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Abstract

We introduce Arveson’s generalization of the Shilov boundary to the
noncommutative case and give a proof based on the work of Hamana
of the existence of the Shilov boundary ideal.

Moreover, we describe the Shilov boundary for a noncommutative
analog of the algebra of holomorphic functions on the unit polydisk
Dn and for a q-analog of the algebra of holomorphic functions on the
unit ball in the space of symmetric complex 2× 2 matrices.
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1 Introduction

The famous Gelfand-Naimark theorem states that any unital commutative
C∗-algebra is ∗-isomorphic to a C∗-algebra of continuous functions on a com-
pact Hausdorff space. As a consequence, it can be shown that the topology
of a compact Hausdorff space is completely determined by the C∗-algebra
of continuous functions defined on it. This observation leads to one of the
fundamental ideas of noncommutative geometry, where the duality between
compact Hausdorff spaces and commutative C∗-algebras is extended to the
noncommutative setting by considering a noncommutative C∗-algebra as an
algebra of functions on a noncommutative generalization of a compact Haus-
dorff space. It is therefore an interesting task to formulate classical geo-
metrical notions solely in terms of the commutative C∗-algebra in order to
obtain generalizations to the noncommutative case, which we shall refer to
as noncommutative analogs.

One such notion is that of the Shilov boundary. Let X be a compact
Hausdorff space, and let A ⊂ C(X) be a uniform algebra, i.e., a closed
subalgebra that contains the constants and separates points of X. The Shilov
boundary of X relative to A is defined as the smallest closed subset S of X
such that every function in A achieves its maximum modulus on S. The
prototypical example of this is of course the maximum modulus principle
encountered in the theory of holomorphic functions. For the disk algebra
A(D) ⊂ C(D̄), consisting of functions holomorphic on the unit disk D and
continuous up to the boundary, it is a well known fact that every function in
A(D) achieves its maximum modulus on the unit circle T.

In this thesis we shall explore a noncommutative analog of the Shilov
boundary, which was introduced by Arveson in [Arv69]. We shall also de-
scribe the Shilov boundary for some concrete situations. In particular we
shall describe the Shilov boundary for a noncommutative analog of the holo-
morphic functions on bounded domains. In other words, this amounts to
investigating a noncommutative analog of the maximum modulus principle.

Throughout this thesis we assume that all algebras and homomorphisms
are unital with the exception of the C∗-algebra C0(X) of continuous functions
vanishing at infinity on a locally compact Hausdorff space X.

1.1 Gelfand duality and noncommutative geometry

In order to properly motivate the identification of C∗-algebras as noncom-
mutative analogs of algebras of functions, let us begin by elaborating on the
claim that the topology of a space is determined by the algebra of functions
defined on it.
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Let B be a commutative C∗-algebra. A character χ : B → C is a nonzero
∗-homomorphism of B into C. The set MB of all characters on B is called
the maximal ideal space of B. Endowed with the topology induced by the
weak∗ topology on the dual space of B, MB is a compact Hausdorff space.

We define the Gelfand transform Γ : B → C(MB) by Γ(x) = x̂ where x̂
is defined as x̂(χ) = χ(x), χ ∈ MB. Let us now give the statement of the
Gelfand-Naimark theorem. For a proof, see e.g. [Dav96].

Theorem 1.1 (Gelfand-Naimark). Let B be a commutative C∗-algebra, and
let MB be its maximal ideal space. The Gelfand transform is a ∗-isomorphism
of B onto C(MB).

Given a compact Hausdorff space X, we have a natural way to associate
X to a commutative C∗-algebra, namely C(X). This mapping defines a
contravariant functor F between the categories of compact Hausdorff spaces
and the category of commutative C∗-algebras. The contravariance follows
from the fact that if f : X → Y is a continuous map between two compact
Hausdorff spaces X and Y , then we have a ∗-homomorphism F (f) : C(Y )→
C(X) given by F (f)(g) = g ◦ f .

On the other hand, we also have that a commutative C∗-algebra can be
associated to a compact Hausdorff space, namely its maximal ideal space.
So we also have a contravariant functor G from the category of commutative
C∗-algebras into the category of compact Hausdorff spaces.

Theorem 1.2. The category of compact Hausdorff spaces with morphisms
the continuous maps is dually equivalent to the category of commutative C∗-
algebras with morphisms the ∗-homomorphisms.

Proof. It remains to show that the functors F and G are quasi-inverse to
each other, i.e., for any C∗-algebra B and any compact Hausdorff space X,
we have natural isomorphisms B ∼= C(MB) and X ∼= MC(X). The first case
is precisely the statement of the Gelfand-Naimark theorem. For the second
case, we define a map X → MC(X) by x 7→ δx, where δx is the evaluation
map at x, i.e., δx(f) = f(x). Since C(X) separates points, this map is
injective. It also follows readily by the definition of the weak∗ topology
that this map is continuous. To see that the map is surjective, let χ be
a character of C(X). Since C(X)/Kerχ ∼= C, using the characterization
of closed ideals from Proposition 1.4 below, it is not difficult to see that
Kerχ = {f ∈ C(X) : f(x0) = 0} for some x0 ∈ X. Then χ(f − f(x0)) = 0,
and hence χ(f) = f(x0), showing that χ = δx0 .

One of the fundamental ideas of noncommutative geometry is that the
duality between compact Hausdorff spaces and commutative C∗-algebras sug-
gests that we should take noncommutative C∗-algebras as representatives of
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noncommutative analogs of compact Hausdorff spaces. Since the topology
of a compact Hausdorff space is completely determined by its associated
C∗-algebra, we take the characterization of geometric notions in terms of
C∗-algebras as the definition of these notions in the noncommutative case.

Let us give a couple of examples of these correspondences between geo-
metric notions and their characterization on the algebraic side.

Let X be a compact Hausdorff space. Then we have a correspondence
between compact subspaces of X and quotients of C(X). Let K ⊂ X be a
compact subspace, and let JK denote the following associated closed ideal in
C(X):

JK = {f ∈ C(X) : f |K = 0}. (1.1)

From the short exact sequence

0 −→ JK −→ C(X) −→ C(K) −→ 0, (1.2)

we see that C(K) is ∗-isomorphic to a quotient of C(X).
The key to the converse statement is the fact that any closed ideal in

C(X) is of the form (1.1) for some closed subspace K ⊂ X. This statement
in turn relies on the Stone-Weierstrass theorem, which we now recall.

Theorem 1.3 (Stone-Weierstrass). Let X be a locally compact Hausdorff
space, and let A be a ∗-algebra that separates points and vanishes nowhere.
Then A is dense in C0(X).

Proposition 1.4. Let J be a closed ideal in C(X). Then J is of the form

J = {f ∈ C(X) : f |K = 0}

for some closed subspace K ⊂ X.

Proof. Define K ⊂ X as the set of common zeros of all functions in J , i.e.,

K = {x ∈ X : f(x) = 0 for all f ∈ J}.

Then K is closed since if x0 is a limit point of K that is not in K, then there
is a function f ∈ J such that f |K = 0 and f(x0) 6= 0. But then f 6= 0 on
some neighborhood of x0, which is a contradiction.

Let now JK be the closed ideal associated with K as in (1.1). Clearly
J ⊂ JK . Set M = X \ K, and consider the restriction of J to M , J |M =
C0(M). It is easy to see that J |M separates points, and by the definition of
K, J |M vanishes nowhere. By the Stone-Weierstrass theorem, J |M is dense
in C0(M), and consequently J is dense in JK , showing that J = JK .
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Thus we get that any quotient of C(X) is of the form C(X)/JK for an
ideal of the form (1.1), and again by the short exact sequence (1.2) we get
C(X)/JK ∼= C(K).

Let us now investigate how C(X × Y ), the C∗-algebra of continuous
functions on the cartesian product of two compact Hausdorff spaces, is related
to C(X) and C(Y ).

There are several different ways of defining the tensor product A⊗ B of
two C∗-algebras. Let A and B be C∗-algebras, and consider the following
norm on the algebraic tensor product of A and B:∥∥∥∥∥

n∑
i=1

xi ⊗ yi

∥∥∥∥∥ = sup
π1∈Irrep(A)
π2∈Irrep(B)

∥∥∥∥∥
n∑
i=1

π1(xi)⊗ π2(yi)

∥∥∥∥∥ .
The completion of A ⊗ B in this norm is a C∗-algebra and is known as the
minimal tensor product of A and B.

Let us now show that C(X×Y ) is ∗-isomorphic to C(X)⊗C(Y ). Consider
the ∗-homomorphism given on a dense subset of C(X) ⊗ C(Y ) defined by
f ⊗ g 7→ fg. As a consequence of the Stone-Weierstrass theorem, it follows
that this map is surjective. Moreover, we have

sup
χ1∈Irrep(C(X))
χ2∈Irrep(C(Y ))

∥∥∥∥∥
n∑
i=1

χ1(fi)⊗ χ2(gi)

∥∥∥∥∥ = sup
x∈X
y∈Y

∥∥∥∥∥
n∑
i=1

fi(x)gi(y)

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

figi

∥∥∥∥∥
∞

,

showing that the map is an isometry.
In Section 1.3 we shall give a formulation of the holomorphic functions

on a bounded domain in terms of C∗-algebras from which we can formulate
a noncommutative analog.

1.2 Representation theory and the Gelfand-Naimark
theorem

In this section we review the basic properties of representations for ∗-algebras
and C∗-algebras in particular.

A representation π of a ∗-algebra A on a Hilbert space H is a ∗-homo-
morphism π : A → B(H) of A into the C∗-algebra of bounded operators on
H. We shall frequently use the notation (H, π) for a representation π on a
Hilbert space H.

If π(A) has no proper invariant subspaces, we say that π is algebraically
irreducible, and if π(A) has no proper closed invariant subspaces, we say that
π is topologically irreducible. In this thesis we shall exclusively be dealing
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with topologically irreducible representations, whence we shall simply refer
to them as irreducible. Clearly algebraically irreducible representations are
topologically irreducible so there is no ambiguity here. It is worth noting
that for C∗-algebras, by a result known as Kadison’s Transitivity theorem,
these two notions of irreducibility coincide.

Two representations (H1, π1) and (H2, π2) are said to be unitarily equiva-
lent if there exists a unitary isomorphism U : H1 → H2 such that Uπ1(a)ξ =
π2(a)Uξ for all a ∈ A and ξ ∈ H1. Equivalently, the diagram

H1 H2

H1 H2

U

π1(a) π2(a)

U

commutes for all a ∈ A.
For any subset S of B(H), we define the commutant of S as

S ′ = {X ∈ B(H) : XY = Y X for all Y ∈ S}.
Lemma 1.5 (Schur’s lemma). Let (H, π) be a representation of a ∗-algebra
A. Then π is irreducible if and only if π(A)′ = CI, i.e., if Xπ(a) = π(a)X
for all a ∈ A then X = λI for some λ ∈ C.

Proof. Let (H, π) be irreducible, and suppose thatX is a self-adjoint operator
in π(A)′ so that Xπ(a) = π(a)X for all a ∈ A but X /∈ CI. Then X has
at least two points λ and µ in its spectrum. Let f and g be functions in
C(σ(X)) such that f(λ) 6= 0 and g(µ) 6= 0 and fg = 0. Define Hf = f(X)H.
Then π(a)f(X) = f(X)π(a) for all a ∈ A, and hence π(a)Hf ⊂ Hf . Since
f(X) 6= 0, we have Hf 6= {0}, and therefore Hf = H since π is irreducible.
Therefore

g(X)H = g(X)f(X)H ⊂ g(X)f(X)H = {0},
which implies g(X) = 0, a contradiction. The general case follows by writing
X = Y + iZ, where Y = (X +X∗)/2 and Z = (X −X∗)/2i are self-adjoint
elements known as the real and imaginary parts of X.

Conversely, suppose π(A)′ = CI. Let M 6= {0} be a closed invariant
subspace. The invariance implies that the orthogonal projection P onto M
satisfies π(a)P = Pπ(a)P for every a ∈ A. But then it follows that

Pπ(a) = (π(a∗)P )∗ = (Pπ(a∗)P )∗ = Pπ(a)P = π(a)P

for every a ∈ A, and hence P = I and M = H.

An immediate consequence of Schur’s lemma is that irreducible represen-
tations of commutative ∗-algebras are one-dimensional.
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A central result in the theory of C∗-algebras is the fact that any C∗-
algebra can be faithfully represented as a concrete C∗-algebra of operators
in B(H). This result is also commonly referred to as the Gelfand-Naimark
theorem as it in fact is a generalization of Theorem 1.1. Thus when dealing
with a C∗-algebra, one can always treat its elements as operators sitting in
B(H) for some Hilbert space H. This is an extremely useful technique when
deriving statements about general C∗-algebras, and we shall use it numerous
times throughout this thesis.

The key technique in proving the Gelfand-Naimark theorem relies on
constructing representations from states, which we shall define momentarily.
Let us first briefly recall the notion of positive elements and positive maps
defined on C∗-algebras.

A self-adjoint element x of a C∗-algebra B is said to be positive if its
spectrum σ(x) is contained in [0,∞). It is a well known fact that an element
x ∈ B is positive if and only if it is of the form y∗y for some element y ∈ B.

A linear map ϕ : A → B defined on a subspace of a C∗-algebra is said
to be positive if ϕ(x) is positive whenever x ∈ A is positive. From the
characterization of positive elements above, it follows immediately that ∗-
homomorphisms of C∗-algebras are positive maps.

A positive linear functional f on a C∗-algebra B is said to be a state if
‖f‖ = 1. If f is an extreme point in the set of all states S(B), then f is said
to be pure.

The procedure of constructing representations from states is due to the
following result known as the GNS construction, named after Gelfand, Nai-
mark and Segal.

Theorem 1.6 ([Dav96, Theorem I.9.6, I.9.8]). Let f be a state on a C∗-
algebra B. Then there exists a representation πf of B on a Hilbert space Hf

and a unit vector ξf that is cyclic for π(B), and

f(x) = 〈πf (x)ξf , ξf〉

for all x ∈ B. Moreover, if f is pure, then (Hf , πf ) is irreducible.

Let us give a brief sketch of how one obtains the Hilbert space Hf and
representation πf from f and B.

It can be shown that N = {x ∈ B : f(y∗x) = 0 for all y ∈ B} is a closed
left ideal. It can also be shown that 〈x + N, y + N〉 = f(y∗x) defines an
inner product on the vector space B/N . The Hilbert space Hf is obtained by
completing B/N with respect to the norm induced by the inner product, and
the representation πf is obtained by extending the left regular representation
of B on B/N : πf (a)(x+N) = ax+N .
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Lemma 1.7 ([Dav96, Lemma I.9.10]). Let x be a self-adjoint element of a
C∗-algebra B. Then there exists a pure state f on B such that |f(x)| = ‖x‖.

This lemma together with the GNS construction yields the following
lemma concerning representations of ∗-algebras. Basically, it provides us
with a tool which, in many situations, allows us to consider only irreducible
representations.

Lemma 1.8. Let π be a representation of a ∗-algebra A. Then for each
element a ∈ A, there exists an irreducible representation ρ of A such that
‖π(a)‖ = ‖ρ(a)‖.
Proof. Without loss of generality, we may assume that a is self-adjoint.
By the previous lemma, there exists a pure state f on C∗(π(a)) such that
‖π(a)‖ = |f(π(a))|. Let πf and ξf be the irreducible representation obtained
from the GNS representation applied to f . Then

‖π(a)‖ = |f(π(a))| = |〈πf ◦ π(a)ξf , ξf〉| ≤ ‖πf ◦ π(a)‖ ≤ ‖π(a)‖.

It is straightforward to verify that πf ◦π is irreducible, and hence by defining
ρ = πf ◦ π, this proves the lemma.

We finish this section with the general form of the Gelfand-Naimark the-
orem.

Theorem 1.9 (Gelfand-Naimark). Let B be a C∗-algebra. Then B is ∗-
isomorphic to a concrete C∗-algebra of operators in B(H).

Proof. Define π : B → B(H) by

π =
⊕

f∈S(B)
f pure

πf .

Since π is a ∗-homomorphism, ‖π(x)‖ ≤ ‖x‖ so it remains to show that
‖π(x)‖ ≥ ‖x‖ for all x ∈ B.

We claim that for each x ∈ B, there exists a pure state f such that
‖πf (x)ξf‖ = ‖x‖, where πf and ξf is the representation and unit vector
obtained by the GNS construction applied to f . Indeed, by Lemma 1.7,
there exists a pure state f such that f(x∗x) = ‖x‖2. Then

‖πf (x)ξf‖2 = 〈πf (x∗x)ξf , ξf〉 = f(x∗x) = ‖x‖2.

Using this, we obtain

‖π(x)‖ = sup
‖ξ‖=1

‖π(x)ξ‖ ≥ ‖πf (x)ξf‖ = ‖x‖.

This shows that π is a ∗-isomorphism of B onto the C∗-subalgebra π(B) ⊂
B(H).
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1.3 Universal enveloping C∗-algebras and noncommu-
tative complex analysis

The central objects of study in this thesis will be noncommutative analogs of
C∗-algebras of continuous functions that arise from certain noncommutative
analogs of polynomial algebras. Let P (Cn) denote the ∗-algebra of polynomi-
als defined on Cn. By representing P (Cn) as functions on the unit polydisk,
we obtain the C∗-algebra C(D̄n) of continuous functions on the unit polydisk
from the completion with respect to the norm. We obtain the holomorphic
functions on the unit polydisk that are continuous up to the boundary A(Dn)
as the closed subalgebra generated by the coordinate functions z1, . . . , zn.

In order to formulate noncommutative analogs of the algebras of con-
tinuous and holomorphic functions respectively, we consider an equivalent
characterization of C(D̄n) in terms of representations of P (Cn). Let ρ be the
∗-homomorphism that maps each polynomial in P (Cn) to its correspond-
ing function in C(D̄n). We claim that the pair (C(D̄n), ρ) has the follow-
ing universal property: for every representation π of P (Cn) that satisfies
‖π(zi)‖ ≤ 1, 1 ≤ i ≤ n, there exits a unique ∗-homomorphism ϕ : C(D̄n)→
C∗(π(P (Cn))) such that π = ϕ ◦ ρ.

P (Cn) C(D̄n)

C∗(π(P (Cn)))

ρ

π
ϕ

We say that (C(D̄n), ρ) is a universal enveloping C∗-algebra of P (Cn).
For p ∈ P (Cn), we set ϕ(ρ(p)) = π(p). Clearly this map is a well-defined

∗-homomorphism. Moreover, from Lemma 1.8, it readily follows that

‖π(p)‖ ≤ sup
χ∈Irrep(P (Cn))
‖χ(zi)‖≤1

|χ(p)| = sup
ζ∈D̄n
|p(ζ)| = ‖ρ(p)‖∞.

Thus ϕ is bounded on a dense subspace of C(D̄n), and hence it extends
uniquely to a ∗-homomorphism on C(D̄n).

Let us now turn to the noncommutative case. Our goal is to define
a noncommutative analog of the continuous functions on the unit polydisk
C(D̄n)q as a universal enveloping algebra of some ∗-algebra P (Cn)q generated
by z1, . . . , zn, which we shall refer to as a noncommutative analog of the
polynomial algebra on Cn. We interpret C(D̄n)q as a deformation of C(D̄n)
indexed by some deformation parameter q with the understanding that, for
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some specific configuration of q, we recover the classical, i.e., commutative
case C(D̄n). If q denotes a real number with 0 < q < 1, such that the
commutative case is recovered when q is replaced by 1, then C(D̄n)q is referred
to as a quantum analog or q-analog of C(D̄n).

The key to constructing the universal enveloping C∗-algebra lies in the
representations of P (Cn)q. If supπ∈Irrep(P (Cn)q) ‖π(a)‖ <∞ for all a ∈ P (Cn)q,
we say that P (Cn)q is ∗-bounded, and in this case we define the following
seminorm on P (Cn)q by

‖a‖0 = sup
π∈Irrep(P (Cn)q)

‖π(a)‖.

Let
N = {a ∈ P (Cn)q : ‖a‖0 = 0}.

We define C(D̄n)q to be the completion of P (Cn)q/N in the norm induced by
‖ · ‖0, i.e., ‖a+N‖ = ‖a‖0, and ρ is defined as the ∗-homomorphism induced
by the quotient map.

Let us now show that the notation C(D̄n)q is justified in the sense that
(C(D̄n)q, ρ) satisfies the universal property defined above, i.e., for each rep-
resentation π : P (Cn)q → C∗(π(P (Cn)q)), there exists a unique ∗-homo-
morphism ϕ : C(D̄n)q → C∗(π(P (Cn)q)) such that π = ϕ ◦ ρ. If ϕ exists,
it is clear that on P (Cn)q/N it has to be given by ϕ(a + N) = π(a). As a
consequence of Lemma 1.8, we have

‖π(a)‖ ≤ sup
ω∈Irrep(P (Cn)q)

‖ω(a)‖ = ‖a+N‖,

and hence we see that ϕ is well-defined and bounded on P (Cn)q/N . Therefore
ϕ extends uniquely to a ∗-homomorphism on the whole of C(D̄n)q.

If we identify z1, . . . , zn ∈ P (Cn) with their representations in C(D̄n)q,
completely analogous to the commutative case, we obtain a noncommuta-
tive analog of the holomorphic functions A(Dn)q as the closed subalgebra
generated by z1, . . . , zn.

In Chapter 4 we shall study a multidimensional generalization of what
is commonly referred to as the quantum unit disk. In order to treat this in
proper generality, formally we want to study the universal enveloping C∗-
algebra that arises from a ∗-algebra generated by z1, . . . , zn that satisfies the
relations

z∗i zi = f(ziz
∗
i ), i = 1, . . . , n (1.3)

[zi, zj] = 0, [z∗i , zj] = 0, i 6= j, (1.4)

where f : [0,∞) → R is a continuous function. We shall denote this C∗-
algebra by C(D̄n)f , and it will be referred to as a noncommutative analog
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of the algebra of continuous functions on the closed unit polydisk. However,
since the expression z∗i zi = f(ziz

∗
i ) does not make sense for arbitrary func-

tions, we shall need to make an alternative definition of C(D̄)f than the one
above.

This time we start with the free ∗-algebra generated by z1, . . . , zn, which
we shall denote by Pn. Denote the family of representations π of Pn such
that π(z1), . . . , π(zn) satisfy the relations (1.3) and (1.4) by F . Recall that
f(π(zi)π(zi)

∗) is well-defined due to the continuous functional calculus for
normal elements of a C∗-algebra, see e.g. [Dav96, Corollary I.3.3] for further
reference. If Pn is ∗-bounded with respect to these relations, i.e., for each
a ∈ Pn there exists a Ca such that ‖π(a)‖ ≤ Ca for all π ∈ F , we define a
seminorm on Pn by

‖a‖0 = sup
π∈Irrep(Pn)

π∈F

‖π(a)‖.

Similar to the previous situation, we define C(D̄n)f to be the completion of
Pn/N in the norm induced by ‖ · ‖0. In this case we use f as the deformation
parameter, and we note that the commutative case is recovered by defining
f(x) = x.

From the definition of C(D̄n)f , it is clear that any representation π ∈ F
can be extended uniquely to a representation of C(D̄n)f .

Let us now verify that z1, . . . , zn ∈ C(D̄n)f satisfy (1.3) and (1.4). By
the Stone-Weierstrass theorem and the fact that the Gelfand transform is an
isometry, given ε > 0, there is a polynomials p such that

‖p(ziz∗i )− f(ziz
∗
i )‖ = ‖p− f‖σ(ziz∗i ) <

ε

2
,

where σ(ziz
∗
i ) denotes the spectrum of ziz

∗
i viewed as an element in C(D̄n)f .

Consequently,

‖z∗i zi − f(ziz
∗
i )‖ ≤ ‖z∗i zi − p(ziz∗i )‖+ ‖p(ziz∗i )− f(ziz

∗
i )‖

= sup
π∈Irrep(Pn)

π∈F

‖π(z∗i zi − p(ziz∗i ))‖+
ε

2

= sup
π∈Irrep(Pn)

π∈F

‖f(π(ziz
∗
i ))− p(π(ziz

∗
i ))‖+

ε

2

= sup
π∈Irrep(Pn)

π∈F

‖f − p‖σ(π(ziz∗i )) +
ε

2
< ε,

where the last inequality follows because σ(π(ziz
∗
i )) ⊂ σ(ziz

∗
i ). Since the

choice of ε was arbitrary, we get z∗i zi = f(ziz
∗
i ).
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We note that if f is a polynomial, then we have two ways of defining
C(D̄n)f . Let us show that these definitions are indeed equivalent in this
case. Define C(D̄n)f as in the latter case, and let P (Cn)f be the ∗-algebra
generated by z1, . . . , zn subject to the relations (1.3) and (1.4), which is now
well-defined. Since C(D̄n)f also satisfies these relations it follows that we
have a ∗-homomorphism ρ : P (Cn)f → C(D̄n)f , and hence by the universal
property it readily follows that these two constructions give the same result.
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2 Subspaces of C∗-algebras

2.1 Operator spaces and operator systems

The theory of subspaces of C∗-algebras can in broad terms be described as
a noncommutative analog of the theory of normed spaces. The notion of
noncommutativity in a setting without apparent multiplicative structure is
motivated by the fact that any normed space is isometrically isomorphic
to a subspace of a commutative C∗-algebra. Consider a normed space E,
and let X denote the unit ball of the dual space of E, endowed with its
weak∗ topology. Recall that X is a compact Hausdorff space by the Banach-
Alaoglu theorem. Define a linear map E → C(X) by x 7→ x̂, where x̂ as
usual is defined as x̂(ϕ) = ϕ(x), ϕ ∈ X. Recall that, as a consequence of the
Hahn-Banach theorem, for each x 6= 0 there exists a linear functional ϕ with
‖ϕ‖ = 1 and ϕ(x) = ‖x‖. From this it readily follows that

‖x̂‖∞ = sup
ϕ∈X
|ϕ(x)| = ‖x‖,

and hence this map is an isometry.
With this identification of a normed space with a subspace of a commu-

tative C∗-algebras, we consider the more general situation of a subspace A
of a not necessarily commutative C∗-algebra B. However, as we have just
seen, the structure of A as a normed space is not sufficient to discern this
situation from the commutative case. In order to proceed, we shall need
equip A with some additional structure. We will show that A can be asso-
ciated with a whole sequence of spaces, namely Mn(A), the spaces of n × n
matrices with entries from A. Just as A inherits its norm from B, each space
Mn(A) inherits a norm from the matrix C∗-algebra Mn(B) which we shall
now define.

Since B can be identified with a C∗-subalgebra of B(H), Mn(B) can be
naturally identified with a C∗-subalgebra of B(Hn). The algebraic operations
as well as the adjoint operation are defined in complete analogy to the alge-
braic operations and adjoints of ordinary matrices. This identification allows
us to equip Mn(B) with the operator norm, which makes Mn(B) into a C∗-
algebra. We note that by the way we have defined the C∗-algebra structure
of Mn(B), this norm is unique since C∗-norms are unique.

A linear map ϕ : A→ C into a C∗-algebra C naturally induces a family of
linear maps ϕn : Mn(A)→Mn(C) simply by applying ϕ element by element,
i.e., if (aij) ∈ Mn(A), then ϕn((aij)) = (ϕ(aij)). For n ≥ 1, we say that ϕ
is n-positive if ϕn is positive and n-contractive if ϕn is contractive. If ϕn is
positive and contractive respectively for all n, then ϕ is said to be completely
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positive and completely contractive respectively. If ϕ is bounded, then ϕn is
bounded for all n. It need not, however, be the case that all maps ϕn are
uniformly bounded. We say that ϕ is completely bounded if

‖ϕ‖cb = sup
n
‖ϕn‖

is finite.
We define an operator space as a subspace A of a C∗-algebra. In order

to account for the additional structure associated with A, we define the
morphisms in the category of operator spaces as the completely contractive
maps.

Closely related to the notion of an operator space is that of an operator
system. We define an operator system as a unital and self-adjoint subspace
V of a C∗-algebra, i.e., 1 ∈ V and a∗ ∈ V whenever a ∈ V . Recall that
the positive elements of a C∗-algebra determine a partial order on the self-
adjoint elements by setting a ≤ b if b − a is positive. Since the presence
of the identity element guarantees an abundance of positive elements (any
element of the form ‖a‖1 − a is positive), it is customary to demand that
the maps between operator systems should preserve the order structure on
V as well as all associated matrix spaces Mn(V ). For this reason, we take
the completely positive maps as the morphisms in the category of operator
systems. An isomorphism between operator systems is known as a complete
order isomorphism.

Recall that all ∗-homomorphisms of C∗-algebras are contractive and pos-
itive, and since a ∗-homomorphism induces ∗-homomorphisms on the associ-
ated matrix C∗-algebras, it is clear that any ∗-homomorphism is completely
contractive and completely positive. This implies that the structure as an
operator space or operator system is well-defined regardless of how the ambi-
ent C∗-algebra is represented. In particular, we can always view an operator
space or operator system as a subspace of B(H).

Let us now verify the claim that operator spaces and operator systems
carry more structure than ordinary normed spaces. This amounts to show-
ing that there exists contractive and positive maps which are not completely
contractive and positive respectively. We give the following example from
[Pau03]. Consider the transpose map t : M2(C) → M2(C). It is not dif-
ficult to see that t is both contractive and positive. However, it is neither
completely contractive nor completely positive. Indeed, we have that

E =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1
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is positive in M2(M2(C)) = M4(C), but it is easily seen that

t2(E) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


is not. Similarly, one can show that ‖t2‖ ≥ 2, and hence t is not completely
contractive either.

The remainder of this section will be devoted to the properties of com-
pletely contractive and completely positive maps. In particular we will show
that a unital map defined on an operator system is completely contractive if
and only if it is completely positive.

Let us begin with a simple but important fact concerning positive maps
on operator systems.

Proposition 2.1. Let V be an operator system, and let ϕ : V → B be a
positive map into a C∗-algebra B. Then ϕ is self-adjoint, i.e., ϕ(a∗) = ϕ(a)∗

for all a ∈ V .

Proof. First we observe that if x ∈ V is self-adjoint, then x can be written
as a difference of two positive elements in V :

x =
1

2
(‖x‖1 + x)− 1

2
(‖x‖1− x).

Let now a be an element in V , and write a = x + iy, where x, y ∈ V
are self-adjoint. Thus a can be written as a = p1 − p2 + i(q1 − q2), where
p1, p2, q1, q2 ∈ V are positive. Since ϕ is positive, we get

ϕ(a∗) = ϕ(p1)− ϕ(p2)− i(ϕ(q1)− ϕ(q2)) = ϕ(a)∗.

Proposition 2.2 ([Pau03, Proposition 2.1]). Let V be an operator system,
let B be a C∗-algebra, and let ϕ : A → B be a positive map. Then ϕ is
bounded with ‖ϕ‖ ≤ 2‖ϕ(1)‖.

Proof. If a ∈ V is positive, then 0 ≤ a ≤ ‖a‖, and hence 0 ≤ ϕ(a) ≤ ‖a‖ϕ(1),
from which it follows that ‖ϕ(a)‖ ≤ ‖ϕ(1)‖‖a‖.

If a ∈ V is self-adjoint, then by writing a as a difference of two positive
elements in V :

a =
1

2
(‖a‖1 + a)− 1

2
(‖a‖1− a),

we get that

ϕ(a) =
1

2
ϕ(‖a‖1 + a)− 1

2
ϕ(‖a‖1− a)
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is a difference of two positive elements in B. Note that if p1 and p2 are
positive, then ‖p1 − p2‖ ≤ max(‖p1‖, ‖p2‖). Thus ‖ϕ(a)‖ ≤ ‖a‖‖ϕ(1)‖.

Finally, for an arbitrary element a ∈ V , we write a = x+ iy where x and
y are self-adjoint elements with ‖x‖, ‖y‖ ≤ ‖a‖, which yields

‖ϕ(a)‖ ≤ ‖ϕ(x)‖+ ‖ϕ(y)‖ ≤ 2‖ϕ(1)‖‖a‖.

It can be shown that this bound is the best possible. However, in the
case of unital completely positive maps, much more can be said.

Proposition 2.3 ([Pau03, Proposition 3.2]). Let V be an operator system,
and let B be a C∗-algebra. If ϕ : V → B is a unital 2-positive map, then ϕ
is contractive.

Proof. For an element x ∈ V , we claim that ‖x‖ ≤ 1 if and only if(
1 x
x∗ 1

)
≥ 0.

Let π be a faithful representation of B on some Hilbert space H. If ‖x‖ ≤ 1,
then〈(

1 π(x)
π(x)∗ 1

)(
ξ1

ξ2

)
,

(
ξ1

ξ2

)〉
= ‖ξ1‖2 + 〈π(x)ξ2, ξ1〉+ 〈ξ1, π(x)ξ2〉+ ‖ξ2‖2

≥ ‖ξ1‖2 − 2‖π(x)‖‖ξ1‖‖ξ2‖+ ‖ξ2‖2 ≥ 0

for all ξ1, ξ2 ∈ H. Conversely, if ‖x‖ > 1, then with ξ2 a unit vector and
ξ1 = −π(x)ξ2/‖π(x)ξ2‖, the inner product becomes negative.

Let now x be an element in V with ‖x‖ ≤ 1. From the first implication,
we obtain (

1 ϕ(x)
ϕ(x)∗ 1

)
≥ 0,

which implies ‖ϕ(x)‖ ≤ 1 by the reverse implication.

We note that if ϕ : V → B is completely positive, then ϕ is completely
contractive. Indeed, since ϕ2n = (ϕn)2 is positive, ϕn is contractive by the
previous proposition.

Let us now switch our attention to completely contractive maps on unital
operator spaces. We shall need the following standard result concerning
positive linear functionals.

Proposition 2.4. Let A be a unital operator space, and let f be a linear
functional on A. Then f is positive if ‖f‖ = f(1).
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Proof. Suppose first that f is unital so that ‖f‖ = 1. We claim that, for
a positive element a ∈ A, we have f(a) ∈ [0, ‖a‖]. If this were not the
case, then there would exist a λ0 and r ≥ 0 such that |f(a) − λ0| > r
while σ(a) ⊂ {λ : |λ − λ0| ≤ r}. But this would imply ‖a − λ0‖ ≤ r and
|f(a− λ0)| > ‖a− λ0‖, which is a contradiction.

The general case follows by considering the unital functional given by
g(a) = f(a)/‖f‖.

Proposition 2.5. Let A be a unital operator space. If ϕ : A → B(H) is a
unital contraction, then ϕ is positive.

Proof. Let ξ be a unit vector in H and consider the linear functional f on A
given by f(x) = 〈ϕ(x)ξ, ξ〉. Since ξ is arbitrary, it follows that ϕ is positive if
f is positive. But this follows from the previous proposition since f is unital
and ‖f‖ = 1.

Proposition 2.6 ([Pau03, Proposition 3.4, 3.5]). Let A be a unital operator
space, and let B be a C∗-algebra. If ϕ : A→ B is a unital contractive map,
then ϕ has a unique positive extension ϕ̃ : A+ A∗ → B which is given by

ϕ̃(x+ y∗) = ϕ(x) + ϕ(y)∗.

If ϕ is completely contractive, then ϕ̃ is completely positive and completely
contractive.

Proof. If a positive extension ϕ̃ of ϕ exists, then it necessarily satisfies the
above equation by Proposition 2.1, so let us define ϕ̃ by the formula above.
In order to show that ϕ̃ is well-defined, we must show that if both x and x∗

belong to A, then ϕ(x∗) = ϕ(x)∗. But this follows readily from the fact that
ϕ is contractive on the operator system S = {x ∈ A : x∗ ∈ A} and hence
positive by Proposition 2.5.

Finally we show that ϕ̃ is positive. Let us assume that B = B(H), and let
ξ be a unit vector in H and consider the linear functional A → B(H) given
by x 7→ 〈ϕ(x)ξ, ξ〉. By the Hahn-Banach theorem, this map can be extended
to a linear functional f on A + A∗ with ‖f‖ = 1. By Proposition 2.4, f is
positive, and hence f(x + y∗) = f(x) + f(y) = 〈ϕ̃(x + y∗)ξ, ξ〉. Since ξ was
arbitrary, ϕ̃ is positive.

In order to prove the final statement, we observe that Mn(A + A∗) =
Mn(A) + Mn(A)∗ and that ϕ̃n = (ϕ̃)n. If ϕ is completely contractive, then
(ϕ̃)n is positive. Since (ϕ̃)2n = ((ϕ̃)n)2 is also positive, (ϕ̃)n is contractive by
the previous proposition.
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We note that if ϕ is a unital complete isometry, then so is ϕ̃.
So far we have glossed over the claim that the theory of operator spaces

and operator systems truly constitutes a generalization of the theory of
normed spaces. This basically amounts to the statement that the word com-
pletely, which we attach to certain linear maps, brings nothing new in the
commutative case. For a full discussion of this issue, we refer to [Pau03].
However, the following result will be of use in Chapter 4.

Theorem 2.7 ([Pau03, Theorem 3.11]). Let B be a commutative C∗-algebra,
and let ϕ : B → C be a positive map into a C∗-algebra C. Then ϕ is
completely positive.

Proof. Without loss of generality we may assume that B = C(X). By the
uniqueness of C∗-norms, we can define the norm on Mn(C(X)) directly by
‖F‖ = supx∈X ‖F (x)‖. We note that every element F = (fij) in Mn(C(X))
is a continuous matrix-valued function defined on X.

Let now F be positive in Mn(C(X)) and fix ε > 0. Let {Pk}mk=1 be a set
of positive scalar matrices, and let {Uk}mk=1 be a finite open cover of X such
that ‖F (x) − Pk‖ < ε for all x ∈ Uk, 1 ≤ i ≤ m. Let {uk}mk=1, uk ∈ C(X)
be a partition of unity subordinate to this cover, i.e., uk(x) ≥ 0, x ∈ Uk,
uk(x) = 0, x /∈ Uk, and

m∑
k=1

uk(x) = 1

for all x ∈ X.
Observe that we have ϕn(ukPk) = ϕn((ukp

k
ij)) = (ϕ(uk)p

k
ij), which is

easily seen to be positive. Now clearly∥∥∥∥∥F −
m∑
k=1

ukPk

∥∥∥∥∥ < ε,

and since ϕn is bounded by Proposition 2.2, ϕn(F ) can be approximated
arbitrarily well by a sum of positive elements. Since the set of positive
elements in a C∗-algebra is closed, this shows that ϕn(F ) is positive.

2.2 Multiplicative domains of completely positive maps

In addition to the fact that completely positive maps preserve the order
structure on the associated matrix spaces, the motivation for completely pos-
itive maps as the morphisms of operator systems can be further justified by
their properties in the case when the domain and codomain are C∗-algebras.
The aim of this section is to show that a unital completely positive map
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ϕ between C∗-algebras restricts to a ∗-homomorphism on its multiplicative
domain, which can roughly be described as the largest subalgebra where ϕ
is multiplicative. As a consequence we obtain a simple proof of the fact that
a unital complete order isomorphism of C∗-algebras is a ∗-isomorphism.

The following theory relies to a large extent on the following generalized
Schwarz inequality for unital 2-positive maps.

Proposition 2.8 (Schwarz inequality for unital 2-positive maps [Cho74]).
Let ϕ : V → B be a unital 2-positive map from an operator system V into a
C∗-algebra B. Then ϕ(a)∗ϕ(a) ≤ ϕ(a∗a) for all a ∈ V .

Proof. Without loss of generality we assume that B = B(H). Since(
1 a
a∗ a∗a

)
=

(
1 a
0 0

)∗(
1 a
0 0

)
≥ 0,

we have (
1 ϕ(a)

ϕ(a)∗ ϕ(a∗a)

)
≥ 0,

and hence

0 ≤
〈(

1 ϕ(a)
ϕ(a)∗ ϕ(a∗a)

)(
−ϕ(a)ξ

ξ

)
,

(
−ϕ(a)ξ

ξ

)〉
= 〈(ϕ(a∗a)−ϕ(a)∗ϕ(a))ξ, ξ〉

for all ξ ∈ H. Consequently ϕ(a)∗ϕ(a) ≤ ϕ(a∗a) for all a ∈ V .

The original statement of the following theorem due to Choi [Cho74]
relates the multiplicative domain of a 2-positive map to the subset where
equality holds in the Schwarz inequality. We prefer to give a somewhat
simplified version of the theorem for completely positive maps.

Theorem 2.9 ([Pau03, Theorem 3.18 (iii)]). Let B and C be C∗-algebras,
and let ϕ : B → C be a unital completely positive map. Then the multiplica-
tive domain of ϕ,

{x ∈ B : ϕ(xy) = ϕ(x)ϕ(y) and ϕ(yx) = ϕ(y)ϕ(x) for all y ∈ B},

is equal to the set

{x ∈ B : ϕ(x∗x) = ϕ(x)∗ϕ(x) and ϕ(xx∗) = ϕ(x)ϕ(x)∗}.

Consequently the multiplicative domain of ϕ is a C∗-subalgebra of B, and ϕ
is a ∗-homomorphism when restricted to this set.
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Proof. Clearly the multiplicative domain is contained in the other set. Con-
versely, suppose ϕ(x∗x) = ϕ(x)∗ϕ(x) and apply the Schwarz inequality to
the map ϕ2 and the matrix (

x y∗

0 0

)
,

for an element y ∈ B. This gives(
ϕ(x) ϕ(y)∗

0 0

)∗(
ϕ(x) ϕ(y)∗

0 0

)
≤
(
ϕ(x∗x) ϕ(x∗y∗)
ϕ(yx) ϕ(yy∗)

)
,

and hence (
ϕ(x∗x)− ϕ(x)∗ϕ(x) ϕ(x∗y∗)− ϕ(x)∗ϕ(y)∗

ϕ(yx)− ϕ(y)ϕ(x) ϕ(yy∗)− ϕ(y)ϕ(y)∗

)
≥ 0.

Since ϕ(x∗x) − ϕ(x)∗ϕ(x) = 0, it follows that ϕ(yx) = ϕ(y)ϕ(x). Similarly
ϕ(xy) = ϕ(x)ϕ(y), showing that the two sets are equal. The remaining
statements follow readily from this.

Lemma 2.10. Let B and C be C∗-algebras, and let ϕ : B → C and ψ :
C → B be unital completely positive maps such that ϕ ◦ ψ = idC. Then
ϕ(ψ(y)∗ψ(y)) = y∗y and ϕ(ψ(y)ψ(y)∗) = yy∗ for all y ∈ C.

Proof. By the Schwarz inequality, we have ψ(y∗y) ≥ ψ(y)∗ψ(y) for all y ∈ C.
Applying ϕ to this inequality yields

y∗y ≥ ϕ(ψ(y)∗ψ(y)) ≥ ϕ(ψ(y∗))ϕ(ψ(y)) = y∗y,

and hence ϕ(ψ(y)∗ψ(y)) = y∗y. Similarly ϕ(ψ(y)ψ(y)∗) = yy∗.

Theorem 2.11. Let B and C be C∗-algebras, and let ϕ : B → C be a unital
complete order isomorphism. Then ϕ is a ∗-isomorphism.

Proof. Applying the previous lemma to ϕ and ϕ−1 yields ϕ(x∗x) = ϕ(x)∗ϕ(x)
and ϕ(xx∗) = ϕ(x)ϕ(x)∗ for all x ∈ B. By Theorem 2.9, ϕ is a ∗-isomorphism.

2.3 The BW-topology

In this section we shall consider some topological aspects of the spaces of
completely positive and completely bounded maps into the Banach space
B(H). To be precise we make the following definitions. Let A be an operator
space, let V be an operator system, and define

Br(A,B(H)) = {ϕ ∈ B(A,B(H)) : ‖ϕ‖ ≤ r}
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CBr(A,B(H)) = {ϕ ∈ B(A,B(H)) : ‖ϕ‖cb ≤ r}

CPr(V,B(H)) = {ϕ ∈ B(V,B(H)) : ϕ is completely positive with ‖ϕ‖ ≤ r}.

Our goal of this section is to show that these spaces can be equipped with a
weak∗ topology, which will provide us with important compactness arguments
for these spaces in subsequent sections. In this case, this topology is known
as the bounded weak topology, commonly referred to as the BW-topology. In
order to equip these spaces with the BW-topology, we shall begin with the
following quite general result, from which it follows that all spaces of the
form B(X, Y ∗), where X and Y are normed spaces, can be equipped with
the BW-topology.

Proposition 2.12 ([Pau03, Lemma 7.1]). Let X and Y be normed spaces.
Then there exists a Banach space Z such that B(X, Y ∗) is isometrically iso-
morphic to Z∗.

Proof. Consider the algebraic tensor product X ⊗ Y . We define a norm on
this space as the operator norm induced by the dual pairing

〈T, x⊗ y〉 = T (x)(y),

T ∈ B(X, Y ∗). We let Z denote the completion of X⊗Y with respect to this
norm. It is clear that this dual pairing induces an isometric linear map from
B(X, Y ∗) into Z∗. To see that it is surjective, we let f be a linear functional in
Z∗. For each x ∈ X, we define a linear map fx : Y → C by fx(y) = f(x⊗ y).
Since |fx(y)| ≤ ‖f‖‖x‖‖y‖, it follows that fx ∈ Y ∗. Define Tf : X → Y ∗ by
Tf (x) = fx. Clearly Tf is linear and bounded with ‖Tf‖ ≤ ‖f‖. Since

f(x⊗ y) = fx(y) = Tf (x)(y) = 〈Tf , x⊗ y〉

for all x⊗ y ∈ Z, it follows that f is the image of the operator Tf .

The fact that B(X, Y ∗) is isometrically isomorphic to the dual of a Banach
space allows us to equip B(X, Y ∗) with the weak∗ topology, which we shall
refer to as the BW-topology.

Proposition 2.13 ([Pau03, Lemma 7.2]). Let {ϕλ} be a bounded net in

B(X, Y ∗). Then ϕλ → ϕ in the BW-topology if and only if ϕλ(x)
w∗−→ ϕ(x)

for all x ∈ X.

Proof. Suppose ϕλ → ϕ in the BW-topology. Then

ϕλ(x)(y) = 〈ϕλ, x⊗ y〉 → 〈ϕ, x⊗ y〉 = ϕ(x)(y)
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for all y ∈ Y , and hence ϕλ(x)
w∗−→ ϕ(x) for all x ∈ X.

Conversely, if ϕλ(x)
w∗−→ ϕ(x) for all x ∈ X, then limλ〈ϕλ, x ⊗ y〉 =

〈ϕ, x ⊗ y〉 for all x ⊗ y ∈ Z and consequently also for linear combina-
tions of elementary tensors in Z. Since the net is bounded, it follows that
limλ〈ϕλ, z〉 = 〈ϕ, z〉 for all z ∈ Z.

If H is a Hilbert space, then it is isometrically isomorphic to the dual
of some Hilbert space by the Riesz-Frechét representation theorem. Thus
B(H) = B(H,H) is isometrically isomorphic to the dual of some normed
space by the previous lemma. Consequently, ifX is a normed space, B(X,B(H))
can be equipped with the BW-topology. In order to obtain some useful cri-
teria for convergence in the BW-topology, however, we shall instead realize
B(H) as the dual of the trace class operators S1(H), i.e., the 1st Schatten
class. Let us recall the definition and some of its properties.

An operator T ∈ B(H) is said to be of trace class, T ∈ S1(H), if there
exists an orthonormal basis {eα} for H such that∑

α

〈(T ∗T )1/2eα, eα〉 <∞.

It can be shown that for T ∈ S1(H), this sum is finite for any orthonormal
basis.

Analogous to the finite-dimensional case, we define the trace of T ∈ S1(H)
as

trT =
∑
α

〈Teα, eα〉,

where {eα} is an orthonormal basis for H. It can be shown that this sum is
finite and independent of the choice of orthonormal basis. From this we can
construct the following norm on S1(H):

‖T‖1 = tr(T ∗T )1/2 =
∑
α

〈(T ∗T )1/2eα, eα〉.

It can be shown that if A ∈ B(H) and T ∈ S1(H), then tr(AT ) = tr(TA)
and | tr(AT )| ≤ ‖A‖‖T‖1.

Theorem 2.14. (S1(H), ‖ · ‖1) is a Banach space containing the finite-rank
operators as a dense subspace. For A ∈ B(H), the map A 7→ tr(A · ) defines
an isometric isomorphism B(H)→ S1(H)∗.

For two vectors ξ, ζ ∈ H, we define the operator Rξ,ζ by Rξ,ζ(η) = 〈η, ζ〉ξ.
It readily follows that the linear span of these operators is precisely the
finite-rank operators on H. We note that if A is an operator in B(H), then
tr(ARξ,ζ) = 〈Aξ, ζ〉.
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Proposition 2.15 ([Pau03, Lemma 7.3]). Let X be a normed space, let H
be a Hilbert space, and let {ϕλ} be a bounded net in B(X,B(H)). Then
ϕλ → ϕ ∈ B(X,B(H)) in the BW-topology if and only if limλ〈ϕλ(x)ξ, ζ〉 =
〈ϕ(x)ξ, ζ〉 for all x ∈ X and all ξ, ζ ∈ H.

Proof. By the previous theorem and Proposition 2.13, ϕλ → ϕ in the BW-
topology if and only if limλ tr(ϕλ(x)T ) = tr(ϕ(x)T ) for all T ∈ S1(H) and
x ∈ X. By the above remark, the forward implication follows.

For the converse statement we observe that limλ tr(ϕλ(x)R) = tr(ϕ(x)R)
for all finite-rank operators R by the above remark. Again since the net is
bounded, it follows that the convergence holds for all T ∈ S1(H).

Theorem 2.16 ([Pau03, Theorem 7.4]). Let A be a operator space and V
an operator system. Then CBr(A,B(H)), CBr(A,B(H)), and CPr(V,B(H))
are compact in the BW-topology.

Proof. Since the BW-topology is a weak∗ topology, Br(A,B(H)) is compact
by the Banach-Alaoglu theorem. Since the CBr(A,B(H)) and CPr(V,B(H))
are subspaces of Br(A,B(H)), we must show that they are closed in the
BW-topology.

Let {ϕλ} be a net in CBr(A,B(H)) with limλ ϕλ = ϕ. Suppose (aij)
is a matrix in Mn(A) and ξ and ζ are vectors in Hn. Then by the above
proposition,

|〈(ϕ(aij))ξ, ζ〉| = lim
λ
|〈(ϕλ(aij))ξ, ζ〉| ≤ lim inf

λ
‖(ϕλ(aij))‖‖ξ‖‖ζ‖ ≤ r‖ξ‖‖ζ‖,

showing that ‖(ϕλ(aij))‖ ≤ r‖(aij)‖. Thus ‖ϕ‖cb ≤ r.
If {ϕλ} is a net in CPr(V,B(H)) with limλ ϕλ = ϕ, then ‖ϕ‖ ≤ r as in

the previous step, and

〈(ϕ(aij))ξ, ξ〉 = lim
λ
〈(ϕλ(aij))ξ, ξ〉 ≥ 0,

showing that ϕ is completely positive.

2.4 Arveson’s extension theorem

In this section we investigate the extension theorems for completely positive
and completely contractive maps, which have become known as the non-
commutative analogs of the Hahn-Banach theorem. The main result of this
section will be Arveson’s extension theorem, which asserts the existence of
extensions of completely positive maps on operator systems into B(H) and
unital completely contractive maps on unital operator spaces into B(H).
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The original proof of Arveson’s extension theorem is found in Arveson’s
article [Arv69]. We present a simplified proof by the same author which is
found in [Arv]. In the same vein as Proposition 2.5 and 2.6, a key technique
of the proof will be to deduce properties of linear functionals associated to
positive linear maps, which are reflected back onto the corresponding map
in question. In particular we shall apply a weak version of Krein’s theorem,
which concerns extensions of positive linear functionals on operator systems.
In order to prove it, we begin with a generalization of Proposition 2.4 in the
setting of operator systems.

Proposition 2.17. Let V be an operator system, and let f be a linear func-
tional on V . Then f is positive if and only if ‖f‖ = f(1).

Proof. Suppose that f is positive. Given a ∈ V , it is easy to see that there
exists λ ∈ C, |λ| = 1, such that |f(a)| = f(λa). Since f is positive and
therefore also self-adjoint,

|f(a)| = f(λa) = Re f(λa) = f(Reλa) ≤ f(‖λa‖1) = ‖a‖f(1),

and hence ‖f‖ ≤ f(1). Since it is clear that ‖f‖ ≥ f(1), we have that
‖f‖ = f(1).

The converse statement is precisely Proposition 2.4.

From this proposition we get the following weak version of Krein’s theo-
rem.

Corollary 2.18. Let B be a C∗-algebra, let V ⊂ B be an operator system,
and let f be a positive linear functional on V . Then f can be extended to a
positive linear functional on B.

Proof. By the previous proposition, we have ‖f‖ = f(1). By the Hahn-
Banach theorem, f has a norm-preserving extension to B, which is also
positive by the previous proposition.

Theorem 2.19 (Arveson’s extension theorem). Let B be a C∗-algebra, let
V ⊂ B be an operator system, and let ϕ : V → B(H) be a completely positive
map. Then there exists a completely positive map ψ : B → B(H) that extends
ϕ.

Proof. Assume first that H is finite-dimensional. Our aim is to show that
there is a Hilbert space K, a representation π : B → B(K), and an operator
T : H → K such that ϕ(a) = T ∗π(a)T for all a ∈ V . If we define ψ by
ψ(x) = T ∗π(x)T , x ∈ B, it is clear that ψ is completely positive, and hence
ψ is the desired extension of ϕ.
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To this end, let ξ1, . . . , ξn be a basis for H, set ξ = (ξ1, . . . , ξn) ∈ Hn, and
let f be the linear functional defined on Mn(V ) by f((aij)) = 〈ϕn((aij))ξ, ξ〉.
Clearly f is positive, and hence there exists a positive linear functional g on
Mn(B) that extends f by Corollary 2.18. By the GNS construction applied to

g, we obtain a representation π̃ on a Hilbert space K̃ and a vector η̃ ∈ K̃ such
that g((xij)) = 〈π̃((xij))η̃, η̃〉. Since π̃ is defined as the completion of the left
regular representation of Mn(B) on a quotient of Mn(B), it readily follows

that there exists a Hilbert space K such that K̃ = Kn and a representation
π : B → B(K) such that g((xij)) = 〈(π(xij))η, η〉, where η = (η1, . . . , ηn) is a
column vector consisting of the rows of η̃.

If we define T : H → K by Tξk = ηk, 1 ≤ k ≤ n, and apply g to a matrix
(aij) ∈Mn(V ), we get

n∑
i,j=1

〈ϕ(aij)ξj, ξi〉 = g((aij)) =
n∑

i,j=1

〈π(aij)ηj, ηi〉 =
n∑

i,j=1

〈T ∗π(aij)Tξj, ξi〉.

Since this holds for all choices of matrices, it readily follows that

〈ϕ(a)ξi, ξj〉 = 〈T ∗π(a)Tξi, ξj〉

for all a ∈ V , and consequently ϕ(a) = T ∗π(a)T .
In order to prove the theorem for the general case, we let L be a finite-

dimensional subspace of H, and let ϕL : V → B(L) be the compression of
ϕ to L, i.e., ϕL(a) = PLϕ(a)|L. By the previous discussion, there exists a
completely positive map ψL : B → B(L) that extends ϕL. This map is in

turn extended to a completely positive map ψ̃L : B → B(H) by defining

ψ̃L(a) = ψL(a) on L and ψ̃L(a) = 0 on L⊥.
Since the set Γ of finite-dimensional subspaces of H is a directed set under

inclusion, {ψ̃L}L∈Γ is a net in CPr(B,B(H)) where r = 2‖ϕ(1)‖. Since this
set is compact in the BW-topology, there exists a subnet that converges to
some map ψ ∈ CPr(B,B(H)). We claim that ψ is the desired extension of
ϕ. Let L be the subspace of H spanned by vectors ξ and ζ. Then for any
subspace F ⊂ H containing L, we have 〈ϕ(a)ξ, ζ〉 = 〈ψ̃F (a)ξ, ζ〉. Since the
set of subspaces containing L is cofinal, we get 〈ϕ(a)ξ, ζ〉 = 〈ψ(a)ξ, ζ〉. This
completes the proof of the theorem.

2.5 Dilation theory

We end this chapter with a brief introduction to the topic of dilations, which
will provide us with an important technique when describing the Shilov
boundary for some concrete examples in Chapter 4 and 5.
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We define the dilation of an operator T on a Hilbert space H as an
operator V on a Hilbert space K containing H as a subspace such that

T n = PHV
n|H

for all n ≥ 0.
The utility of dilations for our purposes stems from the fact that a dilation

of an operator can in some sense be viewed as a realization of it as part of
a simpler operator on a larger space. Let us state and prove the main result
of this section, which will provide us with a unitary dilation of a contractive
operator.

Theorem 2.20 (Sz.-Nagy’s dilation theorem). If T ∈ B(H) is a contraction,
then there exists a Hilbert space K containing H as a subspace and a unitary
operator U ∈ B(H) such that

T n = PHU
n|H

for all n ≥ 0.

We follow the proof found in [Pau03], which relies on two intermediate
dilations, namely the isometric dilation of a contraction and the unitary
dilation of an isometry.

We define the isometric dilation of a contraction as follows. Let T ∈ B(H)
be a contraction. Then we can define D =

√
I − T ∗T , so that

‖Tξ‖2 + ‖Dξ‖2 = 〈T ∗Tξ, ξ〉+ 〈D2ξ, ξ〉 = ‖ξ‖2.

Define V ∈ B(`2(H)) by V ((ξ1, ξ2, . . . )) = (Tξ1, Dξ1, ξ2, . . . ). Since

‖V ((ξ1, ξ2, . . . ))‖2 = ‖Tξ1‖2 + ‖Dξ1‖2 + ‖ξ2‖2 + · · · = ‖(ξ1, ξ2, . . . )‖2,

it follows that V is an isometry. Identifying H with H ⊕ 0 ⊕ . . . gives
T n = PHV

n|H for all n ≥ 0.
Let us now define the unitary dilation of an isometry. Let V ∈ B(H) be

an isometry, and let P = I − V V ∗ be the projection onto the orthogonal
complement of the range of V . Set K = H ⊕H and define U ∈ B(K) as

U =

(
V P
0 V ∗

)
.

It is easy to see that U∗U = UU∗ = I, i.e., U is a unitary operator. Identi-
fying H with H ⊕ 0, we have V n = PHU

n|H for all n ≥ 0.
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Proof of Theorem 2.20. Set K = `2(H) ⊕ `2(H), where we identify H with
(H ⊕ 0 ⊕ . . . ) ⊕ 0. Let V be the isometric dilation of T on `2(H), and let
U be the unitary dilation of V on `2(H)⊕ `2(H). Since H ⊂ `2(H)⊕ 0, we
have T n = PHV

n|H = PHU
n|H for all n ≥ 0.

This direct construction of a unitary dilation of a contraction could have
been included more or less anywhere in this thesis. However, its existence
can also be attributed to a deeper structural theorem for completely positive
maps.

Theorem 2.21 (Stinespring’s dilation theorem [Pau03, Theorem 4.1]). Let
B be a C∗-algebra, and let ϕ : B → B(H) be a completely positive map. Then
there exists a Hilbert space K, a ∗-homomorphism π : B → B(K), and an
operator V : H → K with ‖ϕ(1)‖ = ‖V ‖2 such that

ϕ(x) = V ∗π(x)V

for all x ∈ B.

Since any map of the form ϕ(x) = V ∗π(x)V is completely positive, Stine-
spring’s dilation theorem can be seen as a structure theorem that classifies
the completely positive maps on C∗-algebras into B(H).

Let us now give a sketch of how Sz.-Nagy’s dilation theorem follows from
Stinespring’s dilation theorem. We note that if ϕ is unital, then V is an
isometry, and hence we may identify H with the subspace V H ⊂ K, so that
V ∗ becomes the projection of K onto H. With this identification, we see
that

ϕ(x) = PHπ(x)|H .

One can show that, for polynomials p and q, the map ϕ(p+ q̄) = p(T )+q(T )∗

can be extended to a completely positive map of C(T) into B(H) [Pau03,
Theorem 2.6]. Let now K, π, and V be the Hilbert space, ∗-homomorphism,
and operator obtained from Stinespring’s dilation theorem applied to this
map. Since ϕ is unital, we may identify H with V H ⊂ K as above, and
hence since π(z) = U is unitary, we get

T n = ϕ(zn) = PHπ(zn)|H = PHU
n|H

for all n ≥ 0.
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3 The noncommutative Shilov boundary

3.1 Preliminaries and definition

In this chapter we introduce the noncommutative analog of the Shilov bound-
ary as given by Arveson in [Arv69]. In order to motivate his definition, we
shall begin by translating the definition of the Shilov boundary in the com-
mutative case into terms of the C∗-algebra structure.

Let X be a compact Hausdorff space, let A be a uniform algebra of
C(X), and let S ⊂ X be the Shilov boundary relative to A, i.e., the smallest
subset such that any function in A achieves its maximum modulus on S.
Let JS be the associated closed ideal as in (1.1). For the quotient map
C(X)→ C(X)/JS, we have, for a function f in A,

‖f + JS‖ = sup
x∈S
|f(x)| = sup

x∈X
|f(x)| = ‖f‖,

by the definition of the Shilov boundary. Thus the quotient map restricted
to A is an isometry. A closed ideal with this property will be referred to as a
boundary ideal. Conversely, if J is a boundary ideal, then by Proposition 1.4,
J is of the form (1.1) for some closed subset K ⊂ X. Since J is a boundary
ideal,

sup
x∈X
|f(x)| = ‖f‖ = ‖f + J‖ = sup

x∈K
|f(x)|.

Thus the notion that every function in A achieves its maximum modulus on
some closed subset is equivalent to the fact that the corresponding ideal is
a boundary ideal. The statement that the Shilov boundary is the smallest
closed set is captured by the notion that the corresponding boundary ideal
is maximal, i.e., it contains all other boundary ideals.

Let us now give Arveson’s definition of the noncommutative analog of the
Shilov boundary.

Definition 3.1. Let A be a unital operator space of a C∗-algebra B such
that A generates B as a C∗-algebra. An ideal J in B is called a boundary
ideal for A if the quotient map q : B → B/J is a complete isometry when
restricted to A. A boundary ideal is called the Shilov boundary for A if it
contains every other boundary ideal.

We see that this definition agrees completely with our previous discussion
since the requirement that the quotient map be a complete isometry intro-
duces nothing new in the commutative case. Given the subtleties that arise
when considering subspaces of noncommutative C∗-algebras, this require-
ment is quite natural however. Note that, by the definition, if the Shilov
boundary exists, then it is unique.
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Much of the original motivation for the introduction of a noncommutative
analog of the Shilov boundary was the question of to what extent an operator
space of a C∗-algebra determine its structure. This question is probably best
motivated by the example of the disk algebra. By the Stone-Weierstrass
theorem, A(D) generates C(D̄) as a C∗-algebra, i.e., C(D̄) = C∗(A(D)).
On the other hand, the discussion in the beginning of this chapter together
with the maximum modulus principle shows that the restriction to the unit
circle induces a ∗-homomorphism of C(D̄) onto C(T) which is completely
isometric when restricted to A(D). Thus, even though A(D) and A(D)|T
are isomorphic as operator spaces, they generate different C∗-algebras since
C∗(A(D)|T) = C(T).

More generally, let A1 ⊂ B1, and A2 ⊂ B2 be unital operator spaces
such that A1 and A2 are unitally completely isometrically isomorphic. The
above example shows that, in general, there is no relation between C∗(A1)
and C∗(A2).

Although Arveson conjectured the existence of the Shilov boundary, he
did not prove its existence in full generality as given by Definition 3.1. This
question remained open until 1979, when Hamana proved the existence of
the Shilov boundary by introducing the notion of the injective envelope and
C∗-envelope of an operator system.

Inspired by Hamana’s article [Ham79] and some improvements in [Pau03],
we shall introduce the notion of the injective envelope of an operator system
and prove its existence. Our goal will be to use the injective envelope of an
operator system to show that a unital operator space A can be completely
isometrically embedded into a minimal C∗-algebra C∗e (A+A∗) called the C∗-
envelope of the operator system A+A∗, and that C∗e (A+A∗) is ∗-isomorphic
to C∗(A)/J where J is the Shilov boundary for A. Moreover, addressing
the question above, we shall prove that a unital completely isometric iso-
morphism of A1 onto A2 is the restriction of a unique ∗-isomorphism of
C∗e (A1 + A∗1) onto C∗e (A2 + A∗2), showing that the structure of a C∗-algebra
is determined by a unital subspace if and only if its Shilov boundary is triv-
ial.

3.2 The injective envelope of an operator system

In the most general setting, injectivity can be defined as follows. Let C be
a category. An object I is said to be injective in C if for every pair E ⊂ F
of objects in C and every morphism ϕ : E → I, there exists a morphism
ψ : F → I that extends ϕ. As a first familiar example, we note that the
Hahn-Banach theorem is equivalent to the statement that C is injective in
the category of normed spaces.
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In this section the category under consideration will be the category of
operator systems with morphisms the unital completely positive maps or,
equivalently, the unital completely contractive maps. In this case we see
that Arveson’s extension theorem is equivalent to the statement that B(H)
is injective in the category of operator systems.

We will now introduce the notion of the injective envelope of an operator
system and prove its existence.

Let V and W be operator systems, and let κ : V → W be a unital
completely contractive map. We begin by introducing some terminology for
the pair (W,κ). We say that (W,κ) is an extension of V if κ is a complete
isometry. If in addition W is injective, then (W,κ) is said to be an injective
extension. An extension (W,κ) of V is said to be a rigid extension if for any
unital completely contractive map ϕ : W → W such that ϕ ◦ κ = κ, then it
holds that ϕ = idW .

There are several equivalent definitions for the injective envelope of an
operator system. We shall take a definition in terms of the properties that
will be most convenient for our purposes. We say that an extension (W,κ) is
an injective envelope of V if it is both an injective and rigid extension of V .

Roughly speaking, the injective envelope of an operator system should
correspond to the idea that the injective envelope should be a minimal in-
jective object containing V . To capture this notion, we say that an injective
extension (W,κ) is minimal if it holds that whenever W1 ⊂ W is injective
with κ(V ) ⊂ W1, then W1 = W . Let us show that this property follows from
the definition of the injective envelope.

Proposition 3.2. Let V be an operator system, and let (W,κ) be an injective
envelope of V . Then (W,κ) is a minimal injective extension.

Proof. Let W1 ⊂ W be an injective operator system with κ(V ) ⊂ W1. Since
W1 is injective, the inclusion map of κ(V ) into W1 can be extended to a unital
completely contractive map ϕ : W → W1. Since W1 ⊂ W and ϕ ◦ κ = κ, the
rigidity of (W,κ) implies that ϕ = idW , and hence W1 = W .

The main result of this section will be to show that any operator sys-
tem has a unique injective envelope. Uniqueness here should be interpreted
as unique up to unital completely isometric isomorphism, a notion whose
meaning we make precise in the following statement.

Proposition 3.3. Let V1 and V2 be operator systems, and let (W1, κ1) and
(W2, κ2) be injective envelopes of V1 and V2 respectively. If ι : V1 → V2 is
a unital completely isometric isomorphism, then there exists a unique unital
completely isometric isomorphism λ : W1 → W2 such that λ ◦ κ1 = κ2 ◦ ι.
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Proof. SinceW2 is injective, the map κ2◦ι◦κ−1
1 : κ(V1)→ W2 can be extended

to a unital completely contractive map λ : W1 → W2 with λ ◦ κ1 = κ2 ◦ ι.
Similarly, κ1 ◦ ι−1 ◦ κ−1

2 can be extended to a unital completely contractive
map µ : W2 → W1 with µ ◦ κ2 = κ1 ◦ ι−1. Since

µ ◦ λ ◦ κ1 = µ ◦ κ2 ◦ ι = κ1,

it follows by rigidity that µ ◦ λ = idW1 . Similarly, λ ◦µ = idW2 , showing that
λ is a unital completely isometric isomorphism of W1 onto W2. Also from
rigidity, it readily follows that λ is unique.

V1 W1

V2 W2

κ1

ι λ

κ2

µ

The proof of the existence of an injective envelope turns out to be a rather
elaborate application of Zorn’s lemma. We begin by introducing some more
terminology.

Let V ⊂ B(H) be an operator system. A unital completely contrac-
tive map ϕ : B(H) → B(H) is called a V -map if ϕ|V = idV . If ϕ is also
idempotent, i.e., it satisfies ϕ ◦ ϕ = ϕ, then ϕ is called a V -projection.

For a V -map ϕ, we define a V -seminorm pϕ on B(H) by pϕ(x) = ‖ϕ(x)‖.
We define a partial order on the collection of all V -seminorms by setting
p ≤ q if p(x) ≤ q(x) for all x ∈ B(H).

Let us show that the family of V -seminorms has a minimal element, which
in turn will guarantee the existence of a V -projection.

Lemma 3.4 ([Pau03, Proposition 15.3]). Let V ⊂ B(H) be an operator
system. Then there exists a minimal V -seminorm on B(H).

Proof. Let {ϕλ} be V -maps such that {pϕλ} is a decreasing chain of V -
seminorms. Since CB1(B(H),B(H)) is compact in the BW-topology, {ϕλ}
has a convergent subnet {ϕλµ}. Denoting its limit by ϕ, by Proposition 2.15,
we have

|〈ϕ(x)ξ, ζ〉| = lim
µ
|〈ϕλµ(x)ξ, ζ〉| ≤ lim inf

µ
‖ϕλµ(x)‖‖ξ‖‖ζ‖,

and so ‖ϕ(x)‖ ≤ lim infµ ‖ϕλµ(x)‖ for all x ∈ B(H). Thus pϕ ≤ pϕλ for all
λ, and hence every decreasing chain of V -seminorms has a lower bound. By
Zorn’s lemma, there exists a minimal V -seminorm.
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Lemma 3.5 ([Pau03, Theorem 15.4]). Let V ⊂ B(H) be an operator system.
If ϕ : B(H) → B(H) is a V -map such that pϕ is a minimal V -seminorm,
then ϕ is a V -projection.

Proof. Since ϕ is completely contractive, we have ‖ϕ ◦ ϕ(x)‖ ≤ ‖ϕ(x)‖ for
all x ∈ B(H). Since ϕ ◦ ϕ is also a V -map and since pϕ is a minimal V -
seminorm, we must have ‖ϕ◦ϕ(x)‖ = ‖ϕ(x)‖. Inductively, ‖ϕk(x)‖ = ‖ϕ(x)‖
for all k ≥ 1, where ϕk = ϕ ◦ · · · ◦ ϕ k times. For each n ≥ 1, define
ψn = (ϕ + · · · + ϕn)/n. Then each ψn is a V -map and ‖ψn(x)‖ ≤ ‖ϕ(x)‖,
and so ‖ψn(x)‖ = ‖ϕ(x)‖. Combining these observations, we have

‖(ϕ− ϕ ◦ ϕ)(x)‖ = ‖ϕ(x− ϕ(x))‖ = ‖ψn(x− ϕ(x))‖

=

∥∥∥∥ϕ(x) + · · ·+ ϕn(x)

n
− ϕ2(x) + · · ·+ ϕn+1(x)

n

∥∥∥∥
≤ 2‖ϕ(x)‖

n
→ 0

as n→∞. Thus ϕ ◦ ϕ = ϕ, showing that ϕ is a V -projection.

With the existence of a V -projection ϕ : B(H) → B(H) such that pϕ
is a minimal V -seminorm, let us state and prove the main theorem of this
section.

Theorem 3.6. Any operator system V has a unique injective envelope.

Proof. Without loss of generality, we may assume V ⊂ B(H). Let ϕ :
B(H) → B(H) be a V -projection such that pϕ is a minimal V -seminorm.
First we claim that ϕ(B(H)) ⊂ B(H) is an injective operator system. Let
U1 ⊂ U2 be operator systems, and let ρ : U1 → ϕ(B(H)) be a unital com-
pletely contractive map. By Arveson’s extension theorem, ρ extends to a
unital completely contractive map ψ : U2 → B(H). By the previous lemma,
ϕ is idempotent, and so ϕ ◦ ψ : U2 → ϕ(B(H)) is a unital completely con-
tractive map with ϕ ◦ ψ|U1 = ϕ ◦ ρ = ρ.

We proceed to show that (ϕ(B(H)), idV ) is a rigid extension. To this end,
suppose that γ : ϕ(B(H))→ ϕ(B(H)) is a unital completely contractive map
with γ|V = idV . Note that γ ◦ ϕ is a V -map, and since pϕ is a minimal V -
seminorm and ‖γ ◦ ϕ(x)‖ ≤ ‖ϕ(x)‖ for all x ∈ B(H), we have ‖γ ◦ ϕ(x)‖ =
‖ϕ(x)‖, i.e., pγ◦ϕ = pϕ. By the previous lemma, γ ◦ ϕ is idempotent, and
hence

γ ◦ ϕ = γ ◦ ϕ ◦ γ ◦ ϕ = γ ◦ γ ◦ ϕ,

where the last equality follows since the range of γ is ϕ(B(H)) and ϕ is also
idempotent. Since γ is injective, the statement follows.
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3.3 C∗-envelopes and the Shilov boundary

Now that we have established the existence and uniqueness of the injective
envelope of an operator system, we turn our attention to the C∗-envelope,
which will be the key to proving the existence of the Shilov boundary. We
begin with the following general statement about injective operator systems,
which we will use to prove a well known theorem due to Choi and Effros,
stating that an injective operator system can be equipped with a C∗-algebra
structure.

Proposition 3.7 ([Pau03, Theorem 15.1]). Let V ⊂ B(H) be a operator
system. Then V is injective if and only if there exists a completely contractive
projection ϕ : B(H)→ V onto V .

Proof. If V is injective, the identity map on V extends to a unital completely
contractive map ϕ : B(H) → V . Since ϕ|V = idV , we have that ϕ is a
projection onto V .

Conversely, let U1 ⊂ U2 be operator systems, and let ρ : U1 → V be a
unital completely contractive map. By Arveson’s extension theorem, there
exists a unital completely contractive map ψ : U2 → B(H) that extends ρ.
Since ϕ is a projection, ϕ ◦ ψ : U2 → V is a unital completely contractive
extension of ρ, showing that V is injective.

Theorem 3.8 ([CE77], [Pau03, Theorem 15.2]). Let V ⊂ B(H) be an injec-
tive operator system. Then there exists a unique C∗-algebra (V,�) such that
the identity map of V into (V,�) is a unital completely isometric isomor-
phism.

Proof. Let ϕ : B(H) → V be a completely contractive projection onto V ,
which exists by the previous proposition, and define a� b = ϕ(ab). We begin
by showing that � defines a multiplication on V . Clearly 1 � a = ϕ(a) = a
and vice versa. Distributivity is clear since a � (b + c) = ϕ(a(b + c)) =
ϕ(ab + bc) = a � b + b � c and vice versa. It remains to show that � is
associative, i.e., that ϕ(aϕ(bc)) = ϕ(ϕ(ab)c). We claim, for any x ∈ B(H)
and a ∈ V , that ϕ(ϕ(x)a) = ϕ(xa) and ϕ(aϕ(x)) = ϕ(ax). Assuming this,
we have

ϕ(aϕ(bc)) = ϕ(abc) = ϕ(ϕ(ab)c),

from which associativity follows.
To prove the claim, we apply the Schwarz inequality (Proposition 2.8) to

the map ϕ2 and the matrix (
a∗ x
0 0

)
.
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This gives (
ϕ(aa∗) ϕ(ax)
ϕ(x∗a∗) ϕ(x∗x)

)
−
(

aa∗ aϕ(x)
ϕ(x)∗a∗ ϕ(x)∗ϕ(x)

)
≥ 0,

and by applying ϕ2 once again to this inequality we get(
0 ϕ(ax)− ϕ(aϕ(x))

ϕ(x∗a∗)− ϕ(ϕ(x)∗a∗) ϕ(x∗x)− ϕ(ϕ(x)∗ϕ(x))

)
≥ 0.

By the positivity, ϕ(aϕ(x)) = ϕ(ax), and since ϕ is self-adjoint, it readily
follows that ϕ(ϕ(x)a) = ϕ(xa) as well.

Next we verify the conditions for the norm. Clearly we have

‖a� b‖ = ‖ϕ(ab)‖ ≤ ‖ab‖ ≤ ‖a‖‖b‖.

For the C∗-identity, ‖a∗ � a‖ = ‖a‖2, we observe that

‖a∗ � a‖ = ‖ϕ(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2.

On the other hand, by the Schwarz inequality, ϕ(a∗a) ≥ ϕ(a)∗ϕ(a) = a∗a,
and hence

‖a∗ � a‖ = ‖ϕ(a∗a)‖ ≥ ‖a∗a‖ = ‖a‖2.

Finally we show that V is complete with respect to the norm. Since V is
a subspace of a C∗-algebra, it suffices to show that V is closed. Since V is
injective, the identity map idV can be extended to a completely positive map
ψ : B(H)→ V with ψ|V = idV . Let {ai} ⊂ V be a convergent sequence with
limit a ∈ B(H). Since ψ is continuous, a = limi→∞ ai = limi→∞ ψ(ai) = ψ(a),
showing that a lies in V . Thus we have shown that (V,�) is a C∗-algebra.

Let us now show that the inclusion of V into (V,�) is a unital complete
order isomorphism. Consider the operator system Mn(V ). Since ϕ is a
completely positive projection, ϕn : B(Hn)→Mn(V ) is a completely positive
projection as well. By Proposition 3.7, Mn(V ) is an injective operator system,
and hence Mn(V ) is a C∗-algebra with product (aij)�n (bij) = ϕn((aij)(bij)).
We have

(aij)�n (bij) =
n∑
k=1

ϕ(aikbkj) =
n∑
k=1

aik � bkj,

and hence the identity map induces a ∗-isomorphism of (Mn(V ),�n) onto
Mn((V,�)). Consequently the identity map of V into (V,�) is a unital
complete isometry. By Theorem 2.11, another C∗-algebra (V,�1) with this
property would be ∗-isomorphic to (V,�), and hence it directly follows that
a�1 b = a� b.
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The following theorem due to Hamana [Ham79] will allow us to define
the C∗-envelope of an operator system, which will provide us with the key to
proving the existence of the Shilov boundary. Let us first define the notion of
a C∗-extension. Let V be an operator system, and let (B, κ) be an extension
of V , where B is a C∗-algebra. If B = C∗(κ(V )), then (B, κ) is said to be a
C∗-extension of V .

Theorem 3.9 ([Ham79], [Pau03, Theorem 15.16]). Let V be an operator
system, let (C, κ) be an injective envelope of V , identified with the C∗-algebra
that it is unitally completely isometrically isomorphic to, and let (B, ρ) be a
C∗-extension of V . Then there exists a unique surjective ∗-homomorphism
π : B → C∗(κ(V )) with π ◦ ρ = κ.

Proof. Without loss of generality we assume that B ⊂ B(H). Since C is
injective, κ ◦ ρ−1 : ρ(V ) → C can be extended to a unital completely con-
tractive map ϕ : B(H) → C such that ϕ ◦ ρ = κ. On the other hand, by
Arveson’s extension theorem, ρ ◦κ−1 extends to a unital completely contrac-
tive map ψ : C → B(H) with ψ ◦ κ = ρ. This gives ϕ ◦ ψ ◦ κ = κ, and hence
ϕ ◦ ψ = idC by rigidity.

V B(H)

C

ρ

κ
ϕ ψ

By Lemma 2.10, we have that ϕ(ψ(y)∗ψ(y)) = y∗y and ϕ(ψ(y)ψ(y)∗) = yy∗

for all y ∈ C. So with y = κ(a) ∈ C, we have ϕ(ψ(κ(a))∗ψ(κ(a))) =
κ(a)∗κ(a), i.e., ϕ(ρ(a)∗ρ(a)) = ϕ(ρ(a))∗ϕ(ρ(a)) and similar for ρ(a)ρ(a)∗.
Defining π as the restriction of ϕ to B, Theorem 2.9 implies that π a ∗-
homomorphism. The fact that the domain and codomain for π are generated
by ρ(V ) and κ(V ) respectively, together with π ◦ ρ = κ implies that π is
unique and surjective.

A C∗-extension (D, κ) that satisfies the property that for any C∗-extension
(B, ρ) there exists a unique surjective ∗-homomorphism π : B → D with
π ◦ ρ = κ is said to be a C∗-envelope of V . From Theorem 3.9, we can prove
that any operator system has a unique C∗-envelope.

Theorem 3.10. Any operator system V has a C∗-envelope (κ,D). More-
over, let V1 and V2 be operator systems, and let (D1, κ1) and (D2, κ2) be C∗-
envelopes of V1 and V2 respectively. If ι : V1 → V2 is a unital completely iso-
metric isomorphism, then there exists a unique ∗-isomorphism π : D1 → D2

such that π ◦ κ1 = κ2 ◦ ι.
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Proof. The existence follows from the existence of an injective envelope to-
gether with Theorem 3.9: if (C, κ) is an injective envelope of V , identified
with the C∗-algebra that it is unitally completely isometrically isomorphic
to, then (C∗(κ(V )), κ) is a C∗-envelope of V .

Let us now show that the C∗-envelope is unique in the above sense. It
is clear that (D1, κ1 ◦ ι−1) is a C∗-extension of V2, and hence there exists
a surjective ∗-homomorphism π : D1 → D2 with π ◦ κ1 ◦ ι−1 = κ2. Sim-
ilarly, (D2, κ2 ◦ ι) is a C∗-extension of V1, so there exists a surjective ∗-
homomorphism ρ : D2 → D1 with ρ ◦ κ2 ◦ ι = κ1. Then we have a surjective
∗-homomorphism ρ ◦ π such that

ρ ◦ π ◦ κ1 = ρ ◦ κ2 ◦ ι = κ1.

Since idD1 also satisfies this property, the uniqueness implies that ρ◦π = idD1 ,
and hence π is also injective.

V1 D1

V2 D2

κ1

ι π

κ2

ρ

V1 D1

D1

κ1

κ1
ρ◦π

This completes the proof.

Theorem 3.11 ([Ham79]). Let A be a unital operator space of a C∗-algebra
B such that A generates B as a C∗-algebra. Then the Shilov boundary for A
exists.

Proof. Since a unital completely isometric map on a unital operator space
extends uniquely to a unital completely isometric map on A + A∗ as a con-
sequence of Proposition 2.5, it readily follows that we may assume that A is
an operator system.

Let (D, κ) be a C∗-envelope of A. Since B = C∗(A), there exists a
unique surjective ∗-homomorphism π : B → D with π|A = κ. We claim
that J = Kerπ is the Shilov boundary for A. Let q : B → B/J denote the
quotient map, and let π̇ : B/J → D be the ∗-isomorphism induced by π.
Then π̇ ◦ q|A = κ, and hence q|A = π̇−1 ◦ κ is a complete isometry. Therefore
J is a boundary ideal for A. Moreover, (B/J, q|A) is a C∗-envelope of A.

Let I be any boundary ideal for A, and let r : B → B/I be the cor-
responding quotient map. Since r|A is a complete isometry and B/I =
C∗(r(A)), the fact that (B/J, q|A) is a C∗-envelope of A implies that there
exists a surjective ∗-homomorphism ϕ : B/I → B/J with ϕ(a + I) = a + J
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for all a ∈ A. Since B is generated by A and ϕ is a ∗-homomorphism, we in
fact have ϕ(b+ I) = b+ J for all b ∈ B. If x is an element in I, then

x+ J = ϕ(x+ I) = ϕ(0 + I) = 0 + J,

i.e., x ∈ J , showing that I ⊂ J . Thus J contains all boundary ideals and we
conclude that J is the Shilov boundary for A.

The fact that (B/J, q|A) is a C∗-envelope for A allows us to give the precise
conditions for a unital operator space so that it determines the structure of
its generated C∗-algebra.

Corollary 3.12. Let A1 and A2 be unital operator spaces of C∗-algebras
B1 and B2 such that B1 = C∗(A1) and B2 = C∗(A2), and suppose that
ϕ : A1 → A2 is a unital completely isometric isomorphism. If both A1

and A2 have trivial Shilov boundary, then ϕ is the restriction of a unique
∗-isomorphism π : B1 → B2.

Proof. Again, we may assume that A1 and A2 are operator systems. Since
A1 and A2 have trivial Shilov boundary, (B1, idA1) and (B2, idA2) are C∗-
envelopes of A1 and A2 respectively. By Theorem 3.10, there exists a unique
∗-isomorphism π : B1 → B2 such that π|A1 = ϕ.
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4 The Shilov boundary for a noncommuta-

tive analog of the holomorphic functions on

the unit polydisk

Let f : [0,∞)→ [0,∞) be a continuous function with the unique fixed point
1, and suppose that f satisfies f(x) ≤ 1 for all x ∈ [0, 1]. In this section we
will study the universal enveloping C∗-algebra generated by z1, . . . , zn that
satisfy

z∗i zi = f(ziz
∗
i ), i = 1, . . . , n (4.1)

[zi, zj] = 0, [z∗i , zj] = 0, i 6= j. (4.2)

Recall that Pn is defined as the free ∗-algebra generated by z1, . . . , zn. Pro-
vided Pn is ∗-bounded with respect to these relations, we define C(D̄n)f as in
Section 1.3, and we let A(Dn)f be defined as the closed subalgebra generated
by z1, . . . , zn. Recall that C(D̄n)f and A(Dn)f are considered as noncom-
mutative analogs of the continuous and holomorphic functions respectively
on the unit polydisk. The main result of this section will be to describe the
Shilov boundary for A(Dn)f , which we interpret as a noncommutative analog
of the maximum modulus principle. Our proof relies on classifying the irre-
ducible representations π of Pn such that π(z1), . . . , π(zn) satisfy (4.1) and
(4.2), which will be the objective of the following section.

4.1 Representation theory

Our first result concerns the spectra σ(π(zi)
∗π(zi)) and σ(π(zi)π(zi)

∗) of the
operators π(zi)

∗π(zi) and π(zi)π(zi)
∗, where π is a representation of Pn that

satisfies the relations (4.1) and (4.2). From this it will follow that Pn is
∗-bounded with respect to these relations.

Proposition 4.1. Let (H, π) be a representation of Pn that satisfies (4.1)
and (4.2). If Ker π(zi)

∗ 6= {0}, then

σ(π(zi)
∗π(zi)) = {fk(0)}k≥1 ∪ {1}

σ(π(zi)π(zi)
∗) = {fk(0)}k≥0 ∪ {1},

where fk = f ◦ fk−1 and f 0 = id. Otherwise

σ(π(zi)
∗π(zi)) = σ(π(zi)π(zi)

∗) = {1}.

Proof. We recall the well known fact that

σ(π(zi)
∗π(zi)) ∪ {0} = σ(π(zi)π(zi)

∗) ∪ {0}. (4.3)

37



Moreover, by [Dav96, Corollary I.3.3], we have that

σ(π(zi)
∗π(zi)) = σ(f(π(zi)π(zi)

∗)) = f(σ(π(zi)π(zi)
∗)). (4.4)

Let us begin by showing that 1 is the largest possible value in the spectra.
Suppose to the contrary that λ = ‖π(zi)

∗π(zi)‖ > 1. Then λ ∈ σ(π(zi)
∗π(zi))

by the spectral radius formula. Consequently λ also belongs to σ(π(zi)π(zi)
∗)

by (4.3), which implies that f(λ) ∈ σ(π(zi)
∗π(zi)) by (4.4). We consider the

two separate cases for the behavior of f for x > 1. If f(x) > x for all x > 1,
then f(λ) > λ, which is a contradiction. If f(x) < x for all x > 1, we use the
fact that λ = f(µ) for some µ ∈ σ(π(zi)π(zi)

∗). Since f(x) ≤ 1 for all x < 1,
we must have µ > 1. Then µ belongs to σ(π(zi)

∗π(zi)), but λ = f(µ) < µ,
which is also a contradiction.

We proceed to show the inclusion of the spectra into the sets on the
right-hand side. Let λ1 be a value in σ(π(zi)

∗π(zi)) that is not present in
{fk(0)}k≥1 ∪ {1}. Note that λ1 6= 0 since there is no µ ∈ σ(π(zi)π(zi)

∗)
such that f(µ) = 0, and hence λ1 ∈ σ(π(zi)π(zi)

∗) as well. By (4.4), we
have λ1 = f(λ2) for some λ2 > 0 in σ(π(zi)π(zi)

∗) and consequently also
in σ(π(zi)

∗π(zi)). Then λ1 = f(λ2) > λ2. Arguing inductively, we get
a positive decreasing sequence {λi} converging to some λ ≥ 0. But then
f(λ) = λ, which is a contradiction since 1 is the unique fixed point.

If Kerπ(zi)
∗ 6= {0}, then 0 ∈ σ(π(zi)π(zi)

∗). Then since f(0) > 0, we
have that f(0) belongs to both σ(π(zi)

∗π(zi)) and σ(π(zi)π(zi)
∗). Inductively,

{fk(0)}k≥1 is a subset of both σ(π(zi)
∗π(zi)) and σ(π(zi)π(zi)

∗). Thus the
inclusion of the sets on the right hand side into the spectra follows by this
and the fact that a spectrum contains all its limit points.

Suppose now that Ker π(zi)
∗ = {0}. The claim is that σ(π(zi)

∗π(zi))
consists of the single point 1. Indeed, if this were not the case, then by
the above, f(0) ∈ σ(π(zi)

∗π(zi)) and consequently 0 ∈ σ(π(zi)π(zi)
∗). Since

this is an isolated point in the spectrum, it is an eigenvalue and hence there
exists a nonzero vector η ∈ H such that π(zi)π(zi)

∗η = 0. But then it follows
that η also belongs to Ker π(zi)

∗, which is a contradiction. Hence the claim
follows.

We are now in a position where we can begin to classify all irreducible
representations of Pn that satisfies (4.1) and (4.2). Given an irreducible rep-
resentation (H, π) with this property, vectors ζ in Kerπ(zi)

∗, where i ranges
over some subset of {1, . . . , n}, will play an important part in describing the
representation. The following results will provide us with a family of vectors
on which the action of π(Pn) is particularly simple.
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Lemma 4.2. If ζ belongs to Ker π(zi)
∗, then

π(zi)
∗π(zi)

kζ =

{
0, k = 0

fk(0)π(zi)
k−1ζ, k ≥ 1.

Proof. The case k = 0 follows directly from the definition of ζ. Let k be any
positive integer and assume that the result holds for k − 1. Then

(π(zi)π(zi)
∗)mπ(zi)

k−1ζ = (π(zi)π(zi)
∗)m−1fk−1(0)π(zi)

k−1ζ

for all m ≥ 1. Inductively,

(π(zi)π(zi)
∗)mπ(zi)

k−1ζ = fk−1(0)mπ(zi)
k−1ζ.

If f(x) = p(x) = a0x
m + · · ·+ am is a polynomial, then

π(zi)
∗π(zi)

kζ = p(π(zi)π(zi)
∗)π(zi)

k−1ζ

= a0(π(zi)π(zi)
∗)mπ(zi)

k−1ζ + · · ·+ amπ(zi)
k−1ζ

= (a0p
k−1(0)m + · · ·+ am)π(zi)

k−1ζ

= p(pk−1(0))π(zi)
k−1ζ

= pk(0)π(zi)
k−1ζ.

For the general case, we approximate f by a polynomial. Fix ε > 0 and let
p be a polynomial such that ‖p− f‖[0,1] < ε/‖π(zi)

k−1ζ‖. Then

‖π(zi)
∗π(zi)

kζ − fk(0)π(zi)
k−1ζ‖ =

= ‖f(π(zi)π(zi)
∗)π(zi)

k−1ζ − fk(0)π(zi)
k−1‖

≤ ‖f(π(zi)π(zi)
∗)π(zi)

k−1ζ − p(π(zi)π(zi)
∗)π(zi)

k−1ζ‖
+ ‖p(π(zi)π(zi)

∗)π(zi)
k−1ζ − pk(0)π(zi)

k−1ζ‖
+ ‖pk(0)π(zi)

k−1ζ − fk(0)π(zi)
k−1ζ‖

≤ ‖f − p‖[0,1]‖π(zi)
k−1ζ‖+ |pk(0)− fk(0)|‖π(zi)

k−1ζ‖ < ε,

showing that π(zi)
∗π(zi)

kζ = fk(0)π(zi)
k−1ζ.

An immediate consequence of this lemma is that if k > k′, then

π(z∗i )
kπ(zi)

k′ζ = 0.

In the following we shall make use of the following standard multi-index
notation. Let l = (l1, . . . , lm), 1 ≤ l1 < · · · < lm ≤ n, and k = (k1, . . . , km),
k1 ≥ 0, . . . , km ≥ 0 be m-tuples. Then we define

π(zl)
k = π(zl1)

k1 . . . π(zlm)km

and
π̂(zli)

k = π(zl1)
k1 . . . π(zli−1

)ki−1π(zli+1
)ki+1 . . . π(zlm)km .
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Proposition 4.3. Suppose that ζ ∈ H is a nonzero vector such that

ζ ∈
m⋂
i=1

Ker π(zli)
∗. (4.5)

Define ξk = ξk1,...,km = ‖π(zl)
kζ‖−1π(zl)

kζ. Then {ξk1,...,km} is an orthonor-
mal family of vectors.

Proof. By Lemma 4.2, we have the following recursive formula for the norms
of π(zl)

k.

‖π(zl)
kπ(zli)ζ‖2 = 〈π(zl)

kπ(zli)ζ, π(zl)
kπ(zli)ζ〉

= 〈π(zl)
kζ, π̂(zli)

kπ(zli)
∗π(zli)

ki+1ζ〉
= fki+1(0)〈π(zl)

kζ, π(zl)
kζ〉

= fki+1(0)‖π(zl)
kζ‖2.

Arguing recursively, we see that all vectors in {ξk1,...,km} are well-defined and
of norm 1. To show orthogonality, we let ξk and ξk′ be two vectors with
k 6= k′. Assume ki > k′i for some i. Again by Lemma 4.2,

〈ξk, ξk′〉 = 〈π(zl)
kζ, π(zl)

k′ζ〉

= 〈π̂(zli)
kπ(zli)

kiζ, π̂(zli)
k′π(zli)

k′iζ〉

= 〈π̂(zli)
kζ, π̂(zli)

k′π(z∗li)
kiπ(zli)

k′iζ〉
= 0,

where the equalities hold up to some multiplicative constant.

Thus, given a vector ζ satisfying (4.5) for some m-tuple l, Proposition 4.3
provides us with an associated family of orthonormal vectors. The action of
π(Pn) on this family of vectors is given by the following proposition.

Proposition 4.4. Let {ξk1,...,km} be as in Proposition 4.3. Then

π(zli)ξk1,...,ki,...,km =
√
fki+1(0)ξk1,...,ki+1,...,km

π(zli)
∗ξk1,...,ki,...,km =

{
0, ki = 0√
fki(0)ξk1,...,ki−1,...,km , ki ≥ 1.

Proof. This follows immediately from the recursive formula for the norm
computed above. We have

π(zli)ξk1,...,ki,...,km = ‖π(zl)
kζ‖−1π(zl)

kπ(zli)ζ

= ‖π(zl)
kζ‖−1‖π(zl)

kπ(zli)ζ‖ξk1,...,ki+1,...,km

=
√
fki+1(0)ξk1,...,ki+1,...,km .

The formula for the adjoint follows as a consequence of this.
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In order to classify the irreducible representations of Pn, we shall argue
by induction on the number of generators of Pn. The following theorem lists
the irreducible representations of P = P1, which will serve as the basis of
induction.

Theorem 4.5. The irreducible representations of P up to unitary equivalence
that satisfy (4.1) and (4.2) are given by

(i) one-dimensional representations, πϕ(z) = eiϕ, ϕ ∈ [0, 2π);
(ii) (`2(Z≥0), π) defined as follows. Let {ek}k≥0 be the standard orthonor-

mal basis for `2(Z≥0). Then

π(z)ek =
√
fk+1(0)ek+1

π(z)∗ek =

{
0, k = 0√
fk(0)ek−1, k ≥ 1.

Proof. Suppose first that Kerπ(z)∗ 6= {0}. Let ζ be a unit vector in Kerπ(z)∗,
and define U ⊂ H as the closed subspace generated by {ξk} from Proposition
4.3. Proposition 4.4 shows that U is invariant under the action of π(P ) and
hence H = U .

If Ker π(z)∗ 6= {0}, we have π(z)∗π(z) = π(z)π(z)∗ = I as a consequence
of Proposition 4.1, showing that π(P ) is commutative. By Schur’s lemma,
π(P ) = CI, and hence any subspace is invariant. H must therefore be one-
dimensional.

Let us now turn to the general case where n is any positive integer.

Theorem 4.6. The irreducible representations of Pn up to unitary equiva-
lence that satisfy (4.1) and (4.2) are given by (`2(Z≥0)⊗m, πl,m), 0 ≤ m ≤ n,
l = (l1, . . . , lm), 1 ≤ l1 < · · · < lm ≤ n, defined as follows. Let {ek}k≥0 be the
standard orthonormal basis for `2(Z≥0), and let the operator T ∈ B(`2(Z≥0))
be given by

Tek =
√
fk+1(0)ek+1

T ∗ek =

{
0, k = 0√
fk(0)ek−1, k ≥ 1.

Then
π(zli) = I⊗i−1 ⊗ T ⊗ I⊗m−i, 1 ≤ i ≤ m,

and π(zj) = eiϕjI⊗m for those indices j not present in l. (Note that l is
empty if m = 0 and that (`2(Z≥0)⊗m, πl,m) is one-dimensional in this case.)
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Proof. Let (H, π) be an irreducible representation of Pn that satisfies (4.1)
and (4.2). The case n = 1 follows from Theorem 4.5. Suppose n ≥ 2 and
assume that the theorem holds for Pn−1. Suppose first that Ker π(zn)∗ 6= {0}.
Let ζn be a nonzero vector in Kerπ(zn)∗ and define V as the closed subspace
generated by all expressions

p(π(z1), π(z1)∗, . . . , π(zn−1), π(zn−1)∗)ζn,

where p is a polynomial. Now define ρV (zi) = π(zi)|V , i = 1, . . . , n − 1. We
claim that ρV is an irreducible representation of the subalgebra Pn−1 ⊂ Pn
on V . Suppose V = V1 ⊕ V2 where V1 and V2 are two invariant subspaces
such that V1 ⊥ V2. Then

Vi ⊕ π(zn)Vi ⊕ π(zn)2Vi ⊕ . . . , i = 1, 2,

are two mutually orthogonal subspaces. As a consequence of Lemma 4.2,
we see that both are invariant under the action of π(Pn). But since π is
irreducible, they must be equal, contradicting the fact that V1 and V2 were
chosen to be mutually orthogonal. By the induction hypothesis, ρV is unitar-
ily equivalent to one of the representations (`2(Z≥0)⊗m, πl,m), 0 ≤ m ≤ n−1,
listed above. If m ≥ 1, define ζ ∈ H as the vector corresponding to
e0⊗· · ·⊗ e0 ∈ `2(Z≥0)⊗m under this isomorphism, and define l′ as the m+ 1-
tuple (l, n). If m = 0, let ζ be any unit vector in V and set l′ = n. (Note
that V is one-dimensional in this case.) Since π(zn)∗ commutes with π(zi)
and π(zi)

∗ for all i 6= n, we have V ⊂ Ker π(zn)∗. Thus

ζ ∈
m+1⋂
i=1

Ker π(zl′i)
∗.

By Proposition 4.3, we obtain an orthonormal family of vectors {ξk1,...,km+1},
and we define W as the closed subspace generated by these vectors. By
Proposition 4.4, we see thatW is an invariant under π(Pn) and henceH = W .

If Ker π(zn)∗ = {0}, then as a consequence of Proposition 4.1, we have
that π(zn)∗π(zn) = π(zn)π(zn)∗ = I. From this we get that the commutant
π(Pn)′ contains the subalgebra generated by π(zn) and π(zn)∗. By Schur’s
lemma, we get π(zn) = eiϕnI for some ϕn ∈ [0, 2π). As a consequence,
(H, π|Pn−1) is an irreducible representation and is therefore unitarily equiv-
alent to one of the representations (`2(Z≥0)⊗m, πl,m), 0 ≤ m ≤ n − 1, listed
above, by the induction hypothesis.

4.2 The Shilov boundary for A(Dn)f

Using the irreducible representations of Pn obtained in the previous section,
we can now give a description of the Shilov boundary for A(Dn)f .
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Theorem 4.7. Let J be the closed ideal generated by

z∗i zi − 1, ziz
∗
i − 1, i = 1, . . . , n. (4.6)

Then J is the Shilov boundary for A(Dn)f .

Proof. We claim that C(D̄n)f/J is ∗-isomorphic to C(Tn). Consider the
∗-homomorphism ϕ : Pn → C(Tn) that represents each polynomial as its
corresponding function on Tn. It is straightforward to verify that Kerϕ is
the ideal generated by the elements z∗i zi−1, ziz

∗
i −1, i = 1, . . . , n. Since 1 is a

fixed point for f , ϕ satisfies the relations (4.1) and (4.2), and hence ϕ extends
uniquely to a ∗-homomorphism on C(D̄n)f , which we shall still denote by ϕ.
Moreover, since ϕ(Pn) is dense in C(Tn), we have that ϕ : (D̄n)f → C(Tn)
is surjective. Since C(D̄n)f is a faithful representation of Pn, it is clear that
Kerϕ = J , and hence the claim follows.

Let us now show that J is a boundary ideal, i.e., the quotient map
C(D̄n)f → C(D̄n)f/J ∼= C(Tn) is a complete isometry when restricted to
A(Dn)f . Using the one-dimensional representations, we obtain

‖g(z1, . . . , zn)‖ ≥ sup
ϕ1,...,ϕn∈[0,2π)

|g(eiϕ1 , . . . , eiϕn)|,

where g is a polynomial.
On the other hand, since T ∈ B(`2(Z≥0)) from Theorem 4.5 is a contrac-

tion, there exists a Hilbert space K containing `2(Z≥0) as a subspace and
a unitary operator U on K such that T k = P`2(Z≥0)U

k|`2(Z≥0) by Sz.-Nagy’s
dilation theorem. If (H, π) is an irreducible representation, by Theorem 4.5,
π(zi) is either of the form

π(zi) = PH(I ⊗ · · · ⊗ I ⊗ U ⊗ I ⊗ · · · ⊗ I)|H

or π(zi) = eiϕiI ⊗ · · · ⊗ I. In both cases we can write π(zi)
k = PHU

k
π,i|H ,

where Uπ,1, . . . Uπ,n are unitary and mutually commuting operators. From
this it is not difficult to see that for a polynomial g

‖g(z1, . . . , zn)‖ = sup
π
‖g(π(z1), . . . , π(zn))‖

= sup
π
‖PHg(Uπ,1, . . . , Uπ,n)|H‖

≤ sup
π
‖g(Uπ,1, . . . , Uπ,n)‖

≤ sup
ϕ1,...,ϕn∈[0,2π)

|g(eiϕ1 , . . . , eiϕn)|,
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where the supremum ranges over all irreducible representations that satisfy
(4.1) and (4.2). Thus we have shown that, for any polynomial g,

‖g(z1, . . . , zn)‖ = sup
ϕ1,...,ϕn∈[0,2π)

|g(eiϕ1 , . . . , eiϕn)| = ‖g(z1, . . . , zn)‖Tn ,

and hence the quotient map is an isometry when restricted to A(Dn)f . Since
the range is commutative, it follows by Theorem 2.7 that this map is also a
complete isometry.

Finally we show that J is the Shilov boundary, i.e, that it contains all
other boundary ideals. Let I be a boundary ideal such that I ⊃ J , and
consider the surjective ∗-homomorphism C(D̄n)f/J → C(D̄n)f/I. Since both
I and J are boundary ideals, we have

‖h(z1, . . . , zn) + I‖ = ‖h(z1, . . . , zn)‖ = ‖h(z1, . . . , zn) + J‖ (4.7)

for every polynomial h. Since J is given by (4.6), for each polynomial g,
there exists a polynomial h such that

g(z1, z
∗
1 , . . . , zn, z

∗
n) + J = z∗m1

1 . . . z∗mnn h(z1, . . . , zn) + J.

This fact together with (4.7) gives

‖g(z1, z
∗
1 , . . . , zn, z

∗
n) + J‖ =

= ‖h(z1, . . . , zn)∗zm1
1 . . . zmnn z∗m1

1 . . . z∗mnn h(z1, . . . , zn) + J‖1/2

= ‖h(z1, . . . , zn) + J‖ = ‖h(z1, . . . , zn) + I‖
= ‖h(z1, . . . , zn)∗h(z1, . . . , zn) + I‖1/2

= ‖g(z1, z
∗
1 , . . . , zn, z

∗
n) + I‖.

So C(D̄n)f/J is ∗-isomorphic to C(D̄n)f/I, which implies that I = J .

We define C(S(D̄n))f = C(D̄n)f/J , which we interpret as a noncommu-
tative analog of the continuous functions on the Shilov boundary.

Recall that, by the maximum modulus principle, the Shilov boundary
for the holomorphic functions on the unit disk is the unit circle. From this
it is not difficult to deduce that the Shilov boundary for the holomorphic
functions on the unit polydisk is given by (∂D)n = Tn, which is known as
the distinguished boundary. From the discussion in Section 1.1, we have

C(S(D̄n))f = C(Tn) = C(T)⊗n = C(S(D̄))⊗nf ,

and hence we see that the noncommutative analog of the maximum modulus
modulus principle satisfies the same property in the multidimensional case.
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4.3 The quantum unit disk

We end this chapter with a few examples that have occurred in the literature
and which fit into our theory developed above. Both are examples of what
is commonly referred to as the quantum unit disk.

In [Vak10], the quantum unit disk was defined as the universal enveloping
algebra of the polynomial algebra P (Cn)q given by the generator z satisfying

z∗z = q2zz∗ + 1− q2,

with 0 < q < 1. The continuous function in (4.1) is therefore given by

f(x) = q2x+ 1− q2,

which possesses the unique fixed point 1. It readily follows that the iterations
for k = 0, 1, . . . , are given by

fk(0) = 1− q2k.

Since f has the unique fixed point 1 and f(x) ≤ 1 for all x ∈ [0, 1], we get
that the Shilov boundary for A(D)f is given by the ideal in Theorem 4.7.

In this case, the Shilov boundary can also be described in terms of oper-
ator algebras. Let S denote the unilateral shift on `2(Z≥0), i.e., Sek = ek+1,
where {ek}k≥0 is the standard orthonormal basis for `2(Z≥0). We claim that
C(D̄)f is ∗-isomorphic to C∗(S), which is known as the Toeplitz algebra,
and that, under this isomorphism, the Shilov boundary is given by K, the
compact operators on `2(Z≥0).

We shall prove this statement by first showing that C∗(π(z)) = C∗(S)
and then show that C(D̄)f is ∗-isomorphic to C∗(π(z)). Recall that the two
irreducible representations of P (Cn)q are given by πϕ(z)ek = eiϕ, ϕ ∈ [0, 2π),

and π(z)ek =
√

1− q2(k+1)ek+1. If we let C2 denote the operator defined by

C2ek =
√

1− q2kek, it is clear that π(z) = C2S. Observe that C2 ∈ C∗(S)
since

C2
2 = (1− q2)

∞∑
k=0

q2kSk+1(S∗)k+1, (4.8)

and consequently C(π(z)) ⊂ C∗(S). To see the reverse inclusion, we define
the function g by g(0) = 0 and g(ζ) = ζ−1 for ζ 6= 0. Since 0 is an isolated
point in the spectrum of C2, g is continuous on σ(C2). Since S = f(C2)π(z)
and C2 =

√
π(z)π(z)∗, we get that C∗(S) ⊂ C∗(π(z)).

For the second step, consider the ∗-homomorphism Θϕ : C∗(S)→ C given
by Θϕ(S) = eiϕ. (We postpone the proof of the claim that Θϕ is actually a
well-defined ∗-homomorphism until the next chapter.) From (4.8) it follows
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that Θϕ(C2) = 1, and hence Θϕ induces a ∗-homomorphism of C∗(π(z))
into C∗(πϕ(z)). Since ∗-homomorphisms of C∗-algebras are contractive, we
get that ‖πϕ(x)‖ ≤ ‖π(x)‖ for all x ∈ P (Cn)q and ϕ ∈ [0, 2π). Therefore,
from the definition of C(D̄)f , it follows that π : C(D̄)f → C∗(π(z)) is a
∗-isomorphism.

From the theory developed in Chapter V of [Dav96], it follows that
C∗(S)/K is ∗-isomorphic to C(T), and since C(D̄)f/J ∼= C(T), we find that
the Shilov boundary under the isomorphism described above is given by K.

In [KL92], the quantum unit disk was defined as the universal enveloping
algebra of the polynomial algebra P (Cn)µ given by the generator z satisfying

[z∗, z] = µ(1− z∗z)(1− zz∗), (4.9)

with 0 < µ < 1. Rearranging, this is equivalent to

z∗z(1 + µ− µzz∗) = (1− µ)zz∗ + µ. (4.10)

Denote x = z∗z and y = zz∗. From (4.10) and its adjoint, it is easy to see
that [x, y] = 0. Given a representation (H, π), π(x) and π(y) generate a
commutative C∗-algebra C∗(π(x), π(y)). By the Gelfand-Naimark theorem,
C∗(π(x), π(y)) is ∗-isomorphic to C(X), the C∗-algebra of continuous func-
tions on the maximal ideal space, X, of C∗(π(x), π(y)). Let x̂ and ŷ denote
the images of π(x) and π(y) under this isomorphism. Since both π(x) and
π(y) are positive, x̂(χ) ≥ 0 and ŷ(χ) ≥ 0 for all χ ∈ X. Since

x̂(1 + µ− µŷ) = (1− µ)ŷ + µ,

we have 1 + µ− µŷ(χ) > 0 for all χ ∈ X, and

x̂(χ) =
(1− µ)ŷ(χ) + µ

1 + µ− µŷ(χ)
.

The function t 7→ ((1 − µ)t + µ)(1 + µ − µt)−1 is strictly increasing for
t ∈ [0, 1 + 1/µ) and negative for t > 1 + µ−1. Consequently,

‖π(x)‖ =
(1− µ)‖π(y)‖+ µ

1 + µ− µ‖π(y)‖
. (4.11)

Since ‖π(x)‖ = ‖π(y)‖ = ‖π(z)‖2, (4.11) implies ‖π(z)‖ = 1, and hence all
representations satisfy

π(z)∗π(z) = ((1− µ)π(z)π(z)∗ + µ)(1 + µ− µπ(z)π(z)∗)−1.
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Thus we can define f in (4.1) as

f(x) =
(1− µ)x+ µ

1 + µ− µx
, x ∈ [0, 1].

Note that we have only defined f on an interval in this case. However, we can
either extend f continuously such that no other fixed points are introduced or
check that the theory holds also in this case. The iterations for k = 0, 1, . . . ,
are given by

fk(0) =
kµ

1 + kµ
.

Indeed, we have

fk+1(0) = f

(
kµ

1 + kµ

)
=

(1− µ)kµ+ µ(1 + kµ)

(1 + µ)(1 + kµ)− kµ2
=

(k + 1)µ

1 + (k + 1)µ
.

Again, we see that f has the unique fixed point 1 and that f(x) ≤ 1 for
all x ∈ [0, 1]. Therefore the Shilov boundary for A(D)f is given by the ideal
in Theorem 4.7.
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5 The Shilov boundary for a noncommuta-

tive analog of the holomorphic functions on

the unit ball of symmetric matrices

In [PT15], within the subject of quantum bounded symmetric domains, the
authors gave a description of the Shilov boundary for a noncommutative
analog of the algebra of holomorphic functions on the unit ball of the space
of complex 2 × 2 matrices. In this chapter we show that similar methods
can be used to describe the Shilov boundary for a q-analog of the algebra of
holomorphic functions on the unit ball of the space of symmetric complex
2× 2 matrices.

Throughout this chapter we let S, Cn, D ∈ B(`2(Z≥0)) denote the oper-
ators given by

Sek = ek+1, Cnek =
√

1− qnkek, Dek = qkek. (5.1)

Moreover, q denotes a real number such that 0 < q < 1.

5.1 Quantum groups

Quantum bounded symmetric domains is part of the realm of the theory of
quantum groups, which is a rich and vast subject with numerous applications
in mathematics and physics. It would be impossible to give a proper treat-
ment of this subject within the scope of this thesis. Instead we direct the
reader to the comprehensive monographs [Vak10] and [KS97]. For the sake
of motivation, however, let us give a brief demonstration, following [Vak01],
on how some of these concepts arise starting from a q-analog of the algebra
of polynomials on the space of complex n × n matrices C[Mn]q. It is worth
to keep in mind that if we set q = 1, these procedures yield the classical
constructions.

C[Mn]q is defined by its generators zαa , a, α = 1, . . . , n and the following
relations:

zαa z
β
b − qz

β
b z

α
a = 0, a = b, α < β or a < b, α = β

zαa z
β
b − z

β
b z

α
a = 0, a > b, α < β

zαa z
β
b − z

β
b z

α
a = (q − q−1)zβa z

α
b , a < b, α < β.

Our first goal is to define a q-analog of the regular functions on SU2. We
begin by introducing the quantum determinant for the matrix (zαa ):

detq(z
α
a ) =

∑
σ∈Sn

(−q)sgnσz
σ(1)
1 . . . zσ(n)

n .
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It can be shown that detq(z
α
a ) lies in the center of C[Mn]q, and hence C[Mn]q

can be localized with respect to the multiplicative system {detq(z
α
a )k : k ≥ 0}.

This algebra is known as the algebra of regular functions on the quantum
GLn and is denoted by C[GLn]q.

Next, we define an involution on C[GLn]q by

(zβb )∗ = (−q)b−β detq(z
α
a )−1detq (̂zαa )βb ,

where (̂zαa )βb denotes the matrix given by omitting the row β and column b
from the matrix (zαa ). The ∗-algebra C[Un]q = (C[GLn]q, ∗) is known as the
∗-algebra of regular functions on the quantum Un. Finally, we obtain the
∗-algebra of regular functions on the quantum SUn by defining C[SUn]q =
C[Un]q/(detq(z

α
a )− 1).

In the case n = 2, it can be shown that C[SU2]q can be defined in terms
of the generators tij, i, j = 1, 2, subject to the relations

t11t21 = qt21t11, t11t12 = qt12t11, t12t21 = t21t12

t22t21 = q−1t21t11, t22t12 = q−1t12t22

t11t22 − t22t11 = (q − q−1)t12t21, t11t22 − qt12t21 = 1

t∗11 = t22, t∗12 = −qt21.

It is well known (see, e.g., [Ber14] and references therein) that C[SU2]q admits
the irreducible representations πϕ, ϕ ∈ [0, 2π), acting on `2(Z≥0), which are
given by

πϕ(t11) = S∗C2, πϕ(t12) = −qe−iϕD
πϕ(t21) = eiϕD, πϕ(t22) = C2S.

Another q-analogue that we shall encounter is the ∗-algebra P (Cn)q, a
q-analog of the ∗-algebra of polynomials on Cn. P (Cn)q is generated by
z1, . . . , zn subject to the relations

zizj = qzjzi, i < j

z∗i zj = qzjz
∗
i , i 6= j

z∗i zi = q2ziz
∗
i +

(
1− q2

)(
1−

∑
i<j

zjz
∗
j

)
.

The irreducible representations of P (Cn)q are well known. For reasons that
become evident later, the representations that will be of interest to us is
for the particular case P (C)q2 . We have the following list of irreducible
representations of P (C)q2 , up to unitary equivalence:

(i) the Fock representation ρF acting on `2(Z≥0): ρF (z) = C4S;

(ii) one-dimensional representations ρϕ, ϕ ∈ [0, 2π): ρϕ(z) = eiϕ.
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5.2 The ∗-algebra P (Sym2)q and its representations

The ∗-algebra P (Sym2)q is a q-analog of the ∗-algebra of polynomials on the
space Sym2 of symmetric complex 2×2 matrices. By an analogous procedure
to the construction of C[SU2]q, P (Sym2)q can be obtained starting from
C[M2]q. In [Ber14], P (Sym2)q was directly defined in terms of the generators
z11, z21, z22 and the following list of relations:

z11z21 = q2z21z11, z21z22 = q2z22z21

z11z22 − z22z11 = q(q2 − q−2)z2
21

z∗11z11 = q4z11z
∗
11 − q(q−1 − q)(1 + q2)2z21z

∗
21 + (q−1 − q)2(1 + q2)z22z

∗
22 + 1− q4

z∗11z21 = q2z21z
∗
11 − q(q−2 − q2)z22z

∗
21

z∗11z22 = z22z
∗
11, z∗21z22 = q2z22z

∗
21

z∗21z21 = q2z21z
∗
21 − (1− q2)z22z

∗
22 + 1− q2

z∗22z22 = q4z22z
∗
22 + 1− q4.

It should be noted that this notation differs slightly from the above discussion
as well as the definition of P (Mn)q, a q-analog of the polynomials on the
space of complex 2 × 2 matrices, found in e.g. [PT15]. First of all, we see
that q has been replaced by q2. Moreover, since this definition concerns
polynomials defined on the space of symmetric matrices, the generator z12

is superfluous. For the sake of symmetry, however, one may include z12 as a
generator together with the relation z12 = qz21. By comparing the two first
rows with the relations for C[M2]q, we get the correspondence zij = zij. In
particular, we note that z1

2 = z12 = qz21.
The irreducible representations of P (Sym2)q, which we present in the

following theorem, were classified in [Ber14].

Theorem 5.1. The irreducible representations of P (Sym2)q up to unitary
equivalence are given by

(i) the Fock representation acting on `2(Z≥0)⊗3:

πF (z11) = I ⊗D2 ⊗ C4S − q−1S∗C4 ⊗ C2SC2S ⊗ I
πF (z21) = D2 ⊗ C2S ⊗ I
πF (z22) = C4S ⊗ I ⊗ I;

(ii) representations τϕ, ϕ ∈ [0, 2π), acting on `2(Z≥0)⊗2:

τϕ(z11) = eiϕI ⊗D2 − q−1S∗C4 ⊗ C2SC2S

τϕ(z21) = D2 ⊗ C2S

τϕ(z22) = C4S ⊗ I;
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(iii) representations ωϕ, ϕ ∈ [0, 2π), acting on `2(Z≥0):

ωϕ(z11) = −q−1e2iϕS∗C4

ωϕ(z21) = eiϕD2

ωϕ(z22) = C4S;

(iv) representations νϕ, ϕ ∈ [0, 2π), acting on `2(Z≥0):

νϕ(z11) = q−1C4S

νϕ(z21) = 0

νϕ(z22) = eiϕI;

(v) one-dimensional representations θϕ1,ϕ2, ϕ1, ϕ2 ∈ [0, 2π):

θϕ1,ϕ2(z11) = q−1eiϕ1

θϕ1,ϕ2(z21) = 0

θϕ1,ϕ2(z22) = eiϕ2 .

From the above list, it readily follows that P (Sym2)q is ∗-bounded. We let
C(D̄2)q denote the universal enveloping C∗-algebra of P (Sym2)q and A(D2)q
the closed subalgebra generated by z11, z21, and z22. The notation is chosen
since C(D̄2)q is a q-analog of the C∗-algebra of continuous functions on the
closed unit disk of symmetric complex 2 × 2 matrices D̄2 = {x ∈ Sym2 :
x∗x ≤ 1}.

We will now consider an alternative way of constructing representations
of P (Sym2)q which was presented in [Ber14], where representations were
constructed by composing maps from P (Sym2)q to ∗-algebras whose repre-
sentations are well known. The ∗-algebras that we have in mind are C[SU2]q
and P (C)q2 , which were discussed above.

The connection between representations of P (Sym2)q and C[SU2]q is given
by the following ∗-homomorphism of a coaction whose existence was indicated
in [Ber14].

Lemma 5.2. There is a ∗-homomorphism

∆ : P (Sym2)q → P (Sym2)q ⊗ C[SU2]q

given by

∆(zij) = z11 ⊗ t1it1j + qz21 ⊗ t1it2j + z21 ⊗ t2it1j + z22 ⊗ t2it2j.
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From the commutation relations it follows that the family of maps

Πϕ : P (Sym2)q → P (C)q2 ,

ϕ ∈ [0, 2π), defined on the generators of P (Sym2)q by

Πϕ(z11) = q−1z, Πϕ(z21) = 0, Πϕ(z22) = eiϕ

is a ∗-homomorphism. Defining

Fϕ = ρF ◦ Πϕ, χϕ1,ϕ2 = ρϕ1 ◦ Πϕ2 ,

we obtain two families of representations of P (Sym2)q:

(Fϕ ⊗ π0) ◦∆, (χϕ1,ϕ2 ⊗ π0) ◦∆,

where ϕ, ϕ1, ϕ2 ∈ [0, 2π). Evaluated on the generators, we have

(Fϕ ⊗ π0) ◦∆(z11) = q−1ρF (z)⊗ π0(t11)2 + eiϕI ⊗ π0(t21)2

= q−1C4S ⊗ S∗C2S
∗C2 + eiϕI ⊗D2

(Fϕ ⊗ π0) ◦∆(z21) = q−1ρF (z)⊗ π0(t12)π0(t11) + eiϕI ⊗ π0(t22)π0(t21)

= −q−1C4S ⊗ S∗C2D + eiϕI ⊗ C2SD

(Fϕ ⊗ π0) ◦∆(z22) = q−1ρF (z)⊗ π0(t12)2 + eiϕI ⊗ π0(t22)2

= qC4S ⊗D2 + eiϕI ⊗ C2SC2S

and

(χϕ1,ϕ2 ⊗ π0) ◦∆(z11) = q−1eiϕ1S∗C2S
∗C2 + eiϕ2D2

(χϕ1,ϕ2 ⊗ π0) ◦∆(z21) = −q−1eiϕ1S∗C2D + eiϕ2C2SD

(χϕ1,ϕ2 ⊗ π0) ◦∆(z22) = qeiϕ1D2 + eiϕ2C2SC2S.

(5.2)

Lemma 5.3. The representation (Fϕ ⊗ π0) ◦ ∆, ϕ ∈ [0, 2π), is irreducible
and unitarily equivalent to τϕ.

Proof. In order to prove this result, we shall utilize the properties of coherent
representations of ∗-algebras allowing Wick ordering, which were investigated
in [JSW95]. Define Ω = e0⊗e0. It is straightforward to verify that Ω is cyclic
for all representations τϕ and (Fϕ ⊗ π0) ◦∆, ϕ ∈ [0, 2π), and

τϕ(z11)∗Ω = (Fϕ ⊗ π0) ◦∆(z11)∗Ω = e−iϕΩ

τϕ(z21)∗Ω = (Fϕ ⊗ π0) ◦∆(z21)∗Ω = 0

τϕ(z22)∗Ω = (Fϕ ⊗ π0) ◦∆(z22)∗Ω = 0.
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Therefore both τϕ and (Fϕ⊗π0)◦∆ determine coherent representations of the
Wick algebra corresponding to P (Sym2)q with equal coherent state. Since
a coherent representation of a Wick algebra is irreducible and unique up to
unitary equivalence, this proves the lemma.

This observation will allow us to prove the following result, which will
reveal a lot of information of the structure of C(D̄2)q. We will show that the
Fock representation is in fact faithful, and as a consequence it follows that
C(D̄2)q is ∗-isomorphic to the C∗-algebra generated by the Fock representa-
tion.

The key observation to the proof is that the above lemma allows us to
construct ∗-homomorphisms from C∗(πF (P (Sym2)q)) into C∗(π(P (Sym2)q)),
where π is any irreducible representation of P (Sym2)q. This will imply
‖π(x)‖ ≤ ‖πF (x)‖, from which the result follows.

Theorem 5.4. The Fock representation πF of C(D̄2)q is faithful, and conse-
quently C(D̄2)q is ∗-isomorphic to C∗(πF (P (Sym2)q)).

Proof. Consider the closed subspace H of L2(T) spanned by the orthonormal
basis {zn : n ≥ 0}, and let Tz be the operator on H defined by Tzh = zh,
h ∈ H. Since Tzek = ek+1, we see that Tz is unitarily equivalent to S.
Thus for ϕ ∈ [0, 2π), we can define a ∗-homomorphism Θϕ : C∗(S) → C by
Θϕ(S) = eiϕ which is given by the composition

C∗(S) −→ C(T)
ϕ−→ T,

where the last arrow corresponds to evaluation at ϕ.
The operators in (5.1) satisfy

C2
n = (1− qn)

∞∑
k=0

qnkSk+1(S∗)k+1

D =
∞∑
k=0

qk
(
Sk(S∗)k − Sk+1(S∗)k+1

)
,

(5.3)

and hence Cn, D ∈ C∗(S). Moreover, we have Θϕ(Cn) = 1 and Θϕ(D) = 0.
We note that C∗(πF (P (Sym2)q)) ⊂ C∗(S)⊗3 and similarly for the other

representations. By letting Θϕ act on the last factor in the tensor products,
we get the ∗-homomorphisms

C∗(πF (P (Sym2)q))
I⊗I⊗Θϕ−−−−−→ C∗(τϕ(P (Sym2)q))

I⊗Θϕ−−−→ C∗(ωϕ(P (Sym2)q)).
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By letting Θ0 act on the last factor in the tensor product for (Fϕ ⊗ π0) ◦∆,
by Lemma 5.3, we get a ∗-homomorphism

C∗(τϕ(P (Sym2)q))→ C∗((Fϕ⊗π0)◦∆(P (Sym2)q)))
I⊗Θ0−−−→ C∗(νϕ(P (Sym2)q)),

and by letting Θϕ1 act on νϕ2 , ϕ1, ϕ2 ∈ [0, 2π), we get a ∗-homomorphism

C∗(νϕ2(P (Sym2)q))
Θϕ1−−→ C∗(θϕ1,ϕ2(P (Sym2)q)).

Thus for all x ∈ P (Sym2)q and all irreducible representations π of P (Sym2)q,
‖π(x)‖ ≤ ‖πF (x)‖ since ∗-homomorphisms of C∗-algebras are contractive.
By the definition of C(D̄2)q, it readily follows that the ∗-homomorphism

πF : C(D̄2)q → C∗(πF (P (Sym2)q))

is a ∗-isomorphism.

5.3 The Shilov boundary for A(D2)q

We are now ready to state and prove the main result of this chapter.

Theorem 5.5. Let J be the closed ideal in C(D̄2)q generated by

q2z11z
∗
11 + q4z21z

∗
21 − 1

z21z
∗
21 + z22z

∗
22 − 1

z21z
∗
11 + qz22z

∗
21.

Then J is the Shilov boundary for A(D2)q.

From the above discussion of representations of P (Sym2)q, we have the
following result on which representations annihilate the ideal J , whose proof
is a straightforward verification.

Lemma 5.6. The representations ωϕ and θϕ1,ϕ2, ϕ, ϕ1, ϕ2 ∈ [0, 2π), are
the only irreducible representations of P (Sym2)q that annihilate the ideal J .
Moreover, any representation (χϕ1,ϕ2 ⊗ π0) ◦∆, ϕ1, ϕ2 ∈ [0, 2π), annihilates
J .

We can now prove the first part of Theorem 5.5.

Theorem 5.7. The ideal J is a boundary ideal for A(D2)q.
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Proof. Since C(D̄2)q/J is a noncommutative analog of the C∗-algebra of
continuous functions on the Shilov boundary, we use the suggestive nota-
tion C(S(D̄2))q = C(D̄2)q/J . By the previous lemma, any representation
(χϕ1,ϕ2 ⊗ π0) ◦ ∆, ϕ1, ϕ2 ∈ [0, 2π), annihilates J . Thus we have a family of
∗-homomorphisms

C(S(D̄2))q → C∗((χϕ1,ϕ2 ⊗ π0) ◦∆(P (Sym2)q))

given by b+ J 7→ (χϕ1,ϕ2 ⊗ π0) ◦∆(b), and consequently

sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗ π0) ◦∆(bij))‖ ≤ ‖(bij + J)‖

for all (bij) ∈ Mn(C(D̄2)q). Since the quotient map q : C(D̄2)q → C(S(D̄2))q
is a ∗-homomorphism, q and consequently q|A(D2)q is a complete contraction.
It is therefore sufficient to prove that

‖(aij)‖ = ‖(πF (aij))‖ ≤ sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗ π0) ◦∆(aij))‖

for all (aij) ∈Mn(A(D2)q).
We note that the operator C4S is a contraction on H = `2(Z≥0). By

Sz.-Nagy’s dilation theorem, there exists a unitary operator U on a Hilbert
space K containing H as a subspace such that (C4S)n = PHU

n|H for all
n ≥ 0. Consider the map Ψ into B(H⊗2 ⊗K) defined on the generators of
P (Sym2)q by

Ψ(z11) = I ⊗D2 ⊗ U − q−1S∗C4 ⊗ C2SC2S ⊗ I
Ψ(z21) = D2 ⊗ C2S ⊗ I
Ψ(z22) = C4S ⊗ I ⊗ I.

It is readily verified that this map extends uniquely to a representation of
P (Sym2)q on H⊗2⊗K. By the spectral theorem, Ψ can be written as a direct
integral representation of the field of representations {τϕ : ϕ ∈ [0, 2π)}, i.e.,

Ψ =

∫ ⊕
[0,2π)

τϕ ⊗ Iϕ dµ(ϕ).

For ξ ∈ H⊗2 ⊗K, we have

‖Ψ(b)ξ‖2 =

∫ 2π

0

‖τϕ ⊗ Iϕ(b)ξ(ϕ)‖2 dµ(ϕ) ≤ sup
ϕ∈[0,2π)

‖τϕ(b)‖2‖ξ‖2.
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Thus ‖Ψ(b)‖ ≤ supϕ∈[0,2π) ‖τϕ(b)‖ for all b ∈ C(D̄2)q, and since Ψ induces a

representation on Mn(C(D̄2)q), similar arguments show that

‖(Ψ(bij))‖ ≤ sup
ϕ∈[0,2π)

‖(τϕ(bij))‖

for all (bij) ∈Mn(C(D̄2)q). Since πF (a) = (I ⊗ I ⊗ PH)Ψ(a)|H⊗3 , we get

‖(πF (aij))‖ ≤ sup
ϕ∈[0,2π)

‖(τϕ(aij))‖ (5.4)

for all (aij) ∈Mn(A(D2)q).
Our next step is to show that, for all ϕ ∈ [0, 2π),

‖(τϕ(aij))‖ ≤ sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗ π0) ◦∆(aij))‖

for all (aij) ∈Mn(A(D2)q). Similar to the previous step, we consider the map
Ψϕ into B(K ⊗H) defined on the generators of P (Sym2)q by

Ψϕ(z11) = q−1U ⊗ S∗C2S
∗C2 + eiϕI ⊗D2

Ψϕ(z21) = −q−1U ⊗ S∗C2D + eiϕI ⊗ C2SD

Ψϕ(z22) = qU ⊗D2 + eiϕI ⊗ C2SC2S.

It is readily verified that Ψϕ extends to a representation of C(D̄2)q on K⊗H.
By (5.2) and the spectral theorem, Ψϕ can be written as a direct integral
representation of the field of representations {(χϕ1,ϕ⊗π0)◦∆ : ϕ1 ∈ [0, 2π)},
i.e.,

Ψϕ =

∫ ⊕
ϕ1∈[0,2π)

(χϕ1,ϕ ⊗ π0) ◦∆⊗ Iϕ1 dµ(ϕ1).

For ξ ∈ K ⊗H, we have

‖Ψϕ(b)ξ‖2 =

∫ 2π

0

‖(χϕ1,ϕ ⊗ π0) ◦∆⊗ Iϕ1(b)ξ(ϕ1)‖2 dµ(ϕ1)

≤ sup
ϕ1∈[0,2π)

‖(χϕ1,ϕ ⊗ π0) ◦∆(b)‖2

∫ 2π

0

‖ξ(ϕ1)‖2 dµ(ϕ1)

= sup
ϕ1∈[0,2π)

‖(χϕ1,ϕ ⊗ π0) ◦∆(b)‖2‖ξ‖2.

Thus
‖Ψϕ(b)‖ ≤ sup

ϕ1∈[0,2π)

‖(χϕ1,ϕ ⊗ π0) ◦∆(b)‖
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for all b ∈ C(D̄2)q. Since Ψ induces a representation on Mn(C(D̄2)q), similar
arguments show that

‖(Ψϕ(bij))‖ ≤ sup
ϕ1∈[0,2π)

‖((χϕ1,ϕ ⊗ π0) ◦∆(bij))‖

for all (bij) ∈Mn(C(D̄2)q). Since

(Fϕ ⊗ π0) ◦∆(a) = (PH ⊗ I)Ψϕ(a)|H⊗2

and
‖τϕ(a)‖ = ‖(Fϕ ⊗ π0) ◦∆(a)‖

for all a ∈ A(D2)q, we have

‖τϕ(a)‖ ≤ ‖Ψϕ(a)‖ ≤ sup
ϕ1,ϕ2∈[0,2π)

‖(χϕ1,ϕ2 ⊗ π0) ◦∆(a)‖.

By a similar argument, we have

‖(τϕ(aij))‖ ≤ sup
ϕ1,ϕ2∈[0,2π)

‖((χϕ1,ϕ2 ⊗ π0) ◦∆(aij))‖ (5.5)

for all (aij) ∈Mn(A(D2)q). By combining the inequalities (5.4) and (5.5), we
get the desired statement.

Lemma 5.8. If π is a representation of P (Sym2)q that annihilates J , then

‖π(x)‖ ≤ sup
ϕ∈[0,2π)

‖ωϕ(x)‖

for all x ∈ P (Sym2)q.

Proof. Let x be an element in P (Sym2)q. Without loss of generality, we may
assume that x is self-adjoint. Let g be a pure state such that |g(π(x))| =
‖π(x)‖, and let πg and ξg be the irreducible representation and unit vector
obtained from the GNS construction applied to g. This gives

‖π(x)‖ = |g(π(x))| = |〈πg ◦ π(x)ξg, ξg〉| ≤ ‖πg ◦ π(x)‖,

and since πg ◦ π is an irreducible representation that annihilates J , πg ◦ π
is unitarily equivalent to either ωϕ for some ϕ ∈ [0, 2π) or θϕ1,ϕ2 for some
ϕ1, ϕ2 ∈ [0, 2π). Thus it is sufficient to prove that

|θϕ1,ϕ2(x)| ≤ sup
ϕ∈[0,2π)

‖ωϕ(x)‖
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for all x ∈ P (Sym2)q and ϕ1, ϕ2 ∈ [0, 2π).
It is readily verified that Θϕ2 induces a ∗-homomorphism

C∗(ω(ϕ1+ϕ2+π)/2(P (Sym2)q))→ C∗(θϕ1,ϕ2(P (Sym2)q)),

where each generator ω(ϕ1+ϕ2+π)/2(zij) is mapped to θϕ1,ϕ2(zij). Thus

|θϕ1,ϕ2(x)| ≤ ‖ω(ϕ1+ϕ2+π)/2(x)‖ ≤ sup
ϕ∈[0,2π)

‖ωϕ(x)‖

for all x ∈ P (Sym2)q and ϕ1, ϕ2 ∈ [0, 2π), which proves the lemma.

Theorem 5.9. The ideal J contains all other boundary ideals.

Proof. Let I be a boundary ideal such that I ⊃ J . Since any representation
ωϕ, ϕ ∈ [0, 2π), annihilates J , ωϕ induces a representation ω̇ϕ of C(S(D̄2))q
given by ω̇ϕ(zij + J) = ωϕ(zij). Define

K = {ϕ ∈ [0, 2π) : ωϕ(I) = 0} .

Since I/J ⊂ ∩ϕ∈K Ker ω̇ϕ, we have I = J if⋂
ϕ∈K

Ker ω̇ϕ = {0}.

We claim that it is sufficient to prove that K is dense in [0, 2π). Indeed,
suppose that x lies in Kerωϕ for all ϕ ∈ K. If K is dense in [0, 2π), it follows
by Lemma 5.8 that π(x) = 0 for all representations π that annihilate J .
If we identify C(S(D̄2))q with a concrete C∗-algebra of operators, then the
quotient map q : C(D̄2)q → C(S(D̄2))q can be considered as a representation
of C(D̄2)q that annihilates J , which implies q(x) = 0, and hence x ∈ J .

Since the quotient maps q : C(D̄2)q → C(S(D̄2))q and r : C(D̄2)q →
C(D̄2)q/I ∼= C(S(D̄2))q/(I/J) are isometries when restricted to A(D2)q, we
have that for all a ∈ A(D2)q,

‖a+ J‖ = ‖a‖ = ‖a+ J + I/J‖, (5.6)

and hence the quotient map s : C(S(D̄2))q → C(S(D̄2))q/(I/J) is an isometry
when restricted to A(D2)q/J .

From the list of representations it is easy to see that ‖z21 +J‖ ≤ 1. Thus
for a holomorphic function f ∈ A(D2), we have f(z21 + J) ∈ A(D2)q/J , and
hence, by (5.6),

‖f(z21 + J)‖ = ‖f(z21 + J + I/J)‖. (5.7)
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Since ωϕ and θϕ1,ϕ2 , ϕ, ϕ1, ϕ2 ∈ [0, 2π), are the only irreducible representa-
tions that annihilate J , Lemma 5.8 gives

‖f(z21 + J)‖ = sup
ϕ∈[0,2π)

‖f(ωϕ(z21))‖ =

= sup

{
|f(ζ)| : ζ ∈

⋃
k≥0

q2kT

}
= sup

ζ∈T
|f(ζ)| = sup

ζ∈D̄
|f(ζ)|,

where the last two equalities follows from the maximum modulus principle.
If π is an irreducible representation of C(S(D̄2))q/(I/J) which does not

vanish on z21+J+I/J , then π◦s is an irreducible representation of C(S(D̄2))q
which does not vanish on z21 + J . Since π ◦ s(I/J) = 0, π ◦ s is unitarily
equivalent to ω̇ϕ for some ϕ ∈ K. Thus

‖f(z21 + J + I/J)‖ =

= sup
π
{‖f(π ◦ s(z21))‖} = max

{
sup
ϕ∈K
‖f(ωϕ(z21))‖, |f(0)|

}
= sup

{
|f(ζ)| : ζ ∈

⋃
k≥0

q2kXK

}
,

where π ranges over the irreducible representations of C(S(D̄2))q/(I/J) and
XK = {eiϕ : ϕ ∈ K}. By (5.7),

sup

{
|f(ζ)| : ζ ∈

⋃
k≥0

q2kXK

}
= sup

ζ∈D̄
|f(ζ)|,

and hence, by the maximum modulus principle, ∪k≥0q2kXK contains T.
Therefore T ⊂ XK ⊂ T, and thus K is dense in [0, 2π).

Theorem 5.7 and 5.9 together proves Theorem 5.5.
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