
0.00

0.05

0.10

0.15
Svårt

0.00

0.05

0.10

0.15

0.20

Andas

0.00

0.05

0.10

0.15

Ont

DetCN

DetQuant UseN

DefArt NumSg andning_nn_1_N

Training set

Validation set

iKnow Calculate
parameters

score.py

All calls
threshold.py

Calculate
score

Automatised analysis of emergency calls
using Natural Language Processing
Bachelor of Science Thesis in Computer Science and Engineering

Emarin Andersson, Benjamin Eriksson, Sofia Holmberg, Hossein Hussain, Lovisa Jäberg, Erik Thorsell

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Gothenburg, Sweden 2016

Bachelor of Science thesis

Automatised analysis of emergency calls
using Natural Language Processing

Emarin Andersson, Benjamin Eriksson, Sofia Holmberg,
Hossein Hussain, Lovisa Jäberg, Erik Thorsell

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden 2016

Automatised analysis of emergency calls
using Natural Language Processing

Emarin Andersson
Benjamin Eriksson
Sofia Holmberg
Hossein Hussain
Lovisa Jäberg
Erik Thorsell

© Emarin Andersson, 2016
© Benjamin Eriksson, 2016
© Sofia Holmberg, 2016
© Hossein Hussain, 2016
© Lovisa Jäberg, 2016
© Erik Thorsell, 2016

Supervisors: Magnus Almgren, Dep. of Computer Science and Engineering
Marina Papatriantafilou, Dep. of Computer Science and Engineering

Examiner: Arne Linde, Dep. of Computer Science and Engineering

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it acces-
sible on the Internet. The Author warrants that he/she is the author to the Work, and warrants
that the Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher
or a company), acknowledge the third party about this agreement. If the Author has signed a
copyright agreement with a third party regarding the Work, the Author warrants hereby that
he/she has obtained any necessary permission from this third party to let Chalmers University of
Technology and University of Gothenburg store the Work electronically and make it accessible on
the Internet

Cover:
An overview of the methods utilised to analyse the emergency calls.

Department of Computer Science and Engineering
Gothenburg, Sweden 2016

iv

Automatised analysis of emergency calls
using Natural Languague Processing

Emarin Andersson
Benjamin Eriksson
Sofia Holmberg
Hossein Hussain
Lovisa Jäberg
Erik Thorsell

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Bachelor of Science Thesis

Abstract

The operators at SOS Alarm receives thousands of calls each day at the different emergency medical
communication centres, owned by SOS Alarm, all over Sweden. A subset of these calls contain
room for improvement and the operators could learn to improve from these calls. The work of
finding – and analysing – these calls is however too tedious to be done by a human. This thesis
presents four automatised solutions to this issue. The human factor is removed and the job of
finding and analysing the calls is done by a computer.

It is shown that it is possible to partly automatise the analysis, but the methods used have
different strengths and weaknesses. Word frequency analysis is proven adequate at key word look-
up. Similarity comparisons of various aspects of the calls are proven good at classifying calls,
but less good at answering specific questions. Comparing parse trees seems promising, but the
technology needs more work before it is ready to be used.

The solutions presented show that it could be possible to automatise the analysis of the calls given
that the right questions are asked and the results from these are used appropriately.

Keywords: emergency medical dispatcher, EMD, emergency medical communication centre,
EMCC, SOS Alarm, natural language processing, iKnow, gensim, CoreNLP, Grammatical Frame-
work

v

Sammanfattning

Det inkommer tusentals samtal varje dag till operatörerna på SOS Alarms nödcentraler. I en
delmängd av dessa samtal finns det rum för förbättringar och operatörerna kan lära av dessa
samtal. Att hitta och analysera dessa samtal är dock allt för tidskrävande för att göras manuellt.
Det här arbetet presenterar fyra tekniker för att automatisera processen med utgallring av samtal.
Den mänskliga faktorn tas bort och arbetet görs istället av en dator.

Det är möjligt att till viss del automatisera analysprocessen, med hjälp av “natural language
processing” (processande av naturliga språk). De olika metoderna som används har olika för- och
nackdelar. Att räkna frekvensen av vissa ord visar sig lyckat för att besvara frågor med relevanta
nyckelord. Att jämföra hela samtal mer matematiskt visar sig bra för att kategorisera hela samtal,
men inte lika bra för att svara på specifika frågor om ett samtal. Sist används grammatiska träd
för att jämföra samtal och även om tekniken verkar lovande behövs det mycket arbete innan den
går att använda.

Lösningen som presenteras visar att det kan vara möjligt att automatisera analysen av samtalen,
givet att rätt frågor ställs och att resultaten från dessa används på rätt sätt.

Nyckelord: SOS-operatör, larmcentral, processande av naturliga språk

vii

Acknowledgements

The authors of this bachelor thesis would like to thank their supervisors Magnus Almgren and
Marina Papatriantafilou. Magnus, for your dedication and willingness to go beyond your obligations
to help us perform our best. Marina, for your input on our presentation and advice with respect
to our group’s dynamics. We would also like to thank professor Aarne Ranta, for taking his time
to talk to us and show us his work, and our examiner Arne Linde, for the feedback given during
the course.

Emarin Andersson, Gothenburg, May 2016
Benjamin Eriksson
Sofia Holmberg
Hossein Hussain
Lovisa Jäberg
Erik Thorsell

ix

Glossary

AMI Acute Medical Index (Guide to what questions the EMD are to
ask the caller.)

CC Concept-Concept is an iKnow data structure that consists of two
related concepts.

Concept A concept is an iKnow data structure that represents a word with
meaning, i.e. not fillers.

CRC Concept-Relation-Concept is an iKnow data structure that consists of
two concepts and a relation between them.

EMCC Emergency Medical Communication Centre

EMD Emergency Medical Dispatcher, also called SOS operator.

Fillers A word that does not add information to a sentence. Examples
are: “Öh”, “Ehrm” and “Eh”.

iKnow A tool for Natural Language Processing

NLP Natural Language Processing

Regex Regular expression, a way to describe sequences of characters
often used to find sequences of certain interest.

RN Registered Nurse

SOS Alarm The company responsible for Sweden’s emergency medical
communication centres.

xi

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Scope . 2
1.4 Problem specification . 3

1.4.1 How to define the quality of a call . 3
1.4.2 How the transcription affects the analysis’ quality 3

2 Methodical Considerations for Analysing Emergency Calls 5
2.1 The ethical aspect of the project . 5
2.2 The origin of the assessment protocol . 5
2.3 The criteria for the choice of software . 6

2.3.1 Software chosen for text analysis . 6
2.3.2 Software chosen for speech recognition . 7

3 Theory 9
3.1 Natural Language Processing . 9
3.2 Regular Expressions . 10
3.3 Representing words and phrases using vectors . 10
3.4 Statistical validation . 10

3.4.1 K-fold cross validation . 11
3.5 Graph distance algorithms . 11

3.5.1 Average distance in graphs . 11
3.5.2 Distance to centre in graphs . 11
3.5.3 K-nearest neighbour . 12

3.6 Applications used for speech recognition . 12
3.6.1 iSpeechWriter . 12
3.6.2 Speech Recognition on Docs . 12

3.7 Applications used to analyse the transcribed calls 13
3.7.1 iKnow . 13
3.7.2 Gensim . 14
3.7.3 CoreNLP . 14
3.7.4 Grammatical Framework . 14

4 Implementation 15
4.1 Analysis of the assessment protocol . 15
4.2 Manipulation of the transcribed calls . 16

4.2.1 Manipulation for transcription consistency 17
4.2.2 Removing the caller from the calls . 17

4.3 The functionality of iKnow . 17
4.3.1 The iKnow Similarity function . 17

4.4 Classification of calls using Score.py . 18
4.5 Validation and optimisation using Threshold.py . 18

xiii

Contents

4.6 Using gensim to vectorise calls . 19
4.7 Developing Swedish modules for CoreNLP . 19

4.7.1 Part of Speech-tagging . 19
4.7.2 Neural network dependency parsing . 20

4.8 Answering the KI-Protocol using Solve.py . 21
4.8.1 Solvers using the output of CoreNLP . 21
4.8.2 Solvers using word frequency analysis . 21
4.8.3 Categorising calls as high or low quality using Solve.py 22

4.9 Implementing Grammatical Framework . 23
4.9.1 Python program to solve question S 2.12 . 23

4.10 Testing of speech recognition . 24

5 Results 25
5.1 Results using iKnow’s Similarity function . 25

5.1.1 iKnow Similarity Concept Search . 25
5.1.2 iKnow Similarity CRC Search . 26

5.2 Gensim . 27
5.2.1 Gensim similarity search . 27

5.3 Solve.py . 28
5.3.1 Answer questions in the KI-protocol . 28
5.3.2 Classify calls as low or high quality . 29

5.4 Grammatical Framework . 29
5.5 Speech recognition . 30

5.5.1 iSpeechWriter . 30
5.5.2 Speech Recognition on Docs . 30
5.5.3 Analysing calls transcribed with a speech recognition software 30

6 Discussion 33
6.1 Discussion of the results produced by iKnow . 33
6.2 Discussion of how manipulation of calls affect iKnow 33
6.3 Classifying calls using gensim . 34
6.4 Solve.py’s ability to answer questions . 34
6.5 Solve.py’s ability to classify calls . 34
6.6 Discussion of the results produced by GF . 35
6.7 The possibility to classify speech recognition calls 35
6.8 Sources of error and future recommendations . 35

6.8.1 Increasing the number of calls . 35
6.8.2 Quantifying quality correctly . 36
6.8.3 The importance of a good corpus . 36
6.8.4 Using the concept of similarity to answer questions 36
6.8.5 Social, economic and environmental impacts 36

7 Conclusion 37

Bibliography 39

A Appendix I
A.1 SOS Alarm quality assessment protocol . II
A.2 KI-protocol . III

xiv

1
Introduction

Natural Language Processing (NLP) is the process of analysing and deriving meaning from a text.
It is one of the most difficult tasks in the field of computer science [1]. This thesis discusses the
possibility to utilise NLP to digitally analyse emergency calls received at the Swedish Emergency
Medical Communication Centres (EMCCs) operated by SOS Alarm.

1.1 Background

Every year, more than 3 000 000 calls to the Swedish emergency number 112 are received at the
Emergency Medical Communication Centres (EMCCs) run by SOS Alarm, and the number is
increasing [2]. SOS Alarm consists of fifteen call centres all around the country. A call is answered
by any SOS operator at one of the call centres regardless of the position of the caller. It is the
SOS operator’s job to determine what has happened, where it has happened, what help is needed
and, in case of a medical emergency, set an ambulance priority [3]. A second SOS operator can
connect to the call as a listener and help out with notifying the necessary emergency services such
as ambulance, fire department or police. To aid the SOS operator, a Registered Nurse (RN) can
connect to an ongoing call, and answer more specific medical questions. Despite this, the SOS
operator occasionally fails to identify acute medical situations. For instance, Lindström et al.
found that an SOS operator only identifies about 50-70 % of situations involving patients suffering
from cardiac arrest, acute myocardial infarction, or stroke [4].

The act of sorting and prioritising patients is called triaging. To perform triage when one cannot
see the patient is a notoriously difficult task [5, 6, 7]. Add to this finite resources in the form of
ambulances and for example a panic stricken or intoxicated caller and it is easy to see that the
position as an SOS operator is demanding [8].

Figure 1.1: A SOS operator at work. © SOS Alarm

1

1. Introduction

SOS Alarm has high staff turnover [9]. The recruitment process and education of a new SOS
operator can take over 6 months [10], which is why SOS Alarm is keen to keep their experienced
staff for as long as possible.

The importance of the SOS operator’s work cannot be overstated and it is of great interest to
SOS Alarm, and the Swedish population, to minimise the number of incorrect assessments. An
incorrect assessment costs money [11] and if an ambulance is sent when not really needed it is
possible that a patient in actual need of help is unable to get help in time. In order to decrease
the number of incorrect assessments, all SOS operator’s use the Acute Medical Index (AMI). This
is a guide to what questions to ask the caller, and what priority to assign. There are four different
priorities where prio 1 is the most urgent, and prio 4 is the least urgent, priority [3].

SOS Alarm also analyse calls retrospectively to find issues in old calls that can be used to improve
future calls. In a low quality – or “bad” – call it is important to the SOS operator and SOS
Alarm to pinpoint what went wrong and how to improve. Likewise a high quality – or “good” –
call can serve as an example. For the time being, the analysis of incoming calls is something of
an evaluation of each person working at SOS Alarm, with the purpose of improving the way the
operators approach their callers. This is currently done by manually analysing a random set of
five calls received by each operator, in a group. The discussion concentrates on a set of predefined
questions that can be found in appendix A.1. This means only a small subset of the total number
of calls are analysed. An automated process would be beneficial to SOS Alarm as more calls could
be analysed and problematic calls could be caught and further studied.

Karolinska Institutet (KI) has an ongoing research project involving SOS Alarm, Lindholmen
Science Park and InterSystems, dedicated to exploring the possibilities for digitally analysing
emergency calls received at SOS Alarm. Katarina Bohm at KI [12] has developed an assessment
protocol (appendix A.2) – from now on referred to as the KI-protocol in this thesis. The KI-protocol
consists of 25 questions designed to measure the quality of a medical emergency call.

1.2 Purpose

The purpose of this thesis is to offer an in-depth computer science angle concerning the possibility
of digitally analysing incoming calls at SOS Alarm. I.e. classifying the calls in accordance to their
quality, as is determined by the KI-protocol. This thesis will further evaluate whether it is possible
to automate the analytical process. This includes, but is not limited to, evaluating the following
questions:

• If the KI-protocol contains questions answerable by a computer, or if it is possible to improve
the questions to better be suited for digital analysis?

• Available software to be used for digital analysis?

• If it is possible to digitally transcribe an emergency call using a speech recognition software?

1.3 Scope

Of the 3 000 000 calls received at SOS Alarm every year, approximately 30% are calls categorised
as medical calls [13]. This amounts to approximately 2 500 medical calls per day. SOS Alarm
has provided 67 manually transcribed, authentic, emergency calls for assessment. These include
50 high quality and 17 low quality calls, as classified by a team led by Katarina Bohm using the
KI-protocol. The thesis will focus on these calls, but it is important that the result generalises well
to a larger set of calls.

2

1. Introduction

The KI-protocol will be used to evaluate all calls. Should any software be able to give further
quality indicators those will be noted and, if time permits, used.

To test the medical accuracy of the KI-protocol is beyond the scope of this thesis. The testing will
therefore focus on finding out if the questions in the KI-protocol can be answered by a computer,
not whether or not the questions are the right questions to ask from a medical perspective.

Implementing any system will cost money. The thesis will not take any financial aspects into
consideration.

1.4 Problem specification

For the purpose of structure and manageability, the project has been divided into two sub tasks.
The first task focuses on how to define the actual quality of a call. The second task focuses on how
the transcription quality affects the analysis.

1.4.1 How to define the quality of a call

In order to verify the correctness of a future program’s ability to answer the questions, a solutions
manual will be used. This manual was provided by Bohm and contains the answer to each question
in the KI-protocol, for each call.

It is important to note that the quality of a call is independent of the outcome of said call. It is
solemnly the SOS operator’s ability to assess a call that is to be classified.

1.4.2 How the transcription affects the analysis’ quality

How a call is transcribed will most likely affect a program’s ability to “interpretate” the information
in the text. A human can “read between the lines” and “fill in the blanks”, but this might prove
more difficult for a computer. A developer focused on NLP has to take this into consideration.
Testing will have to be done in order to find out what makes a transcription good and where the
limit of a software’s ability to understand text is drawn.

The calls provided are formatted in similar, but not identical, ways. Tests will be performed to
determine if this affects the analysis.

3

1. Introduction

4

2
Methodical Considerations for
Analysing Emergency Calls

Chapter 1 introduced the intricate problem of analysing emergency calls. This chapter will take
a look at the ethical aspect of the project and the KI-protocol will be introduced. Further the
criteria for, and the final choice of, software is presented.

2.1 The ethical aspect of the project

This thesis required handling of sensitive data which is why the ethical aspect of the work was of
utmost importance. The transcribed calls entrusted to the project were anonymised, but it was
important to consider unexpected scenarios. The project guaranteed complete confidentiality and
that no person could trace any transcribed call back to its origin.

To ensure confidentiality the data was stored on USB flash drives, and these were kept in a safe
when not in use by anyone in the research group. The safe also held a log book where each member
wrote the time and date they used a particular drive. The drives were all AES encrypted [14].
This ensured that if a drive was lost, no one, without the right tools and passwords, would be able
to acquire the data.

Additional precautions had to be taken in order to ensure the privacy of the callers. Throughout
the project the mindset of everyone involved had to be: “If I knew this person, would I be able to
tell whether he or she made this call, given this information?”. Could information in a table give
someone away? A quote? An appendix note? No information that fit the previous descriptions
could be allowed into the upcoming thesis.

2.2 The origin of the assessment protocol

The KI-protocol in appendix A.2 was developed by Katarina Bohm and her team at KI and is based
on the article “Barriers and opportunities in assessing calls to emergency medical communication
centre, a qualitative study” [4]. The protocol consist of a set of questions suitable for determining
the quality of a given call.

Bohm has given the questions weights to stress positive and negative effects on a call by a particular
circumstance. E.g. a positive answer to question number E 1.4 – “Language barriers of the caller?”
has a negative weight since language barriers will prevent the assessment of the situation done by
the SOS operator. On the other hand, if the operator asks questions about what the caller talks
about, if question Z 3.7 –“Does the SOS operator ask questions about what the caller has told?” is
answered with “Yes”, then the quality of the call increases. The question has therefore been given
a positive weight. Some questions can be considered neutral, i.e. they neither lower or raise the
quality of a call. E.g. question B 1.1 – “Where is the call made from?”.

5

2. Methodical Considerations for Analysing Emergency Calls

This project will not focus on the correctness of the KI-protocol, as mentioned in section 1.3.
Despite this, it is important to keep in mind that the KI-protocol can be a possible source of error.
A change of either a question or a weight might result in a dramatically different outcome in the
accuracy of the used NLP algorithms.

2.3 The criteria for the choice of software

In an early stage of the project, a large portion of time was spent to research what software to be
used for the analysis. It was clear that the software had to be able to analyse text and present
some sort of result suitable for answering our questions. Besides, several aspects had to be taken
into consideration; these included (but were not limited to) the following:

• Does the software support analysing Swedish texts?
If not, is it possible to implement such functionality?

• Is the software free of charge?
If not, are there resources to be spent on additional software?

• Is the software available for the desired platforms?
I.e. can it run on the hardware available? This project made use of various Linux distribu-
tions, Mac OS X and Windows.

• How much time seems to be required in order to learn how to use the software?

2.3.1 Software chosen for text analysis

Since the beginning of the project, InterSystems’ iKnow had been set as one of the applications
to be evaluated. iKnow is able to analyse Swedish texts and industry experts, as well as the
InterSystems’ developer community, were at hand to help with any issues that could arise. iKnow
is, however, not free of charge.

When looking for additional software, problems arose. Several free and open source [15] applications
for natural language processing could be found online but it proved difficult to find applications
supporting analysis of text written in Swedish. There were, however, several tools for analysing
English. OpenNLP [16], Grammatical Framework (GF) [17] and CoreNLP [18] were all candidates
for alternative tools. Initial research on each of the applications resulted in CoreNLP and GF as
the alternatives to iKnow.

CoreNLP and GF use different approaches to text analysis than iKnow. In order to compare
iKnow to a more similar software, gensim [19] was added to the software list. Gensim is an open
source Python library that uses a statistical approach to analysing text, in comparison to iKnow’s
predefined-knowledge-about-language approach.

CoreNLP is a free of charge, well documented, cross-platform software and seemed to be the easiest
one to adapt to the needs of the project. GF has the advantage of being developed by a professor at
Chalmers and the University of Gothenburg, Aarne Ranta [20]. Along with Inari Listenmaa [21],
PhD student, Aarne could give hands-on advice and in depth information about the software.

6

2. Methodical Considerations for Analysing Emergency Calls

2.3.2 Software chosen for speech recognition

Speech recognition was not the major focus of the project. Despite this, it was given a lot of
consideration. Several applications were tested according to the questions in section 2.3. A lot of
different software was available in English but finding a software suitable for Swedish proved to be
more difficult.

Recommendations and reviews on the Internet [22] was useful as a guideline when sorting out
candidate software. In the end, two programs were deemed good enough for the speech recognition
tests to come; iSpeechWriter [23] and Speech Recognition on Docs [24]. The testing for accuracy
was done by dictating calls using the different applications. The results of these tests can be found
in section 5.5.

7

2. Methodical Considerations for Analysing Emergency Calls

8

3
Theory

The previous chapter presented some of the considerations acquainted with the earlier stages of the
project. Chapter 3 gives a brief introduction to a handful of topics, all important to grasp in order
to understand what makes a software feasible to answer questions. The beginning of the chapter
introduces NLP as a concept, along with the difficulties that comes with analysing texts and a
common method to extract information from a text (regex). Then follows a concise explanation
of word vectorisation, statistical validation and graph distance algorithms. Finally, each software
that was presented in Chapter 2 is described.

3.1 Natural Language Processing

Time flies like an arrow; fruit flies like a banana.

Speaking and understanding a language is something that comes naturally to humans and it is not
uncommon that people speak more than one language. Despite this, transferring the concept and
notion of language to a computer seems to be difficult [1]. The difficulties can be found both in
spoken language and written text. How is a computer supposed to be able to differentiate between
“I scream” and “ice cream”? Or understand who has the telescope in the sentence: “Bob saw the
man on the mountain with a telescope.”

Even when the phonetic [25] – the study of speech sounds – part of a language is stripped away,
scientists are faced with difficulties in forms of morphology [26] – the study and description of how
words are formed in language. As an example one can consider the word “unlockable” that can
refer to a door that can either be unlocked or not locked at all.

Further issues arise when syntactical ambiguity is present, that is when a sentence can be inter-
preted in more than one way [27]. “Flying planes can be dangerous.”, could mean that it is either
dangerous to fly a plane or that planes - which are flying - are dangerous. It could also be the case
that the same word have different meanings [28]. “Wood” could refer to either a piece of a tree or
a collection of trees (a forest) depending on the context.

Even though the concept of language might be a difficult matter for a computer, there exist software
today which is able to analyse, and act on, natural language input. Apple’s Siri [29] and Google
Now [30] are two examples of software which takes voice input and acts on the information given.
Telling Google Now: “Remind me to write a Python script that parses natural languages at 6 pm.”,
will create a reminder for said thing at said time. Asking Siri: “Which is the best pizza in town?”,
will return a list of the top rated restaurants in town that serves pizza.

Knowledge about phonetics, morphology, syntax, semantics, pragmatics and discourse are all
needed to analyse and process a language [31]. Using state machines, formal rule systems, logic
and probability theory, along with other machine learning tools, the problems mentioned earlier
can be seen as sub tasks solvable with a few algorithms.

9

3. Theory

3.2 Regular Expressions

A fundamental part of natural language processing is the regular expression [31]. Regular ex-
pressions are used to match expressions in a text that follows a certain pattern, as shown in
example 3.1.

Example 3.1 Phone numbers in the United States are commonly expressed in the formats (111)123-
4567 or 111-123-4567. Both formats can be matched using the following regular expression:
\(?(\d{3})\)?-?(\d{3})-(\d{4}).

In regular expressions backslash, \, is used either to “escape” a character or as the start of a
“function”. For instance \(denotes a left parentheses whilst (...) are used for grouping. Likewise,
\d is used to denote “any digit” whilst d matches the character d. The quantifier {3} matches
exactly three of the character class specified (in this case \d, any digit) and ? matches 0 or 1 of
the previous group.

Describing the regular expression in example 3.1 in words could be done like this: Match any
sequence of characters that consists of three groups of digits where the first two groups have three
digits each and the last one has four digits. The last group of digits should be separated from the
second by a hyphen. The second group could be separated from the first by a hyphen. The first
group could be surrounded by parentheses.

Note that this regular expression is not perfect. It would for instance match the strings: (111)-
123-4567, (111-123-4567 and, 111123-4567 which are not common phone number formats. Using
regular expressions the text matching process can be automatised and done by a computer. A
computer is able to process a lot more data than a human and the loss of accuracy is often seen
as small in comparison to the increase in speed.

3.3 Representing words and phrases using vectors

A vector is very useful for representing how well certain words and phrases relate to each other.
There are different techniques used to yield such vectors, but the end goal is the same: provide a
numerical representation of how words and phrases relate.

The first program used in the project for the purpose of vectorising text was GloVe [32]. It was
used to generate a word embedding that was later used when developing the Swedish modules
for CoreNLP (section 4.7). GloVe was developed by the Stanford NLP Group in 2014. It uses a
weighted least square model which is trained on global word-to-word co-occurrence counts. This
ensures that GloVe makes good use of statistics. GloVe produces a word vector space that can be
used to see the relation between words and phrases in the corpus.

Additionally, gensim [19] was used as a standalone application to answer the questions in the KI-
protocol as well as classifying the calls. Gensim is a Python library developed by Radim Řehůřek
and Petr Sojka. Short for “generate similar”, gensim is used to generate vectors that represents
the similarity of documents in a given corpus.

3.4 Statistical validation

When developing a program dedicated to data analysis it is not suitable to test the program on
the actual data it will later analyse. Because of this, a subset of the prospective data is used to
train the program and test parameters. However, it is not enough for the program to return good
results when analysing the subset. Unless the program generalises to an independent data set it is
not good enough to be put into production.

10

3. Theory

3.4.1 K-fold cross validation

In order to verify that a program generalises well to new data, it is common to use some sort of
cross validation. Cross validation lets the developer feed the program with a subset of data and
test it against the remainder of the set in different ways [33].

When using k-fold cross validation the data set is divided into k subsets. The program is then
given one of the k subsets as a validation set while the other k − 1 sets are used as training sets.
The program is scored each run and the average score overall k runs is considered the over all
score.

3.5 Graph distance algorithms

The graph-distance algorithms can calculate distances between groups of vertices in a graph. How-
ever, the distance between a vertex and a group is not well defined. The question “Is Sweden closer
to Asia or America?” could be answered in multiple ways. One approach would be to calculate
the average distance to every country in Asia and America. Another method is to find the most
central country in Asia and America, then compare the distance to them. The question can also be
answered by looking at Sweden’s neighbours, are most of them Asian or American? The following
sections will give a formal explanation of how these methods can be implemented.

3.5.1 Average distance in graphs

Consider a complete graph G, where each vertex is directly connected to every other vertex. The
distance from a vertex vs to a group of vertices V can be calculated as follows. Start by calculating
the total distance T to all the vertices in V .

T =
∑

vi∈V

|vi − vs|

Then calculate the average distance d over all the vertices in that set. This will result in the
average distance from vertex vs to the vertices V .

d = T

|V |

3.5.2 Distance to centre in graphs

Instead of comparing the distance to all the vertices in a graph, the centre algorithm only consider
the distance to the most central vertex in a graph. The most central vertex in a graph can be
defined as the vertex with minimum eccentricity [34]. The eccentricity is defined as “The maximum
distance between a vertex to all other vertices” [35]. For a directed complete graph the distance
from a vertex to all other vertices is simply the weight of the edge connecting them. Thus, the
eccentricity of a vertex v in a directed complete graph G = (V, E) can be calculated as:

ecc(v) = max{e1, e2, ..., en}

Where ei defines the weight of the edge between the vertex v and a connected vertex vi. The
central vertex vc is then calculated as:

vc = min{ecc(v1), ecc(v2), ..., ecc(vn)}

11

3. Theory

3.5.3 K-nearest neighbour

Nearest neighbour algorithms classify elements in a set by examining their closest neighbours. The
number of neighbours, k, being examined can be tuned to yield different results. It is not straight
forward which k will give the best result for a certain data set. Cross-validation is usually a good
method for finding good values for k (section 3.4.1).

The K-Nearest neighbour algorithm can also be applied to complete graphs. Having a complete
graph G, and a vertex to be classified vs, find the k closest vertices to vs and add them to the set
V . This can then be divided into subsets V0...i, where each subset contains vertices of the same
class. The unclassified vertex vs is then classified in the same way as the vertices in the subset
with the highest cardinality. The equation below shows the formal definition.

vs ∈ max{|V0|, |V1|, ..., |Vi|}

Example 3.2 Imagine an image of an animal. The goal is to classify it as either a cat or a dog
by using the K-nearest neighbour. By using k = 3 the 3 most similar images in our training set are
returned. V = {cat1, dog1, cat2}. V is further divided into Vcat = {cat1, cat2} and Vdog = {dog1}.
Since max{|Vcat|, |Vdog|} = |Vcat|, the new image is classified as a cat.

3.6 Applications used for speech recognition

Speech recognition has become more popular as of late. Good examples are the widely popular
virtual voice assistants on the market, for instance Cortana by Microsoft [36], Siri by Apple [29]
and Google Now (Voice) by Google [30].

There are two different kinds of speech recognition systems available, speaker dependent and
speaker independent speech recognition. Speaker dependent speech recognition requires training
to become more accurate at speech to text conversation. Speech to text conversion samples need
to be run through the system several times. This will teach the system to understand a specific
accent and voice. Speaker independent speech recognition does not require training and is the
opposite of speaker dependent speech recognition.

As mentioned in section 2.3.2 two speech recognition applications were singled out for testing:
iSpeechWriter and Speech Recognition on Docs. Both of these applications are speaker independent
voice recognition applications and are further described in section 3.6.1 and section 3.6.2.

3.6.1 iSpeechWriter

iSpeechWriter [23] is a speech recognition and text translation software for English, Swedish and
several additional languages. The software is free of charge and can be used as a browser plugin,
desktop application or as a website application.

iSpeechWriter can recognise most of the words which can be found in a Swedish dictionary, and
register most words spoken in a dialogue. Words that do not exist in a dictionary, like foreign
words or fillers, are not transcribed.

3.6.2 Speech Recognition on Docs

Speech Recognition on Docs [37] is an add-on developed by EFV-Solutions which uses the Google
Web Speech API. The software is capable of transcribing from speech to text in multiple languages
including Swedish. The add-on is speaker independent and integrated with the text editor Google
Docs.

12

3. Theory

As this software is speaker independent some words become more difficult to transcribe than others.
This unfortunately generates erroneous words and incorrect sentences. For some languages the user
is able to select a particular dialect of said language. E.g. English speakers have the option of
British, American or Indian dialects amongst others.

With unhurried and articulated speech, almost all words are transcribed correctly. The software
handles a higher speech rate fairly well and registers a majority of the words. Background noise is
a problem, especially when paired with a high speech rate. This may cause the software to omit
words – or even whole sentences – if the background noise is too loud.

3.7 Applications used to analyse the transcribed calls

A good understanding of each application’s capability and limits are important in order to utilise
it to its full potential. As described in section 2.3, a handful of applications were deemed good
enough for further testing and a brief description of each software is given below.

3.7.1 iKnow

iKnow is a tool for natural language processing that can structure text by using predefined knowl-
edge of the language. Contrary to other NLP software iKnow uses a bottom-up approach instead
of the more traditional top-down. The bottom-up approach uses knowledge about the structure
of a language to extract information about the text. More specifically iKnow finds concept pairs
and relations that binds them together.

Here is an example of how iKnow would parse the sentence: “The patient is having problems
breathing”. First of all it finds the concepts, these are words that carry information. In the
sentence above the concepts would be: “patient”,“problems” and “breathing”. The next step
would be to find relations between the concepts. The combinations of concepts and relations
in iKnow are called Concept-Relation-Concepts (CRC). In this example they would be: “patient
having problems” and “problems breathing”. More specifically, “problems breathing” is a Concept-
Concept (CC) which is a subclass to CRC.

13

3. Theory

3.7.2 Gensim

Gensim is a Python library that can be used to find how similar two documents are based on all the
words in a corpus. Gensim uses latent semantic analysis (LSA) to calculate these similarities. LSA
is a method for finding relations between documents and words. The method works by extracting
every word from the corpus and then map the documents to a high dimensional vector space. The
idea of mapping the documents to a vector space is that they can easily be compared using cosine
similarity [38].

Consider the three strings: A = “Natural Language Processing”, B = “Statistical analysis” and
C = “Analysis of natural language”. For a two-dimensional vector space the strings would be
vectorised as: ~a = (1.38,−0.87), ~b = (0.51, 1.19) and ~c = (1.89, 0.32). The table below shows the
similarities, calculated using dot products, of the vectors. As table 3.1 shows, A and B are not
similar while A and C are very similar, B and C are moderately similar.

Table 3.1: Similarities of vectors using gensim dot products

~a ~b ~c
~a 1 -0.16 0.75
~b -0.16 1 0.54
~c 0.75 0.54 1

3.7.3 CoreNLP

CoreNLP is a set of natural language analysis tools [39], developed at Stanford University and
licensed under the GNU General Public License (GPL v3) [40]. Using 14 different annotators [41],
CoreNLP can – amongst other things – give the base form of words (lemmas), their part of speech
and describe how words in a sentence depend on each other. A more in depth explanation of the
annotators used will be given in section 4.7.

When working with CoreNLP the user specifies which annotators and language models to use.
This enables for a large variety of configurations and because of the licensing of the software, users
are able to provide their own implementations of the various parts of the program. Given an
arbitrary text as input, CoreNLP is able to process the text and return an output depending on
the configuration of the software [42]. As default, an XML-file is printed with all the information
asked for by the specified annotators.

3.7.4 Grammatical Framework

Grammatical Framework [17] (GF) is a programming language intended for multilingual grammar
applications. It is developed at Chalmers University of Technology. Different parts of GF are
licensed under different licenses (GPL [40], LGPL [43] and BSD [44]). As stated on the projects
website, it is: “a special-purpose language for grammars, a functional programming language, a
development platform for natural language grammars” and much more.

GF requires expert knowledge about a specific language in order to program the grammar to be
used. GF comes with libraries for 37 languages (Swedish included) that are more or less ready
to use. However the user must also learn how to use the GF interpreter. GF can be embedded
in various applications, and it is possible to use pre-compiled GF code in both Haskell, Java and
Python.

14

4
Implementation

This chapter builds on the theory presented in the previous chapter and explains how the different
parts of the project were implemented. The beginning of the chapter focuses on the assessment pro-
tocol and the calls provided by Katarina Bohm. Thereafter the implementation of each application
is described.

4.1 Analysis of the assessment protocol

In accordance to what was written in section 1.4.1, the only asset available for grading the calls
was the KI-protocol (appendix A.2). During the early stages of the implementation of the program
Solve.py (section 4.8), it became clear that the KI-protocol might not be suitable to classify the
calls. It was expected that the individual questions in the KI-protocol would be well-suited to find
a consistent mapping to judged high-quality versus low-quality calls, but this was not the case.

In order to verify that answering the questions in the KI-protocol gave the same results as the
classification done for the complete calls by Bohm, a more thorough analysis of the assessment
protocol and the solutions manual was conducted. This analysis gave unexpected results. It was
expected that a high quality call would get a high score. And likewise a low quality call a low
score.

In table 4.1 it is shown that the points are widely distributed over the calls. Of the 67 calls
provided, two calls got 0 points but both were considered as “high quality calls” according to the
information provided by Bohm in the beginning of the project.

Table 4.1: The result from the analysis of the solutions manual.

Score # High Q # Low Q
0 2 0
1 0 0
2 0 2
3 0 1
4 0 1
5 1 3
6 2 2
7 2 4
8 8 4
9 9 0
10 13 0
11 12 0
12 1 0
Total 50 17

15

4. Implementation

When extrapolated from the result seen in table 4.1, it seemed reasonable that if a call received
a score of 9 or higher in the testing it was to be considered to be of good quality. A call with a
score below 9 could however neither be considered a good or a bad call since low scored calls were
not as clearly polarised.

It was concluded that answering the questions in the KI-protocol was not enough to determine
the quality of a call. Instead there must have been some other aspects to the classifications of the
calls Bohm provided the project in the beginning. The project progressed by assuming that the
classifications received was correct, but that these were not solemnly determined by answering the
questions in the KI-protocol. The purpose of the project did however still remain the same, as
described in section 1.2. A recommendation to the medical experts is thus to further investigate
the individual questions in order to find a more consistent correlation between the judged quality
of a call and the quality given for a call by letting a computer answer the questions.

Because of the poor correlation between the score of a call and the predefined quality classification,
the analysis process was revised. iKnow and gensim were easily adapted to analyse the similarity
between calls and was therefore used solemnly to analyse the quality of the calls without respect to
the KI-protocol. The same approach was not possible for Solve.py and Grammatical Framework,
which were still used to answer the questions in the KI-protocol in accordance to the original
problem specification.

4.2 Manipulation of the transcribed calls

All the transcribed calls received from Katarina Bohm were not transcribed in exactly the same
way. The majority of the calls did however follow the template seen in Fig. 4.1. Note that “XX”
is added by whoever transcribed the call in order to protect the privacy of the caller.

Call ID - Call length: 3 min 42 s
Index
Dispatch (D)
Caller (C)
Nurse (N)
Not applicable [n/a]
[action/behavior/description]
(writer note)

D: SOS 112, what has happened?
C: Hello, my name is XX...
. . .
(Nurse joins the call.)
N: What has happened?
. . .
N: Bye
C: Bye

Figure 4.1: Example structure for an emergency call.

Manipulations of the calls was divided into two parts: manipulations for consistency and manipu-
lations to tweak the results. Both are described below. The code for manipulations was written i
Python and made use of regular expressions (section 3.2).

16

4. Implementation

4.2.1 Manipulation for transcription consistency

As was mentioned in section 4.2, all the calls were not transcribed in the same way and, as a conse-
quence thereof, lack in consistency. The following manipulations sought to make the transcriptions
more consistent.

The transcriptions start with a header (Fig. 4.1 in section 4.2), but the header differ somewhat
between the calls. The header can include call-id, call length and explanation of abbreviations.
This information was removed before any tests to prevent it from interfering with the result.

Some transcriptions have comments surrounded by parentheses and square brackets. E.g. “(Nurse
added)” and “[short break]”. This information and the header has been added by the transcriber
and is not considered part of the original call. As was described in section 3.2, regular expressions
are useful to filter out such text. The following regular expressions were used for removal of
transcriber comments: \[.*\] for square brackets and \(.*\) for parentheses.

4.2.2 Removing the caller from the calls

The KI-protocol states that repetition of the caller’s statement by the dispatcher increases the
quality of a call. Hence, in an ideal call all information present should be conserved if the caller is
removed. To test this hypothesis a way to filter out the caller was implemented. The filter loops
through a call, line by line. Each line that matched the regex: [nNdD]:.* was kept while the lines
that did not match were discarded.

4.3 The functionality of iKnow

The iKnow software is rich in functionality and can be used in many different ways. The most
prominent function for this project was GetSimilar [45]. To parse and further improve the re-
sults from this function two other programs were developed, Score.py and Threshold.py. These
programs are explained further in section 4.4 and 4.5 respectively.

4.3.1 The iKnow Similarity function

The similarity function compares a specific document with all other documents in the same domain.
The function returns an ordered list of all the other documents and their similarity score, a real
number between 0 and 1.

Since the iKnow software is proprietary, the exact algorithms used are not public but based on the
documentation some insight can be gained. When computing the similarity, GetSimilar searches
for common properties in the documents. By default it searches for concepts, e.g. “Ambulance” or
“Breathing”. The function can also search for Concept-Relation-Concepts (CRC) which, contrary
to searching for only concepts, would differentiate between “patient is breathing” and “patient
is not breathing”. However, “he is breathing” and “she is breathing” would also be considered
different CRCs. In conclusion, searching for only concepts might make the documents seem more
similar than what they really are, while searching for CRCs might make them seem more different.
The configurations used in this project were:

1. Simsrcsimple, searching for concepts

2. Simsrcsimple, searching for concept-relation-concepts

To get the results from GetSimilar all calls were added to an iKnow domain. The function then
produced a directed, weighted graph where each node represented a call and each edge represented

17

4. Implementation

the similarity between two calls. After the graph had been generated the calls were divided into
training and validation sets according to the 10-fold cross validation method (section 3.4.1). The
validation set was then sent to Score.py (section 4.4), where the calls were classified as of either
high or low quality. To improve the classification the program Threshold.py (section 4.5) was
used. This process is described in Fig. 4.2, and more thoroughly in section 4.5 and section 4.4.

Figure 4.2: Flow chart showing how the calls were divided and processed by iKnow.

4.4 Classification of calls using Score.py

Score.py is a Python program that analyses a similarity graph and classifies the calls. Both iKnow
and gensim produce these similarity graphs. Score.py uses different graph distance algorithms,
explained in section 3.5, to classify the calls as of either high or low quality. The distance algorithms
calculates the distance from an unclassified call to all the other calls. The methods are based on
the idea that if a call is closer to the high quality calls than the low quality calls it should be
considered a high quality call.

Moreover, Score.py is able to handle skewness in the data. By adding a threshold parameter,
T , the accuracy of the classification can be improved. If the distance algorithm is biased towards
good calls, the threshold value will counter-weigh that bias. Formally Score.py is calculating the
following:

DG(c)−DB(c) > T =⇒ High quality call

Where DG(c) and DB(c) define the distance from the unclassified call to the high and low quality
calls.

4.5 Validation and optimisation using Threshold.py

Threshold.py was used to analyse the training set of calls and calculate a threshold value for
Score.py (section 4.4). Threshold.py uses the same method as Score.py to classify the calls.
The difference between the programs is that Threshold.py tries multiple threshold values instead
of just one. To do this it calculates an interval for the threshold to sweep over. The program then
checks how many correct classifications were made, comparing the result to the solutions manual.
The threshold value resulting in the maximum number of correct classifications is then chosen as
the best threshold for the training set.

To make sure that the threshold is representative of all calls, the calculation is done multiple times
on different training sets. 10 training sets are generated using the 10-fold method, as was described
in section 3.4.1. Each of these sets will produce a best fit threshold value. These values are then
averaged to return the final threshold value later used in Score.py.

18

4. Implementation

4.6 Using gensim to vectorise calls

In order to make use of gensim it is necessary to create a program using this library. In section 3.3
a short description of gensim was given and below follows a description of how gensim is used in
gensim.py.

Before the analysis could begin, a frequency dictionary had to be created. This was done using a
defaultdict(int) where each word in a corpus was related to the number of times it occurred.
The dictionary was then filtered by removing all words that only occurred once in the corpus.

The code in Fig. 4.3 shows the next four i in the process. corpora.Dictionary() gives each word
in the corpus texts an id. dictionary.doc2bow() takes a call in the corpus as an argument and
returns a list of the words in the call replaced by their ids. models.LsiModel() takes a corpus,
a dictionary and a number as arguments. The function then returns an LSI object which is an
object that represents the corpus as a vector with as many dimensions as was asked for in the call
of the function. The fourth line generates a MatrixSimilarity object that is used for extracting
similarities from the vector. Using this object it is possible to pairwise compare each call and
generate a similarity graph just like iKnow does. The same method as shown in Fig. 4.2 can then
be used to classify the calls.

1 d i c t i o n a r y = corpora . Dic t ionary (t e x t s)
corpus = [d i c t i o n a r y . doc2bow (text) f o r t ex t in t e x t s]

3 l s i = models . LsiModel (corpus , id2word=d ic t i onary , num_topics=67)
index = s i m i l a r i t i e s . M a t r i x S i m i l a r i t y (l s i [corpus])

5

Figure 4.3: Code used to generate the gensim word embedding.

The actual comparison of an unclassified call is done by adding a new vector to the vector space
created earlier. Depending on which other vectors are closer to the new vector a similarity score
is given. Adding a new vector is called querying and the query could be either a whole call or a
sentence suitable to answer a specific question in the KI-protocol.

4.7 Developing Swedish modules for CoreNLP

CoreNLP worked as expected when analysing English texts, as well as texts written in any of the
languages having already developed modules. Swedish was not amongst these and therefore the
first task – to make CoreNLP a useful tool – was to develop the required modules. The annotators
used in analysing the emergency calls are “tokenize”, “ssplit”, “pos” and “depparse” [41]; out of
these “pos” and “depparse” required new language modules and the description of the development
of these can be found in section 4.7.1 and 4.7.2.

4.7.1 Part of Speech-tagging

A software dedicated to part of speech-tagging parses a text in some language and assigns parts
of speech to each word or token [46]. This is exemplified in Fig. 4.4.

On the website of CoreNLP there were several extensions listed [47] and one of the extensions
was a Swedish POS-tagger developed by Andreas Klintberg [48]. By following the guide Klintberg
posted on Medium [49], it was possible to recreate his work and it is this POS-tagger that is used
in the analyses.

19

4. Implementation

Figure 4.4: An example of part of speech-tagging.

Briefly, the development of the tagger consisted of training the CoreNLP software to recognise
already tagged Swedish words (the list of words used in the training could be found at the Swedish
Treebank [50]). The training class for the CoreNLP POS-tagger [51] was then used to train the
module; the training resulted in a binary file that could be used by the software in order to tag an
arbitrary – Swedish – text. Unfortunately the visualisation tool used in Fig. 4.4 does not work for
texts in other languages than English, why a visual demo of the tagger is not present in the thesis.

4.7.2 Neural network dependency parsing

A dependency parser analyses a given sentence – and the sentence’s grammatical structure – after
which it returns the relationship between the words in the sentence [52]. If some words play a
larger role in the sentence (which is often the case) the parser will also return how the other words
in the sentence influence these. The example in Fig. 4.4 is used again in Fig. 4.5 but now also
tagged using the default CoreNLP dependency parser.

Figure 4.5: An example of dependency parsing, on top of POS-tagging.

Developing the dependency parser consisted of several steps. Unlike the POS-tagger described in
section 4.7.1 there was no guide to follow, the training of the Swedish language module had to be
done from scratch. Fortunately the documentation of the CoreNLP annotators was comprehensive
and proved very useful.

Training a parser for an arbitrary language could be done using a dependency treebank [53], a
word embedding model [54] and a CoreNLP specific “TreebankLanguagePack” [52]. Fortunately
there was no need to recreate the language package used by default – for English – as it proved
well suited for Swedish.

The dependency treebank was easily downloaded from the “Universal Dependencies” website.
What proved more difficult was the creation of a word embedding model to represent the dis-
tribution of Swedish words in comparison to each other. This was finally achieved using GloVe [32]
(section 3.3). Provided with a corpus, GloVe calculates how often words co-occur with one another
in the corpus. The best results are achieved if the corpus is large and discusses the topic to be
analysed.

GloVe included a demo used to create a word embedding model for English. When given a text
file containing the first 100 000 000 characters from the English version of Wikipedia [55], GloVe
returned a matrix – a word embedding model – representing the relations between the words.
The same approach was taken when a word embedding model for Swedish was created. A corpus
containing almost 27 000 000 characters was created by downloading the first 5 000 articles from the

20

4. Implementation

Swedish version of Wikipedia using the Wikipedia API [56]. After processing the text (removing
unwanted tags and assuring that only plain text remained in the file), GloVe was used in the same
way as described earlier. This yielded a matrix representing how Swedish words relate to each
other.

In combination with the files from the dependency treebank and the treebank language pack, the
word embedding model was given as arguments to the CoreNLP dependency parser. This created
and trained a model to be used in forthcoming tests.

4.8 Answering the KI-Protocol using Solve.py

Solve.py is a Python program able to answer each question in the KI-protocol (making use of
a so called “solver” for each question) as well as to calculate the quality of a call. Some of the
solvers in Solve.py make use of the output from CoreNLP while others perform various kinds of
frequency analyses, of key words or phrases, on the transcribed calls.

4.8.1 Solvers using the output of CoreNLP

An example of when the output from CoreNLP was used in Solve.py can be seen in the code for
solver QS (Fig. 4.6). Solver QS was used to answer question S 2.12 in the KI-protocol: “Are there
problems with breathing, circulation or consciousness described in the call within 30 seconds?”

QS starts by generating a soup. A soup is a parsable data structure created by the Python library
Beautiful Soup [57]. For every key word in the list terms, QS will iterate the soup and look for an
occurrence of the key. If the key is found, QS will make use of the character offset tag, given
by CoreNLP, and check how many characters precedes the key. If the offset is larger than a set
value (in this case 130) more than 30 seconds of the call has most likely passed and the question
is answered with a 0 (no). If the offset is less than the limit value the solver returns a 1 (yes). If
none of the keys are present in the call, 0 is returned.

de f QS(document) :
2 soup = parseXML(document)

terms = [" andas " , " andning " , " l u f t " , " andades " , " andningen " ,
4 " medveten " , " medvetande "]

f o r key in terms :
6 f o r s entence in soup (" sentence ") :

f o r w in sentence (" word " , s t r i n g=key) :
8 charOf f = w. parent . c h a r a c t e r o f f s e t b e g i n . t ex t

wordOff = i n t (charOf f) /5
10 i f (wordOff > 130) :

r e turn 0
12 e l s e :

r e turn 1
14 r e turn 0

Figure 4.6: Code for solver QS in Solve.py.

4.8.2 Solvers using word frequency analysis

Some questions could be solved using word frequency analysis. Solvers using this approach counts
the number of occurrences for specific words or phrases in a given call. Depending on which words

21

4. Implementation

de f QB(document) :
2 home = ["hemma" , " hemmifrån " , " l ä genhet " , " hus " , " v i l l a "]

matchHome = []
4 h o s p i t a l = [" s jukv å rd " , " s jukhus " , " hemtjä nst " , " hemtjä nsten "]

matchHospital = []
6 p u b l i c = [" jobb " , " park " , " utomhus " , " t åg " , " buss " , " tunnelbana " ,

" sp å rvagn "]
8 matchPublic = []

10 with open (document , ’ r ’) as f i l e :
f o r l i n e in f i l e :

12 cLine = c a l l L i n e (l i n e)
cWords = re . sub (" [^\wåäöÅÄÖ] " , " " , cLine [1]) . s p l i t ()

14

f o r w in home :
16 i f w in cWords :

matchHome . append ([w, 1 , nLines])
18

f o r w in h o s p i t a l :
20 i f w in cWords :

matchHospital . append ([w, 2 , nLines])
22

f o r w in p u b l i c :
24 i f w in cWords :

matchPublic . append ([w, 3 , nLines])
26

i f (l en (matchHome) == 0 and l en (matchHospital) == 0 and
28 l en (matchPublic) == 0) :

r e turn 4
30

maxMatch = max ([matchHome , matchHospital , matchPublic] ,
32 key=lambda x : l en (x))

re turn maxMatch [0] [1]
34

Figure 4.7: Code for solver QB in Solve.py.

or phrases occur the most in the text, the solvers would return different answers. The technique
proved useful for answering questions having multiple answers. E.g. solver QB answers the question
B 1.1 (“Where is the call made from?”). The code for the solver can be found in Fig. 4.7.

Solver QB scans through a call and counts occurrences of key words, much like solver QS in sec-
tion 4.8.1. But since none of the meta data provided by CoreNLP is needed, scanning the document
is faster done without first having to parse it using CoreNLP. The number of lists and the key
words will vary, depending on the question. In solver QB there are several lists and they represent
key words related to places where a call to SOS Alarm is likely to be made from. If a word in one
of the key word lists occurs in the text it is appended to a designated list. At the end of the solver
the length of the lists are checked. If all lists are empty the solver returns 4 (“not in proximity to
the patient”), otherwise it returns the number associated with the longest list, i.e. the list that got
the most hits when scanning the document.

4.8.3 Categorising calls as high or low quality using Solve.py

When all the questions have been answered using designated solvers, the result is summed up
according to the weighting of each question as described in section 2.2. Depending on what score
the call receives it is categorised with high or low quality. The threshold for whether a call’s score
is high enough to be classified as a high quality call or not is set to 9. This is in according to what
was discovered when the analysis of the KI-protocol was conducted (section 4.1).

22

4. Implementation

4.9 Implementing Grammatical Framework

As mentioned in section 3.7.4, Grammatical Framework (GF) requires expert knowledge in its own
specific programming language in order to be used efficiently. In order to fully utilise GF, a good
knowledge of proper grammar in the natural language studied is also crucial.

Early in the testing stage of GF, it was clear that the program could not read the transcribed calls
if they were not first edited. To begin with, the program had to recognise all words in a call or
it would not be able to output any results that could further be used. This was very problematic
because there were many words that did not appear in the GF’s dictionary that was used, but
almost always appeared in a typical SOS call. Fillers, “SOS”, names of streets and addresses, along
with the XXs used to anonymise the calls, all proved problematic to handle. A separate word list
had to be written, and all the unknown phrases added. The words also had to be grammatically
categorised. The lack of linguistic knowledge in the project group made this even more tedious
and only one call was edited and used for testing.

In addition to the lack of words in the predefined word list, GF was unable to parse any punctuation
or capital letters. This also meant that GF had to be fed with a single sentence at a time. When
manually editing the transcribed calls, it was therefore necessary to add a newline after each
sentence. The two columns below shows how this adaptation had to be done. The left column
shows the original text and the right shows the input sentences that could be fed to GF, one at a
time.

D: Ja, vad är det som har hänt dårå?
C: Ehm, det har inte hänt så mycket
vi har en man som har kommit hit på
morgonen och har eh, ont över
bröstkorgen, ont över bröstet.

- vad har hänt där
- det har inte hänt mycket
- vi har en man som har kommit hit på
morgonen
- har ont över bröstkorgen
- ont över bröstet

To test GF, a program in Python was written. The program was used to answer two of the
questions in the assessment protocol: J 2.3 (“Is there a description of how the patient looks in the
call?”) and S 2.12 (“Are there problems with breathing, circulation or consciousness described in
the call within 30 seconds?”).

Question S 2.12 was chosen because it was deemed one of the more important questions in the
KI-protocol. Question J 2.3 was chosen because it tests the grammatical abilities of Grammatical
Framework. A description of how question S 2.12 was solved is described in section 4.9.1, question
J 2.3 was solved in a similar way.

4.9.1 Python program to solve question S 2.12

In Fig. 4.8, the phrase: “mannen andas” (“the man is breathing”) is shown as a parse tree, generated
by GF. The root PhrUtt denotes a phrase or sentence being read. The function PredVP searched for
the relations between nouns (NP), verbs (VP) and declarative clauses (CL). The function PredVp
found that UseN = man_N was the noun, UseV = breathe_V the verb, and UseCl = PPos that it
was a positive phrase. Question S 2.12 will be answered with “No”, since the man does not have
a problem with his breathing.

The parse tree for the phrase: “mannen kan inte andas” (“the man cannot breathe”) is shown
in Fig. 4.9. The function PredVP searched for the relations between nouns, verbs and declarative
clauses, as described above. In this figure the function PredVp found that UseN = man_N was the
noun, UseV = breathe_V the verb, and UseCl = PNeg that it was a negative phrase. Question
S 2.12 will be answered with “Yes”, because the man has a problem with his breathing.

23

4. Implementation

In the phrase “hur andas mannen” (“how is the man’s breathing”), in Fig. 4.10, PredVp found
that UseN = man_N was the noun, UseV = breathe_V the verb, and UseQCl = PPos that is was
a positive phrase in a question. Since no answer was given to question S 2.12, the function will
return “No”.

Figure 4.8:
”mannen andas”.

Figure 4.9:
”mannen kan inte andas”.

Figure 4.10:
”hur andas mannen”.

4.10 Testing of speech recognition

Before any testing could be done, it was important to determine what tests were appropriate. As
mentioned previously (section 3.6), there were two speech to text candidates: iSpeechWriter and
Speech Recognition on Docs.

The tests were performed with one person reading either the dispatcher’s or the caller’s part in the
conversation in the transcribed calls. A conversation between two persons was not done because
it is not possible to tell who said what in the conversation after the tests were made. At the same
time this was recorded by either iSpeechWriter or Speech Recognition on Docs. In order to protect
the sensitive text material, tests were done by two people in the thesis group, in a secluded room.
The software then provided the results in form of a text, which could be compared with the actual
text of the dialogue. The tests were done with: clear speech, unclear speech and speech with
background noise.

24

5
Results

As was mentioned in section 4.2.1 and section 4.2.2, the calls at hand were manipulated. At first to
achieve consistency over all calls and furthermore the caller was removed from the calls. Table 5.1
show all tests performed, denoted with a label, which sets of calls were used, what type of result
the tests give and where they can be found.

Table 5.1: Table showing all tests performed.

Label Consistency No caller Type of result Section
iKnow-C X X Classification 5.1.1
iKnow-CRC X X Classification 5.1.2
gensim X X Classification 5.2.1
Solve.py-Q X X Answers to questions 5.3.1
Solve.py-C X X Classification 5.3.2
Grammatical Framework Answers to questions 5.4
iSpeechWriter X Transcribed Call 5.5.1
SRD X Transcribed Call 5.5.2
SRD iKnow X* Classification 5.5.3
SRD gensim X* Classification 5.5.3
SRD Solve.py-C X* Classification 5.5.3
SRD Solve.py-Q X* Answers to questions 5.5.3

* Denotes that the call was transcribed using Speech Recognition on Docs (SRD).

5.1 Results using iKnow’s Similarity function

The similarity test uses iKnow to determine how similar two calls are, a more thorough explanation
of this mechanism can be found in section 4.3.1. The following sections will present results achieved
by using different combinations of configurations for the iKnow similarity function, graph distance
algorithms and modifications of the calls. During testing it was concluded that iKnow was not
suitable to answer specific questions in the KI-protocol why these specific results are omitted from
the report, a short discussion on this is given in section 6.8.4

5.1.1 iKnow Similarity Concept Search

In the first experiment iKnow’s similarity function was configured to search for entities. The calls
were modified using both the consistency method (section 4.2.1) and the caller removal method
(section 4.2.2). Table 5.2 shows the number of calls that were correctly classified. A call is classified
in accordance to Bohm’s classifications (section 4.1). Table 5.3 shows the thresholds used to acquire
the scores in table 5.2. The columns Average, Centre and KNN refer to the different graph distance
algorithms mentioned in section 3.5.

25

5. Results

Table 5.2: Number of correct classifications, out of 67

Modification Average Centre KNN
Consistency 67 56 54
No Caller 60 53 52

Table 5.3: Thresholds used to generate table 5.2

Modification Average Centre KNN
Consistency 0.987 0.0748 2
No Caller 3.90 -0.0210 2

As table 5.2 shows, the “average distance” method gives the highest score. The table also shows
that calls modified for consistency score better than those without the caller. The confusion
matrices below, table 5.4 and table 5.5, show the difference between the two modifications, both
using the average distance algorithm.

Table 5.4: Confusion matrix for
consistency manipulated calls.

Predictions
High Low

Actual
Quality

High 50 0
Low 0 17

Table 5.5: Confusion matrix for calls without
caller.

Predictions
High Low

Actual
Quality

High 46 4
Low 3 14

The effectiveness of the KNN algorithm depends on the value of k. Fig. 5.1 shows how the KNN
algorithm is affected by different values of k. The y-axis shows how many calls where classified
correctly and the x-axis shows the value of k.

Figure 5.1: Plot showing how the score from KNN varies depending on k.

5.1.2 iKnow Similarity CRC Search

For this experiment iKnow was configured to search for CRCs, instead of concepts as in the previous
experiment. Similarly table 5.6 shows the number of calls correctly classified and table 5.7 shows
the corresponding thresholds.

26

5. Results

Table 5.6: Number of correct classifications, out of 67

Modification Average Centre KNN
Consistency 62 52 61
No Caller 54 48 57

Table 5.7: Thresholds used to generate table 5.6

Modification Average Centre KNN
Consistency 0.0663 -0.0126 4
No Caller -0.116 -0.0257 1

Fig. 5.2 shows how the KNN algorithm is affected by different values of k. In comparison to
Fig. 5.1, the calls modified for consistency got a higher score when iKnow searched for CRCs. It
is also worth noticing that the difference between the curves is greater for lower values of K, in
Fig. 5.2 than in Fig. 5.1.

Figure 5.2: Plot showing how the score from KNN varies depending on K.

5.2 Gensim

By analysing the vectors generated by gensim it is possible to tell how similar a call is to a given
query. These queries can either be full calls, in which case the vectors represent how similar two
calls are, or they can be sentences related to a question in the KI-protocol, as was mentioned in
section 4.6. Querying gensim with answers suitable to answer the questions in the KI-protocol did
however not yield any usable results. These results are therefore omitted from the report, but a
short discussion on this is given in section 6.8.4.

5.2.1 Gensim similarity search

This method closely resembles the iKnow similarity search mentioned in the previous chapter.
Table 5.8 and 5.9 shows the scores and threshold acquired from gensim. It is worth noting that
for gensim, in contrast to iKnow, KNN is the best performing graph algorithm.

Although both the average algorithm and the centre algorithm got the same score, their classifi-
cations differed immensely, as can be seen in table 5.10 and 5.11 below. The centre algorithm was

27

5. Results

Table 5.8: Number of correct classifications, out of 67

Modification Average Centre KNN
Consistency 57 52 64
No Caller 54 54 62

Table 5.9: Thresholds used to generate table 5.2

Modification Average Centre KNN
Consistency -4.392 -0.1901 4
No Caller -14.51 -0.1273 2

better at classifying high quality calls while the average method was better at classifying the low
quality calls. The plot in Fig. 5.3 shows the result of the KNN algorithm. It can be seen that the

Table 5.10: Classifications using Average
algorithm.

Predictions
High Low

Actual
Quality

High 38 12
Low 1 16

Table 5.11: Classifications using Centre al-
gorithm.

Predictions
High Low

Actual
Quality

High 41 9
Low 4 13

KNN algorithm performs best for lower values of k, just like the case with iKnow. On the other
hand this plot is smoother than the iKnow plots which is further discussed in section 6.3.

Figure 5.3: KNN algorithm using gensim data

5.3 Solve.py

Due to the nature of Solve.py it is suitable to not only classify calls as low or high quality calls,
but also answer individual questions in the KI-protocol (section 4.8).

5.3.1 Answer questions in the KI-protocol

76% of the answers matches the answers in the solutions manual provided by Bohm, when running
Solve.py with the calls manipulated for consistency (as described in section 4.2.1). Running the
program with the calls where the caller is not represented (as described in section 4.2.2), 68% of
the answers matches the answers in the solutions manual. The result for each solver, when run

28

5. Results

with the calls manipulated for consistency, can be seen in Fig. 5.4. In Fig. 5.4 the orange bars are
results for solvers making use of the output from CoreNLP, the blue bars are results for solvers
using other techniques.

Figure 5.4: Results for Solve.py when run with calls manipulated for consistency.

In Fig. 5.4, two results stand out: D and S. Question D 1.3 asks if the caller is able to see or hear
the patient. Question S 2.12 asks if the operator ensures the patients ability to breathe and if the
patient is conscious or not. This is discussed more in section 6.4.

5.3.2 Classify calls as low or high quality

Looking at the classification of the calls as low or high quality calls, Solve.py classifies 49 calls as
low quality calls and 18 calls as high quality calls when the calls are manipulated for consistency.
When the caller is removed, Solve.py classifies 66 call as low quality calls and 1 call as high
quality. As mentioned in section 1.3, there are actually 50 high quality calls and 17 low quality
calls available. This means that the accuracy of Solve.py is 49% and 27% respectively. Also
recall that the threshold for whether a call is of high quality or not is set to a score of 9 or above
(section 4.8.3).

How the classification of the calls compares to the classification made by Bohm can be seen in the
confusion matrices in table 5.12 and 5.13.

Table 5.12: Confusion matrix for
consistency manipulated calls.

Predictions
High Low

Actual
Quality

High 17 33
Low 1 16

Table 5.13: Confusion matrix for calls without
caller.

Predictions
High Low

Actual
Quality

High 1 49
Low 0 17

5.4 Grammatical Framework

Grammatical Framework was able to answer the two questions asked, according to section 4.9.
However – as also discussed in section 4.9 – the program was only used to look for answers in one
call, and the call had to be manually rewritten for GF to work at all. A brief discussion on the
matter can be found in section 6.6.

29

5. Results

5.5 Speech recognition

Two speech recognition applications were tested, in accordance to what was discussed in section 2.3.
When the tests had been done it was concluded that Speech Recognition on Docs (section 3.6.2) was
the best suited application, of those two. Two complete calls were then transcribed and analysed
using the add-on. The result of these tests are shown in section 5.5.3.

5.5.1 iSpeechWriter

There were certain words, like foreign words or fillers, which were not recognised by the iSpeech-
Writer. As seen in table 5.14 the software was unable to recognise certain words and therefore
they was not transcribed. Sometimes the remaining sentence after an “invalid” word would not be
registered at all.

Table 5.14: A test run of a dialogue between an SOS operator and a caller, using iSpeechWriter.

Original call Transcribed call
SOS 112, vad har inträfat? Sos 112 vad har inträffat
Mm- N/A
Är ni på väg nu eller? på väg nu eller
Vet du vilket spår ni kommer in på? vet du vilken ordning kommer in på
Nä, okej. N/A

5.5.2 Speech Recognition on Docs

Speech Recognition on Docs is able to transcribe almost all words correctly if the speaker articulates
well. Talking fast works decently as the program registers the majority of the words. When it
comes to noise in the background, the program misses a lot of the words. Sometimes it will not
register a single word if the background noise is too loud. As can be seen in table 5.15, the program
is not transcribing any fillers but is successfully transcribing the majority of the sentences.

Table 5.15: A test run of a dialogue between an SOS operator and a caller, using Speech Recog-
nition on Docs.

Original call Transcribed call
SOS 112, vad har inträffat? Sos 112 vad har inträffat
Mm- N/A
Är ni på väg nu eller? är ni på väg nu eller
Vet du vilket spår ni kommer in på? vilket spår ni kommer in på
Nä, okej. okej

5.5.3 Analysing calls transcribed with a speech recognition software

As was mentioned in section 5.5, a brief analysis was conducted where two transcribed calls with
known quality (both high) were classified. The calls were transcribed using Speech Recognition on
Docs and the only modification made to the transcription was adding newlines after each phrase.

iKnow was able to classify both calls correctly. The simsrcsimple function in iKnow was set to
search for concepts (section 4.3.1). iKnow was given the calls modified for consistency (section 4.2),
along with the two calls transcribed by the speech recognition software as domain. iKnow was able
to classify both calls correctly, along with classifying all the other calls in the similarity graph.

30

5. Results

Because these settings yielded the most accurate results in the previous test cases, only this test
was run.

Gensim was also able to classify the calls correctly. The transcribed calls were added to the
calls manipulated for consistency (section 4.2) and the algorithm used was the KNN algorithm
(section 3.4.1). Several values for k were used. The graph in Fig. 5.5 shows the result for the
different values of k. At the vertical line, where k = 7, both the transcribed calls were predicted
as high quality calls by gensim.

Figure 5.5: Results for gensim, run with the KNN algorithm.

Solve.py answered 72% of the questions in the KI-protocol correctly but Solve.py classified both
calls as low quality calls. The calls got 5 and 6 points respectively and in accordance to section 4.1
a score of 9 are needed for a call to be considered of high quality.

31

5. Results

32

6
Discussion

The programs at hand have proved successful at identifying calls of low or high quality according to
the classification made by Bohm to various degrees. Below follows a discussion of each program’s
strengths and weaknesses.

6.1 Discussion of the results produced by iKnow

The most impressive results produced by iKnow is its ability to correctly classify 100% of the
calls using the Average algorithm. This is quite surprising since iKnow only compares low-level
concepts, how words relates to each other. Whereas, the KI-protocol uses very high level concepts
to determine if a call has high quality. An example is question X 3.5 “Is the SOS operator focusing
on things not related to the description of the disease?”.

It is interesting that iKnow can draw the correct conclusions without understanding the high-level
concepts. There are two possible reasons for this. The first reason is that there is a low-level
systematic difference between the high quality and the low quality calls. The second reason is that
classification of the calls might not been done solely using the KI-protocol. When reading the calls
it is quite clear which calls are low and high quality calls. It seems plausible that whoever classified
the calls used this notion more than the KI-protocol. Section 4.1 acknowledges this by mentioning
that there is no clear correlation between a low score from the protocol and a low quality call. This
would imply that the quality of the call was determined by some other, perhaps more subjective,
factor that iKnow was able to find.

The results from iKnow also says a lot about how the calls are related to each other. It seems like
the calls of high quality are more similar to each other than the calls of low quality are. This could
imply that reason for a call having low quality is because it is unstructured and seemingly random.
Thus, what the low quality calls all have in common is that they do not have much in common.

6.2 Discussion of how manipulation of calls affect iKnow

As table 5.2 and 5.6 show, every result was higher for the calls modified for consistency than the calls
without the caller. This is reasonable since the call without the caller contains less information, it
is however noteworthy. If the result was the opposite – removing the caller increased the accuracy
of the analysis – this could be due to the caller obstructing information from the SOS operator.

It is interesting to note that the threshold for the Average algorithm is increased for the calls
without the caller. This means that when the information from the caller was removed, iKnow
gave a higher similarity between low quality calls and high quality calls. The opposite behaviour
was observed when iKnow searched for CRCs, see table 5.7, instead of just concepts.

33

6. Discussion

In both cases the absolute value of the threshold was greater for the calls without the caller. This
implies that, as information is removed the similarities becomes more biased. Some of the increase
in bias might be from random fluctuations.

6.3 Classifying calls using gensim

As was discussed in section 5.2, the approach used to classify calls using gensim is similar to the
approach used with iKnow. The results are however not as good. The best result is obtained when
the calls optimised for consistency are analysed with the KNN algorithm; the accuracy was 96%.
Without more knowledge about the underlying algorithms used by iKnow it is hard to give good
explanation to why this is the case.

It is also interesting to note that the KNN graph, Fig. 5.3, is “smoother” than the iKnow KNN
graph, Fig. 5.2. This implies that gensim is able to make more distinct groups, with less noise,
than iKnow. This could prove very useful if gensim is properly trained on a bigger corpus.

6.4 Solve.py’s ability to answer questions

The results for answering specific questions using Solve.py varies a lot between questions. It
is clear that some questions are more suitable for a computer to answer than others. Solve.py
performs very well when the question is answerable by looking for key words. When answering
a question that requires knowledge about non-contextual matters, especially in combination with
temporal aspects, it performs worse.

Questions D 1.3 and S 2.12 was mentioned in section 5.3.1 as problematic questions. Question
D 1.3 asks if the caller is able to see or hear the patient, and is difficult to answer because there are
many unspoken elements in a conversation that answers the actual question. The caller might talk
to the patient and therefore the operator will know that the patient is both present and conscious.
Question S 2.12 is difficult in the same way.

Another example where Solve.py struggles is when answering question X 3.5 “Is the SOS operator
focusing on things not related to the description of the disease?”. Since the SOS operators seldom
talks about unrelated topics the result from solver QX is good (94% correct for both sets of calls)
but this is not because of the solver being good – but the operators doing well. As a matter of
fact, solver QX returns 0 on each call. The question is hard to answer because the computer must
first confirm what the description of the symptoms is and after that, it has to look through the
call and find out if the operator is focusing on something else than the specified description.

6.5 Solve.py’s ability to classify calls

When it comes to classifying calls according to their quality, the method is straight forward. The
results do however stand out. As was explained in section 4.1 a call is considered to have low
quality if it is assigned a score of 8 or lower. In table 5.12 we see the results when Solve.py is
run with calls modified for consistency and the result is clear: only 18 calls are predicted as high
quality calls, one of which is actually a low quality call, according to Bohm (section 1.3). Looking
at table 5.13 – showing the result when Solve.py is run with caller removed from the calls – the
result is even more extreme. While all bad calls are classified correctly, only 1 call is considered to
have high quality.

The over all performance of Solve.py’s ability to classify the calls could therefore be seen as poor.
Solve.py correctly classifies 49% of the calls modified for consistency and 27% of the calls where

34

6. Discussion

the caller is removed. As was discussed in section 6.4, Solve.py’s ability to answer the questions
in the KI-protocol is 76% and 68% respectively. This is a lot better than what is seen when the
calls are to be classified.

It seems plausible that classifying the calls is more difficult than answering 25 preset questions and
assigning each question a weight, as was discussed in section 4.1.

6.6 Discussion of the results produced by GF

As for now, GF answers 100% of the questions asked correctly. However, there were only two
questions asked and only one call was used as the test set.

Grammatical Framework seems to have potential. A substantial amount of additional testing is
however required in order to verify the true potential of the software. It has been concluded (see
section 5.4) that GF is excellent at finding information in a sentence, but if every sentence requires
human intervention before it is passed through the program the automation is lost.

6.7 The possibility to classify speech recognition calls

In section 5.5.3 it was concluded that out of iKnow, gensim and Solve.py, iKnow and gensim were
able to correctly classify the calls transcribed using the speech to text program Speech Recognition
on Docs. It is worth noticing that iKnow was able to also classify all the other calls in the similarity
graph, but gensim (using the KNN algorithm) needed a value for k that skewed the program towards
classifying too many calls as good. This lowered the overall result for gensim. Therefore, even
though gensim did classify the calls correctly, the overall result is not as good as the result for
iKnow. It is also worth noticing that gensim was able to classify these calls in their “transcribed
version”, as was provided by Bohm. The speech-to-text transcription made the classification harder
for gensim.

As a disclaimer, it is important to understand that the transcriptions were made under good
circumstances. The room was quiet and the speaker spoke clearly. In an emergency situation
this might not be the case. Regardless, it is still very interesting to see the results and it seems
plausible to transcribe a call, by running it through a speech to text software, and analyse it –
without human intervention.

6.8 Sources of error and future recommendations

Looking back at the project there are aspects of the work that could have been done differently.
Some decisions that were made might have influenced the results in unpredictable ways and would
the work described be recreated there is reason to change some aspects of the implementation and
how the tests were done.

6.8.1 Increasing the number of calls

67 calls are not a lot of calls. It would be interesting to test how the programs generalises to a
larger sample. Unfortunately the project is dependant on calls from SOS Alarm and is therefore
unable to produce additional calls.

35

6. Discussion

6.8.2 Quantifying quality correctly

As has been discussed throughout the report, the KI-protocol did not prove as useful to classify
the calls as was expected. The results presented in chapter 5 clearly shows that it is possible to
classify calls as high or low quality call, given a well defined training set. It is also shown that it is
possible to answer the questions in the KI-protocol. The problem seems to be that these are not
easily related.

For future studies it is important to make sure that there is a clear correlation between a call’s
quality and the answers to any questions meant to define the quality of said call.

6.8.3 The importance of a good corpus

After a discussion with professor Aarne Ranta, it was clear that the choice of corpus to train
a program was much more exquisite than what was first thought. Instead of using the Swedish
Wikipedia to train the parsing module for CoreNLP (section 4.7.2), it might have been more suit-
able to use another corpus. Gensim does also depend on what corpus it is trained on (section 4.6)
and maybe it would be advantageous to make use of another corpus here as well. Ranta suggested
using Swedish subtitles, which is more similar to a talking person, than factual texts written on
Wikipedia. An even better corpus could be a large sample of actual emergency calls.

6.8.4 Using the concept of similarity to answer questions

Neither iKnow, nor gensim, was used to answer specific questions in the KI-protocol. Some at-
tempts were made to utilise both programs to achieve this, but the results were not useful and it
was decided that the remaining time was better spent researching Grammatical Framework to give
the project a broader perspective. Given more time, and a more suitable corpus, future studies
should look into this possibility.

6.8.5 Social, economic and environmental impacts

As was discussed in section 1.1, SOS Alarm has a high staff turnover. Enhancing the evaluative
process with respect to the operator’s ability to assess their patients will only do good. As a
consequence of this, it seems reasonable to assume that the operators will be more prone to stay
at their jobs. The suggested method of analysing calls will result in a cost for SOS Alarm, but
if the result is both a more accurate assessment and more satisfied employees it will most likely
result in a net win for SOS Alarm.

It is also possible that Sweden as a whole will benefit from implementing a system like the one
described in the thesis. Fewer faulty assessments leads to more people getting the help they need,
in time. The decrease in waste of resources is beneficial both with respect to social, economical and
environmental aspects. Social, because the population of Sweden will gain an increased amount
of trust knowing that an ambulance will most likely be there to help them in case of emergency.
Economic, for the aforementioned reasons and environmental, because a more efficient use of
ambulances implies less driving to unnecessary locations and use of unnecessary materials.

36

7
Conclusion

The purpose of this thesis was to offer an in-depth computer science perspective concerning the
possibility to digitally analyse incoming calls to SOS Alarm. This section will discuss the possibility
to analyse already transcribed calls. As well as, the possibility to transcribe the incoming calls
digitally, and later analyse these transcriptions.

It has been concluded that it is possible to classify a given call as a low or high quality call. The
calls provided by the project’s medical expert Katarina Bohm were mostly formatted as described
in section 4.2. The programs used to analyse the calls are built to either take advantage of
this formatting, or to discard it. IKnow was able to classify 100% of the 67 calls successfully
(section 5.1), gensim classified 96% of the calls successfully (section 5.2), Solve.py was able to
answer 76% of the questions in the KI-protocol (section 5.3) and GF showed potential for future
work (section 5.4).

It is worth noticing that the success of classifying the calls seems unrelated to a program’s ability to
answer the questions in the KI-protocol (sections 4.1, 5.2 and 5.3). As was discussed in section 6.1
there must be an underlying structure in the texts which the similarity concerned programs are
able to utilise.

The potential of digitally transcribing calls seems high. The results from the transcription tests
are good (section 5.5) and, when mixed with the transcribed calls from SOS Alarm, iKnow was
able to correctly classify these calls amongst the others.

37

7. Conclusion

38

Bibliography

[1] C. Cardie, “Cs674: Natural language processing,” CS674 Natural Language Processing,
2003, [Accessed on 2016-02-12]. [Online]. Available: http://www.cs.cornell.edu/courses/
cs674/2003sp/history-4up.pdf

[2] SOS Alarm, “SOS Alarm föreläsning,” [Accessed on 2016-02-01]. [On-
line]. Available: https://www.sosalarm.se/Global/Bibliotek/SOS%20Alarm%20om%
20alarmeringstjanstutredningen_ver_3.pdf

[3] ——, “Ambulansbeställning,” 2016, Accessed on 2016-03-15. [Online]. Available: https:
//www.sosalarm.se/Vara-tjanster/Vard/Ambulansbestallning/

[4] V. Lindström, K. Heikkilä, K. Bohm, M. Castrèn, and A.-C. Falk, “Barriers and opportunities
in assessing calls to emergency medical communication centre - a qualitative study,”
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol. 22, pp. 1–9,
2014, [Accessed on 2016-01-28]. [Online]. Available: http://www.sjtrem.com/content/22/1/61

[5] B. Ek, P. Edström, A. Toutin, M. Svedlund, A. för omvårdnad, F. för humanvetenskap,
and Mittuniversitetet, “Reliability of a Swedish pre-hospital dispatch system in
prioritizing patients,” International Emergency Nursing, vol. 21, no. 2, pp. 143–149,
2013, [Accessed on 2016-02-12]. [Online]. Available: http://search.proquest.com/docview/
851945799?pq-origsite=summon

[6] A. Khorram-Manesh, K. Lennquist Montán, A. Hedelin, M. Kihlgren, and P. Örtenwall,
“Prehospital triage, discrepancy in priority-setting between emergency medical dispatch
centre and ambulance crews,” European Journal of Trauma and Emergency Surgery,
vol. 37, no. 1, pp. 73–78, 2011, [Accessed on 2016-02-12]. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1111/jocn.2015.24.issue-7pt8/issuetoc

[7] L. Hjälte, B.-O. Suserud, J. Herlitz, I. Karlberg, I. för vårdvetenskap, S. of Health Sciences,
U. of Borås, and H. i Borås, “Why are people without medical needs transported by
ambulance? A study of indications for pre-hospital care,” European Journal of Emergency
Medicine, vol. 14, no. 3, pp. 151–156, 2007, [Accessed on 2016-02-12]. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1111/jocn.2015.24.issue-7pt8/issuetoc

[8] B. Ek, M. Svedlund, A. för omvårdnad, F. för humanvetenskap, and Mittuniversitetet,
“Registered nurses’ experiences of their decision-making at an Emergency Medical
Dispatch Centre,” Journal of Clinical Nursing, vol. 24, no. 7-8, pp. 1122–1131, 2015,
[Accessed on 2016-02-12]. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1755599X11001200

[9] SOS Alarm. (2014) SOS Alarms årsberättelse 2014. (Accessed on 2016-03-11). [Online].
Available: https://www.sosalarm.se/Global/Om%20oss/Finansiell_information/2014/SOS%
20Alarms%20%c3%a5rsber%c3%a4ttelse%202014.pdf

[10] ——. (2016) Jobba hos oss - Frågor och svar. (Accessed on 2016-03-11). [Online]. Available:
https://www.sosalarm.se/Jobba-hos-oss/Fragor-och-svar/

39

http://www.cs.cornell.edu/courses/cs674/2003sp/history-4up.pdf
http://www.cs.cornell.edu/courses/cs674/2003sp/history-4up.pdf
https://www.sosalarm.se/Global/Bibliotek/SOS%20Alarm%20om%20alarmeringstjanstutredningen_ver_3.pdf
https://www.sosalarm.se/Global/Bibliotek/SOS%20Alarm%20om%20alarmeringstjanstutredningen_ver_3.pdf
https://www.sosalarm.se/Vara-tjanster/Vard/Ambulansbestallning/
https://www.sosalarm.se/Vara-tjanster/Vard/Ambulansbestallning/
http://www.sjtrem.com/content/22/1/61
http://search.proquest.com/docview/851945799?pq-origsite=summon
http://search.proquest.com/docview/851945799?pq-origsite=summon
http://onlinelibrary.wiley.com/doi/10.1111/jocn.2015.24.issue-7pt8/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/jocn.2015.24.issue-7pt8/issuetoc
http://www.sciencedirect.com/science/article/pii/S1755599X11001200
http://www.sciencedirect.com/science/article/pii/S1755599X11001200
https://www.sosalarm.se/Global/Om%20oss/Finansiell_information/2014/SOS%20Alarms%20%c3%a5rsber%c3%a4ttelse%202014.pdf
https://www.sosalarm.se/Global/Om%20oss/Finansiell_information/2014/SOS%20Alarms%20%c3%a5rsber%c3%a4ttelse%202014.pdf
https://www.sosalarm.se/Jobba-hos-oss/Fragor-och-svar/

Bibliography

[11] Region Halland. (2013) Vad får du för dina skattepengar? (Accessed on
2016-02-29). [Online]. Available: http://www.regionhalland.se/om-region-halland/
invanartidningen-halland-basta-livsplatsen/halland-basta-livsplatsen-juni-2012/
vad-far-du-for-dina-skattepengar/

[12] Karolinska Institutet. Katarina bohm. Accessed on 2016-03-11. [Online]. Available:
http://ki.se/en/people/kabohm

[13] SOS Alarm. (2014) Anrop till 112 under 2014. (Accessed on 2016-02-12). [Online]. Available:
http://2014.sosalarm.se/statistik-112-tjansten/

[14] (2016) AES Crypt. [Accessed on 2016-02-12]. [Online]. Available: https://www.aescrypt.com/

[15] Free Software Foundation. What is free software? Accessed on 2016-03-11. [Online].
Available: https://www.fsf.org/about/what-is-free-software

[16] OpenNLP. OpenNLP. Accessed on 2016-03-11. [Online]. Available: http://opennlp.apache.
org/

[17] Grammatical Framework. Grammatical Framework. Accessed on 2016-03-11. [Online].
Available: http://www.grammaticalframework.org/

[18] Stanford. Stanford CoreNLP. Accessed on 2016-03-10. [Online]. Available: http:
//stanfordnlp.github.io/CoreNLP/index.html

[19] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large Corpora,” in
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta,
Malta: ELRA, May 2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[20] Chalmers, University of Gothenburg. Aarne Ranta. Accessed on 2016-05-04. [Online].
Available: http://www.cse.chalmers.se/~aarne/

[21] ——. Inari Listenmaa. Accessed on 2016-05-04. [Online]. Available: http://www.chalmers.se/
en/staff/Pages/inari.aspx

[22] PCWorld. (2016) Control your pc with these 5 speech recognition programs. (Ac-
cessed on 2016-03-15). [Online]. Available: http://www.pcworld.com/article/2055599/
control-your-pc-with-these-5-speech-recognition-programs.html

[23] AMG. iSpeechWriter. Accessed on 2016-05-04. [Online]. Available: http://i-speechwriter.
com/index.html

[24] EFV-Solutions. Speech recognition on Google Docs. Accessed on 2016-05-04. [Online].
Available: http://efv-solutions.com/

[25] Merriam-Webster. Phonetics. Accessed on 2016-03-23. [Online]. Available: http://www.
merriam-webster.com/dictionary/phonetics

[26] ——. Morphology. Accessed on 2016-03-03. [Online]. Available: http://www.merriam-webster.
com/dictionary/morphology

[27] ——. Amphibology. Accessed on 2016-03-03. [Online]. Available: http://www.
merriam-webster.com/dictionary/amphibology

[28] ——. Polysemous. Accessed on 2016-03-03. [Online]. Available: http://www.merriam-webster.
com/dictionary/polysemous

[29] Apple. Siri. Accessed on 2016-03-03. [Online]. Available: https://www.apple.com/ios/siri/

[30] Google. Google Now. Accessed on 2016-03-03. [Online]. Available: https://www.google.com/
landing/now/

40

http://www.regionhalland.se/om-region-halland/invanartidningen-halland-basta-livsplatsen/halland-basta-livsplatsen-juni-2012/vad-far-du-for-dina-skattepengar/
http://www.regionhalland.se/om-region-halland/invanartidningen-halland-basta-livsplatsen/halland-basta-livsplatsen-juni-2012/vad-far-du-for-dina-skattepengar/
http://www.regionhalland.se/om-region-halland/invanartidningen-halland-basta-livsplatsen/halland-basta-livsplatsen-juni-2012/vad-far-du-for-dina-skattepengar/
http://ki.se/en/people/kabohm
http://2014.sosalarm.se/statistik-112-tjansten/
https://www.aescrypt.com/
https://www.fsf.org/about/what-is-free-software
http://opennlp.apache.org/
http://opennlp.apache.org/
http://www.grammaticalframework.org/
http://stanfordnlp.github.io/CoreNLP/index.html
http://stanfordnlp.github.io/CoreNLP/index.html
http://is.muni.cz/publication/884893/en
http://www.cse.chalmers.se/~aarne/
http://www.chalmers.se/en/staff/Pages/inari.aspx
http://www.chalmers.se/en/staff/Pages/inari.aspx
http://www.pcworld.com/article/2055599/control-your-pc-with-these-5-speech-recognition-programs.html
http://www.pcworld.com/article/2055599/control-your-pc-with-these-5-speech-recognition-programs.html
http://i-speechwriter.com/index.html
http://i-speechwriter.com/index.html
http://efv-solutions.com/
http://www.merriam-webster.com/dictionary/phonetics
http://www.merriam-webster.com/dictionary/phonetics
http://www.merriam-webster.com/dictionary/morphology
http://www.merriam-webster.com/dictionary/morphology
http://www.merriam-webster.com/dictionary/amphibology
http://www.merriam-webster.com/dictionary/amphibology
http://www.merriam-webster.com/dictionary/polysemous
http://www.merriam-webster.com/dictionary/polysemous
https://www.apple.com/ios/siri/
https://www.google.com/landing/now/
https://www.google.com/landing/now/

Bibliography

[31] D. Jurafsky and J. H. Martin, “Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,” Speech
and Language Processing An Introduction to Natural Language Processing Computational
Linguistics and Speech Recognition, vol. 21, pp. 0–934, 2009. [Online]. Available:
http://www.mitpressjournals.org/doi/pdf/10.1162/089120100750105975

[32] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp.
1532–1543, Accessed on 2016-04-21. [Online]. Available: http://www.aclweb.org/anthology/
D14-1162

[33] J. Schneider. Cross validation. Accessed on 2016-04-16. [Online]. Available: http:
//www.cs.cmu.edu/~schneide/tut5/node42.html

[34] Wolfram Research, Inc. Mathematica. Accessed on 2016-04-27. [Online]. Available:
http://reference.wolfram.com/language/ref/GraphCenter.html

[35] Tutorialspoint. Graph theory - basic properties. Accessed on 2016-04-27. [Online]. Available:
http://www.tutorialspoint.com/graph_theory/graph_theory_basic_properties.htm

[36] Microsoft. What is Cortana? Accessed on 2016-05-05. [Online]. Available: http:
//windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana

[37] EFV-Solutions. EFV-Solutions. Accessed on 2016-05-05. [Online]. Available: http:
//efv-solutions.com/

[38] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. New
York, NY, USA: Cambridge University Press, 2008.

[39] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky, “The
Stanford CoreNLP natural language processing toolkit,” in Association for Computational
Linguistics (ACL) System Demonstrations, 2014, pp. 55–60, Accessed on 2016-03-10. [Online].
Available: http://www.aclweb.org/anthology/P/P14/P14-5010

[40] Free Software Foundation. Gnu general public license. Accessed on 2016-03-10. [Online].
Available: http://www.gnu.org/licenses/gpl.html

[41] Stanford. Stanford CoreNLP – Anotators. Accessed on 2016-03-10. [Online]. Available:
http://stanfordnlp.github.io/CoreNLP/annotators.html

[42] ——. Stanford corenlp – output options. Accessed on 2016-03-10. [Online]. Available:
http://stanfordnlp.github.io/CoreNLP/cmdline.html

[43] Free Software Foundation. Gnu lesser general public license. Accessed on 2016-04-21. [Online].
Available: https://www.gnu.org/copyleft/lesser.html

[44] The Linux Information Project. Bsd license definition. Accessed on 2016-04-21. [Online].
Available: http://www.linfo.org/bsdlicense.html

[45] Intersystems. iKnow.Queries.SourceAPI. Accessed on 2016-03-11. [Online]. Avail-
able: http://docs.intersystems.com/cache20152/csp/documatic/%25CSP.Documatic.cls?
APP=1&LIBRARY=%25SYS&CLASSNAME=%25iKnow.Queries.SourceAPI

[46] Stanford. Stanford corenlp – log-linear part-of-speech tagger. Accessed on 2016-03-10.
[Online]. Available: http://nlp.stanford.edu/software/tagger.shtml

[47] ——. Stanford corenlp – extensions – packages and models by others extending
stanford corenlp. Accessed on 2016-03-10. [Online]. Available: https://stanfordnlp.github.io/
CoreNLP/extensions.html

[48] A. Klintberg. POS tagger model for Swedish for Stanford CoreNLP. Accessed on 2016-03-10.

41

http://www.mitpressjournals.org/doi/pdf/10.1162/089120100750105975
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.cs.cmu.edu/~schneide/tut5/node42.html
http://www.cs.cmu.edu/~schneide/tut5/node42.html
http://reference.wolfram.com/language/ref/GraphCenter.html
http://www.tutorialspoint.com/graph_theory/graph_theory_basic_properties.htm
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
http://efv-solutions.com/
http://efv-solutions.com/
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.gnu.org/licenses/gpl.html
http://stanfordnlp.github.io/CoreNLP/annotators.html
http://stanfordnlp.github.io/CoreNLP/cmdline.html
https://www.gnu.org/copyleft/lesser.html
http://www.linfo.org/bsdlicense.html
http://docs.intersystems.com/cache20152/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=%25iKnow.Queries.SourceAPI
http://docs.intersystems.com/cache20152/csp/documatic/%25CSP.Documatic.cls?APP=1&LIBRARY=%25SYS&CLASSNAME=%25iKnow.Queries.SourceAPI
http://nlp.stanford.edu/software/tagger.shtml
https://stanfordnlp.github.io/CoreNLP/extensions.html
https://stanfordnlp.github.io/CoreNLP/extensions.html

Bibliography

[Online]. Available: https://github.com/klintan/corenlp-swedish-pos-model

[49] ——. Training a swedish pos-tagger for stanford corenlp. Ac-
cessed on 2016-03-10. [Online]. Available: https://medium.com/@klintcho/
training-a-swedish-pos-tagger-for-stanford-corenlp-546e954a8ee7#.gfl0x0391

[50] Swedish Treebank. Swedish Treebank. Accessed on 2016-03-10. [Online]. Available:
http://stp.lingfil.uu.se/~nivre/swedish_treebank/

[51] Stanford. edu.stanford.nlp.tagger.maxent. Accessed on 2016-03-10. [Online]. Available: http://
nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html

[52] ——. Stanford CoreNLP – Neural Network Dependency Parser. Accessed on 2016-03-10.
[Online]. Available: http://nlp.stanford.edu/software/nndep.shtml

[53] Universal Dependencies. Universal Dependencies. Accessed on 2016-03-10. [Online]. Available:
http://universaldependencies.org/

[54] C. Mellon. Non-Negative Sparse Embedding. Accessed on 2016-03-10. [Online]. Available:
http://www.cs.cmu.edu/~bmurphy/NNSE/

[55] M. Mahoney. The 100M first characters of Wikipedia. Accessed on 2016-03-11. [Online].
Available: http://mattmahoney.net/dc/text8.zip

[56] MediaWiki. MediaWiki – API. Accessed on 2016-03-11. [Online]. Available: https:
//www.mediawiki.org/wiki/API:Main_page

[57] L. Richardson. Beautiful soup. Accessed on 2016-04-21. [Online]. Available: https:
//www.crummy.com/software/BeautifulSoup/

42

https://github.com/klintan/corenlp-swedish-pos-model
https://medium.com/@klintcho/training-a-swedish-pos-tagger-for-stanford-corenlp-546e954a8ee7#.gfl0x0391
https://medium.com/@klintcho/training-a-swedish-pos-tagger-for-stanford-corenlp-546e954a8ee7#.gfl0x0391
http://stp.lingfil.uu.se/~nivre/swedish_treebank/
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html
http://nlp.stanford.edu/software/nndep.shtml
http://universaldependencies.org/
http://www.cs.cmu.edu/~bmurphy/NNSE/
http://mattmahoney.net/dc/text8.zip
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Main_page
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/

A
Appendix

I

A. Appendix

A.1 SOS Alarm quality assessment protocol

II

A. Appendix

A.2 KI-protocol

III

2012-07-15 0=Nej 1= Ja
1. Bakgrundsinformation + = gynnar bedömning
B 1.1 Var ringer man ifrån? - = hindrar bedömning
(ex 1. hemmet,2. sjukvårdsinrättning,3.
allmän plats 4 ej där pat är)

Neutral

C 1.2 Vem ringer? +
(1. närstående, 2. sjukvårdspersonal, 3.
hemtjänstperson, 4. Patient, 5 annan)

(++ om
sjukvårdspersonal?)

D 1.3 Har man sett patienten/den som är
sjuk eller hörs patienten i bakgrunden?

+

E 1.4 Språkliga hinder hos inringaren? -
(ex 1. annat modersmål, 2. kan inte
prata)

F 1.5 Språkliga hinder hos patient/den
som är sjuk?

-

(ex1. annat modersmål, 2. kan inte prata,
3. Döv, annat)

G 1.6 Uppskattad ålder på den som är
sjuk

+

(barn – ungdom medelålder- gammal)

2. Inringaren
H 2.1 Uppger inringaren att det är en
transport mellan olika vårdgivare?

neutral

(ex från vårdcentral till sjukhus eller från
hemsjukvården till sjukhus)

I 2.2 Finns det en beskrivning av vad
patienten gör under samtalet?

+

(ex ligger på golvet, sitter uppe, benen bär inte kan inte
stödja på benen)

J 2.3 Finns beskrivning av hur patienten +

ser ut?
(ex patienten är blek, kallsvettig, grå, röd, blå-lila,
kritvit, svullen om bena, svullen)

K 2.4 Upprepar inringaren symtomen > 4
gånger?

-

L 2.5 Anges symtom utveckling över tid? +
(patienten anger att det har gjort ont en längre tid >1
vecka och nu har det blivit mycket värre eller för 30
minuter sedan fick hon/han ont i bröstet)

M2.6 Jämförs nuvarande tillstånd med
hur det brukar vara?

+

(ex tidigare kunde han/hon stå, gå och prata, nu bara
ligger han/hon ned och pratar inte, eller har
kissat/bajsat ned sig, det brukar inte vara så)

N 2.7 Uppges att patienten har >2
problem?

-

(ex han hon är yr, har feber och kan inte gå)

O 2.8 Uppges motsägelser i
beskrivningen av tillstånd?

-

(ex uppger att problemet är att hon/han blöder näsblod men
sedan beskrivs även att det är jobbigt att andas eller ont i
bröstet eller patienten säger att hon/han inte kan andas men
patienten pratar utan att vara andfådd)

P 2.9 Kan inringaren svara på
larmoperatörens frågor?

+

(ex inringaren ser inte eller vet inget om patienten)

Q 2.10 Svarar inringaren på
larmoperatörens frågor?

+

(ex pratar om andra saker än vad larmoperatören
frågar)

R 2.11 Beskrivs fler än 3 olika tidigare
sjukdomar i samtalet?

-

(ex har högt blodtryck, diabetes och demens)

S 2.12 Beskrivs problem med Andning-
Cirkulation-Medvetande problem direkt i
samtalet (inom 30 sek)? Se exempel.

+

3. Larmoperatören
T 3.1 Sammanfattar och eller upprepar
larmoperatören vad inringaren berättar?

+

U 3.2 Använder larmoperatör
stödfunktioner (ex giftinformations central,
barnmorska)?

V 3.3 Säkerställer larmoperatören med
frågor och/eller kommentarer att
patienten andas och är vid medvetande?
Eller hörs det att patienten andas/pratar under samtalet?

+

W 3.4 Leder larmoperatören samtalet? +
(ex larmoperatören ställer frågor och inringaren
svarar/gör vad den är uppmanad till att göra)

X 3.5 Larmoperatören fokuserar på annat
än sjukdomsbeskrivning?

-

(ex pratar om annat än vad som är problemet som det
finns ett behov av ambulans eller sociala eller alkohol
problem)

Y 3.6 Ställer larmoperatören flera frågor i
samma mening?

-

(ex när började det göra ont och var och hur gör det
ont?)

Z 3.7 Frågar larmoperatören om det som
inringaren berättat?

+

(ex inringaren berättar att det gör ont i bröstet och
larmoperatören frågar på vilket sätt/var/när det började/om
det strålar någonstans eller inringaren uppger att patienten
är grå-blek och larmoperatören frågar om hur huden
känns)

	Introduction
	Background
	Purpose
	Scope
	Problem specification
	How to define the quality of a call
	How the transcription affects the analysis' quality

	Methodical Considerations for Analysing Emergency Calls
	The ethical aspect of the project
	The origin of the assessment protocol
	The criteria for the choice of software
	Software chosen for text analysis
	Software chosen for speech recognition

	Theory
	Natural Language Processing
	Regular Expressions
	Representing words and phrases using vectors
	Statistical validation
	K-fold cross validation

	Graph distance algorithms
	Average distance in graphs
	Distance to centre in graphs
	K-nearest neighbour

	Applications used for speech recognition
	iSpeechWriter
	Speech Recognition on Docs

	Applications used to analyse the transcribed calls
	iKnow
	Gensim
	CoreNLP
	Grammatical Framework

	Implementation
	Analysis of the assessment protocol
	Manipulation of the transcribed calls
	Manipulation for transcription consistency
	Removing the caller from the calls

	The functionality of iKnow
	The iKnow Similarity function

	Classification of calls using Score.py
	Validation and optimisation using Threshold.py
	Using gensim to vectorise calls
	Developing Swedish modules for CoreNLP
	Part of Speech-tagging
	Neural network dependency parsing

	Answering the KI-Protocol using Solve.py
	Solvers using the output of CoreNLP
	Solvers using word frequency analysis
	Categorising calls as high or low quality using Solve.py

	Implementing Grammatical Framework
	Python program to solve question S 2.12

	Testing of speech recognition

	Results
	Results using iKnow's Similarity function
	iKnow Similarity Concept Search
	iKnow Similarity CRC Search

	Gensim
	Gensim similarity search

	Solve.py
	Answer questions in the KI-protocol
	Classify calls as low or high quality

	Grammatical Framework
	Speech recognition
	iSpeechWriter
	Speech Recognition on Docs
	Analysing calls transcribed with a speech recognition software

	Discussion
	Discussion of the results produced by iKnow
	Discussion of how manipulation of calls affect iKnow
	Classifying calls using gensim
	Solve.py's ability to answer questions
	Solve.py's ability to classify calls
	Discussion of the results produced by GF
	The possibility to classify speech recognition calls
	Sources of error and future recommendations
	Increasing the number of calls
	Quantifying quality correctly
	The importance of a good corpus
	Using the concept of similarity to answer questions
	Social, economic and environmental impacts

	Conclusion
	Bibliography
	Appendix
	SOS Alarm quality assessment protocol
	KI-protocol

