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JONAS GROTH
ERIK FORSBERG
JOHAN JINTON
IVAN TANNERUD
ISAK ERIKSSON
ANTON LUNDGREN

Department of Computer Science and Engineering,
Chalmers University of Technology
University of Gothenburg

Abstract

This report documents the development of a system capable of gathering
energy consumption data from multiple different brands of smart energy
plugs. The problem today is that firstly the manufacturers’ software is not
general and provides a limited set of functions. For example, one brand’s
software may provide forecasting of energy consumption while another does
not. Secondly, it is not possible to use different brands of plugs together.
The system presented in this report consists of a plug data parser, a message
broker and a data processing engine. The plug data parser can gather data
from one or multiple different brands of energy plugs at once. Using a message
broker opens the possibility to gather data from a large number of plugs at
the same time and in real-time. A data processing engine enables processing
of the data through which use cases are implemented. It provides functions
such as calculation of a moving average for the energy consumption, the
total power consumption for all plugs and provides alerts for the energy
consumption. Lastly, it provides a foundation to forecast future consumption.
The resulting system is capable of processing more than 500 plug readings
per second in real time, from two different plug brands.

Keywords: smart energy plugs, energy plug, stream analysis, forecasting, sta-
tistics, alarms, big data



Sammanfattning

Denna rapport dokumenterar utvecklingen av ett system för att samla in
energianvändningsdata fr̊an flera olika märken av smarta energipluggar. Pro-
blemet med detta idag är främst att tillverkarnas mjukvara ej är generell samt
endast erbjuder ett begränsat antal funktioner. Till exempel kan ett märkes
mjukvara erbjuda prognoser om framtida energianvändning medan ett annat
inte gör det. Dessutom är det i dagsläget inte möjligt att använda smarta
energipluggar av olika märken tillsammans.
Systemet som presenteras i denna rapport best̊ar av en “plug data parser”, en
“message broker” samt en “data processing engine”. Parsern samlar data fr̊an
ett eller flera märken samtidigt. Användningen av en message broker öppnar
för möjligheten att samla data fr̊an ett stort antal pluggar samtidigt, i realtid.
Med användandet av en data processing engine implementeras behandling
av data som beräknar ett glidande medelvärde för energianvändningen, den
totala energianvändningen för alla pluggar samt förser användaren med alarm
vid onormal energianvändning. Slutligen utgör systemet en bas för att förutse
framtida energianvändning.
Det resulterande systemet kan behandla mer än 500 energiavläsningar per
sekund i realtid, fr̊an tv̊a olika märken av energipluggar.

Nyckelord: smarta-energipluggar, energipluggar, strömanalys, prognostise-
ring, statistik, alarm, big data
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Glossary

Apache Zookeeper A program for maintaining configurations
and synchronisation of distributed services

Baud rate Specifies how fast data is sent over serial

Javascript A programming language commonly used to
create interactive web pages

JSON JavaScript Object Notation, a standardised
format for sending data

Mesh network
In a mesh network all nodes relay messages to
other nodes, the most famous mesh network
is the Internet

ODROID-XU4 A single board computer

OpenJDK An open-source Java Development Kit that
also contains a Java Runtime Environment

Smart energy plug A device that reads electricity consumption
from an electricity socket



Chapter 1

Introduction

Regardless of where in the western countries you live, it is of interest to
lower the energy consumption, both from an economic and environmental
standpoint. Households in the USA have an average annual electricity con-
sumption of 11,000 kWh [1] while the corresponding number in Sweden is
14,000 kWh [2]. This is a substantial part of the expenses for a family. There
are devices which are plugged in between an electricity outlet and some ap-
pliance, that measures the electricity consumption. These devices are called
smart energy plugs and can help households get insight into what appliances
consume the most electricity. This allows them to make informed decisions
about their consumption [3].
The smart energy plugs come in different forms by different companies. These
plugs often differ in the way they handle data and in their utilisation of
communication protocols. Because of this, the different brands have their
own software with different capabilities. Therefore, when buying new plugs,
the software included might not give the users information about the plugs
that they are interested in. This project aims to provide users with software
that offers the same functionality no matter which plug brand is used. With
a general system such as this, the user can buy energy plugs without having
to base the purchase on software properties.

1.1 Purpose

The purpose of this project is to create a prototype of a general-purpose
modular system for gathering and processing of electricity consumption data,
from a number of different smart energy plugs. A data processing engine is
to be used to process the data and present it to the user.
The prototype should be able to display statistics and forecasts describing
the electricity consumption, as well as to send out alerts depending on the
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CHAPTER 1. INTRODUCTION

current consumption. There are other systems that provides some of these
functionalities, but they are limited to one type of plug and one corresponding
protocol. The resulting prototype of this project is meant to act as a general
system that small-scale, as well as large-scale, users of energy plugs can utilise
regardless of underlying hardware.

1.2 Scope

As mentioned, the project aims to create a program to consolidate data from
several different energy plugs, including plugs of different brands. There are
many different plugs available to choose from and implementing support for
them all would be too time-consuming for the scope of the project. For that
reason, we choose to work with two plug brands. These brands are chosen as
they use different protocols to communicate, which is in line with what the
project is aiming to achieve.
Since the goal of the project is to acquire and process data, a user interface
is created only to showcase to what ends the system can be used.

1.3 Related work

The paper by Monacchi et al. [4] describes an integration of households into
a so called smart grid. Smart grids mainly focus on large scale monitoring
infrastructure for measuring of electricity load to optimise the production
and consumption of electricity.
Already back in 2002 Tsuyoshi Ueno et al. [5] wrote a paper about having
a system to measure and visualise a households energy consumption. They
found that a reduction in energy consumption of 9% was achievable with
their system. A similar study was made by Xudong Ma et al. [6] but they
focused on measuring both temperature and electricity consumption to opti-
mise the usage of heating, ventilation and air conditioning systems, HVAC.
Both of these studies show that visualising energy consumption can decrease
the energy consumption, which could be a consequence of this project.
An abstract framework for the Internet of things allowing users to implement
their own algorithms without concern for how data is transferred is discussed
in [7] by Kamburugamuve et al. They used the message broker Apache Kafka
among others as well as Apache Storm in their framework.

2



CHAPTER 1. INTRODUCTION

1.4 Method

The methodology applied in the project consisted of two phases when adding
a new component to the system. The first phase being research of the avail-
able technology to make sure that the properties fit project’s desired func-
tionality, with phase two being the actual implementation of the system
component in question.
Meetings were held every week on which progress and problems were dis-
cussed and different tasks were handed out to be worked on over the coming
week. To be able to develop the system in a parallel fashion, the Git ver-
sion control system was used. This meant that everyone in the group always
had access to every version of the code regardless of which component of the
system was being worked on.

3



Chapter 2

Problem

The main goal of this project is to create a system to fetch, process and
analyse data from the smart energy plugs. To find a suitable solution, the
different parts of the problem need to be analysed. In this section, the prob-
lem will be broken down, analysed and turned into a specification. Answers
will be given to the questions: What needs to be done? What are the pieces
to the puzzle? How do they fit together?

2.1 Problem analysis

The goal is to create a system that offers the same functionality regardless of
energy plug brand. As a result of this, the system must solve the problem of
individual plug brands not always providing the functionality desired by the
user. In addition, the system should be expandable so that users can add
new features to the system. These factors create a number of more specific
problems in need of solving.

2.1.1 Using different energy plug brands together

The difference in software mentioned previously often lies in the proprietary
communication protocols of different brands. Also the content of the re-
spective brands protocols may differ slightly. One may give current power
consumption in kilo-watt and another in watt, for example. This presents
a problem when trying to use all the different brands of plugs together and
later use the acquired data in some calculations. The solution to this problem
is to create a poller or plug data parser to extract data from the proprietary
protocols. This data is then arranged into a new open format that can be
easily used in other applications.

4



CHAPTER 2. PROBLEM

2.1.2 Processing of streamed energy data

Processing of streamed data makes for a few problems. The main problem
that arises here is the sheer amount of the data, along with the fact that it
is streamed and as such needs to be processed in real time. Considering that
the project’s system should be able to be used on a larger scale, for example
monitoring the electricity consumption of a small town, the number of plugs
can be in the thousands. Each plug will send out large amounts of data and
with a large number of plugs, this data will need to be processed by a data
processing engine for streamed data.

2.1.3 Usages for streamed energy data

To be able to show examples of what the system can achieve in terms of
processing and handling of energy plug data, some use cases needs to be
implemented. These are explained below.

Statistics
Overall statistics should be available to the user. The point of these statistics
is to give a clear overview of the system while also allowing the user to go
into detail about individual plugs. The total power that the system is using
should be available, as well as the total consumption since system start up.
Another feature that should be implemented is a moving average per plug
over the last few hours.

Alarms
The system should send a notification of some kind when a plug is reading
abnormal values. For example, a user should be able to receive a notification
when the readings of a plug has been zero for a long time. This probably
means that something is wrong with the device connected to the plug, either
it is broken or the plug might have been pulled. Also, the user should be
alerted when the total consumption of a plug system reaches a value higher
than a certain multiple of the moving average.

Forecasting
Simple predictions reminiscent of forecasting should be available to the user,
providing information of possible future values based on the past collected
values. Forecasting can be done in a number of different ways, many of

5



CHAPTER 2. PROBLEM

which are outside the scope of this project. Accordingly a trade-off needs
to be made between complicated solutions with accurate values, and simpler
solutions with less accurate values.

2.2 Task specification

This section will discuss specific requirements placed on the system, and
describe these in more detail. Once all the requirements described in the
specification below are met by the system, the goal of the project is fulfilled.

• Data is gathered from multiple different brands of energy plugs i.e.
the system should be hardware agnostic. The system shall be able to
gather data from at least two different types of plug brands.

• The gathered data must be arranged into a standardised format and
sent to a message broker in real-time.

• A setting for alerts shall be available to the user; notifications will be
sent to the user based on predefined conditions.

• Real-time statistics ought to be calculated and presented to the user.
This includes average power and energy consumption, for the hour for
the system as a whole.

• Individual plug readings shall be available to the user in real-time.

• The system shall do calculations that could be used to create a forecast
for the electricity consumption over the next hour.

• It shall be possible to add new plug brands to the project’s system.
For this reason, the energy plugs’ data need to be parsed in a modular
fashion. Also the parser shall parse plug data in real time even if there
are a large number of plugs.

• The system shall not fetch data slower than the fastest brand of energy
plug. More details can be found in section 2.2.1.

• The message broker and data processing engine shall be able to process
200 energy plug readings per second. Read about the reasoning behind
this number in section 2.2.1.

• The system shall have ways of dealing with errors that can occur during
service. Read more about this in section 2.2.2.

6
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2.2.1 Performance

Difference in performance among the brands should not affect the system
as a whole, meaning that the modules for the different brands have to work
independently of each other. The number of different brands and total num-
ber of plugs the system should be able to handle is partly determined by
the maximum number of plugs for each brand’s system. The data processing
part can receive data from multiple pollers at once, so if the problem of one
plug brand reaching its maximum amount of plugs arises, it should be solved
by simply adding another poller.
A possible user of the system could be someone reminiscent of a landlord.
This means that the user might not only want to measure one household but
many households together. With this example in mind it was decided that
the system should be able to handle 10 energy plugs in 20 households which
equates to 200 readings per second. Some users of the system might have
specifications more demanding that of a landlord and this will function as
point of comparison.

2.2.2 Fault tolerance

The system should be able to handle events such as plugs being disconnected
or added to the system without suffering any downtime. Also the system has
to handle corrupt messages without crashing. If the data processing engine
crashes or experiences any problems, it should not impact the collection of
consumption readings from the energy plugs. Messages sent from the plug
data parser should be queued up and processed once the system is available
again.

7



Chapter 3

Technical Background

The project consists of many different components with their own uses and
limitations, both in terms of software and hardware. Below follows a brief
description of all components.

3.1 Smart Energy Plugs

A smart energy plug is a small device that plugs into an ordinary power
outlet, creating an outlet extension as the plug itself has an outlet. The plug
measures the electricity consumption and current power usage of the outlet
and sends data to an application, offering a way to keep track of energy needs
[8].

3.1.1 Plugwise

Plugwise is a brand of energy plugs that creates a mesh network between
a maximum of 64 plugs, these plugs are called ”Circle”, and a master plug
called ”Circle+”. The ”Circle+” communicates with a USB-dongle, called
”Stick”, for the communication between all components a wireless commu-
nication protocol named ZigBee is used [9]. It is a high-level communication
protocol mainly used to create personal area networks. The mentioned USB-
dongle is used with a computer to communicate with the rest of the network.
The dongle communicates with the computer via a serial interface with a
baud rate of 115200 bits/s. The stick accepts and sends HEX encoded com-
mands using a closed protocol [10].

8
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3.1.2 Z-Wave

Z-Wave is a wireless technology that enables smart devices to communicate.
It creates a mesh network between devices and a controller, each network can
contain a maximum of 232 devices [11]. Adding new devices to a network is
done by pressing a button on the device to be added and then waiting for
the inclusion process to finish. There are more than 1400 Z-Wave certified
products from more than 330 manufacturers [12]. The energy plugs utilising
Z-Wave used in this project is manufactured by Greenwave Systems [13].
All Z-wave certified products are capable of communicating with each other.
The certification ensures backwards compatibility and future proofing.

3.2 Message Brokers

A message broker is an intermediate manipulator of messages between a
sender and a receiver [14]. A producer sends messages to the broker ap-
plication, which then stores incoming messages in some way until they are
requested by a consumer. A broker may perform some operation on the in-
coming message, for example preparing it for the receiver by reformatting
the data, or routing the data to one or more destinations. It can be seen
as a building block in a bigger scheme, used for connecting two dots of the
scheme together.

3.2.1 Apache Kafka

Apache Kafka is an open-source messaging system designed for persistent
messaging and high throughput. Kafka provides a distributed real-time sys-
tem for publishing and subscribing to messages. The processes that publishes
messages to Kafka are called producers and the processes subscribing to mes-
sages are called consumers. Messages are published to different topics which
essentially act as categories [15]. Topics can be divided further into parti-
tions which can be used to differentiate the messages within a topic. In order
to receive the messages, the consumer can then subscribe to the topic and
partition of interest. Kafka uses an application called Apache Zookeeper to
keep track of it’s synchronisation and configuration information. In conclu-
sion Kafka is a message broker, providing a way to send a large number of
messages from several producers to several consumers.

9
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3.2.2 RabbitMQ

RabbitMQ is an open-source message broker software that implements the
Advanced Message Queueing Protocol (AMQP) [16]. The features provided
by the AMQP, e.g. message orientation, queueing, routing, reliability and
security are important when working with message brokers [17].

3.3 Data processing engines

Data processing engines are systems designed for processing of big data. Such
systems are suitable when handling large amounts of data and/or streaming
data. There are a number of engines available to process streamed data such
as S4, Storm, and Flume [18][19][20].

3.3.1 Apache Storm

Apache Storm is a free data processing framework that is open-source. It
provides a data processing engine that processes unbounded streams of data
in real-time. One of the main advantages with using Storm is that it can be
used with any programming language, making it simple for most program-
mers to use. Storm uses, similarly to Kafka, Apache Zookeeper for maintain-
ing configurations and distributed synchronisations. Applications in Storm
are designed as a topology, with bolts and spouts as seen in Fig. 3.1. The
spouts act as sources of data streams, they can emit messages from any type
of message brokers or get data from other sources. Bolts are where all pro-
cessing happens, they receive data from spouts or other bolts and do some
processing and can then emit the result to another bolt or somewhere else
[19]. The same bolt can be run in several different instances at once opening
for possibilities for doing parallel processing.

10
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Spout

Bolt

Bolt

Bolt

BoltSpout

Figure 3.1: An example of a Storm topology, with spouts and bolts.

3.4 Forecasting

As stated in 2.2 the system developed in this thesis should do calculations
that could be used to create a forecast. Forecasting makes use of historical
or current data to predict future scenarios and trends. This can be done in
several ways with different suitability depending on what is to be forecasted.
One type of forecasting consists of predicting future values by analysing pre-
vious values. Predictions about data where historical values are unavailable
can also be made, but instead by observing previous data found in other
areas. For example, upcoming electricity demand can be predicted by taking
population, time and electricity pricing into consideration.

3.4.1 Exponential Smoothing

Exponential smoothing is a simple method used to create approximate fore-
casts. More advanced forms of exponential smoothing, taking trends and
seasonality into account, have been used with good results in [21]. A basic
form of the method forecasts its values as

s0 = x0

st = αxt + (1− α)st−1,

where st is the forecast for xt+1 and α is the smoothing factor which deter-
mines the effect older historical values will have on the forecast [22]. Es-
sentially this is a weighted average where the impact of a value on the final
result decreases exponentially with the value’s age.

11
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3.5 Node.js

Node.js is a runtime environment for developing cross platform applications
written in JavaScript. Node.js is also event driven which makes it easy to
create real-time applications [23]. Another advantage is that there are a lot
of premade libraries for handling everything from serial port communication
to interfacing with the web. These libraries are available through a package
manager, called npm [24].
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Feasibility study

Message brokers, data processing engines and forecasting algorithms all come
in different versions with varying advantages. In order to make informed
decisions about what best fits the system it is important to research these
areas.

4.1 Message broker

The message broker is an important part of the system. Different message
brokers had to be evaluated in order to find a message broker that caters
to the system’s needs. Apache Kafka and RabbitMQ were the two main
candidates. One difference between the two is that RabbitMQ is a message
queueing system while Kafka gathers the data in a non sorted fashion [25].
This is however a nonissue as the data sent in this project’s system contains
a time-stamp, as explained in section 6.1. Kafka was designed specifically
to solve the problem of having messages in large quantities. It has been
used by many different companies such as LinkedIn, Netflix and Spotify [26].
RabbitMQ on the other hand, is an older message broker and wasn’t designed
for high throughput-volumes [25]. This makes Kafka the better choice as the
project is looking to make a system appropriate for large-scale use.

4.2 Data processing engine

To realise the goal of the project, the system needs a data processing engine
that is scalable while providing high availability. A popular option is Apache
Storm, which is used by companies such as Spotify, Baidu and Alibaba [27].
The Storm engine handles fault tolerance by guaranteeing processing of tuples
while also restarting dying processes [28]. With these properties the system
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CHAPTER 4. FEASIBILITY STUDY

can remain available while encountering errors. Storm tackles the issue of
system scale by offering tools to alter parallelism of processes [29]. This
allows the system to become more parallel with heavier loads of data without
disrupting the system. Since these are issues of interest to the project, it was
decided to use Storm. Both Kafka and Storm have also been used previously
for collection and processing of data from air quality sensors in [30], this
further cements the choice to use these tools.

4.3 Forecasting

The use cases in general and the forecasting specifically is not the main focus
of the project. There are many different algorithms with different suitability
for different situations [21]. The scope of this thesis is only to showcase the
possibility to create a forecast for future consumption. As such the accuracy
or suitability of this algorithm has not been taken into account in the selection
process. Exponential smoothing was therefore chosen merely as an example
of a forecasting like algorithm.
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Chapter 5

Model of the system
architecture

There are many ways of making energy plug data available to the user while
also providing processing of the transferred data. The system architecture
of this project is only one of many solutions. This section describes a model
that can be used to interconnect the various parts of the system with respect
to the problem specification in section 2.2. In Fig. 5.1 the system model and
the flow of data can be seen in full.

Figure 5.1: The system model displayed in its entirety.

This model contains a plug data parser, explained in the section below, so
that the data from different energy plugs is sent to the message broker in the
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same format. By the use of a message broker as an intermediary entity the
system can transmit data from different energy plugs into the data processing
engine. This way the same processing can be applied to all data sent through
the system while also providing a temporary storage location, in the form of
a message broker, for the results. The UI is in the model as an example of
showing where a consumer can access the processed data.

5.1 Gathering of energy plug data

Data from different plugs need to be collected and consolidated in order to be
utilised in the use cases. This is the purpose of the plug data parser, which
will be further divided into modules that specifically handles each brand and
gathers all the acquired data. The plug data parser will also pull the data
readings from the plugs as they do not send the data without requests. After
the data has been acquired it will be sent onwards to a specific topic on
the message broker in the system, giving consumers centralised access to the
data readings.

5.2 Processing of energy plug data

To handle the potentially large amounts of data produced by the energy
plugs, the system needs an efficient model for processing streamed data. The
use of a message broker in conjunction with a data processing engine gives
the system capability to cope with the problem of processing streamed data
in real-time. This type of architecture also makes the system scalable as
the message broker and stream processing engine can be deployed on several
machines to increase performance. The data gathered from the energy plugs
is consumed by the data processing engine and is processed according to the
specifications. Subsequently the processed data is sent to a message broker
so that it is accessible by end users.
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Chapter 6

Implementation of the system
model

This chapter covers how the the system model was implemented as well as
the underlying reasons for the approach. See Fig. 6.1 for an overview of
the solution, with the inner components of the message broker and data
processing engine displayed.

Plugwise

Z-Wave

Brand n

.

.

.

.

Plug data parser

Message broker
Apache kafka

Topic: Unprocessed

Topic: Processed

Moving 
Average

Total 
power

Forecast Alarms

Data processing engine

User interface

Total 
Consumption

Apache Storm

Figure 6.1: System overview
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6.1 Acquiring data from energy plugs

The data that the different plug system receive from their plugs is formatted
in different ways. Therefore a plug data parser is needed, in order to convert
the data into a format recognisable by the data processing framework. The
parser was split up into one main module and one sub module for each of the
plug brands. Programming of the plug data parser was done in JavaScript
together with Node.js, as it is a language that is well suited to creating real-
time applications. These sub modules work independently from the rest of
the system, continuously collecting data. The main module then compiles
the data, and passes it on to the message broker.
There are common denominators in every plug system, namely the power
output and the electricity consumption. These two components, along with a
timestamp, are used to compose a standardised data object. For this, JSON-
objects (JavaScript Object Notation) was chosen since there is support for
handling the JSON format in both JavaScript and Java, which was used
when implementing the data processing. See table 6.1 for an overview of the
JSON-object used to transfer data from the energy plugs.

Table 6.1: JSON object used to carry data inside the system
Variable name Explanation
timeStamp Timestamp in ms for when data was read from plug
power Current power reading
energy Energy in kWh since last reading
plug id A unique id for the sending plug

The sub modules communicate with the main module via event emitters,
emitting events once per second with the current data from the plugs. This
design means that most of the processing is done in the sub modules leaving
the main module mostly idle. The data sent off to the message broker needs
to be formatted in a standardised way as seen in table 6.1, otherwise the data
will be thrown away instead of being processed once it reaches the processing
engine.

6.1.1 Plugwise

Plugwise’s serial protocol is not open, meaning it needed to be reverse en-
gineered in order to acquire the data. To be able to implement the module
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for requesting data from the Plugwise network, an extensive documentation
of the Plugwise’s serial protocol [10] was used. Communication with the
Plugwise network is done with the help of the Plugwise USB-stick, which
communicates with a computer through serial communication using a baud-
rate of 115200 bit/s. The module sends a request to one plug, wait for a
response and then proceed with another plug. To send a request, the pro-
gram generates a command string according to the protocol specified in table
A.1. It then sends this string to the Plugwise stick’s serial port, which re-
sponds. Once the response is received, it is parsed according to the protocol
in table A.2. In Fig. 6.2 are two examples, with brief explanations, of strings
of the format specified in appendix A.

0012000D6F0004B203651B04

Header Request 
code

MAC address Checksum

Request

0013B7EC000D6F0004B2036500010004000005E1000000000002984

Header

Response 
code

MAC address Checksum

Response

Sequence 
number Pulse 

count 
(1s)

Pulse 
count 
(8s)

Total pulse count Irrelevant

Figure 6.2: An example of a request and response string from the Plugwise
protocol.

Data in the response contains both the current power and the total energy
consumption. In order to get the energy consumption for the last second,
the newest value is subtracted from the previous one. These values can then
be sent onwards to the main module.

6.1.2 Z-Wave

The Z-Wave protocol is not open either but it is much more widely used.
Notably there is an open-source project for a library to interface with Z-Wave
devices called OpenZWave [31], or OZW for short. The library contains a
wrapper available for Node.js, which was used to create the data plug parser.
To interact with Z-Wave devices some device to communicate on the same
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wireless protocol is needed. For this a Z-Wave.me UZB stick [32] has been
used, which is compatible with the OpenZwave library. Polling data from
Z-Wave device with OpenZwave can be done by setting a poller interval for
each plug as well as a callback function. The callback function is there to
receive the data and emit events to the main module.
To differentiate the different kinds of data, Z-Wave uses something called
”Command Classes” which identifies the data with hexadecimal value. The
relevant command classes is detailed in table 6.2.

Table 6.2: Z-Wave command classes
Name HEX
COMMAND CLASS METER 0x32
COMMAND CLASS SWITCH BINARY 0x25

Each command class contains a number of different values, such as:
Energy =5.7265
Previous Reading =5.7265
I n t e r v a l=1
Power=7.9
Previous Reading =7.3
I n t e r v a l=1
Exporting=f a l s e
Reset=undef ined

As seen previously the command class contains different types of data, most
notable is the ”Energy” and ”Power” values as these are the ones being
processed in the project’s system. All the module has to do is to put the
power and energy readings into a JSON string and send it off to the main
module.

6.1.3 Other brands

Other than Z-Wave and Plugwise there are some other brands of smart energy
plugs. The other ones considered in this project all use a proprietary protocol
and communicate either over Wi-Fi or Bluetooth. Both would require extra
hardware to communicate with the system and a significant effort to reverse
engineer their respective protocols. The project’s time frame did not allow
us to work with any of these plugs.
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6.2 Using streamed energy data

The data gathered from the energy plugs is sent from the main module of the
plug data parser to the Apache Kafka message broker. There is one common
topic that all data from the energy plugs is sent to. To be able to process the
data, Kafka is integrated with the processing engine Apache Storm. This is
done by using a Spout in Storm that emits data from the mentioned Kafka
topic in real-time. Kafka and Storm are both installed on an ODROID-XU4
which is used as a server. This small computer is used merely to show that
the system can be implemented on a small and energy efficient device. It does
not mean that system has to be implemented using this type of computer.
The data sent from the plug data parser to the message broker consists of a
JSON-String which can be processed by bolts in the Storm topology. Bolts
were implemented for each use case mentioned in 2.1.3. This means one bolt
for each type of statistic as well as for the alarms and forecasting. These
bolts are described in detail below.

6.3 Building the stream processing architec-
ture

Some processing is needed for several use cases. In order to avoid doing the
same calculations twice, this kind of processing can be moved to a separate
bolt. For example, the moving average for the energy consumption is used in
both forecasting and alarms, as well as being a statistic itself. Several Storm
bolts can be connected, so that a value calculated by one bolt can be sent to
multiple different bolts. See Fig. 6.3 for a sketch of the used Storm topology.
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Total 
power 
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Alarm bolt
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Moving 
Average 
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Kafka publish bolt

Kafka spout

Figure 6.3: The systems stream processing topology.

All coding related to Storm was done in Java as this is a language that
all members of the project have prior experience with. The Storm topology
consists of a spout and multiple bolts, which process and prepare the data for
the use cases. In the case of statistics, one bolt per statistic was implemented.
The Storm spout emits the data collected from the Kafka message broker,
and each bolt that uses the the data will receive it. Each time a message is
received by the bolt, it will trigger a function in the bolt that will take care
of the data in a desired way. This function is implemented differently in each
bolt, depending on what use case the bolt is used for. The different bolts
will be described in detail below for each use case.

6.3.1 Statistics

There are several types of statistics that the system produces. These calcu-
lations are made in the different bolts that exists within the topology seen
in Fig. 6.3.
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The first statistic is the moving average per plug. This will indicate how
much each plug has been reading on average over the last arbitrary time
frame n. The basic theory behind a moving average is that there is a sliding
window covering the last n minutes, in other words a list in which the values
of the last n minutes are stored. Continuously taking an average of all these
values is the equivalent of a moving average. Every time a new value is
received, the older stored values are checked to see if there are any values
that are too old. Any values that are too old are removed and the new value
is stored in the list. Also the total count and sum of the values are stored in
order to avoid having to iterate through the whole list every time. This way
the new average can be calculated with the formula below.
Averagenew = Averageold + V aluem

n
− V aluem−n

n

Another statistic is the current total power in watts that the system is read-
ing. The bolt that calculates the total power takes the most recent value
from each energy plug and adds these values to a total sum. When this new
value is received and added, the old value from that energy plug is removed
from the sum and a new total sum is calculated. The result of the calculation
is emitted from the bolt once every second. As this bolt keeps track of all
the current power readings from the plugs, it will also forward these values
directly. The individual plug data can then be printed in the user interface
to give an overview of the current readings from each energy plug.
The last statistic is the total energy consumed since system start up. When
an energy plug reads a value, it also calculates the energy consumed since
it’s last reading. This difference in energy used is added to a total sum. The
total sum is then sent to the user interface and is displayed as the energy
used in kWh.

6.3.2 Alarms

There are two cases for when an alarm should fire.

1. The current average power consumption is more than 50% than the
moving average usage during the last hour.

2. One or more plugs has zero power consumption for more than 10 sec-
onds.

For the first case the moving average and total power consumption are ob-
tained through other bolts. The difference in percent between the two values
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is calculated and if the calculated percentage is above the threshold an alarm
is triggered. For the second case a list of times each plug last read a non zero
value is maintained. This list is continuously checked to see if it has been
more than 10 seconds since the last non zero reading.
When an alarm is triggered a message is sent back to the message broker and
then to the user interface to alert the user.

6.3.3 Forecasting

The method presented here does in no way produce a trustworthy prediction
or forecast. The aim is only to show that the system can be used for pre-
dicting future energy consumption, which is why exponential smoothing is
used to do this. When using exponential smoothing one has to decide how
much historical data to use and choose a suitable α value. In this project,
energy data for the last four hours are used along with an α value of 0.8.
These values are then used to indicate the total electricity consumption in
the coming hour. The first thing that had to be done in the implementation,
was to calculate the sum of all total energy consumption readings during the
first, second, third and fourth last hours. This was accomplished through the
usage of four sliding windows. To get the first hours readings, values between
0 and 1 hour old were summarised. For the second hour values between 1
and 2 hours old were used and so on. The system essentially maintains four
sums which are then used with the formula detailed in section 3.4.1.
In the formula, s4 is the forecasted consumption for the next hour. This
formula was applied to the data that the bolt received and the forecast value,
s4, was then passed on to the user interface.

6.4 Extracting data from the stream process-
ing engine

All processing bolts in the Storm topology produce some sort of output that
needs to be sent back to the message broker in order to make it easily acces-
sible. To avoid doing this operation in every bolt, the choice was made to
create a separate publishing bolt to offload all the other bolts of this task.
An advantage of doing this is that this final bolt can be parallelised without
the need to do any changes to cope with the concurrency. There is some
added overhead to this in comparison to doing the sending to message broker

24



CHAPTER 6. IMPLEMENTATION OF THE SYSTEM MODEL

operation in each and every bolt. But the fact that it can be parallelised
without doing any major changes to the other bolts compensates for the
added overhead.
The resulting data from the processing is sent back to the message broker on
a second topic via the publishing bolt. This result topic is split into several
partitions, one for each calculating bolt. The publishing bolt decides which
partition on the topic the data should be sent to, depending on which bolt
the data came from. There is one partition for each bolt type. The data sent
back to the message broker is formatted as a JSON object with the syntax
seen in table 6.3.

Table 6.3: JSON object used for results from data processing
Variable name Explanation
timeStamp Timestamp in ms for when data was read from plug
value Processed result from calculating bolt.
plug id (optional, not used in most bolts) ID of the plug.

The timestamp from the incoming message that triggered the bolt is kept.
This is mainly done to calculate the delay in the system.
Using the message broker as both a data inlet and outlet of Storm, makes it
possible to capture both unprocessed and processed data by consuming mes-
sages from any of the two topics on the message broker. The unprocessed
data from the plug parser can for example be used for other tasks and cal-
culations. The processed data can be saved to a database or be used by any
number of other applications. In this case, the processed data is sent on to
a user interface.

6.4.1 User Interface

The processed data has to be made available to the user in some way in order
to show the results of the processing. A local web page showing statistics,
see Fig. 8.4, was set up to be the interface for a user of the system. Current
forecasted values as well as a graph describing the electricity and energy
consumption is on display. A local web server is used to host the web page
while also pulling the statistical data from the message broker so that it can
be used for the web page. The web server was implemented using the Express
library [33] to deliver HTML and data consumed from the message broker.
The graphs are made with a library called SmoothieCharts.js [34], the rest
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of the web page is made up of standard HTML and JavaScript.

6.5 Fault-tolerant system

As outlined in section 2.2.2 the system should handle unexpected events such
as plugs being disconnected and messages being corrupted. Handling prob-
lems with plugs being unexpectedly disconnected is a fairly straightforward
process. If there is no response from the transceiver, the connection is reset
to start over again. Note that for Z-Wave all of this is handled automatically
by the OpenZwave library itself.
As for problems related to corrupt messages, Kafka can not ensure that the
messages it receives are not corrupted. However, the plug data parser throws
away corrupt data it reads from the plugs. This way the message broker in
use only needs to look for corruption in the data it stores. Kafka does this and
guarantees that the messages available to consumers are without corruption.
While a crash will not result in corrupt messages, it can still result in lost
messages if Kafka has not yet written the data to disk [35]. Storm can prevent
messages from being lost though. When a crash happens it can replay the
tuples that had not been processed prior to the crash [36]. This is also a way
of avoiding corrupt messages if the data processing framework crashes.
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Testing and evaluation

During and after the development of the system, different parts and the
system as a whole were tested and evaluated. This was done to assert that
the system is up to par with the specifications. The projects goals are met
when the system meets all the criteria described in section 2.2. The results
are of course highly dependent on the hardware used for the tests. To give a
more balanced view of the performance of the system, tests were carried out
on two separate and very different setups.

7.1 Hardware and software setup

The hardware used during testing was the single board computer ODROID-
XU4 and the plugs as well as their respective receivers, detailed in table 7.1.
The plug systems receivers were connected to the ODROID running Ubuntu
15.04. Software wise the setup included the plug data parser and the software
listed in table 7.2.

Table 7.1: Hardware for the plug systems used during testing
Name Quantity
Z-Wave.me UZB 1
Greenwave Systems PowerNode (Z-Wave) 1
Plugwise Stick 1
Plugwise Circle 10
Plugwise Circle+ 1
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Table 7.2: Software used while testing
Software name Version
Apache Storm 0.9.5
Apache Kafka 2.11-0.9.0.1
Apache Zookeeper 3.4.6
Oracle Java 1.8.0 91

For reference purposes, a laptop with 8 GB ram and an Intel i5 2.7 GHz
CPU with four cores is used. The test results from the ODROID can then
be compared to the results from running the system on a more powerful
computer.

7.2 Tests

To assess the system and determine its performance and characteristics, three
different tests were developed and conducted. It is imperative that the system
reads the correct values from the energy plugs, thus this was tested. Both
the processing engine and the plug data parser were individually tested to
determine which part of the system might pose a bottleneck, in terms of the
maximum amount of plugs. If the processing engine had turned out to be
the bottleneck that would have limited the whole system. The plug data
parser on the other hand can not bottleneck the whole system, as increasing
the number of plugs can be achieved by adding yet another parser.
The conducted tests are described in detail below, and results are available
in chapter 8. All tests were conducted with the setups described in section
7.1 on both the ODROID computer and the mentioned laptop.

7.2.1 Latency through Kafka and Storm

In order to call the system a real-time system, the processing time through
Kafka and Storm has to be equal to or lower than the rate at which the plugs
are polled. If the latency is higher, that would result in congestion at the
message broker. Some measurements on latency are provided by Storm itself
but in order to get accurate data for Kafka and Storm together some tests
had to be conducted. A script that sent randomly generated data to Kafka
and then collected the processed data from Storm was created. This was then
used to take two different types of measurements. The first used timestamps
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from the parser and compared them to the ones given after calculations in
Storm was finished, estimating the total time this journey took. The second
used timestamps internal to the script, again measuring the total round-trip
time. The second measurement however, unlike the first, takes the total time
from plug reading to user interface into account. This type of measurement
is also called end-to-end latency.

7.2.2 Plug data parsing

It is essential to the system that the plug parser returns the correct data. To
assure that the data is correct the original software from the manufacturer
was used to take measurements. This was then compared to measurements
taken with the systems plug data parser.

7.2.3 Maximum number of plugs - processing engine

One of the things to be tested is the maximum amount of data the system
can handle. There are two factors to take into consideration when determin-
ing the total number of plugs the system can handle at once. Testing the
processing part is done through writing a program that sends random values
to the system. With the program it’s possible to generate random data at a
given interval. There might be differences between the number of messages
the message broker and the processing engine can handle. The message bro-
ker may keep accepting new messages and simply enqueue them waiting for
the processing engine to get ready.
A limit on the maximum latency was placed and the speed of the random data
generator was successively increased. If the total latency does not stabilise
around a single value, it is most likely a situation where messages are queued
in Kafka at a higher rate than they are consumed. That would indicate that
the rate of incoming readings are too high for the system to handle, which
in turn suggests that the number of plugs are too high. This should happen
if any latency within Storm reaches more than one second. Looking at the
latencies in Storm will give a more precise indication of when the system has
reached the peak of what it can handle.
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7.2.4 Maximum number of plugs - plug parser

Testing the limits of the plug data parser is more complex, as this part is
totally dependent on the hardware. To thoroughly test this, a large number
of plugs would be needed, a number far beyond the scope of this project. In
order to test performance data, the parser measurements for a small number
of plugs was extrapolated to get indicative data for a larger number of plugs.

7.2.5 Fault tolerance

Detailed in section 2.2.2 are different scenarios that the system should be
able to handle. Below are description of tests to test that the fault tolerance
goals are met.

1. Disconnecting and reconnecting one plug.

2. Manually sending messages that are not of the correct format.

3. Manually shutting down the data processing engine.

To meet the project goals the system should not crash for any of the three
scenarios. For the third scenario messages should be queued and saved at
the message broker ready to be processed when the data processing engine
comes back online.
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Results

The goal of this project was to create a system capable of reading and pro-
cessing electricity data from a number of different smart energy plugs (see
Fig. 6.1 for an overview). The system of this project can handle two brands of
energy plugs namely Plugwise and Z-Wave. Calculation of a moving average,
a forecast and total power consumption for all plugs have been implemented
and is functioning. Alarms are triggered whenever a plug reads zero for more
than 10 seconds, and when the total power consumption peaks 50% above
the moving average of the system. One goal was also to parse the energy
plug data in a general way to allow for easy integration of more plug systems.
In line with this, the system allows plug systems to be added in two ways;
either through the creation of a Node.js modules, or by simply sending JSON
strings to the message broker.

8.1 Plug data parser

The energy plugs were tested with their respective software that came with
each brand of plugs. Readings from these applications were then compared
to the readings from the plug data parser. Running the same appliances
connected to the plugs with the bundled software and the plug data parser
yielded the same power readings.

8.2 Processing of energy data

In section 2.1.3 three different use cases are described, these are all imple-
mented using Storm. An overview of the topology used is available in Fig.
6.3. Getting readings from the plug data parser to Storm are done through
the use of a message broker, in this case Kafka. The system makes use of
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the bolts listed below.

• Calculation of a moving average power consumption per plug for the
last hour.

• Total current power consumption for all energy plugs.

• Total energy used for the system since start up.

• Sending out alarms when a plug reads zero watts for 10 seconds or
the current average power consumption is more than 50% above the
moving average.

• Exponential smoothing on the last four hours readings, could be used
to predict future values.

• Sending messages to Kafka.

The results from these bolts are sent to Kafka to be consumed. A simple
consumer then publishes the data on a web server to make it available for
the user interface.

8.3 Performance testing

The testing methodology, hardware and software setup is described in chapter
7. All tests were done using the described methodology and setup. In this
section the result from the conducted tests are presented.

8.3.1 Polling speed

Thoroughly testing the polling speed for a different number of plugs would
need access to a lot of plugs, which was not the case in this project. Mea-
surements have been taken on a smaller number of plugs and have then been
extrapolated. Below are details on the exact number of plugs used in tests
along with the extrapolated results. It is important to note that both Plug-
wise and Z-Wave are mesh networks. A message may have to travel through
a large number of plugs before ending up at the receiver, which would yield
a higher delay than direct communication with the receiver. This could po-
tentially cause a significant delay, with a maximum of 65 plugs in a Plugwise
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network 65 hops would be required in the worst case. All testing has been
conducted with all plugs within range of the receiver.
For Plugwise a theoretical maximum polling speed based on some observa-
tions can be calculated. These observations are that Plugwise uses serial
communication with a baud rate of 115200 bit/s and that each request is
120 bits long. Also, each acknowledgement response is 64 bits and each
data response is 224 bits. This would lead to a theoretical max speed of

115200
120+64+224 ≈ 282 polls/s while only considering transfer speed. However, in
reality, the maximum polling speed differs from this theoretical value. The
test results below aim to show the actual, non theoretical, polling speed.
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Figure 8.1: Graph of how often one plug is polled depending on the total
number of plugs in the system.

The test described in section 7.2.4 show that a maximum of 12.7 requests
per second can be processed. This means that the processing speed is the
limitation rather than the transfer speed for the transceiver. On the other
hand, the plug performs a new energy reading every second so polling the
data more often than once a second is unnecessary. That is why the polling
speed is the same for one through 12 plugs, as seen in Fig. 8.1. For a higher
number of plugs the polling speed increases and the time between polls for
some plug increases. Note that in the real tests only ten plugs were used.
Like Plugwise, Z-Wave relies on serial communication with a baud rate of
115200 bit/s through a USB transceiver. Z-Wave does however not rely
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on a single master node for communicating with the rest of the network.
Instead the USB transceiver acts as a master node and can communicate
directly with the network. The maximum number of nodes that can be in
any Z-Wave network is 232 so the maximum numbers that can be polled per
second is definitely not higher than this.
Again the tests described in section 7.2.4 show that the minimum polling
interval that can be used is around 80 ms. It is possible to set a smaller
interval than this in the software but that doesn’t impact the real polling
interval. As with Plugwise the readings on the plug only change about once
a second hence there are no point in polling any single plug more than once
a second. Given an 80 ms interval the maximum number of polls per second
would be 1000

80 = 12.5 polls/s. The polling speed dependent on the number
of plugs can be seen in Fig. 8.2.
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Figure 8.2: Graph of how often one plug is polled depending on the total
number of plugs in the system.

This is very similar to that of Plugwise, described earlier, and is discussed in
section 9.2.
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8.3.2 Message broker and processing engine

The maximum number of plugs the message broker and processing framework
can handle when running on the ODROID-XU4 was tested as described in
section 7.2.3. Total latency through Kafka and Storm was measured using
the method described in section 7.2.1. To start with, ten readings per second
were used to get a base reading. The number of plug readings per second
was then successively increased in steps of five, with 300 readings taken from
each step. To get a fair reading the system was left to run for about one
minute before the 300 samples were taken. The average of these samples are
displayed in Fig. 8.3.
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Figure 8.3: Graph of the average latency from poller to user interface for a
varying number of plugs.

Looking at Fig. 8.3 with 30 to 75 readings a second the latency does not
increase by more than 3-5 ms. Up to 20 plugs reading once per second,
the tests shows negligible differences and suggests that 75 ms is the lowest
possible latency that the system can achieve. From 75 plug readings/s the
system starts to show significant increases in latency as the speed is increased.
At 95 plug readings a second the system hits a latency of 274 ms, going higher
than this results in an ever increasing latency.
For reference, tests were also carried out with the system running on the
laptop mentioned in 7.1. This meant running the system with 100, 200,
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300, 400 and 500 simulated plugs sending one message every second. These
different quantities of messages per second yielded the same delay, around 5
ms. The program which generates these simulated readings does not respond
well to over 500 generated messages per second. Therefore the limit was set
to 500.

8.4 Fault tolerance

In section 7.2.5 three different tests were outlined, the results from these tests
will be presented in this section.
After disconnecting and reconnecting one plug, the system returns to its usual
state, nothing changes. Disconnecting one plug will lead to the individual
value of that plug not being updated, while the rest of the system keeps
functioning normally. Once the plug is reconnected, the individual plug
value will continue updating.
Messages that are not in the correct format or has unreadable data is dis-
carded at the processing bolt. This means that the bolt does not perform
any processing and no result is emitted. The bolt then continues with the
next message it receives. In other words, data formatted incorrectly, or sim-
ply corrupted data, will not affect the system in any way. No unnecessary
calculations will be made and corrupted messages will be discarded.
If the processing engine is shut down for any reason, data from the plug will
be queued in the message broker so that it can be processed at a later time.
There are settings available in the message broker that determines how long
messages should be kept after being queued. When the processing framework
is started again, it will start consuming the queued messages at the maximum
rate it can handle until it is reading messages in real time. Shutting down
the engine will as such not have any implications on the system, which will
work normally once it is started back up.

8.5 User interface

Creating a user interface was not a priority in this project, hence the inter-
face is very simple. When a bolt has some value that is to be presented,
the bolt sends this value back to the corresponding partition of the Kafka
topic. A small Node.js-application then consumes the messages from Kafka
and presents the values through a web API. A simple web page, made in
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JavaScript with the help of a chart library, then fetches the data from the
API and plots charts for the user. A screenshot of the UI can be seen in Fig.
8.4.
The UI displays graphs of the moving average for power consumption, the
total power consumption, a predicted energy consumption for the next hour
as well as the last five alarms. It also displays the current power readings
from each energy plug. All information is updated in real time and the graphs
display the last minute of data. The graphs scales are automatically adjusted
based on the maximum value for the specific statistic.

Figure 8.4: The user interface for the system.
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Discussion

The system was developed through an iterative process. When problems
were encountered, certain parts of the system had to be remade throughout
the development. In this chapter, different design choices made during the
project as well as the final result will be discussed.

9.1 Method

As mentioned in 1.4, the addition of components to the system was handled
in two phases. This eased the development as all parts of the system were
given some research time before implementation, which made it possible to
plan for parallel development of the system’s different parts. The research
of which frameworks and software to use was of some help, however it would
probably have helped to do more in depth studies, and even setup a trial
system before settling on what to use. It also proved quite hard to actually
develop the different parts in parallel. In reality the system could more or
less only be split up into two parts; the plug data parser and everything else.
With more planning the user interface could have been developed in parallel.
That would however require precise definition of how communication between
the processing engine and the user interface was to be done to be defined early
on. The development of the use cases also proved hard to actually carry out
in parallel, since all development was done on one single machine instead
of two or more. One conclusion that can be drawn from this is that the
implementation phase was the problematic one. Perhaps by extending the
research phase the problems with the implementation could have been eased.
This could have given enough time for planning of the implementation to
allow for a more parallel implementation of the system’s components.
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9.2 Plug data parser

Using data from two different brands could present problems with regards
to polling intervals. If the polling intervals differ it might have consequences
the rest of the system. Large differences in polling interval would not have
a direct negative impact but the system would appear slower. A moving
average or total power consumption would still be calculated correctly but
would approach the correct value at a slower pace. The same goes for alarms
and forecasting, they will lag behind.
Maximum polling speed could also differ internally for a brand. This is the
case for the chosen plug brands in this project, since both Plugwise and
Z-Wave are mesh networks. A message may have to travel through a large
number of plugs before ending up at the receiver. This can cause a significant
delay and has not been part of the tests. A plug far away from the receiver
could potentially hold up the whole polling and thus decrease the polling
speed for an entire brand. One way to avoid this problem would be to ensure
that all plugs are in range of the receiver. However, this approach would
limit the range of the energy plugs to an extent that may be unacceptable to
the average user. For example Plugwise only has a range of five meters and
that is in an open space, walls would most likely limit this even further.
The results, available in section 8.3.1, regarding polling speed show similar
results for both plug brands. With values of 12.7 readings/s for Plugwise
and 12.5 readings/s for Z-Wave, there could be a problem with the testing
methodology leading to incorrect results. The similarities could be due to
limitations in the computer that was used while testing or in the Node.js
framework which was used for the parser. Further tests could be done to
strengthen what is claimed in the project’s results. Example of such tests
could be to use a different computer and/or use another, more low level,
programming language.
Another difference between energy plug brands is the decimal precision. At
a low energy consumption, Z-Wave would appear to update at a slower pace.
The reason for this is that the precision of the energy consumption results
in read values being equal to or higher than 0.01 kWh. Hence, having a
power draw of for example 5 W would only give a nonzero reading every
0.01/ 0.05

3600 = 720s or every 12th minute. Whereas Plugwise with a precision
resulting in values larger than 5.92354363 ∗ 10−7 kWh being shown, would
give a reading every 5.92354363 ∗ 10−7/ 0.05

3600 ≈ 0.043s. However, precision of
this value is redundant, considering that new readings are sent once a second.
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9.3 Message broker

The purpose of message brokers in the project’s system is merely to provide
the ability to gather data from many different sources. Even then it is rea-
sonable to consider how the message broker will affect the system when large
amounts of data traverse the system. There are certain configurations that
perform better than others. However, there was not any extended amount of
time spent configuring Kafka to ensure that it performs as well as possible
considering the circumstances. When running the system on the ODROID-
XU4, the data processing framework was the bottleneck rather than the
message broker. Because of this, more time needed to be spent configuring
Apache Storm rather than Apache Kafka.

9.4 Forecasting, statistics and alarms

The main purpose of the use cases in this project was to showcase what
could be done while providing a foundation for building of more advanced
processing algorithms. Below the use cases are discussed briefly, forecasting
and statistics are discussed in more detail.
If the use cases presented in this project are found lacking by the user, addi-
tional functionality can be implemented without losing the interconnectivity
of the system’s different components. Properties of the alarm use case can be
changed by altering the alarm bolt in the storm topology. The alarm func-
tions as an example of how the project’s system can be used to implement
a feature that alerts the user of unwanted behaviour in appliances. The sys-
tem can be used to alert the user when the current total power usage exceeds
the moving average for the last hour by more than 50%. A galloping power
consumption may incur higher costs than the user originally expected.

9.4.1 Improving forecasting of future consumption

As seen in section 3.4.1 there are a few other forms of exponential smoothing
that can be used for forecasting. All of these take more variables into account
than the form which has been used in this project. In [21] one of these other
forms predicted the future power consumption with an error margin between
1.14% and 9.59%. It is reasonable to believe that the same results can be
achieved with the project’s system. However none of the algorithms are
perfect and succeeding in forecasting energy/power consumption would be a
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significant achievement. Doing this is far beyond the scope of this report.

9.4.2 Efficiency when calculating a moving average

Calculating a moving average involves saving all readings during the time
window in memory, which would mean that the available memory limits the
size of the window and/or the number of plugs that can be used. The JSON
string used in the system is about 93 bytes in size, depending on the format
of the plug id this can vary somewhat. Assuming a size of 93 bytes, the total
memory usage for one single plug with a sliding window of an hour would
be 93 ∗ 3600 = 334800 bytes or 0.3348 MB. Given a situation where the
system has 100 megabytes of available memory that would be sufficient to
support 100/0.3348 ≈ 299 plugs, as seen in section 8.3.2 the system is not
able to handle more than about 95 plugs. As such the memory usage for the
moving average calculation would not be a limiting factor in terms of how
many plugs the system can handle.

9.5 Performance evaluation

There are several factors that comes in to play when testing performance of
a software. The hardware used when testing the system has by far the most
impact on the final result. Still, getting satisfactory performance may require
more than just additional processing power. There is a cost to performance
ratio to consider as well as the fact that there are no infinitely fast processors
available on the market. To go further without improving the system with
expensive hardware, the system will need to utilise several cores and even
machines at once. Apache Storm can handle all the intricate parts such as
distributing work across several cores and machines. For that to work, logic
focused on parallelism is needed to perform these computations.
Throughout the project the idea has always been to run the whole system
on an ODROID-XU4 to test hardware limitations of the system. At first
the system’s performance on the ODROID, when running with 10 energy
readings per second, resulted in maximum usage of the CPU and system
freezing from time to time. OpenJDK was used to run the message broker
and the data processing engine but was replaced in an attempt to increase
performance. Switching to the official JDK version Oracle Java 8 brought the
performance to a more acceptable level. The CPU usage problem disappeared
and the internal processing times in Storm went from 30+ ms to around 5-10
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ms when performing tests with ten energy readings per second. This indicates
that the java runtime environment of OpenJDK caused the problem.
As seen in 8.3.2, the systems capability of handling larger amounts of plugs
is tested. When reaching close to 100 messages per second, the end-to-end
latency of the system increases drastically. The reason for this is either that
the processing engine can not process messages at a desired speed or that
the user interface get overwhelmed with data and causes it to fall behind.
Both of these possible causes are most likely related to the same underlying
problem. Namely that the ODROID computer does not provide enough com-
puting power when running all system components locally while at the same
time producing 95+ messages per second. As this system can be distributed
between machines, adding more ODROIDs or even more powerful computers
can increase the performance greatly. The plug data parser can be run on
one machine, the message broker on a second and so on. This makes the
system highly scalable.
The goal set in section 2.2 of being able to handle around 200 plugs is not met
at the current state and hardware configuration of the system. The delays
are simply too high. As stated in 8.3.2, the performance greatly increases
when running the system on more competent hardware. When testing the
system on the reference laptop described in 7.1, the internal processing times
in Apache Storm went from around 10 ms on the ODROID to a little less
than a millisecond. The end-to-end latency also decreased from around 75
ms to somewhere between 5 and 10 ms. This is a significant difference in
performance. By using the reference laptop computer with more computing
power, the goal of handling 200 plug readings per second can be realised.
Additional tests with up to 500 simulated plugs on the reference laptop re-
sulted in about the same latency as with 200 plugs. This indicates that the
maximum number of plug readings per second that the system can handle is
greater than the tested 500 readings per second, if more powerful hardware
is used.

9.6 System improvements

Several new features can be added to the system including modules for other
plug brands; calculation of a median power consumption; more advanced
forecasting algorithms; and statistics for individual plugs. However, these
changes are more of the shallow type. The more interesting improvements,
following the purpose of the project, would apply to performance and fault

42



CHAPTER 9. DISCUSSION

tolerance.
Improving the performance could be done in several ways. Finding a bot-
tleneck in the system is of interest in order to know which type of system
improvements that can be made. There is not really any limit to how many
plugs the plug data parsing can handle. If one data plug parser reaches
the maximum amount of plugs it can handle, another parser process can
be started to compensate for this. The message broker, Apache Kafka, does
not present itself as a bottleneck either as it has functionality to solve perfor-
mance issues; for higher performance it is possible to allocate more processing
power by distributing the message broker’s work load across several comput-
ers. That leaves the processing framework, Apache Storm, which in itself
does not present any real limitation as it can be scaled up to more nodes on
the premise that the processing can be done in parallel. This is not the case
of all the bolts in the system as some calculations, such as summarising, can
not be done fully in parallel.
In case just lower latencies in the project’s system are desirable, a potential
improvement could be achieved by swapping Apache Kafka for RabbitMQ.
In [7] RabbitMQ is found to have lower latencies than Kafka for messages
smaller than 100KB. Considering that the messages sent through through the
system are around 93 bytes in size, a switch to RabbitMQ could potentially
reduce the end-to-end latency for the system.

9.7 Implications for society

The system presented in this report could contribute to smarter use of energy
in the power grid. With smart energy plugs offering different types of energy
data processing, some users might want the same type of processing for
all plugs to not be dependent on the default processing for a brand. The
project’s system can make the utilisation of energy plugs more appealing to
these users as the system can be tailored to cater to user’s specific demands
in terms of processing. As mentioned in a report by Tsuyoshi Ueno et al.
[5], monitoring and presenting data to residents, could results in a decreased
energy consumption. By making energy plugs more appealing, the system
can contribute to more efficient consumption of energy among users of the
system, resulting in less electricity expenditure for the user as well as reducing
their carbon footprint. The system could also be used as a stepping stone
towards building a smart energy home. The data collected by the system
could be used to program home appliances to use less electricity based on
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various factors. For example, when the price of electricity is high, the home
appliances can be programmed to enter a energy saving mode, which can
then be released when the price is back to normal. This functionality of
course implies that the system has to be modified with additional use cases,
which is beyond the scope of this thesis. However, if implemented, it could
help make the vision of smart energy homes a reality [37].
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Conclusion

The purpose of this project was to create a general purpose modular frame-
work for collecting and processing data from smart energy plugs. This system
was to enable the implementation of data processing algorithms without hav-
ing to consider the underlying smart energy plugs. The system implemented
in this project consists of: a plug data parser, a message broker, a data
processing engine. A plug data parser is needed in order to send the data
from the energy plugs to the message broker. Energy plug brands that are
not supported by the system can be added by developing additional brand
specific modules for the plug data parser. By implementing the system with
a message broker, a focal point for data originating from different producers
was created. The message broker accepts data regardless of the sender, which
means that the type of incoming data does not matter. A data processing
engine pulling its data from the message broker then performs processing on
the energy plug data despite the type of brand. Processing of the energy
plug data is done with Apache Storm which framework allows for the user
to change the functionality of the processing without having to change the
components in the rest of the system. This means that the system can be
used for other applications than smart energy plugs. For example, a user in
need of analysing air quality can connect air sensors with the system pre-
sented in this project. With these factors in mind, the project’s system as a
whole can be used to apply the same type of processing to not only energy
plugs of different brands, but other types of data producers as well.
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Appendix A

Plugwise protocol

Table A.1: Plugwise protocol for requests
Example data (HEX) Explanation
5533 Header
0012 Request code
000D6F0004B20365 The mac address for some plug
1B04 CRC16 checksum
0D (carriage return) Footer

Table A.2: Plugwise protocol for responses
Example data (HEX) Explanation
5533 Header
0013 Response code
B7EC Sequence number
000D6F0004B20365 The mac address for some plug
0001 Pulses during the last second
0004 Pulses during the last 8 seconds
000005E1 Total number of pulses
0000 Unknown and not relevant
0000 Unknown and not relevant
0002 Unknown and not relevant
9845 CRC16 checksum
0D (carriage return) Footer

One pulse is 468.9385193 kWs (kilo watt seconds). Getting the consumption
in kWh can be done like this pulses

3600 /468.9385193.
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