

Det här verket har digitaliserats vid Göteborgs universitetsbibliotek och är fritt att använda. Alla tryckta texter är OCR-tolkade till maskinläsbar text. Det betyder att du kan söka och kopiera texten från dokumentet. Vissa äldre dokument med dåligt tryck kan vara svåra att OCR-tolka korrekt vilket medför att den OCR-tolkade texten kan innehålla fel och därför bör man visuellt jämföra med verkets bilder för att avgöra vad som är riktigt.

This work has been digitized at Gothenburg University Library and is free to use. All printed texts have been OCR-processed and converted to machine readable text. This means that you can search and copy text from the document. Some early printed books are hard to OCR-process correctly and the text may contain errors, so one should always visually compare it with the images to determine what is correct.

GÖTEBORGS UNIVERSITET

MEDDELANDE från HAVSFISKELABORATORIET-LYSEKIL

Changes in productivity and distribution of zooplankton off the coast in the Baltic proper in 1971.

by

Hans Ackefors & Lars Hernroth

September 1973

Changes in productivity and distribution of zooplankton off the coast in the Baltic proper in 1971.

By

Hans Ackefors & Lars Hernroth

CONTENTS

	I	Page					
INTRODUCTION							
ACKNOWLEDGEMENTS							
MATER	IAL AND METHODS	. 4					
RESUL	TS	. 4					
H	YDROGRAPHY	. 4					
Z	OOPLANKTON	6					
C	nidaria	. 6					
С	tenophora	. 6					
R	otatoria	. 6					
P	olychaeta	. 7					
C	ladocera	. 7					
C	opepoda	. 9					
С	irripedia	.11					
A	mphipoda	.11					
G	astropoda	.11					
L	amellibranchiata	.12					
С	haetognatha	,12					
С	opelata	.12					
В	BIOMASS	.13					
REFERENCES							

LEGENDS

FIGS. 1-65

TABLES 1-5

INTRODUCTION

The increasing interest in the Baltic proper during the last decade started mainly due to the many reports by the Swedish hydrographer Fonselius about the stagnation periods with hydrogen sulphide in the bottom waters of the deep basins (see e.g. FONSELIUS, 1970). The periods of stagnation are natural processes having occurred during hundreds of years as a result of the characteristic hydrographical conditions (HALLBERG, 1973). The influence by pollution is difficult to distinguish from such natural events, but the deterioration of the oxygen concentration in bottom waters outside the deep basins indicates that there is probably increasing amounts of sewage water discharged into the Baltic (FONSELIUS, 1969).

Recently the great amount of chlorinated hydrocarbons such as PCB and DDT in fish has called our attention to the Baltic proper (JENSEN et al., 1972). The cod liver e.g. is no longer permitted to be used from fish caught in the southern Baltic proper. This is a far more serious problem than the contamination of mercury although the fish in some coastal areas, where the concentration exceeds 1 mg Hg per kg fish, are banned for the commercial market (cf. ACKEFORS, 1971). The increasing catches of fish in the Baltic proper from about 310 000 tons in 1961 to about 550 000 tons in 1970 (ACKEFORS & HERN-ROTH, 1972; ACKEFORS, unpubl.) is interesting, when discussing the biological resources in relation to the increasing fishing and pollution. The contamination of chlorinated hydrocarbons such as DDT and PCB and of heavy metals such as mercury is a threat against the valuable fish resources in the Baltic proper, but the problem of overfishing may also be a question of greatest importance.

In 1972 the initiative to a convention for an international regulation of the fishery in the Baltic proper was taken and in 1973 preparations

for a convention concerning pollution were also made. The importance of more intensive biological investigations of the whole ecosystem in the Baltic in order to get scientific data is a matter of great importance. Without such data the commissions responsible for the mentioned coming conventions cannot propose measures against overfishing and pollution.

Several hydrographical and biological models for biological investigations have been presented (e.g. SJÖBERG et al., 1972; JANSSON, 1972). The biological models will try to illustrate the energy flow through the whole ecosystem. Since 1972 our institute is working with the primary and secondary production in the pelagic ecosystem of the Baltic proper. Old results from the 1960's have been recalculated as a first approach to calculate the secondary production of zooplankton (ACKEFORS,1972; ACKEFORS & HERNROTH, 1972; ACKEFORS, unpubl.). The present paper deals with the net production of zooplankton (excluding microzooplankton) and the distribution of the different species off the coast in the Baltic proper in relation to the hydrographical data of 1971. The seasonal distribution of zooplankton 1968-1970 in the same area is evident in ACKEFORS & HERNROTH (1970a, b, 1971).

ACKNOWLEDGEMENTS

This investigation has been supported by grants from "Statens Naturvårdsverk" (contr.nr. 7-71/71) which is greatfully acknowledged. The authors are greatly indebted to Mr. Sven Engström who has been responsible for the work on board R/V "Skagerak" when the samples were taken. We also want to express our thanks to Miss Birgitta Bengtsson, Miss Katarina Karleflo and Mr. Lars Lind who helped us to prepare this paper.

MATERIAL AND METHODS

In 1971 four zooplankton expeditions to the Baltic proper were made. As in our previous investigations (ACKEFORS & HERNROTH, 1970a, b, 1971) a station net consisting of seven stations was used (see fig. 1). During the four expeditions all stations were visited with two exceptions: in January and in December station F 72 was left out. On both occasions due to rough weather. All samples were collected with a Nansen net with a mesh-size of 0.16 mm. At each station the hauls were fractioned according to the following standards: 25-0 m, 50-25 m, 100-50 m, 200-100 m. In the laboratory the samples were sub-sampled in the modified whirling apparatus constructed by KOTT (1953:87) and then counted and analysed to species and for the copepods also to developmental stages.

The hydrographical data have been analysed by the Hydrographical Department, Institute of Marine Research (ANON., 1972a, b).

RESULTS

HYDROGRAPHY

The biological life of the Baltic proper is greatly influenced by the stagnation periods with decreasing oxygen concentration and the development of hydrogen sulphide in the bottom waters. Such a stagnation period with hydrogen sulphide started in 1967 but was broken in the beginning of 1969 when the bottom water of the Bornholm basin (cf. fig. 1) was replaced by oxygen-rich water. In the end of the year this water had reached the Gotland basin and bottom water saturated with hydrogen sulphide was forced to the north. In June 1970, parts of the bottom water in the Gulf of Finland was covered with hydrogen sulphide. At the most northern station (F 72, cf. fig. 1) the hydrogen sulphide was present in the bottom water from at least May to September, 1970

(ACKEFORS & HERNROTH, 1971). The Landsort deep contained now and then hydrogen sulphide in 1969-1970. West of Gotland at station S 41, hydrogen sulphide was present during most of the year 1970. (This area receives some of the water coming from the Bornholm and Gotland basins and the rest is forced toward the north into the Gulf of Finland.)

The oxygen conditions in 1971:

During the investigation in 1971 the oxygen conditions deteriorated. In January there was only hydrogen sulphide in the bottom water at station 8 41 (cf. table 2). At that station hydrogen sulphide had been present at the bottom since May 1970. In the end of 1970 there was $20-25 \ \mu gat \ H_2S$ per 1 water. In January 1971 the concentration had decreased to 7-9 $\mu gat \ H_2S$ per 1 water. In April no hydrogen sulphide could be detected at that station nor at the other stations. In August, however, hydrogen sulphide had developed at station S 41 as well as at stations S 24 (Bornholm deep) and F 81 (Gotland deep). In December there was only hydrogen sulphide left at station F 81.

The temperature and salinity in 1971:

In January the surface temperature was about $2-4^{\circ}C$. As usual the water temperature was quite uniform from surface to halocline (about 60 m depth). Below the halocline the temperature was $1-3^{\circ}C$ higher. In April the surface temperature was slightly lower or $2-3^{\circ}C$. During the investigation in August the surface temperature was $15-16^{\circ}C$. In December the water temperature had decreased to $4-7^{\circ}C$ (cf. tables 2-5).

The salinity in the surface water varied from 6.4 $\frac{4}{20}$ to 8.9 $\frac{4}{20}$. The lowest value was found in the northern Baltic proper at station F 78 in August and the highest in the southern Baltic at station S 12 in November. The salinity concentration is rather homogenous down to the halocline. The halocline was found at the following levels in 1971: At S 12 below 30 m, at F 78 below 40 m, at S 24 and S 41 below 50 m and at 8 A, F 81 and F 72 below 60 m. The salinity in the bottom waters was in the range of: 13.9-16.6 $\frac{4}{20}$ (S 12), 15.4-16.0 $\frac{4}{20}$ (S 24), 10.9-12.7 $\frac{4}{20}$ (8 A), 12.8 $\frac{4}{20}$ (F 81), 11.0-11.1 $\frac{4}{20}$ (F 72), 11.2-11.3 $\frac{4}{20}$ (F 78) and 10.3-10.5 $\frac{4}{20}$ (S 41).

ZOOPLANKTON

Cnidaria

Cyanea capillata (L.)

Three specimens were found in 1971. In January one medusae (40 mm \emptyset) was found at station F 81 in a net haul between 200 m and 100 m. In April one individual (5 mm) was caught at the same station between 100 m and 50 m and one individual (3 mm) at station 8 A between 80 m and 50 m.

Ctenophora

Pleurobrachia pileus (O.F. MÜLLER)

Ten larvae were caught in a net haul from 25 m depth to surface in January at station S 12.

Rotatoria

Keratella spp.

Three different species occur sparsely off the coast in the northern Baltic proper, viz. <u>Keratella quadrata quadrata</u> (MUELLER), <u>K</u>. <u>quadrata</u> <u>platei</u> (JÄGERSKIÖLD) and <u>K</u>. <u>cruciformis eichwaldi</u> (LEVANDER). The first one of the species is the most common one. In August 350 ind. were caught in a net haul between 25 m and surface at station F 72. This is equal to about 1 800 ind. m^{-2} .

Synchaeta spp.

The authors have not distinguised between the six different species in the Baltic proper: <u>S. baltica</u>, <u>S. curvata</u>, <u>S. fennica</u>, <u>S. gyrina</u>, <u>S. monopus</u> and <u>S. triopthalma (BERZINS, 1960)</u>.

The species occured very sparsely in the samples (figs. 2-5), except in August when about 40 000 ind. m^{-2} were found at station F 72. The

main part of the specimens occurred in the net haul between 25 m and surface. Normally all the specimens occur above the 50 m level. In this case we also found about 300 ind. in the net haul from 100 m to 50 m.

In November-December (fig. 5) the species occurred sparsely in the southern Baltic proper except single specimens at station F 78.

Polychaeta

Pygospio elegans CLAPAREDE

Larvae occured at stations S 12 and S 24 in the Arkona and the Bornholm Sea in January and April. (In 1970 the larvae were found from June to October, cf. ACKEFORS & HERNROTH, 1971.) Most of the larvae occurred in April in net hauls from 25 m to surface. The bottom temperatures were in January about 6° C. In April the temperature was about 2° C at the bottom at station S 12 and 6.5° C at station S 24.

Harmothoe sarsi CLAPAREDE

Larvae were found on all sampling occasions (figs. 6-9). In January and in December most of them were found in deep net hauls below 50 m depth. The greatest abundance above 50 m level occured in April and August in the northern part of the Gotland Sea. The greatest density of larvae in January and December was about 5 000 ind. m^{-2} in the southern Baltic proper.

Cladocera

Bosmina coregoni maritima (P.E. MÜLLER)

This species occurs normally very sparsely in the first half of the year in the Baltic proper. In 1971 the same pattern of seasonal distribution occurred (figs. 10-13). When the surface water reaches a temperature of 15° C or more the parthenogenetic propagation seems to

be very rapid. Like in our previous investigations, the species was very frequent in late summer in the southern Baltic proper. In August more than 1 milj. specimens per m^2 were found at station 8 A. The period of maximum abundance seems to be very short and in October the abundance is already much lower. This time of the year the surface temperature is in the range of 8-10°C (cf. ACKEFORS & HERNROTH, 1971).

Podon spp.

Three species occur in the Baltic proper, viz. <u>Podon intermedius LILIJE</u> BORG, <u>P. polyphemoides LEUCKART (syn. Pleopis polyphemoides</u>, cf. GIES-KES, 1971) and <u>P. leuckarti</u> G.O. SARS. The species were not separated this year in the analysis. Most of the specimens, however, belonged to the species <u>P. polyphemoides</u>. Normally the first specimens occur in April and the last specimens disappear in November-December (cf. ACKE-FORS, 1969). In 1971 the seasonal distribution is evident in figs. 14-17. Single specimens occured in April. The greatest abundance was found in August when the surface temperature was about 15^oC.

Evadne nordmanni LOVEN

This species is an eurytherm cladoceran and the distribution is normally extended over a long period of the year (figs. 18-21). It has been considered as the most important cladoceran in the Baltic area but you will never find such high abundance as is normal for <u>Bosmina</u> during a short period. 1971 the maximum abundance was found in August at station S 41 where more than 15 000 ind. m^{-2} occured. As is evident from fig. 20 the distribution is very even from south to north. This is a typical distribution pattern for an eurytherm species as <u>Evadne</u> nordmanni.

Copepoda

Limnocalanus macrurus SARS

Limnocalanus macrurus (syn. L. grimaldii (DE GUERNE)) appeared very sparsely during the investigated year. Single specimens were found during all of the four expeditions but the finds were restricted to our three most northern stations F 81, F 78 and F 72. An exception to this is a find at station S 41 in December. As a rule L. macrurus appeared only in the deep hauls (between 200 and 50 m).

<u>Acartia bifilosa</u> GIESBRECHT and <u>A</u>. <u>longiremis</u> LILLJEBORG Due to the difficulties of distinguishing between young stages of <u>A</u>. <u>bifilosa</u> and <u>A</u>. <u>longiremis</u> no separation of the two species has been made for nauplie and stages I- Σ . Only adult specimens have been analysed to species. From figs. 22-25 it is evident that <u>Acartia</u> spp. is present during the whole year and its distribution is rather even from south to north. <u>Acartia</u> spp. show a clear preference for the upper water layer (50-0 m) and this is true for all of the four investigated months. The quantitative distribution over the year is rather even although a maximum can be found in August. Nauplie were found during the whole year but their maximum were found in April. Among the adults almost twice as many A. bifilosa as A. longiremis were found.

Eurytemora sp.

The distribution of <u>Eurytemora</u> sp. shows the same pattern 1971 as in our previous investigations, viz. a low number of specimens were found during the year except for a clear maximum in August. The finds were as a rule concentrated to the northern Baltic proper and mostly in the upper 50 m layer. Few nauplie were found and only in August.

Centropages hamatus (LILLJEBORG)

This copepod was present on all sampling occasions but was never very

abundant. In April, when the surface temperature was between $2-3^{\circ}C$, the lowest density was found, while August (15-16°C) showed the highest values. As the authors have found in earlier investigations (ACKEFORS & HERNROTH, 1970a, b, 1971) the horizontal distribution of <u>C</u>. <u>hamatus</u> is rather even over the Baltic proper. The vertical distribution however, is rather irregular this year and no general conclusions can therefore be made.

During the winter copepodite stages IV and V dominated but in the April samples adults also began to appear. In August the adults became dominating and during this season the only nauplie of 1971 were found. In the Nov.-December samples, most of the <u>C</u>. <u>hamatus</u> belonged to stages IV-V and I-III.

Pseudocalanus minutus elongatus (BOECK)

<u>Pseudocalanus m. elongatus</u> is together with <u>Temora longicornis</u> the most common species in the Baltic proper. In 1971 <u>P. m. elongatus</u> was abundant at all stations on all sampling occasions. Minimum values were observed in April and maximum values in August. Below 50 m level <u>P. m.</u> <u>elongatus</u> is by far the most common species all through the year. The older developmental stages seem to prefer the deep waters below the halocline while the younger stages are found closer to the surface. Nauplie were found during the whole year between 25 m and surface but were most abundant in April.

Temora longicornis P. MULLER

As was mentioned earlier, <u>Temora longicornis</u> is one of the two dominating species in the Baltic plankton fauna. From figs. 38-41 it is evident that <u>T</u>. <u>longicornis</u> is present during the whole year over the whole Baltic proper. In April when the temperature reached its minimum, the smallest number of specimens were found. The greatest abundance appeared in August when the highest temperatures were found. From figs. 38-41 it is also evident that <u>T</u>. <u>longicornis</u> has a clear preference for the depths above 50 m.

During the first half of the year, copepodite stages IV-VI seemed to dominate. In the samples taken in August and Nov.-December, nauplie and copepodite stages I-III also appeared, but the older stages were still dominating.

Oithona similis CLAUS

The distribution of <u>Oithona similis</u> in the Baltic proper follows the flow of the salt bottom water. Thus, <u>O</u>. <u>similis</u> is mainly found in the deep hauls at stations S 12, S 24, 8 A and F 81. The highest abundance was found at the Bornholm deep but on a single occasion one specimen was found as far to the north as F 72 in a haul between 170 and 100 m. The salinity on this occasion was $10.8-11.0 \ \infty$.

Cirripedia

Balanus improvisus DARWIN

Only one <u>Balanus</u> nauplie was found in 1971. This occurred in August at station F 72 in a net haul between 100 and 50 m.

Amphipoda

Hyperia galba MONTAGY

<u>Hyperia galba</u> appeared in two hauls during this investigation. On both occasions in deep hauls during the April expedition. At station F 81 five specimens were found between 200 and 100 m and at station F 72 one specimen appeared between 170 and 100 m.

Gastropoda

As is evident from our previous investigations (ACKEFORS & HERNROTH,

1970a, b, 1971), the appearance of Gastropod larvae is concentrated to the summer and autumn months. In 1971, larvae were found on five occasions in August and once in November. Most of the specimens occurred in the upper 50 m layer.

Lamellibranchiata

Mytilus edulis (L.)

From figs. 46-49 it is evident that larvae of <u>Mytilus edulis</u> are distributed over the whole Baltic proper. The maximum abundance was found in August in the southern Baltic proper. Generally the larvae were concentrated in the upper water mass (50-0 m).

<u>Macoma baltica</u> (L.), <u>Cardium lamarcki</u> REEVE, <u>Mya arenaria</u> (L.) In this investigation no separation of the three species has been made. The horizontal as well as the vertical distribution (figs. 50-53) of the larvae was rather similar to that of <u>Mytilus edulis</u>.

Chaetognatha

Sagitta elegans baltica RITTER-ZAHONY

The distribution of <u>Sagitta elegans baltica</u> in the Baltic proper is restricted to the areas with high salinity. In this investigation, <u>S</u>. <u>elegans baltica</u> appeared atstations S 12, S 24, 8 A and F 81 but was only abundant at station S 24 where it appeared on all sampling occasions.

Copelata

Fritillaria borealis LOHM

From figs. 54-57 it can be seem that <u>Fritillaria</u> <u>borealis</u> is rather evenly distributed over the Baltic proper. The seasonal fluctuations were fairly small during the year and as a rule the greatest abundance was found in the upper 50 m layer. During the August expedition however, very few specimens were found above the thermocline.

The biomass of zooplankton

The biomass of zooplankton (excluding microzooplankton) has been calculated according to ACKEFORS (1972). The results of the investigation in 1971 are in the same magnitude as the three year mean for 1968-1970 (ACKEFORS & HERNROTH, 1972; ACKEFORS, unpubl.) with a few exceptions. The wet weight expressed as gram per m^2 is evident in figs. 58-61. Those values have been recalculated and expressed as gram carbon per m^2 in figs. 62-65. This can only be done if we accept that the average content of carbon is about 5 % of the wet weight. We know that there is a seasonal fluctuation in carbon content as well as a difference in carbon content for various species. Probably the figure 5 % (40 % of the dry weight) is an underestimation(cf. MARTENS & KRANEIS, 1973). As is evident from figs. 58-61 the greatest biomass occurred in August. Very high values were reported from station 8 A (37.9 g m^{-2}) and station F 72 (37.7 gm^{-2}) . Those values are in the same magnitude as the highest values found in the Bornholm area (ACKEFORS & HERNROTH, 1972). The high value at the most northern station F 72 is conspicuous. The reason is the high density of Temora longicornis. Not less than 1 milj. ind. m^{-2} occurred at that station. The main part of T. longicornis was found in the net haul between 50 and 25 m. Since the other values of the biomass are also higher than the three year mean 1968-1970, it seems as the production of zooplankton and especially of T. longicornis was higher than normal in August 1971. Only one value from station § 24, September 1968. exceeds the mentioned values. On that occasion the biomass value was 41 g m⁻² wwt.

Taken together, the biomass values in January, 1971, are lower than the three year mean 1968-1970. The mean value for all stations in 1971 was 4.9 g m⁻² wwt in comparison with 6.9 g m⁻² wwt 1968-1970. As usual the values in April are lower (cf. ACKEFORS & HERNROTH, 1972) and the mean value was 3.3 g. Both the individual values and the mean,

are slightly lower than the three year mean. In August 1971, however, the mean value for all stations is 24.4 g which is higher than the mean values for July-August and September-October in 1968-1970, which were 10 g and 18.7 g respectively. The mean value of 7.2 g for November-December is about the same as earlier values.

The yearly mean value of 9.9 g m⁻² wwt for all stations in 1971 is very similar to the three year mean value of 9.3 g m⁻² wwt. This indicates that the slightly lower production in the beginning of the year is compensated by the high production in August. On the other hand it is difficult to compare values, when it is only possible to sample the fauna 4 times a year. However, such years as 1971, when the biomass is higher than normal during the high productivity period from July to October, the total production of zooplankton is probably underestimated when the mean values are used for calculating the secondary production of zooplankton (cf. ACKEFORS, unpubl.). The conclusion is therefore that the production of zooplankton in 1971 was slightly higher than the mean value of 100 g m⁻² wwt (about 5 g C m⁻² year⁻¹) which ACKEFORS & HERNROTH (1972) calculated for the three year period 1968-1970.

REFERENCES

ACKEFORS, H., 1969a: Ecological zooplankton investigations in the Baltic proper 1963-1965. - Inst.Mar.Res., Lysekil, Ser.Biol.Rep.No. 18:1-139.

ACKEFORS, H., 1969b: Seasonal and vertical distribution of the zooplankton in the Askö area (Northern Baltic proper) in relation to hydrographical conditions. - Oikos, 20:480-492.

ACKEFORS, H., 1971: <u>Podon polyphemoides</u> Leuckart and <u>Bosmina coregoni</u> <u>maritima</u> (P.E. Müller) in relation to temperature and salinity in field studies and laboratory experiments. - J.exp.mar.Biol.Ecol., 7:51-70.

ACKEFORS, H., 1971: Mercury pollution in Sweden with special reference to conditions in the water habitat. - Proc.Roy. Soc.Lond.B. 177:365-387.

ACKEFORS, H., unpubl., Production studies of zooplankton in relation to the total production in the Baltic proper.

ACKEFORS, H. & HERNROTH, L., 1970a: Seasonal and vertical distribution of zooplankton off the coast in the Baltic proper in 1968. - Medd.Havsfiskelab., Lysekil, nr 76, 13 pp., 125 figs., 6 tables (mimeo.).

ACKEFORS, H. & HERNROTH, L., 1970b: Ecological zooplankton studies in the Baltic proper in connection with oceanographic studies in 1969 during the Baltic Year. - Medd. Havsfiskelab., Lysekil, nr 89, 9 pp., 61 figs., 4 tables (mimeo.). ACKEFORS, H. & HERNROTH, L., 1971: Seasonal and vertical distribution of zooplankton off the coast in the Baltic proper in 1970. - Medd. Havsfiskelab., Lysekil, nr 113, 10 pp., 113 figs., 5 tables (mimeo.).

ACKEFORS, H. & HERNROTH, L., 1972: Estimations of the amount of zooplankton and fish in the Baltic proper. - Medd. Havsfiskelab., Lysekil, nr 139, 16 pp., 2 figs. (mimeo.).

- ANON., 1972a: Hydrographical Data January-June 1971. R.V. Skagerak, R.V. Thetis, TV 252. - Medd, Havsfiskelab., Lysekil, nr 116 (mimeo.).
- ANON., 1972b: Hydrographical Data July-December 1971. R.V. Skagerak, R.V. Thetis. - Medd.Havsfiskelab., Lysekil, nr 132 (mimeo.).
- BERZINS, B., 1960: Rotatoria I. Cons.Int.L'Explor.Mer. Zooplankton Sheet 84.

FONSELIUS, S., 1969: Hydrography of the Baltic Deep Basins III. -Fish.Board, Sweden, Ser.Hydr., Rep. 23:1-97.

FONSELIUS, S., 1970: On the stagnation and recent turnover of the water in the Baltic. - Tellus XXII (5):533-544.

GIESKES, W.W.C., 1971: Removal of "Podon" polyphemoides from the genus Podon. - Hydrobiologia 38(1):61-66.

HALLBERG, R.O., 1973: Paleoredox conditions in the Eastern Gotland Basin during the last 400 years. - Contr. Askö Lab., Univ. of Stockholm, Sweden 2:1 pp. 89-117. HOLMQUIST, Ch, 1970: The Genus Limnocalanus (Crustacea, Copepoda). -Z.f.zool.Systematik u.Evolutionsforschung, Bd.8 (1970) H.4, S.273-296.

JANSSON, B.O., 1972: Ecosystem Approach to the Baltic Problem. - Bull. Ecol.Res.Comm.Swedish Natural Science Research Council, No 16:1-82.

JENSEN, S., JOHNELS, A.G., OLSSON, M. & OTTERLIND, G., 1972: DDT and PCB in herring and cod from the Baltic, the Kattegat:and the Skagerak. - Ambio Special Report, No 1:71-85.

KOTT, P., 1953: Modified whirling apparatus for the subsampling of plankton. - Austr.J.Mar.Freshw.Res., 4:387-393.

MARTENS, P. & KRANEIS, W., 1973: Ecological studies on the plankton in Kiel Bight II. Zooplankton. - Third Baltic Symposium on Marine Biology, Helsinki.

SJÖBERG, S., WUIFF, F. & WÅHLSTRÖM, P., 1972: Computer simulations of hydrochemical and biological processes in the Baltic. - Contr.Askö Lab., Univ. of Stockholm, Sweden, 91 pp.

WATTENBERG, H., 1949: Entwurf einer naturlicher Einteilung der Ostsee. -Kieler Meeresf., 6:10-15.

LEGENDS

Fig. 1. Chart of the Baltic proper.

Figs. 2-57. During 1971 four expeditions to the Baltic proper were made. On two of these occasions all seven of the plankton stations were visited. In January and December station F 72 was left out. The most common species and their seasonal distribution are evident in figs. 2-57. Winter (Dec.-Febr.) is reproduced as white charts, spring (March-May) as yellow charts, summer (June-August) as green charts and autumn (Sept.-Nov.) as blue charts. The abundance appears from the size of the circles. Open circles indicate the two hauls 25-0 m and 50-25 m together and black circles all the deep net hauls together.

	Jan.	April	Aug.	NovDec.
Synchaeta spp.	2	3	4	5
Harmothoe sarsi	6	7	8	9
Bosmina coregoni maritima	10	11	12	13
Podon sp.	14	15	16	17
Evadne nordmanni	18	19	20	21
Acartia bifilosa Acartia longiremis	22	23	24	25
Eurytemora sp.	26	27	28	29
Centropages hamatus	30	31	32	33
Pseudocalanus minutus elongatus	34	35	36	37
Temora longicornis	38	39	40	41
Oithona similis	42	43	44	45
Mytilus edulis	46	47	48	49
Macoma baltica Cardium lamarcki Mya arenaria	50	51	52	53
Fritillaria borealis	54	55	56	57

Figs. 58-61. Chart illustrating wet weight as g/m^2 .

Figs. 62--65. Chart illustrating gram carbon/m².

Fig. 1. Chart of the Baltic proper and the three subareas, the Arkona Sea, the Bornholm Sea and the Gotland Sea according to WATTENBERG (1949). The Gotland Sea is devided into an eastern and western part by WATTENBERG. According to ACKEFORS (1969a) the Gotland Sea may be devided into five subareas; the southern (SG), the middle eastern and western (MEG and MWG) and the north-eastern and north-western (NEG and NWG). The seven plankton stations are evident from the chart, in some cases with both old and new symbols as well as the depths.

Pir.3

F10.4

Fig.6

Fig.7

Big. 8

-

Fig. 11

.

Fig.19

~

Fig. 30

Fig.31

Fig.38

Fig.50

Table 1. Plankton stations visited in 1971.

S	12	(2A) Arkona	55 ⁰ 00'N	14 [°] 05'E
S	24	(5A) Bornholm Deep	55 [°] 15'N	15 [°] 59'E
		8A "Rysshålan"	55 [°] 38'N	18 ⁰ 36'E
F	81	(15A)Gotland Deep	57 [°] 20'N	20 ⁰ 03'E
F	72		59°18'N	21 ⁰ 34'E
F	78	(31A)Landsort Deep	58°35'N	18 ⁰ 14'E
S	41	(38A)	57 [°] 07'N	17 ⁰ 40'E

Table 2. Temperature, salinity, oxygen.and hydrogen sulphide values at stations S12, S 24, 8A, F81, F78 and S41, January 1971 (ANON. 1972 a)

Station S 12 Depth m t ^o C	l2 Janu S ‰	ary, 1971 0 ₂ ml/1		Station Depth m	s 24 t ^o C	12 Janu S ‰	ary, 1971 O ₂ ml/1
0 2.8	7,95	8.82		0	3.05	7.42	8.97
5 2.8	7.94	8.87		5	3.02	7.42	8.97
10 2.9	7.97	8.86		10	3.07	7.42	8.90
15 2.94	8.02	8.76		15	3.06	7.42	8,90
20 2.9	8.01	8.81		20	3.26	7.44	8.88
30 3.2	8.04	8.68		30	4.11	7.43	8.92
40 4.9	8.77	8.18		40	4.03	7.51	8.77
49 6.38	3 13.87	5.77		50	3.85	7.55	8.70
				60	4.47	7.97	7.90
				70	7.55	12.09	4.71
				80	8.16	13.86	2.85
				91	6.28	16.01	0.36
and the second							
Station 8 A	13 Janu	ary, 1971		Station	F 81	14 Janu	ary, 1971
Depth m t ⁻ C	S ‰	02 m1/1		Depth m	t°C	S /00	0_2 mI/I
0 3.4	3 7.55	8.74		0	3.98	7.59	8.60
5 3.4	7.55	8.73		5	4.01	7.60	8.53
10 3.4	7.55	8,76		10	4.00	7.60	8.54
15 3.4	3 7.54	8.69		15	4.01	7.60	8.57
20 3.4	7.54	8.76		20	4.01	7.60	8.61
30 3.50	7.55	8.72			4.00	7.60	8.66
40 3.5	7.56	8.70		40	4.00	7.60	8.58
50 3.6	+ /.56	0./1		50	4.04	7.60	8.60
60 3.6	1 /.61	0.24		60	3.97	7.65	8.37
70 4.2	L 9.09	2.50		70	4.14	10.23	1.26
80 5.4	3 11.42	1./3		80	4.44	10.84	1.17
90 6.0	12.41	2.3/		90	4.55	11.23	1.20
9/ 0.0	12.0/	2.27		100	4.71	11.58	1.39
				125	5.06	12.07	1.01
				150	5.40	12.42	0.53
				175	5.52	12.58	0.43
			-	200	5.58	12.70	0.36

225

240

Continued

5.64 12.82 0.17 5.65 12.82 0.16 Table 2. (Continued)

Station	F 78	18 Janu	ary, 1971	Station	S 41	14 Janu	ary 1971		
Depth m	t ^o C	S ‰	02 ml/1	Depth m	t°C	S %	0 ₂ ml/1	H ₂ S	ugat/1
0	2.02	7.07	9.08	0	2.88	7.06	8.88		
5	2.02	7.07	9.06	5	2.80	7.06	8.94		
10	2.04	7.07	9.06	10	2.78	7.06	8.87		•
15	2.04	7.07	9.08	15	2.77	7.06	8.94		
20	2.03	7.07	9.08	20	2.79	7.06	8.87		
30	2.01	7.07	9.07	30	2.74	7.06	8.90		
40	3.24	7.34	8.14	40	2.69	7.07	8.89		
50	4.03	8.65	4.45	50	3.56	7.38	7.57		
60	4.25	9.53	2.14	60	3.91	8.12	5.45		
70	4.35	6.77	1.64	70	3.97	9.23	2.31		
80	4.45	10.10	0.95	80	4.42	9.97	0.17		
90	4.49	10.29	0.48	90	4.65	10.39	0	8.7	
100	5.00		0.45	100	4.64	10.49		6.2	
125	4.68	10.52	0.22	111		10.49		7.2	
150	4.91	10.92	0.10						
200	4.99	11.08	0.22						
300	5.01	11.17	0.16						
400	5.15	11.30	0.10						
425	5.16	11.31	0.10						
440	5.11	11.31	0.06						

Table 3. Temperature,salinity,oxygen and hydrogen sulphide values at stations S 12, S 24, 8 A, F 81,F 72, F 78 and S 41, April 1971 (ANON. 1972 a)

Station	S_12 2	20 April	1, 1971	Station	S 24	21 April	L, 1971
Depth m	t°C	S ‰	0 ₂ ml/l	Depth m	t°C	S %	02 ml/1
0 5	3.93 3.89	7.67 7.66	9.94 9.99	0 5	2.78	7.47 7.47	9.75 9.83
15 20	3.11 2.16	7.75	9.76 9.38	15 20	2.81	7.48 7.48	9.67
30 40	2.07 1.82	8.00	9.26 8.08	30 40	2.52	7.50	9.56
48	1.91	11.84	7.73	50 60	2.04 5.82	7.73	9.07 4.07
				70 80 85	7.19 6.83	15.00 15.74	0.71 0.16

Continued

Correction: Salinity, station F 78,70 m, shall be: 9.77

.

· · :

Table 3. (Continued)

Station	8 A 21	April	, 1971
Depth m	t°C	S %	02 ml/1
0	2.59	7.60	9.38
5	2.56	7.60	9.46
10	2.52	7.60	9.35
15	2.49	7.60	9.38
20	2.45	7.60	9.44
30	2.42	7.60	9.53
40	2.45	7.60	9.33
50	2.23	7.61	9.29
60	1.78	7.68	9.03
70	3.71	9.32	3.01
80	4.26	10.16	1.17
93	5.10	11.18	1.81

Station	F 81	22 April	L, 1971
Depth m	t ^o C	S Too	0 ₂ ml/l
0	2.56	7.64	9.55
5	2.53	7.63	9.31
10	2.53	7.63	9.29
15	2.57	7.63	9.31
20	2.53	7.63	9.29
30	2.54	7.63	9.23
40	2.51	7.63	9.30
50	2.54	7.63	9.40
60	2.59	8.12	7.37
70	4.39	10.09	2.09
80	4.64	10.68	1.34
90	4.65	11.02	1.06
100	5.23	11,34	1.30
125	5.19	11.91	0.84
150	5.32	12.31	0.71
175	5.44	12.49	0.30
200	5.56	12.67	0.30
225	5.59	12.77	0.17
235	5.62	12.79	0.16

Station	F 72	27 Apri	1. 1971	Station	F 78	23 Apri	1, 1971
Depth m	t°C	S %	0 ₂ ml/l	Depth m	t ^o C	S ‰	0 ₂ ml/1
0	1.70	6.96	10.27	0	1.91	6.57	10.19
5	1.67	6.96	10.21	5	1.84	6.57	10.26
10	1.71	6.95	10.21	10	1.83	6.58	10.19
15	1.75	6.95	10.27	15	1.84	6.58	10.20
20	1.73	6.95	10.27	20	1.84	6.94	9.79
30	1.67	6.98	10.18	30	1.32	7.26	9.42
40	1.59	7.38	9.47	40	1.25	7.46	9.10
50	1.27	7.54	9.18	50	2.74	8.30	5.92
60	1.79	7.86	8.13	60	3.90	9.31	2.73
70	3.84	9.60	2.78	70	4.25	9.79	1.29
80	4.45	10.41	3.82	80	4.51	10.10	0.51
90	4.68	10.74	0.63	90	4.60	10.36	0.39
100	4.70	10.75	0.55	100	4.67	10.67	0.31
125	4.71	10.88	0.43	125	4.74	10.81	0.34
150	4.72	10.99	0.34	150	4.87	10.96	0.28
175	4.79	11.02	0.32	200	5.02	11.15	0.09
				300	5.92	11.19	0.43
				400	5.03	11.22	0.27
				425	4.88	11.21	0.44

Table 3. (Continued)

Station	n S 41	28 Apri	1, 197	1
Depth r	n t [°] C	S %	0 ₂ ml	/1
0	2.44	7.26	9.68	
5	2.38	7.26	9.73	
10	2.39	7.26	9.77	
15	2.40	7.26	9.75	
20	2.44	7.27	9.72	
30	2.39		9.77	
40	2.35	7.27	9.85	
50	1.80	7.37	9.44	
60	1.92	7.63	8.30	
70	3.46	9.00	3.24	
80	4.28	9.89	0.86	
90	4.44	10.11	0.47	
100	4.55	10.24	0.22	
113	4.46	10.28	0.36	

Table 4. Temperature,salinity,oxygen and hydrogen sulphide values at stations S 12, S 24, 8A, F 81, F 72, F 78 and S 41, August 1971 (ANON. 1972 b)

Station	S 12	17 Augu	st, 1971	Station	S 24	18 Augu	st, 1971		
Depth m	t°C	S %	0 ₂ ml/1	Depth m	t°C	S %	0 ₂ ml/1	H ₂ S	ugat/1
0	16.64	7.98	6.96	0	15.71	7.44	7.13	-	
5	16.66	7.99	6.88	5	15.69	7.44	7.02		
10	16.72	8.00	6.95	10	15.65	7.44	7.08		
15	16.69	8.19	6.55	15	15.25	7.45	6.96		
20	16.72	8.23	6.51	20	15.21	7.45	6.89		
30	12.09	9.03	4.96	30	5.64	7.56	7.58		
40	12.31	14.28	3.66	40	4.87	7.65	7.72		
48	12.55	14.70	3.09	50	3.97	8.08	6.88		
				60		10.57	4.17		
				70	6.68	14.63	0.27		
				80	6.71	15.75		6.3	35
				90	6.60	15.79		9-7	7

Table 4. (Continued)

8 A 18	Augus	t, 1971	Station	F 81	19 Augu	st, 1971		
t°c	S %	0 ₂ ml/l	Depth m	t°C	S %	0 ₂ ml/1	H2S 1	ugat/1
16.64	7.40	5.29	0	16.16.	7.27	7.22		
15.73	7.40	5.71	5	16.20	7.27	7.32		
	7.39	5.53	10	16.09	7.37	7.10		
16.54	7.39	5.71	15	15.56	7.36	7.03		
15.90	7.39	5.95	20	10.58	7.43	6.30		
15.13	7.41	5.89	30	4.37	7.57	7.11		
8,52	7.52	6.93	40	3.39	7.61	7.98		
4.05	7.61	7.87	50	2.94	7.64	7.95		
3.23	7.69	7.64	60	2.53	7.81	6.97		
3.25	8.53	5.04	70	3.82	9.41	2.13		
4.21	9.86	1.03	80	4.48	10.32	0.78		
4.63	10.69	0.56	90	4.63	10.73	0.74		
4.85	10.88	0.48	100	4.91	11.14	0.78		
			125	5.33	11.81	0.74		
			150	5.43	12.31	0.22		
			175	5.53	12.58	0.14		
			200	5.60	12.68	0.16		
			225	5.62	12.77		2.3	
			245	5.60	12.76		15.4	
	8 A 18 t°C 16.64 15.73 16.54 15.90 15.13 8.52 4.05 3.23 3.25 4.21 4.63 4.85	8 A 18 Augus t°C S ‰ 16.64 7.40 15.73 7.40 7.39 16.54 7.39 15.90 7.39 15.13 7.41 8.52 7.52 4.05 7.61 3.23 7.69 3.25 8.53 4.21 9.86 4.63 10.69 4.85 10.88	8 A 18 August, 1971 t ^o C S % 0 ₂ ml/1 16.64 7.40 5.29 15.73 7.40 5.71 7.39 5.53 16.54 7.39 5.71 15.90 7.39 5.95 15.13 7.41 5.89 8.52 7.52 6.93 4.05 7.61 7.87 3.23 7.69 7.64 3.25 8.53 5.04 4.21 9.86 1.03 4.63 10.69 0.56 4.85 10.88 0.48	8 A 18 August, 1971 Station $t^{\circ}c$ S % 0_2 ml/l Depth m 16.64 7.40 5.29 0 15.73 7.40 5.71 5 7.39 5.53 10 16.54 7.39 5.71 15 15.90 7.39 5.95 20 15.13 7.41 5.89 30 8.52 7.52 6.93 40 4.05 7.61 7.87 50 3.23 7.69 7.64 60 3.25 8.53 5.04 70 4.21 9.86 1.03 80 4.63 10.69 0.56 90 4.85 10.88 0.48 100 125 150 175 200 225 245	8 A 18 August, 1971 Station F 81 $t^{O}C$ S $\frac{6}{20}$ O_2 ml/1 Depth m $t^{O}C$ 16.64 7.40 5.29 0 16.16. 15.73 7.40 5.71 5 16.20 7.39 5.53 10 16.09 16.54 7.39 5.71 15 15.56 15.90 7.39 5.95 20 10.58 15.13 7.41 5.89 30 4.37 8.52 7.52 6.93 40 3.39 4.05 7.61 7.87 50 2.94 3.23 7.69 7.64 60 2.53 3.25 8.53 5.04 70 3.82 4.21 9.86 1.03 80 4.48 4.63 10.69 0.56 90 4.63 4.85 10.88 0.48 100 4.91 125 5.33 150 5.43 175 5.53 200 5.60 225 5.62	8 A 18 August, 1971 Station F 81 19 Augu $t^{O}C$ S % 0_2 ml/1 Depth m $t^{O}C$ S % 16.64 7.40 5.29 0 16.16 7.27 15.73 7.40 5.71 5 16.20 7.27 7.39 5.53 10 16.09 7.37 16.54 7.39 5.71 15 15.56 7.36 15.90 7.39 5.95 20 10.58 7.43 15.13 7.41 5.89 30 4.37 7.57 8.52 7.52 6.93 40 3.39 7.61 4.05 7.61 7.87 50 2.94 7.64 3.23 7.69 7.64 60 2.53 7.81 3.25 8.53 5.04 70 3.82 9.41 4.21 9.86 1.03 80 4.48 10.32 4.63 10.69 0.56 90 4.63 10.73 4.85 10.88 0.48 100 4.91 11.14 125 5.33 11.81 150 5.43 12.31 175 5.53 12.58 200 5.60 12.76	8 A 18 August, 1971 Station F 81 19 August, 1971 $t^{O}C$ S % 0 ₂ ml/l Depth m $t^{O}C$ S % 0 ₂ ml/l 16.64 7.40 5.29 0 16.16 7.27 7.22 15.73 7.40 5.71 5 16.20 7.27 7.32 7.39 5.53 10 16.09 7.37 7.10 16.54 7.39 5.71 15 15.56 7.36 7.03 15.90 7.39 5.95 20 10.58 7.43 6.30 15.13 7.41 5.89 30 4.37 7.57 7.11 8,52 7.52 6.93 40 3.39 7.61 7.98 4.05 7.61 7.87 50 2.94 7.64 7.95 3.23 7.69 7.64 60 2.53 7.81 6.97 3.25 8.53 5.04 70 3.82 9.41 2.13 4.21 9.86 1.03 80 4.48 10.32 0.78 4.63 10.69 0.56 90 4.63 10.73 0.74 4.85 10.88 0.48 100 4.91 11.14 0.78 125 5.33 11.81 0.74 150 5.43 12.31 0.22 175 5.53 12.58 0.14 200 5.60 12.68 0.16 225 5.62 12.77 245 5.60 12.76	8 A 18 August, 1971 Station F 81 19 August, 1971 $t^{O}c$ S $\frac{1}{20}$ O_2 ml/1 Depth m $t^{O}c$ S $\frac{1}{20}$ O_2 ml/1 H ₂ S response to 2 ml/1 ml/1 H ₂ S response to 2 ml/1 ml/1 H ₂ S response to 2 ml/1 ml/1 ml/1 ml/1 ml/1 ml/1 ml/1 ml/1

24 August,	1971	Station	F 78	20 Augus	st, 1971
S ‰ C	2 ml/1	Depth m	t°C	S %	0 ₂ ml/1
6.57 7	.16	0	15.18	6.40	7.31
6.57 7	.13	5	15.17	6.40	7.26
6.57 7	.06	10	15.14	6.42	7.20
6.57 6	5.99	15	9.48	6.79	7.22
7.17 6	.43	20	7.07	7.10	7.64
7.33 7	7.14	30	4.18	7.24	8.35
7.44 7	7.81	40	2.75	7.44	8.45
7.55 7	.91	50	2.46	7.74	7.55
7.36 7	7.50	60	3.36	9.05	3.33
7.66 7	7.63	70	4.13	9.85	1.35
9.38 7	7.68	80	3.87	10.18	0.54
		90	4.63	10.55	0.21
10.74 (0.18	100	4.73	10.80	0.30
10.91 (0.18	125	4.77	10.98	0.22
10.93 (0.12	150	4.81	11.11	0.19
11.05 (0.13	200	4.89	11.20	0.18
		300	4.87	11.23	0.25
		400	4.92	11.26	0.24
		425	4.89	11.27	0.18
		440	4.84	11.33	0.19
	24 August, S % 0 6.57 7 6.57 7 6.57 7 6.57 7 6.57 6 7.17 6 7.33 7 7.44 7 7.55 7 7.36 7 7.36 7 7.66 7 9.38 7 10.74 0 10.91 0 10.93 0 11.05 0	24 August, 1971 S $\frac{6}{57}$ 0 ml/1 6.57 7.16 6.57 7.13 6.57 7.06 6.57 6.99 7.17 6.43 7.33 7.14 7.44 7.81 7.55 7.91 7.36 7.50 7.66 7.63 9.38 7.68 10.74 0.18 10.91 0.18 10.91 0.18 10.93 0.12 11.05 0.13	24 August, 1971 Station S $\frac{6}{2}$ 0_2 ml/l Depth m 6.57 7.16 0 6.57 7.13 5 6.57 7.06 10 6.57 6.99 15 7.17 6.43 20 7.33 7.14 30 7.44 7.81 40 7.55 7.91 50 7.36 7.50 60 7.66 7.63 70 9.38 7.68 80 90 10.74 0.18 100 10.91 0.18 125 10.93 0.12 150 11.05 0.13 200 400 425 440	24 August, 1971Station F 78S $\frac{6}{20}$ 0_2 ml/lDepth m t°C6.577.16015.186.577.13515.176.577.061015.146.576.99159.487.176.43207.077.337.14304.187.447.81402.757.557.91502.467.367.50603.367.667.63704.139.387.68803.87904.631004.7310.910.181254.7710.930.121504.8111.050.132004.894004.924254.894404.84440	24 August, 1971Station F 7820 AugustS

Table 4. (Continued)

Station	S 41	25 Augu	st, 1971		
Depth m	t°C	S ‰	0 ₂ ml/1	H ₂ S	ugat/l
0	16.56	6.90	6.96		
5	16.54	6.90	7.04		
10	16.51	6.90	6.99		
15	16.06	6.91	6.87		
20	11.15	6.98	6.86		
30	4.15	7.26	8.35		
40	2.86	7.42	8.15		
50	2.88	7.55	8.04		
60	3.37	8.55	4.23		
70	4.19	9.83	0.40		
80	4.49	10.19		0.6	
90	4.57	10.33		11.7	
100	5.07	10.42		12.25	
110	4.61	10.39		13.7	

Table 5. Temperature, salinity, oxygen and hydrogen sulphide values at stations S 12, S 24, 8 A, F 81, F 78 and S 41, Nov.-Dec. 1971 (ANON. 1972 b)

Station	S 12	30 Nove	mber, 1971	Station	S 24	1 Decem	ber, 1971
Depth m	t°C	S do	0 ₂ ml/1	Depth m	t°C	S %	0 ₂ ml/1
0	6.95	8.91	7.98	0	6.64	7.95	8.04
5	6.92	8.89	7.98	5	6.58	7.95	8.01
10	7.15	9.28	7.92	10	6.61	7.95	7.99
15	7.22	9.32	7.90	15	6.57	7.95	8.04
20	7.26	9.39	7.91	20	6.59	7.95	8.03
30	7.33	9.51	7.88	30	6.62	7.95	7.99
40	7.81	10.37	7.57	40	6.84	7.98	7.93
49	10.30	16.57	4.96	50	7.40	10.16	3.63
				60	10.62	12.74	3.03
				70	10.43	14.38	1.68
				80	7.72	15.49	0.22
				91	7.53	15.40	0.16

Table 5. (Continued)

Station 8 A 1 December	r, 1971	Station F 8	31 2 Decemb	per, 1971		
Depth m t ^o C S ‰ (0, ml/1)	Depth m t	C S ‰	0, ml/1	H2S	ugat/1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.00 7.98 7.98 8.02 7.97 7.95 7.99 7.93 3.17 0.84 0.46 0.26	0 6 5 6 10 6 15 6 20 6 30 6 40 6 50 6 60 6 70 6 80 3 90 4 125 5 150 5 175 5 200 5 225 5 235 5	.177.48.167.47.167.47.147.48.187.47.137.47.137.47.147.47.167.48.949.05.3910.16.7310.74.2111.61.3612.19.5012.52.5712.64.6112.72.5912.77	8.10 8.08 8.10 8.10 8.21 8.15 8.09 8.13 8.09 8.13 8.09 8.12 3.29 0.82 0.45 0.44 0.13	2.8 3.7 16.7 20.0	
Station F 78 3 Decemb	er, 1971	Station g	41 10 decer	mber, 197	1	
Station F 78 3 Decemb Depth m t ^O C S ⁶ / _m	0 ₂ ml/l	Station g Depth m t	41 10 decen °C S ‰	mber, 197 0 ₂ ml/1	1	
Station F 78 3 Decemb Depth m t ^o C S %	er, 1971 0 ₂ ml/1 8.44	Station s Depth m t 0 4	41 10 decen ^o c s ‰ .32 7.26	mber, 197 0 ₂ ml/l 8.43	1	
Station F 78 3 Decemb Depth m t ^o C S $\frac{6}{2}$ 0 4.71 7.19 5 4.72 7.19	er, 1971 0 ₂ ml/1 8.44 8.41 8.41	Station g Depth m t 0 4 5 4	41 10 decen ^o C S ‰ .32 7.26 .28 7.26 .20 7.26	mber, 197 0 ₂ ml/l 8.43 8.46	1	
Station F 78 3 Decemb Depth m t ^o C S % 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.52	Station s Depth m t 0 4 5 4 10 4	41 10 decei ^o C S ‰ .32 7.26 .28 7.26 .33 7.26 .28 7.26	mber, 197 0 ₂ ml/l 8.43 8.46 8.49 8.49	1	
Station F 78 3 Decemb Depth m t ^o C S % 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45	Station s Depth m t 0 4 5 4 10 4 15 4	41 10 dece: ^o C S ‰ .32 7.26 .28 7.26 .33 7.26 .28 7.26 .28 7.26 .20 7.26	mber, 197 0 ₂ ml/l 8.43 8.46 8.49 8.49 8.49 8.49	1	
Station F 78 3 Decemb Depth m t ^o C S % 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.49	Station s Depth m t 0 4 5 4 10 4 15 4 20 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .28 7.26 .30 7.26 .30 7.26 .34 7.28	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.49 8.46 8.49	1	
Station F 78 3 Decemb Depth m t ^o C S % 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4	41 10 decei ^o C S ‰ .32 7.26 .28 7.26 .33 7.26 .28 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29	mber, 197 0 ₂ ml/l 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.46 8.49 8.48	1	
Station F 78 3 Decemb Depth m t ^o C S % 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.45 8.49 8.43 8.43	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4	41 10 decei ^o C S ‰ .32 7.26 .28 7.26 .33 7.26 .28 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29	mber, 197 0 ₂ ml/l 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.48 8.45	1	
Station F 78 3 Decemb Depth m t ^o C S % 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44	per, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.45 8.49 8.43 8.43 4.90	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .28 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .36 7.36	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.45 8.25	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 8.43 8.43 4.90 3.17	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.45 8.25 2.98	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57	er, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 8.43 4.90 3.17 2.38	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4	41 10 decer C S % .32 7.26 .28 7.26 .33 7.26 .28 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96	mber, 197 02 ml/l 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50	1	
Station F 783 DecembDepth mt°CS %04.717.1954.727.19104.727.20153.997.19203.927.19303.957.20404.107.20504.057.21603.858.44703.789.17804.119.57904.1610.02	per, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.45 8.49 8.43 4.90 3.17 2.38 1.34	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4	41 10 decei ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27	mber, 197 0 ₂ ml/l 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18	1	
Station F 783 DecembDepth mt°CS %04.717.1954.727.19104.727.20153.997.19203.927.19303.957.20404.107.20504.057.21603.858.44703.789.17804.119.57904.1610.021004.3810.32	per, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 8.43 4.90 3.17 2.38 1.34 0.80	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57 90 4.16 10.02 100 4.38 10.32 125 4.61 10.74	er, 1971 0 ₂ ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 8.43 4.90 3.17 2.38 1.34 0.80 0.19	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4 112 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32 .52 10.31	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10 0.15	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57 90 4.16 10.02 100 4.38 10.32 125 4.61 10.74 150 4.69 10.90	er, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 8.43 4.90 3.17 2.38 1.34 0.80 0.19 0.19	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4 112 4	41 10 decer C S % .32 7.26 .28 7.26 .33 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32 .52 10.31	mber, 197 0 ₂ ml/l 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10 0.15	1	
Station F 78 3 Decemb Depth m t ^o C S $\frac{6}{2}$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57 90 4.16 10.02 100 4.38 10.32 125 4.61 10.74 150 4.69 10.90 175 4.78 11.00	er, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 4.90 3.17 2.38 1.34 0.80 0.19 0.19 0.12	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4 112 4	41 10 decer C S % .32 7.26 .28 7.26 .33 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32 .52 10.31	mber, 197 02 ml/l 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10 0.15	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57 90 4.16 10.02 100 4.38 10.32 125 4.61 10.74 150 4.69 10.90 175 4.78 11.00 200 4.77 11.01	per, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 4.90 3.17 2.38 1.34 0.80 0.19 0.12 0.12	Station s 4 Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4 112 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32 .52 10.31	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10 0.15	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57 90 4.16 10.02 100 4.38 10.32 125 4.61 10.74 150 4.69 10.90 175 4.78 11.00 200 4.77 11.01 300 4.82 11.10	er, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 4.90 3.17 2.38 1.34 0.80 0.19 0.12 0.12 0.12 0.10	Station s / Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4 112 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32 .52 10.31	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10 0.15	1	
Station F 78 3 Decemb Depth m t ^o C S $\%$ 0 4.71 7.19 5 4.72 7.19 10 4.72 7.20 15 3.99 7.19 20 3.92 7.19 30 3.95 7.20 40 4.10 7.20 50 4.05 7.21 60 3.85 8.44 70 3.78 9.17 80 4.11 9.57 90 4.16 10.02 100 4.38 10.32 125 4.61 10.74 150 4.69 10.90 175 4.78 11.00 200 4.77 11.01 300 4.82 11.10	er, 1971 0 ml/1 8.44 8.41 8.47 8.53 8.45 8.49 8.43 4.90 3.17 2.38 1.34 0.80 0.19 0.12 0.12 0.10 0.09	Station s Depth m t 0 4 5 4 10 4 15 4 20 4 30 4 40 4 50 4 60 4 70 3 80 4 90 4 100 4 112 4	41 10 decer ^o C S % .32 7.26 .28 7.26 .33 7.26 .30 7.26 .34 7.28 .33 7.29 .34 7.29 .34 7.29 .36 7.36 .89 9.10 .30 9.96 .47 10.27 .44 10.32 .52 10.31	mber, 197 0 ₂ ml/1 8.43 8.46 8.49 8.49 8.49 8.46 8.49 8.48 8.45 8.25 2.98 0.50 0.18 0.10 0.15	1	

Date	and time of the day	when the camples we	re collected
(Deep	est samples at the t	op of each table)	
<u>S 12</u>	S 24	8 A	F 81
71 1 12 1315 71 1 12 1320	71 1 12 2215 71 1 12 2220 71 1 12 2225	71 1 13 1020 71 1 13 1025 71 1 13 1030	71 1 14 0820 71 1 14 0830 71 1 14 0835 71 1 14 0840
<u>S 41</u>	F 78		
71 1 14 2255 71 1 14 2305 71 1 14 2310	71 1 18 2225 71 1 18 2220 71 1 18 2215		
	April		
<u>S 12</u>	<u>S 24</u>	<u>8 A</u>	<u>F 81</u>
71 4 20 1540 71 4 20 1545	71 4 21 0125 71 4 21 0130 71 4 21 0135	71 4 21 1320 71 4 21 1325 71 4 21 1330	71 4 22 0550 71 4 22 0600 71 4 22 0610 71 4 22 0620
<u>s 41</u>	F 78	F 72	
71 4 28 0145 71 4 28 0155 71 4 28 0200	71 4 23 0600 71 4 23 0610 71 4 23 0615 71 4 23 0620	71 4 27 0450 71 4 27 0500 71 4 27 0505 71 4 27 0510	
	August		
<u>S 12</u>	<u>S 24</u>	<u>SA</u>	<u>F 81</u>
71 8 17 1810 71 8 17 1815	71 8 18 0730 71 8 18 0735 71 8 18 0740	71 8 18 1900 71 8 18 1905 71 8 18 1910	71 8 19 0955 71 8 19 1000 71 8 19 1005 71 8 19 1010
<u>S 41</u>	F 78	F 72	
71 8 25 1500 71 8 25 1505 71 8 25 1510	718200800718200820718200825718200925	71 8 24 0610 71 8 24 0620 71 8 24 0625 71 8 24 0630	
	NovDe	с.	
S 12	<u>S 24</u>	8 A	F 81
71 11 30 1720 71 11 30 1725	71 12 1 0500 71 12 1 0450 71 12 1 0445	71 12 1 1620 71 12 1 1625 71 12 1 1630	71 12 2 1350 71 12 2 1355 71 12 2 1355 71 12 2 1400 71 12 2 1405
<u>S 41</u>	F 78		
71 12 10 0445 71 12 10 0450 71 12 10 0455	71 12 3 1100 71 12 3 1110 71 12 3 1120		

