
The Performance of TLS Protocol in
Vehicular Embedded Computers.
Master of Science Thesis in Computer Science

JACKSON ISACK MREMA

Department of Computer science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS INSTITUTE OF TECHNOLOGY
Gothenburg, Sweden June 2016

Master’s thesis 2016:NN

The Performance of TLS Protocol
In Vehicular Embedded Computers.

A report for the thesis work done at Diadrom Systems AB

JACKSON ISACK MREMA

Department of Computer Science and Engineering
University of Gothenburg

Chalmers University of Technology
Gothenburg, Sweden June 2016

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.
The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

© JACKSON ISACK MREMA, June 2016.

Industrial Supervisor: Dr. Henrik Fagrell, Diadrom Systems AB
Department Supervisor: Prof. Carlo Furia, Computer Science and Engineering
Examiner: Prof. Alejandro Russo, Computer Science and Engineering

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg Sweden
Telephone + 46 (0)31-772 1000

Cover: Architectural setup of the proposed project. Vehicles ECU wirelessly commu-
nicating with mobile device; Transporting HTTP data secured with TLS protocol.

Typeset in LATEX
Printed by [Name of printing company]
Gothenburg, Sweden June 2016

iv

Abstract
Transport Layer Security (TLS) is a protocol that is widely used to secure Hyper-
text Transfer Protocol (HTTP) data transported across the Internet. This protocol
comes with a set of operations that are for encryption, decryption, sharing keys for
encryption etc. Studies have shown that these operations often cause performance
degradation. So to implement TLS protocol in an environment with performance
limitations (in terms of response time and usability), it becomes necessary to have
an idea of performance implication of TLS protocol in that specific environment.

This thesis work has contributed to understanding the performance of TLS in the
specific setting of vehicles’ embedded computers. Different performance tests were
done to understand performance differences between implementations using the TLS
protocol and those not using it. Furthermore, this thesis gave an idea about how
different TLS parts in the HTTP communication stack perform. Lastly, tests were
conducted to understand how different encryption schemes and algorithms supported
by TLS protocol perform in this specific setting.

Results of this work demonstrated that TLS protocol induces some delays in response
time that remarkably could affect usability of the system. This delay is due to
TLS operations that are necessary for agreeing on sets of keys, algorithms, ciphers
and protocols to be used when communicating with TLS protocol. Delay in these
operations is caused by a number of factors; some found by this thesis work are
size of encryption keys, type of cipher and algorithm used and size of the payload
to be operated on. Based on these results, there are some recommendations in this
work that when followed would help to optimally utilize the power of TLS protocol.
Besides these findings, an open-source software program that performs all of the
performance tests explained in this thesis work was produced. This program will
potentially allow others to reproduce this research in their specific environments.

Keywords: Security, Embedded Computing, Communication, TLS Protocol.

v

Acknowledgements
I would like to extend my sincere gratitude to my industrial supervisor Dr. Henrik
Fagrell and the entire team at Diadrom Systems AB for the constant support and
help that they offered during my thesis work. I would also like to thank my university
supervisor Prof. Carlo Furia for the genuine support and continuous inputs that he
gave for this thesis. Lastly I would like to thank my family and my girlfriend for
the encouragement they provided throughout the thesis.

Jackson Isack Mrema, Gothenburg, June 2016

vii

Contents

List of Figures xi

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

2 Background 4
2.1 Transport Layer Security . 4
2.2 Curl Tool . 5
2.3 OpenSSL . 6
2.4 Related Work . 6
2.5 Ethical Consideration . 7

3 Methodology 8
3.1 Introduction . 8
3.2 Research Questions . 9
3.3 Hypotheses . 10
3.4 Security Requirements of the System 10
3.5 Limitations . 11

4 Setup and Testing 12
4.1 Usability Testing . 13

4.1.1 Goal . 13
4.1.2 Setup . 14

4.2 HTTP Connection Testing . 15
4.2.1 Goal . 16
4.2.2 Setup . 16

4.3 TLS Operations Testing . 19
4.3.1 Goal . 19
4.3.2 Setup . 20

5 Results and Discussion 21
5.1 Usability testing . 21
5.2 HTTP connection testing . 22
5.3 TLS operations testing . 28

ix

Contents

5.4 Hypothesis and Research answers . 32
5.4.1 Hypotheses . 32
5.4.2 Research Questions: . 32

5.5 Discussion . 33
5.6 Threats to Validity . 34

5.6.1 Construct Validity . 34
5.6.2 Reliability Validity . 35

6 Conclusion 36
6.1 Summary . 36
6.2 Conclusions . 36
6.3 Future Work . 37

Bibliography 38

A Testing Program Codes I
A.1 Main Program: MainProfiler.java . I
A.2 Runnable Program (Allows multi-threading): RunnableProfiler.java . II
A.3 Usage Testing Program : UsageProfiler.java VII
A.4 HTTP Connection Testing Program : HyperTextProfiler.java IX

x

List of Figures

2.1 TLS Protocol Stack with respect to time each part is being used. . . 4
2.2 TLS handshake operations [12]. 5

3.1 TLS Protocol Stack with respect to time each part is being used. . . 9

4.1 Steps followed to perform tests. 12
4.2 Sample output dataset file from the usability test. 13
4.3 Users’ single usage requests. 15
4.4 Sample dataset file collected from this HTTP connection testing. . . . 16
4.5 HTTP Response for http://10.5.1.42/get_response?size=230 17
4.6 Quantities measured in this test in order of appearance in HTTP call. 18
4.7 How test iterations were divided equally. 18
4.8 Part of the sample of expected output from TLS operation test 19

5.1 Chart of time taken for web pages to load when HTTP is used against
when HTTPS is used. 21

5.2 Chart of percentage time difference between time HTTP against HTTPS
implementation. 22

5.3 Chart of t_Redirect against payload size. 23
5.4 Chart of t_NameLookup against payload size. 24
5.5 Chart of t_Connect against payload size. 24
5.6 Chart of t_AppConnect against payload size. 25
5.7 Chart of t_Pretransfer against payload size. 25
5.8 Chart of t_Transfer against payload size. 26
5.9 Chart of t_Total against payload size. 27
5.10 Chart of t_Total against payload size. 27

xi

List of Tables

4.1 HTTP Get requests with their respective response. 17

5.1 Performance results for different compression and encryption algo-
rithms. Numbers are in 1000s of bytes processed per second. 29

5.2 Performance results for Elliptic curve Diffie–Hellman (ECDH) often
used for secure key agreement (happens in TLS handshake). 30

5.3 Performance results for different Public Key Infrastructure (PKI) ci-
phers and algorithms. 31

xii

List of Abbreviations
AES - Advanced Encryption Standard
CBC - Code Block Chaining
CFB - Cipher Feedback Mode
DES - Data Encryption Standard
DSA - Digital Signature Algorithm
ECDH - Elliptic curve Diffie–Hellman
ECDSA - Elliptic Curve Digital Signature Algorithm
HMAC - Hash-based Message Authentication Code
HTTP - Hypertext Transfer Protocol
HTTPS - Secured Hypertext Transfer Protocol
IETF - Internet Engineering Task Force
MD - Message Digest
OSI - Open Systems Interconnection Model
PKI - Public Key Infrastructure
RC - Rivest Cipher
RSA - Rivest, Shamir, and Adleman
SHA - Secure Hash Algorithm
TCP - Transport Layer Security
VEC - Vehicular Embedded Computers
WiFi / Wi-Fi - Wireless Fidelity
WPA - Wi-Fi Protected Access

xiii

1
Introduction

Today, automotive products eg. cars, boats and trucks contain a lot of different
features that can be controlled from a primitive display that is a part of a vehicular
embedded system. When this system is running, these features consume or produce
data and parameters that are often used for different purposes, for example diagnos-
tic purposes, various system routines and tasks, identification and tracking purposes
like vehicle tracking, route determination and navigation etc. Vehicular embedded
systems have limitations in their physical and logical capacities. For example, they
usually have small memory, processing power and disk storage. These limitations
lead to less ability to perform like how normal computer systems would perform.

A boat, like other transport systems, also has different subsystems with features and
sensors that produce data that could be used by its owner or repair person to make
relevant decisions. For example, these data can be useful in determining how soon
or later a boat needs to have service maintenance routine. Since not all boats con-
tain interactive screendisplays to display these data, Diadrom AB, company based
in Gothenburg proposed an implementation that could allow these data to be dis-
played on mobile devices without a need to modify a boat’s primitive display. This
implementation allows data to be displayed onto mobile device’s web browser after
a phone or tablet connects to the boat’s WiFi network.

These sensitive data will be transported from one of boat’s computer unit commonly
referred as Electronic Control Unit (ECU) with WiFi hosting capabilities through
WiFi network over HyperText Transfer Protocol (HTTP) to a mobile device. At-
tackers can eavesdrop communication, make modification to the data or even send
their own wrong information to the mobile device. Wrong information can have a
direct or indirect effects to users of the system or vehicle. For example can make
owner of the vehicle decide to delay maintenance routine in the case when it needs
immediate maintenance. This could lead to degradation of the vehicle’s performance
and in the worst case scenario cause an accident.

One possible security measure to mitigate this problem is to encrypt all commu-
nication between vehicles ECU with WiFi hosting capabilities and mobile device.
Encryption can be done on the communication channel used (i.e wireless protocols
like WPA2 can be used for this) or by end-to-end (i.e Public Key Infrastructure over
secure HTTP protocol). For this thesis work, focus will be on the later.

Transport Layer Security (TLS) is a protocol that is widely used to secure HTTP

1

1. Introduction

traffic [12] [8]. When TLS is used over HTTP, it is what is commonly known as
HTTP Secure (HTTPS) that is well known for securing website data when doing
security critical activities like electronic payments etc. TLS is known to have a big
performance overhead especially during initial handshake after Transmission Con-
trol Protocol (TCP) connection has been established [7]. TLS handshake requires
at least 4 handshake rounds that for very small chunks of requests could turn out
to be overheads [12].

Since vehicle’s ECUs are embedded computers that are limited in terms of com-
putation power, implementing TLS without having any idea about its performance
implications is a problem. Doing this can lead to improper configuration that could
enforce weak keys generation due to computers’ low entropy. It could also mean
that different secure protocols will underperform in terms of security or in other
cases provide security in a fairly low level that what it is expected to.

The main purpose of this thesis work is to research and analyse performance impli-
cation of Transport Layer Security (TLS) protocol when implemented in vehicular
embedded computers. Furthermore, to address tradeoffs that computers in boats
have with regards to relationship between security, usability of the system and com-
putational performance when TLS protocol is being used.

To achieve goals for this thesis work, a number of performance tests were done on
a prototype system using a simulation program written in Java. These tests aimed
at measuring performance of the system for normal usage of the system, for each
operation in the HTTP request/response stack and for individual TLS operations
involved with the secured version of the system.

Results from these tests have shown how TLS implementation perform as compared
to when not using TLS. Together with that results have also shown how each of the
TLS encryption schemes and algorithms perform on the host computer. Further-
more results have shown how there is a close relationship between security of the
system and usability and how these two needs to be considered when implementing
a secured system.

This report is a document presentation of the thesis work that has been done. It
has different chapters that talks about different aspects of this thesis work. Chapter
called Background in this report talks about different technologies that were used
to achieve results. Chapter called Methodology talks about research methodolo-
gies that were used in this work. It gives an idea about research questions paused, hy-
potheses, system requirements and delimitation towards end of the chapter. Setup
and Testing chapter talks about how prototype and simulation was built. It also
talks about tests that were performed; What were the goals for each test and how
they were setup. Results and Discussion chapter gave detailed review of the
results obtained and analysis of the results for each of the test performed. It also
brought a brief discussion about comparisons between the two implementations not
that results were obtained. The last chapter is Conclusion where conclusion of

2

1. Introduction

the work will be talked about based on this research work and recommendation for
future works.

3

2
Background

2.1 Transport Layer Security
Transport Layer Security (TLS) is a protocol that is widely used to secure HTTP
traffic. It is an Internet Engineering Task Force (IETF) standardization initiative
aimed at producing an Internet standard version of Secure Socket Layer (SSL) pro-
tocol [12]. It is a successor to SSL but often used interchangeably. When TLS is
used over HTTP, it is what is commonly known as HTTP Secure (HTTPS) that
is well known for securing website data when doing security critical activities like
electronic payments etc. TLS has a biggest performance drawback especially during
initial handshake after Transmission Control Protocol (TCP) connection has been
established.

To get a clearer picture, the following diagram shows the basic architecture of a TLS
protocol. It shows the basic parts of TLS protocol packet and how they relate in
order of their time of use.

Figure 2.1: TLS Protocol Stack with respect to time each part is being used.

TLS handshake requires at least 2 handshake round trips that for very small chunks
of requests could turn out to be overheads [12]. This is because of the cryptographic
keys that are being generated and shared between the two communicating parties.

4

2. Background

The following diagram shows TLS handshake protocol that involves operations lead-
ing to establishment of secure connection between client and server.

Figure 2.2: TLS handshake operations [12].

All of the operations that involved requests and responses shown above, takes a con-
siderable amount of time that later on, it counts to the total time spent performing
these TLS operations.

2.2 Curl Tool
As explained in a curl online manual page [1] "Curl is a tool to transfer data from
or to a server, using one of the supported protocols (DICT, FILE, FTP, FTPS, GO-
PHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP,
RTSP, SCP, SFTP, SMB, SMBS, SMTP, SMTPS, TELNET and TFTP)". This
tool is able to make HTTP requests with a command that can work even without
user’s interaction.

With this tool, there is a number of functionalities that one can use. To list a few,
the following are some of the functionalities that one can get from this tool.

• Get the main page from specific web-server:
Command is :

1 curl http://www.netscape.com/

• Get a web page from a server using specific port eg. 8000:
Command is :

1 curl http://www.weirdserver.com:8000/

5

2. Background

• To read and write cookies from a netscape cookie file, you can set both -b and
-c to use the same file:
Command is :

1 curl -b cookies.txt -c cookies.txt www.example.com

2.3 OpenSSL
OpenSSL is an open source project that provides a robust, commercial-grade, and
full-featured tool kit for the Transport Layer Security (TLS) and Secure Sockets
Layer (SSL) protocols [9]. OpenSSL is widely used across different linux distribu-
tions for different cryptographic purposes for example TLS operations based func-
tionalities like TLS handshakes and record layer operations. OpenSSL can be used
on webservers as well to provide HTTPs functionalities using corresponding openssl
extension for that server.

Besides general purpose functionalities discussed above, OpenSSL also provides com-
mand line utilities for performing certificate generation, signing, verification, request
etc. The following is a command to create certificate signing request (CSR) with
OpenSSL in a command line tools.

1 openssl req -new -key fd.key -out fd.csr
Enter passphrase for fd.key: ****************

3 You are about to be asked to enter information that will be incorporated
into your certificate request.

5 What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

7 For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

9 -----
Country Name (2 letter code) [AU]:GB

11 State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:London

13 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Feisty Duck Ltd
Organizational Unit Name (eg, section) []:

15 Common Name (e.g. server FQDN or YOUR name) []:www.feistyduck.com
Email Address []:webmaster@feistyduck.com

17

Please enter the following ’extra’ attributes
19 to be sent with your certificate request

A challenge password []:
21 An optional company name []:

2.4 Related Work
A paper [13] by Li Zhao et al. has addressed anatomy and performance of SSL pro-
cessing. In this paper, they gave detailed description about secure session and also
presented how much time is spent by various cryptographic operations and some of

6

2. Background

common algorithms. This paper also addressed the problem that SSL and TLS face
of performance and did analysis of SSL processing performance and its execution
characteristics.

A paper [3] by Claude Castelluccia et al. also remarks SSL/TLS overload problem
and presents different techniques to overcome this problem of expensive public key
operations that TLS/SSL have. Their proposed solution is re-balancing the load
by allowing some parts of the TLS/SSL handshake to be performed from the client
side. The authors of the paper also mark their proposed solution as companion to
combat Denial of Service (DOS) or Distributed DOS (DDOS) attacks.

What was done in this thesis work is somehow similar to what Li Zhao and his
colleagues did, but with the difference as the main focus in this thesis work was
analysing performance of TLS with respect to less performing computers like ve-
hicular embedded computers that generally require more attention to performance.
This thesis work presented an academic contribution to the understanding of how
TLS performance can trade off with other aspects like computational cost and us-
ability of the system hosted in a vehicular embedded computer. Equally important,
how different ciphers and algorithms combination that TLS implementations sup-
ports performs in an embedded computer setting.

2.5 Ethical Consideration
This study about performance of TLS protocol in vehicular embedded computers
contain no obvious ethical concerns. However, when considering the two implemen-
tations, secured (HTTPS) and unsecured (HTTP) that this particular scenario is
addressing, one can recognize some ethical concerns regarding the potentiality of
sensitive information that is handled.

As users will be accessing sensitive data of the vehicle through mobile application
that help them make important decisions, these data in wrong hands would lead to
potential risk of loss of integrity and confidentiality and in some cases even avail-
ability. It is vital that when making decisions about what implementation to use,
to also think about these three main pillars of computer security.

It is important to realize that, despite performance bottleneck that TLS imposes
as we have seen in this research work, it is still vital when it comes to protecting
sensitive data from security breaches. TLS offers all three pillars, integrity, confi-
dentiality and availability of data when properly configured.

7

3
Methodology

3.1 Introduction

This thesis work has been conducted as empirical research. Empirical research is
a type of research based on empirical evidences. Empirical research allows us to
gain knowledge from directly or indirectly observing or experiencing a researched
phenomenon [5]. This type of research has the following characteristics: Imposes
specific research questions that are to be answered; Defines a case study, a behavior
or phenomena that is to be studied; Offers description of the process used to study
and in some cases test hypotheses of the case studied or phenomena, taking into
account controls, selection criterias, and testing environments (such as simulations).
In this thesis work and report, I have addressed all of these characteristics.

To reach intended thesis outcomes, this work was divided into the following parts
that all together supported reaching the conclusion.

1. Research on the current security requirements and implementations being used
in the industry. Research on general trade offs that such implementations have.
Then based on the requirements, write down specifications using assumptions
found from the research done. Then hypotheses are to be generated so that
they are tested based on the specifications.

2. Prepare hypothesis test environment by developing the prototype of the em-
bedded computer to mobile device HTTP communication. Then implement
the same communication test environment with HTTPS and making sure that
TLS protocol is used.

3. Write programs that will test for performance from general usability testing
to how each of the individual TLS operations performs. Then measure perfor-
mance of the test environment above by iteratively adjusting the test for the
different TLS cipher sets, and payload sizes.

4. Analyse data using the performance results I got and use them to compare
performance of each of the combination and decide on optimal implementa-
tion. Plot graphs to simplify analysis stage.

5. Based on research findings in steps 1-4, compare and weigh tradeoffs that

8

3. Methodology

each implementation has and based on security requirements in step 1 draw a
conclusion for the hypotheses in step 2 and recommendation on the optimal
implementation by addressing optimal ciphers combinations to be used and
how they imply to the security of the HTTP communication between ECU
module and mobile device.

The following is a representational diagram of my thesis’s research work procedure.

Figure 3.1: TLS Protocol Stack with respect to time each part is being used.

3.2 Research Questions
The following are the research questions that address the research problem and how
they have an effect to the user of the system.

• RQ1: How long does Transport Layer Security (TLS) Protocol operations
take to make a round trip when implemented in Vehicular Embedded System
(VES)?
Since TLS comprises Public Key Infrastructure (PKI) operations during ini-
tial handshake process that are expected to take more resources to finish and
since VES are limited in terms of resources like computational, memory etc.,
it will be interesting to find out how long each TLS operation would take to
complete when implemented in VES.

• RQ2: How does the performance of TLS affect the usability of the system
proposed to end-users?

9

3. Methodology

If RQ1 leads to performance degradation, how does it affect the system’s us-
ability to end-users? Does it lag a lot to extent that the system is completely
unusable to its end-users?

• RQ3: How can the TLS protocol stack be simplified so that it impacts less
on performance while still providing useful functionalities?
If at all TLS leads to performance degradation, can it be simplified further so
that it improves performance but have less trade-offs on its security?.

3.3 Hypotheses
As a way of refining the focus of this research, the following are hypotheses that I
came up with that I will be testing in this research work.

• H1: Algorithms requiring long keys degrades performance of the TLS protocol
in vehicular computers.

• H2: Much more secure implementation of the TLS protocol causes the sys-
tem to cost more. ie. in terms of power management, network bandwidth and
memory.

• H3: Security and usability of the system proposed is affected by performance
of the vehicles embedded computer.

3.4 Security Requirements of the System
The following are the security requirements that were taken from the targeted sys-
tem specification. Some of these requirements may be out of scope of my thesis work
but significantly identify different security mechanisms that have been put into ac-
count when developing the system.

Requirements from the project specifications are as follows:
1. The system is required to give access to data only to authenticated users and

in a secure manner.
2. The system is required to encrypt HTTP data transferred between ECU and

a mobile device through a web service.
3. The system is required to encrypt wireless communication between ECU and

mobile device.
4. The system is required to have a balance between security and its performance

without affecting usability.
Additional requirements from the specification evaluation:

5. The system needs to have 2 factor authentication to increase security.
6. The system needs to encrypt HTTP traffic through TLS implementation.

10

3. Methodology

7. The system needs to encrypt wireless communication using standard wireless
security protocols like WPA/WPA2.

3.5 Limitations
While the project aims at securing HTTP/s communication between vehicles’ ECU
and a mobile device in a wireless communication fashion, getting actual usage data
was infeasible since there is no system implemented in a vehicle already in usage
right now. Instead in this thesis work, simulations of actual usage were created with
a Java program and all measurements and readings were based on these simulations.
Readings were based on actual usage patterns and run in a span of 3 weeks contin-
uously so as to get much more accurate readings.

11

4
Setup and Testing

This section gives an in depth description of how testing and simulation was per-
formed to achieve results that helped in analysis stage of the thesis work.

To test hypotheses, a number of tests were performed that were categorized into
three stages. Usability testing, TCP/HTTP connection testing and TLS operations
testing. All these three tests happened one after another in an order as shown with
the diagram below. Results from the first test led to further investigation with the
second test. Likewise, results from the second test led to further investigation with
the third test. Data for each test was collected and used in the analysis stage that
gave deeper understanding of the research area. This understanding was comple-
mented with answers to original research questions and hypotheses that were stated
in the previous section.

Stages of testing followed in this research work are as shown in the figure below.

Figure 4.1: Steps followed to perform tests.

The diagram above shows how different tests that led to discoveries and deeper in-

12

4. Setup and Testing

vestigation through other tests.

4.1 Usability Testing
This was the first type of testing that was performed. In this test, it involved usage
scenario that a normal user of the system is expected to follow and based on it, the
time it took for each of that usage session was collected. A single usage session as
defined in this research work is a combination of different web pages that user would
visit/open as to achieve one goal(it can be to view data in dashboard, can be to
login etc.). For example, if user wants to view dashboard data, would visit a login
page, then display page and lastly a dashboard page. Therefore, for a single usage
session in this scenario, user visited 3 pages: /login, /display and /dashboard.
Each run of this test was aimed at a single usage scenario but it was performed with
a number of iterations and average response time was recorded.
Expected outcome of this test was a dataset file containing average time taken to
complete one usage session together with times for each of the iterations and per
page readings. The figure below shows a sample dataset file that was expected from
this test.

Figure 4.2: Sample output dataset file from the usability test.

4.1.1 Goal
The goal of this test was to measure time difference of web application usage when
application is secured with HTTPS as opposed to when it is not secured (i.e when

13

4. Setup and Testing

its just HTTP). This test helped to quantitatively realize if there were differences
in performance when two protocols (HTTP and HTTPs) are implemented in this
system and if those differences had effects to usability of the system. It also helped
get answers to research question 2 (RQ2) and insights to hypothesis 3 (H3) of this
research.

4.1.2 Setup

This test involved testing time it takes for one session of usage that combined load-
ing a number of website pages. For example, if a normal user will first visit a /login
page then /display page and then /dashboard page; then, get requests to these
three pages will be taken as a single usage.

For this test, Java program was written to execute curl command and collect read-
ings from it.

The following figure shows a pseudocode of how request time was collected by this
Java test program.

1

/*
3 Pseudocode for measuring time taken by each web page
*/

5 $micro_page_start = new java.util.Date().getTime(); //Just before start of the
request

$URL = [URL TO THE PAGES; CAN BE SECURE OR INSECURE PAGES]
7 $PARAMETERS = %{time_connect}, %{time_starttransfer}, %{time_total}
curl -o /dev/null --insecure -s -w $PARAMETERS $URL

9 $micro_page_end = new java.util.Date().getTime(); //Just after the request ended
$TIME_TAKEN = ($ micro_page_end - $micro_page_start) / 1000 Seconds

Code : How time was recorded before and right after the request call.

As it can be seen from the code written above, time was recorded just before the
request was performed and right after the request has returned data. For each page,
time it took to for that page to load was collected. And later on, time it took to run
that single usage session was calculated as a difference between the two times. For
easy reading, time data for this test were set to seconds time resolutions. Further-
more, for data precision purposes, the test was run for measurement for a specified
number of times (in this case 100 times), then the average time was obtained.
Figure 4.3 below shows how I did setup the usage testing environment.

14

4. Setup and Testing

Figure 4.3: Users’ single usage requests.

Using the scenario as shown in Figure 4.3 above, simulation was set to run each us-
age session a number of times that would be specified at run-time. Each round was
run for both secured version and unsecured version of implementation (i.e requests
going to HTTPS and HTTP).

Source codes of the program used to perform this test can be found in appendix A.3
section of this report.

4.2 HTTP Connection Testing

After time difference between the two implementations was observed, this test was
performed to closely see where the delay was experienced in the HTTP request to
response operations. Whether it was the TLS implementation or any other reason
that might come up due to difference in their respective implementations.

This test was aimed at measuring time it took for each individual operation in the
TCP operations stack to complete; From connection setup to data transfer to con-
nection ends. As the test was running, payload of a fixed size was requested and
time taken until completion of the requested was recorded. Data was collected with
each row containing a specific payload size against time taken by different HTTP
connection operations.

15

4. Setup and Testing

The following is a screenshot from sample comma separated values(.csv) file con-
taining data from this test.

Figure 4.4: Sample dataset file collected from this HTTP connection testing.

4.2.1 Goal
The goal of this test was to understand the performance in terms of time taken by
each operation in TCP operations stack for HTTP and HTTPS. It also helped in
answering and getting insights on research question 1 (RQ1) and hypothesis 2 (H2)
of this research work.

4.2.2 Setup
In this test, web application was designed to return contents of length/size equal to
the number specified in the get request. When a test runs, HTTP get request is sent
with a header containing size value that represents number of bytes that user wants
to get back. An application would automatically return pseudo random string of
length equivalent to the size specified. For each run, a call to the webserver can
be run multiple times and an average time values are obtained so that to add more
precision to the results to be collected. The following diagram shows pseudocode of
the web application running on the vehicle that would return contents of size based
on the size specified in the HTTP get request headers.

1 /* Pseudocode for HTTP response with contents of size as specified in GET request
*/

HTTP::Request[’/get_response’, function(){
3 $size = HTTP::GET[’size’]// Specified in the http request

$random_bytes = OpenSSL_random_pseudo_bytes($size / 2)
5 $response_contents = bin2hex ($random_bytes) // bytes to string

return $response_contents //returns the response as http content response
7 }];

Code : Response generated from the input request parameters

16

4. Setup and Testing

For example, if user requests for a URL, response was generated as shown in table
4.1 as follows:

URL Requested Response Description
/get_response?size=4 e2cd Response of size 4 bytes is returned
/get_response?size=8 21d9d93c Response of size 8 bytes is returned
/get_response?size=10 3f8be27e04 Response of size 10 bytes is returned

Table 4.1: HTTP Get requests with their respective response.

Figure 4.5 below shows how the response looks like if user requested for the following
URL http://10.5.1.42/get_response?size=230

Figure 4.5: HTTP Response for http://10.5.1.42/get_response?size=230

With the above setup, for both HTTP and HTTPS, it became easy to setup a sim-
ulation that requests for the page expecting a response of a desired content-length.
That led to a test program to be written in Java that made requests for each speci-
fied payload size and various time quantities being measured.

Quantities measured in this test are the following:

• t_PayloadSize : Payload size in bytes that were transferred from the vehicle
to mobile device in a particular request call.

• t_NameLookup : Time taken from the start of the request start to the time
name resolving was completed.

• t_Connect : Time taken from the start until the TCP connect to the remote
host was completed.

• t_Redirect : Time taken for all redirection steps including name lookup,
connect, pretransfer and transfer before the final operation was started.

• t_Pretransfer : Time taken from the start until the response contents trans-
fer was just about to begin.

17

4. Setup and Testing

• t_Transfer : Time taken from the start until the first byte was just about to
be transferred. Includes time_pretransfer and also the time the server needed
to calculate the result.

• t_Total : The total time that the full operation lasted
• t_OveralTotal : Time elapsed from the curl command was just about to

start to when it just finished running and results are received.
• t_Timestamp : Unix timestamp when data was recorded.

The following diagram show the quantities stack in order of their appearance.

Figure 4.6: Quantities measured in this test in order of appearance in HTTP call.

In this simulation, each test was allowed to run for each payload multiple times
(for this research 1000 times) and average time values were recorded to even out
random noise. Tests were also run on different payload size and for each of the two
implementations; unsecured HTTP and secured HTTP. For this test, payload sizes
begun from 1024 bytes (1KB) to about 1 Megabyte with an increment of 1024 bytes
between each request.

Figure 4.7 below, shows how test iterations were divided into equal intervals.

Figure 4.7: How test iterations were divided equally.

18

4. Setup and Testing

Source codes of the program used to perform this test can be found in appendix A.4
section of this report.

4.3 TLS Operations Testing

After test done in the previous subsection giving some insights on what led to
HTTPS implementation taking longer time, this test was performed to better un-
derstand the reason for it and if there is anything more to learn from the TLS
protocol. Discovering that TLS handshake and TLS record layer operations that
were causing performance drawback hence affecting user experience, test for the
server side OpenSSL operations were performed to see which of the TLS encryption
schemes were taking longer; Whether it was TLS record layer or TLS handshake or
different cipher sets and key sizes that affects the response time. This test helped in
understanding exactly a point in the HTTPS operations that causes notable over-
head.

In this test, each of the supported TLS encryption schemes and algorithms were
tested against the host system to see how long they take and how many operations
can be run per second by each of them. This information will be useful in deciding
what cryptographic algorithm would be expensive for the server (in terms of oper-
ation time) and what would be the optimal.

Results of this test were expected to be performance measures for each of the TLS
supported algorithm and encryption scheme. The following figure shows sample of
an expected results from this test.

Figure 4.8: Part of the sample of expected output from TLS operation test

4.3.1 Goal
The goal of this test was to measure time taken by each of TLS operations and
algorithms when running on a specific host computer. How each of the supported
TLS ciphers were performing against a computer to be used. This test also helped
me to answer research questions 1 and 2 (RQ1 and RQ2) and hypotheses 1 and 2
(H1 and H2) of this research work.

19

4. Setup and Testing

4.3.2 Setup
This test was performed entirely on the server side since all the TLS operations i.e
handshake key generations, encryption and decryption, compression etc. are mainly
done from there. This test was performed with the help of OpenSSL test func-
tionality. OpenSSL has a command called speed that tests how specified cipher or
algorithm performs in that respective computer.

The following lines of code shows pseudocode of command executed by OpenSSL to
benchmark different TLS supported ciphers in a host computer.
/* Pseudo-code for OpenSSL benchmarking functionality. Outputs measurement of

performance of different supported encryption schemes and algorithms. */
2

$options = [Specific algorithm or cipher or when left blank; tests all ciphers]
4 OpenSSL speed $options

Code : OpenSSL command to test speed of different Ciphers.

To better understand the results from this test, Figure 2.1 shows how TLS stacks
with two main parts that occur during the TLS protocol lifetime. The first part is
when there is a negotiation of keys, protocol and sets of ciphers to be used. And
the second part is when data is being encrypted and transferred using TLS session
negotiated in step above.

During connection start, there is a number of operations that happen. These oper-
ations include compression of data and encryption and decryption of data. These
operations are performed using one or multiple algorithms that each have their own
performance implication and directly or indirectly affect total time taken by TLS
protocol. Likewise, after connection has been established, because symmetric key
has already been established, encryption and decryption makes use of fewer opera-
tions as compared to the first step.

In this test, each of the supported algorithms for compression, encryption and de-
cryption where tested against host computer. With OpenSSL command explained
above, it allowed this test to get measurements of their performance in terms of
execution time and operations per second. This functionality runs on the computer
where OpenSSL is installed and it automatically measures the time taken by each
of the algorithm.

20

5
Results and Discussion

5.1 Usability testing

After carefully performing usability testing, a number of interesting findings were
found. Below are figures showing charts that were drawn from the data that were
obtained. These charts represent two different scenarios; first, was when user used
secured system i.e HTTPS protocol implemented. Second, when user used unsecured
system i.e HTTP protocol implemented. The first figure contains groups of columns
each representing time taken to load a specific web page in both implementations.
The second figure represents difference in time taken to use the web application
(load all pages in a single usage session) when HTTP is used against HTTPS.

Figure 5.1: Chart of time taken for web pages to load when HTTP is used against
when HTTPS is used.

21

5. Results and Discussion

Figure 5.2: Chart of percentage time difference between time HTTP against
HTTPS implementation.

As it can be observed from the two figures above, there seem to be a slight difference
in performance in terms of time taken when above two different protocols are used.
From Figure 5.1, we can see that in a case of loading page /login the difference can
become as big as about 600 milliseconds, which is, according to human-computer
interaction journal [6] considered noticeable to users of the system. Figure ?? shows
that more than HTTPS takes about 7.6% more of the time to load web pages.
From these observations, it can be concluded by saying that using the system when
secured imposed a remarkable overhead that makes it interesting to dig deeper into
this to get clearer picture. These findings led to a much deeper investigation about
the exact portion of the HTTPS protocol that takes longer time to execute. It led
to execution of the second test with the results in the subsequent section.

5.2 HTTP connection testing
This test took relatively longer time to complete because of how it was set. As this
test was running, simulation was requesting for page with same payload size 1000
times then find average of all of the time values obtained so as to increase accuracy
and reduce noisy results. Then simulation was picking another payload size and
do exactly like explained in step above until it finishes for all the payload size val-
ues. This simulation and test was left running for about 15 days continuously and it
led to enormous amount of data that gave a much deeper insight of the case in hand.

The following figures are the charts that were obtained from the data collected dur-
ing simulation run. Some figures show multiple graph lines; these lines represent

22

5. Results and Discussion

results from multiple threads that were run by the test program. Blue lines are for
unsafe thread 1 and black lines are for unsafe thread 2. Unsafe threads did perform
HTTP calls to pages without TLS protocol. Green and orange lines are for safe
threads 1 and 2 respectively. Safe threads did perform HTTP calls to pages with
TLS protocol.

Figures below show the correlation between different parts of the HTTP/S connec-
tion and how each affects the total response time. Despite this test being prone to
high level of data noises, taking a large amount of datasets, helped in interpretation
because it allowed a more visible pattern to be observed.

Figure 5.3: Chart of t_Redirect against payload size.

23

5. Results and Discussion

Figure 5.4: Chart of t_NameLookup against payload size.

Figures 5.3 and 5.4 above show difference in redirection and namelookup times
when calls where made to the two implementations. Safe implementation registered
more time delay as compared to unsafe implementation that registered 0 sec time
throughout simulation run. Since t_redirect includes t_namelookup, difference that
can be seen in t_redirect should have been expected since t_namelookup had the
same difference. t_namelookup however, since it is time taken until name resolu-
tion was completed, it can be understood that redirection time difference is due to
requests in our tests not being made with proper certificates that have been signed
by authorized certificate authority (CA).

Figure 5.5: Chart of t_Connect against payload size.

24

5. Results and Discussion

Figure 5.5 above has registered almost similar values for both safe and unsafe im-
plementations throughout simulation run. Since t_connect is time taken from start
to end of TCP connection [1], this similarity in time can be explained by the fact
that TCP handshake happened in both implementations and takes about same time
to complete. This means that, TCP handshake time is not affected by TLS imple-
mentation. In the OSI network model, TLS is in session layer (layer 5) while TCP
is in transport layer (layer 4) [11].

Figure 5.6: Chart of t_AppConnect against payload size.

Figure 5.7: Chart of t_Pretransfer against payload size.

25

5. Results and Discussion

Figures 5.6 and 5.7 above, it can be observed that both show remarkable time differ-
ence between safe and unsafe implementations. Unsafe registers 0 second through-
out the simulation run while safe implementation with TLS protocol operations
has registered a noticeable delay. Since t_pretransfer contains t_appconnect and
t_appconnect has shown a delay, it was expected of t_pretransfer time to also show
a delay. However, since t_appconnect in this TLS setting is basically TLS hand-
shake [1], this is an observable phenomena of TLS handshake delay.

In Figure 5.7 (t_pretransfer vs payload) above, it can be seen that both threads re-
questing to safe implementation have recorded some time delay contrarily to threads
targeting unsafe implementation that all have recorded 0 second throughout the sim-
ulation run. Since t_pretransfer is the time taken from the start until the response
contents transfer was just about to begin, this supports the fact that the delay ob-
served in safe implementation was due to the fact that there was TLS operations
taking place. These TLS operations are like TLS handshake that happens imme-
diately after TCP handshake, TLS encryption and decryption, TLS compression,
signing and verifications. All of these operations are said to have impacted to the
delay that can be observed in Figure 5.7.

Figure 5.8: Chart of t_Transfer against payload size.

Figure 5.8 above shows how there is a small difference in transfer time between safe
and unsafe implementations. The trend shows generally a small bit of similarity
between the two implementations. This similarity can be accounted with the fact
that in both cases, data transmitted are of the same type and for fixed TCP packet
size, they should be transferred around the same time. The only explanation for the
slight more time taken by safe implementation could be caused by the size of the
data to be transferred. Encrypted data some times tend to be a bit bigger that un-
encrypted. Bigger data led to slight change in time taken for one complete transfer

26

5. Results and Discussion

of data as it can be observed in the Figure 5.8.

Figure 5.9: Chart of t_Total against payload size.

Figure 5.10: Chart of t_Total against payload size.

Both Figure 5.9 and 5.10 above show a chart of t_total against payload size. Figure
5.10 however is a zoomed part of the Figure 5.9 that shows the difference in a much
closer perspective. It can be clearly observed in Figure 5.10 that there is a difference
in total time spent between safe and unsafe implementation. Safe implementation
takes longer total time to complete its requests. This difference is a result of the
difference we saw in the figure 5.6 which means that the difference in the total time

27

5. Results and Discussion

requests were taking between two implementations were directly influenced by the
t_appconnect.

In general, there is a remarkable difference between safe and unsafe implementation
in the following areas: t_Namelookup, t_Redirect, t_Appconnect, t_pretransfer
where unsafe recorded 0 seconds throughout. There is also a big difference in to-
tal time taken to complete requests that the two implementations have exhibited
is directly influenced by t_appconnect. As TLS handshake and TLS record layer
comprises of different encryption schemes and algorithms [12], findings from the test
results in a previous results subsection of this test made it necessary to dive deeper
into TLS operations so as to understand the difference that each of the algorithm
takes. Having an idea of how each of the TLS operations perform would help in
making a conclusion about performance implications of TLS in a more specific way.

Third test that was performed with the aim of investigating how much exactly does
TLS operations perform in the host computer and also what is expected to take
longer. Results and analysis are in the next subsection.

5.3 TLS operations testing

This test involved testing different OpenSSL algorithms and operations that are
used by TLS protocol. The aim of this test was to see how long each of the algo-
rithms/operations will take so that we can understand exactly what TLS operations
are expected to take longer than the other. Results of this test involved performance
measure of each of the supported crypto ciphers and algorithms that are directly or
indirectly used in different TLS operations.

The tables below contain results that found after performing TLS operations test.

28

5. Results and Discussion

Algorithm Name 16 Bytes 64 Bytes 256 Bytes 1024 Bytes 8192 Bytes
MD2 0.00k 0.00k 0.00k 0.00k 0.00k
MDC2 0.00k 0.00k 0.00k 0.00k 0.00k
MD4 4933.21k 23572.91k 48465.92k 108957.02k 133723.48k
MD5 3381.50k 15444.01k 41407.96k 65603.58k 112383.32k

HMAC(MD5) 4613.87k 13448.73k 48502.44k 67693.23k 88509.10k
SHA1 5099.76k 12600.21k 27569.24k 51946.15k 47047.83k

RMD160 3388.98k 12494.02k 23947.39k 30169.64k 45993.01k
RC4 40473.35k 55230.87k 58049.50k 48632.47k 65459.54k

DES(CBC) 10150.09k 9970.81k 13358.06k 11038.31k 11118.11k
DES(EDE3) 4532.57k 3771.77k 4692.16k 4274.43k 3827.50k
IDEA(CBC) 0.00k 0.00k 0.00k 0.00k 0.00k
SEED(CBC) 11085.63k 15852.63k 13997.38k 13436.32k 16896.34k
RC2(CBC) 8182.12k 11515.25k 9678.60k 10471.78k 11126.33k

RC5-32/12(CBC) 0.00k 0.00k 0.00k 0.00k 0.00k
BLOWFISH(CBC) 15556.35k 21506.88k 21274.80k 18319.67k 23527.42k

CAST(CBC) 14185.50k 18784.30k 19582.97k 16837.09k 18383.73k
AES-128(CBC) 25597.38k 23708.29k 25623.04k 30664.02k 24159.50k
AES-192(CBC) 22600.68k 20857.90k 21972.45k 25955.83k 20602.88k
AES-256(CBC) 18485.85k 19992.23k 23227.85k 19971.78k 19038.87k

CAMELLIA-128(CBC) 16347.81k 20819.99k 17064.33k 21087.53k 19619.70k
CAMELLIA-192(CBC) 11746.75k 17398.62k 13292.26k 16238.25k 15836.04k
CAMELLIA-256(CBC) 11762.40k 17329.19k 13563.39k 15689.54k 17096.70k

SHA256 6808.69k 15184.62k 24066.65k 38517.47k 34417.32k
SHA512 1996.16k 8606.40k 10185.38k 17491.97k 18276.35k

WHIRLPOOL 698.18k 1860.49k 2482.77k 2917.54k 3701.37k
AES-128(IGE) 22429.12k 21244.61k 28857.90k 24914.34k 22820.18k

Table 5.1: Performance results for different compression and encryption algo-
rithms. Numbers are in 1000s of bytes processed per second.

From Tables 5.1 and 5.2 above, it can be observed that as the key size increases, the
number of operations that can be performed decreases. This signifies our finding
and tells us that more secured/bigger key sizes leads to longer time to complete each
operation that in turns leads to worse performance. This is a very important point
to note, since key size most of the times implies how hard or easy it is to break the
system. That being said, there has to be balance between security and usability of
the system. A very much secured web application would also mean that the system
responsiveness would be poor hence lead to bad usability.

29

5. Results and Discussion

Algorithm Name Payload Operations Operations/time
ECDH(SECP160r1) 160bit 0.00k26s 378.4
ECDH(NISTP192) 192bit 0.00k38s 262.3
ECDH(NISTP224) 224bit 0.00k52s 191.1
ECDH(NISTP256) 256bit 0.00k66s 150.8
ECDH(NISTP384) 384bit 0.0149s 67.3
ECDH(NISTP521) 521bit 0.0343s 29.1
ECDH(NISTK163) 163bit 0.00k60s 165.9
ECDH(NISTK233) 233bit 0.0106s 94.8
ECDH(NISTK283) 283bit 0.0199s 50.2
ECDH(NISTK409) 409bit 0.0459s 21.8
ECDH(NISTK571) 571bit 0.1095s 9.1
ECDH(NISTB163) 163bit 0.00k65s 154.7
ECDH(NISTB233) 233bit 0.0120s 83.0
ECDH(NISTB283) 283bit 0.0219s 45.7
ECDH(NISTB409) 409bit 0.0524s 19.1
ECDH(NISTB571) 571bit 0.1299s 7.7

Table 5.2: Performance results for Elliptic curve Diffie–Hellman (ECDH) often
used for secure key agreement (happens in TLS handshake).

30

5. Results and Discussion

Algorithm Name Payload Sign Verify Signs/time Verify/time
RSA 512bits 0.00k1369s 0.00k0123s 730.5 8157.4
RSA 1024bits 0.00k7269s 0.00k0357s 137.6 2799.2
RSA 2048bits 0.043203s 0.00k1292s 23.1 773.9
RSA 4096bits 0.317500s 0.00k4655s 3.1 214.8
DSA 512bits 0.00k1208s 0.00k1378s 827.8 725.7
DSA 1024bits 0.00k3413s 0.00k4032s 293.0 248.0
DSA 2048bits 0.012575s 0.014239s 79.5 70.2

ECDSA(SECP160r1) 160bits 0.00k09s 0.00k35s 1123.1 286.0
ECDSA(NISTP192) 192bits 0.00k11s 0.00k44s 929.4 227.8
ECDSA(NISTP224) 224bits 0.00k14s 0.00k61s 694.0 163.0
ECDSA(NISTP256) 256bits 0.00k18s 0.00k75s 549.4 133.4
ECDSA(NISTP384) 384bits 0.00k38s 0.0192s 265.9 52.0
ECDSA(NISTP521) 521bits 0.00k71s 0.0404s 141.2 24.7
ECDSA(NISTK163) 163bits 0.00k28s 0.0112s 355.6 89.2
ECDSA(NISTK233) 233bits 0.00k57s 0.0225s 175.4 44.4
ECDSA(NISTK283) 283bits 0.00k91s 0.0396s 110.1 25.2
ECDSA(NISTK409) 409bits 0.0238s 0.0936s 42.0 10.7
ECDSA(NISTK571) 571bits 0.0596s 0.2104s 16.8 4.8
ECDSA(NISTB163) 163bits 0.00k28s 0.0131s 354.6 76.3
ECDSA(NISTB233) 233bits 0.00k56s 0.0243s 177.2 41.1
ECDSA(NISTB283) 283bits 0.00k91s 0.0470s 110.0 21.3
ECDSA(NISTB409) 409bits 0.0238s 0.1060s 42.0 9.4
ECDSA(NISTB571) 571bits 0.0595s 0.2493s 16.8 4.0

Table 5.3: Performance results for different Public Key Infrastructure (PKI) ci-
phers and algorithms.

From the Table 5.3 above it can also be observed that for RSA algorithm, it takes
longer time to sign than to verify signature of data. This is contrary to other algo-
rithms like DSA and Elliptic Curve DSA that shows that verification operation takes
longer that signing operations. This finding tells us that when implementing decid-
ing to use TLS implementation, there has to be a clear understanding about where to
put more computational load, is it to users mobile application or vehicles’ embedded
computer. Which of the two computers can bear more computational load?. What
algorithm should be used for encryption and decryption? These questions will help
better formulate requirements in a way that would reflect overcoming performance
bottleneck that TLS protocol imposes. As it was proposed in the paper [3], there is
a possibility of flexibly balancing the load by adding more computational work on
the client side as opposed to the current implementation.

In general, from the Tables 5.1, 5.3 and 5.2, it can be seen that different algo-
rithms and key sizes have different performance implications. Some algorithms take
longer while others take considerably less time. For example Table 5.2 shows that
ECDH(NISTB571) takes a long time to operate when payload is of 571 bytes or

31

5. Results and Discussion

more. This means that, when implementing TLS protocol, this algorithm should be
least expected to be used for Key agreement in PKI.

5.4 Hypothesis and Research answers
After evaluating and analysing test results, hypotheses and research questions ad-
dressed in the Methodology chapter were answered. The following are the an-
swers to each of the hypotheses and research questions:

5.4.1 Hypotheses
1. H1: Algorithms requiring long keys degrades performance of the TLS protocol

in vehicular computers.
Answer: Yes. Results from TLS Operations tests has shown that when longer
encryption and decryption are used, they take longer time to complete their
respective TLS operations. This means that longer keys degrade performance
of the system in terms of responsive time.

2. H2: Much more secure implementation of the TLS protocol causes the sys-
tem to cost more. ie. in terms of power management, network bandwidth and
memory.
Answer: Yes. Results from TLS Operations tests has shown that when longer
keys are used, they causes TLS operations to take longer to complete. This
can be directly associated with system cost in terms of computational cost.
Network bandwidth and memory can be implicitly associated as well.

3. H3: Security and usability of the system proposed is affected by performance
of the vehicles embedded computer.
Answer: Still Unknown. Tests conducted in this thesis work have reflected
on relationship between the security and usability and not the security and
usability against VECs performance.

5.4.2 Research Questions:
1. Question RQ1: How long does Transport Layer Security (TLS) Protocol op-

erations take to make a round trip when implemented in Vehicular Embedded
System (VES)?
Answer: Each of the TLS protocol operations take different times that for
each specific operation vary depending on different factors. Factors that were
observed in this thesis work based on the results from different tests are: algo-
rithm used, key size chosen and payload size to be operated on. There may be
more factors, but these three are the ones observed in this thesis work. Differ-
ent algorithms have different efficiency and operation time. Same applies to
different key sizes and different payload of data to be operated on. Because

32

5. Results and Discussion

of this, it is not correct to question about performance of TLS protocol on its
own without involving these factors.

2. Question RQ2: How does the performance of TLS affect the usability of the
system proposed to end-users?
Answer: TLS imposes noticeable difference in response time when imple-
mented in VEC. In this thesis work, results have shown some cases when TLS
registered time difference above 300 milliseconds. This is delay is above aver-
age time for delay to be noticed by humans using computer system according
to Miller in his paper [6]. As it was later observed in the TLS Operations
test results, this effect on usability depends on different factors like algorithms
used, key sizes and payload size of the data to be operated on.

3. Question RQ3: How can the TLS protocol stack be simplified so that it
impacts less on performance while still providing useful functionalities?
Answer: As it has been seen in this thesis work results, what influences per-
formance of TLS is not its architectural stack but rather other factors like
algorithms used, key size and payload size of the data to be operated on. This
thesis work has seen a huge difference in time taken for different operations;
some cases took long time (Table 5.2 shows ECDH(NISTB571) taking 129.9
milliseconds to operate on 571bit payload data) while other cases took less
time (Table 5.2 shows ECDH(SECP160r1) taking only 2.6 milliseconds to op-
erate on 160bit payload data).

5.5 Discussion
As we have seen in this research work, despite these two protocols offering the same
goal of transporting and delivering hypertext data contents over the network, there
still seem to be quite a lot of differences between them. From the architecture of
each protocol to how each are implemented to how they perform. A much more
considerable difference is in the primary reason for HTTPS; securing http protocol.
Despite all that, in this research work, we have seen how HTTP and HTTPS per-
form and has given us some points to note.

The following are main takeaways from this research work with regards to compar-
isons between HTTP and HTTPS implemented with TLS protocol:

• HTTP is better in terms of performance relative to HTTPS (with TLS imple-
mentation). Results from usage tests (Figures 5.1 and 5.2 and HTTP connec-
tion test results (Figures 5.6, 5.7 and 5.9) shows that HTTP performs better
than HTTPS with TLS implementation. Figure 5.10 shows that this difference
in performance is noticeable to human users of the system.

• TLS can be a direct cause to usability problems when longer keys are used.
Results of this thesis work as seen in Tables 5.1, 5.3 and 5.2 has shown that

33

5. Results and Discussion

longer encryption keys take longer time to complete operation hence directly
imposing delay to the system response time that becomes a bottleneck to us-
ability of the system.

• TLS protocol performs better for shorter/small key sizes as compared to big-
ger/longer keys. Results of this thesis work as seen in Tables 5.1, 5.3 and 5.2
has shown that longer encryption keys take longer time to complete operation
hence directly imposing delay to the system response time that becomes a
bottleneck to usability of the system.

• TLS handshake operations generally takes longer than TLS record layer opera-
tions. Figures 5.6 and 5.7 shows t_Appconnect which implies TLS handshake
has been observed to take much longer time as compared to difference between
t_pretransfer and t_Appconnect which implies TLS record layer.

• There has to be a balance between security and usability as the two are closely
related. This thesis work has found that usability of the system is directly af-
fected by security imposed. To implement a much stronger security, usability
has to be sacrificed since stronger encryption keys and algorithms take much
longer time to finish.

5.6 Threats to Validity

Despite of conducting this thesis work with full caution about uncertainties in out-
comes of the simulations, there are threats that would still affect validity of this
thesis work and conclusions derived from its results. This section has grouped these
threats according to papers [10] and [4] into 2 groups.

5.6.1 Construct Validity

This threat is concerned with the capacity at which the studied performance mea-
sures reflect what the researcher intended to investigate. To minimize this threat,
problem definition, hypotheses and research questions of this thesis work were used
so that as their solutions were found, a deeper understanding of the research subject
would have been attained. Likewise, tests were performed to check solutions for
these research questions and hypotheses.
Workshop was organized at the beginning of my thesis work so at to interact with
the company employees and get their ideas and suggestions on different technological
and methodological approaches currently being used in the industry. After applying
ideas from employees and results achieved, these results were compared with the re-
search questions, hypotheses and requirements to make sure that all of the intended
goals were reached.

34

5. Results and Discussion

5.6.2 Reliability Validity
This validity aspect questions about an extent that results of the research work
are dependent on the researcher. This poses a question, would results change if a
different researcher conducted the same research?. This thesis work was performed
under simulation environment, but it was done with a lot of iterations. Average val-
ues were recorded after thousands of repetitions so as to reduce incorrect readings.
Also, these simulations were conducted on the same local machine so as to reduce
network latency that has a possibility of causing uncertainties to the outcomes.

35

6
Conclusion

6.1 Summary
The aim of this thesis work was to research and analyse performance implication
of TLS protocol when implemented in VEC. This work was aimed at developing a
prototype of the system as a proof of concept and based on security requirement
that TLS protocol has to be used; assess its performance implication in this specific
setting of VEC. The main performance concern in this thesis work was to check dif-
ference in response time between implementations with and without TLS protocol
configured. By the end of this thesis work, different performance tests were con-
ducted, results were obtained and these results helped in understanding performance
implication of TLS protocol when implemented in VEC.

6.2 Conclusions
TLS protocol is a very robust and proven to work protocol that offers security when
transferring data across the Internet with a wide range of choices of algorithms and
ciphers. But its flexibility has made it to be susceptible perception that it has per-
formance drawbacks even in cases when it is not actually the source of the problem.
This thesis work has seen how TLS protocol can perform really well or poorly de-
pending on the algorithm used, key size used or payload size to be operated
on. Results from this thesis work has shown how there are cases when TLS perform
really well to the extent of having almost no effect to the total TCP response time.

Together with the above findings, it is necessary to have an idea on performance
implication that TLS protocol has to the target system. This idea will inspire con-
figuration and development of the system that has optimal performance in terms of
response time. An open-source software like the one used in this this work could be
a great tool to use to get this idea if it is developed further.

36

6. Conclusion

6.3 Future Work
There is a variety of things that could have been done in this project, but for vari-
ous reasons like narrowing the scope, they had to be left out. The following are few
propositions for future works based on this thesis work so as to make this contri-
bution more robust. These things may either have an influence on the project as a
whole or may be applicable to other people using the work and the ones that affects
the results for:

• It would have been interesting to see how a specific cipher perform in terms
of actual time set it takes for each unit operation. For example, how encryp-
tion comprises of a number of different iterations of XOR operations that are
either done in electronic Code Block Chaining (CBC) mode or Cipher Feed-
back mode (CFB) and how long each takes so that can provide a much deeper
understanding of these crypto algorithms.

• It would also have been interesting to find out relationship between security
and power efficiency. In most cases, these embedded computers are very much
expected to be power efficient, so it is vital to measure how does the two relate
and see if there might be any conclusions to make regarding this.

• To complement an open source project [2] that came out as a result of this
thesis work, it would have been very interesting to find other sets of test that
could be added with other tests and bundle them up to make one complete
software that performs tests for a anyone interested in knowing how their com-
puters and web applications performs.

37

Bibliography

[1] CURL - online manual page. https://curl.haxx.se/docs/manpage.html.
[ONLINE; accessed: 2016-04-26].

[2] HyperText Profiler - opensource http/s performance profiling tool. https:
//github.com/bychwa/HyperTextProfiler. [ONLINE; accessed: 2016-05-26].

[3] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. Improving secure
server performance by re-balancing ssl/tls handshakes. In Proceedings of the
2006 ACM Symposium on Information, computer and communications security,
pages 26–34. ACM, 2006.

[4] Robert Feldt and Ana Magazinius. Validity threats in empirical software engi-
neering research-an initial survey. In SEKE, pages 374–379, 2010.

[5] Chakravanti Rajagopalachari Kothari. Research methodology: Methods and
techniques. New Age International, 2004.

[6] Robert B Miller. Response time in man-computer conversational transactions.
In Proceedings of the December 9-11, 1968, fall joint computer conference, part
I, pages 267–277. ACM, 1968.

[7] Farhad Moghimifar and Douglas Stebila. Predicting tls performance from key
exchange performance: short paper. In Proceedings of the Australasian Com-
puter Science Week Multiconference, page 44. ACM, 2016.

[8] Eric Rescorla. SSL and TLS: designing and building secure systems, volume 1.
Addison-Wesley Reading, 2001.

[9] Ivan Ristic. Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS
and PKI to Secure Servers and Web Applications. Feisty Duck, 2014.

[10] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering,
14(2):131–164, 2009.

[11] William Stallings. Data and computer communications. Prentice Hall, 2005.
[12] William Stallings. Cryptography and Network Security, 4/E. Pearson Education

India, 2006.
[13] Li Zhao, Ravi Iyer, Srihari Makineni, and Laxmi Bhuyan. Anatomy and per-

formance of ssl processing. In Performance Analysis of Systems and Software,
2005. ISPASS 2005. IEEE International Symposium on, pages 197–206. IEEE,
2005.

38

https://curl.haxx.se/docs/manpage.html
https://github.com/bychwa/HyperTextProfiler
https://github.com/bychwa/HyperTextProfiler

A
Testing Program Codes

A.1 Main Program: MainProfiler.java

1 package diadrom.profiler;

3 /**
*

5 * @author jaxonisack
*/

7 import java.util.*;

9 public class MainProfiler {

11 public static void main(String args[]){

13 Scanner scan=new Scanner(System.in);
System.out.println("Welcome␣to␣Requests␣Profiler!,␣\n\n␣Choose␣Type:\n␣1:

␣Apache␣Benchmark␣\n␣2:␣Curl␣HTTP␣Profiler␣\n␣3:␣Usage␣Profiler␣\n");
15 System.out.print("My␣choice␣is:␣");

String profiler_type=scan.nextLine();
17

switch(profiler_type){
19 case "1":

new ApacheProfiler();
21 break;

23 case "2":
new HyperTextProfiler();

25 break;

27 case "3":
new UsageProfiler();

29 break;

31 default:

33 System.out.println(profiler_type+"␣is␣a␣wrong␣choice!␣\n␣Bye!");
System.exit(1);

35

break;
37

}
39

I

A. Testing Program Codes

41 }
}

A.2 Runnable Program (Allows multi-threading):
RunnableProfiler.java

2 import java.io.*;
import java.util.Date;

4

class RunnableProfiler implements Runnable {
6

private Thread t;
8 private String threadName,page;

private int accuracy,payload_from,payload_to, interval;
10 private String ofile,site,type,https_protocol,cipher_file;

private int threadNumber=1;
12 private Boolean secured;

private String [] pages;
14 private double tcp_start=0,tcp_end=0,tcp_time=0,micro_page_start=0,

micro_page_end=0;
private double[] tcp_micro_time;

16 private File fout;
private FileOutputStream fos;

18 private OutputStreamWriter osw;

20 RunnableProfiler(String type, String threadName,int accuracy, int
threadNumber,Boolean secured, String[] pages, String ofile){

22 //for Apache Benchmark
this.threadNumber=threadNumber;

24 this.type=type;
this.threadName = threadName;

26 this.accuracy=accuracy;
this.pages=pages;

28 this.ofile=ofile;
this.secured=secured;

30

}
32

RunnableProfiler(String type, String threadName,int accuracy, int
threadNumber, String site, Boolean secured, String https_protocol,String
cipher_file, String ofile){

34

//for Apache Benchmark
36 this.threadNumber=threadNumber;

this.type=type;
38 this.threadName = threadName;

this.accuracy=accuracy;
40 this.site=site;

this.https_protocol=https_protocol;
42 this.cipher_file=cipher_file;

II

A. Testing Program Codes

this.ofile=ofile;
44 this.secured=secured;

46 }
RunnableProfiler(String type, String threadName,int accuracy, int

payload_from,int payload_to, int interval, String site, String ofile){
48

this.type=type;
50 this.threadName = threadName;

this.accuracy=accuracy;
52 this.payload_from=payload_from;

this.payload_to=payload_to;
54 this.interval=interval;

this.site=site;
56 this.ofile=ofile;

58

}
60

public void run() {
62

TerminalCommandExecutor te=new TerminalCommandExecutor();
64

switch(type){
66

case "USAGE":
68

try {
70

fout = new File(ofile);
72 fos = new FileOutputStream(fout);

osw = new OutputStreamWriter(fos);
74 osw.write("SESSION:\t"+threadName+"\nNO␣PAGES:\t"+pages

.length+"\n");

76 for (int i=1; i <= accuracy; i++) {
osw.write("\tAccuracy␣Level:"+i+"\n");

78

tcp_start = new java.util.Date().getTime(); //start
of the request

80

for(int j=0; j < pages.length; j++){
82 micro_page_start = new java.util.Date().getTime

(); //start of the request
page=secured?"https://"+pages[j]:"http://"+

pages[j];
84 String command="curl␣-o␣/dev/null␣--insecure␣-s

␣-w␣%{time_connect},%{time_starttransfer},%{time_total},%{time_appconnect},%{
time_namelookup},%{time_pretransfer},%{time_redirect}␣"+page;

String results=te.runCommand(command,true);
86 micro_page_end = new java.util.Date().getTime()

; //start of the request
osw.write("\t\tPAGE:␣"+pages[j]+"\t\t\t␣TIME:"

+(micro_page_end-micro_page_start)/1000+"␣seconds\n");
88

}

III

A. Testing Program Codes

90

tcp_end = new java.util.Date().getTime(); //end
of the request

92

tcp_time +=(tcp_end - tcp_start);
94 osw.write("\n");

}
96

System.out.println(threadName+","+pages[0]+",␣"+String.
format("%.8f",(tcp_time/accuracy)/1000)+"␣seconds,␣"+new java.util.Date().
getTime());

98

osw.write("AVERAGE␣TIME:\t\t\t"+String.format("%.8f",(
tcp_time/accuracy)/1000)+"␣seconds\n");

100

osw.close();
102

}catch(Exception e){
104

System.err.println("An␣error␣has␣occured␣while␣opening␣
/␣writing␣to␣the␣file␣"+ofile);

106

}
108

break;
110

case "CURL":
112

try {
114

fout = new File(ofile);
116 fos = new FileOutputStream(fout);

osw = new OutputStreamWriter(fos);
118

System.out.println("ThreadName,␣t_PayloadSize,␣
t_NameLookup,␣t_AppConnect,␣t_Redirect,␣t_Connect,␣t_Pretransfer,␣t_Transfer,
␣t_Total,␣t_OveralTotal,␣t_Timestamp");

120 osw.write("ThreadName,␣t_PayloadSize,␣t_NameLookup,␣
t_AppConnect,␣t_Redirect,␣t_Connect,␣t_Pretransfer,␣t_Transfer,␣t_Total,␣
t_OveralTotal,␣t_Timestamp"+"\n");

122 for(int i=Integer.valueOf(payload_from); i <= Integer.
valueOf(payload_to); i+=interval){

124 String num_bytes=String.valueOf(i);

126 String command="curl␣-o␣/dev/null␣--insecure␣-s␣-
w␣%{time_connect},%{time_starttransfer},%{time_total},%{time_appconnect},%{
time_namelookup},%{time_pretransfer},%{time_redirect}␣"+site+"/get_response?
size="+num_bytes;

128 double t_connect=0,t_transfer=0,t_total=0,
t_appconnect=0,t_namelookup=0,t_pretransfer=0,t_redirect=0;

130 for(int j=1; j<=accuracy;j++){

IV

A. Testing Program Codes

132 tcp_start = new java.util.Date().getTime
(); //start of the request

String results=te.runCommand(command,true);
134 tcp_end = new java.util.Date().getTime();

//end of the request

136 tcp_time+=(tcp_end - tcp_start);

138 String[] resultsArray=results.split(",");

140 t_connect+=Double.valueOf(resultsArray
[0]);

t_transfer+=Double.valueOf(resultsArray
[1]);

142 t_total+=Double.valueOf(resultsArray[2]);
t_appconnect+=Double.valueOf(resultsArray

[3]);
144 t_namelookup+=Double.valueOf(resultsArray

[3]);
t_pretransfer+=Double.valueOf(

resultsArray[3]);
146 t_redirect+=Double.valueOf(resultsArray

[3]);

148 }

150 System.out.println(threadName+",␣"+num_bytes+",␣"
+String.format("%.8f",(t_namelookup/accuracy))+",␣"+String.format("%.8f",(
t_appconnect/accuracy))+",␣"+String.format("%.8f",(t_redirect/accuracy))+",␣
"+String.format("%.8f",(t_connect/accuracy))+",␣"+String.format("%.8f",(
t_pretransfer/accuracy))+",␣"+String.format("%.8f",(t_transfer/accuracy))+",
␣"+String.format("%.8f",(t_total/accuracy))+","+String.format("%.8f",(
tcp_time/accuracy)/1000)+",␣"+new java.util.Date().getTime());

osw.write(threadName+",␣"+num_bytes+",␣"+String.
format("%.8f",(t_namelookup/accuracy))+",␣"+String.format("%.8f",(
t_appconnect/accuracy))+",␣"+String.format("%.8f",(t_redirect/accuracy))+",␣
"+String.format("%.8f",(t_connect/accuracy))+",␣"+String.format("%.8f",(
t_pretransfer/accuracy))+",␣"+String.format("%.8f",(t_transfer/accuracy))+",
␣"+String.format("%.8f",(t_total/accuracy))+","+String.format("%.8f",(
tcp_time/accuracy)/1000)+",␣"+new java.util.Date().getTime()+"\n");

152

}
154

System.out.println("------END-----");
156

osw.close();
158

}catch(Exception e){
160 System.err.println(e);

}
162 break;

164 case "APACHE":

166 if(secured){

V

A. Testing Program Codes

168 System.out.println("\n␣Safe␣HTTP␣Test:\n␣");

170 try{

172 String cipher;

174 BufferedReader br = new BufferedReader(new
InputStreamReader(new FileInputStream(cipher_file)));

176 while ((cipher = br.readLine()) != null) {

178 String command="ab␣-d␣-k␣-c␣"+this.threadNumber+"
␣-n␣"+accuracy+ "␣-f␣"+https_protocol+"␣-Z"+cipher+"␣"+site;

180 String results=te.runCommand(command,true);

182 String[] lines = results.split(System.getProperty
("line.separator"));

184 if(lines.length<=30){

186 System.out.println(cipher+"␣:␣"+"␣Error");

188 }else{
System.out.println(cipher+"␣:");

190 System.out.println("\t"+lines[8]);
System.out.println("\t"+lines[9]);

192 System.out.println("\t"+lines[10]);
System.out.println("\t"+lines[11]);

194 System.out.println("␣");
System.out.println("\t"+lines[31]);

196 System.out.println("\t"+lines[32]);
System.out.println("␣");

198

}
200

202 }
br.close();

204

}catch(Exception e){
206

System.err.println("An␣error␣occurred␣due␣to␣reading␣
the␣cipher␣file!");

208

}
210

}else{
212

System.out.println("\n␣UnSafe␣HTTP␣Test:\n␣");
214

String command="ab␣-d␣-k␣-c␣"+this.threadNumber+"␣-n␣"+
accuracy+ "␣"+site;

216

String results=te.runCommand(command,true);
218

VI

A. Testing Program Codes

String[] lines = results.split(System.getProperty("line.
separator"));

220

if(lines.length<=30){
222

System.out.println(">>"+"␣Error");
224

}else{
226

System.out.println("\t"+lines[8]);
228 System.out.println("\t"+lines[9]);

System.out.println("\t"+lines[10]);
230 System.out.println("\t"+lines[11]);

System.out.println("␣");
232 System.out.println("␣");

}
234

}
236

break;
238

}
240

}
242

public void start ()
244 {

if (t == null){ t = new Thread (this, threadName); t.start (); }
246 }

248 }

A.3 Usage Testing Program : UsageProfiler.java

2 package diadrom.profiler;

4 /**
*

6 * @author jaxonisack
*/

8 import java.util.*;

10 public class UsageProfiler {

12 private final String RESULTS_FOLDER_PATH="results/";
private final String TEST_TYPE="USAGE";

14

public UsageProfiler(){
16

System.out.println("Welcome␣to␣Usage␣Profiler");
18

Scanner scan=new Scanner(System.in);

VII

A. Testing Program Codes

20

System.out.print("Number␣of␣Site␣Pages␣per␣normal␣usage:␣"); int
num_pages=Integer.valueOf(scan.nextLine());

22

String [] pages=new String[num_pages];
24 for (int i=0;i < num_pages;i++) {

System.out.print("Page␣"+i+":"); pages[i]=scan.nextLine();
26 }

28 System.out.print("Test␣both␣http␣and␣https␣(Y/y␣or␣N/n):␣"); String
test_both=scan.nextLine();

String https_protocol="", cipher_file="";
30 System.out.print("Number␣of␣Threads:␣"); int num_threads=Integer.valueOf(

scan.nextLine());
System.out.print("Accuracy␣Level␣(1-100):␣"); int accuracy=Integer.

valueOf(scan.nextLine());
32 System.out.print("Output␣filename:␣"); String outputfilename=scan.

nextLine();

34 RunnableProfiler s_thread,u_thread;
String results_file_name="untouched.csv";

36 Boolean secured=false;

38 if(test_both.equals("Y")|| test_both.equals("y")){

40 for(int p=1; p<=num_threads; p++){
//unsafe thread

42 secured=false;
results_file_name=RESULTS_FOLDER_PATH+outputfilename+"

_unsafe_thread_"+p+"_.csv";
44 u_thread = new RunnableProfiler(TEST_TYPE,"UnsafeThread",

accuracy,num_threads,secured,pages,results_file_name);
u_thread.start();

46 }
for(int p=1; p<=num_threads; p++){

48 //safe thread
secured=true;

50 results_file_name=RESULTS_FOLDER_PATH+outputfilename+"
_safe_thread_"+p+"_.csv";

s_thread = new RunnableProfiler(TEST_TYPE,"SafeThread", accuracy,
num_threads,secured,pages,results_file_name);

52 s_thread.start();
}

54

}else{
56 for(int p=1; p<=num_threads; p++){

//unsafe thread
58 secured=false;

results_file_name=RESULTS_FOLDER_PATH+outputfilename+"
_unsafe_thread_"+p+"_.csv";

60 u_thread = new RunnableProfiler(TEST_TYPE,"UnsafeThread",
accuracy,num_threads,secured,pages,results_file_name);

u_thread.start();
62 }

}
64 }

VIII

A. Testing Program Codes

66 }

A.4 HTTP Connection Testing Program : Hy-
perTextProfiler.java

package diadrom.profiler;
2

/**
4 *

* @author jaxonisack
6 */
import java.util.*;

8

public class HyperTextProfiler {
10 private final String RESULTS_FOLDER_PATH="results/";

private final String TEST_TYPE="CURL";
12

public HyperTextProfiler(){
14

System.out.println("Welcome␣to␣HTTP␣Profiler␣(with␣CURL)");
16

Scanner scan=new Scanner(System.in);
18

System.out.print("Website:␣"); String website=scan.nextLine();
20 System.out.print("Test␣both␣http␣and␣https␣(Y/y␣or␣N/n):␣"); String

test_both=scan.nextLine();
System.out.print("Number␣of␣Threads:␣"); int num_threads=Integer.valueOf(

scan.nextLine());
22 System.out.print("Accuracy␣Level␣(1-100):␣"); int accuracy=Integer.

valueOf(scan.nextLine());
System.out.print("Payload␣From␣(Bytes):␣"); int payload_from=Integer.

valueOf(scan.nextLine());
24 System.out.print("Payload␣To␣(Bytes):␣"); int payload_to=Integer.valueOf(

scan.nextLine());
System.out.print("Interval␣Payload␣(Bytes):␣"); int interval=Integer.

valueOf(scan.nextLine());
26 System.out.print("Output␣filename:␣"); String outputfilename=scan.

nextLine();

28 String safe_site="https://"+website;
String unsafe_site="http://"+website;

30 String results_file_name="untouched.csv";

32 RunnableProfiler r_thread;

34 if(test_both=="y" || test_both=="Y"){

36 for(int i=1; i<=num_threads; i++){

38 results_file_name=RESULTS_FOLDER_PATH+outputfilename+"
_unsafe_thread_"+i+"__.csv";

IX

A. Testing Program Codes

r_thread = new RunnableProfiler(TEST_TYPE,"UnsafeThread-"+i,
accuracy,payload_from,payload_to,interval,unsafe_site,results_file_name);

40 r_thread.start();

42 }
for(int i=1; i<=num_threads; i++){

44

results_file_name=RESULTS_FOLDER_PATH+outputfilename+"
_safe_thread_"+i+"__.csv";

46 r_thread = new RunnableProfiler(TEST_TYPE,"SafeThread-"+i,
accuracy,payload_from,payload_to,interval,safe_site,results_file_name);

r_thread.start();
48

}
50

}else{
52

for(int i=1; i<=num_threads; i++){
54

results_file_name=RESULTS_FOLDER_PATH+outputfilename+"
_unsafe_thread_"+i+"__.csv";

56 r_thread = new RunnableProfiler(TEST_TYPE,"UnsafeThread-"+i,
accuracy,payload_from,payload_to,interval,unsafe_site,results_file_name);

r_thread.start();
58

}
60

}
62 }

64 }

X

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Transport Layer Security
	Curl Tool
	OpenSSL
	Related Work
	Ethical Consideration

	Methodology
	Introduction
	Research Questions
	Hypotheses
	Security Requirements of the System
	Limitations

	Setup and Testing
	Usability Testing
	Goal
	Setup

	HTTP Connection Testing
	Goal
	Setup

	TLS Operations Testing
	Goal
	Setup

	Results and Discussion
	Usability testing
	HTTP connection testing
	TLS operations testing
	Hypothesis and Research answers
	Hypotheses
	Research Questions:

	Discussion
	Threats to Validity
	Construct Validity
	Reliability Validity

	Conclusion
	Summary
	Conclusions
	Future Work

	Bibliography
	Testing Program Codes
	Main Program: MainProfiler.java
	Runnable Program (Allows multi-threading): RunnableProfiler.java
	Usage Testing Program : UsageProfiler.java
	HTTP Connection Testing Program : HyperTextProfiler.java

