartile range), identification and adjustment for 
potential confounders; and adjustment for multiple testing are recommended. 
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8. If the discovery assay evaluates a large number of potential biomarkers and 
results indicate that only a small number are associated with PTD risk, it 
might make sense to only test the smaller number in validation efforts. 

9. Prior to the validation studies using the predictive mathematical algorithm 
combining the assay results of each biomarker from the exploratory studies, 
an independent sample set can be tested for algorithm optimization. 

10. A prospective validation, using a new, independent set of specimens, is also 
required to confirm the performance of the biomarker panel.  
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2. Aims  

The primary aims of the studies reported in this thesis were to investigate 
whether could be possible to predict the occurrence of spontaneous PTD within 
7 days (Study I) as well as to investigate MIAC rates (Study II) by non-invasive 
sample strategies (maternal serum).  

 
A second aim was to study the effect of different handling procedures on the 
concentrations of IL-6, often used to identify IAI (Study III).  

The third aim was to study the associations of placental histological findings 
with neonatal outcome in women with PPROM (Study IV).  
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3. Patients and Methods  

3.1 Study I 

3.1.1 Ethical approval  

The local Ethics Committee at the University of Gothenburg approved the study 
(Nos. 349-95, 476-05). 

3.1.2 Design  

Prospective cohort study 

3.1.3 Study population 

This study included 142 healthy women without major medical problems and 
with singleton pregnancies, presenting at Sahlgrenska University Hospital, 
Gothenburg, Sweden, with imminent PTL at 22+0 - 33+6 gestational weeks, 
from 1996 to 2005.  The majority of enrolled women was of non-Hispanic, white 
ethnicity and had a stable family situation (Table 2). 
 

Table 2. Ethnicity and marital-cohabitation status  

Delivery ≤7 days  Delivery >7 days  
Non-Hispanic black 1% 2% 
Non-Hispanic white 37% 57% 
Hispanic 1% 2% 
Cohabiting with baby’s father 37% 56% 
Living alone 2% 4% 
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3.1.4 Clinical considerations and diagnostic approaches 

In this study, imminent PTL was defined as:  

1. Regular uterine contractions (at least two contractions per 10 minutes for ≥ 
30 minutes, confirmed by external tocometry), in combination with at least 
one of three cervical changes, verified by digital examination: 

a. Length ≤ 2 cm and dilatation ≥1 cm 

b. Length ≤2 cm and softening 

c. Dilation ≥1 cm and softening and/or  

2. Cervical length < 30 mm 

Cervical ripening was assessed by digital examination and cervical length was 
measured by transvaginal sonography using a standardized method [257], with 
the woman in the dorsal lithotomy position and with an empty bladder. When the 
cervical canal was visualized, the probe was withdrawn to avoid pressure, 
distortion or elongation of the cervix. A sagittal view showing the entire cervix 
(endocervix and vaginal cervix), including the echogenic endocervical mucosa 
along the length of the cervical canal, was obtained. Calipers were used to 
measure the distance between the notches made by the junction of the anterior 
and posterior cervical walls at the internal and external os. Three measurements 
were performed and the shortest distance in mm was noted. 

The interval of 7 days between sampling and delivery was chosen since it makes 
sense from a clinical point of view. Seven days gives the clinician the possibility 
to admit the woman, administer corticosteroids and tocolytics and let her give 
birth, if it is unavoidable. On the other hand, the 7-day interval is an arbitrarily 
determined period without biological basis or confirmation; it simply represents 
the actual average length of the hospital stay and monitoring of patients with 
imminent PTL.  

Because of limited resources, we did not recruit women during the night, on 
weekends, during vacations, over Christmas or during busy periods on the 
delivery ward. This obviously limited the number of women enrolled. Inclusion 
in the study was constant throughout the year, with the exception of a lower 
inclusion rate during the summer for these reasons (Table 3).  



 

3 .  PATIENTS AND METHODS 41

Table 3. Seasonal variation in inclusions/deliveries  

Delivery ≤7 days Delivery >7 days Total 
1st quarter 16% 18% 34% 
2nd quarter 4% 11% 15% 
3rd quarter 10% 16% 26% 
4th quarter 11% 15% 26% 

Tocolytics (intravenous terbutaline and/or indomethacin, the latter at < 28 weeks 
of gestation) was administered, according to local protocol. 

Corticosteroids were administered at 24+0 - 33+6 gestational weeks, according 
to local protocol, in order to stimulate fetal lung maturity. Corticosteroids were 
administered in the majority of the cases (80%), and 78% were given two doses, 
as shown in Table 4. 

Table 4. Corticosteroid administration  

Delivery ≤7 days Delivery >7 days Total  

Corticosteroids    
Yes 34% 46% 80% 
No 6% 14% 20% 
Double dose    
Yes 31% 46% 78% 
No 9% 14% 23% 

The majority (65%) was sampled after corticosteroid administration, due to 
limited resources (Table 5). The serum samples were placed in a refrigerator (+4 
°C) within 10 minutes, and processed within 6 hours before freezing (-80 °C) for 
later analysis. The aliquots were not thawed until analysis and none were re-
frozen and re-thawed for later analysis.   

Table 5. Timing of maternal serum sampling and corticosteroid administration 

Delivery ≤7 days Delivery >7 days Total 
Sampling before 16% 19% 35% 
Sampling after 25% 41% 65% 
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3.1.5 Biomarker analysis methods  

Assays of maternal serum were performed at Statens Serum Institut, Department 
of Clinical Biochemistry in Denmark, using a multiplex sandwich immunoassay 
based on Luminex flowmetric xMAP technology [258].  
 

The maternal serum samples were diluted 1:10 in extraction buffer (phosphate-
buffered saline containing a complete protease inhibitor cocktail with EDTA - 
Roche, Basel, Switzerland; one tablet dissolved per 25 mL of assay buffer 
(phosphate-buffered saline containing 5 mL/L Tween-20 and 10 g/L bovine 
serum albumin)) and analyzed in duplicate. A sample was added to each filter 
plate well with a suspension of capture antibody-conjugated beads. After an 
incubation of 1.5 hours, the beads were washed twice and subsequently reacted 
for 1.5 hours with a mixture of relevant detection antibodies. Next, a quantity of 
streptavidin-phycoerythrin was added to the wells, after which incubation 
continued for an additional 30 minutes. Finally, the beads were washed twice, re-
suspended in buffer and analyzed [258].  

Luminex xMAP (multiple analyte profiling) technology enables multiplexing of 
biological assays, reducing time, labor and costs, compared with traditional 
methods such as ELISA, Western blotting, PCR and traditional arrays. Systems 
using xMAP Technology are based on microbeads, i.e. microspheres that have 
been color-coded to generate about 100 distinct sets (Figure 3). Each bead can be 
coated with thousands of antibodies (capture antibodies), allowing the capture 
and sensitive detection of the specific analyte of interest from a sample. Another 
antibody (reporter antibody), marked with a fluorophore, is then added and binds 
to the capturing antibody in a complex with unique spectral qualities. Inside the 
Luminex 100 analyzer, which can read 50-100 beads per analyte, a red laser 
identifies the bead type while a green laser excites the fluorophore on the 
reporter antibody and quantifies the fluorescent signal corresponding to the 
concentration of the analyte in the test sample (Data from 
https://www.luminexcorp.com/).  
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Figure 3. Luminex xMAP technology. Illustration Jan Funke 

Concentrations of the following markers (Table 6), chosen from a candidate 
protein approach to PTD pathways, were measured in maternal serum (symbols 
assigned by the HUGO Gene Nomenclature Committee are in parenthesis): 
IL1b, IL-2 (IL2), IL-4 (IL4), IL-5 (IL5), IL-6 (IL6/IFNb2), IL-8 (IL8), IL-10 
(IL10), IL-12 (IL-12A – natural killer cell stimulatory factor 1), IL-17 (IL17A), 
IL-18 (IL-18 – interferon-gamma-inducing factor), Soluble IL-6 receptor a 
(sIL6R), Interferon-γ (IFNG), Tumor necrosis factor-α (TNF, TNF superfamily, 
member 2), TNF-β (LTA – lymphotoxin alpha – TNF superfamily, member 1), 
Monocyte chemotactic protein-1 [MCP-1, CCL2 – chemokine (C–C motif) 
ligand 2], Transforming growth factor-β (TGFB1), Macrophage inflammatory 
protein-1α [CCL3 – chemokine (C–C motif) ligand 3], Macrophage 
inflammatory protein-1β [CCL4 – chemokine (C–C motif) ligand 4], MMP-9 
(MMP9), Triggering receptor expressed on myeloid cells-1 (TREM1), Brain-
derived neurotrophic factor (BDNF), Granulocyte-macrophage-colony-
stimulating factor (CSF2 – colony stimulating factor 2), Neurotrophin-3 (NTF3), 
Neurotrophin-4 (NTF4), Soluble TNF receptor I (sTNFR1A), Migration 
inhibitory factor (MIF), RANTES [CCL5 – chemokine (C–C motif) ligand 5].  
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Table 6. Source, target and function of cytokines, chemokines and other proteins 
analyzed in the study (Data from http://www.cells-talk.com/)  

Protein  Secreted/expressed by Target cells/tissue - 
function 

IL-1   
Pro-inflammatory Monocytes/macrophages 

Dendritic cells 
Endothelial cells 
Th1 cells 
B cells 
NK cells 
Neutrophils 
Hepatocytes 

Co-stimulates activation of 
T helper cells and 
promotes inflammation, 
maturation and clonal 
expansion  
Enhances endothelial cell, 
fibroblast and muscle cell 
activity  
Increases expression of 
ICAMs 
Induces synthesis of acute 
phase proteins 
Induces fever 

IL-2   
Immunoregulatory T cells Activates antigen–primed 

Th1 cells 
Induces proliferation, 
supports long-term growth 
and enhances activity of 
naive T cells  

IL-4   
Immunoregulatory T cells 

NK cells 
Mast cells 

Facilitates production of 
antibodies from antigen- 
primed B cells and 
stimulates Th2 cells 
Down-regulates Th1 
response 

IL-5   
Proliferative T cells 

Mast cells 
Eosinophils 

Activates eosinophils and 
stimulates eosinophil 
production 
Promotes adherence to 
VCAM-1 
Matures Th2 cells 
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IL-6   
Mixed pro- and 
anti-inflammatory 

Many different cells, 
mainly macrophages and 
monocytes 

Induces fever, acute-phase 
proteins and cortisol 
production 
Inhibits synthesis of IL-1, 
TNF, IFN-γ, GM-CSF 
Stimulates production of 
antibodies 

IL-8   
Pro-inflammatory, 
chemoattractant 

Monocytes/macrophages 
Fibroblasts 
Endothelial cells 
Epithelial cells 
Others 

Chemotactic to 
polymorphonuclear cells 
Stimulates neutrophil 
degranulation 

IL-10   
Anti-inflammatory T and B cells 

Macrophages 
Dendritic cells 

Inhibits production of IFN- 
γ and IL-2 by Th1 cells 
and production of IL-4 and 
IL-5 by Th2 cells 
Inhibits production of IL-
1β, IL-6, IL-8, IL-12, 
TNF-α, GM-CSF, MIP-1 
Inhibits cytokines 
associated with cellular 
immunity and allergic 
inflammation 
Stimulates humoral and 
cytotoxic immune 
response  

IL-12   
Immunoregulatory Macrophages 

Dendritic cells 
B cells 

Activates and induces NK 
cells 
Induces IFN- γ production 
Enhances cytotoxic 
activity in CD8+ T and 
NK cells 

IL-17   
Pro-inflammatory 
and 
immunoregulatory 

Th1 cells Induces CXC chemokines 
and attracts neutrophils 
Activates IL-6 and IL-8 
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Important mediator of 
chronic inflammation 

IL-18   
Pro-inflammatory 
and 
immunoregulatory 

Macrophages 
Monocytes 
Keratinocytes 

Enhances the 
inflammatory process by 
stimulating production of 
IFN- γ, TNF-α and IL-1β 
by NK cells and 
macrophages 
Interacts with IL-12 
Stimulates cytotoxic 
activity of T cells and NK 
cells 

Soluble IL-6 Rα   
Mixed pro- and 
anti-inflammatory  

Unknown Mediates both local and 
systemic IL-6-mediated 
events 

IFN-γ   
Anti-viral and 
immunoregulatory 

T helper cells 
Cytotoxic T cells 
NK cells 
Macrophages  
Dendritic cells 

Anti-viral and anti-
parasitic activity 
Increases MHC I and II 
expression 
Stimulates antigen 
presentation, cytokine 
production and has 
effector functions on 
monocytes 
Stimulates killing by NK 
cells and neutrophils 
Inhibits IL-4 production 
and action 

TNF-α   
Pro-inflammatory Macrophages 

Dendritic cells 
Neutrophils 
Activated lymphocytes 
NK cells 
Endothelial cells 
Mast cells 

Increases adhesion 
molecules on endothelial 
cells (ICAM-1, VCAM-1) 
and chemoattractants 
Activates neutrophils and 
phagocytosis 
Induces edema, vascular 
leakage and coagulation 
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Mediator of apoptosis, 
tissue injury, toxic chock 
and sepsis 
Induces production of IL-
1β, IL-6 and IL-10 

TNF-β   
Pro-inflammatory T cells 

Leukocytes 
Fibroblasts 
Others 

Induces synthesis of GM-
CSF, G-CSF, IL-1, 
collagenases, 
prostaglandins Promotes 
proliferation of fibroblasts 

MCP-1   
Chemotactic, pro-
inflammatory 

Monocytes 
Macrophages 
Fibroblasts 
B cells 
Keratinocytes 
Smooth muscle cells 

Chemotactic for 
monocytes and T cells 
Activates macrophages 
Induces basophil histamine 
release 

TGF-β   
Immunoregulatory, 
growth-modulatory 

Macrophages 
Mast cells 
Platelets 
Fibroblasts 
Smooth muscle cells 

Inhibition of 
monocyte/macrophage 
MHC class expression and 
pro-inflammatory cytokine 
synthesis 
Suppression of 
proliferation and cell 
growth but can also 
promote cell production, 
e.g. neurogenesis 
Stimulates formation of 
matrix proteins and 
inhibits MMPs 

MIP-1α   
Chemotactic, pro-
inflammatory 

T and B cells 
Mast cells 
Monocytes 
Fibroblasts 
Neutrophils 

Anti-viral defense 
Chemotactic for 
monocytes, T cells, 
neutrophils and 
eosinophils 
Activates production of 
IL-1, IL-6 and TNF by 
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monocytes and promotes 
Th1 immunity 

MIP-1β   
Chemotactic, pro-
inflammatory 

T and B cells 
Monocytes 
Mast cells 
Fibroblasts 
Neutrophils 
Endothelial cells 

Chemotactic for 
monocytes and T cells 
Activates production of 
IL-1, IL-6 and TNF by 
monocytes and expression 
of β1-integrins on 
endothelial cells 
Enhances the cytolytic 
responses of cytotoxic T 
and NK cells  

TREM-1   
Pro-inflammatory Neutrophils Stimulates neutrophil- and 

monocyte-mediated 
inflammatory responses 
through triggering and 
release of IL-8, TNF-α and 
IL-1α 

BDNF   
Trophic CNS neurons  Expressed in 

hippocampus, cortex and 
synapses of the basal 
forebrain 
Supports survival of 
primary sensory neurons 
Additive effect with NT-3 

GM-CSF   
Pro-inflammatory T cells (Th2) 

Fibroblasts 
Endothelial cells 
Monocytes 
Macrophages 
Mast cells 
Neutrophils 

Maturates dendritic cells, 
neutrophils and 
macrophages 
Activates mature 
neutrophils and 
mononuclear phagocytic 
cells 
Prolongs survival and 
contributes to activity of 
eosinophils 
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NT-3   
Trophic CNS neurons  Supports survival of 

neuronal cells 
Additive effect with 
BDNF 

NT-4   
Trophic CNS neurons  Similar activity as NT-3 

 
Soluble TNF RI   
Anti-inflammatory Multiple cell lines Binds to TNF trimers in 

the circulation, preventing 
membrane-bound TNF 
receptor-TNF ligand 
interaction 

MIF   
Immunoregulatory T cells 

Pituitary cells 
Inhibits macrophage 
migration and stimulates 
macrophage activation 

RANTES   
Chemotactic, pro-
inflammatory 

T cells 
Platelets 
Endothelial cells  

Chemotactic for 
monocytes, eosinophils 
and basophils 
Mediates histamine release 
from basophils 
Activates T cells 
Chronic inflammation 

MMP-9   
Extracellular matrix 
enzyme 

Monocytes 
Macrophages 
Langerhans cells 
Microglial cells 
Schwann cells 
Endothelial cells 
Tumor cells 

Is tightly bound to tissues 
and utilizes heparan sulfate 
proteoglycans as 
extracellular docking 
molecules 
Degrades fibrillin, the 
principal structural 
component of the 
extracellular matrix 
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Calibration curves were prepared in a 1:1 mixture of guinea pig serum (Jackson 
ImmunoResearch, www.jacksonimmuno.com) and pig serum (Dako, 
www.dako.com). The means of the intra-assay and inter-assay coefficients of 
variation were 11% and 17%, respectively.  

Skogstrand et al. have previously described the working ranges in serum [258]. 
The detection level in maternal serum was set at half the lowest concentrations in 
the working range, as described by Skogstrand et al. [259] : 17 IL-1 (40 pg/ml), 
IL-2 (4 pg/ml), IL-4 (4 pg/ml), IL-5 (4 pg/ml), IL-6 (40 pg/ml), IL-8 (40 pg/ml), 
IL-10 (10 pg/ml), IL-12 (4 pg/ml), IL-17 (4 pg/ml), IL-18 (40 pg/ml), sIL-6Rα 
(2500 pg/ml), IFN-γ (4 pg/ml), TNF-α (4 pg/ml), TNF-β (4 pg/ml), MCP-1 (156 
pg/ml), TGF-β (4 pg/ml), MIP-1α (40 pg/ml), MIP-1β (40 pg/ml), MMP-9 (5000 
pg/ml), TREM-1 (100 pg/ml), BDNF (10 pg/ml), GM-CSF (4 pg/ml), NT-3 (40 
pg/ml), NT-4 (4 pg/ml), s TNF RI (156 pg/ml), MIF (100 pg/ml) and RANTES 
(40 pg/ml). The proteins with undetectable serum levels in more than 50% of the 
samples were subsequently excluded from further analyses.  

3.1.6 Statistical analysis 

Women who did and did not deliver within 7 days were compared using a 
Mann–Whitney U-test for continuous variables and Fisher’s exact test for 
dichotomous variables.  

Receiver operating characteristic (ROC) curves and the area under the curve 
(AUC) were computed for each protein, cervical length and the background 
variables for the prediction of delivery within 7 days. The best cut-off values for 
each protein and cervical length were determined based on three parameters: 

1. Calculation of the highest sum of sensitivity plus specificity for each 
coordinate point in the ROC curve, after SPSS 17.0 analysis 

2. Use of the statistical software MedCalc 11.0.1.0, that automatically indicates 
the best cut-off on the ROC curve, using the highest average of sensitivity 
plus specificity  

3. A visual/individual method based on selection of the closest point on the 
ROC curve to the top left-hand corner of the curve with the visually best 
AUC  
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In this study, an attempt was made to determine the best cut-off value for each 
variable using these methods, as well as to check whether the sensitivity was 
higher than the specificity before determining the best cut-off value. This 
approach was chosen in order to avoid missing women that would deliver 
preterm. In more detail: for every coordinate point on the ROC curve, using the 
SPSS software, there is one sensitivity value and one 1-specificity value; it was 
thus not difficult to select the cut-off value based on the methods mentioned 
above.  However, in cases in which there was one sensitivity value and more 
than one 1-specificity value for determination of the best cut-off value on the 
ROC curve, the lowest 1-specificity value of the 2-3 values indicated by the 
SPSS was chosen. This approach was adopted in order to attribute more 
importance to sensitivity and to select as the best cut-off point that with the 
highest sensitivity and the lowest specificity. Continuous variables were 
dichotomized from the ROC curve to obtain the optimal prediction of delivery 
within 7 days. Crosstabs were used to obtain odds ratios (ORs).  

The significant variables in univariate analyses (p <0.05) were entered into a 
backward stepwise logistic regression. The limit 0.05 in the univariate analyses 
was selected in order to avoid the problem of mass significance and a large 
number of predictors exceeding 10. Choosing a different limit than 0.05, for 
example 0.25, would have resulted in the inclusion of 20 variables as possible 
predictors in the stepwise selection, inappropriate according to common 
statistical standards. All analyses were performed for each serum marker, 
cervical length and the combinations.  

The Hosmer-Lemeshow test was performed for the goodness of fit of the models 
A p-value of <0.05 or a 95% confidence interval (95% CI) that did not include 
1.0 was considered to be statistically significant.  

All calculations were made using the software SPSS 17.0 (SPSS Inc., Chicago, 
IL, USA) and MedCalc 11.0.1.0 (MedCalc Software, Mariakerke, Belgium). 

3.2 Study II

3.2.1 Ethical approval 

The local Ethics Committee at the University of Gothenburg approved the study 
(Dnr 349-95, Ö 506-99 and Dnr 476-05). 
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3.2.2 Design 

Prospective cohort study 

3.2.3 Study population 

Women with PPROM (n=73) or PTL (n=116) at gestational age 22+0 to 33+6 
weeks, admitted to the Department of Obstetrics and Gynecology at Sahlgrenska 
University Hospital in Gothenburg, Sweden, between 1996 and 2005, were 
enrolled.  It must be noted that 104 PTL cases in this study were also included in 
Study I (n= 104/116; 90%). In both the PPROM and PTL groups, the majority of 
enrolled women was of non-Hispanic, white ethnicity and had a stable family 
situation (Table. 7).  

Table 7. Ethnicity and marital-cohabitation status 

PPROM  MIAC +  MIAC -  
Non-Hispanic black  0% 1% 
Non-Hispanic white 25% 72% 
Hispanic 0% 1% 
Cohabiting with baby’s father 22% 69% 
Living alone 3% 6% 
PTL  MIAC + MIAC - 
Non-Hispanic Black 0% 3% 
Non-Hispanic White 18% 75% 
Hispanic 0% 4% 
Cohabiting with baby’s father 18% 0% 
Living alone 0% 6% 

3.2.4 Clinical considerations and diagnostic approaches 

Inclusion in the study was homogeneous throughout the year, except for a lower 
inclusion rate during the summer months, for the reasons mentioned for Study I 
(Table 8).  
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Table 8. Seasonal variation in inclusions/deliveries 
 

 
 
 
 
 
 
 
 
 

Corticosteroids were administered at between 24+0 and 33+6 gestational weeks 
in the majority of cases (96% in PPROM vs 85% in PTL), most of whom were 
given two doses (90% in PPROM vs 83% in PTL) (Table 9). 

Table 9. Corticosteroid administration   

PPROM MIAC + MIAC - Total  
Corticosteroids   
Yes 24% 72% 96% 
No 0% 4% 4% 
Double dose   
Yes 23% 68% 90% 
No 1% 9% 10% 
PTL MIAC + MIAC - Total  
Corticosteroids   
Yes 17% 68% 85% 
No 2% 13% 15% 
Double dose   
Yes 16% 68% 83% 
No 3% 14% 17% 

Amniocentesis, with aspiration of 30–50 mL of amniotic fluid, was performed 
within 24 hours of admission. The majority of the PPROM cases (64%) were 
sampled before, while the majority of PTL cases (53%) were sampled after, 
corticosteroid administration (Table 10).  

PPROM MIAC + MIAC - Total 
1st quarter 12% 25% 37% 
2nd quarter 8% 14% 22% 
3rd quarter 3% 14% 16% 
4th quarter 1% 23% 25% 
PTL MIAC + MIAC - Total 
1st quarter 6% 29% 35% 
2nd quarter 4% 10% 14% 
3rd quarter 3% 24% 27% 
4th quarter 6% 17% 23% 
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Table 10. Timing of amniocentesis and corticosteroid administration  

PPROM MIAC + MIAC - Total 

Amniocentesis before 18% 47% 64% 

Amniocentesis after 7% 29% 36% 
PTL MIAC + MIAC - Total 

Amniocentesis before 10% 37% 47% 

Amniocentesis after 10% 44% 53% 

After sampling, the amniotic fluid was immediately placed in a refrigerator (4 
°C) and processed within five hours. A sample of uncentrifuged amniotic fluid 
was analyzed with PCR for Ureaplasma urealyticum and Mycoplasma hominis 
and cultured for aerobic and anaerobic bacteria. Blood samples were obtained 
simultaneously with the amniocentesis. 

3.2.5 Biomarker analysis methods 

Similar methodological considerations as in Study I  

3.2.6 Statistical analysis 

The Mann-Whitney U-test was applied for the comparison of demographic and 
clinical characteristics and Fisher’s exact test for the categorical variables. The 
differences were considered statistically significant at a p<0.05 with two-sided 
alternative hypotheses. Statistical analyses were performed using SPSS 19.0 
(IBM Corporation, Armonk, NY, USA). 



 

3 .  PATIENTS AND METHODS 55

3.3 Study III 

3.3.1 Ethical approval 

The local Ethics Committee at the University of Gothenburg approved the study 
(Dnr 991-11). 

3.3.2 Design 

Cross-sectional cohort study 

3.3.3 Study population 

From June to August 2012, amniotic fluid was collected at between gestational 
weeks 38+0 and 41+6 from 21 women without chronic disease, who were 
undergoing elective cesarean section at Sahlgrenska University Hospital, 
Gothenburg, Sweden.  

Inclusion criteria for the study were: maternal age ≥18 years, singleton 
pregnancy, intact fetal membranes and absence of uterine contractions at 
admission. Exclusion criteria were: known fetal malformations or chromosome 
abnormalities and cesarean section indicated by medical complications such as 
hypertension, pre-eclampsia or intrauterine growth restriction.  

3.3.4 Clinical considerations and diagnostic approaches 

Amniotic fluid samples were obtained using a sterile syringe to which a sterile 
aspiration tube was attached. The aspiration tube was inserted deep into the 
amniotic cavity through a small fenestration of the fetal membranes, prior to 
complete uterotomy, and 45 mL of amniotic fluid was aspirated (Figure 4).  
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Figure 4. Schematic presentation of the amniotic fluid sampling procedure. 
Illustration by Jan Funke 

Each amniotic fluid sample was immediately transferred to the laboratory in a 
capped sterile syringe and separated into nine 4.5-mL-aliquots. Figure 5 shows 
the different handling of the aliquots.  

 

Figure 5.  Schematic presentation of the amniotic fluid handling procedures 

The samples centrifuged at 2000g for 10 minutes at 4°C within 2 hours of 
sampling, without addition of protease inhibitor and without supernate filtration, 
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were defined as the standard group. This corresponds to our research group’s 
previous pre-analytical handling of amniotic fluid [260, 261].  

In the other groups (test groups), one variable at a time was changed in order to 
evaluate: 

1. The effect of latency from sampling to centrifugation (Group 1). Group 1 was 
divided into the subgroups 1a and 1b, stored at 4°C for 5 and 24 hours, 
respectively, before centrifugation. 

2. The effect of different centrifugal forces (Group 2). Group 2 was divided into 
subgroups 2a and 2b, centrifuged at 300g and 12000g, respectively. 

3. The effect of centrifugation duration (Group 3). The samples were 
centrifuged for 20 minutes.  

4. The effect of centrifugation temperature (Group 4). The samples were 
centrifuged at the room temperature of 20°C. 

5. The effect of supernatant filtration through a syringe filter (Syringe filter, 
TPP, Trasadingen, Switzerland, 0.22 μm) (Group 5). 

6. The effect of adding 200 μL of protease inhibitor to amniotic fluid directly 
after sampling (Complete Mini EDTA-free Protease inhibitor Cocktail 
Tablets, Roche Diagnostics GmbH, Mannheim, Germany) (Group 6).  

3.3.5 Biomarker analysis methods  

After processing, aliquots from each group were immediately stored at -80°C 
until analysis with ELISA (R&D Systems, Minneapolis, MN), within 8 months 
of sampling. Samples were assayed in duplicate for IL-6 and the mean value was 
used for analysis.  

Each ELISA performed was specific for IL-6 (Human IL-6 Quantikine ELISA, 
R&D Systems, Minneapolis, MN), with a detection rate of 15.6-1500 pg/mL. 
The inter- and intra-assay coefficients of variation were <10% and <5%, 
respectively.  
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3.3.6 Statistical analysis 

Results were calculated by pairing IL-6 concentrations in the standard group 
with those in each test group (Groups 1-6). Wilcoxon signed ranks test was used 
to calculate p-values. A p-value <0.05 was considered significant. All analyses 
were performed using SPSS 20.0.0 (SPSS Inc., Chicago, IL, USA).  

3.4 Study IV 

3.4.1 Ethical approval 

The Ethics Committee at University Hospital Hradec Kralove in the Czech 
Republic approved the study protocol (19 March 2008; No. 200804 SO1P).  

3.4.2 Design 

Prospective cohort study 

3.4.3 Study population 

In this study, 231 women were enrolled. Participants were diagnosed with 
PPROM at gestational age 24+0 - 36+6 weeks and had been admitted to the 
Department of Obstetrics and Gynecology at the University Hospital Hradec 
Kralove in the Czech Republic between July 2008 and October 2010. 

3.4.4 Clinical considerations and diagnostic approaches 

PPROM was diagnosed by a sterile speculum examination, confirming amniotic 
fluid pooling in the vagina, and a positive test for insulin-like growth factor-
binding protein (ACTIM PROM test; MedixBiochemica, Kauniainen, Finland) 
in the vaginal fluid. 

Management of PPROM in the Czech Republic is active, except in cases at <28 
weeks of gestation, which are handled expectantly. Timing of induction of labor 
or elective cesarean section depends on gestational age: 
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1. Within 24 h at >34+0 weeks 

2. Within 48 h at 32+0 - 33+6 weeks 

3. Within 72 h at 28+0 - 31+6 weeks 

The placenta was fixed in 10% neutral buffered formalin directly after delivery 
and tissue blocks from the placenta, umbilical cord and placental membranes 
were processed according to routine and embedded in paraffin. A single 
pathologist, blinded to the clinical status, performed the histological 
examination. In this study, a second pathologist did not review the histological 
diagnosis of the placenta. However, according to Simmonds et al. [262] and 
Kramer et al. [263], there is high intra- and inter-observer agreement between 
one and two pathologists examining the same placenta for membrane 
inflammation, funisitis, and umbilical cord vasculitis. The degree of 
polymorphonuclear leukocyte infiltration was evaluated separately in the free 
membranes (amnion and chorion-decidua), the chorionic plate and the umbilical 
cord, according to the criteria proposed by Salafia et al. [171]. HCA was 
diagnosed based on histological grade (grades 3–4 in the chorion-decidua and/or 
3–4 in the chorionic plate and/or 1–4 in the amnion and/or 1–4 in the umbilical 
cord). Funisitis was diagnosed based on histological grades 1–4 in the umbilical 
cord (Table 11).  

Table 11. Grading system for HCA and funisitis. Modified by Salafia et al., 1989 
[171] 

Amnion and 
chorion-decidua 

Grade 1 One focus of at least 5 neutrophils 

Grade 2 More than one focus of grade-1 inflammation, or 
at least one focus of 5-20 neutrophils 

Grade 3  Multiple and/or confluent foci of grade-2 
inflammation 

Grade 4 Diffuse and dense acute inflammation 
  

Umbilical cord Grade 1 Neutrophils within the inner third of the 
umbilical vein wall 

Grade 2 Neutrophils within the inner third of at least two 
umbilical vessel walls 

Grade 3 Neutrophils in the perivascular Wharton’s jelly 
Grade 4 Panvasculitis and funisitis extending deep into 

the Wharton’s jelly 
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Chorionic plate Grade 1 One focus of at least 5 neutrophils in 

subchorionic fibrin 
Grade 2 Multiple foci of grade-1 inflammation in 

subchorionic fibrin 
Grade 3 Few neutrophils in connective tissue or chorionic 

plate 
Grade 4 Numerous neutrophils in chorionic plate and 

chorionic vasculitis 

For the study of the neonatal outcomes, an entity called ‘‘composite neonatal 
morbidity’’ was defined and included: 

1. Tracheal intubation and/or 

2. RDS, defined by two or more of the following criteria: 

a. Evidence of respiratory compromise and persistent oxygen 
requirement for >24 hours 

b. Administration of exogenous surfactant 

c. Radiographic evidence of hyaline membrane disease, and/or  

3. IVH, diagnosed by cranial ultrasound and graded 1–4, according to the 
criteria defined by Papile et al. [264], and/or 

4. NEC, defined as a radiologic finding of either intramural gas or free intra-
abdominal gas, and/or 

5. ROP, identified by retinoscopy, and/or 

6. EOS or LOS, defined as any systemic bacterial infection evidenced by 
clinical symptoms in association with either a positive blood culture or 
elevated CRP and/or affected WBC count during the first 72 hours of life or 
at 4–120 days of life, respectively, and/or 

7. BPD in a preterm infant, defined by oxygen dependency at 28 days of life, 
and/or 

8. Pneumonia, diagnosed by an abnormal chest X-ray finding, and/or 

9. Perinatal death, defined as death before hospital discharge 
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3.4.5 Statistical analysis 

Continuous variables (demographic and clinical characteristics) were compared 
using the Mann-Whitney U-test and categorical variables were compared using 
the Pearson Chi-square test. Spearman’s partial correlation was applied to adjust 
data for gestational age at delivery. Differences were considered to be 
statistically significant at p <0.05, with two-sided alternative hypotheses. 
Statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL). 
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4. Results and comments 

4.1 Study I 
Fifty-seven women (40%) of the 142 included in the study delivered within 7 
days of sampling.  

Only proteins with detectable maternal serum levels in more than 50% of the 
samples were included in the analyses. Thus, among the 27 initially quantified 
serum proteins, 22 were included in the further analyses and IL-1β, IL-2, IL-5, 
IL-6 and IL-8 were excluded. Women who delivered within 7 days had 
significantly higher levels of IL-10, soluble IL-6Rα, TNF-β MIP-1β, MMP-9, 
BDNF, soluble TNF receptor I, MIF and RANTES than those who delivered 
later. After adjustment for corticosteroid administration and sampling time with 
logistic regression, statistically significant effects were only found for TGF-β 
and BDNF levels (Table 12).  

Table 12. Effect of corticosteroid administration and sampling time on maternal 
serum cytokine/chemokine levels 

Cytokine Crude 
p-value 

Adjusted 
p-value 

 Cytokine Crude 
p-value 

Adjusted 
p-value 

IL-4 0.827 0.896  MIP-1α 0.379 0.338 
IL-10 <0.001 0.378  MIP-1β 0.024 0.872 
IL-12 0.357 0.942  MMP-9 <0.001 0.107 
IL-17 0.331 0.187  TREM-1 0.773 0.539 
IL-18 0.950 0.923  BDNF 0.008 0.025 
Soluble 
IL-6Rα 0.050 0.101 

 GM-CSF 0.042 0.627 

IFN-γ 0.336 0.539  NT-4 0.382 0.585 
TNF-α 0.920 0.531  NT-3 0.076 0.533 
TNF-β 0.043 0.262  Soluble 

TNF RI 0.004 0.692 
MCP-1 0.699 0.594  MIF <0.001 0.818 
TGF-β 0.217 <0.001  RANTES 0.018 0.271 
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Cervical length was significantly shorter among women who delivered within 7 
days (5.5 mm vs 21 mm; p <0.001), compared to women who delivered later.  

The ROC curve analysis used to calculate the best cut-off value and the AUC for 
every single protein and cervical length showed that the highest AUC values 
were for IL-10 (AUC = 0.69; p <0.001), MMP-9 (AUC = 0.74; p <0.001), MIF 
(AUC = 0.71; p <0.001) and cervical length (AUC = 0.77; p <0.001).  

The highest crude ORs for delivery within 7 days were for IL-10 (OR 4.6; C.I. 
2.2-9.7), MMP-9 (OR 6.0; C.I. 2.9-12.7), MIF (4.7; C.I. 2.2-9.9), RANTES (OR 
3.9; C.I. 1.8-8.6) and cervical length (OR 21.2; C.I. 6.0-74.7).  

Based on a stepwise multivariable logistic regression of dichotomous variables, 
univariate analyses were performed for the most significant serum proteins 
alone, then cervical length alone and, lastly, the combination of serum proteins 
and cervical length, in order to construct the best prediction model.  

We found that the model combining proteins and cervical length had the best 
predictive capacity. In the multivariable model combining maternal serum 
proteins and cervical length, high levels of IL-10 (≥ 48 pg/ml; OR 5.0; 95% CI 
1.7–14.3), RANTES (≥ 49293 pg/ml; OR 9.9; 95% CI 2.5–39.2) and short 
cervical length (≤18 mm; OR 43.5; 95% CI 8.9–211.3) were statistically 
significant contributors to the prediction of spontaneous PTD within 7 days of 
sampling.  

Using this combined model, the ROC curve analysis showed an AUC of 0.88, 
sensitivity 74%, specificity 87%, positive predictive value 76%, negative 
predictive value 86%, + LR 5.83 and - LR 0.30.  

The Hosmer-Lemeshow test of goodness of fit of the combined model yielded a 
p-value of 0.91. The regression equation for the combined model is  
Logit P= -4.71 + 1.62xIL-10 + 2.29xRANTES + 3.77xCL  
(CL is cervical length).  

In the regression equation, all the variables are binary values.  In order to 
ascertain whether adding continuous variables to the regression model would be 
a more powerful approach, an analysis with the variables as continuous variables 
in the combined model was performed (Table 13).  
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Table 13. Predictive capacity of the combined model, comparison of binary and 
continuous variables 

Binary approach Continuous approach 

Correctly predicted 82.6% 77.6% 

Sensitivity 73.8% 73.8% 
Specificity 87.3% 82.2% 
Positive predictive value 75.6% 68.9% 
Negative predictive value 86.2% 85.5% 
+LR 5.83 4.16 
- LR 0.30 0.32 
AUC 0.88 (0.84-0.95) 0.86 (0.79-0.92) 

The binary approach has a predictive capacity resembling that of the continuous 
approach, as shown above.  Moreover, the binary approach would be easier for 
clinicians to use bedside. Since the continuous variables in this study can have 
very extreme values, OR estimation can be very uncertain. For a more precise 
estimation of the continuous variables, more observations including many 
extreme values would be required. 

In order to validate the combined model in this study, two resampling methods 
were used, i.e. bootstrapping (Table 14) and cross-validation. In practice, 
resampling is based on repeatedly drawing samples from a training set of 
observations and refitting a model on each sample in order to obtain additional 
information about the fitted model.  

Table 14. Validation of the combined prediction model with bootstrapping, 
simulation of 1000 studies  

Combined model  
OR (95% CI) 

Bootstrapping 
Mean OR  

Cervical length  
High RANTES, plasma  

43.5 (8.9-211.3) 
9.9 (2.5-39.2) 

54.9 
11.1 

High IL-10, plasma  5.0 (1.7-14.3) 5.6 
AUC (95% CI) Mean AUC (95% CI) 
0.88 (0.84-0.95) 0.89 (0.84-0.94) 
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According to these results, the mean AUC resulting from bootstrapping is 
approximately the same as the AUC from the original analysis. The mean ORs 
for cervical length, RANTES and IL-10 are higher than those found in the 
original analysis.  

The cross-validation method (leave-one-out method) yielded an AUC of 0.83 
(0.76-0.91). This indicates that performing the same study on another cohort of 
women with imminent spontaneous PTD might have led to a somewhat lower 
AUC for the same combined predictive model.  

However, the results with the resampling methods suggest that the combined 
model is robust in predicting spontaneous PTD within 7 days of sampling. 

4.2 Study II
As in Study I, only proteins with detectable maternal serum levels in more than 
50% of the samples were included in the analyses. Thus, among the 27 initially 
quantified serum proteins, 25 were included in the further analyses and IL-2 and 
IL-5 were excluded.  

The median gestational age at sampling and delivery were 32+0 (range 22+6–
33+6) and 34+5 weeks (range 32+1–43+0), respectively. The overall rate of 
MIAC was 29% (21 of 73) in women with PPROM and 19% (22 of 116) in 
women with PTL.  

To evaluate the effect of the interval (days) from blood sample storage to 
multiple immunoassay analysis on the outcome presence or absence of MIAC, a 
linear regression (one-way ANOVA) was performed, revealing no differences, 
either for the PPROM group (F=0.304; p=0.583) or the PTL group (F=1.122; 
p=0.292). 
 

Women with PPROM and PTL were evaluated separately. In both groups, the 
data were classified according to the whole study population group (all PPROM 
and all PTL), women with gestational age at admission <32+0 weeks and 
women with gestational age at admission ≥32+0 weeks.  

High levels of maternal serum IL-18 (451 vs 335; p=0.031) and low levels of 
MCP-1 (139 vs 213, P=0.039) were observed in the PPROM with MIAC group. 
In the subgroup of women with PPROM at < 32+0 weeks, maternal serum IL-18 
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levels were significantly higher (654 vs 361; p=0.003) and levels of IL-1β were 
significantly lower (9 vs 20; p=0.008) in women with MIAC than in those 
without. No significant association was found between MIAC and any of the 
cytokine levels at over 32+0 weeks of gestation. 

In the group of women with PTL, there were no significant differences in the 
inflammatory response in those with MIAC. Only IL-6 levels were significantly 
higher (21 vs 14, P=0.019) in the subgroup of women with PTL at <32+0 weeks 
of gestation. No significant association was observed with any cytokine at over 
32+0 weeks of gestation. 

The stratification into two gestational age subgroups (less and more than 32 
weeks) in this study was based on the finding from a study by Kacerovsky et al. 
[52] that the intra-amniotic inflammatory response to bacteria in pregnancies 
complicated by PPROM seems to be different at gestational ages above and 
below 32 weeks.  

After adjustment for corticosteroid administration and sampling time using 
logistic regression, the only significant effect was on IL-6 levels in the PPROM 
group (Table 15). 

Table 15. Effect of corticosteroid administration and sampling time on maternal 
serum cytokine/chemokine levels 

Cytokine  PTL 
Crude  
p-value 

 
Adjusted  
p-value 

 PPROM 
Crude  
p-value 

 
Adjusted  
p-value 

IL-1β  0.441 0.176  0.135 0.226 
IL-4  0.974 0.577  0.244 0.227 
IL-6  0.124 0.289  0.226 0.037 
IL-8  0.178 0.680  0.386 0.278 
IL-10  0.249 0.295  0.316 0.801 
IL-12  0.635 0.345  0.168 0.209 
IL-17  0.050 0.946  0.873 0.461 
IL-18  0.082 0.129  0.031 0.071 
Soluble IL-6Rα  0.116 0.090  0.888 0.954 
IFN-γ  0.598 0.184  0.709 0.533 
TNF-α  0.572 0.214  0.484 0.270 
TNF-β  0.266 0.216  0.939 0.976 
MCP-1  0.779 0.460  0.039 0.051 
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TGF-β  0.740 0.152  0.538 0.885 
MIP-1α  0.297 0.239  0.334 0.129 
MIP-1β  0.290 0.323  0.788 0.694 
MMP-9  0.373 0.430  0.636 0.478 
TREM-1  0.174 0.159  0.611 0.853 
BDNF  0.157 0.936  0.183 0.269 
GM-CSF  0.470 0.104  0.418 0.423 
NT-4  0.214 0.355  0.176 0.242 
NT-3  0.509 0.710  0.238 0.470 
Soluble TNF RI  0.330 0.736  0.573 0.676 
MIF  0.322 0.113  0.384 0.340 
RANTES  0.412 0.466  0.711 0.873 

No statistically significant differences were found between the PPROM and PTL 
groups regarding the type of microorganism isolated from the amniotic fluid in 
MIAC-positive cases (p=0.250) (Table 16).  

Table 16. Microorganisms isolated in amniotic fluid of MIAC-positive cases 

PPROM PTL 
Fungi 0 1 
Gram-negative bacilli 3 5 
Gram-positive bacilli 2 3 
Gram-positive cocci 7 10 
Ureaplasma urealyticum 9 3 

4.3 Study III 
In this study, IL-6 concentrations were assayed in 21 amniotic fluid samples, 
divided into nine groups that were handled with different protocols. The 
demographics of the study population are displayed in Table 17.  

Table 17. Maternal demographics. Values are shown as median, 25th (Q1) and 
75th (Q3) quartiles 

Maternal age, years (median, Q1–Q3) 34 (30–36) 

Nulliparous  9 (43%) 
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Gestational age at cesarean section (median, Q1–Q3) 39+0 (38+5-39+2) 

Smoker 2 (10%) 

Maternal BMI (median, Q1–Q3) 25 (22–27) 

The median and quartile (Q1 and Q3) values of the amniotic fluid IL-6 for each 
group are listed in Table 18 and presented graphically in Figure 6.  

Table 18. Amniotic fluid IL-6. Values are shown as median, 25th (Q1) and 75th 
(Q3) quartiles 

Figure 6. Amniotic fluid IL-6 concentrations (pg/mL), presented by group 

Median (pg/mL) Q1 (pg/mL) Q3 (pg/mL) 
Standard group 615 342 1040 
Group 1a 585 354 1052 
Group 1b 610 351 1002 
Group 2a 610 355 977 
Group 2b 615 358 1015 
Group 3 580 350 995 
Group 4 605 346 1000 
Group 5 605 343 1000 
Group 6 606 349 1005 
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The IL-6 concentrations in the standard group ranged between 211 and 2005 
pg/mL, with a median value of 615 pg/mL. No significant differences were 
found, in the median or dispersion values of the IL-6 concentrations, between the 
standard group and the six test groups.  

The differences between IL-6 concentrations in each test group and IL-6 
concentrations in the standard group were computed (Figure 7).  

Figure 7. Schematic presentations of the differences in IL-6 concentrations 
between the test groups and the standard group. p-values are calculated with 
Wilcoxon signed-rank test. The markers (o) in the diagram represent outliers 
and ( ) extreme values [265] 

There were no significant differences in amniotic fluid IL-6 concentrations 
between the test groups and the standard group.  
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4.4 Study IV 
A total of 231 women with diagnosed PPROM were included in the analyses. 
One hundred forty-two cases (61%) were HCA-positive and 89 cases (39%) 
were HCA-negative.  Among the HCA-positive cases, 19% were also positive 
for funisitis.  

In this study, gestational age at delivery, latency from PPROM to delivery and 
birth weight cannot be considered as outcomes, because of the active 
management of PPROM pregnancies in the Czech Republic. 

Women with HCA had neonates with significantly lower birth weight (1,840 g 
vs 2190 g; p<0.001) and higher rates of composite neonatal morbidity (75 cases 
vs 30 cases; p=0.005), RDS (52 cases vs 18 cases; p=0.008), BPD (18 cases vs 2 
cases; p=0.006) and EOS (15 cases vs 1 case; p=0.001), than those without 
HCA.  

After adjustment for gestational age at delivery, EOS differed significantly 
between these two groups [15 (11%) vs 1 (1%); p=0.011]. After adjustment for 
corticosteroid and antibiotics administration, EOS (p=0.027) and birth weight 
(p=0.032) differed significantly between the two groups. This significant 
difference remained only for EOS (p=0.029) after adjustment for corticosteroids 
and antibiotics administration and gestational age at delivery (Table 19).  

Table 19. Neonatal outcomes in the groups with and without HCA. Crude p-
value (P1); adjusted for gestational age at delivery (P1); adjusted for 
corticosteroid and antibiotics administration (P3) and adjusted for 
corticosteroid and antibiotics administration and gestational age at delivery 
(P4) 

P1 P2 P3 P4 
Birth weight (g) <0.001 0.153 0.032 0.158 
5-min Apgar score <7 0.109 0.890 0.159 0.608 
10-min Apgar score <7 0.155 0.788 0.179 0.620 
Affected neonatal WBC count 0.615 0.229 0.117 0.120 
Positive hemoculture 0.259 0.526 0.386 0.461 
Neonatal composite morbidity 0.005 0.527 0.077 0.423 
NICU stay ≥1 d 0.116 0.659 0.593 0.706 
Tracheal intubation 0.014 0.530 0.077 0.303 
Duration tracheal intubation ≥1 d 0.011 0.472 0.348 0.554 
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Duration nCPAP  ≥1 d 0.067 0.887 0.319 0.899 
RDS 0.008 0.574 0.163 0.606 
Perinatal death 0.058 0.810 0.136 0.390 
IVH 0.479 0.959 0.964 0.814 
IVH grade 1-2 0.501 0.904 0.922 0.932 
IVH grade 2-4 0.575 0.764 0.871 0.810 
NEC 0.389 0.797 0.667 0.817 
Intestinal perforation 0.945 0.342 0.569 0.318 
Patent ductus arteriosus 0.175 0.175 0.443 0.717 
ROP 0.187 0.798 0.547 0.906 
BPD 0.006 0.332 0.071 0.196 
Pneumonia 0.181 0.490 0.217 0.405 
Pulmonary hypertension 0.181 0.426 0.368 0.442 
EOS 0.006 0.011 0.027 0.029 
LOS 0.704 0.234 0.704 0.241 
HCA: Histological chorioamnionitis; WBC: White blood cells; NICU: Neonatal intensive 
care unit; nCPAP: Nasal continuous positive airway pressure; RDS: Respiratory distress 
syndrome; IVH: Intraventricular hemorrhage; NEC: Necrotizing enterocolitis; ROP: 
Retinopathy of prematurity; BPD: bronchopulmonary dysplasia; EOS: early-onset sepsis; 
LOS: late-onset sepsis 

Neonates with funisitis had significantly lower birth weight (1,630 g vs 2,080 g; 
p <0.001) and Apgar scores at 5 (10 cases vs 12 cases; p=0.001) and 10 min (6 
cases vs 5 cases; p=0.002). The neonates with funisitis had higher rates of 
composite neonatal morbidity (33 cases vs 72 cases; p <0.001), perinatal death 
(11% vs 3%; p=0.001), RDS (24 cases vs 46 cases; p <0.001), ROP (10 cases vs 
7 cases; p <0.001), BPD (11 cases vs 9 cases; p <0.001), EOS (18% vs 4%; 
p=0.001) and LOS (11% vs 4%; p=0.040).  

After adjustment for gestational age at delivery, ROP [10 (23%) vs 7 (4%); 
p=0.014] and EOS [8 (18%) vs 8 (4%); p=0.002] differed significantly between 
these two groups. After adjustment for corticosteroid and antibiotics 
administration, birth weight (p<0.001), 5-min Apgar score <7 (p=0.004), 
neonatal composite morbidity (p<0.001), NICU stay ≥1 day (p=0.017), tracheal 
intubation (p=0.014), duration tracheal intubation ≥1 day (p=0.020), duration 
nCPAP ≥1 day (p=0.013), perinatal death (p=0.046), ROP (p=0.002), BPD 
(p=0.004) and EOS (p=0.001) differed significantly between the two groups. 
This significant difference remained only for ROP (p=0.018) and EOS (p=0.001) 
after adjustment for corticosteroid and antibiotics administration and gestational 
age at delivery (Table 20). 
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Table 20. Neonatal outcomes in the group of women with and without funisitis.  
Crude p-value (P1); adjusted for gestational age at delivery (P2); adjusted for 
corticosteroid and antibiotics administration (P3) and corticosteroid and 
antibiotics administration and gestational age at delivery (P4) 

P1 P2 P3 P4 
Birth weight (g) <0.001 0.255 <0.001 0.339 
5-min Apgar score <7 0.001 0.331 0.004 0.516 
10-min Apgar score <7 0.002 0.426 0.007 0.646 
Affected neonatal WBC count 0.725 0.204 0.168 0.170 
Positive hemoculture 0.042 0.193 0.124 0.317 
Neonatal composite morbidity <0.001 0.220 <0.001 0.110 
NICU stay ≥1 d 0.002 0.827 0.017 0.578 
Tracheal intubation 0.001 0.436 0.014 0.684 
Duration tracheal intubation ≥1 d 0.003 0.886 0.020 0.152 
Duration nCPAP ≥1 d 0.002 0.722 0.013 0.510 
RDS <0.001 0.378 0.009 0.527 
Perinatal death 0.011 0.897 0.046 0.850 
IVH 0.394 0.756 0.813 0.848 
IVH grade 1-2 0.792 0.529 0.787 0.646 
IVH grade 2-4 0.112 0.694 0.285 0.831 
NEC 0.228 0.738 0.470 0.801 
Intestinal perforation 0.228 0.993 0.470 0.941 
Patent ductus arteriosus 0.101 0.965 0.318 0.961 
ROP <0.001 0.014 0.002 0.018 
BPD <0.001 0.066 0.004 0.271 
Pneumonia 0.192 0.686 0.471 0.639 
Pulmonary hypertension 0.515 0.843 0.988 0.758 
EOS 0.001 0.002 0.001 0.001 
LOS 0.040 0.949 0.199 0.837 
HCA: Histological chorioamnionitis; WBC: White blood cells; NICU: Neonatal intensive 
care unit; nCPAP: Nasal continuous positive airway pressure; RDS: Respiratory distress 
syndrome; IVH: Intraventricular hemorrhage; NEC: Necrotizing enterocolitis; ROP: 
Retinopathy of prematurity; BPD: bronchopulmonary dysplasia; EOS: early-onset sepsis; 
LOS: late-onset sepsis 
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5. Discussion 

PTD, accounting worldwide for more than 15 million preterm neonates annually, 
is a major perinatal health problem, not only in terms of associated mortality, but 
also with regard to morbidity and its economic implications [12].  

Despite significant advances in obstetric and perinatal care, there has been little 
progress in reducing the global PTD rate [15]. Because of the complex nature of 
spontaneous PTD and the involvement of several pathways in its pathogenesis, 
prediction and prevention remain difficult and pose a continuing and significant 
challenge in maternal and fetal medicine. 

Major effort has been devoted to identifying inflammatory biomarkers to predict 
spontaneous PTD in both asymptomatic and symptomatic women and to 
improve our understanding of the mechanisms and pathways leading to this 
condition. While several biomarkers have been tested as predictors of 
spontaneous PTD, few have proven useful for clinical purposes [15, 244]. So far, 
among the biomarkers evaluated, fetal fibronectin (fFN) in the cervico-vaginal 
secretion, together with short cervical length on transvaginal ultrasound has been 
found to be the most powerful and consistent predictor of spontaneous PTD 
(sensitivity around 80%, specificity around 61%, positive predictive value 
around 17% and negative predictive value around 97%)  [41, 95, 266-269]. The 
clinical usefulness of both tests lies primarily in their negative predictive value, 
aiding in avoiding unnecessary interventions and guiding clinicians in decision-
making regarding in utero transfer, administration of antenatal corticosteroids 
and/or tocolysis.  

To progress in our understanding and prediction of spontaneous PTD, we must 
acknowledge that it is not one disease with a single solution or cure, but rather 
the product of overlapping pathophysiological pathways [39]. Indeed, it is has 
been suggested that a single biomarker cannot accurately predict spontaneous 
PTD [244, 270, 271]. Since the pathophysiology of spontaneous PTD is 
multifactorial with different pathways and biomarkers involved, multiplex 
immunoassay analysis have been introduced in the last decade, with the aim of 
simultaneously using several biomarkers from different and distinct biological 
pathways to better predict the risk [272]. These multiplex analyses of biomarker 
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panels thus constitute the future direction of biomarker research [244]. Studies 
have shown that a combination of biomarkers in minimally invasive samples 
(cervical fluid, serum) and cervical length measurement could help to better 
predict MIAC [273] and spontaneous PTD in women with PPROM [274] and 
PTL [260, 275]. The development of predictive models based on the analysis of 
multiple biomarkers seems feasible and allows early identification, and 
potentially early intervention, before the onset of labor, in women at risk.  

A perfect predictor of spontaneous PTD must have good specificity, sensitivity 
and high accuracy in order to increase the probability of diagnosis in women 
with a positive test result, as well as to rule out the condition when test results 
are negative [243, 272, 276]. Feasibility, accessibility, patient convenience and 
minimally invasive sampling are also important. Although a non-invasive 
approach is preferable for predicting spontaneous PTD, it is currently unclear 
which non-invasively sampled body fluid best represents the intra-amniotic 
environment and whether biomarkers in non-invasive samples reflect the intra-
amniotic compartment adequately [272]. The accuracy of serum or plasma 
biomarkers for predicting spontaneous PTD in asymptomatic women has been 
shown to be very low [270].  

In the following, the main findings of the studies in this thesis and the main 
findings concerning the analyzed biomarkers are briefly discussed. More 
detailed discussion is found in the Discussion section of each publication.   

Study I 

In the last decade, there have been efforts to predict spontaneous PTD in women 
with PTL using cervical length, alone [257, 277-284] or in combination with 
cervical biomarkers [260, 266, 285-291]. A cervical length of <15 mm (found in 
less than 10% of symptomatic women) detects approximately 60% of those who 
will deliver within 7 days and represents a 5.7-fold increased risk of delivering 
within 7 days [292]. Few studies have investigated the relationship between 
biomarkers in maternal serum and spontaneous PTD in women with PTL, 
suggesting that effective prediction of spontaneous PTD may be possible with a 
non-invasive approach [293-302]. In Study I, it was found that a multivariable 
prediction model, combining maternal serum biomarkers (IL-10 and RANTES) 
with cervical length, had predictive power equal to that of invasive models for 
delivery within 7 days from the beginning of labor [275]. 
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IL-10 and RANTES were statistically significant contributors to the prediction 
of spontaneous PTD within 7 days of sampling in Study I. IL-10 is likely to be 
an important cytokine because it suppresses the production of pro-inflammatory 
cytokines by other cells and numerous studies have documented its production at 
the maternal-fetal interface [303-305]. Pregnancy is not dependent on IL-10 
production, however; IL-10 (-/-) mice are still fertile [306]. Up-regulation of this 
anti-inflammatory cytokine leads to suppression of NK cells and T lymphocytes 
against fetal alloantigens [307, 308]. In Study I, maternal serum IL-10 levels 
were significantly higher in women who delivered preterm (within 7 days of 
sampling) than in women who delivered later. We can therefore hypothesize that 
IL-10 can lessen the pathological effect of inflammation prevalent in 
spontaneous PTD. The other cytokine in our prediction model is RANTES. 
Maternal serum RANTES levels were significantly higher in women who 
delivered preterm (within 7 days of sampling), compared with women who 
delivered later. This pro-inflammatory cytokine that chemoattracts monocytes, 
with additional activity toward T-cells, has been found in the decidua of 
pregnancies complicated with spontaneous PTD. Its expression in this tissue is 
correlated with both macrophage and neutrophil abundance, suggesting that 
these immune cell subtypes are a major production source [309]. However, there 
are few studies describing the association between high levels of RANTES in 
maternal serum and spontaneous PTD [309-311].  

Study II 

There are few studies, with contradictory results, on the role of maternal serum 
biomarkers as predictors of IAI and fetal membrane inflammation [249, 312-
316]. In Study II, the maternal serum inflammatory response was evaluated 
according to the presence of MIAC in women with PTL and PPROM. We found 
that the inflammatory status of the amniotic cavity is not accurately reflected in 
maternal serum. Studies have shown that sampling from maternal serum and 
other non-invasive procedures is effective in predicting PTD [293-302], but it 
seems that maternal serum sampling is not so effective in predicting MIAC. A 
weak maternal inflammatory response in women with MIAC was found and 
differences in the biomarker levels were only evident at early gestational ages 
(<32 weeks). This finding is in accordance with previous studies showing that 
the intra-amniotic inflammatory response to bacteria is different below and 
above 32 weeks of gestation. This process seems to be heterogeneous as a result 
of a broad spectrum of factors that can affect cytokine production in amniotic 
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fluid, including the duration of MIAC, the type of bacteria, the microbial burden 
and bacterial virulence [52, 317].  

In Study II, a higher but weak expression of serum IL-6 in women with PTL and 
MIAC was observed. Despite the fact that IL-6 is a classical marker of 
inflammation, no differences in the concentration of this serum protein were 
found between PPROM cases with or without MIAC. Higher IL-6 
concentrations have been observed in the amniotic fluid of asymptomatic women 
delivering preterm, compared to those with term delivery [244], but a temporal 
relationship between IL-6 and interval until delivery has yet not been established 
[318]. The test accuracy of IL-6 in amniotic fluid seems to be especially good for 
both asymptomatic and symptomatic women, but is generally poor in other 
biological fluids (e.g. blood, cervico-vaginal fluid) [270, 276].  However, from a 
clinical point of view, the main limitation of this biomarker is its lack of 
specificity in predicting disease, because it is overexpressed in maternal serum in 
both infectious and non-infectious conditions [319, 320]. 

There have been no previous studies on the role of maternal serum IL-18 in 
women with MIAC. In Study II, higher levels of maternal serum IL-18 were 
found in women with PPROM who had MIAC, which suggests a pro-
inflammatory effect of IL-18 in amniotic fluid and maternal serum in the 
presence of infection. It has previously been shown that IL-18 in amniotic fluid 
is associated with MIAC and spontaneous PTD in women with PTL [321]. IL-18 
is a cytokine with pleiotropic qualities that regulate both the innate and acquired 
immune responses and it can stimulate both Th 1 and 2 responses, depending on 
the local cytokine environment [322, 323]. IL-18 is synthesized as a pro-form 
and is activated through cleavage by caspase-1 [324]. It is important in the host 
defense against severe infections via induction of other cytokines and effector 
cells and molecules. It enhances the inflammatory process by stimulating the 
production of IFN-γ, TNF-α and IL-1β [323]. IL-18 can also activate apoptosis 
by enhancing Fas ligand and Fas expression [325] and is found in both amniotic 
fluid and maternal and fetal plasma [326-328].  

There is a lack of previous studies evaluating the importance of IL-1β and MCP-
1 as risk factors for MIAC in maternal serum. In Study II, low levels of IL-1β 
and MCP-1 were observed in women with PPROM who had MIAC, indicating 
only a minor maternal serum inflammatory response mediated by those two 
cytokines. IL-1 plays a central role in the pro-inflammatory response. It is a 
prototypical pro-inflammatory cytokine that regulates a wide spectrum of 
immunological processes and it exists in two forms, IL-1α and IL-1β, both of 
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which bind to two distinct membrane receptors [329]. IL-1β induces a systemic 
and local response to pathogenic invasion or tissue injury by inducing 
transcription or enhancing mRNA stability of a wide variety of pro-
inflammatory genes. It has been shown to be a major factor in the initiation of 
infection-related PTL and spontaneous PTD [330]. IL-1β levels are elevated in 
the amniotic fluid of pregnancies complicated by microbial-associated IAI and it 
may be capable of causing PTL by up-regulating prostaglandin production, 
leading to myometrial contractions [331-333]. IL-1β also enhances MMP-1 and 
MMP-3 expression in decidual cells, possibly leading to PPROM [334]. MCP-1 
stimulates chemotaxis of monocytes and several associated cellular events, 
including Ca+2 flux and integrin expression. It is also a weak inducer of cytokine 
expression in monocytes and, at high concentrations, elicits a respiratory burst 
leading to generation of reactive oxygen species [335].  

Studies I and II have several strengths. We evaluated several biomarkers in 
maternal serum that can be easily tested during pregnancy. A non-invasive 
approach for predicting spontaneous PTD is relevant for clinical practice. 
Moreover, we adjusted for a possible confounding effect of gestational age at 
sampling and corticosteroid and antibiotics administration, in order to determine 
the respective effect of those covariates on serum levels of the inflammatory 
cytokines. Despite these strengths, an important limitation of these studies arises 
from the pre-analytical variability in sampling and storage procedures that has 
been shown to affect assayed biomarker concentrations. The best way to limit 
the effect of pre-analytical factors is to start sample processing immediately and 
to standardize it as much as possible. This approach was not, however, feasible 
in our studies for logistic reasons. 

Study III 

It is known that cytokines are fragile, that plasma and serum samples should be 
frozen promptly for long-term storage and that repeated freeze-thaw cycles 
should be avoided [336]. Some evidence indicates that a partial degradation of 
proteins occurs over time, even when stored at -80oC [337]. Amniotic fluid 
specimens are commonly frozen and stored for research purposes. During the 
last two decades, several studies of poor obstetric outcomes have been based on 
data from analysis of cytokine levels in frozen amniotic fluid [314, 338, 339]. 
Some studies have examined the stability of certain cytokines stored in amniotic 
fluid samples for prolonged periods of time [337, 340], revealing some 
degradation despite optimal freezing conditions. However, the impact of sample 
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age and storage time on levels of inflammatory biomarkers is often inadequately 
addressed in studies. 

On the other hand, little is known about how pre-analytical handling procedures 
affect cytokine levels. Skogstrand et al. [341] showed that trustworthy 
measurements of various inflammatory proteins in serum, plasma and whole 
blood relies on preparation and interval before long-term storage. According to 
this study, 4oC was the best temperature at which to preserve blood before 
separation into plasma and serum. It should, however, be noted that, even at this 
low temperature, measurable concentrations of several of the inflammatory 
markers increased significantly during the storage period. However, there are no 
data evaluating cytokine stability in amniotic fluid after different pre-analytical 
handling procedures. Study III showed that the investigated pre-analytical 
handling procedures  ̶  latency between sampling and analysis, centrifugal 
conditions (centrifugal force, time, and temperature), supernatant filtration and 
addition of protease inhibitor  ̶  did not seem to affect IL-6 concentrations in 
amniotic fluid. 

The strength of Study III is the analysis of amniotic fluid samples after a short 
storage time in the freezer. Nonetheless, a limitation of the study is that only 
amniotic fluid from uncomplicated term pregnancies was used, instead of from 
second- and/or early third-trimester pregnancies, or from women with symptoms 
of PTL or with PPROM. Moreover, this study does not allow prediction of the 
degree of change in IL-6 levels in the samples after a prolonged storage time. 
The influence of the studied handling procedures on other amniotic fluid 
cytokines and the effect of storage time on the IL-6 concentrations after different 
pre-analytical handling procedures were not evaluated in this study and thus 
require investigation in future. 

Study IV 

The few studies evaluating the influence of MIAC on short-term neonatal 
outcome in women with PPROM have found a negative impact on neonatal 
morbidity [342-347]. However, a recent study showed that gestational age at 
delivery seems to be more important for short-term neonatal outcome than 
MIAC or IAI in PPROM pregnancies [348]. Furthermore, HCA and funisitis 
have been linked with EOS in many studies [349-353]. Both MIAC and HCA 
have also been associated with increased risk of EOS in pregnancies complicated 
by PPROM before 34 weeks of gestation [346]. It has been also shown that the 
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higher the stage (or grade) of either HCA or funisitis and the earlier the 
gestational age at delivery, the higher the incidence of neonatal morbidity [354-
356].  

Study IV confirmed that some adverse neonatal outcomes (EOS and ROP) are 
associated with HCA and funisitis in PPROM pregnancies. The results of this 
study are in accordance with the results of a nationwide population-based study 
by Morken et al. [2], based on data from the Swedish Medical Birth Register and 
the Swedish Hospital Discharge Register. This study showed that preterm infants 
were at increased risk of sepsis at gestational age 32-33 weeks (Hazard Ratio 
1.58; 95% CI: 1.12, 3.10) [13].  

One of the strengths of Study IV is the relatively large number of women 
included, with a clearly defined phenotype of exclusively PPROM-induced PTD 
and a well-defined classification of HCA and funisitis. The active management 
of women with PPROM in the Czech Republic gave us the ability to compare 
short-term neonatal outcome, without the influence of long latencies on the 
evaluation of HCA and funisitis. Another strength of this study is the fact that 
the same pathologist examined all placentas, thus eliminating inter-observer 
variability. Limitations of the study are the facts that the infectious or non-
infectious nature of the HCA was confirmed with non-cultivation techniques in 
amniotic fluid and that not all EOS cases were culture-positive. 
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6. Conclusions and future 
perspectives 

1. A combined prediction model, including non-invasive serum biomarkers and 
cervical length measurement by transvaginal sonography, is potentially useful 
for clinicians in determining which women with PTL symptoms have higher 
risk to spontaneously deliver preterm. This model must, however, be tested in 
a new cohort of high-risk women in order to confirm its predictive ability. If 
the moderately high positive predictive value and negative predictive value 
are thus confirmed, it could help identify women at considerable risk of 
delivering preterm, who could then be targeted for treatment (tocolytics to 
delay delivery, enabling transfer to a specialist unit, and corticosteroids to 
reduce neonatal morbidity and mortality). Likewise, women at low risk could 
be sent home without over-treatment. 

2. The identification of inflammatory status in maternal serum in PPROM and 
PTL cases is not as accurate as analyzing amniotic fluid in predicting the 
occurrence of MIAC. A weak maternal inflammatory response in maternal 
serum is evident only at early gestational ages. This indicates the need for 
further research to establish the potential contribution of inflammatory 
cytokines that can be determined with non-invasive methods, in combination 
with those identified in amniotic fluid, to detect microbial-associated IAI in 
women with PPROM and PTL. 

3. Amniotic fluid IL-6 levels appear to be stable regardless of sample handling 
prior to analysis, when analyses are performed after a short storage period. 

4. HCA and funisitis in PPROM pregnancies are associated with increased rates 
of EOS and funisitis is associated with increased rates of EOS and ROP. 
From a clinical perspective, it is important that future studies clarify the role 
of placental pathology, MIAC, IAI, type of microorganism and gestational 
age for short- and long-term neonatal outcomes in spontaneous PTD with 
either PPROM or PTL onset.  
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