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Abstract

This thesis studies so called Central Counterparties (CCP), financial institu-
tions which consist of clearing members, such as large banks. CCPs have the
role of centralizing, mutualizing and reducing counterparty risk, by acting
as an intermediate in financial transactions. CCPs have existed for a while,
however after the 2007-2009 financial crisis regulators have pushed for all
OTC-derivatives to be cleared by CCPs. In order to be risk mitigating, the
CCPs must have sufficient funds to be able to absorb losses from member
defaults. To increase the resilience of the CCP, the loss-absorbing safety
buffer exists in several layers, often denoted as the default waterfall. In this
thesis we numerically implement the CCP model by Ghamami (2015). We
use two different static credit models to quantify the various layers of the
default waterfall. Our model is found to adjust to different default probabil-
ities and default correlations by increasing the fund requirements in stressed
scenarios in both settings. Finally, we perform a sensitivity analysis in which
we change the number of clearing members, the time period considered and
the interest rate setting. In each stress test the model reacts to extreme
scenarios by increasing the layers accordingly.

Keywords: Risk Management, Central Counterparty Risk, Stochastic Mod-
els, Monte Carlo Simulation, Mixed Binomial Models, Interest Rate Swap
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1 Introduction

After the Credit Crisis of 2007-2009, it become clear that the transparency
and safety systems of the financial industry had to be revised. One area
that has attracted a lot of interest is the concept of Central Counterparties.
The role of a CCP is to mitigate counterparty credit risk, acting as a seller
to the buyer and a buyer to the seller in a bilateral financial contract. This
means that in case of a default of one of the parties, the CCP will guarantee
the payments that the counterparty has on the defaulter.

There is an ongoing debate whether CCPs will improve the stability in the
financial system as a whole. Pirrong (2014) is critical of the concept of
Central Counterparties, and claims that Central Counterparties does not
reduce the credit risk, but only redistributes it. The criticism is due to the
fact that firms are connected not only through derivatives, but through other
contracts as well. These connections will remain even after clearing man-
dates go into effect. Duffie & Zhu (2011) are more positive, and they show
that CCPs can in principle achieve significant reductions in counterparty
risk. However, there are a number of legal and financial engineering chal-
lenges. Duffie & Zhu (2011) also concludes that one clearing house should
clear all standard interest-rate swaps. Cont & Kokholm (2014) find that the
highest reduction in exposure is obtained if one CCP clears all asset classes.
However, the monopoly of a CCP can lead to a concentrated systemic risk
as well as a high level of operational risk. At the time of writing, all research
states that this is a topic of high interest and that serious examination of
the benefits and drawbacks of having multiple CCPs requires a solid model.
The 2009 G-20 OTC derivatives reform program did however include Cen-
tral Counterparties as a way to improve the financial risk management. (BIS
2010)

In order to make sure that a CCP can withstand defaults of its clearing mem-
bers, the CCP needs to have sufficient resources, a so-called default waterfall.
The default waterfall consists of several levels. The defaulters resources are
used first. These are the defaulter-pay variation margin, the initial margin
and the defaulters prefunded default fund contribution. Losses exceeding
this will be taken from the CCPs equity and the surviving members de-
fault fund contributions. If these layers do not cover the losses, additional
measures can be taken, so called unfunded default funds.

For CCPs, the question of how much that should be in each layer is of
highest importance. To specify the first layers of the waterfall, variation
margin and initial margin, the CCPs usually has relatively well-defined and
model-based methods. The following layers, however, are often specified
qualitatively and are not well defined. This is mainly due to the fact that the
international standard setting bodies responsible for regulation has broad
and non-mathematical models for CCP risk management. (Ghamami 2015)

1



1 INTRODUCTION 2

In order to quantify the risk management of all layers in the default wa-
terfall, Ghamami (2015) has proposed a framework which specifies all parts
of the default waterfall in a mathematically coherent way. He gives a risk
sensitive definition of the CCP risk capital, as well as a definition of the total
prefunded default funds. The paper Ghamami (2015) will be the foundation
of our thesis. However, we will make some additional contributions, which
are:

• We model the clearing members defaults via Merton and beta frame-
work.

• We obtain numerical results for the different waterfall layers.

• We obtain numerical values for the CCP default probability in different
settings.

The rest of this thesis is organized as follows. In Section 2, some central
concepts such as Credit Risk and Counterparty Risk are explained. Section
3 gives a detailed explanation of the concept of Central Counterparties,
studying the different layers of the default waterfall thoroughly as well as
explaining the advantages and disadvantages of CCPs. In Section 4 we give a
detailed description of the static credit models used in the numerical studies.
Here we present the mixed binomial model, both with a Merton and a beta
framework. This examination is essential in order to be able to apply the
CCP models numerically. In Section 5, we review Ghamami (2015) in detail.
Since our model is based on Ghamami paper, it is the main foundation on
which we will base our numerical results. In Section 6 we will describe our
implementation of the model, and finally present our numerical results in
Section 7.



2 Central concepts

In this section we will present some central concepts regarding the risk man-
agement of financial corporations. We explain terms such as credit risk,
counterparty risk and model risk. The risk definitions that we use in this
section is mainly taken from Gregory (2008).

2.1 Financial Risk Management

It is of importance for a corporation to manage risk carefully. A good un-
derstanding and management of risks can be seen as a strong comparative
advantage. Financial risk is often broken down into many different compo-
nents. In order to understand a specific type of risk, other risk types should
also be considered and understood. Some different types of risks are:

• Market risk arises from movements in market prices. It can come from
stock prices, interest rates, commodity prices etc. It has been studied
intensely traditionally, and has lead to the introduction such as the
Value-at-Risk etc.

• Liquidity risk usually comes in two forms. Asset liquidity risk is the
risk that an asset cannot be sold at market prices, due to it being an
illiquid asset. Funding liquidity risk refers to the risk that you are
unable to fund payments, forcing you to sell assets to get cash flow.

• Operational risk arises from people, systems and events. Examples
can be human errors, model risk and legal risks. It is a risk that is
relatively hard to quantify, however quantitative techniques are in-
creasingly being applied.

2.1.1 Credit Risk

Credit risk, sometime referred to as default risk, can be defined as the overall
risk of loss arising from the nonpayments from a debtor to a creditor. A
default only occurs if the obligor really cannot pay his obligations. In the
event of a default, a workout procedure is entered where the obligor loses
control of his assets and a third party tries to pay of the creditors. This
procedure follows bankruptcy law, and all obligors must be treated fairly; the
obligor cannot choose which claims he honors. Even though these guidelines
are followed, it is hard to predict how much losses you will incur in the event
of an obligors default. Thus, credit risk has some properties that make it
difficult to model quantitatively. (Schönbucher 2003)

Firstly, defaults are rare, and often occur unexpectedly. Arrival risk is the
term for the uncertainty whether a default will occur or not, the so-called
probability of default. It is usually specified within a certain time period.

3



2 CENTRAL CONCEPTS 4

Timing risk refers to the precise time of default. It is thus more specific than
arrival risk, since it considers not only if, but also when, a default occurs.
Secondly, defaults usually involve significant losses for the creditors, and
these losses are unknown before the default. Recovery risk is the uncertainty
about the severity of losses in the event of a default. Market convention is to
set the recovery rate to a fraction of the notional value. Also, the market risk
has some influence on the credit risk. For example, the default correlation
risk is the risk that several obligors default together. This can be due to a
market shock, for example. (Schönbucher 2003)

2.1.2 Systemic Risk

In financial terms, the systemic risk is the risk of a failure creating a domino
effect, eventually threatening the financial system as a whole. The losses
do not even have to actually occur - a higher perception of risk in general
might be enough to cause serious disruptions. The systemic risk could arise
from several different situations and is usually thought of having an initial
spark, and thereafter some sort of chain reaction. Therefore, ways to prevent
systemic risk are:

• Minimize the risk of the initial problem.

• Make sure that the chain reaction does not occur.

• Control the chain reaction and make sure that the damage is limited.

In order to decrease the systemic risk, all ways must be taken into account.
Our area of interest, Central Counterparties, is mainly a way of making
sure that the chain reaction does not occur. This is by trying to make sure
that a potential default of one company does not affect the balance sheet
of another company in a way that causes a consecutive default. (Gregory
2008)

2.1.3 Model Risk

When working with financial risk modeling, one has always to consider the
model risk. Models can often be very useful, doing quick calculations of
prices and risks, which is essential in the fast paced financial industry. In
good times, they usually work very well, and enable a dynamic approach
to risk management. In the bad times, however, the models are really put
to their test. The risks of things going really wrong might sometimes be
underestimated, leading to catastrophic results.
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2.1.4 Counterparty Risk

Counterparty risk is traditionally thought of as a subset of credit risk. It
is defined as the risk that the counterparty in a derivatives transaction will
default and therefore not make the payments required by the contract. It
mainly differs from credit risk in two aspects. (Gregory 2008)

• The value of a derivatives contract in the future is uncertain, and can
be both positive and negative.

• Because of the fact that the value of the contract can be both positive
and negative, the risk is typically bilateral.

Historically, counterparty risk has been neglected for several reasons, due to
the following flawed notions among institutions trading OTC derivations

• The counterparty will never default.

• The counterparty is too big to be allowed to default.

• If the counterparty were to default, the financial system will already
have broken down by then.

Since the financial crisis of 2007-2009, the emphasis of the area has increased,
since the concept of a ”too big to fail” concept has been shattered. This has
made the interest to mitigate counterparty risk more interesting. There are
several ways to mitigate counterparty risk. These include diversification,
offsetting positive and negative contracts against each other (netting), and
holding collateral against exposures. In the next section, we will introduce
the Central Counterparties (CCP) as a way to mitigate counterparty risk.



3 Central Counterparties

In the following section, we define the concept of large central counterpar-
ties as a way to centralize, mutualize and reduce counterparty risk. The aim
of a central counterparty (CCP) is to create an entity that stands between
buyers and sellers. Doing this, it bears no market risk, however it central-
izes the counterparty risk. We begin by explaining the Clearing concept in
Subsection 3.1. Subsection 3.2 presents a historical background of finan-
cial regulations as well as the impact of the 2007-2009 financial crisis. In
Subsection 3.3 we present some general settings for Central Counterparties.
Finally, Subsection 3.4 gives a detailed explanation of the different layers of
funds that a CCP carries - the so called default waterfall.

3.1 Clearing Concept

In this subsection we explain the concept of clearing. The main references
in this subsection is Gregory (2014) and Gregory (2008). The concept of
clearing is broadly defined as the period between execution and settlement
of a financial transaction. The execution is the part where the parties agree
to legal obligations of trading securities or exchanging cash flows, whereas
the settlement refers to the completion of those obligations, as shown in
Figure 3.1

Figure 3.1: Illustration of the clearing concept (Gregory 2014)

The key concept in central clearing is that of so called novation, which is
the positioning between buyers and sellers, visualized in Figure 3.2

Figure 3.2: Netting concept for a CCP (Gregory 2008)

6



3 CENTRAL COUNTERPARTIES 7

Novation means that the CCP steps in and acts as an insurer of counterparty
risk in both directions, bearing all the counterparty risk. Because of its
position between buyers and sellers, the CCP has a ”matched book”, i.e. no
net market risk. In the event of a clearing member default, the CCP has
various methods to return to a matched book, for example by auctioning
out the defaulting members positions.

Today, a large proportion of the OTC derivatives market is already cleared,
and this proportion will increase in the coming years. In order for a transac-
tion to be centrally cleared, some conditions are generally important. Firstly,
the product has to be relatively standardized in legal and economic terms,
due to the fact that clearing involves contractual responsibility for cash
flows. Also, the complexity of the instrument cannot be too high, since the
valuation has to be simple in order to be able to calculate margins. Finally,
the product should be liquid in order to reduce the liquidity risk. (Gregory
2014)

3.2 Historical Background

In this subsection we overview the regulatory history, focusing on the Basel
accords. We subsequently explain the financial crisis of 2007-2009, and
continue with describing the regulatory changes made after said crisis.

3.2.1 The Basel Accords

The purpose of bank regulations is to ensure that the banks have enough
capital for the risks that it is taking. Prior to 1988, the regulations mainly
focused on the ratio of capital to total assets. The regulations varied be-
tween different countries, making competition distorted. This, and the fact
that the financial derivatives were becoming more complicated, lead to the
forming of the ”1988 BIS Accord”, commonly referred to as Basel I. Basel
I was the first attempt to an international risk-based standard for capital
requirements. Even though it can be criticized of being too simplistic, it
was a huge step at the time. The main focus was for the banks to have
a certain percentage of capital, compared to its risk-weighted assets. For
example, cash had a risk weight of zero, claims on OECD banks a weight
of 20%, whereas uninsured mortgage loans had a risk weight of 50%. The
Basel I accord, however made no difference between claims on banks with
AAA rating compared to claims on banks with B rating. This, and other
weaknesses, led to a new proposition of rules from the Basel Committee,
commonly referred to as Basel II. The Basel II accord was first proposed
in 1999; however the final rules were not starting to be implemented until
2007. Basel II is based on a three-pillar approach: (Hull 2012)

1. Minimum Capital Requirements: The minimum capital requirements
are calculated in a new way which takes credit ratings into account.



3 CENTRAL COUNTERPARTIES 8

2. Supervisory Review: Special supervisors should review and evaluate
banks capital adequacy, to make sure they comply with the regulatory
standards. If the supervisors are not satisfied, they sure take measures
at an early stage.

3. Market Discipline: This requires banks to increase disclosure about
how they allocate capital and what risks they take.

As the Basel II was starting to be implemented, the credit crisis of 2007-2009
commenced, which in turn lead to new regulations.

3.2.2 Securitization and the Credit Crisis of 2007-2009

In 2007-2009, the United States experienced the worst financial crisis since
the 1930s, and it spreads rapidly to other countries, and from the financial
economy to the real economy. The crisis led to a major overhaul of the
regulations of financial institutions.

The financial crisis originated in the US housing market. In the early 2000s,
mortgage lenders started to relax their lending standards, leading to many
loans with low quality, so called subprime loans. The relaxed lending stan-
dards increased the demand of real estate, with an increase in prices as
shown in Figure 3.3.

Figure 3.3: Real estate price index from 1987 to 2011 (Hull 2012)

The rise in prices meant that the collateral always covered the lending.
Thus, a default did result in very small losses. The rising house prices lead
to difficulties for new entrants to the housing market, so in order to continue
the lending standards were lowered even further. This behavior of course
could have been regulated, however the US government had since the 1990s
tried to expand home ownership. For example, in 2002 George W. Bush
stated the following in a speech.
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It’s a clear goal, that by the end of this decade, we’ll increase
the number of minority homeowners by at least 5 1/2 million
families. [...] One of the programs is designed to help deserv-
ing families who have bad credit histories to qualify for home-
ownership loans. [...] If you put your mind to it, the first-time
homebuyer, the low-income homebuyer can have just as nice a
house as anybody else. (Bush 2002)

Furthermore, the mortgage originators seldom kept the mortgages them-
selves. Portfolios of mortgages were sold to companies, which created prod-
ucts of them that investors could buy. Since the mortgages could be sold to
a third party, this led to further relaxations of lending standards. The credit
quality of the lender did not matter - what mattered was if the mortgage
could be sold to someone else. When these mortgages were securitized, they
were often given much higher ratings than they deserved, and were thus con-
sidered more safe than they were. The relaxed credit quality requirements
lead to a housing price bubble, which eventually burst. When mortgage
holders were not able to pay their debts, foreclosures occurred and a large
number of houses came to the market. (Hull 2012)

As foreclosures increased, so did the losses on mortgages. The losses eventu-
ally exploded, and average losses as high as 75% was reported for mortgages
on houses foreclosures in some areas. Financial Institutions such as Merrill
Lynch, Citigroup and UBS had large positions in some sub-prime loans and
incurred huge losses, as did the insurance company AIG. During the financial
crisis, AIG was heavily involved in issuing CDS contracts. AIG had not set
aside enough capital for their CDS-exposures, and still sold CDS protection
without enough collateral requirements. Still, AIG had excellent credit qual-
ity, and was able to write out CDS protection on five hundred billion $USD
of notional debt. In 2008, AIG suffered a $99.3 billion loss, and failed due
to liquidity problems. The US Department of Treasury and the Federal Re-
serve Bank of New York had to arrange loans as support. Because of AIG’s
excessive risk taking, they required $100 billion of tax money. AIG was one
of many institutions that were rescued by government bailouts. However,
many financial institutions did fail, such as Lehman Brothers, Washington
Mutual etc. (Hull 2011)

3.2.3 Regulations after the Financial Crisis

Basel III

After the crisis of 2007-2009, it was clear that a revision of the Basel II
was necessary. The Basel III proposals were first published in 2009, and
a final version was released in 2010. It dramatically increased the amount
of equity capital banks were required to keep. Also, it imposed new liq-
uidity requirements since a lot of the problems in the crisis were related to
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liquidity. (Hull 2012) Apart from this, a main area of interest in the new
Basel accords is counterparty credit risk. According to the Bank for Inter-
national Settlements (BIS), roughly two thirds of the losses attributed to
counterparty credit risk were due to CVA losses, and only about one third
due to actual losses. (BIS 2011) Credit Value Adjustment (CVA) is a way
to include counterparty credit risk into derivative prices. It should cover the
potential losses due to a default of the counterparty in a derivative transac-
tion. The CVA-amount is the basis for putting aside collateral to be used
in financially distressed periods. (Brigo et al. 2013) (BIS 2011)

In 2014, the Basel Committee presented the final version of a revised frame-
work for capital treatments of banks exposed to central counterparties. The
final standard will apply as of 1 January 2017. In these rules, the concept of
a Qualified CCP (QQCP) is defined. A QCCP must comply with the cur-
rent regulations, and is obligated to inform their members with information
required to calculate their capital requirements. If a financial institution
is exposed to a QCCP, it will receive preferential capital treatment as op-
posed to otherwise, meaning the bank will be able to hold a smaller capital
buffer. For a QCCP, capital requirements for trade-related exposures have
a relatively low risk weight of between 0 and 2%. A risk weight of e.g. 2%
means that e.g. a bank needs to hold safety capital equal to 2% of the total
value. In comparison, a clearing member trading with a non-qualifying CCP
is required to capitalize in accordance to a bilateral framework. This will
give risk weight of at least 20%. This large discrepancy can of course be
dramatic, if a CCP were to lose its qualifying status. (BIS 2014)

Dodd-Frank

In the US, president Obama signed the Dodd-Frank act in July 2010. Its
goal is to protect the consumer, and prevent future bailouts of financial
institutions. An important goal is to increase the transparency and avoid a
new AIG scenario, where large positions in credit derivatives are unknown
to regulators. Some regulations are:

• New entities were created in order to monitor systemic risk and re-
search the state of the economy.

• Issuers of securitized products were required to keep at least 5% of
each product created.

• Mortgage lenders have to base loans on verified information that the
borrower has the ability to repay the loan.

• Standardized OTC derivatives were required to be cleared by Central
Counterparties.
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The Securities and Exchange Commission (SEC) or the Commodity Futures
Trading Commission (CFTC) regulates the CCPs used for clearing in the
United States. In addition to this, the trade must be done electronically
and reported to a trade repository. (Hull 2012)

3.3 CCP Setup

The CCP idea can be traced back all the way to the 19th century, where
exchanges where used for futures trading. In the late 19th century, there
existed clearing rings, which organized loss mutualisation in clearings via
financial contributions to absorb member default losses. Despite the growth
of the financial markets in recent decades, counterparty risk has remained
primarily a bilateral matter. As of late, however, the counterparty risk
has received more attention, due to its role in the 2007-2009 financial crisis.
(Gregory 2008) Today, the global association of CCPs consists of 31 different
CCP organizations across the world. According to Gregory (2014), some big
players today when it comes to clearing OTC derivatives are:

• LCH.Clearnet: A major independent CCP, which through SwapClear
is dominant in the interest rate swap market. In May 2016 it had
around 100 members.

• ICE: Offers clearing for energy products, and some CDS products. In
May 2016, it had around 30 members.

• CME: Acts as CCP for energy derivatives, and also has an interest
rate swap clearing service.

• Eurex: Clears mainly in the equity area, but also manages interest
rate swaps.

CCP ownership and operation can have either a horizontal or vertical setup.
A vertical CCP can be specialized for a particular type of financial product,
and these entities are usually more efficient and cheaper. Examples of verti-
cal CCPs are Eurex and CME. A horizontal CCP are typically jointly owned
by the clearing members. This encourages market competition, however it
can be considered less efficient and more expensive. Two examples of hori-
zontal CCPs are LCH.Clearnet and OCC.(Gregory 2014). In this paper, we
only consider horizontal CCPs, which are owned by the clearing members
themselves.

3.3.1 CCP Risk Management

The CCP stands between buyers and sellers and guarantees the performance
of trades. Thus, all counterparty risk is centralized within the CCP. This
means that the original counterparties has no need to monitor one another
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in terms of credit quality. Consequently, this puts the emphasis on the
operation of the CCP itself. In order to mitigate counterparty risk, the
CCP performs a number of related functions. For example, by centraliza-
tion of trades, netting benefits can reduce the exposures for the members.
The CCP is also responsible for membership review and background checks.
The CCP has strict requirements for admission, to make sure that members
have a low probability of insolvency and that it can participate in the clear-
ing. For example, the members should have a sufficient capital base, and a
solid credit rating (e.g. BBB or higher). A solid background check of the
members ensures that the CCP has a low probability of facing a defaulting
member.(Gregory 2014)

In the event of a member default, the CCP will manage this. The CCP has
also the right to declare a member defaulted. Default can occur if a member
is insolvent and fails to make margin payments. However, the CCP can also
declare a default if a member appears to be unlikely to meet its obligations
in respect of its contracts. Once default is declared, the CCP will manage
the markets risks associated with the defaulted member. In this part, the
loss allocation will take place, which we will now explain further. (Gregory
2014)

3.4 The Default Waterfall and Loss Allocation

Central Counterparties usually rely on a waterfall of financial resources to
absorb losses from defaults among clearing members. In this section, we
present a typical structure of a CCP waterfall, defining the different layers
thoroughly, with the definitions mainly found in Gregory (2014). A solid
understanding of the different layers in the default waterfall is essential in
order to implement the model presented by Ghamami (2015). Figure 3.4
illustrates the waterfall concept.

Figure 3.4: Illustration of a typical default waterfall for CCP



3 CENTRAL COUNTERPARTIES 13

3.4.1 Variation Margin and Initial Margin

Variation Margin

Variation margin is an adjustment for the change in mark-to-market value of
the relevant positions. Valuation of the variation margin is rather straight-
forward, since a prerequisite for clearing is that the underlying trades are
standardized and liquid. Since the CCP is counterparty for all trades, CCP
calculates the value of all positions, and subsequently collects or pays the
respective margin amount.

Initial Margin

The Initial Margin is a key concept for clearing. It is an additional margin
that should cover the largest projected loss on a given transaction. It is
usually determined quantitatively, and can be quite complex. Excessive
margins raise costs of trading, however under-margining will impose too
much riskiness.

A common approach for initial margin calculations is Value-at-Risk type of
approaches. Value-at-Risk (VaR) is a convenient way of summarizing the
risk of a loss distribution, where the definition is that we are α % confident
that we will not lose more than VaR currency units during a certain time
period, where α is often defined to either 95% or 99%. After having defined
VaR, one can also calculate the Expected Shortfall, which is the expected
loss given that the loss exceeds the Value-at-Risk. However, Initial Mar-
gins are typically generated with the intention of covering ’normal market
conditions’. In Table 3.1 , we show some examples of how real world CCPs
calculate their initial margins. (Gregory 2014)

LCH.Clearnet CME Eurex

History 10 years 5 years
3 year + 1 year

stress period

Measure
Expected shortfall

(average of 6 worst)

99.7% VaR

(4th highest loss)

At least 99% (average

of five VaR measures)

Volatility Scaling
Filtered historical

simulation

EMWA with volatility

scaling and volatility floor

Filtered historical

simulation

Liquidity Period 5 days 5 days 5 days

Table 3.1: Various Methods for Initial Margin Calculation
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3.4.2 Default Fund

The role of the default fund is to absorb losses beyond the margins posted.
This distribution of losses can be very heavy tailed, as shown in Figure 3.5

Figure 3.5: Relation between initial margin and default fund (Gregory 2014)

The default fund is a key component in clearing since it is mutualised, mean-
ing that losses are shared among the CCP members. This loss mutualisation
means that the total default fund provides a much higher coverage of losses
than the initial margin, even though the size of the initial margin is usually
higher. However, increased default funds can induce moral hazard, since
you pay for less of your own losses. The size of the default fund thus has
to be considered carefully. Since its purpose is to cover risks from very ex-
treme scenarios, the calculations can be quite complex. The probability of
a CCP exceeding their default contributions is nontrivial to quantify, since
it is linked to scenarios that involves several member defaults as well as ex-
treme market movements. CCPs typically calibrate their total default funds
through stress tests. For example, SwapClear wants their default fund to
cover losses from their two largest clearing members, using extreme stress
testing scenarios. (Gregory 2014)

3.4.3 CCP Equity

If the initial margin and default fund has been exhausted, further losses can
be taken from the CCP itself. These so called equity contributions can be
taken from the CCPs current profits etc. This is to make sure that the CCP
also has so called ’skin-in-the-game’, and therefore has incentives to make
sure that the initial margins and default funds are sufficient. How much
equity that the CCP should add is a hot area of discussion. The banks,
of course, have an interest in the CCP to add more capital to the default
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waterfall. Both JP Morgan and Citi have made recent expressions saying
that CCPs should increase their contributions. JP Morgan, for example,
suggested that this at least should be the maximum amount of 10% of the
default fund or the contribution from the largest single clearing member.
(JP Morgan 2014). If we however look at the current industry average, the
current OTC ’skin-in-the-game’ average is 2.6% of the combined default
funds. (Risk.net 2016).

3.4.4 Remaining Loss Allocation Methods

When the losses go beyond the default waterfall layers previously mentioned,
further loss allocation methods are needed. In theory, the CCP could de-
mand that the members should make unlimited contributions to the default
fund. However, the possibility of an unlimited call on more contributions
can lead to more defaulting members, and is sometimes not even possible
due to regulations. Therefore, there are other methods that are usually pre-
ferred. Examples of such a methods are Variation Margin Gains Haircutting
(VMGH) or tear-ups, partial or complete. We will not discuss these con-
cepts here since they will not be considered in our implementation, neither
are they treated in Ghamami (2015). More information about loss allocation
methods, and more on the area, can be found in Gregory (2014).

3.5 Advantages and Disadvantages of CCPs

The goal of the clearing-house is to drastically reduce the counterparty risk.
The main pros are in particular: (Herbertsson 2015)

• CCP manages all margin calls and this reduces sudden dry up of liq-
uidity. The CCP can provide temporal liquid collateral for companies
in liquidity distress.

• The CCP will guarantee the protection in a derivatives contract in the
scenario in which the protection seller defaults.

• CCP will have all the information about all financial transactions made
on its platform. Thus, it can identify dangerous asymmetric positions
among members and in that case report such patterns to the regula-
tors. Moreover, thanks to the overall information available, CCP will
be able to create a more efficient netting of collateral.

• The CCP disclosing public information about the transaction can in-
crease the transparency and facilitate the use of reliable information.

On the other hand, some problems can arise after the introduction of CCP.
To be more specific, these include: (Herbertsson 2015)
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• CCP may act as intermediaries and reduce counterparty risk. In the
same time, this can create moral hazard issues.

• The introduction of CCPs may give rise to greater systemic risk linked
to their own failure. A scenario where the CCP defaults could have
disastrous consequences.

• Mitigation of counterparty risk may create other financial risk such as
operational and liquidity risk.

• In order to assess the risk toward a CCP, clearing members need in-
formation about the portfolio composition of each member, and this
information is generally confidential. The clearing members have in-
formation only on the details of their own portfolio, total margin levels
held by CCP and identities of the other clearing members.

3.6 Importance of CCP Framework

CCPs collectively take a well-defined model-based approach of margin re-
quirements. However, the CCP risk capital depends on all layers of the
default waterfall, and prefunded and unfunded default funds are often spec-
ified more qualitatively or on ad hoc basis. The main reason for the lack of
quantitative models is that the international standard setting bodies (SSB)
responsible for CCP regulation has set broad, risk insensitive and non-model
based principles for CCP risk management, where it is not taken in consider-
ation the portfolios heterogeneity and the correlation effect among clearing
members. Since the CCP risk capital is dependent on all layers in a com-
plicated way, an unified framework is essential in order to have a confident
risk management. (Ghamami 2015)



4 Static Credit Risk Portfolio Models

In this section we outline the theory for static credit portfolio risk, tradi-
tionally used for credit risk management. Later the theory presented in this
section will be used to compute the different risk measures for CCP outlined
in Section 3. First, in Subsection 4.1, we describe the mixed binomial model,
and its usage in credit risk management. Subsequently in Subsection 4.2,
two examples of the mixed binomial model are presented, namely the mixed
binomial model in the Merton framework and the mixed binomial model
with a beta distribution. Finally, in Subsection 4.3, a model comparison of
the beta and the Merton model is made.

When applying quantitative credit risk models, there are two main settings.
The first area regards the analysis of credit-risky securities and implemented
models for the valuation of portfolio credit derivatives. When pricing credit
risk securities, dynamic models are required and thus the timing of defaults
plays a central role. The second area is represented by the credit risk man-
agement, which uses applied measures such as Value-at-Risk and Expected
Shortfall. These models are typically static and only consider the arrival
risk, which is the risk connected to whether or not an obligor will default in
a given time period. In our thesis we will, just as Ghamami (2015), consider
static credit risk models, meaning that we are only interested in the arrival
risk, and not concern the timing risk of defaults. In this section, we closely
follow the notation and setup presented in Chapter 5 in Herbertsson (2015).
For more on static credit risk models, see e.g Lando (2004) or McNeil et al.
(2005).

4.1 The Mixed Binomial Model

In the binomial loss model for m obligors it is assumed that Xi = 1, if obligor
i defaults up to a fixed time point T , and Xi = 0, otherwise. Further, as-
sume that X1, . . . , Xm are i.i.d where P[Xi = 1] = p and P[Xi = 0] = 1− p.
As we will see later, the binomial loss model will lead to unrealistic re-
sults. Therefore, we will in this section discuss the so-called mixed binomial
models, which introduce the dependence among the default of the obligors,
getting closer to real scenarios. In order to introduce dependence among
X1, . . . , Xm, the binomial model is substituted with a Bernoulli mixture
model which can be seen as a conditional binomial model. The depen-
dence is reached by randomizing the individual default probability p(Z) in
the standard binomial model, where Z represents some common underlying
stochastic factors that affect all obligors in the portfolio. A mixed binomial
loss model works as follows.

Let X1, X2, . . . , Xm be identically distributed random variables that takes
on the value of 1 if the respective obligor defaults up to time T , and a value

17
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of 0 otherwise. Moreover, conditional on Z the Xi’s are independent and
each Xi has default probability p(Z) = P[Xi = 1|Z]. Letting the individual
default probability of Xi be denoted by p̄, i.e p̄ = P[Xi = 1], we have

P[Xi = 1] = E[Xi] = E[E[Xi|Z]] = E[p(Z)] = p̄. (4.1)

This means that the expected value of the conditional default probability is
equal to the individual default probability. Furthermore, the variance of Xi

and the covariance among the obligors default will be:

Var(Xi) = p̄(1− p̄) (4.2)

and
Cov(Xi, Xj) = E[p(Z)2]− p̄2 = Var(p(Z)). (4.3)

Assuming homogeneous credit portfolio model with m obligors and letting
the loss rate ` be constant for each obligor, the total credit loss in the
portfolio at the arrival time T will be

Lm =

m∑
i=1

`Xi = `

m∑
i=1

Xi = `Nm (4.4)

where Nm =
∑m

i=1Xi represents the number of defaults in the portfolio
up to time T . Since the default indicators X1,X2,. . . ,Xm are independent
conditional on Z, we have a conditional binomial model where

P[Nm = k|Z] =

(
m

k

)
p(Z)k(1− p(Z))m−k. (4.5)

From Equation (4.1), we have P[Nm = k] = E[P[Nm = k|Z]], so if Z is
continuous with density fZ(z) we get

P[Nm = k] =

∫ ∞
−∞

(
m

k

)
p(z)k(1− p(z))m−kfZ(z)dz. (4.6)

Furthermore, due to the dependence, the variance of Nm is given by

Var(Nm) =

m∑
i=1

Var(Xi) +

m∑
i=1

m∑
j=1,j 6=i

Cov(Xi, Xj). (4.7)

By homogeneity assumption and using Equation (4.3) we can rewrite (4.7)
as

Var(Nm) = mp̄(1− p̄) +m(m− 1)(E[p(Z)2]− p̄2). (4.8)

As shown in Herbertsson (2015), when m→∞ Var(Nmm )→ E[p(Z)2]− p̄2,
see also in e.g Lando (2004). In particular, when p(Z) is constant, we are
back in the standard binomial model, where Var(Nmm )→ p2−p2 = 0 and the
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law of large numbers can be applied. Thus, in the binomial loss model with
constant default probability, that is p(Z) = p̄ for some constant p̄ ∈ [0, 1],
the average number of defaults converge to the constant p. In the mixed
binomial model, however, the law of large numbers do not hold, except in
the case where p(Z) is constant. Finally, as shown in Herbertsson (2015)
and McNeil et al. (2005), the correlation ρx in a mixed binomial model is
given by

ρx =
E[p(Z)2]− p̄2

p̄(1− p̄)
. (4.9)

4.1.1 Asymptotic Behavior in Large Portfolios

Since the variance of Nm
m does not converge to zero in the mixed binomial

model, the default fraction do not converge to p as m→∞. As mentioned
previously, Bernoulli mixture models are an extension of the standard bino-
mial model. Even though the default indicators are not independent, they
will become independent if we condition on the common factor Z. Conse-
quently, the law of large numbers can be applied, and thus it can be shown
that given a fixed outcome of Z we have

lim
m→∞

Nm

m
= p(Z) (4.10)

and this event occurs with probability one conditional on Z. Since conver-
gence almost surely implies convergence in distribution we have

P
[
Nm

m
< x

]
→ P[p(Z) ≤ x] as m→∞. (4.11)

The result in Equation (4.11) is often referred to as the large portfolio ap-
proximation (LPA) in a mixed binomial model. Hence, the large portfolio
approximation guarantees that in large portfolios the fraction of defaults Nm

m
converges to the distribution of p(Z). Thus, in large portfolios, if p(Z) has
fat tails, Nm

m will have fat tails as well. (McNeil et al. 2005) (Lando 2004)
(Herbertsson 2015)

4.2 Examples of the Mixed Binomial Model

In order to get numerical results in our model implementation we will use
two examples of the mixed binomial model: the mixed binomial model in-
spired by the Merton framework, and the mixed binomial model with a beta
distribution. In this section we will discuss the theory behind both these
models. Later we will present the results we get when we implement them in
a static central counterparty risk framework. This subsection closely follows
the notation and outline presented in Herbertsson (2015) and Lando (2004).
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4.2.1 The Mixed Binomial Model in the Merton Framework

The Merton model assumes that the asset value of each obligors i follows a
geometric Brownian motion

dVt,i = µidt+ σiVi,tdBt,i (4.12)

where the stochastic process Bt,i is defined as follows

Bt,i =
√
ρWt,0 +

√
1− ρWt,i (4.13)

and Wt,0,Wt,1,......Wt,m are independent standard Brownian motions. More-
over, by applying Ito’s lemma we have

Vt,i = V0,ie
(µi− 1

2
σ2
i )t+σiBt,i . (4.14)

Merton proposes a way of analyzing risk using the company’s balance sheet
as starting point. Following this idea, the default will occur when the value
of the assets are lower than the value of the liabilities. Letting Di be the
debt level of obligor i, than the defaults will occur if

Vo,ie
(µi− 1

2
σ2
i )T+σiBT,i < Di. (4.15)

Since the logarithm is a strictly increasing function we can rewrite the dis-
equality as

ln(V0,i)− ln(Di) + (µi −
1

2
σ2i )T + σi(

√
ρWT,0 +

√
1− ρWT,i) < 0. (4.16)

Recall that WT,i ∼ N(0, T ). If Yi ∼ N(0, 1), then WT,i has the same dis-
tribution of

√
TYi for each i = 0, 1, ..m, when Y0, ...Ym are independent.

Moreover, defining Z as Z = Y0 and dividing with σ
√
T we have

lnV0,i − lnDi + (µi − 1
2σ

2
i )T

σi
√
T

+
√
ρZ +

√
1− ρYi < 0. (4.17)

Rearranging Equality (4.17) we get

Yi <
−(Ci +

√
ρZ)

√
1− ρ

(4.18)

where Ci is a constant equal to

ln(
V0,i
Di

) + (µi − 1
2σ

2
i )T

σi
√
T

. (4.19)
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Since VT,i < Di implies default of obligor i, and it is equivalent to

Yi <
−(Ci+

√
ρZ)√

1−ρ we have that

P[Xi = 1|Z] = p(Z)

= P[VT,i < Di|Z]

= P
[
Yi <

−(Ci +
√
ρZ)

√
1− ρ

∣∣∣∣Z]
= N

(
−(Ci +

√
ρZ)

√
1− ρ

)
where the last equation is given from the fact that Yi is normally distributed
with mean zero, variance one and independent of Z, and N(x) is the distri-
bution function of a standard normal random variable.

As shown in the Herbertsson (2015), C = −N−1(p̄), so we have:

P[Xi = 1|Z] = p(Z) = N

(
N−1(p̄)−√ρZ
√

1− ρ

)
. (4.20)

From Equation (4.6) we can derive the probability of having k defaults:

P[Nm = k] =

∫ ∞
−∞

(
m

k

)
N

(
N−1(p̄)−√ρZ
√

1− ρ

)k
·
(

1−N
(
N−1(p̄)−√ρZ
√

1− ρ

))m−k 1

2π
e−

y2

2 du.

(4.21)

Furthermore, P[Nm ≤ n] =
∑m

i=0 P[Nm = k] for n = 1, 2, ...,m. This for-
mula can be problematic to implement in a numerical software environment
due to numerical approximation errors, for example in Equation (4.21) when
computing

(
m
k

)
. Recalling Equation (4.11), when m is large enough we can

approximate P[Nm ≤ x] with its LPA-formula. Thus, for any x we have:

P[Nm ≤ x] = P
[
Nm

m
≤ x

m

]
≈ F

(
x

m

)
. (4.22)

Hence, in the mixed binomial model Merton framework we have

F (x) = P[p(Z) ≤ x] = P
[
N

(
N−1(p̄)−√ρZ
√

1− ρ

)
≤ x

]
(4.23)

and this means that our final equation, as shown in Herbertsson (2015) is:

F (x) = N

(
1
√
ρ

(√
1− ρN−1(x)−N−1(p̄)

))
. (4.24)
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4.2.2 The Beta Distributed Mixed Binomial Model

Another example of the mixed binomial model is when p(Z) = Z where Z is
beta distributed with parameters a and b, where the density fZ(z) is given
by

fZ(z) =
1

β(a, b)
za−1(1− z)b−1 (4.25)

for a, b > 0 and 0 < z < 1 where

β(a, b) =

∫ 1

0
za−1(1−z)

b−1
dz =

Γ(a)Γ(b)

Γ(a+ b)
. (4.26)

Here Γ(x) is the so called gamma function, see further in e.g. Lando (2004).
It can be shown that using beta distribution we have the following properties:

E[Z] = E[p(Z)] = p̄ =
a

a+ b
(4.27)

E[Z2] =
a(a+ 1)

(a+ b)(a+ b+ 1)
(4.28)

Var(Z) =
ab

(a+ b)2(a+ b+ 1)
. (4.29)

Furthermore, by using Equations (4.27)-(4.29) in Equation (4.9) one can
show that the default correlation ρx in a beta distributed mixed binomial
model is:

ρx =
1

a+ b+ 1
. (4.30)

The probability of having k defaults is given by:

P[Nm = k] =

(
m

k

)
β(a+ k, b+m− k)

β(a, b)
(4.31)

see e.g in Lando (2004). Finally, since p(Z) = Z, using the LPA, Nm
m

converges to the beta distribution, meaning that

P
[
Nm

m
≤ x

]
→ 1

β(a, b)

∫ x

0
za−1(1− z)b−1dz (4.32)

where the right hand side in (4.32) is found in any mathematical or statistical
software package, see e.g the function ”betacdf” in MATLAB or Excel.

For the beta mixed binomial model and the mixed binomial model inspired
by Merton framework, the behavior of P[Nmm ≤ x] for some p̄ and ρ is
similar in both models up to the 99%-quantile, see e.g McNeil et al. (2005).
Increasing ρx, ceteris paribus, we expect that the probability mass of the
distribution will tend to concentrate more on the extreme events, namely
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fatter tails in the density function. In Figure 4.1 we plot different portfolio
credit loss distribution and density functions in the beta mixed binomial
model, according to different values of default correlation ρx. From Figure
4.1 we can conclude that higher default correlation implies higher probability
of having extreme scenarios in terms of losses. By using a lower ρx, the loss
distribution is centered more around its expected value. In particular, when
default correlation is 0.8 choices in terms of confidence level α have higher
impact in the overall portfolio credit risk when computing for example Value-
at-Risk at α-level. Since more probability mass is concentrated in the tail, a
value at risk computed with α = 0.95 will not be sufficient and will be way
smaller than a value at risk using higher confidence levels.

Figure 4.1: Beta density and cumulative distribution function for different
values of ρx, when p̄ = 0.1.

4.3 Comparison Between the Merton and Beta Model

In finance, model risk is the risk of loss resulting from using models that
fail to take certain scenarios into account. In order to be able to draw
valid conclusions, we must assure that the models are comparable. In our
setting we will implement Merton and beta models using the same default
probability p̄ and default correlation ρx in both models. Knowing p̄ and ρ,
we are able to derive the default correlation ρx from the Merton model, that
is

ρMerton
x =

E[p(Z)2]− p̄2

p̄(1− p̄)
(4.33)

where the second moment of p(Z) will be

E[p(Z)2] = E
[(
N

(
N−1(p̄)−√ρZ
√

1− ρ

))2]
. (4.34)
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Once we have the default correlation, we set ρMerton
x = ρBetax and then also

use Equation (4.27) and (4.30) in order to derive the parameters a, b in the
Beta model, which are found to be the following:

a =
(1− ρx)p̄

ρx
(4.35)

b =
(1− ρx)(1− p̄)

ρx
(4.36)

With these derived a and b values we are able to analyze tail events in both
models and compare the relative differences in the two scenarios, where we
know that p̄ and ρx are the same in both models. Hence the comparison is
”fair” in the sense that the key quantities such as default correlation and
default probability are identical in both models.



5 Ghamami Model for CCP Risk

The research on the optimal CCP design and the impact derivative CCPs
have on the system risk is not conclusive, and there is still an ongoing debate
on whether CCPs would make the financial system as a whole more stable.
Different views are presented by e.g. Cont & Kokholm (2014), Duffie & Zhu
(2011), Pirrong (2014), and the references therein.

The international standard setting bodies responsible for regulation of CCPs
has broad and non-model based principles for risk management, particu-
larly for the waterfall resources beyond the initial margin. In the absence
of a standardized framework for the default waterfall resources, the differ-
ent risk management framework among CCPs’ can create inconsistencies
among CCPs and their clearing members. For this reason, Ghamami (2015)
proposes a framework for CCP risk management in a static credit risk set-
ting. He specifies the default waterfall in a mathematically coherent way.
In particular, the contribution of Ghamami (2015) is two-fold:

• A risk sensitive definition of the CCP risk capital

• A risk sensitive definition of total prefunded default funds and a tech-
nique to specify each clearing members default fund contribution

Ghamami (2015) does not, however, present any numerical results of his
model. The main contribution of this thesis is to numerically implement the
CCP model outlined by Ghamami (2015), and in order to be able to do so,
we will in the coming section present the proposed model thoroughly.

5.1 One-Period Model

In Section 4, we used the notation Xi for the default indicators of obligor i
where i = 1, 2 . . . ,m. In this section, we will follow the notation and setup of
Ghamami (2015) and therefore denote the default indicators with Yi for each
clearing member. Hence, consider n different clearing members indexed by
i = 1, 2, . . . , n. Furthermore, let Y1, . . . , Yn be the default indicator functions
for these clearing members for a fixed time period of T years, so that Yi = 1
if clearing member defaults up to time T , and 0 otherwise. Also, let p̄i
be the T -year default probability for clearing member i, i.e p̄i = P[Yi =
1], or p̄ = E[Yi]. In this thesis we will assume a homogeneous group of
clearing members so that p̄1 = p̄2 = . . . = p̄n = p̄. However, many of the
calculations can be done for both homogeneous and inhomogeneous groups of
clearing members. Furthermore, we want to emphasize that the CCP model
outlined in Ghamami (2015) is independent of how the default indicators
are explicitly modeled as long as the exposures are a function of the Yi’s.

We will model Y1, . . . , Yn by using two different mixed binomial models as
described in Section 4, namely the mixed Merton binomial model and the

25
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mixed beta binomial model, in contrast to Ghamami (2015), who uses the
concept of copulas.

5.1.1 First Level Loss

Let Ci denote the CCP’s collateralized credit exposure to clearing member
i, below denoted by CMi, at its default in the presence of the CMi’s vari-
ation margins and initial margins (VM and IM). A dynamic counterparty
risk measure, e.g. Expected Exposure (EE) or Expected Positive Exposure
(EPE), can be used to define the Ci. The CCP’s collateralized exposure in
the presence of variation and initial margin is defined as follows:

Ci ≡ (1− δi)
∫ T

0
E[ei(t)]dt (5.1)

where δi is the CMi’s recovery rate, and ei(t) denotes the collateralized
exposure to CMi at time t, defined as follows:

ei(t) ≡ max

{(
V +
i (t+ ∆)− VMi(t)− IMi(t)

)
, 0

}
(5.2)

where Vi(t) denotes the value of the derivatives portfolio that the CCP holds
with CMi at time t, and V +

i (t) = max{Vi(t), 0}. Thus, VMi(t) ≡ V +
i (t−∆̂),

whereas IMi(t) is the VaR or ES associated with V +
i (t + ∆) − V +

i (t − ∆̂).
While Arnsdorf (2012) considers negative value for the losses as well, i.e
gains, Ghamami (2015) only uses positive losses for the CCP in the case of
clearing member default, and also does not take netting into account. In
addition to this, Ghamami (2015) uses max in ei(t) and takes an average

over time with the integral
∫ T
0 E[ei(t)]dt, which further suggests that a more

conservative approach is used.

The frequency of variation margin calls is denoted by ∆̂, and is usually set to
one day. Furthermore, the time interval ∆̂+∆ is pre-specified (common is 5
days) and referred to as the margin period of risk (MPOR). It represents the
time within the CCP is required to replace a defaulting member’s portfolio.
Finally, the CCP’s total credit loss L in first level scenario is specified as

L =

n∑
i=1

CiYi (5.3)

where Y1, . . . , Yn are defined as in Subsection 5.1.

5.1.2 Second Level Loss

When computing the pre-funded defaulted funds DF , one can either use
VaR or ES as measure, see e.g page 9 in Ghamami (2015). The pre-funded
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defaulted fund of clearing member i in terms of VaR or ES is defined in the
following way:

DFi = CiE[Yi|L = V aRα] (5.4)

or
DFi = CiE[Yi|L ≥ V aRα] (5.5)

Moreover, the DF based on VaR and ES respectively is defined as:

DF = V aRα(L) (5.6)

or
DF = ESα(L) = E[L|L ≥ V aRα(L)]. (5.7)

Let Ui = (Ci − DFi)
+ denote the CCP exposure to CMi in presence of

VMi, IMi and DFi. The CCP’s counterparty credit loss after the defaulter-
pay resources is

L(1) =
n∑
i=1

UiYi. (5.8)

The second level loss adds equity contributions E and survivor-pay pre-
funded funds. Thus, the second level total credit loss becomes

L(2) =

( n∑
i=1

UiYi − E −DFs
)+

(5.9)

where

DFs ≡ DF −
n∑
i=1

DFiYi (5.10)

and DFs is the sum of the surviving members default fund contributions.
When the total prefunded default funds are obtained using Equations (5.6)
and (5.7) we can write L(2) as follows

L(2) =

( n∑
i=1

CiYi − E −DF
)+

. (5.11)

The relation holds since DFi = CiE[Yi|O] < Ci, where O indicates the event
{L > V aRα(L)} or {L = V aRα(L)}.

Note that L(2) represents the loss to the CCP exceeding the defaulter-pay
resources, equity contributions and prefunded funds from surviving mem-
bers. Recall that L(2) starts to be used when all the funded resources has
been used, as seen in Figure 3.4.
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5.2 The Unfunded Default Funds

If L(2) is fully allocated to the surviving members, the capital calls from
the CCP to the clearing members is referred to as uncapped. The unfunded
default fund of each member CMi in the uncapped case will be

D̃Fi
uc ≡ DFi(1− Yi)

DFs
L(2) ≥ 0 (5.12)

where DFs =
∑n

j=1DFj(1− Yj). Note that ˜DF1
uc

+ . . .+ ˜DFn
uc

= L(2).

In the capped case, the capital calls are capped by a multiple of each mem-
bers prefunded default fund. In the capped case L(2) is allocated to the
surviving members proportional to their prefunded default fund contribu-
tions DFi, so that

D̃Fi ≡ min{D̃Fi
uc
, βDFi(1− Yi)} (5.13)

where β is a positive constant.

From the CMi’s and bank regulators perspective, it will be more conser-
vative to specify the CMi’s CCP risk capital assuming that CMi has not
defaulted at time T . In this setting the new unfunded default fund in the
uncapped case will be

D̃Fi
uc,s

= Luc,si =
DFi
DFs,i

(∑
j 6=i

CjYj − E −DF
)+

(5.14)

where DFs,i = DF −
∑

j 6=iDFjYj . In the capped case we have

D̃Fi ≡ min{D̃Fi
uc,s

, βDFi(1− Yi)} (5.15)

5.3 Margins Procyclicality

During times of financial stress, the market volatility increases. This in turn
requests higher initial margins, affecting the funding and market liquidity,
and making the financial situation even worse. Using the Ghamami (2015)
setting, it is possible to reduce margins procyclicality in a more risk sensi-
tive way. The reduction in the frequency of variation margins calls can be
one way of lowering the required initial margin. A further solution is the
redefinition of prefunded and unfunded default funds in a way that reduces
the initial margin, keeping constant the financial resiliency of the CCP.

Since unfunded default fund are considered unanticipated losses on survival
members, they are a new source of procyclicality in periods of financial
stress. From this brief analysis it is clear that the only way to reduce initial
margins keeping constant the overall situation is increasing the prefunded
defaulted funds and/or the CCP’s equity contribution.
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5.4 Total Losses to Clearing Members and CCP Risk Capital

In this subsection, the possibility that even the central counterparties can
default is taken into consideration. Given this, each clearing members should
hold so called CCP risk capital. In order to determine the risk capital, the
loss a clearing member can suffer in the event of a CCP default has to be
defined. Firstly, a replacement cost depending on the value of the deriva-
tives portfolio the member holds with the CCP in case of CCP’s default
has to be considered. Secondly, in case the initial margin is not held in a
bankruptcy remote manner, the initial margin can be lost when the CCP
defaults. Moreover, there are the losses in the prefunded default fund for the
surviving members, especially in the uncapped case and when a lot of mem-
bers have defaulted. Finally, the survival members can incur unanticipated
losses given by the unfunded default fund capital calls of the CCP.

5.4.1 Total Clearing Member Losses

The possible losses of CMi can be determined considering three different
cases in which CMi is surviving at time T . In the first case, the CCP’s
potential loss in the presence of only the defaulter-pay-resources is less than
the CCP’s equity contribution, that is

E >
∑
j 6=i

(Cj −DFj)Yj . (5.16)

This means that the prefunded default fund of CMi is not used. In the
second case, it is assumed that the CCP’s losses after the defaulter-pay
resources are greater than the CCP’s equity but less than the survivor-pay-
resources plus the CCP’s equity

E ≤
∑
j 6=i

(Cj −DFj)Yj < E +DFi +
∑
j 6=i

DFj(1− Yj). (5.17)

In this case, part of DFi is used by CCP’s. The amount
∑

j 6=i(Cj−DFj)Yj−
E, will be allocated proportional to the prefunded default fund. Thus, in
the second scenario CMi will lose

DFi
DFs,i

(∑
j 6=i

(Cj −DFj)Yj − E
)

(5.18)

where DFs,i = DF −
∑

j 6=iDFjYj .

Finally, in the third case the CCP’s potential loss in the presence of the
defaulter-pay resources exceeds the sum of prefunded default fund of the
survivors and the CCP’s equity contribution, namely∑

j 6=i
(Cj −DFj)Yj ≥ E +DFi +

∑
j 6=i

DFj(1− Yj). (5.19)
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In the third case, from survival clearing members point of view, the entire
prefunded default fund is used and the unfunded default funds are needed.
According to these three cases, we can define the total losses to CMi. We
have to distinguish two different scenarios:

1. Uncapped and CMi surviving at time T

2. Capped and CMi surviving at time T

In the first scenario, i.e the uncapped case, the total potential loss is given
by the losses to the CM ′is prefunded default fund and the unanticipated
losses due to the unfunded default fund, given that CMi is alive at time T,
is

Lt,uc,si = Ldf,si + Luc,si (5.20)

where

Ldf,si = min

{
DFi
DFs,i

(∑
j 6=i

(Cj −DFj)Yj − E
)+

, DFi

}
(5.21)

and

Luc,si =
DFi
DFs,i

(∑
j 6=i

CiYi − E −DF
)+

. (5.22)

In the capped case, the total potential loss is influenced by the possibility
that other members default and by the default of the CCP. In this case the
total credit losses will be

Lt,si = Ldf,si + Lsi + ŨiỸi (5.23)

where Lsi = min
{
Luc,si , βDFi

}
and Ỹi is the indicator function that takes

on a value of 1 in the case where the CCP defaults and Ũi is the member’s
loan-equivalent exposure to the CCP at its default, given by:

Ũi = (1− δ)
∫ T̃

0
E[ẽi(t)]dt. (5.24)

where δ is the CCP’s recovery rate

In previous derivation, it is assumed that the CMi’s initial margin held in
a bankruptcy-remote manner. If this assumption is relaxed the total credit
losses (in the capped case) would be:

Lt,si = Ldf,si + Lsi + (Ũi + IMi)Ỹi. (5.25)
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5.4.2 The CCP Risk Capital

In the Ghamami (2015) setting, the total loss is modeled using the one-
period model. Thus, the VaR-based unexpected portfolio credit risk is
VaRα(L̃) − E[L̃]. In particular, the CCP risk capital of CMi based on the
total expected capped losses is

E[Lt,si ] = E[Ldf,si ] + E[Lsi ] + ŨiPccp,i (5.26)

where Pccp,i is the default probability of the CCP up to time T assuming
CMi is alive at time T

Pccp,i = P
(∑
j 6=i

CjYj > E +DF + ˜DF si +
∑
i 6=j

D̃Fj

)
(5.27)

and finally the CCP risk capital based on unexpected losses is

V aRα(Lt,si )− E[Lt,si ]. (5.28)



6 Model implementation

In this section we describe our implementation of the model designed by
Ghamami (2015). In the implementation, we will assume that the clear-
ing members are homogeneous. Furthermore, when simulating the default
indicators for the clearing members we will use the mixed binomial model
described in Section 4, both in the Merton framework and with a beta dis-
tribution. Our implementation is outlined in the steps as follows:

1. In the first step we show how to compute the initial margin, variation
margin and the CCP’s collaterized exposure at time t in the presence
of said margins. In order to determine the exposure, we will simulate
a short-term interest rate process and thereafter derive the value of an
interest rate swap with unitary notional.

2. In this step it is shown how to perform Monte Carlo simulations in
Merton and beta models to derive the default indicator Yi, which we
use to obtain the unfunded default funds and the CCP default proba-
bility from the surviving members point of view.

3. Having obtained the CCP’s credit exposure we can derive the pre-
funded default fund based on different values of default correlation
ρ, default probability p̄ and different α in both the Merton and Beta
setting.

4. In the fourth step, we compute the unfunded default fund, as well as
the default probability of the CCP. We also discuss the level losses.

5. As a final step, we do some sensitivity analysis of our model. We
compute the prefunded default funds as a function of clearing period
T as well as for different number of clearing members, and we also
control what happens if the interest rate setting is changed.

6.1 Swap Valuation, Margins and Credit Exposure

First, we wish to find the expected exposure, Ci ≡ (1 − δi)
∫ T
0 E[ei(t)]dt,

which in this homogeneous setting will be the same for all obligors.

In order to find our expected exposure, we will mimic an interest swap
process. This will be done in a Cox-Ingersoll-Ross (CIR) framework. The
CIR model provides a way to determine the term structure of interest rates.
In particular, the model gives a instantaneous interest rate rt, which follows
a stochastic differential equation given by

drt = κ(θ − rt)dt+ σ
√
rtdZt (6.1)

32
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where Zt is a Brownian motion, κ is the speed of adjustment towards the
long term mean θ, and σ is the volatility. (Cox et al. 1985). We will use
the findings of Broadie & Kaya (2006) to perform the simulation, where the
value of rt given rs where s < t, is given by

rt = ctχ
2
d(a) (6.2)

where χ2
d(a) is a non-central chi-squared random variable centered at a with

d degrees of freedom and ct being a scaling factor. The parameters are
estimated using the following equations:

a =
4κe−κ(t−s)

σ2(1− e−κ(t−s))
rs (6.3)

d =
4θκ

σ2
(6.4)

ct =
σ2(1− e−κ(t−s))

4κ
. (6.5)

The process is estimated with the restriction 2θκ > σ2, which leads to d > 1.
When d > 1, a non-central chi-squared random variable can be rewritten as
the sum of a non-central χ2 random variable and a normal χ2 variable with
d− 1 degrees of freedom.

rt = cs(χ
2
1(a) + χ2

d−1) (6.6)

where

χ2
1(a) = (Z +

√
a)2 (6.7)

and Z is a standard normal random variable. In Figure 6.1, we show some
trajectories of simulated CIR-processes.
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Figure 6.1: CIR-process simulation with κ = 0.1, θ = 0.03, σ = 0.1, r0 = 0.02

After simulating the interest rate processes, we can compute the bond prices
when rt follows Equation (6.1) by using closed formulas. The following
formulas can be found in Hull (2011):

P (t, T ) = A(t, T )e−B(t,T )rt (6.8)

B(t, T ) =
2(eγ(T−t) − 1)

(γ + a)(eγ(T−t) − 1) + 2γ
(6.9)

A(t, T ) =

[
2γe(a+γ)(T−t)/2

(γ + a)(eγ(T−t) − 1) + 2γ

]2ab/σ2

(6.10)

with γ =
√
a2 + 2σ2. In Figure 6.2, we plot the bond prices for our interest

rate paths from Figure 6.1
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Figure 6.2: Simulated bond prices

Now that we have the bond prices at each point in time, we can find the
values of our interest rate swaps. An interest rate swap (IRS) is a contract
between two parties, where one pays a fixed interest rate on a notional N and
receives a floating interest rate on the same notional, and vice versa. The
floating rate is based on an real world interest rate, such as the LIBOR. The
cash flows are exchanged at specified settlement dates (Ti), for a period of
time (Tn). Assuming that coupons are paid quarterly and the first payment
is at time t = 0.25, the fixed rate in the contract is the rate that makes the
value of the IRS zero at time 0. Using a reinvestment strategy or considering
the IRS as a portfolio of Forward Rate Agreements, it can be shown that
the IRS rate is the following, see e.g Brigo & Mercurio (2006) or Hull (2011)

R =
1− P (0, Tn)

δ
∑n

i=1 P (0, Ti)
(6.11)

where δ = Ti−Ti−1. The rate R will be computed once and used in the IRS
valuation at each point in time t. The value for the part paying the fixed
interest rate is equal to:

Πpayer(t) = N

(
P (t, Tα)− P (t, Tn)−Rδ

n∑
i=α+1

P (t, Ti)

)
(6.12)

with cash flows taking place at the date of the coupons Tα+1, Tα+2, . . . , Tn.
The part P (t, Tn) − Rδ

∑n
i=α+1 P (t, Ti) is all future discounted cash flows
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from the fixed payment stream. Thus, it can be seen as a coupon bearing
bond, where NRδ

∑n
i=α+1 P (t, Ti) are the discounted cash flows from the

remaining coupon payments, and NP (t, Tn) is the discounted value of the
notional value of the bond. (Brigo & Mercurio 2006)

Approaching maturity the terms NRδ
∑n

i=α+1 P (t, Ti) decreases in size. In
particular at time Tn no cash flows are exchanged andNRδ

∑n
i=α+1 P (t, Ti) =

0. Furthermore, at maturity NP (Tn, Tn) = N . As result we have that the
IRS will be valued zero at time 0 and T , and will present jumps at each
cash settlement (in our case each quarter). Our simulated swap values are
shown below in Figure 6.3, where we use the same trajectories as in Figure
6.1 and Figure 6.2:

Figure 6.3: Simulated swap values

When we have determined the values of the IRS contract, we can calculate
the expected exposure. This is defined as the expected loss given default,
with zero recovery rate. In other words, it can be considered the average
exposure.

EEt =
1

M

M∑
i=1

max(0,Πi
t) (6.13)

where Πi
t is the value for swap i at time t, EEt is the Monte Carlo estimated

value of E[max(0,Πt)], and M is the number of simulations. A plot of our
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Expected Exposure for T = 10 is shown in Figure 6.4, based on the same
trajectories as in Figure 6.1

Figure 6.4: 10-year Expected exposure for the IRS

The next step is to find the collateralized exposure for the CCP. If we let
V +
i (t) be the positive part of the value of the derivatives portfolio that the

CCP holds with CMi at time t > 0, recall that the CCP’s collateralized
exposure at time t is

ei(t) ≡ max

{(
V +
i (t+ ∆)− VMi(t)− IMi(t)

)
, 0

}
(6.14)

where VMi(t) ≡ V +
i (t − ∆̂) and IMi(t) is the VaR or ES associated with

V +
i (t+ ∆)− V +

i (t− ∆̂). Using these definitions we have

ei(t) ≡ max

{(
V +
i (t+ ∆)− V +

i (t− ∆̂)− IMi(t)
)
, 0

}
(6.15)

The time interval ∆+∆̂, denoted by the marginal period of risk, is set equal
to 5 days. Defining Ri = V +

i (t+∆)−V +
i (t−∆̂), and given some confidence

level α, the initial margin will be

IMi = V aRα(Ri). (6.16)

In order to estimate the CCP’s exposure we perform Monte Carlo simulation
looking at the difference between the IRS value at t + 4 and the IRS value
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at time t− 1. Defining IMi as in Equation 6.16 we can compute E[ei(t)] via
Monte Carlo simulation, where E[ei(t)] is

E[ei(t)] = E[(Ri − V aRα(Ri))
+] = E[Ri1{R > V aRα(Ri)}]− αV aRα(Ri)

(6.17)
In Figure 6.5 we show the Expected Exposure of the IRS as well as the
CCP’s collateralized exposure.

Figure 6.5: Expected exposure for the IRS and expected exposure of the
CCP after considering initial margins and variation margins.

From Figure 6.5 we can clearly see the benefits of initial margins and varia-
tion margins in how they are reducing the CCP exposure, by adding a capital
buffer for losses. In the next step we compute the CCP’s EPE-based time-T
loan-equivalent collateralized exposure due to the CM ′is default, that is,

Ci ≡ (1− δi)
∫ T

0
E[ei(t)]dt. (6.18)

To clarify, Ci is the amount the CCP loses due to the default of clearing
member i. By homogeneity, Ci is the same for all clearing members, meaning
Ci = C. In Figure 6.6 we plot the exposure C for a 10-year IRS with the
same parameters as in Figure 6.1-6.4 as a function of different confidence
levels when the recovery rate is set equal to 40%.
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Figure 6.6: EPE-based collateralized exposure for a 10-year IRS as a func-
tion of VaR-confidence for three different α.

As we expect, the exposure increases with time and decreases with more
conservative choices of confidence levels.

6.2 Simulation of the Default Indicators

In the following subsection we discuss how to obtain the default indicator
Yi, needed in order to compute the first level loss L =

∑n
i=1CiYi.

6.2.1 Default Indicators in the Merton Framework

As discussed in Section 4, the Merton model has the following properties:

VT,i < Di is equivalent with Xi ≤
−(C +

√
ρZ)

√
1− ρ

(6.19)

where Xi is a random vector drawn from the standard normal distribution

and it is independent of Z, while xi =
−(C+

√
ρZ)√

1−ρ is our threshold. Thus,

Yi = 1{Xi ≤ xi} will be the default indicator and Nn =
∑n

i=1 Yi the number
of defaults. In Figure 6.7 we plot E[Nn] via MC-simulations as a function
of ρx and p̄.
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Figure 6.7: Estimate of E[Nn] for different ρx and p̄ using 105 simulations
in the Merton model.

From Figure 6.7 it is clear that the number of defaults are independent of
the default correlations, and solely increases as long a function of the default
probability. The expected value of number of defaults divided by the number
of companies goes towards the default probability, namely E

[
Nn
n

]
= p̄, as

the number of simulations goes to ∞.

6.2.2 Default Indicators Under Beta Distribution

To obtain the default indicators in the beta setting, we let M be the number
of simulations. For each j = 1, 2, ...,M , we repeat the following steps:

1. Simulate the random variable Z that follows a Beta distribution and
compute the p(Z) that in the Beta model is equivalent to Z.

2. Simulate the i.i.d sequence U1, U2, ...., Um of uniformly distributed ran-
dom variables, independent of Z.

3. For each i the default indicator Yi will be

Yi =

{
1 if Ui ≤ Z
0 if Ui > Z

As seen in Figure 6.8, the procedure yields similar results to the Merton
setting.
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Figure 6.8: Estimate of E[Nn] for different ρx and p̄ using 105 simulations
in the beta model.

6.3 Derivation of Prefunded Default Funds

In this subsection, we derive a closed form formula for DFi, which can be
found in Herbertsson (2016). Recall that the prefunded default funds based
on ES is defined as follows

DFi = CiE[Yi|L ≥ V aRα] (6.20)

where by definition we have

E[Yi|L > V aRα] =
E[Yi1{L > V aRα}]

P[L > V aRα]
(6.21)

=
E[Yi1{L > V aRα}]

1− α
. (6.22)

where 1{A} is the indicator function for the event A. Next, note that:

E[Yi1{L > V aRα}] = E[Yi1{L > V aRα}|Yi = 1]P[Yi = 1]

+E[Yi1{L > V aRα}|Yi = 0]P[Yi = 0]
(6.23)

where the second term is zero since Yi = 0 on {Yi = 0}. Hence:

E[Yi1{L > V aRα}] = E[Yi1{L > V aRα}|Yi = 1]p̄ (6.24)
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where p̄ is same for all obligors in the homogeneous setting. We further note
that:

E[Yi1{L > V aRα}|Yi = 1] = E[1{L > V aRα}|Yi = 1] (6.25)

= P[L > V aRα|Yi = 1] (6.26)

Next, in a homogeneous portfolio we have Ci = C for all obligors and thus:

L = CNn (6.27)

where Nn =
∑n

i=1 Yi. Thus, we have that L > V aRα ⇔ Nn >
V aRα
C . For

notational convenience, we let γ denote V aRα
C , which implies that:

P[L > V aRα|Yi = 1] = P[Nn > γ|Yi = 1]

=
n∑

k=bγc+1

P[Nn = k|Yi = 1].
(6.28)

So what is left to compute is P[Nn = k|Yi = 1], but note that

P[Nn = k|Yi = 1] =
P[Nn = k, Yi = 1]

P[Yi = 1]

= P[Yi = 1|Nn = k]
P[Nn = k]

p̄
.

(6.29)

Note that p̄ is exogenously given and P[Nn = k] is determined as:

P[Nn = k] = E[

(
n

k

)
p(Z)k(1− p(Z))n−k]. (6.30)

Using the proposition of Herbertsson (2008), we have that

P[Yi = 1|Nn = k] =
k

n
(6.31)

and thus

P[Nn = k|Yi = 1] =
P[Nn = k]

p̄

k

n
. (6.32)

From this derivation we have that DFi is given by the following formula

DFi = C

∑n
k=bγc+1 P[Nm = k]k

(1− α)n
. (6.33)

where C is the exposure of the IRS.
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6.4 Unfunded Default Funds, Level Losses and Default Prob-
ability of the CCP

As discussed in Section 5, we can consider four settings when calculating
the unfunded defaulted funds D̃Fi.

1. Uncapped, with CMi survival

2. Capped, with CMi survival

3. Uncapped, with CMi default

4. Capped, with CMi default

In our implementation we compute D̃Fi in the first and second setting.
Using this version of unfunded default funds, CMi should be considered
as the financial institution that, independent of its credit quality, values
the credit quality of CM ′js, j 6= i, representing them by dependent default
indicators. As seen in the previous section, the uncapped unfunded default
funds assuming survival at time T are:

D̃Fi
uc,s

= Luc,si =
DFi
DFs,i

(∑
j 6=i

CjYj − E −DF
)+

(6.34)

where DFs,i = DF −
∑

j 6=iDFjYj . On the other hand, the capped unfunded
default funds assuming survival are:

D̃Fi =≡ min{D̃Fi
uc,s

, βDFi(1− Yi)} (6.35)

where β > 0. Once we have defined the waterfall resources, we are ready
to check the difference in terms of loss before and after the introduction of
each layer. The first level loss is given by

L =
n∑
i=1

CiYi = C
n∑
i=1

Yi (6.36)

where C = Ci, due to our homogeneous setting. In the second level loss,
we add the prefunded default funds and the equity contributions of CCP,
which in our implementation is equal to 2% of the total prefunded default
funds. Thus, we have that

L(2) =

(
C

n∑
i=1

Yi − E −DF
)+

. (6.37)

Finally we can define the third level loss. Given D̃F =
∑n

i=1 D̃Fi, we have
that

L(3) =

(
C

n∑
i=1

Yi − E −DF − D̃F
)+

(6.38)
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If the model we implement is well designed, we expect the third level loss
to be very small and in particular lower than 1 − α. After defining the
level losses is possible to compute the CCP’s default probability from CM ′is
perspective, i.e, assuming CMi survival at time T . The probability will be

Pccp,i = P
(∑
j 6=i

CjYj > E +DF + ˜DF si +
∑
j 6=i

D̃Fj

)
(6.39)

where Pccp,i ≤ P
(∑

j 6=iCjYj > E +DF

)
.



7 Numerical Results

In the following section we present the numerical results for our implemen-
tation. In Subsection 7.1 we present the results in both Merton and Beta
models as function of default correlation, default probability and confidence
levels of 95%, 99% and 99.9%. We let the default probability take on values
from 3% to 9.5%, whereas we assume default correlation values as shown in
Table 7.1:

0.01 0.05 0.08 0.11 0.18 0.23 0.27

0.3 0.33 0.38 0.41 0.44 0.47 0.501

Table 7.1: Values of ρx

We will show how the prefunded default funds, unfunded default funds, levels
losses and CCP default probability will change according to different values
of default correlation and default probability. Moreover, in Subsection 7.2
we perform different robustness checks of our model. For examples, changing
the time period considered, changing the number of clearing members and
changing the yield curve. Finally, relative errors for the differences between
beta and Merton model are shown in the Appendix.

7.1 Prefunded and Unfunded Default Funds

In the basic setting, we have 40 clearing members (i.e n = 40) and we set
the time period T equal to 5 years. Figure 7.1 shows an estimation of E[L],
that is

LMC =
1

M

M∑
j=1

LMC,j (7.1)

where LMC,j is the loss in simulation number j. Note that E[LMC ] = E[L] =
C · n · p̄.

45
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Figure 7.1: Expected value of the first level loss as function of ρx and p̄ in
Beta and Merton models with 105 simulations.

The first layer used to reduce the first level loss is the prefunded default
funds. In Figure 7.2 we plot the prefunded default funds as a function of
default correlation, default probability and confidence level α as an MC-
estimation of Equation (6.33)

Figure 7.2: Total prefunded default funds as function of ρx and α when
p̄ = 6% and as function of p̄ and α when ρx = 27%.

From Figure 7.2 is clear that in both models the prefunded default funds
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increases with default correlation and default probability. Moreover, the
allocation to the funds are higher for α = 0.99 and α = 0.999 despite the
fact that the exposure C is lower for higher confidence levels.

Once we determine the prefunded default funds, we can derive the second
level loss, that is the loss a CCP incurs after initial margins, variation mar-
gins, prefunded default funds and CCP equity has been posted. According
to industry benchmark, we set the CCP equity to 2% of the total prefunded
default funds. In Figure 7.3 the second level loss as a function of ρx and p̄
is shown.

Figure 7.3: Expected value of second level loss as function of ρx and p̄ in
Merton and beta models with 105 simulations.

From Figure 7.3 it is clear that the prefunded default funds, together with
CCP equity, are calculated in a conservative and risk sensitive way, meaning
that they increase with p̄ and ρx. Moreover, Figure 7.4 compares expected
value of the first and second level loss when α = 0.99 for different default
probabilities. For example, when α = 99, ρx = 0.84 and p̄ = 0.095, the
second level loss are 3.5 times lower than the first level loss. This result
confirms the effectiveness of default funds.
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Figure 7.4: Expected value of first and second level loss as function of p̄
when α = 0.99 and ρx = 38% with 105 simulations

As suggested by Ghamami (2015), the third layer we compute is the un-
funded default fund. We compute the funds assuming survival at time T in
the capped case. Since Ghamami (2015) presents no value for the param-
eter β, we have to reason ourselves in order to find a suitable parameter
value. We end up setting β = 0.04 in our homogeneous portfolio, meaning
that each obligor contributes to the unfunded funds slightly more than its
percentage contribution in the total prefunded defaulted funds. In Figure
7.5, we display the Monte Carlo estimation of the unfunded funds in both
Merton and Beta as function of ρx and p̄ when α = 0.99.

Figure 7.5: Expected value of Unfunded default funds as function of ρx, p̄
for α = 0.99 with 105 simulations.

In order to understand the impact of the unfunded funds, we show in Figure
7.6 the Monte Carlo estimation of the third level loss. That is, the loss after
initial margins, variation margins, prefunded default funds, CCP equity and
unfunded default funds have been posted.
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Figure 7.6: Expected value of third level loss as a function of ρx, p̄ and for
α = 0.99 with 105 simulations.

Moreover, in Figure 7.7 we compare the expected value of the first, second
and third level loss to further stress the impact of prefunded and unfunded
default funds.

Figure 7.7: Level loss comparison in logarithmic scale for different p̄ in both
the Merton and beta setting when α = 0.99 and ρx = 38%.

7.1.1 CCP default probability

As discussed in Section 6, the CCP’s default probability assuming CMi

survival at time T is

Pccp,i = P
(∑
j 6=i

CjYj > E +DF + ˜DF si +
∑
j 6=i

D̃Fj

)
. (7.2)

In Figure 7.8, we plot the CCP default probability in both the Beta and the
Merton framework.
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Figure 7.8: CCP default probability as function of ρx and p̄ for α = 0.99
and α = 0.999.

In Tables 7.2-7.5 we present numerical values for the CCP default probability
when α 0.99 and 0.999.

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0 0 0 0 0 0 0.003%

ρx = 0.08 0.001% 0.001% 0.001% 0 0 0 0

ρx = 0.18 0.001% 0.001% 0 0 0 0 0

ρx = 0.27 0.001% 0 0 0 0 0 0

ρx = 0.30 0 0 0 0 0 0 0

ρx = 0.41 0 0 0 0 0.001% 0.003% 0.004%

ρx = 0.47 0 0 0 0 0.004% 0.007% 0.008%

Table 7.2: Beta model with α = 99%
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p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0.004% 0.002% 0.001% 0 0.008% 0 0

ρx = 0.08 0.012% 0.013% 0.014% 0.015% 0.013% 0.011% 0.010%

ρx = 0.18 0.014% 0.018% 0.014% 0.009% 0.009% 0.009% 0.007%

ρx = 0.27 0.015% 0.010% 0.011% 0.007% 0.007% 0.004% 0.003%

ρx = 0.33 0.013% 0.008% 0.007% 0.004% 0.002% 0.001% 0

ρx = 0.41 0.007% 0.005% 0.002% 0 0 0 0

ρx = 0.47 0.005% 0 0 0 0 0 0

Table 7.3: Beta model with α = 99.9%

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0 0 0 0 0 0 0.003%

ρx = 0.08 0.003% 0.002% 0.001% 0.001% 0.001% 0 0

ρx = 0.18 0.003% 0.002% 0.001% 0 0 0 0

ρx = 0.27 0.002% 0 0 0 0 0 0

ρx = 0.33 0 0 0 0 0 0 0

ρx = 0.41 0 0 0 0 0 0.004% 0.004%

ρx = 0.47 0 0 0 0.002 0.006% 0.012% 0.013%

Table 7.4: Merton model with α = 99%

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0.004% 0.002% 0.001% 0 0.008% 0 0

ρx = 0.08 0.018% 0.014% 0.013% 0.014% 0.012% 0.008% 0.016%

ρx = 0.18 0.018% 0.016% 0.018% 0.013% 0.014% 0.009% 0.009%

ρx = 0.27 0.021% 0.019% 0.015% 0.007% 0.008% 0.005% 0.002%

ρx = 0.33 0.015% 0.015% 0.009% 0.003% 0.003% 0.001% 0

ρx = 0.41 0.010% 0.004% 0.002% 0 0 0 0

ρx = 0.47 0.005% 0.001% 0 0 0 0 0

Table 7.5: Merton model with α = 99.9%

From Table 7.2-7.5 is clear that the CCP default probability is very low,
and for most values of ρx and p̄ the following test does hold:

Pccp,i = P
(∑
j 6=i

CjYj > E +DF + ˜DF si +
∑
j 6=i

D̃Fj

)
< 1− α. (7.3)

As we see, even in the extreme scenarios when ρx and p̄ are high the CCP
default probability is close to zero. The results confirm the robustness of
our models and that they are conservative. In a crisis period when default
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correlation and default probability increases, the layers also increases to
protect against drastic financial scenarios.

7.1.2 Margin Procyclicality

As discussed in Section 5, during times of financial stress we need to lower
the third level loss. An increase in the margin requirements would dry
up liquidity in the market and thus worsen the stress. On the other hand,
unfunded default funds are considered unanticipated losses and would have a
negative impact in the market. The only way of reducing the third level loss
and not increase margin requirements is to increase the prefunded default
funds. In Figure 7.9, we show the proportion among all default layers as a
function of p̄ in both the uncapped and capped case when α = 0.99.

Figure 7.9: Initial margins, prefunded and expected unfunded default funds
and CCP equity contribution as function of p̄ for α = 0.99, ρx = 0.3 in the
uncapped and capped case.

Next in Figure 7.10, we show the proportion of all default layers as a function
of ρx, in both the uncapped and the capped case, for a fixed α = 0.99.
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Figure 7.10: Initial margins, prefunded and expected unfunded default funds
and CCP equity contribution as function of ρx for α = 0.99, p̄ = 0.065 in
the uncapped and capped case.

As we can see from Figures 7.9 and 7.10, the mixed binomial models fits well
with the margin procyclicality problem, especially when the unfunded funds
are capped. In the extreme scenarios, we have constant initial margins and
the biggest contribution in terms of funds is given by the prefunded default
funds, while the unfunded funds are a small percentage of prefunded funds.
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7.2 Sensitivity Analysis and Robustness Checks

In this subsection we present some different stress test scenarios for the
prefunded default funds. In particular we check the funds behavior for
different number of clearing members, for different clearing period T , and
finally we see the impacts of a high-yield scenario where the 10-year yield is
around 10%.

7.2.1 Sensitivity to Number of Clearing Members

An interesting sensitivity analysis is how the layers change when we increase
or reduce the number of clearing members. In Figure 7.11 we show the
individual prefunded funds when the number of clearing members go from
5 to 55 with parameters ρx = 0.38 and p̄ = 0.04 and α = 0.99

Figure 7.11: Individual prefunded default funds for different number of com-
panies in Beta and Merton models.

Also, in Figure 7.12 we show the individual prefunded default funds as func-
tion of ρx and number of clearing members.
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Figure 7.12: Individual prefunded default funds as function of number of
companies and default correlation when α = 0.99 and p̄ = 0.065.

As we see, using conditional models we can observe somewhat of a diver-
sification effect, where the default funds decrease drastically from 5 to 20
members, and thereafter flattens out. As a comparison to stock portfolios,
Elton & Gruber (1977) found that almost full diversification effect is reached
after 30 stocks, which seems in line with our findings.

7.2.2 Sensitivity to the clearing period T

The prefunded funds are a function of the exposure C, that is the exposure
for the IRS contract after considering initial margins and variation margins.
As shown in Section 6 the exposure is increasing in time. In our basic
setting we fix the clearing period equal to 5 years. Intuitively, we expect
that if we consider 10 years as clearing period we would have an higher
exposure, and consequently higher guarantee funds. In Figure 7.13 we show
prefunded default funds as a function of time, default probability and default
correlation in the Merton setting.
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Figure 7.13: Prefunded default funds as function of ρx and clearing period
when p̄ = 0.05 and α = 0.99 and as function of p̄ and clearing period when
ρx = 0.18 and α = 0.99.

As we expect, Figure 7.13 confirms that prefunded default funds are increas-
ing with time. Furthermore, we are interested to see the impact of time on
the CCP default probability. In Table 7.6 we present the CCP default prob-
ability in the Merton setting when α = 0.99 and the clearing period is set
to 10 years.

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0 0 0 0 0 0 0

ρx = 0.08 0 0 0 0 0 0 0

ρx = 0.18 0 0 0 0 0 0 0

ρx = 0.27 0 0 0 0 0 0 0

ρx = 0.33 0 0 0 0 0 0 0

ρx = 0.41 0 0 0 0 0 0.003% 0.004%

ρx = 0.47 0 0 0 0.003% 0.006% 0.013% 0.015%

Table 7.6: Default probability as function of p̄ and ρx when T = 10

Comparing Table 7.6 and Table 7.4 we can see that the CCP default proba-
bility decreases when the clearing period increases. This decrease is simply
due to the fact that the funds increase with time, as seen in Figure 7.13,
meaning that the model responds well to an increase in considered time
period.

7.2.3 Sensitivity to Interest Rates

Since the derivative contract we have considered in our exposure calculation
is an interest rate swap, it is of interest to perform a sensitivity analysis of
the impact of increased interest rates on the default waterfalls of the CCP. In
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Figure 7.14 we show the CCP collateralized exposures in two yield settings.
In the first setting the 10-year yield curve is circa 3%, whereas in the second
case the 10-year yield is around 10%. Recall from Section 6 that the CCP
collateralized exposure is

ei(t) ≡ max

{(
V +
i (t+ ∆)− V +

i (t− ∆̂)− IMi(t)
)
, 0

}
(7.4)

Figure 7.14: CCP collateralized exposure for different yield curves with
α = 0.99.

In addition to this, recall that the EPE-based time-T loan equivalent col-
lateralized exposure is:

Ci ≡ (1− δi)
∫ T

0
E[ei(t)]dt. (7.5)

In Figure 7.15, we show the behavior of the collateralized exposure for our
two different interest rate settings.
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Figure 7.15: EPE-based time-T loan equivalent collateralized exposure for
different yield curves with α = 0.99

Clearly, the exposure will increase with the interest rate, meaning higher
initial margins per definition. As we wish to see the impact of a rate shift
on the prefunded default funds, we display in Figure 7.16 the prefunded
default funds as a function of default probability, default correlation with
α = 0.99 for the two different interest rate settings.

Figure 7.16: Prefunded default funds as function of ρx and yield curve when
p̄ = 0.06 and as a function of p̄ and yield curve, when ρx = 0.18 and α = 0.99.

From Figure 7.16 we can conclude that the default funds are sensitive to a
change in the interest rate, and will increase along with the interest rates.



8 Conclusions

We base our thesis on the CCP static risk model by Ghamami (2015), and
implement this model in a numerical software environment. We find that
the model increases the layers of the default waterfall as conditions worsen,
that is higher default probability and default correlation increase the un-
funded and prefunded default funds. Also, an interesting finding is that in
stressed scenarios, the CCP default probability is lower than for more nor-
mal scenarios, which might seem contradictory to intuition. However, the
lower CCP default probability is due to the fact that the model is conser-
vative, and posts very high funds in the stressed scenarios, meaning that a
scenario going beyond our funds is extremely unlikely. Regarding the model
comparison of our two different mixed binomial models, we find that beta
and Merton models yield similar results.

Finally, by performing a number of stress test scenarios we can confirm the
robustness of our models. In particular,

• We observe a diversification effect when the number of clearing mem-
bers increases.

• The models is robust to a change in time horizon, since the prefunded
default funds increase with the time.

• The funds are higher in the case of a higher yield curve, since it takes
into account the higher risk arising from higher exposure for each clear-
ing member.

All of the above conclusions are in line with economic intuition.

A potential drawback in our model is that we have considered a homo-
geneous portfolio, which of course is a simplistic assumption. For future
research, an interesting application would be to implement the model for a
heterogeneous portfolio. As another suggestion, Ghamami (2015) has pre-
sented ways to further co-integrate the model with regulations by e.g. the
Basel Accords, which could be an interesting addition to our paper. Also,
one could certainly tweak our methodology, by for example using other dis-
tributions for the default indicators, or other OTC derivatives to calculate
the CCP exposure.
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Appendix

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0 0 0 0 0 0 0

ρx = 0.08 0 8.33% 7.69% 7.14% 6.67% 6.25% 0

ρx = 0.18 0 5.56% 0 4.76% 4.55% 4.35% 4.17%

ρx = 0.27 0 0 4.17% 3.85% 3.70% 3.57% 3.45%

ρx = 0.33 4.35% 0 3.70% 3.45% 3.33% 3.23% 3.12%

ρx = 0.41 0 3.45% 3.23% 3.03% 2.94% 2.86% 2.86%

ρx = 0.47 3.45% 3.12% 2.94% 2.86% 2.78% 2.70% 2.70%

Table 8.1: Relative error between the Merton and beta model for the pre-
funded default fund when α = 0.99

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0 0 0 0 0 0 0

ρx = 0.08 11.76% 11.11% 10.53% 10% 9.52% 4.55% 4.35%

ρx = 0.18 11.54% 7.14% 6.90% 10.34% 10% 6.45% 6.25%

ρx = 0.27 9.37% 9.09% 8.82% 5.71% 5.56% 5.56% 2.70%

ρx = 0.33 8.57% 8.33% 5.41% 2.63% 5.26% 2.56% 2.56%

ρx = 0.41 5.26% 2.56% 2.50% 2.50% 2.50% 2.50% 2.50%

ρx = 0.47 2.50% 2.50% 0 0 0 0 0

Table 8.2: Relative error between the Merton and beta model for the pre-
funded default fund when α = 0.999

p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 5.08% 10.32% 1.15% 1.06% 4.12% 0.58% 2.30%

ρx = 0.08 1.81% 10.42% 5.02% 6.18% 6.95% 5.57% 8.72%

ρx = 0.18 1.96% 2.20% 4.09% 6.19% 2.28% 1.14% 3.64%

ρx = 0.27 4.14% 1.34% 5.66% 1.70% 1.75% 4.30% 0.41%

ρx = 0.33 1.76% 0.67% 4.10% 0.56% 1.96% 2.58% 0.55%

ρx = 0.41 1.11% 4.08% 2.10% 1.92% 5.18% 4.09% 0.91%

ρx = 0.47 3.27% 3.80% 6.53% 0.66% 1.51% 0.57% 3.02%

Table 8.3: Relative error between the Merton and beta model for the un-
funded default fund when α = 0.99
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p̄ = 3% p̄ = 4% p̄ = 5% p̄ = 6% p̄ = 7% p̄ = 8% p̄ = 9%

ρx = 0.01 0.26% 9.12% 7.43% 0.22% 2.93% 4.21% 6.83%

ρx = 0.08 7.20% 2.17% 12.02% 2.01% 5.30% 12.92% 9.83%

ρx = 0.18 2.07% 20.75% 21.06% 16.51% 3.94% 1.23% 9.82%

ρx = 0.27 5.63% 6.28% 3.95% 7.19% 8.42% 6.83% 16.73%

ρx = 0.33 10.63% 4.21% 6.22% 4.74% 8.55% 10.34% 3.74%

ρx = 0.41 1.91% 11.30% 9.65% 9.53% 0.88% 4.91% 1.77%

ρx = 0.47 14.12% 2.99% 6.13% 7.60% 9.28% 7.59% 8.05%

Table 8.4: Relative error between the Merton and beta model for the un-
funded default fund when α = 0.999
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